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Introduction

In representation theory of groups, there is an equivalence between the cate-
gory of affine group schemes and the category of commutative Hopf algebras. This
fact can be generalized to affine groupoid schemes, that is, a groupoid scheme is an
internal groupoid in the category of schemes and there is an equivalence between
the category of affine groupoid schemes and the category of Hopf algebroids.

On the other hand, by a work of J.F. Adams on generalized homology theory
([1], [2]) a commutative ring spectrum E such that E«E is flat over Ex=E«(S°)
gives a Hopf algebroid (Ex, ExE). One of the most important examples of such
E is the complex cobordism spectrum MU. A theorem of Quillen enable us to
identify the affine groupoid scheme represented by the Hopf algebroid defined from
the complex cobordism theory with an affine groupoid scheme of formal groups
and strict isomorphisms between them. Many homology theories related with
complex cobordism (for example, BP-theory, Morava K-theory, elliptic
homology) give closed (or locally closed) “subgroupoid schemes” of above
groupoid scheme. This viewpoint is originally due to Jack Morava ([10]).

We give basic definitions and constructions on internal groupoids in sections
1 and 2. In section 3, we translate the language of previous sections in terms of
Hopf algebroids. We give a general description of Hopf algebroids associated with
complex oriented cohomology theories satisfying certain condition in Section 4.
Finally, we determine the structure of the Hopf algebroid associated with the
elliptic homology theory given by Landweber ([8]).

1. Internal categories and groupoids

DerINITION 1.1. ([6]) Let € be a category with finite limits. An internal
category C in 6 consists of the following objects and morphisms.
(1) A pair of objects Co (the object-of-objects) and Ci (the object-of-morphisms).
(2) Four morphisms ¢ : Ci— Co (source), 7: Ci—Co (target), €: Co— C: (iden-
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tity), #: CiX ¢, Ci— C1 (composition), where Ci on the right (resp. left) factor of
the pull-back over Cp is regarded as having structure map ¢ (resp. 7), such that oe
=te=1dc, and the following diagrams commute.

b7 © X ide,
G L Ci X ¢Ci — C Ci X ¢,C1 X ¢,C1 "—>" C1 X ¢,y

L] Jie |

Co < C - Co C1 X ¢oC1 —_— C

ide, X € e X idc,
Ci X ¢eCo —> C1 X ¢,C1 ' Co X ¢,C1

G

We denote by (Ci=3Co) an internal category C whose object-of-objects and
object-of-morphisms are Co and C, respectively.

A morphism f : C— D of internal categories (internal functor) consists of two
morphisms fo: Co—Do and fi: Ci—D: of 6 such that the following diagrams
commute.

Co‘o_cl—r>C1 CIXCOCIJ—’CI(L'CO

[P P
Dy < Dy —— Dy Dy X p,Dy —2> Dy <~ D,

The above internal functor f is denoted by (f1, /o).
We denote by cat(6) the category of internal categories in 6.

A groupoid is a category whose morphisms are all isomorphisms. We also
have an internal version of this notion.

DEFINITION 1.2.  An internal groupoid G in 6 is an internal category in 6
with a morphism ¢: Gi— G, (inverse) such that oc=7, 7z=0 and the following
diagram commutes.

dc,, , idc,
G (ld—’l) Gi X 6oGr (“l—> G

l I I

Go —— G < G

An easy diagram chasing shows the following.
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Proposition 1.3. Let C be an internal category in 6. Suppose that
morphisms a, B, v:D—C: satisfy ta=o0fB, or=1t8 and make the following
diagram commute, then a=1y.

p %z (B, 7) Ci X 0Ci &P (a, 8) D

b b s

€ 3

Co— G — Go

In particular, if ¢, ¢:: Gi— Gi are morphisms satisfying =0, o=r and
making

(idc., lz) (lly ZdGl
—

G Gi X ¢,Gh G

l L I

G —> Gy ~— G
commute, we have c;=¢z. This implies the uniqueness of the morphism ¢ : Gi— G
satisfying the above conditions. Moreover, if f : G— H is an internal functor and
both G and H are internal groupoids, it can be shown that fi commutes with ¢ by
applying the above proposition for a=tfi, 8=/ri, y=/rie. It follows that we can
regard the category of internal groupoids in € as a full subcategory of cat(6). We
denote by gr(€) the category of internal groupoids in €.

