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Abstract

The Wilsonian renormalization group (WRG) method is suitable to formulate the quantum field theo-
ries nonperturbatively. The Wilsonian effective action, obtained by integrating out field variables with
higher momenta, is a complicated functional of field variables and their derivatives. In order to study
the low energy behavior, it is convenient to expand it into a power series of momenta. The lowest
approximation of the WRG equation, called the local potential approximation, retains terms without
derivatives and is well investigated. In this thesis, we study the next-to-leading order approximation
of the WRG equation in the derivative expansion, namely, we discuss the Wilsonian effective action
quadratic in momenta, which may be called the non-linear sigma model approximation. For simplicity,
we impose the supersymmetry to forbid the appearance of the local potential terms. We focus on the
supersymmetric nonlinear sigma model in two- or three-dimensions.

In non-linear sigma models, the coefficient of the kinetic term depends on field variables, and is
interpreted as the metric tensor of the target manifold where field variables take values. The two-
dimensional nonlinear sigma model is perturbatively renormalizable. The perturbative one-loop (3
function is proportional to the Ricci tensor of the target space. However, the nonperturbative 3 function
obtained from the WRG method has the additional term which is proportional to the anomalous
dimension of the scalar field. We construct the fixed point theory defined by the zero point of the
nonperturbative # function. This theory has one free parameter, a, corresponding to the anomalous
dimension of the scalar field. When the target space is of one complex dimension, the target space of
the fixed point theory is a semi-infinite cigar, the two-dimensional black-hole proposed by Witten.

Three-dimensional nonlinear sigma models are not renormalizable within the perturbative method.
We argue that some supersymmetric nonlinear sigma models are renormalizable using the nonpertur-
bative WRG method. In the WRG approach, the renormalizability is equivalent to the existence of
ultra-violet (UV) fixed point. We also reconfirm the existence of the UV fixed point by using the other
nonperturbative analysis; the large-N expansion. Furthermore, we construct the novel conformal field
theory defined as a fixed point theory of the nonperturbative WRG [ function. This theory has one
free parameter and interpolates the both UV and IR fixed points of the CPY model.
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Chapter 1

Introduction

Quantum field theories have divergence because local fields defined at a point have infinite degrees
of freedom. At first, such divergence appeared as the self-energy of the electron in the quantum
electrodynamics (QED). Tomonaga, Feynman, Schwinger and Dyson invented the renormalization
procedures for QED in the perturbative method. By expanding physical quantities in the power series of
the coupling constant, they succeeded in removing all the divergences for perturbatively renormalizable
theories, for example QED, ¢* theory, yukawa theory and so on. This method is, however, applicable
only to perturbatively renormalizable theories.

Wilson’s idea, called the Wilsonian renormalization group (WRG) method is not restricted to the
perturbation theory. In this formulation, all Green’s functions are defined by the Euclidean path
integral. When we are interested in the large distance behavior larger than a specified length scale,
it is convenient to integrate over the fields with the wave length shorter than the length scale we are
interested in. In this way, we can define the Wilsonian effective action which depends only on the
fields with wave length larger than a specified length scale, the inverse of it is called the cutoff. The
WRG equation describes the variation of the Wilsonian effective action when the cutoff scale is changed
slightly. Since we integrate over the fileds with shorter wave length, the Wilsonian effective action is in
general very complicated functional of fileds. The WRG equation for the most general effective action
is simple and exact, but in practice we have to use some kind of approximation to deduce a tractable
equation by throwing away irrelevant terms at the large distance. The simplest approximation, called
the local potential approximation, was investigated in [1, 3, 4]. A nontrivial scalar theory has been
found in three dimensions around Wilson-Fisher fixed point in the local potential approximation. This
fixed point exists in any dimensions less than four, and the four dimensions is critical in scalar field
theories. In this thesis, we consider the Wilsonian effective action quadratic in momenta in two- and
three-dimensions. In general, such second derivative interaction of the scalar fields is described by the
non-linear sigma model (NLoM) in which the coefficient of kinetic term depends on field variables.
These field dependent coefficients of the kinetic terms can be interpreted as the metric tensors of the
target manifolds where field variables take their values.

Furthermore, we consider the supersymmetric theory in this thesis to forbid the appearance of
the local potential term for simplicity. Supersymmetry often plays an important role. For example,
in supersymmetric theories, quantum corrections to the vacuum energies of scalar and spinor fields
cancelle to each other, and the quadratic divergence of the Higgs mass disappears. In two- or three-
dimensional field theories we are considering, the simplest supersymmetry is realized between a real
scalar and a real (Majorana) fermion with two-components, and is called A/ = 1 supersymmetry. An
extended supersymmetry, called A = 2 supersymmetry, is realized between a complex scalar and a
complex (Dirac) fermion with two components. A marvelous property of certain class of NLoMs with
N = 2 supersymmetry is the absence of the local potential term. This class of NLoMs is characterized
by the so-called K&hler potential whose second derivative is the metric tensor of the target manifold.
Therefore, we concentrate on the renormalization of NLoMs with N/ = 2 supersymmetry.
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First, we consider 2-dimensional N' = 2 supersymmetric NLoM.

NLoMs in two dimensions are interesting for several reasons. First, they help us to understand
various non-perturbative phenomena in four-dimensional gauge theories, such as confinement and dy-
namical mass generation [5, 6, 7]. Second, they provide a description of superstrings propagating in
a curved space-time. In the latter case, the consistency of strings requires the N' = 2 superconformal
symmetry of the NLoMs. Because N = 2 supersymmetry and the scale invariance imply N = 2
superconformal symmetry, these NLoMs have to be scale invariant. In quantum field theories, scale
invariance, suffering from an anomaly due to divergent renormalization effects, is realized only at the
fixed points of the renormalization group equation. Since field theories at the fixed points also describe
phase transition, it is important to study these fixed-point theories of N' = 2 supersymmetric NLoMs.
Then we construct the conformal fields theories realized at the fixed points of the nonperturbative (3
function.

Next, we consider 3-dimensional A/ = 2 supersymmetric NLoM. The three dimensional NLoM
is nonrenormalizable within the perturbative method. Therefore, we have to use nonperturbative
methods to study the renormalizability of NLoMs. One of such nonperturbative methods is the large- NV
expansion, which has been applied to some examples of NLoMs [34]. For example, the U(N) invariant
NLoM, in which field variables take values in the complex projective space C PV ~1, is renormalizable
at the leading and the next-to-leading orders in the large-N expansion [35]. In fact, the next-to-leading
order contribution to the 8 function in the CPV~! model with A/ = 2 supersymmetry vanishes in the
1/N expansion [35].

The Wilsonian renormalization group (WRG) offers another powerful tool suitable for nonpertur-
bative studies. In the WRG approach, the renormalizability of NLoMs is equivalent to the existence of
a nontrivial continuum limit, A — oo. When the ultraviolet (UV) cutoff A tends to infinity, we have to
finetune the coupling constant to the critical value at the UV fixed point, so as to keep the observable
quantities finite. Therefore, it is important to show the existence of the UV fixed point without using
the perturbation theory.

This thesis is organized as follows: In Chapter 2, we give a brief review of the Wilsonian renor-
malization group and the approximation method. In Chapter 3, we derive the renormalization group
equation for NLoM. In Chapter 4, we discuss the fixed points of the 2-dimensional N = 2 super-
symmetric NLoM. We compare the results with the perturbative ones. In Chapter 5, we investigate
3-dimensional supersymmetric NLoM using the non-perturbative Wilsonian renormalization group. In
particular, we discuss the renormalizability of some 3-dimensional sigma models. We also construct the
fixed point theory using nonperturbative § function. In Chapter 6, we investigate some 3-dimensional
NLoM using the large-N expansion which is another nonperturbative method. We compare the results
of both methods, to discuss the reliability of the approximation.



Chapter 2

The Wilsonian Renormalization
Group

The WRG equation describes the variation of the Wilsonian effective action when the cutoff scale is
changed [1, 2, 3, 4]. The renormalization group equation shows the relations among the infinite number
of field theories and it is exact if we use the most general action. In practice, we have to introduce
some kind of truncation of the functional differential equation describing the flow of an infinite number
of coupling constants. The relevant truncation in the infrared region relies on the derivative expansion
of the effective action [3].

In this Chapter, we give a brief review of the Wilsonian renormakization group for general Wilsonian
effective action and the approaximation method.

2.1 Review of Wilsonian Renormalization Group (WRG)

Consider a general Euclidean quantum field theory with fields €; in D-dimensions. The Euclidean
path integral is

Z = /[Dﬂl] exp [-S[€]] . (2.1.1)
Here S[€] is the most generic Euclidean action, which has the form
1 )
S=)"~ / R / FP (pr 4+ pu) Gy (P1, -+, 20) i, (P1) -+~ L, (D).

(2.1.2)
where g is a coupling constant, and
6P = (2m)P s (2.1.3)
is the D-dimensional delta-function. The Fourier transformation of 2 is defined by

Qx) = /Q(p)e*”’m, (2.1.4)

in which

/p:/(;f)pD. (2.1.5)
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The basic idea in defining the effective action is as follows. We divide all fields 2; into two group,
high frequency modes (€;5) and low frequency modes (€;<). After the high frequency modes are
integrated out, the Wilsonian effective action (Sefs) is obtained as

7 - / (D] exp [~ 5[]

= /[DQD][DQK] exp [—S[Qi<, Qi ]

100 exp (5.0 (2.1.6)

Our aim is to determine the flow of Sey¢ by continuously changing the cutoff A, which represents the
boundary between higher and lower momentum modes. To carry this out, we change the cutoff A
infinitesimally to A(6t) = Ae %, Then, in the effective action at A, we again divide all fields into
higher modes[{2,] and lower modes. The fields [(25] that are nonzero value only in the momentum shell
between A(dt) and A are integrated out, and we thereby obtain the effective action for the new cutoff
A(6t). Hereafter, we write Sesy simply as S, and we assume that Z is cutoff independent:

Z

/[DQ]A(M) [DQS] €xp [_S[Q + Q; A]]
S 1 . 523 .
— . el J 3

- DQ Sl 4+ L [ rm (05
- oo oxp 2 ), M\ saisqy

__//691 (5&591) %*O(( U)] (2.1.7)

1090 a0 exp =51 400 (2.18)

