

Title	On integral basis of algebraic function fields with several variables
Author(s)	Nobusawa, Nobuo
Citation	Osaka Mathematical Journal. 1959, 11(1), p. 63-69
Version Type	VoR
URL	https://doi.org/10.18910/5371
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nobusawa, Nobuo
Osaka Math. J.
11 (1959), 63-69.

***On Integral Basis of Algebraic Function Fields
with Several Variables***

By Nobuo NOBUSAWA

Let K be an algebraic function field with two variables and w a discrete valuation of rank 2 of K . Let L be a finite extension of K and w_1, w_2, \dots, w_g all the extensions of w in L . We denote the valuation rings of w in K and of w_i in L by \mathfrak{o}_0 and \mathfrak{o}_i . It is clear that $\mathfrak{o} = \bigcap_{i=1}^g \mathfrak{o}_i$ is the integral closure of \mathfrak{o}_0 in L . The structure of \mathfrak{o} as an \mathfrak{o}_0 -module will be determined in this paper. Let $(e_1^{(i)}, e_2^{(i)})$ be the value of ramification of w_i : $w_i(a) = (e_1^{(i)}, e_2^{(i)})w(a)$ for $a \in K$.¹⁾ The main theorem given in this paper is that \mathfrak{o} is a direct sum of $n_0 (= \sum_i e_1^{(i)} f_i)$ \mathfrak{o}_0 -modules of rank 1 and of $n - n_0$ \mathfrak{o}_0 -modules of infinite rank where $n = [L : K]$. From this we can easily conclude that L/K has integral basis with respect to w in the classical sense when and only when $e_2^{(i)} = 1$ for every i .²⁾ In order to get the theorem, some lemmas on the independence of valuations of rank 2 will be required, which are proved generalizing naturally the well-known proofs in case of rank 1. Then we construct concretely n linearly independent basis of L/K which are a generalization of the classical integral basis, having the following property: If u_1, u_2, \dots, u_n are those generalized integral basis and $\sum c_i u_i \in \mathfrak{o}$ with c_i in K , then $c_i u_i \in \mathfrak{o}$ for each i .

The above mentioned results will be inductively generalized in general case. Let K be an algebraic function field with several variables and w a discrete valuation of K . Let L be a finite extension of K . We must assume that there holds a fundamental equality with respect to the extensions of w in L : $\sum_i e_i f_i = n$ where e_i are the ramification indices of w_i and f_i are the relative degrees of w_i . This equality holds when $\text{rank } w + \dim w = n$. (See Roquette [4], p. 43. Second Criterion.) In this case the main theorem is proved to be true, although we do not discuss the general case in this paper.

1) We express $w_i(a)$ and $w(a)$ in the normal exponential form and the order of value group will be determined by the last non-zero difference of components (contrary to the usual sense. [5]).

2) For the definition of integral basis, see [1].

1. Lemmas on valuations.³⁾

Let us denote a discrete valuation w of rank 2 of a field K in the normal exponential form :

$$w(a) = (\alpha_1, \alpha_2) \quad \text{for non zero elements } a \text{ of } K,$$

where α_i range over all rational integers. The order of the value group is defined such as $(\alpha_1, \alpha_2) \succ (\beta_1, \beta_2)$ if $\alpha_2 \succ \beta_2$ or if $\alpha_2 = \beta_2$ and $\alpha_1 \succ \beta_1$. From this valuation w , we get a valuation $w^{(2)}$ of rank 1 putting $w^{(2)}(a) = \alpha_2$.

Let v_1, v_2, \dots, v_n be a set of discrete valuations of rank 1 and of rank 2 satisfying the next condition :

$$(A) \quad \begin{cases} \text{i) if both } v_i \text{ and } v_j \text{ are of rank 1, then } v_i \neq v_j, \\ \text{ii) if } v_i \text{ is of rank 1 and } v_j \text{ of rank 2, then } v_i \neq v_j^{(2)}, \\ \text{iii) if both } v_i \text{ and } v_j \text{ are of rank 2, then } v_i \neq v_j \text{ and } v_i^{(2)} = v_j^{(2)}. \end{cases}$$

Lemma 1. *Let v_1, v_2, \dots, v_n be a set of discrete valuations of rank 1 and of rank 2 satisfying (A) and let \mathfrak{o}_i be the valuation rings of v_i . Then $\mathfrak{o}_i \not\subseteq \mathfrak{o}_j$ for $i \neq j$.*