2. Pull-back of internal categories

Let € be a category with finite limits and C =(Ci=C,) an internal category
in 6.

For morphisms f: D—C,, g: E—C, of €, we denote by Cy,g a limit of a
diagram

D5 Co "~ Cr—— Co—E.
Cy.g is also denoted by D X ¢,C1 X ¢, E. Define 67,9 : Cr,e—D, f%g: Crg— Ci and
779 . Cr,e—E to be the projections onto each component. If C is an internal
groupoid, let ¢s,¢ : Cr,o— Cy,7 be the morphism induced by z7,g, ¢((f * g) : Cr.e— C:
and 0r,g.
Let #: F—Co a morphism of 6. We define t,9,n: Cr,g X £Cg,5— Cr,n to be

idp X X idr

the composition Cyr,¢ X eCg,n =D X ¢,C1 X ¢, C1 X ce FF—— Cr,.

In the case D=FE=F and f—g ]’l, we set Cf,f—Dfl, Or,r =07, Tr.f = Tf, Kt .f.f
=pup, X f= f, (¢r.r=ts if C is an internal groupoid) and denote by &5 : D—Ds
the morphism induced by idp : D—D and ef : D— (.. Then we have an internal
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category Cr=(D;1=3D) with structure maps 0y, Zr, &s, s and also have an internal
functor ( /7, f): C;—~C. We call Cy a pull-back of C along f. Note that Cy is
an internal groupoid with inverse ¢ if C is so.

The following fact is easily verified.

Proposition 2.1. 1) Let D=(D:=3D) be an internal category in € and

(1, /o) : D—C an internal functor, then there is a unique morphism h: Di— Dy,
such that (h, idp,) : D— Cy is an internal functor and fi= foh.

2) Let f':D—D and g : E—E be morphisms of 6. Then, there is a
natural isomorphism Ciysrge =(Cr,q)s.g Which commutes with various structure
maps.

DEFINITION 2.2. An internal functor f=(f1, /) : D— C is said to be faithful
(resp. fully faithful) if the induced morphism % : Di— Dy, is a monomorphism
(resp. isomorphism). An internal subcategory D of C consists of subobjects
Dy— Co, Di— C, such that these monomorphisms give an internal functor. If this
internal functor is fully faithful, D is called a full subcategory.

REMARK 2.3. If f and g are monomorphisms, then f* g: Cs,g—Ci is also a
monomorphism. If & is the category of sets, the image of f%* g consists of
morphisms of Co whose sources and targets belong to the images of f and g,
respectively.

3. Affine groupoid scheme

Let k£ be a commutative ring. We denote by An. the category of commutative
k-algebras and An: denotes the category of functors from An. to the category of
sets. Then, Anj has finite limits. For an object A of Anx, we denote by 2(A) the
functor represented by A, that is, #Z(A)(R) is the set of morphisms from A to R.
We call a functor isomorphic to a such representable functor an affine k-scheme

([4], [5]).

ExAMPLE 3.1. Let A, H be commutative k-algebras and put Go=#h(A), Gi=
h(H). Then, giving (Gi, Go) a structure of an internal groupoid in Ani is
equivalent to giving (A, H) a structure of a Hopf algebroid, that is, giving
k-algebra homomorphisms 0%, wx:A—H, ex:H—A, («+: H>H and p«:
H—H®sH such that ex0x=¢exTx«=1da, (x0x=Tx, (xTx=0x and the following
diagrams commute. Here, we regard H as a left A-module by 0« and a right
A-module by zx.
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(1, )

HRH®R.H “2 Ho.H H 2 Ho.H “Y 1
[1®#* Lz* Io* ﬂ*T T*I
H®Q®.H <<~ H A & H = A

A HQWH <~ H  H®.A 2= HR.H =8 AQ.H

ILG* L‘* . Iu ~__ L‘* _—

- H A S

In the above diagrams, 71, i2: HoH®4H and (1, ¢), (tx, 1): HOQ.H—H are
maps defined by #1(x)=x®1, i2(x)=1Qx, (1, ) xR¥)=2xtx(¥), (tx, D(x@y)=
t(x)y. 1 HoHQAA, j»: H->AQ4H are isomorphisms defined by /i1(x)=x®1,
72(x)=1®x. In this case, we call (Gi=3Go) an affine A-groupoid scheme represent-
ed by a Hopf algebroid (A, H). The full subcategory of gr(Anz) consisting of
affine k-groupoid schemes is equivalent to the category of Hopf algebroids over %.