/[DQ]A(M) [DQs] exp

Here,

/ /dQD /A dp’ ~ O(5t), (2.1.9)

where [dQp is the surface integral of the D-dimensional unit sphere. We can drop terms of order
O(Q3), because such terms vanish as 6t — 0. In Eq.(2.1.7), the action S[Q2; A]| is obtained from S[Q; A]
by dropping all fields with momentum above A(Jt) giving

1 .
S| A = ZE/ o [ Bpr At ) (M), Q. (2.1.10)
n T Yp1 Pn

Then, the action S[2; A(6t)] in Eq.(2.1.8) depends on the fields with the momenta below the lower
cutoff, and the coupling constants that are defined at the lower cutoff A(dt):

SIAG) =32 [ [ B pg(AG) 9 (2.1.11)

The difference between Eq.(2.1.10) and Eq.(2.1.11) is represented by the difference in the coupling
constants when the cutoff is changed:

S A(St)] = S Al
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1 .
= S [ B ) G - g2 0,
n Y1 Pn

1 - 0
= [ b (Ao )) 2090
n n: P1 Pn
1 528 1 §S [ 828 \ ' sS
= 2/,,”1“<m>‘5/p,/q,m <m> otk (2.1.12)

If the coupling constants depend on the momenta, this cutoff dependence of the coupling constants is
given by

0
A A 2.1.1
Fr9) = dAg sz P Hg (2.1.13)
In order to derive a differential equation for S, we transform all fields and coupling constants into
dimensionless quantities. The mass dimension of a coupling constant g is given by

where D denotes the space-time dimension, and dg, and 7q, are the canonical and anomalous dimen-
sions of €);. Because the cutoff dependence of the coupling constant can be written

d 0
Agno9 = Agpy — dimly 9+ZP1 ap MQ(A) (2.1.15)

the WRG equation for the effective action S is

d 1
ATeS = == [SIA@G)] — 5[ Al
i W 0N _ 0 |
p— d Q
- iy (2.1.16)

where the caret indicates dimensionless quantities.
Using Eq.(2.1.12), we obtain the WRG equation for the dimensionless action:

d 1 528
ES[Q,t] = ﬁ/ltrln(759i59j>
i | o (i) o
25t 50 dQ (p")oY (¢q') 6 (q')

+ D—%:/pfli(p) (dg + 70, + p* 88 >596( )] S.

(2.1.17)

528
/p/ trln (59%‘69]‘) (2.1.18)

/p/ /q/ 5Qi?p/) (591(;)2559]'@/))_1 59(??(1/) (2.1.19)

Here, the terms

and
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Figure 2.1: One-loop diagram.

1)

Figure 2.2: Dumbbell diagram.

correspond to the one-loop and dumbbell diagrams, respectively, displayed in Fig. 1 and 2.

In these figures, the single and double lines represent the lower and higher modes, respectively, and
the latter are integrated out in Eq.(2.1.17). In the limit 6¢ — 0, the contribution of the higher-order
diagrams disappears.

If there are fermionic fields in addition to bosonic fields, the WRG equation (2.1.17) can be rewritten

d 1 528
ES[Q,t] = 2—& A, strln <m>

_% /p /q/(_l)Fmifp’) (N?i(zo(’s)?flj(q’))1 596;‘1')

N 0 1) A
D=3 [ @)+ 70+ 50— | 5 (2.1.20)
%; P opr 6 (p)
where
528
strln (69159]> = strin sz
= strln Mpp  Mpr
Mrp Mrr
= t?“thBB—tTthFF, (2121)
with
Npr = Mpr— MppMgpMgr. (2.1.22)

2.2 The approximation method

The Wilsonian effective action S[Q;¢] in Eq.(2.1.17) includes an infinite number of coupling constants
Giy, e in» a0d Eq.(2.1.17) gives as infinite number of differential equations involving them. To make these
equations more tractable, we usually expand the effective action in powers of derivatives and retain
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the first few terms. We often introduce a symmetry (supersymmetry, gauge symmetry, Zs symmetry,
etc) to further decrease the number of independent coupling constants.

Consider, for example, a single real scalar field theory that is invariant under ¢ — —¢ (Z2 symme-
try). In this case, we can expand the most generic effective action as

)

S[e] = /dDaj Vel + %K[w]((?u@)Q + Hi[@)(8u0)* + Hap](0,0"0)? + - --

where V], K[|, Hi[¢],- - - are functions of ¢. To second order in derivatives, this action becomes

Slp] = / P

Vg + %KM(BW)Q]. (2.2.1)

Substituting this S[¢] into Eq.(2.1.17) and expanding the right-hand side of Eq.(2.1.17) up to O(8?),
we obtain two differential equations for V]p] and K[g].

In scalar field theories, often only the local potential term V[y] is retained. In this thesis, we derive
the Wilsonian renormalization group equation to the first nontrivial order of the derivative expansion in
the N' = 2 SNLoM. Because of the reparametrization invariance of the target manifold, the Lagrangian
of the nonlinear sigma model is proportional to the metric of this manifold, and the potential term is
absent. Therefore, the first nontrivial order of the derivative expansion is already second order in the
derivatives [8] [9)].



Chapter 3

The Flow Equation for

Supersymmetric Non-linear Sigma
Models

In this chapter, we derive the supersymmetric Wilsonian renormalization group equation for 2- and 3-
dimensional A/ = 2 supersymmetric non-linear sigma models. These supersymmetric non-linear sigma
models are obtained by dimensional reduction of 4-dimennsional A/ = 1 supersymmetric theory. To
derive the supersymmetric flow equation, we use the property of the Kéahler manifold which is the
target spaces of these non-linear sigma models.

3.1 Supersymmetric nonlinear sigma model

For the A/ = 2 supersymmetric nonlinear sigma model (SNLoM) in two dimensions (D = 2), the action
is determined by the Kihler potential K[®, ®1]:

S = /dVK[@,cN], (3.1.1)

where

/ v = / d>zd*0d?6.

This is also true for the N' = 2 SNLoM in D = 3 and the A/ = 1 SNLoM in D = 4. For this reason,
we replace the number of space-time dimensions, 2, by D. Here, ® is a chiral superfield and can be
written in terms of component fields as

Oiy) = @'y) + V200 (y) + 00F (y)
= ¢'(z) +i00"00,¢" (x) + i@@éé@“@uwi(m)

1

+V20 (z) \/5998M1/Ji(m)0”§ + 00F" (x) (3.1.2)
= '(z) 4 60 (a), (3.1.3)

where
Yyt =t +ifohd. (3.1.4)

15
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Using (3.1.3), we expand the action (3.1.1) around the scalar fields (p, ¢*). It is sufficient to expand
this action to O((6®)*), because 6@ (and 5®) contains at least one factor of §. Integrating over the
Grassmann numbers (6 and §), we obtain the SNLoM action written in terms of the component fields:

s = [av [gnm (af‘w W™ + SO (D) + S5 (D)™ + FWF)

1 _r 1 __ 1 I
__K,nml_Flwnwm - §K,nml_anmwl + ZK,nml_cl_(wkwl)(wnwm)

5 . (3.1.5)

First, we consider the bosonic part of the action (3.1.5). The loop correction term in the WRG
Eq.(2.1.17) cannot be written in covariant form in general. We use the Kéhler normal coordinates
(KNC) expansion of the action to obtain a covariant expression for the loop correction [10] [11].

The Kéhler normal coordinates (w,w*) are defined by the following condition:

Firein (@, w")|o = 0. (3.1.6)
Here, the index ”0” indicates that the left-hand side is evaluated at the origin of the KNC, which is
the expansion point.

The Riemann normal coordinates (RNC) are well known in the context of perturbative calculations
[24] [25]. All geodesics in the RNC become straight lines. The RNC in Kéhler manifolds, however,
are not chiral, and the coordinate transformation from the holomorphic coordinates to the RNC is not
holomorphic. In contrast, in the KNC, geodesics cannot become straight lines, but the KNC preserves
the holomorphy.

Let us decompose some arbitrary holomorphic coordinates (z%) into a background field ¢* and small
fluctuations 7¢ around it: z° = ' + 7*. The coordinate transformation from the coordinates z° to the
KNC ' is given by

. 1 - s . ,
W= 7r’+ZQE[9”K’;Z-1...Z'"(21,Z’)}<p7r’1~'7rz". (3.1.7)

These KNC w’ are known to transforme as holomorphic tangent vectors. Because they have well-defined
transformation properties, we can use a convenient coordinate system for our calculation.
In the D-dimensional sigma model action,

Sscalar = /degi;@p,ga*)a“apiauap*j, (3.1.8)

the background fields ¢° are regarded as the lower frequency modes and the fluctuations 7 as the
higher frequency modes. The Euclidean path integral Z in Eq.(2.1.7) is written

Z = /[Dgo] [De*|[Dr][Dr*] exp [ — Slp+m "+ w*]} . (3.1.9)

To calculate this path integral, we use the KNC system with the w’ defined by Eq.(3.1.7). We regard
the background field ©" as the origin of the KNC and transform the fluctuations 7* to the KNC fields
7" according to

7 KNG /[Dgo] (D" (DD exp | - Sl + 7,67 +77]), (3.1.10)

where the bars indicate quantities in the KNC system, and S is given by

Slo+ 7,7 + 77 = / dP2gis (0 + 70" + 70, (0 + 1) (o + 7). (3.1.11)
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The KNC fields #(z) can be expanded in the tangent vectors w!(x) by solving Eq.(3.1.7) for 7* and
using the KNC system

. . 1-. .
7i(z) = @'(z) — 3 ke |, @™ (2)@™ (2) + O(@®). (3.1.12)
When no space-time derivatives act on #’, the KNC fields 7’ coincide with the tangent vector fields:

7l(z) = @'(z). Substituting Eq.(3.1.12) into Eq.(3.1.11) and using the property of the KNC (3.1.6),
we obtain the expansion of the sigma model action to second order in the fluctuations of the KNC:

Sl +7,¢" + 7= / d" g5, (%s@ia“so*j + 0,00 @ 4 0, M + aﬂwiaﬂajﬁ)
o ksl 1o T
+gij,kf|<ﬁ (8“301811’30*](4)16&}*[ + Eausozau@kw*]w*l + Eauso*jau@*lwzwk)
+0(@*). (3.1.13)

From the above expansion, for the matrix in Eq.(2.1.17) we can read off

528 ,
(W) = Mi;(d' "), (3.1.14)

whose trace corresponds to the one loop correction term. These matrix elements are in momentum
space