Proof. When one of v_i and v_j is of rank 1, Lemma 1 is clear from the theory of valuations of rank 1 by (A) i) and ii). For, there exists an element a such that $v_i^{(1)}(a) = \alpha$ and $v_j^{(1)}(a) = \beta$ for any rational integers α and β . Here we denote, by $v_i^{(1)}, v_i^{(2)}$ when v_i is of rank 2 and v_i when v_i is of rank 1. Next suppose both v_i and v_j are of rank 2. Put $\mathfrak{o}'_i = \{a \in K | v_i(a) = (\alpha, 0), \alpha \geq 0\}$ and $\mathfrak{p}'_i = \{b \in K | v_i(b) = (\beta, 0), \beta > 0\}$. If $\mathfrak{o}'_i \subseteq \mathfrak{o}'_j$, we have $\mathfrak{o}'_i \subseteq \mathfrak{o}'_j$ by (A) iii), and $\mathfrak{p}'_i = \mathfrak{o}'_i \cap \mathfrak{p}'_j$, since $\mathfrak{o}'_i \cap \mathfrak{p}'_j$ is a proper prime ideal of the semi-group \mathfrak{o}'_i ⁴⁾ and \mathfrak{p}'_i is the unique proper prime ideal of \mathfrak{o}'_i . If c is an element such that $v_i(c) = (\gamma, 0)$ with $\gamma < 0$, then $c^{-1} \in \mathfrak{p}'_i$ and hence $c^{-1} \in \mathfrak{p}'_j$. Therefore $v_j(c) = (\delta, 0)$ with $\delta < 0$, which implies $\mathfrak{o}'_i \supseteq \mathfrak{o}'_j$, and hence $\mathfrak{o}'_i = \mathfrak{o}'_j$ by (A) iii), that is, $v_i = v_j$.

Lemma 2. *Let v_1, v_2, \dots, v_n be a set of discrete valuations satisfying (A). Then there exists an element x such that*

$$v_1(1-x) > 0, \quad v_2(x) > 0, \dots, v_n(x) > 0.$$

Proof. We shall prove Lemma 2 by induction. First assume $n=2$. By Lemma 1 there exists an element a such that $v_1(a) \geq 0$ and $v_2(a) < 0$.

3) The proofs in this paper are, as stated in the introduction, generalizations of the classical ones and we shall follow [3] for this purpose.

4) If we put $\mathfrak{g}_i = \{a \in K | v_i^{(2)}(a) = 0\}$, then $\mathfrak{g}_i = \mathfrak{g}_j$ by (A) iii) and $\mathfrak{g}_i = \{\mathfrak{o}'_i, \mathfrak{o}'_i^{-1}\}$. Then $\mathfrak{o}'_i \cap \mathfrak{p}'_j = \emptyset$ implies that $\{\mathfrak{o}'_i, \mathfrak{o}'_i^{-1}\} \cap \mathfrak{p}'_j = \emptyset$ which is a contradiction.

Put $x_1=1/a$ if $v_1(a)=0$ and $x_1=1/(1+a)$ if $v_1(a)>0$. Then $v_1(x_1)=0$ and $v_2(x_1)>0$. Similarly there exists x_2 such that $v_1(x_2)>0$ and $v_2(x_2)=0$. $x=x_1/(x_1+x_2)$ is then a required element. Assume that Lemma 2 is true for $n-1$, and there exist x_1 and x_2 such that

$$v_1(1-x_1) > 0, \quad v_3(x_1) > 0, \quad v_4(x_1) > 0, \dots, v_n(x_1) > 0,$$

and

$$v_1(1-x_2) > 0, \quad v_2(x_2) > 0, \quad v_4(x_2) > 0, \dots, v_n(x_2) > 0.$$

Then it is easy to show the following element x is a required one :

- 1) $x = x_1 x_2$ if $v_2(x_1) \geq 0$ and $v_3(x_2) \geq 0$,
- 2) $x = x_1/(1+x_1(1-x_1))$ if $v_2(x_1) < 0$,
- 3) $x = x_2/(1+x_2(1-x_2))$ if $v_2(x_1) \geq 0$ and $v_3(x_2) < 0$.

