
Title A Study on Low-Complexity Audio Encryption
Methods for Digital Rights Management

Author(s) Twe Ta Oo

Citation 大阪大学, 2015, 博士論文

Version Type VoR

URL https://doi.org/10.18910/53937

rights Copyright(C)2014 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A Study on Low-Complexity Audio Encryption

Methods for Digital Rights Management

Submitted to

Graduate School of Information Science and Technology

Osaka University

July 2015

Twe Ta Oo

i

Publication List

Journal Papers

1. Twe Ta Oo, T. Onoye, and K. Shin, “Partial encryption method that enhances MP3

security,’’ in IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, vol. E98-A, no. 8, Aug. 2015, to be published.

Conference Papers with Referee

1. Twe Ta Oo, T. Onoye, and K. Shin, “A partial encryption scheme for compressed audio

based on amplitude scaling,” in Proceedings of International Workshop on Smart Info-

Media Systems in Asia (SISA), pp. 73-77, Sept. 2013.

2. Twe Ta Oo and T. Onoye, “Progressive audio scrambling via wavelet transform,” in

Proceedings of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp.

97-100, Nov. 2014.

3. Twe Ta Oo and T. Onoye, “Progressive audio scrambling via complete binary tree’s

traversal and wavelet transform,” in Proceedings of Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference (APSIPA ASC), Dec. 2014.

Conference Papers without Referee

1. Twe Ta Oo, Takao Onoye, and Kilho Shin, “An approach to amplitude scaling partial

encryption for compressed audio,” in IEICE Technical Report, vol. 113, no. 135, pp. 239-

244, July 2013.

PUBLICATION LIST ii

iii

Abstract

This thesis discusses low-complexity audio encryption methods for Digital Rights Management

(DRM). Recent years have seen the rapid growth of Internet traffic and the proliferated

distribution of digitalized audio products such as music, audio books, and spoken news. As a

result, secure distribution and copyright protection of those products have been increasingly

important. The DRM technologies have been intensively studied in this area, and encryption

plays an important role to protect the contents from unauthorized accesses. Although encryption

ensures content security, the naive method of encrypting an audio file would destroy compliance

with the audio standard so the resulting encrypted file could not be rendered by existing standard

media players. This thesis focuses on low-complexity audio encryption methods that keep

compliance with the media standard and achieve the following DRM requirements: 1) providing

the confidentiality in audio distribution, 2) controllably degrading the audio quality by adjusting

the percentage of encryption, and 3) realizing the try-before-purchase model, which is one of the

important business models of DRM, in which the encrypted audio files are published for

commercial purpose; users can render those files for trial without decryption and enjoy the

contents in original quality by purchasing the decryption keys.

Firstly, this thesis presents a low-complexity partial encryption method for compressed

audio (MP3). Unlike conventional encryption which encrypts the whole file, partial encryption

can provide some interesting features such as yielding low-quality signals, reducing execution

time, and coexistence with the media standards. The main idea of partial encryption is to protect

the entire content by encrypting only the perceptually important parts. This thesis discusses how

to choose the perceptually important parts during the MP3 encoding process in accordance

with the concept of the Human Auditory System (HAS). Experimental results show that

encrypting the whole MP3 file renders the audio signal meaningless while encrypting 2-10% of

the file degrades the audio quality but not completely destroys the signal so it can be used as

trial music. That trial MP3 keeps compatibility with the standard so it can be rendered by any

existing MP3 players without need to decrypt. Under the access of the correct decryption keys

and specific MP3 players, the full-quality MP3 can be successfully recovered. In addition, this

thesis discusses the invalid amplitude problem regarding audio encryption: in any kinds of audio

format, there are valid amplitude ranges for audio samples, which differ based on the supported

bit-depth of an audio coder. If the audio samples to be coded are not within the valid range, they

are clipped. This becomes a problem when the encrypted audio samples are beyond the valid

ranges and get clipped because the data losses introduced by clipping deter the decryption

process from successfully recovering the signal. This thesis also presents a solution for this

problem.

ABSTRACT iv

Secondly, this thesis presents two low-complexity audio scrambling methods, which are

kinds but not direct applications of audio encryption. Unlike audio encryption that renders an

audio signal meaningless by changing both the values and positions of the contents, audio

scrambling degrades the residual intelligibility of an audio signal by breaking the coherence

between data contents. They neither inject any new values nor change the values of the existing

contents. Due to this feature, they are more preferable to usual audio encryption to be used as

pre- and post-processing of data hiding methods. This thesis presents two effective audio

scrambling methods in the time domain: one based on the pre-order traversal of a complete

binary tree and the other on a pseudorandom number generation algorithm called Mersenne

Twister (MT). Experimental results show that the proposed methods are very effective in terms

of time and space complexity and scrambling effect. However, their cryptographic security is

limited because of the only use of permutation operations.

