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Introduction

In representation theory of groups, there is an equivalence between the cate-
gory of affine group schemes and the category of commutative Hopf algebras. This
fact can be generalized to affine groupoid schemes, that is, a groupoid scheme is an
internal groupoid in the category of schemes and there is an equivalence between
the category of affine groupoid schemes and the category of Hopf algebroids.

On the other hand, by a work of J.F. Adams on generalized homology theory
([l], [2].) a commutative ring spectrum E such that E*E is flat over E* = E*(S°)
gives a Hopf algebroid (£*, E*E). One of the most important examples of such
E is the complex cobordism spectrum MU. A theorem of Quillen enable us to
identify the affine groupoid scheme represented by the Hopf algebroid defined from
the complex cobordism theory with an affine groupoid scheme of formal groups
and strict isomorphisms between them. Many homology theories related with
complex cobordism (for example, fiP-theory, Morava .fί-theory, elliptic
homology) give closed (or locally closed) "subgroupoid schemes" of above
groupoid scheme. This viewpoint is originally due to Jack Morava ([lθ]).

We give basic definitions and constructions on internal groupoids in sections
1 and 2. In section 3, we translate the language of previous sections in terms of
Hopf algebroids. We give a general description of Hopf algebroids associated with
complex oriented cohomology theories satisfying certain condition in Section 4.
Finally, we determine the structure of the Hopf algebroid associated with the
elliptic homology theory given by Landweber ([8]).

1. Internal categories and groupoids

DEFINITION 1.1. ([6]) Let € be a category with finite limits. An internal
category C in t? consists of the following objects and morphisms.
(1) A pair of objects Co (the object-of-objects) and C\ (the object-of-morphisms).
(2) Four morphisms (5: Ci—»Co (source), τ \ CΊ—»Co (target), e: Gr^Ci (iden-
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tity), μ : CιXc0Cι— »Cι (composition), where C\ on the right (resp. left) factor of
the pull-back over Co is regarded as having structure map 6 (resp. r), such that 6ε
= τε=idc0 and the following diagrams commute.

n -prι r v r pr\ r r v r v r μ x id)Cl r v rCi < - Ci X c0Cι - > Ci Ci X coCxi X CO(~Ί * I-Ί Λ CO<~Ί

ΰ μ r tt/ci X μ

Co < - Ci - > Co Ci X c0Cι > Ci

εx idcι

We denote by (CrfCo) an internal category C whose object-of-objects and

object-of-morphisms are Co and Ci, respectively.
A morphism / : C-+D of internal categories (internal functor) consists of two

morphisms /o : Co— » A) and f\ : Cr^Di of t? such that the following diagrams
commute.

Co * Ci » Ci Ci X c0Cι ^ Ci < Co

X /i

A ^ A - A A x z>oA ^̂  A - A

The above internal functor / is denoted by (/i, /o).
We denote by cat(€) the category of internal categories in £? .

A groupoid is a category whose morphisms are all isomorphisms. We also
have an internal version of this notion.

DEFINITION 1.2. An internal groupoid G in £? is an internal category in *€>
with a morphism c : Gi— >Gι (inverse) such that σc = τ, n = a and the following
diagram commutes.

v
X

l l. -
Go > Gi * Go

An easy diagram chasing shows the following.
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Proposition 1.3. Let C be an internal category in Ή. Suppose that
morphisms a, β, γ\D—>C\ satisfy τa=aβ, aγ=τβ and make the following
diagram commute, then a=γ.

D (A^} Ci X coCi ̂  D

Lff L \τβ
ψ ψ Φ

Co » Ci < Co

In particular, if h, 12'. G\—*G\ are morphisms satisfying Πι = <7, GCz—T and
making

G (lθG^L^) π v κ-ϊ Ul» Z f l C i J ^
1 > Cτi X GotJΊ t-Ί

l 1- ''
Go > Gi * Go

commute, we have ίι = fe. This implies the uniqueness of the morphism c : Gι~»Gι
satisfying the above conditions. Moreover, i f / : G-^H is an internal functor and
both G and H are internal groupoids, it can be shown that f\ commutes with L by
applying the above proposition for a=ιfι, β=/i, j—f\i. It follows that we can
regard the category of internal groupoids in ^ as a full subcategory of cat(*6\ We
denote by gr( Ή) the category of internal groupoids in t?.

