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Introduction

This is a continuation of our first paper [6]. In this paper we shall study
the linear mappings S, in our paper [6].

In section 6 we study subrepresentations of a representation of a compact
Lie group G with respect to its closed subgroup K. We introduce certain
constants associated to a representation of G which describe some intertwining
homomorphisms. And under certain conditions, called (P,) and (P,), we
prove some properties of these constants, which play important roles for the
study of the linear mappings S,.

In section 7 we consider an orthogonal symmetric Lie algebra (g, o), and
study a 3-dimensional subalgebra of g as well as its representation induced
from that of §. The results in section 6 and 7 will be used in the later com-
putations.

In section 8 we study minimally imbedded symmetric R-spaces into spheres.
It is shown that in these cases the Jacobi differential operator S reduces to
Casimir operators (Proposition 8.3.1).

In section 9 we recall some basic results on representations of the special
orthogonal group SO(n-+1), and study in detail certain representations of the
group SO(n-+1). It is shown that the properties (P;) and (P,) are satisfied in
the cases where immersed manifolds are spheres.

In the forthcoming paper III, applying the results in sections 6, 7 and 9, we
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shall study on the spectra of the Jacobi differential operator S for the minimally
immersed spheres.

We shall denote by [I] our first paper [6] for short, and retain the definitions
and notation in [I].

The author would like to express his sincere gratitude to Professor M.
Takeuchi and Professor S. Murakami for their valuable suggestions and encour-
agements.

6. Subrepresentations

6.1. Let H be a Lie group. Let p: H—>GL(V) and ¢: H— GL(W) be
complex representations of H. We denote by V'* (resp. by W*) the dual space
of V(resp. of W). The dual spaces V* and W* are H-modules by the contragra-
dient representations p*: H—GL(V*) and o¢*: H—GL(W?*). For a linear
mapping f: V—W, we define a subspace V*, of V* by V*,=*f(W*), where f is
the transposed mapping of f. Let Hom(V, W) be the vector space of all linear
mappings of V to W. We identify Hom(V, W) with V*@W in a canonical
manner.

The following two lemmas are obtained easily.

Lemma 6.1.1. If a linear mapping f: V—W is an H-homomorphism, so is
i W*—T*,

Lemma 6.12. (1) A linear mapping f: V—W is an H-homomorphism, if
and only if (p*Qa)(x)f=f for every x=G.

(2) If W is an irreducible H-module and if f: V—W is a non-trivial H-
homomorphism, then 'f: W*—V* . is an H-isomorphism.

6.2. In the rest of this section we assume the followings. Let G be a
compact connected Lie group and K a closed subgroup of G. The Lie algebra
g, the inner product < , > on g, and the subspaces f and b of g are the same
as in subsection 2.1 of [I]. We also denote by < , > the Hermutian inner pro-
duct on g°, which is the extension of the inner product { , > ong. Then g° is
a unitary G-module via the adjoint action of G. We denote by (, ) the
symmetric bilinear form on g¢°, which is the C-bilinear extension of the inner
product < , > on g. In this paper we will not distinguish G-modules and
representations of G.

Let X: G—GL(W) be a unitary representation of G (not necessarily ir-
reducible), and W=W,+W,+--+W, a direct sum decomposition into ir-
reducible components as K-modules. If any pair W, W; of the components
with 727 are not K-isomorphic, we say that X has the property (P,).

Let U and V be complex vector spaces. We define a equivalence relation
~ in Hom(U, V) as follows: For f, g&Hom(U,V), f~g, if there exists a complex
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number ¢ such that |¢|=1 and that g=c¢f. We denote by [f] the equivalence
class to which f belongs, and by [Hom(U, V)] the set of all ~-equivalence classes
of Hom(U,TV).

Let V' and W’ be irreducible unitary K-modules and p: G—GL(W) a
unitary representation of G with the property (P;). We define py/ 5 &[Hom
(8°QV',W")] as follows:

(1) The case where both V" and W’ are contained in the representation
Pk, the restriction of p to K(More precisely each one is isomorphic to a K-
submodule of W, regarding W as a K-module via px): Let W=W,+W,+---+
W, be a direct sum decomposition into irreducible components as K-modules.
Let f;: V'=W; and f;: W'—W, be unitary K-isomorphisms. We define a
linear mapping f: g°QV'—W' by

f(X®v) = f7(dp(X)f(v)))) for XEg€ and vETV",

where (dp(X)fi(v))’ denotes the W;-component of dp(X)f;(v) with respect to
the above direct sum decomposition of W. We define py 5/ by py w=[f].
(2) Otherwise: We define pys s by pys 5r=[0].

REMARK 6.2.1. Suppose that both V' and W’ are contained in the repre-
sentation px. Then for every f'Epys - there exist unitary K-isomorphisms
fLeV'->W, and f}: W'—W; such that f'(XQ®v)=f7'((dp(X)f}(v))) for
Xeg® and vEV’. The above fact is evident by the definition of py/ .

Lemma 6.2.1. Let ¢: K—GL(V') and p: K—GL(W'’) be irreducible
unitary representations, and p: G— GL(W) be a unitary representation of G with
the property (P;). Then we have for every f € pys y-

fo(A4dQ@e) (k) = yYr(R)of for kEK .

Proof. (1) The case where both I’ and W’ are contained in the represen-
tation px: Let W=W,4+W,+:--4+W, be a direct sum decomposition into
irreducible components as K-modules. By Remark 6.2.1 there exist unitary
K-isomorphisms f;: V'—W, and f;: W'—W, such that f(XQ®v)=f7'((dp(X)f;
(v))) for Xeg€ and vEV’. Hence

f(AdD8) (B) (XD) = f7({dp(Ad(R)X)F($(R10)})
= f7'({(p(R)ap(X)p(k™)) (p(R)f(¥))})
= f7'(p(R){dp(X)fi(v)})
= P(R)f7 ({dp(X)f(2)})
— Y(RfX®0).
(2) Otherwise: Since f=0, the statement is evident. C.E.D.

We denote by f¢(resp. by p°) the complex subspace of ¢¢ generated by
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(resp. by b). These spaces ¥ and ¢ are unitary K-submodules of g¢ with
the adjoint K-action.

Lemma 6.2.2. Under the assumptions of the above lemma, for every f&E
py’ we the linear mappings f: ¥ QV'—W' and f: Y°QV'—W' induced from f are
K-homomorphisms.

Proof. We have the lemma by the proof of the above lemma. Q.E.D.

Let V' and W’ be irreducible unitary K-modules and p: G—GL(W) a
unitary representation of G with the property (P;). We define pys y(E), pyrw(P) E
[Hom(g°®@V"',W")] as follows: Take an element fEpys ys. Let fyand f, be
the linear mappings of g°@ V' to W’ defined by

f[lf”@V’ :fl’[0®V' ’ f{lpcml’ =0,
fplfa®V’ =0 ) fplpa®V’ = flpa®V’ .

We define pyr y/(F) (resp. pyr 5w(9)) by pyw(t)=[f,] (resp. by py wA(P)=[1,]).
Then we have

Lemma 6.2.3. (1) If V' is not K-isomorphic to W', we have
pvwr = pv w(P) .

(2) Under the same assumption of (1), if moreover the K-module Y@V’ does
not contain W', then we have

pvw = [0].
(3) If the K-module Y@V’ does not contain V', we have

pv v = py y/(E).

Proof. It is sufficient to prove the statements when both IV’ and W’ are
contained in the representation p. Let W=W,+W,+ .-+ W, be a direct
sum decomposition into irreducible components as K-modules. Let f;: V'—=W;
and f;: W'—W; be unitary K-isomorphisms. We define f & py 3+ by

f(X®v) = f7'((dp(X)f(v)))) for Xegfand vel”.
(1) If Xe&t¢, then dp(X)fi(v) is contained in W; for vV’. Hence
f(X®0) = 7' ((dp(X)fi(v)Y) =0 for Xt and vel’.

Therefore we have f=f,, and hence we have py/ y'=py’ y(9).

(2) It follows from Lemma 6.2.2 and Schur’s lemma that f(p°®V")= {0}.
Therefore we have f=0, and obtain the assertion.

(3) It follows from Lemma 6.2.2 and Schur’s lemma that f(p°QV’)= {0}
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Therefore we have f=f,. Q.E.D.

Let V' and W’ be irreducible unitary K-modules. The Hermitian inner
products on ¢° V' and W’ induce a natural Hermitian inner product on Hom
(6°Q@V',W’), identifying Hom(g°@ V', W’) with (¢°)*Q@(V')*QW’. We denote
by <, > this Hermitian inner product on Hom(g°@V',W’). For [f]. [g]lE
[Hom(g°@V',W"’)], we define a real number ([f],[¢]) by

(6.2.1) ([f], [eD) = I/, 801 -

6.3. Throughout this subsection we assume the followings. Let p: G—
GL(V) and X: G— GL(W) be unitary representations of G with the property
(P;). We define a linear mapping L(X, p) of W@V as in subsection 5.2 of
[I]. Then we have

(6.3.1) LX, p) (WRV)) (W &V), ,

where (W QV)y={ucsWQV; (XQp) (k)u=u for kK}. We decompose V
and W into a vector space direct sum with the following properties:

(@) V=V+Vyt 4V, W=W,+W,+--+W,,
here each V(resp. W)) is an irreducible K-module.

(b) There exists a non-negative integer d(d <k) with the following two
properties:

(1) If h=d, V, is K-isomorphic to W,.

(2) If d<h, W, is not K-isomorphic to any V.
For h=d, let a,: V,—W, be a unitary K-isomorphism. We choose an ortho-
normal basis {v;;1, =+, Vs e} (resp. {w;;1, =+, w5 4}) of Vi(resp. of W) such
that a,(v); o) =w,;4(A=d). Let {w;;,* -, w;; ,»*} be the basis of W;* dual
to {w;;y, =, w;; .»}. In the followings we assume that d=1. Then

for = 204 ¥ @0y = 1,2, -, d}
is a basis of (W*@V),. By (6.3.1) we define complex numbers ¢(X*, p)/; by
(6.3.2) L(X*, p)oy = gc(x*, Yo, -
In particular if X=p, we choose the identity mapping of V) as a;, k=1, 2, -+, k.
Then {wh=;“;jvh;w*®vh;m;h=1,2, .-+, k} is independent of the choice of an

orthonormal basis of V,. We denote ¢(p*, p), by c(p)’s. Let {E,, E;, -+, E,,}
be an orthonormal basis of g. Put
(€))

(6.3.3) dp(E))v); 0 = 2”‘. A; javssp

j=1 1

X
.

™
]

and
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(6.3.4) BB,y =3 S_B, B,y
We have
Lemma 6.3.1. The following equality holds for h=1,2,---,d:

{c(x*, PV i j<d, t=j and 5=,

nCh)
6.3.5 B =
( ) Z] 0, otherwise,

where B, 13 is the complex conjugate of B, ji. Therefore each c(p)i, is a non-negative
real number.