Thirdly, with the aim of strengthening the cryptographic security of the proposed audio

scrambling methods, this thesis presents two new schemes in the wavelet domain. First, an audio

signal is wavelet decomposed. Then, the layers of wavelet coefficients are separately scrambled

by considering not only the pre-order but also in-/post-order based scrambling methods in the

first scheme and using the MT based scrambling method with a series of keys in the second

scheme. Experimental results show that anyone without knowledge of the correct wavelet

decomposition parameters and the correct method/key used for each layer will not be able to

successfully descramble the signal. The new schemes also achieve progressive scrambling that

enables the audio outputs with different quality levels to be generated by controlling the

scrambling degree on the basis of the system requirement: slightly distorted ones for the try-

before-purchase model of the DRM systems and severely distorted ones for the systems with

strong security needs.

As a conclusion, this thesis presents low-complexity audio encryption methods for both

compressed and uncompressed audios with detailed discussions on 1) how to solve the invalid

amplitude problem regarding audio encryption, 2) how to effectively choose the perceptually

important parts for partial encryption, 3) how to conduct encryption while keeping compliance

with the media format, and 4) how to strengthen the cryptographic security of audio scrambling.

In addition to providing confidential audio distribution, the proposed methods can also be used

to realize the try-before-purchase model. Thus, these proposals strongly contribute to the

development of efficient DRM systems.

v

Acknowledgements

First of all, I would like to express my deep and sincere gratitude to my supervisor, Professor

Takao Onoye of Osaka University, for providing me a precious opportunity and an excellent

environment to study as a doctoral student in his laboratory. His encouragement, detailed and

constructive comments, and professional guidance have led me to this achievement.

I would like to express my heartfelt appreciation to Professor Yoshihiro Kilho Shin,

University of Hyogo, for his dedication of a considerable amount of time from his busy schedule

to guide and help me on my learning in the field of cryptography. His interesting discussions and

excellent advices on cryptographic technologies presented in this thesis have greatly contributed

to the success of this work.

 I am deeply grateful to Professor Tatsuhiro Tsuchiya and Associate Professor Masanori

Hashimoto of Osaka University for agreeing to be on my dissertation committee. They were

more than generous with their expertise and precious time for reviewing my thesis.

 I would like to take this opportunity to express my gratitude to all of the professors from

Information Systems Engineering Department of Osaka University. I am deeply thankful to

Professor Masaharu Imai, Professor Koji Nakamae, Professor Haruo Takemura, and Professor

Makoto Nakamura for their useful advices.

 I am also thankful to Assistant Professor Masahide Hatanaka of Osaka University for

technical and other supports in the laboratory.

 I am also thankful to all of my friends who kindly and actively helped me during the

subjective audio tests conducted to evaluate this work. I will never forget their dedication and

enthusiasm.

 I also owe my gratitude to Ms. Mayuko Nakamura, Ms. Yuki Yoshida, and Ms. Tomomi

Kondo for all the things they have done for me. They kindly and willingly helped me whenever I

had difficulties in doing office procedures because of my language deficiency.

 My appreciation also goes to all members of Information Systems Synthesis Laboratory

of Osaka University, especially to Mr. Zhao Wen Jun, for their understandings and various

supports throughout my student life.

 I would like to dedicate this thesis to all of my teachers who mentored me throughout my

career. They installed in me sources of knowledge and firm determination which led to this

success.

 Last but not least, I also dedicate this thesis to my parents and my uncles and aunts. I am

deeply indebted to them for their love and continuous support. They never failed to encourage

me whenever I had a hard time.