2. Pull-back of internal categories

Let t? be a category with finite limits and C = (CrfCo) an internal category

in t?.

For morphisms /: Z)^Co, g: E-^Co of €, we denote by C/,g a limit of a
diagram

Cftβ is also denoted by D X c0 Ci X c0F. Define o/.p : Cf,g-^>D, f*g: Cf,9-+ C\ and
z/,0 : Cf,g-^E to be the projections onto each component. If C is an internal
groupoid, let c/,g : Cf,g-+Cg,f be the morphism induced by τ/,g, c(f*g): C/,^—>Cι
and Gf,g.

Let A : F-^Co a morphism of t?. We define μ/,g,h : Cf,gXεCg,h-^Cf,h to be
x-> /^« /^« r^idDXμ~XidF

the composition C/,^ X £C^,Λ = D X Co Ci X c0 Ci X <

In the case D^^^F and/=^^/^, we set C/,/ = /)/ι, tf/,/ = tf/, r/,/=r/,
= /^/, /*/= /, (£/,/ = £/ if C* is an internal groupoid) and denote by ε/ :
the morphism induced by z'ώ : D^>D and ε/: /)—>Cι. Then we have an internal
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category C/ = CD/rfZ)) with structure maps tf>, z>, ε/, μ/ and also have an internal

functor ( / , / ) : C/->C. We call C/ a pull-back of C along /. Note that C/ is
an internal groupoid with inverse c/ if C is so.

The following fact is easily verified.

Proposition 2.1. 1) Let D-(Dι^Do) be an internal category in £? and

(/i, /o): Z)—»C 0/2 internal functor, then there is a unique morphism h : Z)ι—>Z)/0ι
swc/z ί/zαί (A, id DO) : D—»C/ /s #/ι internal functor and f\ — foh.

2) Lei /':/)'->/) #«</ g':E'^E be morphisms of tf. Then, there is a
natural isomorphism Cfr,gg' = (Cftg)f,g' which commutes with various structure
maps.

DEFINITION 2.2. An internal functor /=(/ι, /o): D^C is said to be faithful
(resp. fully faithful) if the induced morphism h : Dι—*Df0ι is a monomorphism
(resp. isomorphism). An internal subcategory D of C consists of subobjects
Z)o—> Co, DI—+ Ci such that these monomorphisms give an internal functor. If this
internal functor is fully faithful, D is called a full subcategory.

REMARK 2.3. I f/ and g are monomorphisms, then f*g: C/.g-^Ci is also a
monomorphism. If t? is the category of sets, the image of / * g consists of
morphisms of Co whose sources and targets belong to the images of / and g,
respectively.

3. Affine groupoid scheme

Let k be a commutative ring. We denote by Ank the category of commutative
^-algebras and Ank denotes the category of functors from Ank to the category of
sets. Then, Anί has finite limits. For an object A of Ank, we denote by h(A) the
functor represented by A, that is, h(A)(R) is the set of morphisms from A to R.
We call a functor isomorphic to a such representable functor an affine ^-scheme
([4], [5]).

EXAMPLE 3.1. Let A, H be commutative ^-algebras and put Go = h(A), Gι =
h(H). Then, giving (Gi, Go) a structure of an internal groupoid in Anί is
equivalent to giving (A, H} a structure of a Hopf algebroid, that is, giving
^-algebra homomorphisms <?*, r* : A-^H, ε* : H^>A, ί* : H-+H and μ* :
H^>H®AH such that £*tf* = ε*r* = ώ/A, £*tf* = r*, £*r* = <7* and the following
diagrams commute. Here, we regard H as a left A-module by (7* and a right
A-module by r*.
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H®AH®AH £^ H®ΛH H (i-^ H®AH ̂  H
T T T T T

l<8)μ* μ* 0* μ* z*
I I I I I

H®AH ^- H A +^- H -^ A

H -̂  H®AH ^- H

j, [,
-̂  H +2- A

In the above diagrams, ii, i2: H^H®AH and (1, £*), (^*, 1): H®AH~^H are

maps defined by *ΊGO=Λ;®1, f2U) = l(x)^, (1, ^)U®^)=^*(y), (^*, 1)U®^) =
c*(x)y. j\: H^>H®AA, j2: H^>A®AH are isomorphisms defined by ;'I(Λ:)=Λ:®I,

/2(Λ:) = 1(8)Λ;. In this case, we call (Gι=tGo) an affine ^-groupoid scheme represent-

ed by a Hopf algebroid (A, H). The full subcategory of gr(Arik) consisting of
affine &-groupoid schemes is equivalent to the category of Hopf algebroids over k.