Proof. By the definitions of L(X*, p) and w,, we have

L, pJoy = (3} aX*E)@dp(E) (s o*@0110)

7(j) ) n+d nCh)

= I SISV (S 2 44428 w0,

j=1B=11t=18=1 i=

Comparing the above equality with the right hand side of (6.3.2), we obtain
(6.3.5). Q.E.D.

Lemma 6.3.2. We have
c(X*, pYy dim V;=c(X*, p)*; dim V,,  for h, j=1,2,--+,d,
where T(X*, p)*; is the complex conjugate of c(X*, p)";.
Proof. By (6.3.5) we have

2(j) n+p nCh)

co(X*, p)p dim V; = }] (Z VA, ;’,,B i8) .

=1a=1

Since p and X are unitary representations, we have
+5 nCh)

o(X*, Yy dim V; = 33 (31574, 428, ke

i= =1

-

+
[

C " 2(i)

(, BE A! ?ZBz iB
,p)tidim V. Q.E.D.

£l
x>
g

1
M

I
=
/\

Let {F\,F, - ,F,} and {F',,F';,---,F’,} be bases of p¢ with the property
(Fi»F’j)=8ij’ i, j=l,2,'-',n. Let {Fn+th+2» '"!Fn+p} and {F,n+l’F,n+2’ )
F',.,} be bases of ¢ with the property (F,F’';)=38;;, i, j=n+1,n+2,---,n+p.
We define linear mappings L(X, p); and L(X, p), of WQV as follows:

L(X, p)y = S} aX(F)@dp(F"y),

L(X, )= 2} dX(F)@dp(F") .
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Then this linear mapping L(X, p)(resp. L(X, p),) is independent of the choice
of bases of fS(resp. of p€) with the above property by the same reason as for
L(X,p). Since ¢ is orthogonal to ¥¢ with respect to the bilinear form ( , )
on g%, we have

(6'3'6) L(x) P) = L(X) P)1+L(X, p)p ¢
Lemma 6.3.3. We have for ke K

(X®p) (k)°L(X, p)y = L(X, p)yo(X®p) (k) ,
(X®p) (k)oL(X, p)y = L(X, p),o(X®p) () .

Therefore the linear mappings L(X, p)y and L(X, p), of WQV leave (WQV),

invariant.
Proof. We have for k€K
(X®p) (B)L(X, p),
= 31 LURAXEPXE N} @ {p(B)dp(F ) plk )} (XD p) (R)

= ${aX(AdR)F)@dp(AdR)F" )o(XDp) (F) .
Since the bilinear form ( , ) on ¢¢ is Ad(G)-invariant, we have
St ax(4dw)F)@dp(AdRF') = L(X, p),

Thus we obtain the first equality. The second equality is obtained in the same
way. Q.E.D.

By the above lemma we define complex numbers ¢(X*, p;£)/, and ¢(X*, p;p)/,

by

y o(X*, p; By ho;

1

.

L(X*, p)ywy, =
(6.3.7)

d
d
Z‘_ic(x*, p; D) o; .

We denote by c(p;E)’, (resp. by c(p; §)7) c(p*, p; )7, (resp. c(p*, p; P)/}). Let
o, be the irreducible representation p: K—GL(V,) induced from p, and ¢,
the eigenvalue of the Casimir operator C,, of o, h=1,2,---,k. Then we have
the following lemma.

L(X*, p)yo,

Lemma 6.3.4.

(1) C(x*, P)jhzc(x*,p;f)jh+€(x*,p;p)jh for j, h=1,2, ...’d.
(2) o(X*,pYy=c(X*,p:p),  forj, h=1,2,,d with j=h.
®) cpi=—coy  for h=12,k,
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Proof. (1) We have the equality by (6.3.2), (6.3.6) and (6.3.7).

(2) Take an orthonormal basis {E,, -, E,;,} of g such that {E,, -, E,}
(resp. {E,41, -+, E,y,}) is an orthonomal basis of p(resp. of ¥). Then for 8=
1,2,--+,n(j), we have the followings in the same way as in (6.3.5):

. nt+d nCh) o= .
c(X*, p; By =21 Ai,l]thi,ljtg s
i=ntlw=1
(6.3.8) .
c(X*, p; PYi= A; 18B; j& .
i=1 w=1

Therefore we have for j, h=1,2,---,d with j*h
c(X* p; 87, =0.

Hence we obtain the desired equality by (1).
(3) Let {E, -+, E,.,} be the orthonormal basis of g in the proof of (2).

n+p
Since C,,=21dp(E;)dp(E;) and since o, is a unitary representation, we have
i=n+1

by (6.3.8)

+p 2k 58 b
C,hi)h s = ( Ai,thi,hB)vh i

i=n+lB=1

2

™

n+p nlhd he A he
= *(2 zAi,hBAi,hB)”h;a

i=n+l1g=1

== _C(p; t)hh‘vh . Q.E.D.

Let V' and W' be irreducible unitary K-modules. We define a subspace
V'(p; W') of (6°)*Q(V")* by V'(p; W)='f(W')*), taking an element fe&
py'w. We denote by <, > the Hermitian inner product on (g°)*@(V")*
induced from the Hermitian inner products on g¢ and V’. Then (g°)*@(V"')* is
a unitary K-module.

Proposition 6.3.5. Let U', V' and W' be irreducible unitary K-modules.
If U’ is not K-isomorphic to W', then the subspace V'(p; U’) is orthogonal to V'(X;
w’).

Proof. If Xy 3=[0] or pyy»=[0], the statement is evident. Suppose
that Xy 5/, pys y»+[0]. Then it follows from Lemma 6.2.1 and (2) of Lemma
6.1.2 that V'(X; W’) (resp. V'(p; U’)) is K-isomorphic to (W')*(resp. (U’)*).
Hence the irreducible K-module V’(p; U’) is not K-isomorphic to the irreducible
K-module V’'(X;W’). Therefore we obtain the proposition by the K-invariance
of the Hermitian inner product on (g°)*®(V"’)*. Q.E.D.

Proposition 6.3.6. Suppose that an irreducible unitary K-module V'(resp.
W) is K-ismorphic to V(resp. to V). Let {wy, w,, -+, w,»} be an orthonormal
basis of W' and {w*, w,*, -+, w,»*} its dual basis of (W')*. Then we have for
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fEpv w
<tf(‘ww*)! {f(w“*)> = c(p)hh a= 1) 2, ) n(h) .

If V'(p; W)= {0}, {*f(w/®), f(w®), -+, fwun™)} s an orthogonal basis of V'
(p; W').

Proof. Let fi: V'—V, and f,: W=V, be unitary K-isomorphisms with
the following property (Remark 6.2.1):

F(XR0) = £, (dp(X)f(0))") for XEgf and vE V" |
Let {9;;1,9j;2*,9;; u(»} be an orthonormal basis of V;(j=1,2,-++,k) such that
fu(@2)=v;;a, a=1,2,---,n(h). Choose the orthonormal basis {2;,2;,**,7,)} of
V'’ such that f(vs)=2v; ;4 a=1,2,--+,n(1), and let {v,*,v,%,-+,2,0*} beits dual
basis of (V')*. By (6.3.3) we have
nCh)
fE:Qvq) = 52:.‘{ A; Bwg .
Hence

¢ * n+p a(D) BB % %
Y(we ):EEAi,lei Quvs*,

where {E\*,E,*,--+,E,,,*} is the basis of g* dual to the orthonormal basis {E,,
E; -+, E,.,}. Therefore we have by (6.3.5)

n+p n(1)

(6.3.9) Cflwp®), flao > = 33 23 4, 184,12

. C(P)hn if B='y ’

o, if B+ .
If V'(p; W')= {0}, (6.3.9) shows that {‘f(2,*), ‘f(w,*), -+, ' f(w.»*)} is an ortho-
gonal basis of V'(p; W’). Q.E.D.

Proposition 6.3.7. Let V' and W' be irreducible unitary K-modules.
(@) The case where both V' and W' are contained in the representations
pix and X,g: Suppose that V(resp. V) is K-isomorphic to V'(resp. W'). Then

we have
(pV’,W’» XV’,W’) = [C(X*: P)hll dim W',
(pv we(®), Xy w(})) = [e(X¥, p; D41 dim W,
(pV’,W’(p):XV’,W’(p))= |C(X*’ P p)h1| dim W' .
(b) Otherwise: We have
(PV’,W’) XV’,W’) =0.
Proof. (a) Let {E,,E,,-,E,;,} be the orthonormal basis of g in the proof
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of Lemma 6.3.4. Let fi: V'—V; and f,: W—V, be unitary K-isomorphisms.
Put gi=ay° f; and g,=a,° f;,. Choose an orthonormal basis {v;,v;, -+, 0,m} (resp.
{wy, s, -, wun}) of V'(resp. of W’) such that fi(ve)=1v,;«(resp. fi(we)=24; g)-
We define an element of fE pys yo(resp. gEXy »s) by AXQv)=f, " ((dp(X)i
(9))") (resp. by g(X®v)=g, " (dX(X)g(v))") for X&g® and v&€V’. Then we
have by (6.3.3) and (6.3.4)

nCh) ntp u(l) ” %

f= i 1mE Qvs™Quy ,
¥=1i=1 a=1
2(h) n+p n(1 ) % %

g= B; 1iE* @va* Quy -
¥y=1 =1 @&=1

Let fy, f,, g and g, be those in subsection 6.2. Then we have

2(k) nt+p nQ1)

{ff 22 EAz RE*Qua*Quy

Y=1i=n+lm=1

2R _n n)

fp:yz-‘l 2 2‘4: INE *®7) *®‘ZDy,

{gr = 2 B YE Qv *Quy,
gpz 4 i, lmE *®7) *@w-y

Therefore we have by (6.2.1) and (6.3.5)

nChd n+p

#C1)
(v ws XV’,W’): Kf,eol = lyzg 2 Z} .w
= |e(X*, p)*| dim W".

Applying (6.3.8), we obtain the other two equalities.
(b) Since pys y»=[0] or Xy 5 =[0], the statement is evident. Q.E.D.

We denote by C, the Casimir operator of the representation p of G. Then
we have

p(k)oC, = Cpop(k) for kEK .

Therefore it follows from the property (P,) and Schur’s lemma that there exist
complex numbers c(p);, h=1,2,-++,k, such that Cyy,=c(p),ly,. Here Cyyy, is
the restriction of C, to V. Then we have

Proposition 6.3.8.
(6.3.10) ()= —Dcp)y, h=1,2, k.

Proof. We have by (6.3.3) and (6.3.5)
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Co(os:a) = 23 dp(E:) (dp(ED)o4: o)

n+p k50 nls)
Z E A: A, Jﬁ'vs Y
i=1j,5=1p=1 y=1
k. n(s) n+p n(i) o
=—>1 ( i JﬂAz Jﬂ)vs Y
jyS=1y=1 i=1 B=1
_ — jglc(p)hj‘v,, s .
This proves (6.3.10). Q.E.D.