ExampLE 3.2. Let G=(Gi=3Gy) be an affine k-groupoid scheme represented
by a Hopf algebroid (A, H). We put D=n(A:), E=h(A:), F=h(As) for
k-algebras Ai, Az, As and Let f: D—G,, g: E—Go and 4 : F— Gy be the mor-
phisms induced by k-algebra homomorphisms ¢.: A—A; Then, Grg=
WAQiH®4Az) and 0y, f*g, 770 are induced by the canonical maps 7 :
A AiQuH® 1Az, iz H2AIQAHQ 1Az, is: Ar—> AiQuH & 4As, tespectively.

tr.g is induced by c¢: A:Q@iH@sA>A1QsH&®4Az2 which maps 6QxQa to

a®x(x)Xb. trgn is induced by composition AiRQaH®aA, 228

AR HRiHR 1A, %(Al®AH®AA2)®A2(A2®AH®AA3), where J :

H®AH—*H®AA2®A2A2®AH maps x®y to x®1®1®y.

In the case Ai=A:=A3=DB and ¢p1=9p:=@3=9¢, & is induced by composition
1Qex®1 prod

BR®.HQ®1B— BRLAR.B=BX+B—B.

4. An application to complex cobordism

Let £ be a commutative ring spectrum such that E«E is a flat Ex-module and
E is a k-algebra for a commutative ring & (k= Eo for example). We assume that
E»=E.E=0 if n is odd for simplicity. Then, (Ex, ExE) has a structure of a Hopf
algebroid ([1]) and it represents an affine £-groupoid scheme. We denote this by
G:=(Ge:3Gro). Let ¢: Ex— A be a flat morphism of k-algebras, then a functor

X —AQ®:,.E«(X) is a multiplicative homology theory. Hence there exists a ring
spectrum E, and a ring map E—E, such that Eox(X)=A®:,E«(X) for any
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spectrum X. Let ¢ : Ex— B also be a flat morphism of k-algebras and put g=
h(¢), then it is easy to verify the following.

Proposition 4.1. E.«E, is isomorphic to AQs E«xEQr.B. Hence EoxEy
represents (Ge)r,g. If A=B and ¢=¢, EoxE, is a flat Egx-module and (Eox,
E.«E,) represents the pull-back of Gr along f.

We consider the case E=MU. By the theorem of Quillen, for each com-
mutative ring R, Guvo(R) and Guv1(R) can be naturally identified with the set of
formal group laws over R and the set of strict isomorphisms between them,
respectively. We denote by Fy(X, Y)EMU[[X, Y]] the universal formal group
law. Let ¢ : MUx—A and ¢ : MU,— B be ring homomorphisms and put Fo(X,
YV)=¢«Fu(X, Y)EA[[X, Y]], F(X, YV)=¢«Fu(X, Y)EB[[X, Y]]. Suppose
that both ¢ and ¢ satisfy the following condition for £=Z.

(%) For a morphism 0:S—T of Ang, h(0): h(T)R)—=h(S)R) is in-
Jective for any commutative k-algebra R.

Then, we may regard 2(A) and /4(B) as subfunctors of Guvo by f=5h(¢) and g=
(). Thus 2(A)(R) and #(B)(R) are identified with {0+ Fo(X, Y)|0E h(A)(R)}
and {&GFu(X, Y)|¢€h(B)(R)}, respectively. - It follows from (2.3) that
(Guu1)r,¢(R) is identified with the set of all strict isomorphisms from elements of
h(A)(R) to elements of #(B)(R). Hence a formal power series 7(X)=2>),z1¢,X"
€ R[[X]] belongs to (Guuv1)s,¢(R) if and only if its coefficients c¢’s satisfy c1=1
and the following equality in R[[X, Y]] for some € h(A)(R), {Eh(B)(R).