ACKNOWLEDGEMENTS vi

vii

Contents

1 Introduction 1

1.1 Background 1

1.2 Problems of encryption on audio data 3

1.2.1 Invalid amplitude problem 4

1.2.2 Operational conflict problem with data hiding methods 4

1.3 Audio file formats 6

1.3.1 Waveform audio file format (WAV) 7

1.3.2 MPEG-1 layer III audio file format (MP3) 8

1.4 Partial encryption 10

1.5 Advanced Encryption Standard (AES) 11

1.6 Audio scrambling 14

1.7 Objective of this thesis 15

2 Partial Encryption Methods that Enhance Audio

Security 17

2.1 Introduction 17

2.2 Partial encryption on raw audio 18

2.2.1 Solution for invalid amplitude problem 19

2.2.2 Procedure 19

2.2.3 Experimental results 21

2.3 Partial encryption on MP3 22

2.3.1 Choice of data to encrypt 22

2.3.2 Procedure 24

2.3.3 Experimental results 26

2.3.4 Implementation necessity 30

2.4 Conclusion 31

3 Transposition-Based Audio Scrambling Methods in Time

Domain 32

3.1 Introduction 32

CONTENTS viii

3.2 Audio scrambling method based on the pre-order traversal of a complete

binary tree 33

3.2.1 Algorithmic detail 35

3.2.2 Experimental results 37

3.3 Audio scrambling method based on a pseudorandom number generator 40

3.3.1 Algorithmic detail 40

3.3.2 Experimental results 42

3.4 Conclusion 42

4 Progressive Audio Scrambling Schemes in Wavelet

Domain 44

4.1 Introduction 44

4.2 Discrete Wavelet Transform (DWT) 45

4.3 The proposed schemes 46

4.4 Experimental results 52

4.4.1 Cryptographic security/anti-decryption capability 52

4.4.2 Scrambling effect 54

4.4.3 Execution time 56

4.4.4 Anti-attack capability 56

4.4.5 Performance comparison 57

4.5 Conclusion 60

5 Conclusion 61

Bibliography

ix

List of Tables

1.1 Valid audio amplitude ranges for different bit-depth systems 5

1.2 Algorithm specification of the AES 12

2.1 Grading scales of ODG 22

2.2 Grading scales of SDG 27

2.3 Subjective measures of audio quality for the encrypted MP3s 28

2.4 Effect of encryption on file size 30

3.1 Music items used in experiment 38

3.2 Execution time results for the pre 38

3.3 SNR and NCR of the scrambled signals for different k 39

3.4 Execution time results for different k 40

3.5 Execution time results for the AS-MT 43

4.1 ODG after descrambling with wrong wavelet family 53

4.2 ODG after descrambling with wrong decomposition level 53

4.3 ODG after descrambling with wrong choice of methods 53

4.4 Subjective measures of audio quality for the scrambled signals 56

4.5 Execution time on layer-by-layer basis 57

4.6 Performance comparison with previous works 60

LIST OF TABLES x

xi

List of Figures

1.1 An example of a typical DRM system 2

1.2 Online audio distribution scenario in DRM environment 6

1.3 The canonical WAV file format 7

1.4 MP3 frame format 9

1.5 MP3 encoding process 9

1.6 MP3 decoding process 9

1.7 The state array input and output in the AES 12

1.8 The SubBytes transformation in the AES 13

1.9 The ShiftRows transformation in the AES 13

1.10 The MixColumns transformation in the AES 14

2.1 System flow of (a) partial encryption and (b) partial decryption on raw audio 20

2.2 ODG vs p of the encrypted WAVs 22

2.3 Execution time of the proposed method: (a) encryption (b) decryption 23

2.4 Proposed method (online/offline): (a) encryption (b) decryption 25

2.5 Partitioning of quantized values 25

2.6 ODG vs p of the encrypted MP3s 27

2.7 Execution time of the proposed method: (a) encryption (b) decryption 29

3.1 A tree representation of an array of audio samples (S) 34

3.2 The breadth-first traversal result:  43210 ,,,,' sssssS  34

3.3 The pre-order traversal result:  24310 ,,,,' sssssS  35

3.4 The in-order traversal result:  21 ,,,,' 043 sssssS  35

3.5 The post-order traversal result:  02143 ,,,,' sssssS  35

3.6 The step-by-step tracing of the pre on an example array 37

3.7 Waveforms of (a) the original signal and (b) the scrambled signal by pre; (c)-(d)

 their respective frequency spectra 38

3.8 Waveforms of (a) the original signal and (b) the scrambled signal by AS-MT;

 (c)-(d) their respective frequency spectra 43

4.1 Two-level DWT: (a) decomposition (b) reconstruction 45

4.2 System flow of the scheme_1 47

4.3 System flow of the scheme_2 47

4.4 The step-by-step tracing of the in on an example array 50

4.5 The step-by-step tracing of the post on an example array 51

4.6 ODG after scrambling_(s)/descrambling_(d) on layer-by-layer basis:

LIST OF FIGURES xii

 (a) scheme_1 (b) scheme_2 55

4.7 Waveform of the “Pop” audio signal 58

4.8 Waveforms of (a) the scrambled signal that is 60% randomly cropped and (b) the

recovered signal 58

4.9 Waveforms of (a) the scrambled signal that is white noise added to and (b) the

 recovered signal 58

4.10 Waveforms of (a) the scrambled signal that is MP3 encoded and (b) the recovered

 signal 59

CHAPTER 1 INTRODUCTION 1

Chapter 1

Introduction

This chapter describes the background and objectives of this thesis. This thesis focuses on