Let {E,E,, -, q,XA,X_)\, AEA} be a basis of g¢ with the following pro-

perty: Put a=7 2 (Xa+X_,) and f,\—\/ JZ (X,—X_,). Then {E,E,, -

E,enfr; AEA} is an orthonormal basis of g. Put

k6l .
(E )vh 2 C;‘,ifﬂ)j iB
=1 B=1
k_ n(i
dp(X-q_,\){Uh & = JZ;. = C+A hm‘v‘, B>
m_ Pt
dx(Et)ws;'V = E & D; syWe s s

and

Then we have the following proposition.

Proposition 6.3.9. (a) We have for h=1,2,---,d

q  n(h) L= nCh) e
©31) 3 Bc.b a3 S8 (C, 8D, 4L D, 1)
C(X*’ P)jh’ széd’ Z=j and 6 =g,
o, otherwise.

(b) Suppose that {Ely EZ: °tty En e}‘)f)\; A EAI} (reSP- {Er-}-l) Er+2) %y Eq) eA)fA;
NEA;}) is an orthonormal basis of ¥ (resp. of 9).  Then we have for h, j=1,2,-++.d

* Ay}
c(X*, p; £y,
r_ nlw) nCh)

=23 23 CoifDyji+ 33 31 (Co jiD, i+C-, f2D ., )

XER,@=1
c(X*, p; D)
q  nCh)

7(a) = = .
=2 20 iED; j8+ 23 31 (Ca f2D; ja+C, jED_, jB) .

i=r+la= AEN, @=1
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Proof. (a) We have by the definition of C; j%, C., %, D; i& and D., i
q
L0, g, = {31 d0HE)@dp(E)+
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Comparing the above equality with the right hand side of (6.3.2), we obtain

(6.3.11).
(b) We obtain the equalities in the similar way to above. Q.E.D.

6.4. We say that the pair (G, K) has the property (P,), if the following
condition is satisfied: Let V"’ be an arbitrary irreducible K-module and p¢QV’'=
U,+U,+-++U, a direct sum decomposition into irreducible components as
K-modules. Then any pair U;, U; of the components with 7= j are not K-iso-
morphic.

Lemma 6.4.1. Suppose that the pair (G,K) has the property (P;). Let
V' and W' be irreducible unitary K-modules. Then there exists a K-homomorphism
fo: Y6QV' =W’ with the following property: For every K-homomorphism f: p¢Q
V'—>W' there exists a complex number cC such that f=cf,. Moreover if the
K-module Y°QV’ contains the K-module W', We may choose f, in such a way
that <f, fo=dim W’'. Here { , > denotes the Hermitian inner product on
Hom(p*QV',W') induced from the Hermitian inner products on ¢, V' and W'.

Proof. When the K-module p°@ 7V’ does not contain W', any K-homomor-
phism of PV’ to W’ is trivial. So the first statement is evident. Suppose
that the K-module p°@ V"’ contains W’. In the decomposition Y¢QV'=U,+
U,+:-++U,, we may assume that U, is K-isomorphic to W’. Let g: U—W’
be a unitary K-isomorphism. Choose an orthonormal basis {u;,u,,*-,u,} (resp.
{wy, w,, -+, w,}) of Uy(resp. of W’) such that g(uy)=w,, a=1,2,---,k. Let {u,,-,
Uy Uy, -, Uy} De an orthonormal basis of PRV’ and {u,*,u,*, -, u,*} its dual
basis of (p€)*@(V')*. By the property (P,), for every K-homomorphism
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[ P°QV'—W’ there exists a complex number c&C such that

k
f=cZ}1u,,*®w,, .

If we put fozé_ u,* Qwa, we have {f,, fo=dim W’. Q.E.D.

Suppose that the pair (G, K) has the property (P;). Let V' and W’ be
irreducible unitary K-modules. Then we extend f, in Lemma 6.4.1 to a K-
homomorphism of g°@V’ to W’, which is also denoted by f,, by defining as
fF@V")={0}.

Proposition 6.4.2. Suppose that the pair (G, K) has the property (P,).
Let V' and W' be irreducible unitary K-modules.

(1) Let p: G—>GL(V) be a unitary representation of G with the property
(Py). Then there exists a complex number cEC such that py: z/(P)=[cf;].

(2) Let p: G=>GL(V) and X: G— GL(W) be unitary representations with
the property (P,). Suppose that both of the irreducible unitary K-modules V'
and W' are contained in the representations p\x and X,x. Let V=V +V,+---+
V, and W=W,+W,+---+W,, be the direct sum decompositions in the begining of
subsection 6.3.  Suppose that V(resp. V) is K-isomorphic to V'(resp. to W’'). By
(1) above there exists a complex number c(resp. d) such that py w/(9)=[cfs] (resp.
Xy w®)=[dfo)). If the K-module Y°QV" contains W', then we have

(6.4.1) [e(X*, p; P)ul = |ed]| .

Proof. (1) Take f&py y,. Then it follows from Lemma 6.2.2 and
Lemma 6.4.1 that there exists a complex number ¢ such that fy=cf,. Therefore
we obtain (1).

(2) We have by Lemma 6.4.1

(P w(0), Xy (D)) = |<cfo, dfo>| = |cd]| dim W’ .

Therefore we have (6.4.1) by Proposition 6.3.7. Q.E.D.

6.5. In this subsection the assumptions and the notation are the same as
in subsection 3.3 of [I]. Moreover we assume that the minimal isometric im-
mersion F: (M, , >)—S is full and that the unitary representation p: G—
GL(V®) has the property (P;). Here V¢ is the complexification of V. Let
Ve=V,+V,+:++V, be a direct sum decomposition into irreducible com-
ponents as K-modules such that (V¥)¢=V,4-V,---+V, and that (V°)¢+(V7T)¢=
Vi +Viset++V,. It follows from Lemma 5.2.3 of [I] and the property
(P,) that the operator ﬁ {dp(E;) (dp(E;)*)"}" leaves every V), invariant. There-

i=1

fore by Schur’s lemma there exist complex numbers ¢, h=1,2,--+,m, such that
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ntd
E {dp(E)) @p(E)*)"} v, = cily, ,
where ST {dp(E)) (dp(E)*)"} "y, denotes the restriction of 3\ {dp(E;)
1 i=1

(dp(E;)*)"}" to V. Then we have
Proposition 6.5.1.

_2 c(p)hi ’ 1f h= 1,2, ,k,
0, if h—=kt1,kt2,m.

Ch=

Proof. Let {v;:5,9;:2 ***,0;; n(;p} bean orthonormal basis of V; and define

A; i by (6.3.3). Then we have by (6.3.5)

cionsa = 33 {dp(B) (@p(Eor: )"}

x>

= —jglc(f))hivh e

It is evident that ¢,=0 for A=k-+1,k+2,+--,m. Q.E.D.

7. 3-dimensional subalgebras

7.1. In this section we assume the followings. Let G be a compact con-
nected Lie group, K a closed subgroup of G and (G, K) a Riemannian symmetric
pair. The Lie algebra g, and the subspaces § and p of g are the same as in
subsection 2.1 of [I]. The Hermitian inner product < , > and the symmetric
bilinear form ( , ) on g, the complexification of g, are the same as in subsec-
tion 6.2. Let § be a Cartan subalgebra of £. We denote by f(resp. by p¢
and by %°) the complex subspace of g€ generated by (resp. by p and by ).
Let o be the involutive automorphism of g associated to the Riemannian sym-
metric pair (G,K), and 7 the conjugation of g¢ with respect to g.

We have

(7.1.1) (X, Y>=(X,rY) for X,Veg.
For A €1 we define a subspace p,€ of p¢ by

C = {Xep%; [H, X] = V=T(, )X  for HEK}.
Put 8={0n€§C¢; p,°+ {0}}. Then we have
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Lemma 7.1.1 (¢f. Araki [1] p. 4). (1) If N is an element in 3, then \ is
contained in Y. Therefore the linear form (\,*) is real valued on H.

(2) The subspace P is decomposed into a vector space direct sum in the
Sfollowing way:

pc=2pAC .

=t

The following lemmas are proved in the similar way to the case of root
systems of compact Lie groups.

Lemma 7.1.2. If X€p,° and YEP_,6, then [X,Y] is contained in Y°.

Lemma 7.1.3. If X&b,¢ and N8, then vX is contained in _,C. There-
fore we have dim p,C=dim p_,°.

Lemma 7.1.4. Suppose that XE9,¢ and Y Ep,.°. Then we have (X,Y)
=0, if »+p=+0. In particular the following equality holds:

(7.1.2) (X, X)=0.
Lemma 7.1.5. If X€p,° and YEP_,\6, then we have
(7.1.3) [X,Y]=V—-1(X, ).

7.2. Let a8 with A#0. Choose an element X,&p,¢ with the property
(X, 7X,)=<X,, X,o=1. We define elements e and f of g as follows:

e

1
= —*\/—2— (XA"l_TXA) ’

f= -\—/\/—%—1 (X,—7X,).
It follows from Lemma 7.1.3 and (7.1.2) that
ey ey = (6,6) = — {(Xny X)F2(Xs, TX)+(r X, TX)}
=1.

Similarly we obtain {f, f>=1. We have the following lemma.

Lemma 7.2.1.
(7.2.1) X, X ] =V —1n.

Proof. Applying Lemma 7.1.3 and (7.1.3), we have

[X)‘, 'TX).] = \/:T(X,\, TXH)N = vV—1Ix.
Q.E.D.
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Put Y,=7X, and Hy,=V —1A. We define a complex subspace g xS of
g° and a real subspace gy, of g as follows:

ax’ = {X\, Yy, Hi}e,
gX}\ = {leJ h}R ’
where ==+/—1 H,. Then we have

Lemma 7.2.2. The subspace x, is a real Lie subalgebra of § and §y,° is a
complex Lie subalgebra of o°. The Lie subalgebra gy, is a real form of g,°.

Proof. We have the following equalities by the definitions of X,, Y, and
H,:
[HA) XJ\] = ——(X, 7\'))(}\ ’
(7.2.2) [HA, Y)‘] = (h, 7&) Y}‘ )
[X)‘, Y,\] == HA .

These show that gx,° is a Lie subalgebra of g°. Applying (7.2.2), we have
[h,e] = —(\ N, [hf1= (M Ne, [e. fl= —h.

By (1) of Lemma 7.1.1, (\,\) is a real number. Therefore gy, is a Lie
subalgebra of g. It is evident that gy, is a real form of gx,°. Q.E.D.

We denote by 8(2,C) (resp. by 811(2)) the Lie algebra of the special linear
group SL(2,C) (resp. the Lie algebra of the special unitary group SU(2)). Then
81(2) is a compact real form of 8[(2,C). We choose a basis {X,,Y,,H,} of
81(2,C) as follows:

0 1 0 0 1 0
Xo= , Y= , Hy= .
0 0 1 0 0 —1

Then we have

j[Ho: X = 2X,,
[HO) YO = _2Y0 )
[Xo: Yo] = Ho .