Lemma 3. *Let w_1, w_2, \dots, w_g be g distinct discrete valuations of rank 2 of K . If $w_1(a)=0$ with some element a , then there exists an element a' such that $w_1(a-a')>0, w_2(a')>0, \dots, w_g(a')>0$.*

Proof. We may assume that $w_1^{(2)}=w_2^{(2)}=\dots=w_i^{(2)}$ and $w_1^{(2)} \neq w_{i+1}^{(2)}$ for $j \geq 1$. All the distinct valuations in $w_1, \dots, w_i, w_{i+1}^{(2)}, \dots, w_g^{(2)}$ will be denoted $v_1 (= w_1), v_2, \dots, v_n$. Then v_1, v_2, \dots, v_n satisfy (A) and hence there exists an element x by Lemma 2 such that $v_1(1-x)>0, v_2(x)>0, \dots, v_n(x)>0$. Put $a'=ax^m$ with a sufficiently large number m . Then we have

$$v_1(a-a') = v_1(a) + v_1(1-x^m) \geq v_1(1-x) > 0$$

and

$$v_k(a') = v_k(a) + mv_k(x) \quad \text{for } k \neq 1.$$

When v_k is of rank 1, $v_k(a) + mv_k(x) > 0$ with a sufficiently large number m . When v_k is of rank 2, $v_k^{(2)}(a) = v_1^{(2)}(a) = 0$, and hence we have also $v_k(a') > 0$ with a sufficiently large number m .

Lemma 4. *When v_1, v_2, \dots, v_n are a set of discrete valuations satisfying (A), there exist x_i for every i such that*

$$v_i(x_i) = \begin{cases} 1 & \text{if } v_i \text{ is of rank 1,} \\ (1, 0) & \text{if } v_i \text{ is of rank 2,} \end{cases}$$

$$v_j(x_i) = 0 \quad \text{for } j \neq i.$$

Proof. We may prove the existence of x_1 . If v_1 is of rank 1, we choose an element a such that $v_1(a)=1$ and $v_i^{(2)}(a)=0$ for $i \neq 1$. This can be done by the theory of valuations of rank 1. If v_1 is of rank 2, we choose an element a with $v_1(a)=(1, 0)$, when it is seen $v_i^{(2)}(a)=0$ with v_i of rank 2. Let x be an element in Lemma 2 and put

$$x_1 = ax^m + (x-1)^m$$

with a sufficiently large natural number m . Then

$$v_i(x_1) = v_i(ax^m + (x-1)^m) = v_i(ax^m) = v_i(a) + mv_i(x) = v_i(a),$$

and

$$v_i(x_1) = v_i(ax^m + (x-1)^m) = v_i((x-1)^m) = 0,$$

since $v_i(ax^m) = v_i(a) + mv_i(x) > 0$ with sufficiently large m .

Lemma 5. *Let v_1, v_2, \dots, v_n be a set of discrete valuations satisfying (A) and let α_i be any rational integers. Then there exists an element x such that*

$$v_i(x) = \begin{cases} \alpha_i & \text{if } v_i \text{ is of rank 1,} \\ (\alpha_i, 0) & \text{if } v_i \text{ is of rank 2.} \end{cases}$$

Proof. We may put $x = \prod x_i^{\alpha_i}$ with x_i in Lemma 4.

Lemma 6. *Let w_1, w_2, \dots, w_g be g distinct discrete valuations of rank 2. When l, m and l' are any rational integers, there exist such elements $x_{i,m}^{(i)}$ for every i that $w_i(x_{i,m}^{(i)}) = (l, m)$ and $w_j(x_{i,m}^{(i)}) \geq (l', m)$ for $j \neq i$.*

Proof. We may prove Lemma 6 for $i=1$. We define v_1, v_2, \dots, v_n from w_1, w_2, \dots, w_g as in Lemma 3. Assume that v_1, v_2, \dots, v_i are of rank 2 and that v_{i+1}, \dots, v_n are of rank 1. Then there exists an element a such that $v_1^{(2)}(a) = \dots = v_i^{(2)}(a) = m$ and $v_{i+j}^{(2)}(a) > m$ for $j \geq 1$. When $v_k(a) = (\alpha_k, m)$ for $1 \leq k \leq i$, put $\beta_1 = l - \alpha_1$ and $\beta_k > l' - \alpha_k$ for $2 \leq k \leq i$. By Lemma 5 we can choose an element b such that $v_k(b) = (\beta_k, 0)$ for $1 \leq k \leq i$ and $v_{i+j}(b) \geq 0$ for $j \geq 1$. $x_{i,m}^{(1)} = ab$ is a required element.