Mid.p) = ( %Z %Z ) (3.1.15)
where
)
= S
- / y P( ' - 4)3u(P)S(0' +4d + P)
+/,, a pqpu(_p'fJ)f?ﬁ,kf(P"er’+Q’)soi(p)s0*35(p’+q’+p+q+P”),
: (3.1.16)
M / P// —p- Q)G 7 (P + 1 + ) (0)¢’ (@)0(0' +d +p+q+P),
o (3.1.17)
M / p~ —p - )G i (P47 + )" 0)¢ ()00 +d +p+q+P"),
o (3.1.18)
M / y " )giR(P) (P + 4 + P)
+/ P,/( p-Q)gi55(P" +p +d )¢ “(p )@*ié(p'+q’+p+q+P//).
o (3.1.19)

We write the (1,1) element (3.1.16) as

My = (I; —q'| Ma|k; '), (3.1.20)

Z |
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to define the operator M. Here, the states |k; p) are defined by

(k:pll; q) = (I plk; @) = 6(q — p)dy, (3.1.21)
/Z |k p)8™ (I p| + |1 p)0™ (ks pl | = (3.1.22)
Pk

From Eq.(3.1.20), the explicit form of the operator M is
(M1) 1 = DGrid + G5 100" 0" 0™ (3.1.23)

Similarly, from the other elements of the matrix, (3.1.17), (3.1.18) and (3.1.19), we can define the
following operators:

(Ma)ir = Girji0u' 0", (3.1.24)
(Ma)ir = GuigOu™ 0" 0", (3.1.25)
(Ma)gy = DGpb + G55 10up' 0" ™. (3.1.26)

The one loop correction term to O(9?) can be decomposed as

/trlnMij(—p',p'):/ trlani;—f—/ trin M3, (3.1.27)
P’ P’ P’

because M, and M contribute only to higher-order derivative terms. Noting that g;;, and g;; 5 are
zero in the KNC, we can calculate this trace:

/trlnMij(—p',p') = D (6t) /dQD/d xtrin g;
pl

2
G500 [ a0 [ augg 00 0

(3.1.28)

Now we consider the contribution of the fermion part in the supersymmetric action (3.1.5). It turns
out that there is no fermion contribution to the bosonic action, except for one equal to the first term
in (3.1.28) with opposite sign. Therefore, the first term on the right-hand side of Eq.(3.1.28) cancels
with this contribution from the fermionic part. In the KNC, the second term can be written

—W((st) / dQp / dPzR;50,6" 0" ™. (3.1.29)
Finally, we transform this result from the KNC to the original coordinates. Then, the first term of the
WRG Eq.(2.1.17) is

1 1 . .
5% / trin M;; = ~@nP / dQp / dPzR;50,0" 0" ™. (3.1.30)

The second term of Eq.(2.17), the contribution of the dumbell diagram, vanishes to order O(9?) in the
derivative expansion, because external lines carrying soft momenta in the derivative expansion cannot
satisfy the energy-momentum conservation law with the hard shell-momenta carried by the internal
double lines in the dumbell diagram.

A similar derivation can be applied to the D =2 N =2, the D=3 N =2andthe D=4 N =1
SNLoM. We obtain the WRG equations of the scalar part action for these SNLoM as follows:
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e In the case of D =2 N =2 SNLoM,

d A o
= d*2,5(0up)’ (0"¢*)

1 xk i *\]
= /de [ - %Rij - ’Y[Sﬁkgij,k + kgij,lé + 2%3” (Oup)' (O™ ).

(3.1.31)
e In the case of D =3 N =2 SNLoM,
9 [ g @0y @6y
dt L9;5\0u¥ ¥
3 1 k wk
= [ dr) - oG R5 - v[so Gijk T 958+ 29@}
Arokg b o g T (@up)i(@ery (3.1.32)
9 ij,k ¥ gzg,k np ¥ . ode
e In the case of D =4 N =1 SNLoM,
d M, *\J
7 | 429:5(0u9)"(0"¢7)
4 1 k wk
= [dz) -5 Ry - v[so Gij kT 95kt 29@}
- [@kgij,k + Sﬁ*kgij,kﬂ (3u50)i(3“60*)j~ (3.1.33)
In two dimensions, for example, the 8 function of the Kahler metric is
d 1 «F
9 = —5-Ri—n [@’“gﬁ,k + o955 + 29@}
= —Blgs). (3.1.34)

We have concentrated on the discussion of the WRG equation for the bosonic part of the action.
In supersymmetric theories, Eq.(3.1.34) has to be the scalar part of the relation among superfields.
Other parts will have contributions both from bosonic and fermionic parts. Here, we simply assume
supersymmetry to derive a supersymmetric relation. In this paper, we have used a straight cut-off
in momentum space to obtain the WRG equation. We need some modification or counterterms to

maintain supersymmetry. If we assume supersymmetry, the WRG equation for the Kahler potential
should be

% dVK[®, &1 = /dVAKl[@,cxﬁ]
) N
S

+ —
62 (p)

)

)

N o
Qi YP

(3.1.35)
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where € stands for ¢, p*, 1,4, F and F, and AK] is the one-loop correction:

1
AKy = o Indet 9ii|®, ®T]. (3.1.36)
s

Expanding Eq.(3.1.35) around scalar fields, as in Eq.(3.1.5), we can obtain the WRG equations for
various terms in Eq.(3.1.5). The bosonic part of this equation coincides with Eq.(3.1.31) by assumption.



Chapter 4

The Two Dimensional Models

In this chapter, we consider the fixed point theory of 2-dimensional N/ = 2 supersymmetric non-linear
sigma model using the previous nonperturbative § function.
In the previous chapter, we obtained nonperturbative § function using Wilsonian renormalization

group:
1 k xk
B(g:5) = %Rﬁ +7¢ 95,6+ 0 955 + 2945 |- (4.0.1)

The presence of the anomalous dimension reflects the nontrivial continuum limit of the fields.

When the anomalous dimension of the field vanishes, scale invariance is realized for NLoMs on
Ricci-flat Kéhler (Calabi-Yau) manifolds [24]. Calabi-Yau metrics have been explicitly constructed for
some noncompact manifolds [27], in the case that the number of isometries is sufficient to reduce the
Einstein equation to an ordinary differential equation.

However, when the anomalous dimension of the fields does not vanish, the condition of scale invari-
ance is quite different. In this chapter, we study conformal field theories with anomalous dimensions by
solving the condition of the fixed point: 8 = 0. We assume U(N) symmetry to reduce a set of partial
differential equations to an ordinary differential equation. The conformal theories obtained have one
free parameter corresponding to the anomalous dimension of the scalar fields. The geometry of the
target manifolds depends strongly on the sign of the anomalous dimensions.

4.1 Fixed point of the U(N) symmetric WRG equation

In this section, we derive the action of the conformal field theory corresponding to the fixed point of
the 3 function

1 o
B(gi;) = o B + ’Y{@kgﬁ,k +o™*g5 5+ 291';} =0. (4.1.1)

Because the Ricci curvature R;; takes the form of a second derivative of the metric g;;, the equation
is composed of a set of coupled partial differential equations, and is very difficult to solve in general.
Therefore we simplify the problem by assuming U(N) symmetry for the Kéhler potential:

o0
Klp, @] = > gna" = f(2), (4.1.2)
n=1
where z is the U(N) invariant combination
z=g-¢' (4.1.3)
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of the N component scalar fields @ = (¢!, 9%, -+, ¢"). The coefficients g,, play the role of an infinite
number of coupling constants that depend on the cutoff scale t. The Kahler potential gives the Kahler
metric and Ricei tensor as follows!:

95 = 005K[p,0'] = f'o;5 + "0l e, (4.1.4)
Rj; = —0;0;tring,;
o B f_// 2f”+f’”x .
_ [(N DG+ }5”
B B f(3) B (f”)2 3f(3) +f(4)x B (2f,/+f/”$)2 .
{(N 1)< f// (f/)2> + f"f’f”x (f/+f//x)2 } isoja
(4.1.5)
where
,_df
f=a (4.1.6)

We substitute this metric and Ricci tensor into the 8 function (4.0.1) and compare the coefficients of
4,7 and <p’<p*7 to find

b . 1 f// f// f/// , Y
5! = %[(N— D%+ e } = 2y(f'+ f"), (4.1.7)
0 _ 1 O AN AR L P T i
al = - ”( e (f’)2) Fpa ey
—2y(2f" + f"x). (4.1.8)

Since the second equation (4.1.8) follows from the first equation by differentiation with respect to x,
we discuss only the first equation.

Our differential equation (4.1.7) describes the renormalization group flow in the theory space spec-
ified by the infinite number of coupling constant in the Kéahler potential. In fact, we can derive an
infinite number of coupled differential equations relating the coupling constants g,, by inserting (4.1.2)
into Eq.(4.1.7). We are especially interested in the fixed point of Eq.(4.1.7), which should give a scale
invariant theory. The fixed-point theory is defined by the Kéhler metric, which satisfies the following
differential equation:

Fri g(N—1)7+ T = 29(f" + f"x)

= 0. (4.1.9)

d 1 o2+ }

To obtain the Lagrangian of the scale invariant field theory, we have to solve this differential equation.
Noting that this equation can be rewritten as

2 [N+ )| = Amy (f x), (4.1.10)

we can integrate it easily to obtain
(fHYN"LF = C) exp[dny F], (4.1.11)
where

F=flua, (4.1.12)

We use the convention w; = 51-;90*; and ¢; = Jﬁgpi
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and (1 is constant of integration. The normalization condition of the kinetic term,
9i3|z:0 = 51‘37
gives the initial condition
1(0) =1, (4.1.13)
implying
F'(0) =1, (4.1.14)

which fixes C; = 1.
Integrating Eq.(4.1.11), we find the solution of the differential equation satisfy the following alge-
braic equation:

e X (N—IFWN-D-r
- = — Cs. 4.1.15
a r:O( ) (N—-1-r)la" N e ( )

Here we have introduced the constant a = —47y; that is, we write the anomalous dimension of the
scalar field using the free parameter a as

a

-0 (4.1.16)

’y:

In NLoM, the anomalous dimension of the scalar field can take either a positive or negative value,
and hence the parameter a can also take either sign [14]. Setting z = 0 in Eq.(4.1.15) and using the
boundary condition (4.1.14), we obtain

Cy = (—1)N—1%. (4.1.17)

From the condition (4.1.15), we obtain the function f’ = F/z. Because the metric (4.1.4) is
determined by f’ and f”, our Lagrangian is completely fixed by Eq.(4.1.15). Thus we have found that
the Lagrangian of the scale invariant theory has the free parameter a corresponding to the anomalous
dimension of the field.