Ejglc‘j@*qu(X, Y)j: f*Ftp(EjgleXj, Ejélcj Yj)

Let 71: A2 A®B and 7:: B>A®B be the canonical maps. We define a
graded ring Ho ¢ by Ho,y=AQ Bl w1, uz, ***, ts, *+1/(u1—1)+ Io,4, where I,y is the
ideal generated by the coefficients of Xjz1uitixFo(X, Y ) — o Fo(Xiz11,; X7,
21, Y)EARBlus, us, -+ J[[ X, Y]] and deg u;=2i—2. We denote by 0,0 :

proj

A—Hop,y and 7r,9% : B—H,,y the compositions A1>A®BL>A®B[741, Uz, ]

H,p and B>AQBoAQB[u, s, "> He, tespectively. Define a natural
transformation @ : h(Hp,0)—>(Guv1)r.e as follows. For yEh(H, ) (R),
Dia(u;)) X’ER[[X]] is a strict isomorphism from (y07,¢x)xFe(X, Y) to
(7z7.0%)xF(X, Y) by the above construction. @g : 2(He,s)(R)—(Guu1)s,o(R) is
defined to be the map which assigns 2;217(#;) X’ to y. Conversely, for a strict
isomorphism X216, X’ ER[[X]] from O«Fo(X, V) to &LFW(X, Y), define 7:
Hoy—R by y(a®b)=0(a)((b) (a€A, bEB), y(u;)=c;. Then, a correspon-
dence 2};z1¢;X’ 7 gives the inverse of @. Thus Ho,y represents (Guuv1)s,g. It also
follows that the source dr,¢ : (Guu1)r,o—h(A) and the target z7,¢ : (Guv1)r,o— h(B)
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are induced by 0r,g% and Tr,gx.
Let £ : MUs— C be another ring homomorphism satisfying the condition (% ).

We set 2= h(E) : h(C)— Guuo. Recall that the composition ftr,g.4 : (Guv1)r.0 X aea)

(Gumu1)g,»—(Gumu1)s,x is the composition of strict isomorphisms. On the other hand,

the composition of Y(X)=2;210;X": OxFo(X, V)= 6Fu(X, Y) and 8(X)=

Da1di X' GF(X, Y)—9«Fe(X, Y) is given by 07(X)=2nz1enX™ for

Gut jot =1

em:2j1+2jz+~-=m jl!jz!"' 2 "'djl+j2+....
It is easily seen that the map r,0,» is induced by a left A-linear right C-linear ring
homomorphism tr,g,nx : He,e—= Hop,o@sHy ¢ given by

1t j2teee)!
llf,y,h*(um):Zjl+2j2+"‘=m%f'>_

ul' uf - Qujirinto-.

A formal power series 2,21 ¢, X € R[[X]] is the inverse of a strict isomor-
phism y(X)=2},21¢,X" if and only if T1=1 and X +25+-=mC{' 8 ** Tirsjpr=0
for m=2. It follows that the inverse ¢s,g : (Guv1)r,6—(Guv1)e,s is induced by ¢s,0x :
H¢-,p—"H¢,¢, lf,g*(b®ll):(l®b (deA, bEB), zf,g*(uj)z ﬁj where Z?j’S are
inductively given by #1=1 and 2 42j4-=m{' us**** U jy4+j+-=0 for m=2,

In the case A=DB and ¢=¢, it is obvious that the identity &5 : 2(A)—(Guu1)s
is induced by &5« : Hp oA, €7x(a®1)=e,s+(1Qa)=a, &,+«(u;)=0 for j=2.

Summarizing the argument so far, we have shown the following result.

Theorem 4.2. Let ¢: MUs—A, ¢: MUx—B and &:MU«—C be ring
homomorphisms satisfying condition (%). Set f=h(@): h(A)— Guuvo, g=h(¢):
W(B)— Guvo, h=h(€) : h(C)—>Guvo and Fo(X, V)=« Fu(X, Y), Fu(X, V)=
0 Fu(X, Y).

1) (Gwmu1)s,g is represented by a graded ring Hoo=AQBlu1, us, ***, u:,
< 1/(ua—=1)+ 1oy, where Loy is the ideal generated by the coefficients of
2j;1uji1*F¢(X, Y)j_l'z*F«/z(zj;lquj, nglquj)EA®B[u1, Uz, ][[X, Y]]
and deg u;=2i—2.

2) The source 0s,g: (Guv1)s,e—h(A) and the target ts,,— h(B) are induced
by compositions A—>AQB=>AQBlu, ta, 125 Hpy and B—>AQB—>AQB[ui,

proj .
Uz, )= Hop,y, respectively.