(7.2.3)

Since A€h and A=0, (A, N) is strictly positive. Put k=(\, 7). We define
a linear mapping ¢: gx,— 8[(2,C) by

S = — %, s00) =45 x, 9v)= —y/E¥.

Then we have
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Lemma 7.2.3. The linear mapping ¢: §x,°—8l(2,C) is a Lie algebra iso-
morphism and maps gy, onto 811(2).

Proof. Applying (7.2.3), we have

[B(H)), d(X))] = —(A, M)P(X)),
[6(H)), d(Y)] = (A, M)(Y),
[¢(XA)» ¢( Y,\)] = ¢(H A) .

Therefore it follows from (7.2.2) that ¢ is a Lie algebra isomorphism. We
have

9(6) = @(_? (1)) $(f) = \/—f(\/o——l\/;—_l) o) = “15;(\/——1 : )

0 —v/—1/°
Therefore ¢(e), ¢(f) and (k) are contained in 81(2). Thus the lemma is
proved. Q.E.D.

7.3. We define a symmetric bilinear form ( , ) on 8[(2,C) by
(X,Y) = —%Tr(XY) for X,Ye8l(2,C),

where T7(XY) denotes the trace of the matrix XY. Then this bilinear form
(, ) is 8[(2,C)-invariant and positive definite on 81(2). Put

o]

Then t is a Cartan subalgebra of 811(2). Let p: 8u(2)—gl(V) be a complex
representation of 811(2). An element Jr&t is called a weight of p, if there exists
a non-zero vector v €V such that p(H)v=+/—1 (4, H)v for all HEt. And this
vector v is called a r-weight vector or a weight vector belonging to . Put

S| 0
¢=\/—1(0 _1)'

Choose a linear order > on t such that $>0. Suppose that p: 8u(2)—g{(V)
is an irreducible complex representation. Then the highest weight of p is equal
to m¢ for some non-negative integer m, the weights of p are {(m—2i)¢; 1=0,1,
«-,m}, and dim V=m+1(cf. Serre [8] Chapitre IV).

Let p,: 8[(2,C)—gl(U,) be an irreducible representation with the highest
weight m¢p. Then there exists a basis {#_,, %_pia,**,Up-s,U,} of U, with the
following properties:
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Pu(H oY _2i = (m—20)tty, _s;
(7‘3'1) lpm(Xo)um—Zi = ium+z..2i B
P”’(Yo)u""zi = (m—i)um—Zi—Z ’ 1= 0’ 1, e, m,

where U, ,=4_,,_ 2-—0 We introduce a Hermitian inner product < , >, on U,

such that {«/ Tm—

Then < , ), is invariant under the action of 811(2), i.e. {p,(X)u, v g+<t, pu(X) 0D,
=0 for u,v€ U, and X&811(2). A Hermitian inner product on U, which is
invariant under the action of $11(2) is unique up to constant multiple. Then we
have

Y Up—p:; 1=0,1, ---,m} is an orthonormal basis of U,,.

Lemma 7.3.1. Let { , > be a Hermitian product on U, which is invariant
under the action of 81(2). Then there exists an orthonormal basis {e_,, e_pya, -+,
-2, en} Of U, with the following properties:

pum(Ho)e; = te;,
(732)  |paXei= S/ =) (nFi+2) e

pn(Yo)e: = %\/(m—}—i) m—it2) e, s, i= —m,—mi2,m—2m.

’

When m=2m' is even, we put fi=ey,i=—m’,---,—1,0,1,---;m’. Then we have
) H 1

pan’(Ho)f: = 2if;,
(7.3.3)  {pew(Xo)fi = V/(m'—i) (m'+i+1) fina,
P (Yo)fi = V(' +3) (m'—i+1) fioy, 1= —m',-+,0,e,m" .

Proof. By (7.3.1) we have

1 )
Pm(Xo) (Vm um—Zi) = W—(f’)' Upmr2-2i
1/ i(m—i+1)
= (z—l)'(m—z+1)' Umt2-2i »
1
Pn(¥o) (VW um—z;) \/z'(m——z)' Um—2i-2

_V (m—) +1)
= VD Im—i—1)1 ¥n-2i-

Since < , > is a constant multiple of < , >, we obtain (7.3.2). We have easily
(7.3.3) by (7.3.2). Q.E.D.

Let p: G— GL(V) be a unitary representation. Then by Lemma 7.2.3 we
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may consider the differential dp of p as a representation of 8I(2,C) such that
the Hermitian inner product < , > on V is invariant under the action of 8u(2).

Let |v| denote the length \/<v,0)> of a vector v€V. We decompose V into a
vector space direct sum in the following way:

(7.3.4) V= ...Zo v,

where V™ is the subspace of V generated by 8I(2,C)-submodules which are
8[(2,C)-isomorphic to U,,. Then we have

Lemma 7.3.2. (1) Let v be an idp-weight vector with |v|=1. If v is
contained in V", we have

|dp(Xy)o|2 = <7”_87”> (m—i) (m+i+2)
(7.3.5)
|dp(Yy)o|? = O“TD (mt-i) (m—it-2).

(1)" Let v be a 2ip-weight vector with |v|=1. If v is contained in V",
we have

|dp(Xol? = X2 (i) (mi+1)
(7.3.6)
|dp(¥iyol? = X2 (i) (m—i+1).

Proof. The 8I(2,C)-invariant subspace generated by v is 8[(2, C)-isomorphic
to U,. Therefore we obtain (7.3.5) by Lemma 7.2.3 and (7.3.2). We have
(7.3.6) by (7.3.5) easily. Q.E.D.

8. Symmetric R-spaces

8.1. Let (h,o) be an orthogonal symmetric Lie algebra of compact
type. Put h=g+m, where g(resp. m) is the 1-eigenspace (resp. — 1-eigenspace)
of . Let Aut(h) be the group of all automorphisms of . Identifying the Lie
algebra of Aut(§) with ¥, let G be the connected Lie subgroup of Aut(f)) corre-
sponding to the Lie subalgebra g of §). Then G leaves the subspace m in-
variant. Let { , > be an Aut(h)-invariant inner product on §. The Lie group
G acts as an isometry group on the Euclidean space m with the inner product
<, >, the restriction of the inner product { , > on § to m. Let S be the unit
sphere of m with center o, the origin of m. Let H be an element of S and M
the orbit of G through H. Denoting by K the stabilizer of H in G, the space
M may be identified with the quotient space G/K, which is called an R-space
associated to (g, o). If (G,K) is a Riemannian symmetric pair, M is called a
symmetric R-space. 'Then the Riemannian submanifold M of S is a Riemannian
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symmetric space (Takeuchi [9] p. 112).
Let a be a maximal abelian subspace of m. For A&Ea we define a sub-
space g,(resp. m,) of g(resp. of m) as follows:

o= {Xeg;adH?X = —{\,H»®X  forany Hea},

= {Xem; adH)}'X = —\, HY*X forany Hea}.
Then g_,=g,, m_y=n1, and m;=a. Putr={r€a;r=+0,m,+{0}}. Then t
is a root system in a (Satake [7] p. 81). This root system T is called the restricted
root system of (§,o). Choose a linear order in a. Let A be the fundamental

system of T and t* the set of all positive roots in T. Then we have the following
orthogonal decomposition of g and m(cf. Helgason [4]):

g= go+162+ G, M=a+ Z m,.

IS
By virtue of the following lemma we may assume that HESNa and \, H>=0
for any v e1™.

Lemma 8.1.1 (cf. Helgason [4] p. 211, p. 248). For any HEm there
exists an element x=G such that xH<a and v, xH>=0 for any nex™.

We identify the tangent space T(M) of M at H with a subspace of m in 2
canonical manner. Then we have Ty(M)=[g,H]. Put

{rl"‘ = {ert; N HY =0},
"= {rerts N HY > 0F .

The tangent space T'z(M) and the normal space N y(M) in S are given by

TH Ay
(8.1.1) = Ez}rz "
Ny(M) = aH+z 2+mx ’

where ay={Xea; (X, H>=0}. Let f be the Lie algebra of the stabilizer K
of H, and b the orthogonal complement of £ in §. Then we have

(8.1.2) I= Qo+ P QA, p= 2 QA

en* A€Er*

82. Put Ai={A€A;re1,7}. Let t be a Cartan subalgebra of H
containing a. Let §° be the complexification of ¥, and ¢ the subspace of §°
spanned by t. We denote by ( , ) the symmetric bilinear form on §°, which is
the C-bilinear extension of the inner product < , > on h. Let T be the root
system of H¢ with respect to €. Recall that an element a=1° belongs to T, if
a=#+0 and if there exists a non-zero vector X &t¢ such that [H,X]=+/—1
(o, H)X ifor any Het, Then t contains the root system T. We denote by
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the same letter o the conjugation of §° with respect to the real form g++/—1
m. We choose a g-order in t in the sense of Satake [7] which has the follow-
ing property: Let A be the fundamental system with respect to this linear
order in t, and let p denote the projection of t onto a. Then A=p(A)— {0}.
We also denote by A the Satake diagram of A. Put &;=p7Y(A)). It is known
(Takeuchi [9] p. 102) that isomorphic pairs (A, A;) of Satake diagrams give rise
to isomorphic pairs (G,K). Here we say that the pair (A, A,) is isomorphic to
the pair (A’, A")), if there exists an isomorphism ¢ of A onto A’ with (&,)=A"},
and we say that the pair (G, K) is isomorphic to the pair (G',K’), if there exists
an isomorphism f of G onto G’ with f(K)=K".

ReMARk 8.2.1. Let A, be a subsystem of A, and (A, A)) the pair of Satake
diagram determined by A,. Then there exists a minimal R-space M such

that the pair of Satake diagram corresponding to M is isomorphic to (&, A))
(Nagura [5] p. 210).

8.3. We decompose (§, o) into a direct sum of irreducible orthogonal
symmetric Lie algebras (9, o;):

5=bl+bz+"°+bry g = 0'1+U'2+"'+0'r-

Put g;=gNY,, m;=mNY, and a;=m;Na. Then a; is a maximal abelian subspace
of m;. Let M be an R-space associated to (f), ). Put

T, =1Na, t)h=1r"Na, ()., =1r"Na.
Then

t=1,U- UtL,,

Lt =) U UE)",

L= (1), U--U().",

We say that the R-space M has the property (), if the following condition is satis-
fied:

(*) () o, =127,

Since ad(g;) acts on m; irreducibly, the R-space M in S is full, if and only if M
has the property ().

Proposition 8.3.1. Let M be a minimal symmetric R-space with the pro-
perty (x). Then the operator S, in subsection 3.3 of [I] vanishes.

Proof. The assumptions of Theorem 1 of [I] are satisfied by the arguments
of subsections 8.1 and 8.2. Since [g,, a]Jcm, and [g,, m,]Cm, u+m,_. for

A, pEtY, we have for X€ 3 g, vEag+ > m,
XE'C2+ XEI{"
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[X, v]EZE m,.