4.2 Geometry of the target space of the scale invariant theory
In this section, we study the geometry of target space in the case that the theory is scale invariant.

4.2.1 One-dimensional target space

Equation (4.1.15) is very simple in the case that the target manifold is of one complex dimension.
When N = 1, this equation reads

= o+ —, (4.2.1)

which gives
£ = (1 + az) (4.2.2)
=— . 2.
Using this form of f’ in Eq.(4.1.4) gives the metric of the target space,
1
1+az

g5=1f +f'z= (4.2.3)
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Note that this metric has only one component, and the indices ¢ and j are 1. The scalar curvature is
given by
a

R = .
1+ax

(4.2.4)

The properties of this target manifold depend strongly on the sign of the parameter a.
Now, we investigate the properties of the target manifold for each sign of a.

1. When a > 0, the anomalous dimension is negative.
Because the line element is given by 2

|dz]?

ds® = 121
y 1+ alz]?’

(4.2.5)

or in polar coordinates, with z = re*?,

ds?

= dr)? + r(dg)?) 126

] (CORUERCOR R (4.26)
the volume and the distance from the origin (r = 0) to infinity (r = co) are divergent, while the
length of the circumference at infinity is finite. Therefore, the shape of the target manifold is
that of a semi-infinite cigar. The volume integral of the scalar curvature is also finite, giving the
Euler number

1 1 1
— [ dzdzZ(detg;)R= — [ dzdz————55 =1 4.2.
X 2 Z( € gz])R om / 2 Z(l +a|z|2)2 ’ ( 7)

:27r

which is equal to that of a disc.

Figure 4.1: The target manifold for @ = +1 embedded in 3-dimensional flat Euclidean spaces. It takes
the form of a semi-infinite cigar with radius \/g . Our metric (4.2.12) is the induced metric on this

surface.

Let us embed the manifold in 3-dimensional Euclidean spaces. When the hyperplane possessess
rotational symmetry, the line element can be written in cylindrical coordinates as

ds? = (dh)? + (dp)? + p*(d0)?, (4.2.8)
where the height is a function of the radius p:

h=g(p). (4.2.9)

2We use z for the coordinate of the manifold instead of ¢ throughout this section.
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From Eq.(4.2.9), the line element can be rewritten

ds® = (14 (¢'(p))*)(dp)* + p*(d9)?, (4.2.10)

where ¢’ is the derivative of the function g(p) with respect to p. Now we transform the line
element for the target metric (4.2.3) to the form of Eq.(4.2.10) through the change of variable
r — p, with

r

P= V1+ar?’

which is a one-to-one mapping from the entire plane 0 < r < oo to the disc 0 < p < \/— Then,

(4.2.11)

Eq.(4.2.6) can be rewritten as

ds® = ﬁ(dm? + o2 (do)2. (4.2.12)

Comparing Eq.(4.2.10) with Eq.(4.2.12), we obtain the height function h = g(p) as follows:

ho o= /dpg /dm/

V2 —ap?—
2\/5(1 |\/m |+2\/ —ap? —ln

- 2f)
(4.2.13)

Figure 4.1 shows the manifold embedded in 3-dimensional flat Euclidean spaces. The distance
between any two points is measured along the shortest path on the surface in the Euclidean space.

2. When a < 0, the anomalous dimension is positive.
In this case, the metric and scalar curvature read

1
= 4.2.14
9ij T Jalz’ ( )
—la|
R = . 4.2.15
1—|a|x ( )

This metric is ill-defined at the boundary |z| ~ ﬁ This is not merely a coordinate singularity,
because the scalar curvature is divergent at the boundary. Although the volume integral is
divergent, the distance to the boundary is finite. Now, let us embed this manifold in a flat space.
Note that Eq.(4.2.13) is imaginary if a < 0. Thus the manifold is embedded as a space-like
surface in a flat Minkowski space. Figure 4.2 shows the manifold embedded in a 3-dimensional
flat Minkowski space.

4.2.2 Higher-dimensional target spaces

We now consider conformal field theories whose target spaces consist of more than two dimensions and
investigate the properties of the target manifolds. For N > 2, we have to solve the algebraic equation
(4.1.15), which for N = 2, for example, reads

e (aF —1) = %(a:c)Q -1 (4.2.16)

Figure 4.3 displays aF as a function of az for N = 2 and |a| = 1.
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Figure 4.2: The target manifold for a = —1, embedded in a flat Minkowski space. The vertical axis
has negative signature. In the asymptotic region p — oo, the surface approaches the lightcone.

The Kahler potential in the neighborhood of the origin is easily obtained by solving the equation
(4.1.15)
f@)=a— g ... (4.2.17)
2(N+1)
The asymptotic behavior depend strongly on the sign of the parameter a, and for this reason, we
discuss the two cases separately.

1. @ > 0 case
Figure 4.3 shows that the function f’, which is the diagonal component of the target metric, goes
to infinity as ¢ — oo. When aF goes to infinity, the = 0 term of Eq.(4.1.15) gives the dominant
contribution on the left-hand side. To find the asymptotic behavior in this region, we retain only
the dominant terms and solve

1
e FlaF)N-1 ~ N(am)N (4.2.18)

using the iteration method,

aF ~ 1@%)—(1\7—1)111(@1?)
_ ln<%)—(N—l)lnln(%)+-”,

where we have dropped terms that vanish as ax — co. Then, we obtain the functions f’ as

N _ N
L In (ax)” N-1 Inln (az) + e (4.2.19)

i
! ar N ar N

Q

The distance along a straight line in the radial direction is written
gijdzidz*j = (flo5;+ f”z;zi*)dzidz*i

(' + o2l =

N
a|r|2|dr|2. (4.2.20)

Q

Here, we have defined the complex radial coordinate r and the angle variables by

=alr, o) 2N =N 2N =, (4.2.21)
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aF

Figure 4.3: aF as a function of az for N = 2 and |a| = 1. Because x = zz' is positive, ax > 0
corresponds to a > 0, while ax < 0 corresponds to a < 0.

The asymptotic behavior (4.2.20) for any N is similar to that in the N = 1 case, in which the
metric in the asymptotic region is given by

1
g~ — (4.2.22)
Cll‘

The asymptotic behavior of the Kéhler potential (4.1.2) can be found by integrating Eq.(4.2.19),

K(zz") =~ N(log(azz )2+

= xxX"+24 ,‘Rexlog (L4 [u P+ NP+ (4.2.23)

where we have removed holomorphic and anti-holomorphic terms through a Kéahler transforma-

tion and defined x by
=4/ N log v/ar. (4.2.24)
a

For fixed values of the radius r, (4.2.23) is the Kéhler potential for the Fubini-Study metric of the
complex projective space C PV ~1, whose size is fixed by Rey. Therefore, our target space is the
direct product of the complex line represented by y and CPYN~! represented by (u',---,u’N"1)
in the asymptotic region.

2. a <0 case
Figure 4.3 shows that the allowed region ax < 0 is limited to the region |Z] < ( ) for N = 2,

as for N = 1. By assuming az ~ —+/2 + € near the boundary, we can reduce Eq.(4.2.18) to
e aF ~ —\/2€,

which can be solved using the iteration method,

—aF = 1n—+1n aF
5.+ In(-aF)
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L () +
() 4.
\/ie \/ie

Because € < 1, the behavior of the function f’ = a—l‘; near the boundary is given by

= In

1 ax

"~ —In(l+ —), 4.2.25

fo i ) (1.225)

which leads to the curvature singularity at the boundary. Similarly, the allowed region in the
z-plane for general N is

2] < (N!)2¥|a| 2. (4.2.26)

The asymptotic behavior of the function f’ near the boundary,

f1@) ~ o+ ),

leads to the curvature singularity at the boundary.

To summarize, we have found that the target spaces of the scale invariant theory with nontrivial
anomalous dimension are noncompact and well-behaved at infinity for a > 0, while they have important
curvature singularity at the boundary for a < 0.

4.3 The comparison with the perturbative result

In this section, we compare the above fixed point theory with the perturbative result. The perturbative
one-loop  function for the target metric of non-linear sigma model is proportional to the Ricci tensor.
However let’s consider the non-linear sigma model coupled with dilaton on the curved space-time:

. = 1
S = d2m4ﬁx/ﬁh“”gﬁﬁugﬂ@ugp*] — —\/ER(Q)‘I)(QD,QO*), (4.3.1)
curved 4 87

where R denotes the scalar curvature of the space-time. The one-loop (3 function for above action
has the additional effct of the dilaton:

d
Bi; = Egij = R;; +2V,;V;90. (4.3.2)

On flat space-time, a nontrivial dilaton gradient in target space is equivalent to assigning a non-trivial
Weyl transformation law to target space coordinates. The solution of the eq.(4.3.2) is equivalent to
the one obtained §.4.1.

To show the relation between the nonvanishing dilaton and the nonvanishing anomalous dimension,
let’s consider one complex target spaces. If we fix a conformal-flat gauge for target space metric g;;,
we rewritten the action on flat space-time as follows:

S = dxe” ") (9,10 r + 9,0010) (4.3.3)
flat

The function ¥(r) does not depend on 6, because we consider the U(1) symmetric theory. The per-
turbative one-loop 3 function for non-linear sigma model is obtained:

1

= — Ry 4.3.4

Bis = 3R (13.4)
From eq. (4.3.3), the Ricci tensor of target space is given
10%¥

Rrr = RG@ = (r) . (435)

2 Or2
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Then the § function for the field ¥ is written by

8\11(7‘) _i —(r) 82\:[/(7')
ot an’ or? (43.6)

Here we put most Weyl transformation law for r» under the Weyl rescaling of the space-time metric by
2

r —r — bt. (4.3.7)

Here, b correspond to the anomalous dimension of the field r on space-time. (Because of U(1) symmetry,
¢ is unchanged under Weyl rescaling.) Setting U(r) = V¥ fizedpoint (r — bt), we obtain an equation for

\Ilfiwedpoint(r) :

1
— e~ Vyimedpoint /] —bv/ 0. (4.3.8)

A fizedpoint fizedpoint —

The solution of this equation is

1
VU fizedpoint — 4.3.9
e , .3.
s Y Y (4:3.9)
where A, ¢ are constants. If we choose
1 1
—9 - Vfizedpoint —
A=2 b 21k’ c e—20r—o)+’

we find the anomalous dimension b is the same as the previous v = — 1= in §.4.1, and the parameter k
in the action (4.3.1) correspond to the parameter a as follow:

2

a=—. 4.3.10
; (43.10)



Chapter 5

The Three Dimensional Models

The three dimensional nonlinear sigma model is nonrenormalizable within the perturbative method.
In the WRG approach, the renormalizability is equivalent to the existence of a nontrivial continuum
limit, A — oo. When the ultraviolet (UV) cutoff A tends to infinity, we have to finetune the coupling
constant to the critical value at the UV fixed point, so as to keep the observable quantities finite.

