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Introduction

Let G be a compact Lie group. Throughout this paper K& will denote the
complex equivariant K-theory associated with the group G and R(G) the ring of
virtual complex representations of G.

Let V be a G-module over the field of the complex numbers and U(V) the
group of isometries of V' with the action of G defined by conjugation. In [2],
Hodgkin has announced the Kg-ring structure of U(V) without proof. So we
have proved a special case of Hodgkin’s theorem in [4]. The purpose of this paper
is to give a proof of the general case.

1. Statement of the theorems
Let G be a compact Lie group and p a unitary representation of G of dimen-
sionn. Thatis, p is a continuous homomorphism of G into a unitary group U(z).

We consider U(z) a differentiable G-manifold together with the adjoint opera-
tion ad,: GX U(n)—U(n), defined by

ady(g, u) = p(glup(g)™  g€G, ucUn)

and then we denote the G-manifold U(z) by (U(n), ad,).

We denote by V the representation space of p over the field of the complex
numbers C, by V the product G-vector bundle with a fibre V over U(n) and by
M4 (V) =A#V) the k-th exterior power of ¥ for 1<k<n. Then we can define
an automorphism 6§ of A¥(I) by

05(u, 2) = (u, \¥(u)(z)  ne Un), zerx(V).

Hence 6 determines an element [AN*(V), 65] of K(U(n), ad,). Afterwards we
shall use the same symbol 6§ in writing this induced element. Our main theorem
is:

Theorem 1.1. Let G be a compact Lie group and p a unitary representation of
G of dimension n. Then

K¥U(n), ady) = Arie (65, -+, 65)
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as an algebra over R(G).
Theorem 1.1 has the following corollaries.

Corollary 1.2. Let p be as in Theorem 1.1 and X a compact locally G-
contractible G-space whose orbit space X|G has a finite covering dimensnion. Then
the external tensor product homomorphism

p: Kg(Un), ady) @ KEX) — KE(U(n), ady) X X)
is an isomorphism.

Proof. Put U=U(n) for the simplicity. K¥(U, ad,) R@)KE(X) is an equi-
G

variant cohomology theory because K#¥(U, ad,) is a free module over R(G) and
also K¥((U, ad,)x X) is an equivariant cohomology theory. As easily checked,
we can construct spectral sequences of Segal’s type for these equivariant coho-
mology theories [5].

Let X denote the orbit space of X by G. There are two sheaves over X,
@« and 7, whose stalks are respectively

p«(®) = K&(U, ad,) R@)K?:‘(Gx)
and

T+(%) = K&((U, ad,) X Gx)

where & X and GxC X is the orbit of x& X lying over 2.
The external tensor product homomorphism x induces a map of the spectral
sequence

Ept = H*X, pq) = K¥(U, ad;) @ K¥(X)
to the spectral sequence
Epe = HY(X, ;) = K¥(U, ad,)x X) .

Let G, denote the isotropy group at x. Since Gx is homeomorphic to G/G,
as a G-space we have

(%)= KH(U, ad,) ® K§(G/G.)
=K¥(U, ad,) I(K%)R(G,,)
and
T+(®)=K¥E(U, ad,) X G|G,)
=K% (U, ady)

where p’ is the restriction of p onto G,. Therefore, from Theorem 1.1 we see
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Px(®)= Ar (05, -+, 0F), T(®)= Are (057, -+, 637)

and so g induces an isomorphism on the E,-level. This permits the corollary.

Let X be a G-space as in Corollary 1.2 and E an n-dimensional complex G-
vector bundle over X. Here we consider the unitary bundle z: U(E)—>X of E
(See [2], §3). For 1<k<n we can define also an automoprhism 6% of the G-
vector bundle z*(A*(E))=A*(z*(E)) over U(E) by

OF(u, 2) = (u, M*(u)(2))  uS U(E,), € NH(E,)

and we write 6% for an element of K¢ (U(E)) determined by §£. Then we have
the following

Corollary 1.3.
Ké(U(E)) = AK:;(X)(elE, %y af)
as an algebra over K¥(X).

Proof. For the sake of simplicity, put U=U(r) and ad=ad,
operation of the identity representation of U(z).