2. The structure of \mathfrak{o} .

Let K be an algebraic function field with two variables and w a discrete valuation of rank 2 of K . We denote the valuation ring and the valuation ideal of w by \mathfrak{o}_0 and \mathfrak{p}_0 . Let L be a finite extension of K and w_1, w_2, \dots, w_g all the extensions of w in L . We denote the valuation rings and the valuation ideals of w_i by \mathfrak{o}_i and \mathfrak{p}_i . Let $(e_1^{(i)}, e_2^{(i)})$ be defined such as $w_i(a) = (e_1^{(i)}, e_2^{(i)})w(a)$ for $a \in K$. $e_i = e_1^{(i)}e_2^{(i)}$ is the ramification index. $f_i = [\mathfrak{o}_i/\mathfrak{p}_i : \mathfrak{o}_0/\mathfrak{p}_0]$ is the relative degree of w_i . Then $\sum_{i=1}^g e_i f_i = [L : K]$ by Roquette [4]. Let $\bar{t}_{i,j}$ ($j = 1, 2, \dots, f_i$) be $\mathfrak{o}_0/\mathfrak{p}_0$ -basis of $\mathfrak{o}_i/\mathfrak{p}_i$ and let $t_{i,j}$ be representatives of $\bar{t}_{i,j}$ chosen by Lemma 3 such as

$$(1) \quad w_k(t_{i,j}) \geq 0 \quad \text{for every } k.$$

By lemma 6 we can choose $x_{im}^{(i)}$ such that

$$(2) \quad w_i(x_{im}^{(i)}) = (l, m) \text{ and } w_j(x_{im}^{(i)}) \geq (e_1^{(j)}, m) \text{ for } j \neq i,$$

where $l=0, 1, \dots, e_1^{(i)}-1$ and $m=0, 1, \dots, e_2^{(i)}-1$.

Lemma 7. *If $a = \sum_{i,j,l,m} c_{ijlm} t_{ij} x_{im}^{(i)}$ with $c_{ijlm} \in K$ such that $w_i^{(2)}(a) \geq e_2^{(i)}$ for every i and $w^{(2)}(c_{ijlm}) \geq 0$, then $w^{(2)}(c_{ijlm}) > 0$.*

Proof. Assume that $w^{(2)}(c_{ijlm}) = 0$ for some c_{ijlm} and put

$$(3) \quad b = \sum'_{i,j,l,m} c_{ijlm} t_{ij} x_{im}^{(i)}$$

where \sum' denotes the sum of all c_{ijlm} such that $w^{(2)}(c_{ijlm}) = 0$. It is clear $w_i^{(2)}(b) \geq e_2^{(i)}$ for every i . Let m_0 be the smallest of m with $c_{ijlm} \neq 0$ in (3), and let $c = c_{i_0 j_0 l_0 m_0}$ be one of c_{ijlm_0} having the smallest value with respect to w . Then

$$bc^{-1} = \sum_{\substack{m \geq m_0 \\ i, j, l}} b_{ijlm} t_{ij} x_{im}^{(i)} \text{ with } b_{ijlm} = c_{ijlm} c^{-1},$$

where $w_i^{(2)}(bc^{-1}) \geq e_2^{(i)}$, $b_{ijlm_0} \in \mathfrak{p}_0$ and $b_{i_0 j_0 l_0 m_0} = 1$. We shall show that all $b_{i_0 j_0 l_0 m_0} \in \mathfrak{p}_0$. We have, by (1) and (2),

$$w_{i_0}^{(2)}(b_{ijlm} t_{ij} x_{im}^{(i)}) > m_0 \quad \text{for } m > m_0,$$

and

$$w_{i_0}(b_{ijlm_0} t_{ij} x_{im_0}^{(i)}) \geq (e_1^{(i_0)}, m_0) \quad \text{for } i \neq i_0.$$

Hence

$$(4) \quad w_{i_0}(\sum_{j,l} b_{ijlm_0} t_{ij} x_{im_0}^{(i)}) \geq (e_1^{(i_0)}, m_0).$$