In this chapter, first, we discuss that some N = 2 supersymmetric nonlinear sigma models are
renormalizable in three dimensions using the § function in the nonperturbative Wilsonian renormal-
ization group method. Next, we construct a class of conformal field theories with SU(NN) symmetry,
defined at the fixed point of the nonperturbative 3 function.

5.1 Einstein-Kahler manifolds

In chapter 3, we obtain the WRG equations for the scalar part as follows:
d B i *\7]
G [ a05(0,0)' @57

. 1
_ 3 -
= [ #a - gt

— (‘Pkgij,k + g5+ 291-5) -3 (‘Pkgij,k +¢ ’“gi;,;;)} (00) (0" ),

(5.1.1)

where the scalar fields ¢™(x) are assumed to be independent of ¢ through a suitable rescaling, which
introduces the anomalous dimension . From this WRG equation, the 3 function of K&hler metric is

d 1 oF 1 “F
7% = —WRQ - @kgij,k + kgz'j,l} + 291'5} 3 [Sﬁ’kgz‘i,k te kgiﬂ’
= —B(9;5)- (5.1.2)

Let us consider the theories whose target spaces are Einstein-Kéahler manifolds. The Einstein-Kéahler
manifolds satisfy the condition

h
Ri; = 29> (5.1.3)
where a is the radius of the manifold, which is related to the coupling constant A by
1
A= —. 5.1.4
y (514

A special class of Einstein-Kéahler manifolds is called the Hermitian symmetric space, if it is a symmetric
coset space (G/H), namely, if the coset space is invariant under a parity operation. If the manifold is

31
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the Hermitian symmetric space, the positive constant h in eq.(5.1.3) is the eigenvalue of the quadratic
Casimir operator in the adjoint representation of global symmetry G, as shown in Table 5.1.

| G/H | Dimensions (complex) | h |
SU(N)/[SU(N -1)®U(1)] =CPN-! N -1 N
SU(N)/[SUN — M) ® U(M)] M(N — M) N
SO(N)/[SO(N —2)@U(1)] = QN2 N -2 N -2
Sp(N)/U(N) %NHV+D N+1
SO(2N)/U(N) sN(N +1) N -1
Es/[SO(10) @ U(1)] 16 12
E:/|Es © U(1)] 27 18

Table 5.1: The values of h for Hermitian symmetric spaces

When the manifolds have the radius a =
represented in the following form:

%, the scalar part of the SNLoM Lagrangian can be

ﬁscalar - gzi (803 90* )amoiauw*j
* g 1 ; z
PESY F0n0uetoren. (5.1.5)

To normalize the kinetic term, we rescale the scalar fields as follows:

1
p— P =Ty (5.1.6)

Then, the Lagrangian (5.1.5) has the normalized kinetic term
Lacatar = §i3 (AP, AP0, 50" 57 (5.1.7)
with
9ijle.ev=0 = 045 (5.1.8)

Rescaling the WRG Eq.(5.1.2) and comparing the coefficient of 8,L<,5"8“35*5 , we have

0 1 =
—3-(\g,\p*) = ———R-
8tgz]( @, AP ) o2
. - . 1 s -
_V[Sﬁkgﬁ,k + kgﬁ,fc +29;;] — §[Sﬁk9i3,k + kgﬁ,l}]a
where Rij is the rescaled Ricci tensor and can be written
Ri; = hA\%g;; (5.1.9)
using the Einstein Kéhler condition (5.1.3).
Because only A depends on t, this differential equation can be rewritten as
}\ ~k ~ >‘ ~xk ~ hA? ~ 1 ~k ~ ~xk ~
NP Gkt P G E = <2—7T2 +27 ) g5 — (v + 5)[@ Gij e + 27" G55 k-

(5.1.10)

The left-hand side vanishes for ¢, ™ &~ 0, so that the coefficient of g;; must vanish on the right-hand
side. Thus, we obtain the anomalous dimension of scalar fields (or chiral superfields) as

hA2

ot (5.1.11)

v=-
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Comparing the coefficient of @kgijvk (or @*EQ&,}), we also obtain the § function of A:

dA h 4 1
= —-—— =—-—— —A. 1.12
BA) o = e T (5.1.12)
We have a IR fixed point at

A=0, (5.1.13)

and we also have a UV fixed point at

2

A2 = 2% =2, (5.1.14)

for positive h. Therefore, if the constant h is positive, it is possible to take the continuum limit by
choosing the cutoff dependence of the bare coupling constant as

M

AA) A2, — T (5.1.15)

where M is a finite mass scale. With this fine tuning, N’ = 2 supersymmetric nonlinear ¢ models are
renormalizable at least in our approximation, if the target spaces are Einstein-K&hler manifolds with
positive curvature.

When the constant h is positive, the target manifold is compact Einstein-Kéahler manifold [39]. In
this case, the anomalous dimension at the fixed points are given by

vir = 0:IR fixed point (Gaussian fixed point) (5.1.16)
1
wyo= g UV fixed point (5.1.17)

At UV fixed point, the scaling dimension of the scalar fields () is canonical plus anomalous dimension:
To = dyp+v,=0. (5.1.18)

Thus the scalar fields and the chiral superfields are dimensionless in the UV conformal theory as in
the case of two dimensional field theories. Above the fixed point, the scalar fields have mass, and the
symmetry restores [5, 40].

5.2 Renormalization group flows

In this section, we study the renormalization group flows for three examples, CPY, QV and a new
model. We will discuss both models with the other non-perturbative method in Chapter 6

5.2.1 CPY and Q" models

1. CPY model: SU(N +1)/[SU(N)® U(1)]
Consider the following SU (N + 1) symmetric K&hler potential using (N + 1)-dimensional homo-
geneous coordinates:

1
K[®,of] = V1n(|<1>1|2+---+|cI>N|2+|cI>N+1| ). (5.2.1)

The complex projective space, CPY, is defined by identifying two point related by

P~ ad, (i=1,---,N+1), (5.2.2)
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where a is a complex chiral superfield, so that this is a complexified gauge symmetry. We obtain
the Kihler potential for CPY model by choosing a gauge ®N*! =1 as

1 -
K[®, &) = 1z 1+ PP, (5.2.3)
where ® denotes a set of chiral superfields P = (®!,..-, ®V). Hereafter, we rescale scalar fields
- 1
o P=0 (5.2.4)

to normalize the kinetic term, and simply write the rescaled scalar fields ¢ as .

From this Kéhler potential, we can obtain the Kahler metric and Ricci tensor:

0,7 )\2SO %) J
= = -0~ — ) —
95 = 005K (1 oy il AQW*)Q)’ (5.2.5)
Rj = —0;0i(Indetgy) = (N + 1)\ g;3. (5.2.6)

Equation (5.2.6) shows that this target manifold is Einstein-Kéhler manifold with h = N + 1.
Hence eqs. (5.1.11) and (5.1.12) give us immediately

(N4 1)A?
L (5.2.7)
(N1
B = A (5.2.8)

This § function is consistent with the large N analysis [35].

2. QY model: SO(N +2)/[SO(N) ® SO(2)]
Another example of the Einstein-K#hler manifold is the coset manifold SO(N + 2)/[SO(N) ®
SO(2)] called QY. We consider the Kihler potential with homogeneous (N + 2)-dimensional
coordinates:

1
KB, @1 = 5 (@2 4 [9V] 4 (9N 7 4 o2, (5.2.9)
Now, we impose two conditions, identification and O(N) symmetric conditions:
P~ ad’, (i=1,---,N+2), (5.2.10)
(@24 - H(@N)? 4+ (VT2 + (@NF2)2 =, (5.2.11)

on the Kéahler potential. By these condition, the dimensions of target space becomes N, and the
Kahler potential for QV can be rewritten as !

1 T
K[0, 07 = 75 In (1 38+ Zqﬂ@”), (5.2.12)

where & = (@1, .-, ®N).

Hereafter we use rescaled fields (5.2.4). From this Kéhler potential, the K&hler metric and Ricci
tensor are given by

9 = °3
7 1+ X2@3* + $X4@2 52
X' o T (14 X258") = N2 (wi0; + §X2F0107 + 3X20"20 5 )
+ :
(1+ 2235 + i)\4¢’2¢’*2)2
(5.2.13)
R; = NXg;. (5.2.14)

1We choose the same gauge as the one in the next subsection.
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Equation (5.2.14) shows that this manifold is also an Einstein-K&hler manifold with h = N.
Employing the same argument as in the case of the CPY model, we obtain the anomalous
dimension and § function for the coupling constant:

N2

NX 1

Next example shows that there are renormalization group flows which connect CPY and QY
models.

5.2.2 A new model

1. Construction

Again, we consider the Kahler potential with homogeneous (N + 2)-dimensional coordinates:

x

K[®, o' = >3

([ + -+ |@V 2 + [@V T2 4 |9V +2)2), (5.2.17)

As in CPY and Q" models, we identify two points related by
'~ ad’. (i=1,---,N+2) (5.2.18)
Now we deform the O(N) symmetric condition to
b2+ o (V)] + (N2 + (9N F2)? =0, (5.2.19)
where b is an arbitrary complex parameter.