Erpt
Therefore the operator S; vanishes by Lemma 3.3.1 of [I], (8.1.1) and (8.1.2).
Q.E.D.

RemaARrk 8.3.1. Let § be the Lie algebra 8u(n-+1) of the special unitary
group SU(n+-1), o the complex conjugation of 8u(rn+1), 1. e. (b, o) is an irredu-
cible orthogonal symmetric Lie algebra of type A I. Then

G = SO(n+1),

m={y/—1X;X is a real symmetric matrix and Tr X=0}.
The representation p: SO(n+1)— GL(m), p(x)X=xXx"! X €m, is the spherical
representation p, in (1) of Remark 3.3.2 of [I]. Therefore by the above pro-
position we have S;=0 in the case (1) of Remark 3.3.2 of [I].

9. Representations of the special orthogonal group SO(n+-1)
9.1. In this section we assume the followings. Let G=SO(n-+1) and

10
K:{(O A)EG; AESO(”)}- Let < , > be the Ad(G)-invariant inner product
on the Lie algebra g=80(n-+1) of G, which is defined by

(9.1.1) (X, YD = _% Tr(XY) for X,Yeg.

The Cartan decomposition g=£--P is given by

= {(g XO), Xe Qo(n)} == 3o(n) ,

o)

Put
(0) 0
—
t= Ay 0 . 5 A1y Agy '")thR)
0 —
0 M 0

where k= [%] and [#] denotes the Gauss symbol. Then t is a Cartan sub-
algebra of . Put
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1 h+1—1 h
v v v

0 -
0 0
0 0 0
¢ = 0 —1
1 0
0 0 0
0 0

Then {¢y, P, -**, P4} is an orthonormal basis of t. We introduce a linear order
> on t such that 0<¢,<,<<:++ <.
The root system t of g¢ with respect to t is given by
{+dito;;4,7=1,2, -, hwithi=j}, if n=2h—1,
T =
{j:¢i) ﬂ:ﬁb.ﬂ:(ﬁ;; l:]= 1) 2» '")hWith l:i:]}) ifn=2h.

Put for z, j=1,2,--+,h with 1<j

ht-1—j ht-1—i
0 1 —7
1 _\/ 1 <h+1—j
X¢,-¢,-=7 —/-1 1
_1__\/"1 <h+1—i
—/=1 —1 0
ht-1—j h4-1—i
© v v
0 _ -
1 M | USRS
X¢i—¢,-=7 —/ =1 -1
1_‘/—1 <h+1—i
—/ =1 1 0
ht1—j ht1—i
0 /1
1 L —v=1| 1
X¢.’+¢;=7 _\/_1 -1
-1 vl <hl—i
v/ —1 1
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ht1—f ht1—i
0 —7]
1 LoVl
X—¢i—¢j=7 \/_1 —1
— vt <h+t1—i
—/—1 1 0

Put for i=1,2,--,h—1 in the case of n=2h—1(resp. for i=1,2,-- h in the case
of n=2h)

ht1—i
0 S VAR
@ |=v=1 —1
X"':\/% =1
o <h+1—;
1 0 =
h1—i
O A4
| ® V=1 —1
X"”":\/l _
2| [Vl <h+1—i
1 0

Then for €1, X, is a A-root vector with | X,|=+/{X,, X,>=1. Let 7 be
the conjugation of g¢ with respect to §. Then we have

(9.1.2) TX.p, = Xz, -
Put
b — {¢l’ (;bz, "ty ¢h—1}R if w=2h—1 ,
t if n=2h.
Then § is a Cartan subalgebra of £. Let 8 be the one in subsection 7.1. Then
we have
5 {{O, biii=1,2,,h—1}  if n=2h—-1,
C Ugsi=1,2,-,1) if n=2h.

Every dominant integral form A of G with respect to t is uniquely ex-
pressed as follows:

A= k1¢1‘|‘kz¢z+"'+kh¢h ,
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where &y, &y, -++, k, are integers satisfying

{lkllékzé---ékh if n=2h—1,

9.1.3
(0.1.3) O<h<hk<--<k, if n="2h,

RemMARK 9.1.1. Suppose that z=2. Then the Riemannian symmetric
pair (G,K) is of rank 1, and the dominant integral form ¢, is the fundamental
weight of the pair (G,K) (cf. Takeuchi [10] p. 118). It follows from Remark
3.2.2 of [I] that when we consider a full equivariant minimal isometric im-
mersion of S” into a unit sphere, it is sufficient to consider the following real
representations p, of G, k=2,3,---: The representation p, is the real spherical
representation of (G,K) whose complexification has the highest weight k¢,.

We denote by 8; the half sum of all positive roots of g¢. Then we have
o205+ (h—1)b, if m=2h—1,

014  8=1{;
72 (St3dst-+(2h—1)y)  if n=2h.

Let W, be the Weyl group of G. For an element A&t we denote by &, the
principal alternating sum associated to A defined by

I :TEEI;VGdet(T) e(TA),

where e(\) (H)=exp/—1 (\,H) for H&t. For a complex irreducible repre-
sentation o of G, we denote by A,(resp. by X,) the highest weight of o(resp.
the pull back to t via exp: t— G of the character of ¢). Then we have by the
character formula of Weyl (cf. Takeuchi [10] p. 153)

(9.1.5) gAa--FS@ = XG‘ESG .

For complex irreducible representations o and &’ of G, the character X,g,- of the
tensor product o®oq’ is given by

(9-1-6) Xa‘@d’ == Xa'xu" .

Let V. and V, be complex irreducible G-modules with the highest weights
w and v respectively. For an integral form A of G we define a non-negative in-
teger m(\; p) to be the multiplicity of A in the G-module V.. Let A be a domi-
nant integral form of G and U, a complex irreducible G-module with the highest
weight A. We denote by m, the number of times that U, is contained in the
G-module V.®V,. Then we have

Lemma 9.1.1 (Bourbaki [3] pp. 153-154).
my = > det(r)m(A+8;—7(v+38¢); 1) .

re Wg
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9.2. The following proposition gives the decomposition of an irreducible
G-module into a direct sum of irreducible K-submodules.

Proposition 9.2.1 (Boerner [2] pp. 267-269). Let o: G— GL(W) be a com-
plex irreducible representation with the highest weight A, =R, +k,po++-++ Ry, EL.
Then W is decomposed into a direct sum of irreducible K-submodules of W as follows:

(1) The case n=2h—1:
W = 2 Wk’l¢1+k/z¢2+"'+k’h._14’;,_1 ’
where the summation runs over all integers k' ,k'y, -+, K ,_, such that
k| Sk Sksk=- =k Sk Sk,

and Wy 6,4/ s654-+¥'_ 95, denotes the irreducible K-submodule of W with the highest

weight k'\p -k ,ppt-+ 4Ry 1ps-s.
(2) The case n=2h:

W =233 Wy 4,44 6544843 »
where the summation runs over all integers k', k5, R’} such that
R | Skh=k,<k<-=k,_ <k, Zk,.

The following corollary is an immediate consequence of the above pro-
position.

Corollary. Every complex irreducible representation of G has the property
(Py).

Let C**! be the vector space of ((n-+1)-tuples) of complex numbers, and< , >
the Hermitian inner product on C*** defined by <u,v>=*u0. Let ¢: G—>GL(C""")
be the canonical representation of G. Put

Lg)_, _(_g), 1

0

o ||<I 0 <l ‘L‘
_ T _ I v _
'0,-—@/7 \/11 <h+1—i ”-i_x/j ‘/1 Ul<hp1—i®o=

5 0| 0]

0 <h R 0 <h ’ bJ

Then we have

Lemma 9.2.2. (1) The case n=2h—1: The vector v(resp. v_;) is a ¢;-
weight vector(resp. — p~weight vector), i=1,2,-++ .k, and {v;,v_;;i=1,2,--- h} is
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an orthonormal basis of C**'. Therefore the character X, of ¢ is given by

02.1) X, = 3 (g He(—2).

(2) The case n=2h: The vector v;(resp. v_; and v,) is a ¢~weight vector
(resp. —p;-weight vector and O-weight vector), i=1,2,+-- h, and {v,, v;, v_;; i=
1,2,++,h} is an orthonormal basis of C**'. Therefore we have

A
(9.2.2) Xo= 1425 (e(bi) +e(—¢s) -
We have the following lemma by straightforward calculation.

Lemma 9.2.3. (a) The both cases n=2h—1 and n=2h:

X¢.~—¢,~71k = 8;v; X¢;—¢,~‘U-h = —0uv

—-j>s
Xd’,'—d’."vk = sik‘vj ’ X¢j—¢iv—k = _ajkv—i ’
X¢.~+¢,~7’k =0, Xdr.-w,v—k = 80— 0uv; ,

X-d»,-—d’,ﬂk = ajk’o-i—suﬂf—j ’ X—d:.--dr,‘v—k =0,
for 7,j,k=1,2, -+, h with i<j.

(b) The case n=2h:

{X¢.-‘vk =0, X0 = —8u9,,
X—¢,-'vk = —8,-;,7)0 ’ X—‘i’."v~k =0 ’
for 4,j=1,2,-,h.
{X¢.’7}0 =i, X—d’ivo =V,
Koi-0,00 = Xo;-6,90 = X190 = Xgi-4;00=0,
for 4,j,k=1,2,-,h with i<j.
Lemma 9.24. Let o: G—GL(W) be a complex irreducible representation
with the highest weight A=k ¢,+kypo+ -+ Rypy. Then the G-module C*'QW

is decomposed into a direct sum of irreducible G-submodules as follows:
(1) The case n=2h—1:

+1
C” ®W = Z Wh’1¢1+k'2¢2+--'+k’[,¢h ’

where Wy ¢ si/,654-+1 3, 15 the irreducible G-submodule of C*"' QW with the highest
weight R \p,+k po+--+k' b, and the summation runs over all integers k', k',,
-, k', satisfying (9.1.3) and the following additional condition (x): There exists i,
1=Zi<h, such that

{k,i=ki+l or k,"‘l ,
K,=Fk,  for j=1,2,+ h with j+i.
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(2) The case n=2h:

2 Wk’,¢1+k’z¢2+~--+k',,¢;. ’ 1f k=0,
Wk1¢,+k2¢2+---+kh¢h+2 Wk’1¢1+k2¢2+-~-+k’h¢h ’

if k>0,
where the summation runs over all integers k'\,k's, -+ k', satisfying the same condi-
tion as above (1).

Proof. It follows from (9.1.5) and (9.1.6) that

Cn+l®W — {

XL@O‘Esg = XLEA¢-+80 .