Let P be the associated principal bundle to E. Then P is a G X U-space on
which U acts freely: P/U=X and

U(E) = PX(U, ad).

se.y the adjoint

We can regard (U, ad) as a G X U-space where G acts on (U, ad) trivially.
Then we have

K#,.u(U, ad)=R(G)QK (U, ad)

by a parallel proof to that of [5], Proposition (2.2).
From Corollary 1.2 we obtain

K:';‘xu(P)m@mKéxu(U, ad)=K%, ,(PX (U, ad)).
Hence we get
KE(X)Q K¥(U, ad)=K¥U(E))
by [5], Proposition (2.1). This shows the corollary from Theorem 1.1.

In the following sections we shall give a proof of Theorem 1.1.

2. Proof when G is connected

The proof consists of two steps.
Step 1. Proof when G is a compact abelian Lie group.
For the sake of simplicity we write U(p) for the G-manifold (U(n), ad,).
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Since G is abelian, there exist 1-demensional representations of G, p,: G—
U(1) 1<k<n, such that p is equivalent to the sum p,®---Pp,. Then

U(p)=U(p, D+ Ppn)

as a G-manifiold. So it suffices to show the theorem for U(p), p=p, DD p,.

Before beginning the proof of the theorem we prepare an elementary lemma.
Let W be the representation space over C of the representation 1 p; p,D--+
@ p;'ps- Then the unit sphere S(W) in W is homeomorphic to the homogeneous
space U(p)/U(p, P+ P p,) as a G-space where U(p,P--- P p,)=1X U(p, B Dp,)
and also S(W) has a fixed point p=(1, 0, -+, 0).

Lemma 2.1. For each point g=(2,, +*+, 2,) of S(W) there exists a continuous
map f: [0, 1]->U(n) such that f(0)(p)=4, f(1)=1 and p(g)f(t)r(8)"'=f(?) for
g€ G, and te [0, 1] where G, 15 the isotropy group at q.

Proof. We shall prove Lemma 2.1 by induction on #n. For the case of n=1
we have nothing to do. Assume that the assertion is true for n<l. In case of
n=1[ we consider two types of ¢ as follows.

(i) If 2,++-2,=0, then

pi(g) = =rpalg) £<€G,.

Namely p(g) is a diagonal matrix for any g G,. So it is sufficient to show the
existence of a continuous map f: [0, 1]— U(n) such that f(0)(p)=q and f(1)=1.
But this is clear because U(n) acts on S**~* transitively and U(n) is arcwise con-

nected.
(ii) If there is an integer 2>2 such that 2,=0, then we consider a sub-

group, U’(n—1), of U(r) consisting of (n—1)-dimensional minors of which the
(k, k)-component is 1, i.e.

k
0
* . %
0
E[0010-0|cUq).
0
* : *
0

Let p’ be a continuous homomorphism of G into U’(n—1) defined by

P =p,D  DPpp-1D1 PPt D Dp,, -

In virtue of the inductive hypothesis there is a map f’: [0, 1]— U’(n—1) satisfying
the assertion mentioned in Lemma 2.1. Then we have
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P ®p(8) = P f'W)r(e)"  8€G, t]0,1].

Therefore when we put

f=if

where ¢: U'(n—1)— U(n) is the inclusion of U’(rn—1), f: G— U(n) is a map which
we require. q.e.d.

Now we proceed by induction on 7 to complete the step 1. In case of n=1,
since G acts on U(p,) trivially we have

KEU(p)=R(G)RK*(U(1))

by [5], Proposition (2,2). K*(U(1)) is an exterior algebra with one generator 6
and by the above isomorphism 6§ corresponds to p,®X§. Hence K&(U(p,))=
Are(0%) is valid for any compact abelian Lie group G and any 1-demensional
representation p=p, of G.

Let z: U(p)—S(W)(=U(p)/U(p.D:*-Pp,)) be the projection. From [4],
Lemma 1 we get

Lemma 2.2. There exists an element g in K&(S(W)) such that
KES(W)) = Arer(8)
as an algebra over R(G) and
n*(g) = 22(—1)*pr%6F 05 K&(U(p)) .