(a) b =0 case:
The deformed condition (5.2.19) is rewritten as

(@NTH2 L (N+H)2 = 0, (5.2.20)

We fixed @V+1 and ®V+2 by using the two conditions (5.2.18) and (5.2.19) as follows:

1
oL = 5.2.21
7 (5221)
Ntz = oyl 5.2.22
v (5-222)
Substituting these values for the Kéhler potential (5.2.17), we obtain the K&hler potential
of CPN:
1
K[®, &t = 12+ |BH2 + -+ [N)?). (5.2.23)

Thus, the target space is double cover of CPY located at ®V+2 = i\/ié. This target manifold
has isometry SU(N + 1).
(b) b # 0 case:

Using the two conditions, we can choose a gauge

PN L ipN+2 = /o, (5.2.24)
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and

PN+ _ jpN+2 — ((@1)2 N (q)N)Q), (5.2.25)

Sl

Then, the Kéahler potential is rewritten

1 b2 L,
K[®,2] = 15 1n (1+|<1>1|2+---+|<1>N|2+%|Z(q>1)2| )

i=1

(5.2.26)

If we take |b| = 1, this Kihler potential is equal to that of @ model. Thus for this special
value of b, the target manifold has isometry SO(N + 2).

(¢) b= o0 case:
The O(N) symmetric condition reduces to

(@)% + -+ (V)2 =0. (5.2.27)

The remaining fields ®N+! and ®N*2 can take arbitrary values. Using the identification
condition, we can fix

N 4o = V2. (5.2.28)
Then we obtain the Kéahler potential as follow:
K[®, ®T]
N—2

3 @),

i=1

1
= ﬁln (1+|<I>1|2+..._|_|@N72|2+|¢N+1|2+|¢N+2|2+

A~ =

(5.2.29)

2. Strong-weak duality

We have very interesting duality for N = 2. For b = 0, the target space is the double cover of
CP?2. For |b| = 1, the target space is @2, which is isomorphic to CP!x CP!.

For b = o0, if we choose

1 1
Pl = —, P? =+ —, 5.2.30
7 7 ( )
the Kéhler potential (5.2.29) reads
1
K[®, &t = 1z 4+ |®32 + |D*)2), (5.2.31)

which is the Kahler potential of CP2. Therefore, the target space is again the double cover of
CP?, and coincides with that of b = 0 case exactly.

Let us replace the coordinates ®!, ®2 with ®3, ®* in the constraint (5.2.19). With this operation,
the deformation parameter b is replaced by 1/b

1
5 (5.2.32)
Although the K&hler potential (5.2.26) for N = 2 has completely different form for the defor-
mation parameter b and 1/b, these two theories are equivalent. Thus, this model for N = 2 has
strong-weak duality. The strong coupling region of the new model with (5.2.26) corresponds to
the weak coupling region of the dual model. At the self-dual point |b] = 1, we have a model on
Q% ~ CP'x CP'. At b =0, 0o, the target space of this theory is the double cover of CP2.

b
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3. Renormalization group flow

Now, we will see the renormalization group flow for general value of b. We use the Kéahler potential
1 - = —o =
K[®, @1 = 75 1n (1 B+ gq>2<1>f2>, (5.2.33)

where g = % in eq.(5.2.26). This Kéhler potential gives the following K&hler metric and Ricci

tensor:
o 0ij
T TENEE + N
+4g(t)/\2<pi<p*j(1 + N@G*) — N (0fp; + 29(0) N2 B2 0f ™ + 29(H) N 320 ;)
(14 X2@3* + g(t) X1 G2 5*2)? ’
4g(t)N20;5
Rj = (N+1)Xg; - ”

1+ 4g(t)\2G@* + g(t) A1 5> 5+

+

169%()\ '™ 33" — 1692 (N2 07 — 82 (DN (P + §720' ;)
(1 +4g()NF5* + g(H)A'F?F*?)? '
(5.2.34)
Here we use the rescaled fields as before. Note that Eq.(5.2.34) shows that this manifold is not
an Finstein Kéhler manifold unless g takes specific values: g = 0, i.

Substituting these metric and Ricci tensor for eq.(5.1.2), we obtain

/\2
o —m[(N—l- 1) — 4g], (5.2.35)
3
B = —:?[(N +1) +89(2g — 1)] + % (5.2.36)
2
Blg) = %92(49 - 1). (5.2.37)

Figure 5.1 shows renormalization group flow. If we use the perturbation theory, the flow diagram
is reliable only in the vicinity of the origin. Because we do not use the perturbation theory to
derive the § function, our flow diagram is reliable in the entire region. The nontrivial UV fixed
points of the flow are indicated by points A and B. Any points on the g-axis (A = 0) are IR
fixed points. The curve BAE shows the critical line, along which the direction of the flow is
tangential to the line. The lines FBG(g = 0) and CAD(g = 1/4) both represent the renormalized
trajectories. The critical line intersects with the renormalized trajectories at UV fixed points.
We can define the continuum theories by using these UV fixed points. In this sense, NLoMs are
renormalizable in three dimensions, at least in our truncated WRG equation.

The theory has different symmetry at the right- and left-side of the critical line. First, we consider
continuous symmetry. The global symmetry on the renormalized trajectories, FBG(¢g = 0) and
CAD(g = 1/4), is enhanced to G =SU(N + 1) and G =SO(N + 2), respectively. In other region
of the flow diagram, the global symmetry is SO(N)®U(1). The global symmetry is realized man-
ifestly in the right of the critical line BAE. At the left of the critical line, however, the enhanced
global symmetries are spontaneously broken and there are Numbu-Goldstone bosons, although
the SO(N)®U(1) symmetry remains manifest. Next, we consider a discrete transformation

Yt 1, 22) — Pt a1, 72) = V2ot z1, —22),
Tro — :L'/QZ—I’Q. (5238)
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Figure 5.1: Renormalization group flows (The arrows point toward the infrared region.)

The Lagrangian (3.1.5) is invariant under this transformation. This transformation forbids
fermion mass terms, so that it is broken spontaneously at the massive phase. At the right
of the critical line, the fermion is massive and the discrete symmetry is spontaneously broken.
At the left of the critical line, the discrete symmetry protects the fermion to be massless, and
the supersymmetry keeps the bosons also massless [40].

5.3 The SU(N) symmetric solution of WRG equation

In this section, we investigate the conformal field theories defined as the fixed point of the § function

1 P 1 oL
B = 55Rg+ V| g0+ 0 g5 + 205 + 5 |95 + 9951
=0 (5.3.1)

To simplify, we assume SU(NN) symmetric Kahler potential
K@, o1 = Y gu(®- 01" = f(x), (5.3.2)

where the chiral superfields ® have N components, g, plays the role of the coupling constant and
r = ®- ®f. Using the function f(x), we derive the Kihler metric and Ricci tensor as follow:

95 = O05K[®, 0T = f'5;5+ ["¢ie;,
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Rij = —8i83tr In 9i5
f'// 2fl/+f///x
Sl (ORI o el O
(3) 112 3 (3) (4) 9 ",.\2
—[(N—1) U 3 e @2 f x)} tos,
f// (f/)2 f/ + f//x (f/ + f//x)Q
(5.3.3)
where
daf
fl==. (5.3.4)
dx
To normalize the kinetic term, we set

We substitute these metric and Ricci tensor for the 3 function (5.3.1) and compare the coefficients of
d;7 and ¢'p™/ respectively.

2, _ 1 f" 2f" + f"x / 7 "

5wl = Q—WQ[(N— D+ W} —2y(f + f'z) = [z, (5.3.6)

9 ., 1 f® (f")2 3fB) 4 @y (2f" + )2

Ef = ﬁ[(N_ 1)< f o (f')2> + fr+ fz - (f' + frz)? }
_27(2f//+fm$) o (f'"x—l—f"). (5.3.7)

The second equation (5.3.7) is equivalent to the derivative of the first equation with respect to x, so
that we use only the first equation.
To obtain a conformal field theory, we must solve the differential equation
8 , 1 f// 2f// + f///m
—fl= = |(N = 1)+ = = 29(f "z) — 'z =0. 5.3.8
The function f(x) is a polynomial of infinite degree, and it is hard to solve it analytically. So we
truncate the function f(x) at order O(x?). From the normalization (5.3.5), the function f(z) is

f(x) =z + g2a® + gsz® + gaa™. (5.3.9)

We substitute it for WRG eq.(5.3.6) and expand it around x ~ 0, then the equation (5.3.8) can be
written

g, 1 2
D1 = e [2N 4 Dot (6(V +2)g5 — 4N +3)63)
—(18(N +7)g295 — 8(N +7)g3 — 12(N + 2)94)332}

—2y(1 + 4gox + 9932°) — (2927 + 6g32”) + O(2°)

= 0. (5.3.10)
We choose the coupling constants and the anomalous dimension, which satisfy this equation.
N +1
= 3.1
v 57 92 (5.3.11)
2(3N +5) 4 2m?
= ) 5.3.12
93 sV +2) 2 T3 (5:3.12)
_ 3 C2(N+T) 4 n 2
g4 = 99293 3(N+3)92 N+393
1
= 16N2 + 66N + 62)g3 + 272(6N + 14)g2 + 27 )

(5.3.13)
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Note that all coupling constant is written in terms of g only. Similarly, we can fix all coupling constant
gn using go order by order. The function f(z) with such coupling constants describe the conformal field
theory and has one free parameter go. In other words, if we fix the value of g2, we obtain a conformal
field theory.

5.3.1 The explicit example of the novel conformal field theories

For general go, the power series (5.3.9) is a complicated function. In this subsection, we take a specific
value to go, for which f(x) takes an especially simple form.

We take
1 2x? 1
= ——- = —— 5.3.14
92 2 N+1 2" (5.3.14)
where
272
_ . 5.3.15
N +1 ( )
We can express all other coupling constants from egs.(5.3.12),(5.3.13)
1
gs = §a27
1.
94 = _Zasa
These coupling constants show the function f(z) is
1
f(z) = =In(1 + ax), (5.3.16)

a

and this is the Kihler potential of CPY model. In fact, the function (5.3.16) satisfies the condition
(5.3.8) exactly.

From this discussion, one of the novel SU(NN) symmetric conformal field theory is equal to the UV
fixed point theory of CPYN model for the specific value of g;. In this case, the symmetry of this theory
enhances to SU(N + 1) because the CPY model has the isometry SU(N + 1).