We have also

$$w_{i_0}(b_{i_0 j_0 l_0 m_0} t_{i_0 j_0} x_{i_0 m_0}^{(i_0)}) > (0, m_0) \quad \text{for } l > 0,$$

and hence by (4)

$$w_{i_0}(\sum_j b_{i_0 j_0 m_0} t_{i_0 j_0} x_{i_0 m_0}^{(i_0)}) > (0, m_0),$$

from which we get

$$w_{i_0}(\sum_j b_{i_0 j_0 m_0} t_{i_0 j_0}) > 0,$$

that is, $b_{i_0 j_0 m_0} \in \mathfrak{p}_0$ for all j . Therefore

$$(5) \quad w_{i_0}(b_{i_0 j_0 m_0}) \geq (e_1^{(i_0)}, 0).$$

Next we have, by (1), (2) and (5),

$$w_{i_0}(b_{i_0 j_0 l_0 m_0} t_{i_0 j_0} x_{i_0 m_0}^{(i_0)}) > (1, m_0) \quad \text{for } l \neq 1,$$

and hence, by (4),

$$w_{i_0} \left(\sum_j b_{i_0 j 1 m} t_{i_0 j} x_{1 m_0}^{(i_0)} \right) > (1, m_0),$$

that is,

$$w_{i_0} \left(\sum_j b_{i_0 j 1 m_0} t_{i_0 j} \right) > 0.$$

Thus $b_{i_0 j 1 m_0} \in \mathfrak{p}_0$ for all j . Continuing the same procedure, we get that $b_{i_0 j l m_0} \in \mathfrak{p}_0$ for all j and l . But this contradicts $b_{i_0 j_0 l_0 m_0} = 1 \notin \mathfrak{p}_0$.

Lemma 8. *If $a = \sum_{i, j, l} c_{i j l 0} t_{i j} x_{i 0}^{(i)}$ with $c_{i j l 0} \in K$ is an element of \mathfrak{o} , then all $c_{i j l 0} \in \mathfrak{o}_0$.*

Proof. Assume that $c_{i j l 0} \notin \mathfrak{o}_0$ for some $c_{i j l 0}$. Let $c = c_{i_0 j_0 l_0 0}$ be one of $c_{i j l 0}$ having the smallest value with respect to w . Then by assumption $c \notin \mathfrak{o}_0$ and hence $c^{-1} \in \mathfrak{p}_0$. Then

$$ac^{-1} = \sum_{i, j, l} b_{i j l 0} t_{i j} x_{i 0}^{(i)}$$

with $b_{i j l 0} \in \mathfrak{o}_0$ and $b_{i_0 j_0 l_0 0} = 1$. We have

$$w_{i_0} (ac^{-1}) \geq w_{i_0} (c^{-1}) \geq (e_1^{(i_0)}, 0).$$

As in the proof of Lemma 7, we can show $b_{i_0 j l 0} \in \mathfrak{p}_0$ for all j and l , which is a contradiction.

Theorem 1. *If $a = \sum_{i, j, l, m} c_{i j l m} t_{i j} x_{i m}^{(i)} \in \mathfrak{o}$ with $c_{i j l m} \in K$, then $c_{i j l m} t_{i j} x_{i m}^{(i)} \in \mathfrak{o}$.*

Proof. First we shall prove $w^{(2)}(c_{i j l m}) \geq 0$. Assume on the contrary that $w^{(2)}(c_{i j l m}) < 0$ for some $c_{i j l m}$. Let $c_{i_0 j_0 l_0 m_0} = c$ be one of $c_{i j l m}$ having the smallest value with respect to w . By assumption $c^{-1} \in \mathfrak{p}_0$. Then

$$ac^{-1} = \sum_{i, j, l, m} b_{i j l m} t_{i j} x_{i m}^{(i)}$$

with $b_{i j l m} = c_{i j l m} c^{-1} \in \mathfrak{o}_0$ and $b_{i_0 j_0 l_0 m_0} = 1$, and also $w_i^{(2)}(ac^{-1}) \geq w_i^{(2)}(c^{-1}) \geq e_2^{(i)}$. Then, by Lemma 7, we have $w^{(2)}(b_{i j l m}) > 0$ for all i, j, l and m , which contradicts $b_{i_0 j_0 l_0 m_0} = 1$. Thus we have $c_{i j l m} t_{i j} x_{i m}^{(i)} \in \mathfrak{o}$ for $m > 0$ and for all i, j, l . We may now assume that $a = \sum_{i, j, l} c_{i j l 0} t_{i j} x_{i 0}^{(i)}$. In this case, by Lemma 8, we can say that $c_{i j l 0} \in \mathfrak{o}_0$ and hence $c_{i j l 0} t_{i j} x_{i 0}^{(i)} \in \mathfrak{o}$, which completes the proof.