developing low-complexity audio encryption methods, for both uncompressed and compressed

audio formats, to be applied in Digital Rights Management (DRM) environment. The two basic

problems which make most of the usual encryption methods to be less preferable for audio

protection are discussed. Then, the concept of partial audio encryption and its desirable features

over usual encryption of the whole file are presented. The theories behind uncompressed and

compressed audio file formats are also briefly discussed. Finally, the objectives and

contributions of this thesis are explained.

1.1 Background

Nowadays, the multimedia technology has been widely used in various fields of industrial

production, scientific research, and daily life [1-2]. The proliferated distribution of digitalized

audio products has been seen in recent years due to the advents of multimedia compression

standards and high-speed Internet and communication networks. These latest technologies have

made our daily lives easier and more comfortable, but on the other hand they have been raising

serious issues of copyright violation and unauthorized access of digital contents on a scale never

before imagined. Many producers from music industries fear that online distribution of their

works, on which the revenue of these industries partly or wholly depends, will speed up illegal

distribution on the Internet or the Darknet [3]. For solving those issues, DRM [4-5] technologies

have been intensively studied by researchers from both academia and industry.

The DRM is a set of access-control techniques used by manufacturers, publishers, and

copyright holders to limit the usage of digital devices or information [6-7]. The most commonly

used DRM technologies are:

 Restrictive licensing agreements: The access to digital materials, copyright and public

domain is controlled. Some restrictive licenses are imposed on consumers as a condition of

entering a website or when downloading software [8].

 Encryption, scrambling of expressive material, and embedding of a tag: This technology

is designed to control access and reproduction of information.

Generally, a DRM system can be realized as shown in Fig. 1.1.

http://en.wikipedia.org/wiki/Digital_rights_management#cite_note-22
http://en.wikipedia.org/wiki/Encryption

CHAPTER 1 INTRODUCTION 2

Sending authorized/encrypted content 7

1

2

3

4

5

6

Payment

Content and license request

Payment confirmation request

Payment approval

Sending billing list

Issuing license/authentication

Playback the authorized/encrypted content 8

8

7

Content Provider

2

1

3
4

5

6

DRM Centre

Payment Gateway Client/User

Figure 1.1: An example of a typical DRM system.

 The user pays for the content and gains it through the provider.

 The content provider or Internet service provider (ISP) takes the billing list from the DRM

centre and sends the authorized or encrypted content to the user.

 The payment gateway takes payment request from the DRM center and sends an approval of

payment to it.

 The DRM center takes content request from the user after payment approval and then sends

the billing list to the content provider or ISP and authentication (e.g. license or decryption

key) to the user.

Nowadays, the DRM technology has been adopted by the entertainment industry, most e-

book publishers and online music stores. Electronic books read on a personal computer or an e-

book reader typically use the DRM technology to limit copying, printing, and sharing of e-books.

Examples of the e-book DRM schemes commonly used today are Adobe’s ADEPT DRM [9]

and Apple’s FairPlay DRM [10-11]. As for the multimedia industry, with the aim of restricting

usage of the media content purchased and downloaded, they employ the DRM technology in

various kinds of business scenarios that include [12]:

 Online scenarios: These scenarios require users to be online while they play back the media

content:

1.2 PROBLEMS OF ENCRYPTION ON AUDIO DATA 3

 Live streaming: Live streaming sends the content directly to the computer or device

without saving the file to a hard disk. A live stream is only available while it is being

broadcasted. Internet television and radio are examples of live streaming.

 Progressive download: Progressive download lets users play back the media while it is

downloading. The main difference between progressive download and live streaming,

from a user's point of view, is that progressively downloaded content is stored on the

user's computer or device, at least temporarily.

 Offline scenarios: These scenarios allow users to be offline while they play the content.