3) The composition fir,g,x : (GMUl)f,g X h(B)(GMUl)g,h_)(GMUl)f,h is induced by
a left A-linear right C-linear ring homomorphism fs,g,n% : Hee— Ho,s®pHy,e
given by

(rtjet--o)! -

ﬂfyy,h*(um)z2j1+2jz+-~=m jl']‘Z"" 1 ugz"'®Uj1+jz+....

4) The inverse ts,g:(Guv1)r.a=(Guv1)a.s is induced by trgx: Hyo— Hopy,
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tr.ox(bRa)=a®b (aS A, bEB), tr,9x(u;)=u; where u’s are inductively given
by w1=1 and Zjizie=mtl U U jrsjgs-=0 for m=2.

5) In the case A=B and p=1¢, the identity &5 : W(A)—=(Guv1)s is induced
by erx: Hoo— A, erx(a®@1)=¢e,+(1Qa)=a, es+(u;)=0 for j=2.

Applying (4.1) to the above, we have

Theorem 4.3. If ¢: MUx—A and ¢ : MUsx— B are flat and satisfy condi-
tion (*), then MU+ MUy is isomorphic to He,e. Moreover, if A=B and ¢=¢,
Hopf algebroid (A, MUexMUs,) is isomorphic to (A, Hy,y).

5. Examples

ExampLE 5.1. ([3]) We set A=Z[¢,t"'](deg t=2). There exists a ring
homomorphism ¢ : MUsx— A which maps [ CP"] to (—1)"¢". ¢ is flat ([7]) and
satisfy (*). In fact, #(A) is a locally closed subscheme of Guvo. Fo(X, V) is the
multiplicative formal group law X+ Y +¢XY. Put 1:(#)=tQ1=x, i2(¢)=1Q¢t =
v. KK is isomorphic to the quotient of Z[x, v, x™, ¥™%, u1, e, ---] by the ideal
generated by u1—1, yuiuj—z:iﬁnaxu,ﬂ(n_l->!(n_1;l-)!!(l-+j_n)! X Mu, (4, 72
0).

REMARK 5.2. The relations of KxK imply 7!u»=(yv—x)(y—2x)--(y—(n
—1)x). Since KK is flat over A and A is flat over Z, K« K is flat over Z hence
torsion free. We can regard K« K as a subalgebra of KxK® Q. Then, in Kx KX Q,

un=~nl—,(y—x)(y—Zx)---(y—(n—l)x)E Q[x, v]. Moreover, put pr=x""yu,<

KK, then 1)n=-nl—!%<—}-€y——1)(%—2)---(%—(n—l))EK*K®Q and K«K is

isomorphic to the quotient of Z[x, v, x™%, ¥, p1, p2, ---] by the ideal generated by

it+Jj n! .o
xpl_Yy piﬁj—2n=max(i,j}(n~i)!(n_j)!(i+j_n)! ﬁn (Z, ];0)

Thus we have the following arithmetic result.

Proposition 5.3. Let g.(X) (n=1) be a polynominal -%TX(X—I)(X
—2)-(X—(n—1)). Then, we have

n!
=) =G+ —

Qz'(X)qj(X)zﬂii’}(n ML an(X) if i<j.

In order to determine the structure of the Hops algebroid associated with the
elliptic homology theory, we make some preparations.
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DEFINITION 5.4. A formal group law F(X, Y) is said to be odd if F(—X,
-Y)=—F(X, Y).
Let F(X, Y) be a formal group law over a ring R which is torsion free. Since
X -1
the logarithm logr X is given by the integral A (—g—};( T, 0)> dT, we observe the
following fact.

Proposition 5.5. F(X, Y) is odd if and only if the logarithm logr X is of
the form X+2j=1azj+1X2j+l.

Let Lo be the Lazard ring for odd formal group law, that is, the quotient of
the Lazard ring L=MUsx by an ideal generated by the coefficients of Fy(—X,
—Y)+Fu(X, Y). Since L=MUj is generated by the coefficients of Fy(X, Y),

it follows that Lo®Z [—%—] is the quotient by the ideal of MU [%]* generated by

elements of degree not a multiple of four. On the other hand, it is known that the
map of spectra o: MU—MSO, forgetting weakly almost complex structures,

induces an epimorphism px : MU [%]**MSO[%L where kernel is generated by

elements of degree not a multiple of four ([11, p. 179]). Hence MSO[—%—]* is
isomorphic to Lo®Z [%] and the map MU [%] *—+L0®Z [%] obtained by local-
izing the projection L=MUs—Lo away from 2 can be identified with 0.