Chapter 6

Other Nonperturbative Analysis

In §.5.1, we found the UV fixed point of some 3-dimensional non-linear sigma models In WRG ap-
proach, it is equivalent to the renormalizability of these models. To derive the WRG equation, we
use the approximation to drop the higher derivative terms with more than three derivatives. However,
eq.(5.1.18) shows the scalar fields is dimensionless around UV fixed point. Then there would be the
possibility that third derivative interaction becomes marginal operator and disturbs the existence of
UV fixed point.

In this chapter, to reconfirm the existence of the UV fixed point, we consider three-dimensional
non-linear sigma model using large-N expansion which is the other nonperturbative method. This
analysis will make clear the phase structure of CPY and Q" models.

6.1 CPY! model

Let’s consider C PV~ model using large-N method. In section 5.2, we show the model has the non-
trivial UV fixed point and the phase transition. This model is also investigated in [35] using large-N
expansion and is found that the § function has no next-to-leading correction.

We introduce the auxiliary field and rewrite the Kéhler potential (5.2.3) as follow:

L = /d‘*e(qﬂcbﬁe"—cV). (6.1.1)
i=1,--,N

Here, V(6,0,z) is U(1) gauge superfield and is defined by dimensional reduction from 4-dimensional
N =1 to 3-dimensions. This gauge superfield is rewritten by the component fields in the Wess-Zumino
gauge as follow:

_ _ j - 1 - 1,
V =0y"0v, — 00M + 5999)\0 + 5909096/\ — ZGGGGD,
where the scalar field M corresponds to the fourth component of 4-dimensional vector field. In order to
make the Lagrangian of order N in the large N limit, we take the coefficient Fayet-Illiopoulous D-term
c = N/g? and keep g? fixed when we take the limit of N — oo.

This model has global SU(N) symmetry coming from the isometry of the target manifold. Fur-
thermore, we assign U(1) charge

@] =1, [®7]=-1. (6.1.2)

The action is invariant under this gauged U(1) symmetry.

41
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The action (6.1.1) is rewritten using the component fields:
L = 0,0 0% + 0t + FIF* — [i(050,0" — 01 8,0™) — Dinbi]ol + v¥'v, 0"t
M2t — Mgl — Dgtigl 4 %D—i— (PDIRE + P ACp) (6.1.3)
Since the gauge field V' or its component fields do not have kinetic term, they are auxiliary field and

do not propagate in the tree approximation. If we eliminate all auxiliary fields using their equation of
motion, we obtain the constraints
S N g2 . 92 . . R .
Pt = o, M = —=—y")*, = —Z_q)tyHa)’, "t = ™Y’ = 0. 6.1.4
Pt =g AL U e =T (6.1.4)

The first equation means fields ¢’ is constrained on the (2N — 1) dimensional sphere S?¥~1. Fur-
thermore, the gauge transformation of gauge field v, eliminate a common phase of ¢’. Thus, the
target manifold reduces to the complex projective space CPV~1. In previous chapters, we used the
Lagrangian written in terms of independent field, obtained by eliminating auxiliary field and dependent
fields by solving the constraints.

To investigate the phase structure, let us calculate the effective potential. The partition function
of this model can be written as

Z= / DY DI py et S Pl (6.1.5)

where the Lagrangian £ is given e‘q.(6.1‘.1). We divide the dynamical field into the vacuum expectation
value and the fluctuation, ¢ = ¢* 4+ ¢ *. The fluctuation field has the constraint

/d?’w'i(x) =0. (6.1.6)
Integrated over the fluctuation field <p/i, we obtain the effective action:
zZ = / DVeiSers,
N yo—1 N N S (02 i
Sepp = —TTrln(VB + AV A+ TTT InVg+ g_2D — @™ (M? + D)@' + (A-dependent terms).
Here,
Vp=D'D,+ (M*+D), Vp=iD,y—M, D,=0,—iv,.

We denote the vacuum expectation values of each auxiliary field as follow:

(M(z)) = My, (D(z)) =Dyp, (the others) = 0.

Then we obtain the effective potential.

% d3k a3k
N = /W hl(kuku + Mg + DQ) — / Wtr ln(—k“’yu — M())
1 _.. w 1
+N<Pz (Mg + Do)@" — g_2D0
1 9 3 1 3 1 9 i1 A 1
=~ Mo+ Dol® + o—[Mol” + = (Mg + Do)|&'[" + (55 — g_2>D0'

1 s 1 | A m
= ——|M2+ Doz + —|My]®? + =(M? + Dy)|¢*|> + —D
67r| o+ 0|2+67r| ol +N( o+ Do)l¢'] + Do
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Here, we use the renormalization group invariant mass m which is given by the renormalized coupling
constant and the renormalization point p as follow:

L N e

2. g2 op2 47’

9r g
47

m = p(l—-—) (6.1.7)
9r

We consider the stationary condition of the effective potential (6.1.7) for two cases Mg + Do > 0
and Mg + Dy < 0 separately:
The case of Mg + Dy >0

1 oV 1 L1 L
A - —2M(—M2 D 5——Mﬁ”2>:,
reaa o(1M8 + Dol — LM ¥IF7) = 0
1 90V 1 1 1, .. m

———— = ——|M2+ Doz + =3+ — =0.

N 9Dy 1 Mo+ Dol* + G o'+ 72 =0

The case of MZ + Dy < 0

1 av 1 L1 "
LoV _ —QM(——M2 D 5——MW”2):0,
o o = oIME + Dolt — Mo
1 oV 1 1 1 . m

_ 2 D 3 ~i(2 =0.
N 9D, 1 Mo + Dol + FI@'1+ o =0

We put (Dg) = 0 to protect supersymmetry at stationary point because we expect supersymmetric
vacuum has the lowest energy. Then we find the following two cases satisfying above stationary
conditions.

1. symmetric phases (|¢|? = 0, My = m)
This phase is SU(N) symmetric and also keeps gauged U(1) symmetry. The N scalar and spinor
fields have mass m because of the vacuum expectation value of M.

From eq.(6.1.4), the field M is meson, which is bound state of fermion and anti-fermion. In fact,
we calculate the two point function of all fields in Appendix.A, and find the field M have twice
mass of the dynamical fields.

2. broken phases (|¢'|* = £ |m|, My = 0)

In this phase, global SU(N) symmetry is broken down to SU(N — 1) and there are N — 1
massless Nambu-Goldstone bosons and their superpartners. Furthermore, gauged U(1) symmetry
is also broken because the dynamical fields, which have U(1) charge, have nonvanishing vacuum
expectation values.

To derive § function, we calculate the next-to-leading correction of the gap equation in symmetric
phase. The g function is determined by the UV behavior and it is same in both phases. We summarize
the Feynmann rule in symmetric phase in Appendix A. In this notation, only the propagators of
auxiliary field have the factor 1/N.

The gap equation is given by equation of motion of the auxiliary field D.

N d*p i i

- = | —= **(0)). 6.1.8

== | Gt e o) (618)
In the leading order of 1/N, the gap equation is written as follow:

N Bp  iN
7 G (o1

—m?2
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We renormalize the coupling constant to absorb the divergence using UV cutoff and obtain the leading
order § function of 1/N expansion.

1 1

_ 1 s 1 1.1
B(9r) S IRt 59R (6.1.10)

We calculate the next-to-leading Feynman diagrams, shown Fig.6.1, and find the next-to-leading
correction of § function vanishes.
Finally, let’s compare the result with the WRG result of CPV ! case:

N

1
_ 3, &
BA) = 47T2>\ + 2/\. (6.1.11)

We define the ’t Hooft coupling g2 = N2, and find both 3 functions are same. This 3 function is

shown in Fig.6.2. From the eq.(6.1.7), the region where the coupling constant is smaller than the
critical point g. corresponds to broken phase.

-=u g
I, \ *

©* & ' @
Py £3”
Soi —_ - _'Soisoi___ __QOi
,ll)’b
S;i - soz

Figure 6.1: The Feynman diagrams contributing to the next-to-leading order correction of ¢ propagator

The symmetric phase

1 2 3 4 5 6

go g

The broken phas

Figure 6.2: The 8 function of the coupling constant g.

6.2 QY2 model

Similarly to CPY~! model, let’s consider Q2 model using large-N expansion. The 3 function given
by the WRG approach is rewritten using 't Hooft coupling as follow:

N-2, 1
ﬁ()\) - A2 A +§)‘7

3
g 2 1

———(1— =)+ —g. 2.1
4%2( N) 29 (6.2.1)

4
=
&

I
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This result shows this model has the next-to-leading correction of § function in 1/N expansion.
Let’s consider Q=2 model by using large-N expansion. This model has two constraints eq.(5.2.10)
and eq.(5.2.11), then we introduce the two kinds of auxiliary fields as follow:

L= / d*9(@'dteY — V) + %( / 20D, " + / d2éq>$q>“q>“), (6.2.2)

where V (0,0, ) is U(1) gauge superfield and ®, <I>:g are chiral- and antichiral- superfields respectively.
Components of the new auxiliary field ®g is defined by
Qo(y) = Aoly) + V2005(y) + 69F(y)
The action in terms of component fields is given by
L = 00" + 0"y + F'F — [i(0*80,0" — ¢' 00" ) — 'y’ |o" + vhv,p* !
—M2p¥ig — M — Dot + EQD_’_(QPid_)i)\c_’_w*i)\cwi)
+§%¢¢+F*““)(%w¢+ww6ﬂ

—l—Ao((piFi _ 5";621#1) 4 AS(@*iF*i _ E@iwci)- (6.2.3)

Similarly to CPN~! case, integrate out the fluctuation field and put the vacuum expectation values
as follows:

(M(z)) = Mo, (D(x))= Do,
(Fo(z)) = Fo, (Ao(x))= Ay, (the others) =0.

Then we obtain the effective potential.

\%4 d3k u 2 9 9 d3k B )
N = | @ In(k, k" + Mg + Do + [Ao|* — [Fo|*) — (2w)3trln(—k v — Mo — | Ag|?)
A i 1 i, 1 * k1 *z
T ? (Mg + Do+ Ao A5)¢" gzDo—ﬁ(Fww + Foe™e™)
11 ; ,
= _§5{|M3+D0+|A0|2+|F0||3+|M§+Do+|A0|2—|FO||§}
11 11
+— |[Mo + | Ao|* + [Mo — |Ao|[*| = (= — 55A)D
g [ Mo+ A0l + 1Mo = [A0]*] = (=5 = M)y
1 . . R
+N(Mg<p*’tso7,_’_ASAOsD*isDi_’_DO(p*’L(p’L _ §(F0¢1¢1+F* *’L *’L))’
11
=~ [1M3 + Do+ |46 + [FollE + M3 + Do+ Ao — |FollF]
11 m
o (1Mo + [ Aol P + Mo — |AoI*] + 12D

+N(M2 MSO?""AEF)AOSOHSOz"'DO(PM(Pz _ §(F0<P1<P1+Fo*<,0“<p”))

We use the same renormalization of coupling constant and the same invariant mass as CPN~! case.
If we eliminate auxiliary fields using their equation of motion, we obtain the constraint eqs.(6.1.4) and
following equations.