Corollary 1. *$t_{i j} x_{i m}^{(i)}$ are linearly independent over K .*

Proof. If $0 = \sum c_{i j l m} t_{i j} x_{i m}^{(i)}$, then $c_{i j l m} t_{i j} x_{i m}^{(i)} \in \mathfrak{o}$ by Theorem 1. Since we may suppose that $c_{i j l m}$ take any small values with respect to w , $c_{i j l m} t_{i j} x_{i m}^{(i)} \in \mathfrak{o}$ imply $c_{i j l m} = 0$.

Theorem 2. *If we put $\mathfrak{o}_{ijlm} = \mathfrak{o} \cap \{ct_{ij}x_{lm}^{(i)} \text{ with } c \in K\}$, then $\mathfrak{o} = \sum_{i,j,l,m} \mathfrak{o}_{ijlm}$ (direct).*

Proof. This is a direct consequence of Theorem 1 and Corollary 1.

Corollary 1. *If $e_2^{(i)} = 1$ for every i , then \mathfrak{o} is a finite \mathfrak{o}_0 -module and has a linearly independent basis with respect to \mathfrak{o}_0 .*

Proof. Note $\mathfrak{o}_{ijl0} = \mathfrak{o}_0 t_{ij} x_{lm}^{(i)}$.

Corollary 2. *If $e_2^{(i)} \neq 1$ for some i , then \mathfrak{o} is not a finite \mathfrak{o}_0 -module.*

Proof. It is sufficient to show that \mathfrak{o}_{ijlm} is not a finite \mathfrak{o}_0 -module if $m > 0$. Assume on the contrary that \mathfrak{o}_{ijlm} is a finite \mathfrak{o}_0 -module. Then there exists a minimal value of $w(c)$ where $ct_{ij}x_{lm}^{(i)} \in \mathfrak{o}_{ijlm}$. For, if $c_1 t_{ij} x_{lm}^{(i)}, c_2 t_{ij} x_{lm}^{(i)}, \dots, c_p t_{ij} x_{lm}^{(i)}$ constitute \mathfrak{o}_0 -basis of \mathfrak{o}_{ijlm} , take $w(c) = \min_{1 \leq s \leq p} (w(c_s))$. If it is $w(c_0)$, then $w^{(2)}(c_0) \geq 0$, since

$$w_i(c_0 t_{ij} x_{lm}^{(i)}) = w_i(c_0) + (l, m) \geq 0.$$

Therefore $w_k(c_0 t_{ij} x_{lm}^{(i)}) \geq (\alpha, 1)$ for every k with some integer α , since $m \geq 1$. Let c' be an element of K such that $w(c') = (\alpha', 0)$ with $\alpha' < 0$. Then

$$w_k(c' c_0 t_{ij} x_{lm}^{(i)}) \geq (\alpha + \beta_k, 1) > 0 \quad \text{for all } k,$$

where $\beta_k = e_1^{(k)} \alpha'$, that is $c' c_0 t_{ij} x_{lm}^{(i)} \in \mathfrak{o}_{ijlm}$ and $w(c' c_0) < w(c_0)$, which contradicts the minimality of c_0 .

(Received March 17, 1959)

References

- [1] C. Chevalley: Introduction to the theory of algebraic functions of one variable, New York (1951).
- [2] I. S. Cohen and O. Zariski: A fundamental inequality in the theory of extensions of valuations, Illinois J. of Math. **1**, (1957) 1-8.
- [3] K. Iwasawa: Theory of algebraic function fields, (in Japanese) Tokyo (1952).
- [4] P. Roquette: On the prolongation of valuations, Trans. Amer. M. S. **88** (1958) 42-56.
- [5] O. F. G. Schilling: The theory of valuations, New York (1950).