We denote by 8, the symmetric group of degree h. Let A=m;p;+mypp+-+-+
m,¢, =t be an integral form of G.
(1) The principal alternating sum £, associated to X is given by

&= Z ) p3 ) 273 sgn(7)e(m.qypr+ -+
0<7zh 150, <<ipeSh 1 5,
=My Diy T — M) Pyt My Pi)
=23 2] 23 sgn(T)e(m. s+

05255k 150)<+<izs=h TE 5

+m‘r(fh_2,)¢f/,_23—m1‘(i1)¢i1— ot _mr(i2,)¢i2s) ’

Where {il) i2; M) i2s;jbj2) '“)jh—Zs} = {15 2) °tty h} and 1§j}<j2<"'<jh—25 é. h-
Therefore we have by (9.2.1)

XEH=21 21 3 sgn(r)X

0=<25Sh 156y < - <ips<h TEB)

(S et oo+ Ds ety _aobin

— My Py — — M35 Piny)
2s
+ § e(mT(fl)¢j1+ e +m'r(l'h_2,)¢jh—2$
— M (i) Pi,— —(Mo(ip+1) s, — s — M3 Dis,)
h-2s
+ 25 e(metipdiyt o - (meiip = 1), o+, _o9 P s
— My Pi,— My Piy,)
2s
+ 23 e(metipbiy o ety oo bis o,
— iy Py, — = (M — 1)y, — oo =M, P, )} -
Put
Im(ij)i _ {m,- if 37,
m;xl if i=j,

: L] :
'Mtn = ,Eﬂ mED b, .
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Then we have

XEH=3 3 3 Nsen(r)x
0<Z55h 156, <~<igs<h j=1 TEBk
{e(m(+j)T(1)¢1+ oo _m<+j)'r(il)¢il+ b _m(+j)'r(izs)¢i23+ cee
AmtD dy)
+e(mD i byt =MD sy A = i
+mCD ydi)}

= g(‘fﬁ”"l‘fa“n) .

Therefore we have
A
Xt@d‘EBg = ,Eﬂ (EA¢(+j)+8g+EAa-(_D+8a) .
The integral forms A,*"48;(j=1,2, ---, k) of G are all dominant. Since a
dominant integral form m,¢,+myp,+--+-+m,d,+8; of G is regular if and only if
the integers my,m,, .-+, m, satisfy (9.1.3), we obtain the assertion.
(2) We have in the similar way to the proof of (1)

k
X.@obsg = EngrogT Z; (EA¢(+j)+8g+£Aa-(—j)+8g) .
=

Suppose that k=0. Then the integral forms A,*"+§;(j=1,2,-,k) of g
except for A, (P43, are dominant. Let {1} be the element of W, such that
{1}(¢))=—¢, and {1}(¢;)=4¢;, i=2,3,::-,h. Then we have

{1} (A¢+8G) = Ac(_l)_{_SG .
Therefore we have
h
X.@obsg = EngtVisg J?_u:z (£A¢(+i)+8g+glsu-(’j)+8(;) .

Considering the regularity of the integral forms, we obtain the assertion. Sup-
pose that k,>0. Then the integral forms A,*"4-8;(j=1,2,---, k) of g are
dominant. Considering the regularity of the integral forms, we obtain the
assertion. Q.E.D.

Corollary. The pair (G,K) has the property (P,).

Proof. Since there exists a canonical unitary K-isomorphism of p¢ onto
C" which sends X4, to v4;,¢=1,2,---,h, we have the corollary by the above
lemma. Q.E.D.

9.3. In this subsection we assume that #=2. Then the canonical repre-
sentation ¢ of G is irreducible. Let S*(C**') be the space of symmetric k-
tensors over C"*', The space S*(C**') has the Hermitian inner product, also
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denoted by < , >, induced from the Hermitian inner product < , > on C**.,
Suppose that n=2h—1. Let (4,45 -+,%,) be a k-tuple of integers such that
1=<|i,|<h,s=1,2,---,k. If i(resp. —i) is contained a@;-times(resp. b;-times) in
(%122 +++5 %), 1=1,2, -+, h, we denote it by

{il) iz, tt lk} = {lal’ (_l)bli 2“2’ (_2)”2’ ) ha.’ (—h)b"} .

We define a vector v,%1ev_l1+0,%2+0_,%2.+.0,%v_,% in S¥C") b
1 1 2 2 h h

1hleee g, 1,
ﬂla"v_lbl“"vhaﬁ"v_hb" — ,\/&'_b%hbh‘ E vix®vi2®"'®7)i. ,
where the summation runs over k-tuples (71,75, -:+,7,) such that {i;,7,---,;}
={1%, (—1)n, 2%, (—2)"%, -+, %, (—h)"}. Then
Ay = {v 10 Y0005 bt A-ay by byt by = B}

is an orthonormal basis of S*(C**'). Suppose that n=2k. We define a vector
v v e v_ P10, %05 in S¥(C*M) in the same way as above. Then

Ay = {vg v v o v a oo Fay b by o = R}

is an orthonormal basis of S*(C**?).

Let @*C"*' be the space of k-tensors over C**! and ®*: G—GL(Q*C"*)
the k-th tensor product of ¢. Then the space S*C**') is a G-submodule of
®*C**', We denote by o, this representation ®*%: G—GL(S*({C***)). Then

we have

Theorem 9.3.1 (cf. Takeuchi [10] p. 255). Suppose that k=2. Let o:
G— GL(W) be a complex irreducible representation with the highest weight kg,
Then the G-module S*(C**') is G-isomorphic to the direct sum W+ S*(C**).

We also denote by p, the complexification of the k-th real spherical re-
presentation p,. We have

Proposition 9.3.2. Suppose that k=2.
(1) The case n=2h—1: The set of weights of the representation p, is

{mp,+mopy -+ +mypy s my, my, -++, my, are integers such that
k—Eﬁ |m;| is a non-negative even integer| .
i=1
The multiplicity m(myp,+mopy++-mydy; kp,) s given by
m(mypy+mapy -+ +mypy; k) = H,—4H, -y,

where Zq=k—‘$1 |m;|, yH_1=0 and ,H;, i =0, denotes the number of ways of choos-



JacoB1 DIFFERENTIAL OPERATORS 11 109

ing i elements, allowing repetition, from a set of h elements.
(2) The case n=2h: The set of weights of p, is

{mypy+mypy o+ myy; my, my, -+, my, are integers such that
k— é} |m;| is non-negative) .
The multiplicity m(myy+mapy+++-+my, by ; kp,) is given by
m(myy+mapyt---- +muy; kpy) = WHigpa
where q'=k—‘z:]1 |m;| and [*] is the Gauss symbol.

Proof. (1) The vector v,1ev_1e0,%2:0 jf2- 0,%-0_ 5 of SHC") is a
weight vector belonging to the weight (a— )1+ (a,—bz) o+ +(a,—by) Py of
the representation ¢,. Therefore the set of weights of o is

{myp,+mop,t-++ +myy s my, my, -+, m, are integers such that

h
k— ) |m;| is a non-negative even integer| .
k=1

We denote by m,(my,+mypy+++-+m,p,) the multiplicity of an integral form
miy+mypy++++ +myp, in the G-module S*(C**Y). Let mydp,+mup,+--+myo,

be a weight of ;. Put 2g—k—3)|m;| and

m; if m;>0,
Pi= {0 if m=0,
0 if m>0,
P-i= {—m,- if m,=<0,

Then the weight vectors in A4, belonging to the weight md,+myp,+ -+ +
m,p, are

{7)1(’1"'“1) . 7)_1(1’—1+“1) .o vh(l’h+“h) . Av_h(i’—h"'“h) ; \
a, a,, ***, 4, are non-negative integers such that

ataytFay =g
Therefore we have

my(mypy Moyt +mydy) = 1 H, ,

and hence

M-dmrtmaborte A mb) = g gz,

We have the assetion by the above equalities and Theorem 9.3.1.
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(2) We have the followings in the similar way to the proof of (1). The set
of weights of g, is

{mdy+mypyt+os+mypy; my, my, -++, m, are integers such that
h
k— > |m;| is non-negative | ,
i=1
and the weight vectors in 4, belonging to the weight ¢, +myp,+ -+« +m, P, are
{fvof.nvl(l’l'(’ﬁ) .v_l(ﬁ-l'*'“]) .o "Z)h(ph+ah) . v_h(ﬁ-;,+ah) ;
ay, a3, ***, a,, ¢ are non-negative integers such that
204-2a,+ - +2a,+c=¢') ,
h
where ¢'=k—>1|m;|. Therefore
§i=1
c=¢q,q—2,-,q'—2 ,:%] .

Since the number of the weight vectors in 4, belonging to the weight m,¢,+
Mypy+-++++m, P, with c=¢'—2i is equal to ,H;, the multiplicity m,(m,p,+myp,
+ e +my,) is given

[e’/2]

my(mypy+mypyt- - +mydy) = ,2=1 WH; .

Hence
0 if q’ == 0; 1 ’
Mokt ) = g i gz,
i=1
Therefore we have the assertion in the same way as in (1). Q.E.D.

Let V, be the irreducible G-submodule of S¥(C**!) with the highest weight
k,, and V,(\) the A-weight space of V,, i. e. V()= {r-weight vectors of V,}
U {0}. Then we have

Lemma 9.3.3. Suppose that k=2.
(1) The case n=2h—1:
(a) Vk(i¢l+(k—l)¢h) = {vii"vhk_l}(} i= 1) 2) R h—1.

) Vi) = (Y F 7 oo ot mp it }
i=1,2,-,h—1)¢

(2) The case n=2h:

@) ViEdit(k—1)$s) = {vsi°v, }o t=1,2,-,h—1.

(b) Vi((k—1)ds) = {o-0* T} ¢ -
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2
© Vilt—2)9) = | 2Ak1) }v; Y S

E—1
Vi oot g ot

i=12,,h—1)¢.
Proof. (1) We have by the above proposition

m(+p+-(k—1)dy; kpy) =1,
m((k—2)¢p,; k) = h—1.

Applying Lemma 9,2.3, we have

{dffk(X:¢;—d>h) (@) =V k vso0)t 7,
doy(Xpi-4,) (V-0 ) = VE—=1 000 ;0 2 —0,f oo,

Therefore we have the assertion.
(2) We have the followings in the similar way to above:

{m(iff’i‘f‘(k‘l)ﬁbh; ki) = m((k—1)y; kpy) = 1,
m((k—2)dy; kpy) = h,

{do'k(X—-‘ﬁ;,) () = —V'k V90047,

do(X_s,) (vo°0F ") = 0 v, —V/2(k—1) vl 0t 2.

Therefore we have the assertion. Q.E.D.

9.4. In this subsection we shall compute the components of the vector
v_;,@v,t of C"'@V, with respect to the decomposition of the G-module
C**'@QV,. This is important for the later computation. The G-module C*"'®Q
V, has the Hermitian inner product, also denoted by < , >, induced from the
Hermitian inner products on C**' and S*(C**'). We denote by 4, the tensor
product :Qo,: G— GL(C*""'®V},). We have by Lemma 9.2.4

Warne, +We-vs, if n=1,
Wasne, +Wis, +Wa-ns, if m=2and k>0,
(94.1)  C™M'QV, = { Wasns,+ Wo s, +W_s 11,7+ We-ns,
if n=3and k>0,
Wasns,+We,_ 1wy +Wa-ne, if n=4and k>0.