Proof. We observe the exact sequence of the pair (D(W), S(W)) where D(W)
is the unit disk in /. 'Then we see that

K&(S(W) =0
and the coboundary homomorphism
8: K&(S(W)) — K&(W)

is an isomorphism.
When we denote by A the Thom class of the vector bundle W— P(=a point),
¢(W) is a free module over R(G) generated by Ay.  So if we put g=8"'(Ay),
then

K¥(S(W)) = Ar(g) -

Next we consider the following diagram
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KH(Un), ad) *> KEU()

k(s 25 kxS
S l " B

3wy -2 k3(W)

T

where i: T— U(n) is the inclusion map of the standard maximal torus T of U(),
p* the homomorphism induced by the continuous homomorphism p=p,P---Pp,:
G—T and z’: U(n)—S(W’) represents the map =: U(n)—S(CPHW) in [4], §2.
Then this diagram commutes and p*(A 3*)=A\y. Therefore we get

*(g) = 2ui(—1)*p1 "0

by [4], Lemma 1. q.e.d.
Let M be an exterior algebra over R(G) generated by 6§, -, 85, where
0= KE(U(p)) for 1<k<n—1. Then we have a homomorphism

w2 M — KEU(p))

of algebras, defined by «,(6§)=6¢. Because, when we observe the homomor-
phism p*: K¥(U(n), ad;)—>K¥(U(p)) mentioned in the proof of Lemma 2.2 we
get

65y = p*((67))=0 for 1<k<n
since (07)*=0 in K¥(U(n), ad;) by [4], Theorem 1 and also we get the relations
056G +6S65=0 for 1<k, I<n obviously since 6§ are the elements of K&(U(p)).

Morevoer, for each closed invariant subspace X of S(W) we can define a homo-
morphism

£ K¥(X) é%?fm — K&z (X))
by
Mx@y) = m*(x)j*r(y)  xEKEX), ye

where j: 77(X)— U(p) is the inclusion of 4 X).
Under the assumption that the assertion of Theorem 1.1 in the step 1 is true
for n< the following lemma is proved.

Lemma 2.3. The homomorphism
x: KE(S(V) @ T — K&(U(p)
is an isomorphism.

Proof. Let S(W) denote the orbit space of S(W) by G. We have two
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sheaves over S(W), @4« and 7, whose stalks are respectively

#+(@) = K§(G) @ T
and
74(7) = K¥(='(Gq))

where g S(W), g= S(W) and Gg=="*(q).
Since M is a free module over R(G), K¥(X) Q@ M is an equivariant coho-
R(6)

mology theory. Then A induces a map of the spectral sequence [5]
E3* = H?*(S(W), )= Ké(S(W));%)‘JR

to the spectral sequence

Egt = H*(S(W), 7q) = K&U(p)) -
We shall prove that \ induces an isomorphism on the E,-level. Clearly we have
#4(@) = K§G) QT
= K(G/Gy) @ T
R(G@)
= AR(G,)(elc» ey 05) .

Next we observe the stalks 74(g). Let f: [0, 1]—U(#) is a continuous map
in Lemma 2.1. Then we have

=~(Gg) = U (p(8)f(0)r(g) ) U(n—1)
and so we can define a G-map
$: G/GyX Ulp, D+ Bpn) — =~*(GY)
by
(8Go, u) = (P(8)f(0)p(g) ™ u  £EG, uc Ulp, D Bpa)

because p(g)f(0)p(g)*=f(0) for any g G,. Further we can easily check that
¢ is an isomorphism. Therefore

7x(q) = K¥(="*(Gq))
= K¥G/G,x U(p, D+ Dp,))
= K¥ (U(p, D Dpa)) -

Thus we obtain

Tx(7) = Arcp(01, +++, On-1)
by the inductive hypothesis where 8,’=60%« for 1<k<n—1.
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Here we consider the homomorphism
N Arep(0F, 5 O5-1) = KE (U, Dpa))
induced by the homomorphism
A @x(7) = T4(a) -
From the definition of 6§ we obtain easily
AN(0F) = [Un—1) XN (V), ps] (I<k<n—-1)

where £, is an automorphism of the product G,-bundle U(n—1)X A*(V) given
by

Ee(u, 2) = (, M (f(0))(3))  ucU(n—1), zerr(V).

Since f is a homotopy from f(0) to the identity element of U(n) satisfying
pr(8)f (£)=f(2)r(g) for any g€ G, and t€ [0, 1], we get
01 k=1
N(65) = { o (k=1)
‘ .0k, (2<k<n—1).

Hence we see that A’ is an isomorphism. This shows that A induces an
isomorphism on the E,-level. Consequently we obtain Lemma 2.3. q.e.d.

Lemma 2.2 and lemma 2.3 show that the assertikon in the case of n=I[ is
also true. This completes the step 1.