 Download file offline (onetime purchase): Users download the content from the

Internet and play it later whenever they want. The DRM software restricts redistribution

of the content to one or more devices.

 Subscription: It enables the customers to play back the content based on a subscription

model. For example, customers of the online television channel pay a monthly fee to

watch up to 100 hours of television content online. In order to renew their subscription,

they need to pay the monthly fee and connect to the service at least once a month

because the subscription license expires every 45 days.

 The followings are examples of the online music stores that employ the DRM technology.

Prior to 2009, Apple’s iTunes store utilized the FairPlay DRM system [10-11] that enables

playback of the iTunes music only on Apple devices and Apple’s QuickTime media player. In

recent years, music tracks with DRM-free iTunes Plus format are available at a higher price

point. Napster music store [13] offers a subscription-based DRM approach alongside permanent

purchases. Users of the subscription service can download and stream an unlimited amount of

music during the subscription period. However, when the subscription period lapses, all the

downloaded music is unplayable until the user renews his or her subscription. Prior to 2008,

Sony operated a music download service called Connect [14] which used Sony’s proprietary

OpenMG DRM technology. Music sold at Sony Connect was only playable on Sony hardware

and computers running Microsoft Windows.

Although DRM is prevalent for Internet music, it also has an undesirable side of

frustrating the authorized customers. From the DRM regulations used by the above mentioned

online music stores, we can see that most of the DRM techniques restrict copying or viewing of

the contents regardless of whether such copying or other use is legally considered a “fair use” by

authorized customers. Under that circumstance, DRM has come under fire. Those opposed to

DRM contend there is no evidence that DRM helps prevent copyright infringement, arguing

instead that it serves only inconvenience to legitimate customers, and that DRM helps big

business stifle innovation and competition [15]. Thus, it has been very important to develop the

DRM technologies that ensure not to lock out the legitimate users.

1.2 Problems of encryption on audio data

Among the DRM techniques, encryption plays an important role to protect the contents from

unauthorized accesses.

A lot of audio encryption methods in different domains have been proposed in the

literature. In the time domain approaches, audio signals are generally encrypted by permuting

http://en.wikipedia.org/wiki/Big_business
http://en.wikipedia.org/wiki/Big_business

1.2.1 INVALID AMPLITUDE PROBLEM 4

the audio samples [16-17], blocks of the samples [16], or the bits which made up of each sample

[18]. In the transform domain approaches, the audio signal is first transformed into specified

domains (e.g. Fast Fourier Transform (FFT) [19-21]) and then encryption is performed on the

transformation results. Basically, any kinds of traditional encryption algorithms, including

symmetric or asymmetric ones, can be used for audio protection. However, the naive method of

encrypting the entire audio file would destroy compliance with the media standard due to

changing data format and increasing file size after encryption, especially in the time-domain

approaches. Then, the encrypted audio files could not be played back by existing standard music

players and this would hinder the convenient use for legitimate customers. In addition, the

problems that will be discussed in the following sections reduce the effectiveness of usual

encryption methods to be used for audio protection.

1.2.1 Invalid amplitude problem

In any kinds of audio format, there are valid amplitude ranges for audio samples [22-23], which

differ on the basis of the supported bit-depth of an audio coder and data type of the audio

samples. As shown in Table 1.1, integer-type audio samples can be encoded in 8-bit, 16-bit, or

24-bit bit-depth, and whereas floating point audio samples can be encoded in up to 64-bit. The

higher the bit-depth, the better the audio resolution but the larger file size is yielded.

Before writing an audio file, the audio encoder checks if the audio samples are within the

valid amplitude ranges and if they are not, the exceeding parts are clipped. This clipping process

becomes a problem for usual encryption algorithms to be directly used for audio protection.

Generally, encryption algorithms try to render an audio signal meaningless by applying a series

of mathematical operations on the audio samples such as shifting, adding or XOR-ing with key

sequences, substituting the samples in accordance with a look-up table, etc. After those

operations, it is highly unlikely to keep the audio samples in their original format or size and

there is a possibility that the amplitudes of the samples become beyond the valid ranges. Thus,

the above clipping process is inevitable and the data losses introduced by clipping will definitely

deter the decryption process from successfully recovering the audio signal. Thus, any kinds of

audio encryption methods need to pay attention to how to handle this problem. One of the

proposals in this thesis presents a solution for this problem.