EXAMPLE 3.2. Let 6r = (Gι=>Go) be an affine &-groupoid scheme represented

by a Hopf algebroid (A, H). We put D = h(Aι\ E = h(A2\ F=h(As) for
^-algebras Aι, A2, Λ3 and Let /: D—»Go, g : E-^Go and h : F—»Go be the mor-
phisms induced by ^-algebra homomorphisms φi:A-+Aι. Then, Gf,g =
h(A\®AH®AA2) and o/tβ, f*g, τ/,g are induced by the canonical maps i\\
A\-^A\®AH®AA2, Ϊ2'. H^>A\®AH®AA2, is: A2~^Aι®AH®AA29 respectively.
Cf,g is induced by c : A2®AH®AAι~^Aι®AH®AA2 which maps b®x®a to

a®L*(x)®b. μ/,g,h is induced by composition " ^ "^

Aι®AH®AH®AA2 >(Aι®AH®AA2}®A2(A2®AH®AAz), where :
H®AH->H®AA2®AϊA2®AH maps x®y to x®l®l®y.
In the case A\=A2=Az = B and 9ι = φ2=φ3=φ, ε/ is induced by composition

4. An application to complex cobordism

Let E be a commutative ring spectrum such that E*E is a flat EVmodule and
E* is a ^-algebra for a commutative ring k (k = Eo for example). We assume that
En = EnE = 0 if n is odd for simplicity. Then, (£*, £*£) has a structure of a Hopf

algebroid ([l]) and it represents an affine &-groupoid scheme. We denote this by

GE = (GEI^GEO). Let φ \ E*—>A be a flat morphism of ^-algebras, then a functor

X ^>A®E*E*(X) is a multiplicative homology theory. Hence there exists a ring

spectrum Eφ and a ring map E^>Eφ such that EV*(^0=^4®£*£*(^0 for any
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spectrum X. Let φ : E*-^>B also be a flat morphism of ^-algebras and put g=

h(φ\ then it is easy to verify the following.

Proposition 4.1. EΨ*Eψ is isomorphίc to A®E*E*E®E*B. Hence Eφ*Eψ

represents (Gε)f,g. If A = B and φ — φ, Eφ*Eφ is a flat Eφ*-module and (Eφ*,

Eφ*Eφ) represents the pull-back of GE along f.

We consider the case E = MU. By the theorem of Quillen, for each com-
mutative ring /?, GMUQ(R) and GMUI(R} can be naturally identified with the set of
formal group laws over R and the set of strict isomorphisms between them,
respectively. We denote by Fu(X, Y)£=MU*[[X, Y]] the universal formal group
law. Let φ : MU*—*A and ψ : MU*—*B be ring homomorphisms and put Fφ(X,
Y) = φ*Fu(X, Y)t=A[[X, Y]]9FΦ(X, Y) = ΦMX, Y)t=B[[X, Y]]. Suppose
that both φ and φ satisfy the following condition for k — Z.

(*) For a morphism Θ:S-*T of Ank, h(θ):h(T)(R)-*h(S)(R) is ίn-
jective for any commutative k-algebra R.

Then, we may regard h(A) and h(B) as subfunctors of GMUO by f=h(φ) and g=
h(ψ\ Thus h(A)(R) and h(B)(R) are identified with {θ*Fφ(X, Y)\θ^h(A)(R)}
and [ζ*FΦ(X, Y}\ζ^h(B}(R}}, respectively. It follows from (2.3) that
(GMuι)f,g(R) is identified with the set of all strict isomorphisms from elements of
h(A)(R) to elements of h(B)(R\ Hence a formal power series γ(X) = ^j^\CjXJ

€Ξ/?[[-X"]] belongs to (GMu\)/,g(R} if and only if its coefficients Cί's satisfy Cι = l
and the following equality in R[[X, Y]] for some θ^h(A)(R\ ζ^h(B}(R\