Moreover, ox maps Fy(X, Y) to the universal odd formal group law over
VA [—%—]-algcbras.
There is a natural isomorphism MSOI:’%‘]*(X);MSO[%]*®MUMU[%].

MU [%]*(X) for each spectrum X([7]) and this implies the following isomor-
phism.

(5.6)
wso| 3| mso[ % |=uso [%] ®uiy MU| | MU [%]Q@MU[%]‘MSO[%L
Thus, by (3.2), we see

Proposition 5.7. (MSO[%]*, MSO[%]*MSO[%D is a Hopf algebroid
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. . 1 . .
representing an affine groupoid scheme over Z [7] which associates each

VA [%]-algebra R a category of odd formal group laws and strict isomorphisms
defined over R.

Reacall that, if £ is a complex oriented commutative ring spectrum such that
Esisa Z[%]—algebra, there is an isomorphism Ex(BSO.)= Ex«[p, p2, -*-] (deg p1
=41), where p: is the i-th Pontrjagin class. Applying the Thom isomorphism
E«(MSO)=E«(BSO,), we obtain

Proposition 5.8 E«(MSO) is isomorphic to Ex[ts, ts, -], where deg t,i=41.
Hence if Ex=0 for n=0 modulo 4, E.(MSO)=0 for n=0 modulo 4. In
particular, MSO[%]"MSO[%]ZO for n=0 modulo 4.

Let ¢: MUs+—A be a flat ring homomorphism which factors through

MU*-*MSO[—%—L, namely, ¢ is the classifying map of an odd formal group law.
By (4.1), (5.6) and (5.8), we have the following fact.

Proposition 5.9. MU,«MU, is isomorphic to AQul[i]
MSO[%LMSO[%]@»@[%LA. If An=0 for n=0 modulo 4, MUpnMU,=0 holds
for n=0 modulo 4.

EXAMPLE 5.10. Put AZZ[%][& g, € (6%—¢)?] (deg 6=4, deg e=39).

Consider a formal group law F(X, Y)=(X(1—28Y2+£Y4)%+ Y(1—28X?
+eX2)(1—eX?Y) ™" over A and let @: MUx—A be the classifying map of
F(X, Y), that is, F(X, Y)=¢«Fu(X, Y). It is known that ¢ is flat ([8]) and
(@) : h(A)— Guvo is an embedding of schemes. Then, we have a ring spectrum E,
which is denoted by E//. Since F(X, Y) is an odd formal group law and A,=
0 if »2=0 modulo 4, (5.7) and (5.9) imply E//»E/l=0 if 20 modulo 4 and we can
drop the generators u2:’s of (4.2).

1 :
Set c(k, 1, X, ¥)=Bighaceis| 2 ( . ;_i)(—zx>2f+k-lY'-fez[%][x, ]
i

for 0= k=<1, then we have F(X, Y)=2osrsic(k, I, 8, &)(X¥T1 Y2 4 X2 Y241,
We put 41(8)=0R1=x, i(e)=eR1=y, (8)=1R6=z2, ie)=1Re=w in
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AQA. If (k, p, 12, -+, is, =*) is a sequence of non-negative integers such that s
=0 for all but finitely many s’s, put

Ak, 1 o, iy e e )= = Qk+D!I(Bsis—2k—1)!

s, = (s Y]
Zs(28—-1)js=2¢—1 \is— .
23?§=%k21§0$£$is HSJS ( § ]S)

Then Ell«Ell is isomorphic to
Z[%][x, v, z, w, (Yyw(x? =) (22— w)?) Y, w, us, us, -1/(ur—1)+(U(g, V)|p, v
=1), where U(y, v) is given by

2 <(2k5l(ak,l—:_ﬂk,l|))! H (k l x y)a*'l+p~'l>u2hsz(dhz+ﬁk 1)
’ b b » »

B ey nsau I esi(@r,i! Br,!) 2

~ b ( P Alk, 1, 0, 12, =)k, 1, 2, w))uf' uftud*--.

Ss(@s—1)is=2u+20~1 k+l=4(Ssi5-1),05ks1
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