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1. Introduction

Low alloy steel A533B is widely employed in
building PWR reactor vessels. However, the excellent
mechanical properties of the base metal will be altered
after experiencing thermal cycles imposed by welding
process, and the increase of hardness always happens in
weld heat affected zone (HAZ) [1]. Therefore, post weld
heat treatment (PWHT) is required to eliminate the
residual stress and decrease the hardness.

Temper bead welding technique is in practice one of
the effective repair welding methods instead of PWHT
when PWHT is difficult to perform [2]. When temper
bead welding is applied, it’s very important to select the
proper thermal cycle during temper bead welding in
order to obtain high tempering effect. Hardness is one of
the key criteria to evaluate the tempering effect by
temper bead welding. Therefore a prediction method
using Neural Network has been investigated to predict
the hardness in HAZ of A533B, when temper bead
welding is applied.

2. Experimental

The base metal is low alloy steel A533B and the
filler material is Inconel690. Samples (5%5x5mm) were
heated by a high frequency induction heating device to
simulate as-welded and temper-processed HAZ. The
multi-pass welded samples (100x33x120mm) were
produced by TIG welding. The 1% layer in the welds
contained 4 pass beads, and 5 pass and 3 pass in 2™ and
3" layer, respectively. The Vickers hardness was
measured for the specimens after polishing and etching
with 3% nital solution. The thermal cycles in multi-pass
welds were calculated by House Code FEM software.

3. Results and discussion

As to long-term operation in the tempering
temperature range, the “Larson-Miller parameter (LMP)”
is a useful means for predicting the lifetime of material.
LMP which is derived based on the Arrhenius rate
equation is expressed as a function of time and

temperature, as follows

P=T(logt+ C) (1)
where T is the temperature in degrees Kelvin, t is the
time in hours and C is a material specific constant often
approximated as 20 for steel [3].

LMP can be used only for the iso-thermal heat
treatment with constant tempering temperature.
Therefore it cannot be applied for tempering during the
thermal cycle process. In order to apply LMP for thermal
cycle processes, the thermal cycle was divided into such
minute sections as to be assumed as an iso-thermal heat
treatment with short holding time. The whole tempering
effect during thermal cycle process is considered as the
sum of minute sectioned iso-thermal heat treatment.
LMP during thermal cycle process can be calculated by
following method.

The LMP of 1% cycle at T, with holding time t, is
equal to that at T, with equivalent holding time t ,,
shown as

P, = T;(20 + logt,) = T,(20 + logt, ,) )
Thus, the equivalent holding time t; , at T, can be
obtained as
logt, ; = = (20 + logt,) — 20 3)
2
Then the LMP of 1* and 2™ pass can be expressed as
PZ = TZ [20 + 10g(t1’2 + tz)] (4)
Similarly, the LMP from 1% pass to 3™ pass can be
obtained as
Py = T3[20 + log(ty3 + t3)] 5)
In turn, the LMP from 1*' pass to n™ pass can be
expressed as
P, = T,[20 + log(tp_1n + tn)] (6)

where T, is the temperature of the n™ pass, t, is the
holding time of the n® pass, and t,, is the equivalent
holding time from 1 to (n-1)" pass at the temperature of
T,. The LMP during thermal cycle calculated by the
newly proposed method is designated as Thermal Cycle
Tempering Parameter (TCTP). Figure 1 shows the
relationship between hardness of the specimens and
TCTP of 2™ and 3™ thermal cycle. A good linear
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Fig.1 Relationship between TCTP and Hardness of multi-pass
thermal cycle

relationship can be seen between the hardness of the
specimens and TCTP. Hardness of the iso-thermal
heat-treated specimens is also on the same line. This
shows that the newly proposed TCTP can be applied to
the hardness change in tempering during both thermal
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cycle process and iso-thermal heat treatment. Tp2/1500 (°C)

"Neural Network" (NN) [4], is a mathematical Fig. 2 Hardness prediction system of 2-Pass thermal cycle:
model or computational model that has been used to (a) 3D figure and (b) 2D-Contour figure
model complex relationships between inputs and outputs (Tp1=1350C,CR1=91C/s)

3

or to find patterns in data. Radial Basis Function (RBF)
is a powerful technique for interpolation of
multidimensional space in NN. The output O(x;) of the
network is thus

0(x) = Ly wihy(x) = ZLy wyexp {—(x — )"/r?} (7)
where n is the number of neurons in the hidden layer, c;
is the center vector for neuron i, and w; are the weights of
the linear output neuron. The weights wj, c¢;, and r are
determined in a manner that optimizes the fit between
O(x;) and the data.

Based on the experimentally obtained hardness data
base and the relation between hardness and TCTP, the F'g 3 Peak temperature distribution of (a) 1-Layer and
hardness prediction system of multi-pass thermal cycle (b) 3-Layer multi-pass welding
was constructed. For example, Fig. 2(a) and (b)
respectively represent the calculated 3D and 2D-contour
figure of the complex relationship between hardness and
T,/ CR, of 2-pass thermal cycle when T, is 1350°C
and CR; is 91°C/s.

The thermal cycles in welds during multi-pass
welding were calculated by House Code FEM. Figure 3
demonstrates the calculated peak temperature distribution ]
in the section of 1-layer and 3-layer welds. On the basis BM |
of the calculated thermal cycle parameter, the hardness in e o ; o
the HAZ was calculated, and the predicted hardness (b)
distribution is shown in Fig. 4. The predicted hardness 0
and the experimental results are shown in Fig. 5. The
predicted hardness (red marks) well agreed with the SE
measured hardness (blue marks), indicating that the
prediction system was useful and effective. e 200
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Fig. 4 Hardness distribution in HAZ of multi-pass
welding: (a) 1-layer and (b) 3-layer
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Fig. 5 Comparison between measured and calculated Hv
of (a) 1-layer and (b) 3-layer
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4. Conclusions

(1) Thermal Cycle Tempering Parameter (TCTP)
calculation method for multi-pass thermal cycles
process has been proposed based on LMP.

(2) On the basis of experimentally obtained hardness
data base and thermal cycle parameters calculated by
FEM, the hardness distribution in HAZ was
predicted using Neural Network.

(3) The predicted hardness was found in good
accordance with the experimental result. It follows
that the proposed prediction system is effective for
estimating tempering effect in multi-pass welding.
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