Let i\ : A-^A®B and 12 : B^>A®B be the canonical maps. We define a
graded ring Hφ,ψ by Hφ,Ψ=A®B[uι, 112, •••, Ui, ~]/(uι — ϊ) + Iφ,φ, where Iφ,φ is the
ideal generated by the coefficients of ^j±\Uji\*F9(X , Y)J — Ϊ2*FψCΣj>ιUjXJ ,

*Σj*ιUjYJ)^A®B[uι, u2, —][[X, Y]] and deg uf = 2i-2. We denote by σf,g* :

A-*Hφ,Ψ and r/f^* : B-^>Hφ,Ψ the compositions A-^>A®BtL+A®B[uι, u2, •• ]̂ J

Hφ,ψ and B-^A®B'L+A®B[ui, U2, •••']— >Hφ,ψ, respectively. Define a natural
transformation Φ : h(Hφtφ)-*(GMuι)f,g as follows. For γ^h(Hφ,φ)(R\
*Σj*ιr(uj)XJ^R[[X]] is a strict isomorphism from (γ(jftg^)^Fφ(XJ Y) to

(γτf,g*)*Fφ(X, Y) by the above construction. ΦR : h(Hφ,t)(R)-+(GMuι)f,g(R) is
defined to be the map which assigns *Σj^ι7(uj)XJ to 7. Conversely, for a strict
isomorphism *Σj*ιCjXJ^R[[X]] from Θ*FΨ(X, Y) to ζ*FΨ(X, Y\ define γ:
Hφ,ψ^R by γ(a®b)=θ(a)ζ(b) (a^A, b^B), γ(uj) = Cj. Then, a correspon-
dence 'ΣjtiCjX ' ^>γ gives the inverse of Φ. Thus Hφ,φ represents (Gnu \)f,g. It also
follows that the source a/tg : (GMuι)f,g-*h(A) and the target τ/t0 : (GMu\)f,g-^h(B}
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are induced by 0>,<7* and r/,0*.
Let ζ : Mt/*— »C be another ring homomorphism satisfying the condition ( * ).

We set h = h(ξ) : h(C)-^GMuo. Recall that the composition μ/,0,λ : (GMuι)f,gXh(B)
(GMuι)g,h~~*(GMuι)f,h is the composition of strict isomorphisms. On the other hand,
the composition of γ(X) = Ίlj*ιCjXs : θ*Fφ(X, Y)^ζ*FΨ(X, Y) and δ(X) =

1 : ζ*FΦ(X, Y)->η*Ft(X, Y) is given by δγ(X) = Σm^emXm for

m — -ιJι+2J2 + '~=m ι ι
Jl\]2\'~

It is easily seen that the map μ/,0,λ is induced by a left A-linear right C-linear ring
homomorphism μ/,g,h* : Hφ,ξ—*Hφ,ψ®BHψ,i= given by

Vf,9,h*(Um) = ̂ Ji+2j2+-=m - fj |_

A formal power series 'Σj*ι'CjXJ€=R[[X]] is the inverse of a strict isomor-
phism γ(X) = 'Σj>ιCjXJ if and only if cΊ = l and Σjι+2j2+-=mrf1C22 c"j 1+j2+... = 0
for m^2. It follows that the inverse £/,s : (GMuι)f,g—*(GMuι)g,f is induced by ί/,^* :
Hψ,φ-^Hφ,ψ, Lf,g*(b®ά) = a®b (a^A, b^B), ί f , 9 * ( u j ) = ΰ j where w/s are

inductively given by ΰ\ — \ and 'Σh+2j2+"'=mUi1U22"' ΰjl+j2+-' = Q for m^2.
In the case A = B and ς? — ψ, it is obvious that the identity ε/ : A(^4)— >(GM£/I)/

is induced by ε/* : Hφ,φ-^A, e/*(fl(E)l) = ε/*(l®fl) = fl, ε/*(^ ) = 0 for ;^2.
Summarizing the argument so far, we have shown the following result.

