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1. Introduction
Low alloy steel A533B is widely employed in 

building PWR reactor vessels. However, the excellent 
mechanical properties of the base metal will be altered 
after experiencing thermal cycles imposed by welding 
process, and the increase of hardness always happens in 
weld heat affected zone (HAZ) [1]. Therefore, post weld 
heat treatment (PWHT) is required to eliminate the 
residual stress and decrease the hardness.

Temper bead welding technique is in practice one of 
the effective repair welding methods instead of PWHT 
when PWHT is difficult to perform [2]. When temper 
bead welding is applied, it’s very important to select the 
proper thermal cycle during temper bead welding in 
order to obtain high tempering effect. Hardness is one of 
the key criteria to evaluate the tempering effect by 
temper bead welding. Therefore a prediction method 
using Neural Network has been investigated to predict 
the hardness in HAZ of A533B, when temper bead 
welding is applied.

2. Experimental
The base metal is low alloy steel A533B and the 

filler material is Inconel690. Samples (5×5×5mm) were 
heated by a high frequency induction heating device to 
simulate as-welded and temper-processed HAZ. The 
multi-pass welded samples (100×33×120mm) were 
produced by TIG welding. The 1st layer in the welds 
contained 4 pass beads, and 5 pass and 3 pass in 2nd and 
3rd layer, respectively. The Vickers hardness was 
measured for the specimens after polishing and etching 
with 3 nital solution. The thermal cycles in multi-pass 
welds were calculated by House Code FEM software. 

3. Results and discussion 
As to long-term operation in the tempering 

temperature range, the “Larson-Miller parameter (LMP)”
is a useful means for predicting the lifetime of material. 
LMP which is derived based on the Arrhenius rate 
equation is expressed as a function of time and 

temperature, as follows
       P=T(log t + C)                (1)

where T is the temperature in degrees Kelvin, t is the 
time in hours and C is a material specific constant often 
approximated as 20 for steel [3].

LMP can be used only for the iso-thermal heat 
treatment with constant tempering temperature. 
Therefore it cannot be applied for tempering during the 
thermal cycle process. In order to apply LMP for thermal 
cycle processes, the thermal cycle was divided into such 
minute sections as to be assumed as an iso-thermal heat 
treatment with short holding time. The whole tempering 
effect during thermal cycle process is considered as the 
sum of minute sectioned iso-thermal heat treatment. 
LMP during thermal cycle process can be calculated by 
following method.

The LMP of 1st cycle at T1 with holding time t1 is 
equal to that at T2 with equivalent holding time t1,2,
shown as

P = T (20 + logt ) = T 20 + logt ,      (2)
Thus, the equivalent holding time t1,2 at T2 can be 
obtained as

logt , = (20 + logt ) 20          (3)
Then the LMP of 1st and 2nd pass can be expressed as

P = T [20 + log t , + t ]           (4)
Similarly, the LMP from 1st pass to 3nd pass can be 
obtained as

P = T [20 + log t , + t ]           (5)
In turn, the LMP from 1st pass to nth pass can be 
expressed as

P = T [20 + log t , + t ]          (6)
where Tn is the temperature of the nth pass, tn is the 
holding time of the nth pass, and tn-1,n is the equivalent 
holding time from 1st to (n-1)th pass at the temperature of 
Tn. The LMP during thermal cycle calculated by the
newly proposed method is designated as Thermal Cycle 
Tempering Parameter (TCTP). Figure 1 shows the 
relationship between hardness of the specimens and 
TCTP of 2nd and 3rd thermal cycle. A good linear 
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Fig.1 Relationship between TCTP and Hardness of multi-pass 
thermal cycle

relationship can be seen between the hardness of the 
specimens and TCTP. Hardness of the iso-thermal 
heat-treated specimens is also on the same line. This 
shows that the newly proposed TCTP can be applied to 
the hardness change in tempering during both thermal 
cycle process and iso-thermal heat treatment. 

"Neural Network" (NN) [4], is a mathematical 
model or computational model that has been used to 
model complex relationships between inputs and outputs 
or to find patterns in data. Radial Basis Function (RBF) 
is a powerful technique for interpolation of 
multidimensional space in NN. The output O(xi) of the 
network is thus
O(x ) = w h (x ) = w exp { x c /r } (7)
where n is the number of neurons in the hidden layer, ci
is the center vector for neuron i, and wi are the weights of 
the linear output neuron. The weights wi, ci, and r are 
determined in a manner that optimizes the fit between 
O(xi) and the data.

Based on the experimentally obtained hardness data 
base and the relation between hardness and TCTP, the 
hardness prediction system of multi-pass thermal cycle 
was constructed. For example, Fig. 2(a) and (b) 
respectively represent the calculated 3D and 2D-contour 
figure of the complex relationship between hardness and 
Tp2/ CR2 of 2-pass thermal cycle when Tp1 is 1350
and CR1 is 91 /s.

The thermal cycles in welds during multi-pass 
welding were calculated by House Code FEM. Figure 3
demonstrates the calculated peak temperature distribution 
in the section of 1-layer and 3-layer welds. On the basis 
of the calculated thermal cycle parameter, the hardness in 
the HAZ was calculated, and the predicted hardness 
distribution is shown in Fig. 4. The predicted hardness 
and the experimental results are shown in Fig. 5. The 
predicted hardness (red marks) well agreed with the 
measured hardness (blue marks), indicating that the 
prediction system was useful and effective.

Fig. 2 Hardness prediction system of 2-Pass thermal cycle:
(a) 3D figure and (b) 2D-Contour figure 

(Tp1=1350 ,CR1=91 /s)

Fig. 3 Peak temperature distribution of (a) 1-Layer and
(b) 3-Layer multi-pass welding

Fig. 4 Hardness distribution in HAZ of multi-pass 
welding: (a) 1-layer and (b) 3-layer

(b)
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(b)
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(a)
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Fig. 5 Comparison between measured and calculated Hv 
of (a) 1-layer and (b) 3-layer

4. Conclusions
(1) Thermal Cycle Tempering Parameter (TCTP) 

calculation method for multi-pass thermal cycles 
process has been proposed based on LMP.

(2) On the basis of experimentally obtained hardness 
data base and thermal cycle parameters calculated by 
FEM, the hardness distribution in HAZ was 
predicted using Neural Network. 

(3) The predicted hardness was found in good 
accordance with the experimental result. It follows 
that the proposed prediction system is effective for 
estimating tempering effect in multi-pass welding.
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