2 2
TR - IR R Sy _ 9 geii 9 giei
Pt =TT =0, Pt =Tt =0, A= —opvtYt g S v (6.2.4)
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Now we obtain the stationary conditions of the effective potential. If the all contents of absolute
value are positive, the stationary points satisfy the following equations.

1 0V 1 . X
NoM, — =M [[M} + M3 + Dy} + |MP + M + Dol +2v2]0y |
1
+NM1(<P%+30§)=0
o = — M [|M3 + M3+ Dt + M + ME + Dol +2VE| |
NaMg 41 1 2 1 2
1
+WM2(<P§ +¢3)=0
10V 1 . m 1
- o - M2 M2 D 3 M2 M2 D im L 2 2 _
N 0D 871'[| i+ My + Di|? + |My + My + D, 87T+2N(g01+302) 0
1 8V 1 —2i0 2 2 1 — 920 2 9 1 1 o
_ = —_— M M D 2 7 M M D 2:| ot 7,:
N 0Fy 1677{6 |M{ + M3 + Dh|? — e ™[ My + M + Do o =0
1 0V 1T 90,2 2 1 20 7 12 2 1 1 o
—_ — |20\ M D+l2 — 2 \r M. D }__ #i ki _
N OFy 1677{6 |Mi + M3 + Di[? — ™| Mi + My + Dao|2| — 5=¢™e™ =0

where we defined new parameters as follow:

‘ 1 1
Fy = |Fy|e®®, —(M+|Ao|) =M, —=(M—|Ay])= My,
0 | Fol \/5( |4o]) 1 \/5( |Ao]) 2
o 1 _
D—|F| = Di, D+|FR|=Ds ¢'e’=—=(p1+ips)

S

Then we find three kinds of phases.

1. Chern-Simons phases
The case of My = m, |Ag| = 0, |m? + Dy|z = o2, Im? + Dylz = 402 +m.
In this phase, both global SO(N) and gauged U (1) symmetries are preserved. N dynamical scalar
and spinor fields obtain same masses m due to the vacuum expectation value of M. Similarly
to CPN~1 case, the auxiliary fields have twice masses of the dynamical fields. The auxiliary
field with the vacuum expectation value M corresponds to the bound state of the fermion and
anti-fermion.

The gauge field parts of the effective action have the Chern-Simons interaction term in this phase.
d3p 1 N . "
NSesy~ / P Ev”(—p)ﬂ(ﬁmw — Pupy — 2mie€ ,p°)I(p)vt, (6.2.5)

where,

)= —YF (6.2.6)

2. Higgs phases
The case of My = 0, |Ao| = m, |m?+ Dy|z = e?, Im? + Dylz = L2 +m.
In this phase, global SO(N) symmetry is protected and N dynamical fields have masses due
to the vacuum expectation value of Ag. However gauged U(1) symmetry is broken because the
superfields ®(, which has U(1) charge, has nonvanishing vacuum expectation value.
The auxiliary field Ay has the nonvanishing vacuum expectation value. The gauge bosons acquire

masses through the Higgs mechanism and the imaginary part of Ag is removed from the theory.
From eq. of motion for Ay, we find the fields A§ corresponds to the pair of fermion and fermion:

92 — . .
Ay = it (6.2.7)
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3. broken phases
The case of My = 0, |Ag| = 0, |D;|z = L2 +m, |Dy|2 = L2 +m.
In this phase, both global SO(N) and gauged U(1) symmetries are broken. There are N — 2

massless Nambu-Goldstone bosons and their superpartners.

From now on, we calculate the § function in Chern-Simon phase.
Similarly to C PV~1 model, the gap equation is given by

3
N / (;lT’;gwl‘(p)wi(o». (6.2.8)

g2

The gap equation of the leading order of 1/N expansion is

N _/ d®p iN (6.2.9)
# ) Cor o *
Then the § function of the coupling constant is given by
Blon) =~ =0k + 5 (6:2.10)
dr) = 87TgR 291%- -4
Blg)
0 The Chern-Simons and Higgs phases
1 2 3 4 5 6
9o g
0.5

"' The broken phas

Figure 6.3: The 8 function of the coupling constant g.

In the next-to-leading order of 1/N, we calculate eight Feynmann diagrams in Fig.6.4. We introduce
the UV cutoff A then the gap equation is given by

1 1 m 2 m
7 = ga((h-gm - - F2m)
-~ %(1_%)_%(1_%). (6:2.11)

In three dimensional @~ =2 model, the coupling constant g has the canonical dimension % Then the

£ function of such coupling constant depends on the subtraction of finite quantity [36]. We define the
renormalized coupling constant gr by

1 2 A—p I
(1= 2_ £ 2,12
g2 ( N) 272 g%’ (6 )
and obtain the next-to-leading order 3 function.
1 1 2. .
— T 1— 2943 2.1
B=59r— 51— 5)or (6.2.13)

This § function coincides with the WRG result and is shown in Fig.6.3.
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Figure 6.4:
tor

CHAPTER 6. OTHER NONPERTURBATIVE ANALYSIS

The Feynmann diagrams contributing to the next-to-leading order correction of ¢ propage-



Chapter 7

Conclusion

We discussed the lower dimensional supersymmetric nonlinear sigma model by means of nonperturba-
tive method. In particular, we used the Wilsonian renormalization group method.

First, we derived the Wilsonian renormalization group flow equation for 2- and 3-dimensional N = 2
supersymmetric nonlinear sigma models. From the point of view of Wilsonian renormalization group
this model corresponds to the next-to-leading order approximation of derivative expansion for scalar
fields. In general, we must consider both the local potential term and the nonlinear sigma model term
in the next-to-leading order approximation. By imposing N/ = 2 supersymmetry, we can safely drop
the local potential term. The 3 function of the target metric consists of the part from one-loop diagram
and the part of field rescaling.

Next, we constructed the fixed point theory of the WRG equation. To find the conformal field theory,
we have assumed U(N) symmetry to reduce the coupled partial differential equations to an ordinary
differential equation. The new class of conformal field theories have one parameter, a, corresponding
to the anomalous dimension of the scalar field. These conformal field theories are well behaved for
positive a, while they have curvature singularities at the boundary for a < 0. We obtained the
Lagrangian explicitly for N = 1. The target space in this case is a semi-infinite cigar, with one
dimension compactified to a circle. This theory has been discussed in another context by Witten as a
model of a two-dimensional black hole [15], and it was subsequently generalized by Kiritsis, Kounnas
and Lust to bescribe consistent backgrounds of superstrings in the presence of a dilaton [38]. Their
nonvanishing dilaton field assigns the same Weyl transformation law as our nonvanishing anomalous
dimension for the target coordinates.

Third, we considered three dimensional nonlinear sigma model within WRG approach. The model
is nonrenormalizable in perturbative theory.

We examined the sigma models whose target spaces are the Einstein-Kéhler manifolds. We have
shown that the theories whose target spaces are compact Einstein-Kéhler manifolds with positive
scalar curvature have two fixed points. One of them is the Gaussian IR fixed point and the other is the
nontrivial UV fixed point. We can define the continuum limit at this UV fixed point by the fine-tuning
of the bare coupling constant. In this sense, NLocMs on Einstein-K&hler manifolds with positive scalar
curvature are renormalizable in three dimensions. At this point, the scaling dimension of all superfields
is zero, as in the two dimensional theories. On the other hand, the theories whose target spaces are
Einstein-Kihler manifolds with negative scalar curvature (for example D? with the Poincaré metric)
have only an Gaussian IR fixed point, and cannot have a continuum limit.

We also studied a new model with two parameters, whose target space is not an Einstein-Kahler
manifold. This theory has two nontrivial fixed points, corresponding to the UV fixed points of the CPYN
and @Y models. In the theory spaces of this model, there are a critical surface and two renormalized
trajectories, and the theory has four phases. We have also shown that the model possesses strong-weak
duality for N = 2. In order to study the phase structure, we have to introduce the auxiliary fields [44].
This is left for future work.
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We constructed a class of the SU(NN) symmetric conformal field theory using the WRG equation.
This class has one free parameter, go, corresponding to the anomalous dimension of the scalar fields.
If we choose a specific value of this parameter, we recover the conformal field theory defined at the UV
fixed point of the CPY model and the symmetry is enhanced to SU(N + 1).

Finally, we discussed the three dimensional nonlinear sigma model by using another nonperturbative
method, large-N expansion. We investevated C PV =1 and Q=2 model and found that the 3 function
in the next-to-leading order coincides with the WRG result. We also studied the phase structure
of both model. The CPN~! model has two phases; SU(N) symmetric massive and SU(N) broken
massless phases. On the other hand, the @V =2 model has three phases; Chern-Simons, Higgs and
SO(N) broken phases. The global SO(N) symmetry remains unbroken in both Chern-Simons and
Higgs phases, while the gauged U(1) symmetry is broken in Higgs phase.

As a conclusion, we investigated the supersymmetric nonlinear sigma model and found that the
WRG analysis is very powerful to reveal various nonperturbative aspects of field theories in two- and
three-dimensions.



Appendix A

The Feynmann rules

We give the Feynmann rules of CPN~1 and QV~2 models in symmetric phase.

The CPY~! model
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Figure A.1: The Feynman rules of CP™V~! model in Minkowski spaces

Here,
Dy = W I
D = %pig _14m2[—inu,u+(1+a+4n;§a)ipgf” 2m€;§wk]](p2)’
Dp = %I(PQ)»
D = o 0R)
I(p) = v

arctan( Z—ff)
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The QY2 model
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Figure A.2: The Feynman rule of Q=2 model in Minkowski spaces. We show only the parts which
are concerned the next-to-leading correction of " propagator.

Here,
47 1 9
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4 1 Am2o ip,p 2me ap”
D L, = I P y 1 |24 124 I 2
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