Theorem 4.2. Let φ:MU*-^>A, ψ:MU*-+B and f:Aft/*->C fo
homomorphisms satisfying condition (*). Seί f=h(φ)\h(A)-^GMu^ g=h(ψ):

GMuQ and F9(X, Y) = φ*Fu(X, Y\ FΦ(X, Y) =

1) (GMuι)f,g is represented by a graded ring H9,<p=A®B[u\, U2, •••, Ui,
(uι — ϊ) + Iφ,ψ9 where Iφ,ψ is the ideal generated by the coefficients of

*Fφ(X, Yy-i2^FΦ(^J^ujX
j, Σj^ujY

j}<ΞA®B[ul, m, -][[X, Y]]
and deg Ui = 2i — 2.

2) The source όf,β : (GMuι)f,g~^h(Λ) and the target Tf,g-^h(B) are induced

by compositions A^A®B^>A®B[uι, u2, ~']P-^Hφ,Ψ and B^A®B^>A®B[uι,
Λprθ} TT ιU2, " \-^Hφtφ, respectively.

3) The composition μ/fp,Λ : (Gnuijf.g X h(B)(GMuι)gJh-^(GMu\)f,h is induced by
a left Λ-linear right C-linear ring homomorphism μ/,^* : Hφ,ξ—*Hφ,φ®BHφ,ξ
given by

4) The inverse c/,g : (GMuι)f,9-^(GMuι)g,f is induced by Cf,g* : Hψ,φ—>Hφ,ψ,
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(a^A, b^B), tf,g*(uj)=ΰj where ΰ's are inductively given
by ΰι = l and *Σjι+2j2+ =muiiui2'- ΰjl+ή+... = Q for m^2.

5) In the case A — B and φ—φ, the identity ε/ : h(A)-*(GMuι)f is induced

by εf*:Hφ,φ-^A, e/*(0<8>l) = e/*(l®0) = a, e/*(w., ) = 0 for ;^2.

Applying (4.1) to the above, we have

Theorem 4.3. If φ : MU*-*A and ψ : MU*-^>B are flat and satisfy condi-
tion (*), then MUφ*MUψ is ίsomorphic to Hφ,ψ. Moreover, if A = B and φ=ψ,
Hopf algebroid (A, MUφ*MUφ) is isomorphic to (A, Hφ,φ}.

5. Examples

EXAMPLE 5.1. ([3]) We set A = Z[t,Γ1](deg t = 2). There exists a ring
homomorphism φ : MU*-^>A which maps [CPn] to ( — l)ntn. φ is flat ([?]) and
satisfy ( * ). In fact, h(A) is a locally closed subscheme of GMUO. Fφ(X, Y) is the
multiplicative formal group law X+ Y+tXY. Put iι(t) = t®l=x, i2(t) = l®t =
y. K*K is isomorphic to the quotient of Z[x, y, x~l, y~l, u\, UΊ, •••] by the ideal

generated by Ui-l, ^^-Σnt4ιax{zv}^_^!^_^!^.+y_^! x
i+J~nun (/, έ

0).

REMARK 5.2. The relations of K*K imply nlun = (y— x)(y — 2x) (y — (n
— ϊ)x). Since K*K is flat over A and A is flat over Z, K*K is flat over Z hence
torsion free. We can regard K*K as a sub algebra of K*K®Q. Then, in K*K®Q,

un= — r(y — x)(y~ 2x)'-(y — (n — l)x)^Q[x, y]. Moreover, put pn=x~nyun^f l

K*K, then pn=^τ^L(^—l}(^L-2\ (^L-(n-l))tΞK*K®Q and K*K is
Ύl . X \ X I \ X / \ X I

isomorphic to the quotient of Z[x, y, x~l, y'1, pi, p2, •••] by the ideal generated by

Pn (i, ^O).

Thus we have the following arithmetic result.

Proposition 5.3. Let qn(X} O^l) be a polynominal —

-2)—(X-(n-ϊ)). Then, we have

In order to determine the structure of the Hops algebroid associated with the
elliptic homology theory, we make some preparations.
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DEFINITION 5.4. A formal group law F(X, Y) is said to be odd if F( — X,
-Y)=-F(X, Y).

Let F(X, Y) be a formal group law over a ring R which is torsion free. Since

the logarithm log^ X is given by the integral / \~ϊy'( T, 0) j dT, we observe the

following fact.