1.2.2 Operational conflict problem with data hiding methods

Encryption and data hiding are widely used DRM techniques in which encryption mechanism

protects the content from unauthorized accesses and data hiding mechanism ensures copyright

protection by embedding the watermark (e.g. copyright related messages or signatures) into the

audio signal without sacrificing the audio quality. However, encryption techniques protect the

data just before decryption. Once the data is decrypted, there is no more protection. On the other

hand, data hiding techniques cannot provide secure distribution. For those reasons, employing

encryption and data hiding techniques individually is not fully desirable for today’s DRM

systems. There has been a lot of interest in developing a combined scheme of encryption and

data hiding for ensuring both confidential distribution and copyright protection.

1.2.1 INVALID AMPLITUDE PROBLEM 5

Table 1.1: Valid audio amplitude ranges for different bit-depth systems.

Bit-Depth Valid Range for Respective Data Type

Integer Floating Point

8-bit [0, 255] [-1.0, +1.0)

16-bit [-32768, +32767] [-1.0, +1.0)

24-bit [-2^23, 2^23-1] [-1.0, +1.0)

Higher bit-depth [-1.0, +1.0]

Kothamasu and Sehgal [24] proposed a system that uses both encryption and data hiding

techniques in which a watermark image is embedded into an audio signal on the basis of the

energy of the signal in the discrete wavelet and cosine transform domains. Before embedding,

the watermark image is encrypted by using the Arnold transformation [25], which is a common

image transformation technique in the two-dimensional domain. A similar scheme was also

proposed by Mondal and Mandal [26] in which data hiding is done in the time domain and the

watermark (here it is a speech signal) is encrypted by using the chaos based encryption [27]. The

main purpose of these methods is to secure the watermark information in case the data hiding

methods break but not for secure distribution of the host audio signal.

However, if the main purpose of such a combined scheme is to provide both secure

distribution and copyright protection, encryption must be done on the host audio signal, not on

the watermark information. In that case, usual encryption methods are not appropriate for

combining with data hiding methods. It is because both encryption and data hiding try to change

the values of the audio contents and thus cause operational conflicts with each other. Let us

consider two example scenarios of combining the methods in which encryption is to perform

bitwise XOR between audio samples and keys and data hiding is to replace the least significant

bit (LSB) of each audio sample with the watermark bit. For an audio signal s, the first scenario is

as follows:

1) The watermark information is embedded on s: m(s)

2) The marked file is encrypted: e(m(s))

To detect the watermark in this scenario, the above steps must be done in exact reverse

order. That is, the watermark information cannot be detected from the encrypted signal e(m(s)).

For the second scenario,

1) The audio signal is encrypted: e(s)

2) The watermark information is embedded on the encrypted signal: m(e(s))

In this scenario, decryption before completely removing the watermark would result in

random decrypted values and the signal with nearly original quality could not be successfully

recovered. Moreover, most of the audio watermarking methods proposed in the literature are

irremovable methods in which removing the watermark will surely degrade the audio quality.

 Let us consider how the above conflicts reduce the effectiveness of the DRM systems in

the application scenario shown in Fig. 1.2: in DRM, the media is usually encrypted for

confidentiality before distribution. The encrypted media may then be transmitted from owners to

1.3 AUDIO FILE FORMATS 6

Figure 1.2: Online audio distribution scenario in DRM environment.

customers through distributors. Those distributors have no right to access the unencrypted media

and are only entitled to distribute the encrypted media to end users and request the license server

in the DRM system to issue the license containing the decryption key to end users. However,

they sometimes need to watermark the media for copyright violation detection, distribution

control, proof of distributorship, or traitor tracing, and must embed the watermark on the

encrypted content. As for customers, they can get the decryption keys from owners for a fee and

then enjoy the high-quality content after decryption. Note here that decryption must be done on

the marked content. If the usual encryption methods were applied in this scenario, they would

completely destroy the objective of data hiding because decryption would never be successful

without removing the watermark.

Thus, it is very important to develop effective audio encryption methods that can be used

together with the data hiding process without causing any conflicts. This thesis proposes two

audio scrambling methods, which are kinds but not direct applications of audio encryption,

which can be effectively applied in the above application scenario.