Step 2. Proof when G is connected.
Let T be a maximal torus of G and ¢: T—G the inclusion of 7. Then from

the step 1 we get
K’;‘(U(”)) ade) = AR(T)(H{’ °tt 03.)

where p is the réstriction of p onto T and therefore, from [5], Proposition (3.8)
and [4], Lemma 2 we get

K¥(U(n), ad,)=K*%(U(n), ade)W(G’
where W(G) is the Weyl group of G. This shows
Kg(U(”): ad,) = Ape>(05, *++, OF) -

3. Proof when G is not connected
We recall
Theorem 3.1. (Segal [6]) Let G be a compact Lie group. Then the restric-
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tion R(G)—>sR(S) is injective where S runs through the representatives of con-
iugacy classes of Cartan subgroups of G.

Then we have

Lemma 3.2. Let G be a compact Lie group and p a continuous homomorphism
of G into U(n). Then Ar(05, ++, 0F) is a subalgebra of K¥(U(n). ad,).

Proof. We have a homomorphism «, of Ag (65, -+, 65) into K¥(U(n), ad,)
as algebras defined by #,(65)=6%, 1<k<n. This homomorphism is well-defined
by the same reason as «, in §2, Step 1 is so.

Let S be a Cartan subgroup of G and #5: S—G the inclusion of S. Then
we have

K%(U(n), ad,,) = Agess(0%, -+, 63)
from §2, Step 1 where pg is thr restriction of p onto S. Therefore if
D<o i gnlliyei 96,0005, = 0
for a;,...;;€ R(G) in K¥(U(n), ad,), then
i#(ciyi)) =0
for any Cartan subgroup S of G. So we get
Aiyiy =0, 1£4,<<5;<n
from Theorem 3.1. This shows that «, is injective. q.e.d.
Using the Segal’s spectral sequence [5] we can easily check the following

Lemma 3.3. ([3], Proposition 2) Let G be a compact Lie group. Let X
and Y be compact locally G-contractible G-spaces such that the orbit spaces X|G and
Y|G are of finite covering dimension. If K§(X) or KE(Y) is a free abelian group,
then the external tensor product

KEX)QKE(Y) - K&xo(XXY)
is an isomorphism.
The following theorem is basic in proof of the general case.

Theorem 3.4. ([1], Proposition (4.9), [5], Proposition (3.8))

Let G be a compact connected Lie group and i: T—G the inclusion of a maximal
torus. Then for each locally compact G-space X there is a natural homomorphism of
K¥(X)-modules iy: K$(X)—>K¥E(X) such that i,(1)=1, and hence i i*=1identity.

Theorem 3.5. Let G be a compact connected Lie group and p: G—U(n) a
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unitary representation.  Then, for each closed subgroup H of G we have
K#(U(m), ad, ;) = Arcen(07, N or)
as an algebra over R(H) where py is the restriction of p onto H.

Proof. Asin §2, we denote (U(n), ad,) by U(p). Let z,: Ul(p) X G/H—
U(p) and =,: U(p) X G/H—-G|H be the projections. Let d: GG X G be the
diagonal map.

We consider the homomorphism

@*: K&«o(U(p)X G/H) — K¥(U(p) X G/H) .
From Lemma 3.3 and §2, Step 2 we get

(1) K16(U(p) X GIH)=K¥U(p))QK&(G/H)
= AR(G)(olc’ ) 95)®R(H) .

From (1) we see that d* induces a homomorphism
p: KE(U(P)QKE(G/H) — KE(U(p) X G/H)
and then y, is as follows:
m(xQy) = =t (x)xf(y)  for xeKEU(p)), yeKE(G/H).

Since K¥(U(p)x G/H)= K¥(U(px)) and Agcm(6%, -+, 67) is a subalgebra of
K¥%(U(py)) by Lemma 3.2, Agcn(n¥(65), -+, z¥(65)) is a subalgebra of K%
(U(p) x G/H) and also

(2) Im p, = Aren(#F(65), -+, #¥(07)) .