Proposition 5.5. F(X, Y) is odd if and only if the logarithm logF X is of
the form

Let Lo be the Lazard ring for odd formal group law, that is, the quotient of
the Lazard ring L=MU* by an ideal generated by the coefficients of Fu( — X,
- Y} + Fu(X, Y}. Since L=MU* is generated by the coefficients of Fu(X, Y\

it follows that LoΘ^ -*• is the quotient by the ideal of MU\ ~n~ generated by

elements of degree not a multiple of four. On the other hand, it is known that the
map of spectra p : MU-^MSO, forgetting weakly almost complex structures,

induces an epimorphism p* : MU\ ~γ — *MSO\ -y where kernel is generated by

elements of degree not a multiple of four ([ll, p. 179]). Hence MSO -y is

isomorphic to Lo®Z -~- and the map MU\ -z- ^Lo®Z -~- obtained by local-

izing the projection L=MU*-^>Lo away from 2 can be identified with p*.

Moreover, p* maps Fu(X, Y) to the universal odd formal group law over

Z\ -5- -algebras.

There is a natural isomorphism MSO \~^~\ (X) = MSO -y ®MUMU[\]

MU ~2~ (-X") f°Γ each spectrum X([l]) and this implies the following isomor-

phism.

(5.6)

HτLHτ]=^
Thus, by (3.2), we see

Proposition 5.7. (MSofy]^ MSθ[y]^JίSθ[y]) is a Hopf algebroid
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representing an affine groupoίd scheme over Z\ y which associates each

Z y \-algebra R a category of odd formal group laws and strict isomorphisms

defined over R.

Reacall that, if E is a complex oriented commutative ring spectrum such that

E* is a Z y -algebra, there is an isomorphism E*(BSO+} = E*[p\, p2, •••] (deg p\

=4ί), where pi is the z'-th Pontrjagin class. Applying the Thorn isomorphism

+), we obtain

Proposition 5.8 E*(MSO) is ίsomorphic to -E*[fe, U, •••], where deg feί==4/.
// En=G for n^O modulo 4, En(MSO) = Q /b/ rc^O modulo 4. /«

particular, MSθynMSθy = 0 /or rc^O morfwfo 4.

Let p : Λίΐ/*— »A be a flat ring homomorphism which factors through

Aft/*— »MSO -y , namely, φ is the classifying map of an odd formal group law.

By (4.1), (5.6) and (5.8), we have the following fact.

P r o p o s i t i o n 5.9. MUφ*MUφ is ίsomorphic to A® Mu[\\

MSθΓγl MSθΓyl(8W[£A // An=Qfor n^O modulo 4, MUφnMUφ=Q holds

for n^O modulo 4.

EXAMPLE 5.10. Put A = zy[ί, ε, e-^-e)'2] (deg δ=4, deg e=8).

Consider a formal group law F(X, Y) = (X(l-2δY2 + εY4fi+ Y(l-2δX2

+ εX4)τ)(l-εX
2Y2)-1 over A and let φ : MU*-*A be the classifying map of

F(X, r), that is, F(X, Y) = φ*Fu(X, Y\ It is known that φ is flat ([8]) and
h(φ) : h(A)—*GMUQ is an embedding of schemes. Then, we have a ring spectrum Eφ

which is denoted by Ell. Since F(X, Y) is an odd formal group law and An =
0 if ^^0 modulo 4, (5.7) and (5.9) imply EllnEll = Q if ^^0 modulo 4 and we can
drop the generators U2i's of (4.2).

Set c(k, I, X, F)=Σ^,! ̂ - ~ 2 _ _ .(-2X)2 '+*-'y'-'ez--[A , Y]

for Os££ί£/, then we have F(X, Y) = Έo^lc(k, I, δ, ε)(X2k+ίY2ί + X2ίY2k+l).

We put iι(δ) = d®l=x, ίι(e) = e(8)l=y, fa(5) = l<8>5=^, te(e) = l<S)e=M> in
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A®A. If (k, μ, £2, •••, is, "•) is a sequence of non-negative integers such that is

=0 for all but finitely many s's, put

Then ElUElί is isomorphic to

z[y][*, y, *, w, (yw(x2-y)2(z2

^1), where C/(^, y) is given by

\ Ω \

Σ ( i Σ A(*, μ, ίi, ί'2, -)cU, /, z,
Σs(2s-l)is=2μ+2v-I k + ί=^(Σsi-
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