1.3 Audio file formats

This section discusses the uncompressed and compressed audio file formats. An audio file

format is a file format for storing digital audio data on a computer system. The bit layout of the

audio data (excluding metadata) is called the audio coding format and can be uncompressed or

compressed to reduce the file size by often using the lossy compression. There are three major

groups of audio file formats:

 Uncompressed audio formats, e.g. waveform audio file format (WAV) [28-29], audio

interchange file format (AIFF) [30]

 Compressed audio formats (lossless), e.g. WavPack [31]

watermark

send key

payment

encrypt

Owner Distributor Customer

Audio file
Encrypted audio

file

Marked and encrypted

audio file

Decryption

key

key request

Decrypted marked file

decryption

1.3.1 WAVEFORM AUDIO FILE FORMAT (WAV) 7

 Compressed audio formats (lossy), e.g. advanced audio coding (AAC) [32], MPEG-1

layer III (MP3) [33-35]

 As this thesis proposes audio encryption methods for WAV and MP3 audio formats, the

following sections explain those file formats in detail.

1.3.1 Waveform audio file format (WAV)

Waveform audio file format (commonly known as WAV) [28-29] is a Microsoft and IBM audio

file format standard for storing an audio bitstream on personal computers (PCs). It is the main

format used on Windows operating systems for raw and typically uncompressed audio. The

usual bitstream encoding is the pulse code modulation (PCM) format. Even though an

uncompressed WAV file is large and thus not appropriate for file sharing over the Internet, it is a

commonly used file type suitable for retaining audio files of high quality, for using in

applications like audio editing where the time needed in compressing and decompressing data is

a concern or on a system where disk space is not a constraint.

 The WAV is an application of the Resource Interchange File Format (RIFF) bitstream

format method for storing data in chunks. Fig. 1.3 shows the WAV file format. Every chunk

(including the header) starts with the chunk ID that defines what is included in the chunk, e.g.

“RIFF” chunk, “fmt” chunk, and “data” chunk. The other fields in the RIFF chunk define the

size of the overall file and file format (here it is “WAVE”). The format chunk is the metadata

chunk which describes the necessary information to decode the WAV file such as the sampling

rate, the bit-depth, the number of channels, etc. The data chunk contains the audio sample data

whose data type and range vary depending on the chosen bit-depth, as discussed in Sect. 1.2.1.

 Field Name

ChunkID

ChunkSize

Format

Subchunk1ID

Subchunk1Size

AudioFormat

NumChannels

SampleRate

ByteRate

BlockAlign

BitDepth

Subchunk2ID

Subchunk2Size

Data

Value

“RIFF”

varies

“WAVE”

“fmt”

16 for PCM

1 for PCM, others for compressed formats

1 for Mono, 2 for Stereo, etc

8000, 44100, etc

SampleRate*NumChannels*BitDepth/8

NumChannels*BitDepth/8

8, 16, etc

“data”

varies

sample data

Figure 1.3: The canonical WAV file format.

The “RIFF” chunk

The “fmt” sub-chunk

The “data” sub-chunk

1.3.2 MPEG-1 LAYER III AUDIO FILE FORMAT (MP3) 8

1.3.2 MPEG-1 layer III audio file format (MP3)

The MP3 is a compressed audio format which is designed to greatly reduce the amount of data

required to represent the audio recording and still sound like a faithful reproduction of the

original uncompressed audio for most listeners [33-35]. Nowadays, the MP3 is a de facto

standard of digital audio compression for the transfer and playback of music on most digital

audio players as well as a common format for consumer audio streaming or storage.

 All MP3 files are divided into smaller fragments called frames. Each frame stores 1,152

samples and lasts for 26 ms. As shown in Fig. 1.4, which is the structure of an MP3 frame, a

frame consists of five parts. The header contains important information such as the

synchronization word, the sampling rate, the bitrate, and so on. The synchronization word found

at the beginning of each frame enables the MP3 decoders to lock onto the signal at any point in

the stream [33]. This makes it possible to broadcast an MP3 file. A receiver tuning in at any

point of the broadcast just has to search for the synchronization word and then start playing.

The Cyclic Redundancy Check (CRC) field is used to check if there are transmission

errors in the header. According to the standard, bits 16 to 31 in both the header and the side

information field are very sensitive to errors to such an extent that it can corrupt the whole frame,

whereas an error in the main data only distorts a part of the frame. A corrupted frame can either

be muted or replaced by the previous frame [33].

The side information field carries the necessary information to decode the MP3 main

data (scalefactors and Huffman codes). For instance, it tells the decoder where to find the start of

the main data in a certain frame and which Huffman code tables to be used to decode that frame.

In the main data part, the purpose of scalefactors is to reduce the quantization noise. If the

samples in a particular scalefactor band are scaled in the right way, the quantization noise will

be completely masked. The second part of the main data consists of Huffman encoded bits.