Since the Hermitian inner product < , > on C**'QV, is G-invariant, any pair

of the irreducible components of C**'@V, is orthogonal. For a G-module U

and an integral form A of G, we denote by U(\) the A-weight space of U.
Suppose that n=4. We define some vectors of C*"'@V, as follows:
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(a) The case n=2h—1 or n=2h: For i=1,2,---,h—1

,Qv_;+v_;Qv,—v,Qv_,—v_,Q7, if k=1,
vV k(0,Qu_; vh"‘1+v_,®v 9,7Y)

a; =
+kv, ® (/\/ E VitV —\/— v, ten_ ,,) i Qu,t
if k=2,
0;Qv_;—v_;Qv;+v,Qv_,—v_,Qv, if k=1,
8, — kv;®v_,~~vh""—vz,~®l),--vh”“‘ B
—V kv,® (x/%'z),-v_,--v,,""—@/%v,,"'“v_h)—\/?fv_,,@vh”
if k=2,
—0;Qv_;+v_;Qv;4+v,Qv_,—v_,Qu, if k=1,
o, = —v,-@v_i-vhk“‘—)—kfv_,@v, v,F1

_ E— _
—V kv,®@ (V k VitU-i? —Vkvh . —h>_\/ kv_,Qu*
if k=2.
(b) The case n=2h—1:

2 (@0 +0.,80) if k=1,
\/?hz_l (‘v'®‘v_i.vhk—'l+'v—.‘®‘v"i7 k—l)

6= _
~ iz (e vrn oy o)

+kv_,Qu,t if k=2.
(c) The case n=2h:
29,Qv,—1,Qv_,—v_,Qv, if k=1,
jZ\/?vo(Z)vo-v,,k'l
Qo = 2(k—1) 1)
\/k(2k 1) h®< ( 1 ‘Z)oz '0;, VZk 1 ‘Uh -1, ’0_.},)
—v_,Qu,k if k=2,
(—0,.1QV_ (-0 +V-(4-0 R V41 if k=1,
(k—l)‘vo®vo-vh"“1—k‘vh 1®v_ (- 0 404 @)y v,
— A 2(k—1 1 -
Bo=\ —v/2k—1 v,,@( ék 1)7)02 v,k —Vm v,k ‘-v-,,)
. k—1 k-2 1 k-1
+\/k‘vh®< Tk Un-1t0-G-nt U T TR Uh U

if k=2,
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2,89+ Z:; (‘0;®7)-i—|"0—i®‘17.‘) if k=1,
\/?7)0@1)0-'0,,”’1{—\/?hz—}l(v-@)-v_,--'v Flbo ,@uien,tY)

_ Vk2k—1) 1) 2(k—1)
8 =1 2k+2h ®( 2h—1 % N/zk 1‘”h 1'”—h)

k 1 i
2k+2h 3= 200 k”h '”—h

+ko_,Qu,t if k=2.

Then we have

Lemma 9.4.1. Snppose that n=4.
(1) The case n=2h—1(h=3):

Wirve,(R—1)ds) = {ay, o s i} e
W¢h-1+k¢h((k_1)¢h) = {8y, Bz oy Bu-1, Y1y Vo **%y ')’h—l}c ’
W(k—l)'ﬁ;,((k— D) = {8}0 .

(2) The case n=2h(h=2);

W(k+l)¢h((k_1)¢h) = {am ayy ah—l}C )
W¢;,_1+k¢;((k'_1)¢h) = {Bo B1 B, Bie1s Y1, Tz, +++, YVi-1}e s
Wa-na,(kB—1)bs) = {8} ¢ .

Proof. (1) It follows from Lemma 9.3.3 that the space (C**'®V,) (k—1)¢,)
is spanned by

{v.:Quv_;, v_;Qu;3i=1,2, -, h} if k=1,
'0,~®'v_,~-'v,,k_1 v-,@”"vhk—-l )
k——l
vh®( Vi*sV_;*0 _/\/k vt 0, ), v, @0t
i= 1, 2, -, h—1
if k=2,

Therefore we have by Lemma 9.3.3 and (9.4.1)
9.4.2 dim W, E—1 ~{ if k=1,
(042) mWorinlE=DE =15, > ¢ p>2.

Applying Lemma 9.2.3, we have
AP X oi-,)AVH(X -4,-0,) (0:@0)") = a; i=1,2-,h—1.

Therefore by the proof of Lemma 9.3.3 we obtain the first assertion. Since
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dim(C™'@ V) ($-1+kp;)=2 and
d‘h(X¢,,_1—<b,,) (‘Uh®1)hk) = 0,.,Qv,*+V &k 2,Qv;100, 71,

the vector w=+/% v,.100,)—v,Qv,_;+9,*"! is a highest weight vector of
Ws,_,+46,» Applying Lemma 9.2.3, we have

AV X _4i-8,)d801(X4,-6,_,) (@) = B:  i=1,2,--,h—2,
A(Xg;-0,)A0(X 4,2, ) (@) =7: i=1,2,-,h—2,
d‘l"k(X—¢,,_1—¢,,) (CO) = Bi-1,

AV Xy 1-6) V(X ;- )AV(X ;-5 ) (@) = —7,_, -

If k=1(resp. k=2), {81,8;, ***, Bi-1, V1} (resp. {81, Bz, Bi-1, Y1, V25 ***» Vs-1})
is linear independent. Therefore by (9.4.2) we obtain the second assertion.
Since the vector 8 is orthogonal to «;, 5;, Tis i=1,2, ---, ~—1, we have the
last assertion. :

(2) We have the followings in the same way as above: The space (C*""'Q
Vi) (B—1)¢,) is spanned by Lo

{‘UO®‘UO, vi®'v-—i: ‘U_,-®7),-; 1= 1) 2) "ty h} if k=1 )

2,Q0,°0,F 7, v,Qu_;v,F L, v_;Qu;ev,t Y,

2(k—1) \/
*7)1:@( 2h— 17)0’ Zk 17)1: 1"U—h),

7,Q <N/k; : vi-v_;-vhk‘z—N/‘E O 7)"’) » OB

i=1,2, -, h—1
if k=2.

We have

h ifE=1,

dim Wy, _ 1is,(R—1))) = {2},_1 if k=2

and the vector o=+/k v,_,0v,—v,Qv,_;+v,#7! is a highest weight vector of
Ws,_, +1s,- Applying Lemma 9.2.3, we have

{d‘l"k(X —¢,,)2(‘Uh®7)hk) = Qy,
dVri( X _4,_ )X _s,) (@) = B

Therefore we obtain the first and the second assertions. Since the vector § is
orthogonal to ey, By, &, Bi, Vi, i=1,2,--+,h—1, we have the last assertion. Q.E.D.

Suppose that n=2. Put
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29,Q0—0,Qv_1—v_,Q0, if k=1,
2V k 9,Qv,0v,f !
Q) = - (
+\/k(2k_1)7)1®< Zk 1 ‘Z)o "vl Zk lvlk l"v_l)
—o_,Qut if k=2,
‘Ul®‘v_1—‘v_1®7)1 if k - 1 Y
(F—1)v,@v,ev,*
B = - 1
—V2—T w8 Z(k 1)”0 ‘o \/2k w1 1'”“)
_\/?7)—1®7J1k . if k = 2
R0+, Rv_+v_,Q0, if k=1
(2k—1)v,Quy+v* !
Yo =

—/2k— 1'vl®< Z(k l'vo vt VZk 17)1 1-7)_1.>
+Q2r—1) kv ,Quv}t if k=2,

We have the following lemma in the similar way to Lemma 9.4.1.
Lemma 9.4.2. If n=2, we have

{W(k+1)'bl((k_1)¢l) = {a(z)}c: Wk¢1((k“1)¢1) = {B(z)}c ’
We-vs,(B—1)¢1) = {v}e -

Suppose that n=3. Put

0,0v_1+9_,Q00,—0,Qv_,—v_,Qv, if k=1,
\/7;(711®‘U -1° ”zk—l‘l"v 1®7;- 'vzk_l)
A3 =
+k‘112® k z’1 Uy ‘vz - k ‘Uz g ®7)2
1f k=2,
9,Q0v_1—0_,Q0,+0,Qv_,—v_,Q v, if k=1,
ko, Qv vt —o_ Qv v,F !
Be = — — 1
—V kWz@(’\/%vrv—l'vzk_z—VTvzk_l'v—z)
bV kv ,Qust if k=2,
—0,Qv_14v_1Q7,+0,Qv_,—v_,Q 7, if k=1,
—0,Qv_;° 0 kv Qv vt
Y@ = - — 1
’ —V k”z@(V}le Wx'v—l'vzk_z—v% ‘vzk_z'v—z)

—V/ ko ,@uv if k=2,

115
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0,Qv,+0,Q0v+0,Qv_, 10,87, if k=1,
\/?(’01®'U-1 ‘0 o Qv 'vzk—l)

b0 = —v&@(«/% 'vl-v_,vvz”‘z—x/% vzk‘lw_z)
+ko_,Qv, if k=2.
We have the following lemma in the similar way to Lemma 9.4.1.
Lemma 9.4.3. If n=3, we have

{m1:+l)¢‘z((k_ 1)¢z) = {a(a)} C W¢1+k¢2((k—1)¢z) = {18(3)}0 ’
W—¢1+k¢2((k—1)¢z) = {'}’(3)} C W(k—l)¢2((k—1)¢2) = {8(3)}0 .

Suppose that n=4. Define as follows:
(@) The case n=2h—1 or n=2h: For i=1,2,---,h—1

1 i-1 .
/\/m—l) {— ﬁgl (v,@v_p+v_,®vp)+1(’0.~®7)-s+‘v-;®7Ji)

—'v,,®v_h—'l)_,,®‘v,,} if k == 1 y

1 i-1 _ -1
A'/(k—l‘1)(k—i—i)(li!—l—i—1) {_,q("’p@"’—p’”hk +o_,Q0,°0,')

a,i = +(k+i_1)(‘vi®‘v—i"Uhk_l—l—i)__i@'yiuvhk'l)
— i-1 m T
__\/ k Evh®<VT vp.av_p..vhk—z_/x/? vhk_l"l)_h)

+k+i—1D\ kv, @ («/E%v;-v_i-vh"“z—x/% 'v,,""’-'v_,,)
—\/E;_h@v,,k} if R=2,

1 .
\/7 0 Qv_—v_, Q) if k=1,

1
\/ 2(k—1) (k1) (k+2i—1) (k+2i—3) <

{—Z(k— 1) g (7)1:@7)—)'vhk—l"l'v—p@vp'vhk—l)
Bi=\" L(k—1)(R+2i—3) 0:@0v_; v v, Q0,047

i1 k—1 1
+4/ kgvh®(~/7 v,-v_p-v,,”‘z—/\/T vhk_"v_;.)

_2(k+2i—3)\/?vh®<~/k—;—lvi.v_i-vhk—z_v% ‘Uhk_l.v—h>
—2(k_1)\/%_,,®vhk} if =2,
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V= N/ 7 ©®00) 0 @0t if k21,
(b) The case n=2h—1:
., E+h—2 .
8 =N RETh—1) hr2i—3)° i R=1.