Therefore if we prove that y, is an epimorphism, then we obtain Theorem 3.5.
Let T be a maximal torus of G. First we consider the restriction p,: T—
U(n) of p onto T. As the case of p: G— U(n) we have

K%+7(U(pr) X G/ H)= K U(pr))QKHG/H)
=Arp(01, -+, 03)QK¥$(G/H)

and so the homomorphism

tip: KE(U(pr))QKHG/H) — K¥(U(p7) X G/H)
induced by d*. Also we get

KH(Ulpr)x GIH)=KH(Ulpr)) @ K*(G/H)

=Arer (07, -, Gf)R(% K*(G/H)

from §2, Step 1 and a parallel argument to Corollary 1.2.
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Now we observe the following diagram

Arey(65, -+, 0S)YQR(H) Agrery(07, +++, 0DYQKH(G/H)
= F®if -
KEUGIDKEGH) &> KXUpr)OKHGIH)
| N 1oz
K¥(U(p) GJH) z:j: KH(Ulpr) x G/H)
KH(Upx) Arer6F, -+ 07) @ KH(GJH)

where i,, 7, and j are the inclusion of T, and i, 7,, and j, denote the natural
homomorphisms mentioned in Theorem 3.4.
For any xe K¥(U(p) X G/H) we can write

(3) J*@®) = anf(¥)+Dici< <ialiyenisd (07 0L)E (Vg i)

for a, a;,...;i; ER(T) and y, y;,...;;€ K¥(G/H).
Let put

R = 1®ay+21s.-1<...<.-,s.9¢’;-"0£®a.-1...¢,y;l....-,
in K¥(U(pr))QK%(G/H). Then from (3) we get
(4) (%) = j*(x) .
Moreover
(ilc®i2t) (z) = 1®i2t(ay)+2151‘1<- . <i,$n0$G1 °* '0?s®i2t(ai1---isyir' "'a)
since i¥0§=07 1<k<mn and 7,4,*=1, and

( 5 ) I‘l((ih®iza) (z)) = ”’Zkiza(ay)_*“zlﬁm S i,Sn”alk(aﬁ' y '9‘63)7:’2"1.2,(6!,-1....-,y,-l...,',)
= JxmF (@) +Dicir<--<ivsnT (00, 08) J 57 F(Qiye 15V i1 i5)

because of juz¥=n¥s,,. By Theorem 3.4, ji is the homomorphism of K¥
(U(p)x G/H)-modules. Therefore (5) shows

( 6 ) Il'l((ilt®i21) (z)) = j*(aﬂé"(y)+215q<--.<.<,s.ot.-l...:,ﬂi"(oﬂ'"97,)”’2"(3’:1----',))

because of z¥iF=j*r¥.
From (3) and (6) we obtain

(7) pa((.R3,) (2)) = juj* (%) = %

and so we see that p, is an epimorphism. Hence (2) and (7) conclude
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KI’l;(U(pH)) = AR(H)(e{iy "y 0nH) .
q.e.d. A
Proof of the general case. Let G be a compact Lie group and p: G—U(n) a

unitary representation of G.
Embed G in a unitary group U(m) and consider an embedding

f: G— Um)x U(m)
defined by

f@)=(le),8) g=6C.

Let z: U(n)x U(m)—U(n) be the projection. If we regard G as a closed
subgroup of U(n)x U(m) by f, then p is the restriction of z onto G. Therefore,
from Theorem 3.5 we get

Ké(U(”)y ad,) = AR(G)(G?: ) 63) .

This completes the proof of Theorem 1.1.

4. The special unitary group SU(n)

Let G be a compact Lie group and p: G—U(n) a unitary representation of
G. Then SU(n) becomes a G-submanifold of (U(n), ad,) which we denote by
(SU(n), ad,).

Let j: SU(n)—U(n) be the inclusion of SU(n). We use the same symbol
0% for the image of 65< K¢(U(n), ad,) by j* for 1<k<n—1. In particular,
7¥(65)=0.

Let T be the standard maximal torus of U(n) and i : T— U(n) the inclusion
of T. Then, by a parallel proof to that in [4] we obtain

Proposition 4.1. Using the notation of [4], Lemma 1 we have
(i) KS(CPW)=K$(SU(n)/SU(n—1)) is an exterior algebra over R(T)
with one generator g satisfying
w*(g) = Zzi(—1)*pT*07
where n: SU(n)—S(CPHW)(=SU(n)|SU(n—1)) is the projection, and therefore
(i) KFSU(n), ad;) = Arcrr(07, -+, 0n-,)
as an algebra over R(T).

From Proposition 4.1 an analogous statement can be made as follows.

Proposition 4.2. Let G be a compact Lie group and p: G—U(n) a unitary
representation of G. Then
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Ké(SU(?l), adP) = AR(G)(alca R 01(5;—1)

as an algenra over R(G).
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