(c) The case n=2h:

1 h
Vm {2hv,@v,— .=2‘ @:Qv_;+v_,Quv,)} if k=1,

1 k-1
N/ (B1) (k- h—1) 2k 1-2h—1) {2(k+"— D2e®,-;

_..ZV‘LI (©:Qu_;i* v v ;,Qu; vt ?)

+(k+h 1)\/2k 11}},@( Z(k 1 ‘Uoz ’Z)h VZk lvh 1"0_;,

—\/fgv,,@('\/ L 0itU-it0 —/\/kfv,, l-v_,,)

-V ?v_@vh"} if k=2,

, 1 k-1
gy "—1) (k1) (h+25—2) (k+-2h—3) {1 @ r2-3m@urn,

_(k—l)’g:(vi®‘v—i'vhk~l+7j-i®vi'vhk_l)

A 2(k—1) 1
—(k+2h—3)\/2k— lv,,®( Z(k 1)'002 o, Z-V%—l fu,,"'l.v_,,)
+2\/k 2%@( k ‘U ‘o0t 2_/\/—]];_ ‘vhh_l“v—h)

— (k=) ., @0, } if k=2,
21 2h—3 .
¥ =¥ rkr2h—2) 2k 1 2h—1)° if k=1.

The following lemma gives orthonormal bases of Wi ys,(B—1)$4), Ws,_ 14,
((B—1);) and Wi—p,((F—1)s)-

Lemma 9.4.4. (1) The case n=2h—1(h=3):

orthonormal basis space
{all» a’z: ) a,h—l} W(k+1)¢;,((k"‘1)¢h) lf k=1,
{B’l) ly,l) 7’2; % (y,h—l} if k = 1 N

{B,D ,27 % ﬁ,h—l) W¢h-1+k¢h((k—1)¢h)
Vi V2 o ¥ hea} if k=2,
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{8} Wa-vs,(k—1)d1) fk=1.
(2) The case n=2h(h=2):
orthonormal basis space
{alo: aly ey a,h—-l} W(k+1)d>;,((k—-1)¢h) if k=1,
{8 Y"1 Y2 0, Vi if k=1,

{18,0) 6/1’ 18,2) ) Blh—l ) W¢h_1+k¢h((k_1)¢h)
'y,l) 7,2’ *tty 'ylh—l} lf k g 2 y

{8} Wie-vs,((k—1)¢p3) if k= 1.
For the proof of the lemma, we need the following lemma.

Lemma 9.4.5. We define (p,p)-matrices A,(m) and B,(m) by
m+1 1 - .« . .1

1. m+1
. Ay (m) = .
1
1 1 m+1,
1 1
m-1
B,(m) = | S
1 Y1 ml 1

Then we have
det A,(m) = m*~(m-+p),
det By(m) = (—1)?"'m*™*.
Proof. We shall prove the above equalities by the induction on p. If p=1,
the equalities are evident. Suppose that the equalities hold for p—1. Then we
have

i
m+1 1. -1 . .1
1 m+1° .1 1
det A,(m) = i (—1)*** det ) . '
j=1 . 1
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= 2 (—1)?*(—1)'"" det B,_,(m)+(m~+1) det A,,(m)

= mﬁ—l(m'hp) ’
A A l:
i i. .1 i
m+1 1 i 1

det By(m) =3 (— 1) det | 1 mt1.
t - - 101 tmrr T
= S (— 1) 1) det B, (m)+(— 1) det A, y(m)
= (—1)"'m*L
In the above matrices the symbol © means that the components are omitted.
Thus the lemma is proved. Q.E.D.
Proof of Lemma 9.4.4. Put a":«/kL—H a; for i=1,2, ---,h—1. Then
we have for k=1
1 if %7,
@ 2> = {k+1 if i=j.

Put for i=1,2,---,h—1

11 R |

1 R+l :

a; = det L .
I Y .
4 - - - Gz Gy a;

Then {d’,, d,, *--,d’,-1} is an orthogonal system. We have by Lemma 9.4.5

(&= K {(b+i—Ta— S a},

=1
(<ats, > = det A,_y(k) det Ay(k) = B¥k+d) (k+i—1) .
It follows that o’ i:ﬁ d’;, and therefore {a’},a’;,***,a’;_,} is an orthonormal
system in W4ne,((B—1)¢;). We have for k=1

’ 1

LV YY)

(Bi—73).

Put
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—1_ = ’ ’ :
b.':’\/k__i__l {Bi_:§<ﬂi)7p>'yﬁ} i=1,2,-,h—1.
Then
1 y .
VL @@vi—o,@u) = 8, i k=1,
b; = -A/kL‘H {k—__l (”i@‘v—i"vhk_l‘|"v—i®7)i'”hk_l)

—\/kvh®(’\/ E Yit0-it0 —\/k vt o —h

_\/76‘1,_,,@7,,,} if k=2,

If k=1, {8'1,7",Y "2 +*,Y"4-1} is an orthonormal system in Wy, _ i44,(R—1)¢4).
Suppose that k=2. We have for ¢,j=1,2,--+,h—1

<b;, ')',j>=07

1 if 7,
bi)b‘ == . . .
<bi, b k—_;l if i=j.
Put for 1=1,2,.--,h—1

k+1 e e
o 1
1

bl,'=det . . .
1 . . . 1 ’%‘.1
by - - o« o« b, b

Applying Lemma 9.4.5, we have b';=p;. Therefore if k=2, {B'},5's, ",

lb' l
B 17172+, 7 41} is an orthonormal system in Wy, _ 14s,(R—1);).

(1) It follows from Lemma 9.4.1 and the above arguments that the first and
_k(k+h—1) (k+2h—3) . E=1,

the second assertions are valid. Since <§, §>= hrh—2

we have the third assertion.

@ Put a=y/ 1}% oy for k=1. Then

{<d0, a0> = 2k+1 ’
Lag,a> =1 for i=1,2, .-, h—1.
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E+1 1

1 B
a’o = det .
1
a,

Then we have by Lemma 9.4.5

—

k+1
1
{dy, d'py = det A,_,(k) det
k+1 1

= det A,_,(k){ det

[_;
+
—
—

+det

1 .
0 .
= K*k+h+1) (2k+2h—1).

Tt follows that —-—
|a’y

an orthonormal basis of Wiy, ((B—1)¢,).

an orthonormal basis of Wi,_ 14s,((k—1)%;). Suppose that k=2.

« . 1
B+l 1
a1 a,

1
TR+l
L1 2R+

1

R |
e 1 k41
“ 1 R4l
0

dy=a’,. Therefore by Lemma 9.4.1 {¢/,, o'},

If k:1> {ﬁ,l) 7,19 7,2) ot

by = \/k_1+_1 {B,— g<ﬁo: vor'} .

Then

<b0) 7/i>= 0 i=1,2,

by by = (k—1),

CBo B> ={ 0

if i=1,2, - h—2,
—%(k—l) if i—=h—1.

121
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’ 'ylh—l} iS
Put
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Put
k41
e 1 1 0
1 .
Vo=det| *~ . "1 0
) Dy RF1 k-1
1 1 =5 =
b1 bh—l bo
Then we have
h—1
1 - 1 0
k41 ’
h-2 2
b, = 2 (_1)h+i+i-—l det 1 . . b;
” ’ 1 0
: E+1 _ k—1
1 1 = A
k+1 .
Moo o
1 . 1
(=) ldet | - 2 S L
: : 2
k—1
1 b =
+4(521) 8,
(R—1\"Y k+2h—3, | k+2h—5, &3 )
—(2> ( y it b 2:b)
and
k+1 e
- . ! 0
1, . .
Ko B> = det A,,_l(kgl) det| - + 1 0
: Ty Rl k-1
2 2
0+« +« 0 __}f.'—_l M

2 2
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_ (k— 1>2h-3 (k+2h—2) (k+2h—3)
2 2 ‘

It follows that lTl,—Ib’(,:,B’o. Therefore by Lemma 9.4.1 {84,581,82 **, 8 1-1,
1]

Y'Y 2, Y -1} is an orthonormal basis of Wi,  14,(B—1)$s). Since <§,8>

_ k(k+2h—2) (2k+2h—1) for k=1, we have the third assertion. Q.E.D.
2kR+2h—3

Put w=v_,Qv,". We denote by w, the I¥W,-component of w with respect to
the decomposition (9.4.1). Then we have

Lemma 9.4.6. (1) The case n=2:

1 1
| @609, | =~/(k+—1)(§m’ | %4, | =Vm’

2k—1
lwe-vs,| = 211
(2) The case n=3:
1 VEk
| %€Gas, | = 1D |24, 418, = k1
a3 k
Iw—¢1+kd>2 | “k+1 | 2ee-1s, | = Er1°

(3) The case n=2h—1(h=3):

B \/ h—1 B 2k(h—1)
|wave,| = (k+1) (k+h—1)° (@6, _ +h0y | = (k1) (k+2n—3)"
(kL h—2)

[®g-ns, | = (k+h—1) (k+2h—3) "
(4) The case n=2h(h=2):

‘ _«/ 2h—1 . k(2h—1)
I%<k+1)¢»,,| =Y &FD) (Zk—{—Zh—l)’ |wd>;,_1+kd);,| = (k+1)(k+2h—2) ’
- k(2k+2h—3)
lwa-van| =N R2n—2) 2k 261"

Proof. It follows from Lemma 9.4.2 (resp. from Lemma 9.4.3) that

1 1 1 1
{\/ (k+1) (2k+1) &@» W/ k(k11) P \/ k(2k—1) (2k+1) 7<2>} (reSP- {le G
k—ll—l B, k—}—l Y@» k—}—l 3(3)}) is an orthonormal basis of (C°QV,) ((k—1)¢,)

(resp. of (C*QV) (k—1)¢,)) for k=1. Therefore we have (1) and (2) easily.
(3) It follows from Lemma 9.4.4 that {a'i, s -+, @41, B'1, V1, V2 =,

Y 4-1, 8’} (resp. {o', a9 &, B 82 0 Bty Y1 ¥ o Vet 8’}) is an
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orthonormal basis of (C*"'@QV,) (k—1)¢,), if k=1(resp. if k=2). Therefore we
have by Lemma 9.4.4

A1 k
<w(k+l)d>,,: ‘w(k+1)d>,,> = Z::: (k+1) (k+4) (k+i—1)
= h—1 for k=1,
(k+1) (k+h—1)
1 if k=1,
<w¢h-1+kd’p w¢},-1+k¢h> = ,.2_1 Zk(k'—l)
i=1 (k+1) (k+2i—1) (k+2i—3)
_. __ 2k(h=1) i R>2
(k+1) (k+2k—3) -
k(R+h—2
Iw(k—l)d)hl = (k_,_h_(_l—;_(k_l_z)h_:;) for & % 1.
Therefore we have the assertion.
(4) We obtain the equalities in the same way as above. Q.E.D.
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