Finally, the ancillary data part is optional.

 Figure 1.5 shows a series of the MP3 encoding processes. First, the input PCM signal is

transformed from time-domain samples to frequency lines by passing through a filterbank

cascaded by a windowed Modified Discrete Cosine Transform (MDCT). The input PCM also

passes through the FFT process to yield the input for psychoacoustic model which provides

information to control the MDCT windows type: short windows for adjacent frequency spectra

with certain changes and long windows for others. This model also provides a set of masking

thresholds used to discard audio redundancy. That is, frequency components under those

thresholds cannot be perceived by human ear and thus the MDCT frequency lines can be non-

linearly quantized by using the lowest possible bitrate as long as the quantization noise is kept

under those thresholds. Then the quantized values are divided into different regions and encoded

with different Huffman tables that are tuned for the statistics of particular region. Finally, an

MP3 frame is constructed by appending a header as shown in Fig 1.4.

For decoding an MP3 bitstream, as shown in Fig. 1.6, the decoder firstly identifies every

frame in the bitstream by searching for the synchronization word. If the protection bit in the

header is set, the CRC field exists and checks the most sensitive data for transmission errors.

Then the MP3 main data (scalefactors and Huffman coded data) are decoded by using the

decoding parameters specified in the side information part. The decoded scalefactors are later

http://en.wikipedia.org/wiki/De_facto_standard
http://en.wikipedia.org/wiki/De_facto_standard
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Streaming_media

1.3.2 MPEG-1 LAYER III AUDIO FILE FORMAT (MP3) 9

used when re-quantizing the Huffman decoded values (quantized values). Then, the Inverse

MDCT (IMDCT) process is carried out on the re-quantization results (frequency lines). Finally,

the synthesis filterbank reconstructs the signal.

Syncword

Layer

Bitrate

Sampling Rate

 Scfsi

Big_values

Global_gain

Table_select

Count1Table_select

Region0

Region1

Region2

Count1

Header CRC Side Info Scale

Factors

Huffman

Codes

Ancillary

Data

Main Data

Figure 1.4: MP3 frame format.

Figure 1.5: MP3 encoding process.

Figure 1.6: MP3 decoding process.

PCM

Quantized values Scalefactors

Huffman Code Bits

Synchronization and Error Checking

Huffman Decoding Scalefactor Decoding

Re-quantization

IMDCT

Synthesis Polyphase Filterbank

MP3 Bitstream

Encoded

Audio

Input

Audio Polyphase

Analysis

Filterbank

MDCT
Huffman

Coding

Psychoacoustic

Modeling

Quantizing

FFT

Bitstream

Formatting

1.4 PARTIAL ENCRYPTION 10

1.4 Partial encryption

Regarding audio protection, partial encryption methods have more desirable features than usual

encryption of the whole file. The main concept of partial encryption is to protect the entire

content by encrypting only the perceptually important parts which have smaller size. Unlike

encrypting the whole file, partial encryption just degrades the audio quality but not completely

destroys the file. Thus, if partial encryption is carefully carried out not to destroy the media

format, the encrypted file can be played back by existing music players without need to decrypt.

This feature is very attractive for realizing the try-before-purchase model, which is one of the

important business models of DRM.

 Let us consider a real world audio distribution scenario. A customer walks up to the

music counter in the store and pick up an interesting CD. By using the CD player and headphone

provided by the store, the customer checks the taste of the music. If the customer thinks it is

worth a buy, he/she walks up to the counter and pays for it. As for online music stores, they

should also provide preview music files for commercial purpose. Customers should be able to

listen to those files via online streaming or by downloading to their own devices. The simplest

scenario for providing the preview music is as follows: a short part of the music file is provided

for preview and any customers can freely access it; for a fee, the customers are allowed to

download the whole music file. Regarding this scenario, there are three undesirable facts. Firstly,

it consumes the network bandwidth because of the need for two times of file transfer (for

downloading the preview file and the whole file). Secondly, providing the whole unprotected

music file for downloading after payment is not desirable. During data transfer between owner

and customer, there might be an adversary who would illegally capture the file. Thirdly,

providing a short part of the music file for trial may not be a good idea because it has a tendency

to reduce the sales of mobile ringtones or ring-back tones. According to the reports over the

Internet, sales of ringtones make up only 63 percent of the overall mobile music market in recent

years, whereas in 2007, they made up 80 percent of the market. The main reasons for such a

drop are:

 Due to the development of high-tech smart phones, it is very easy to create customized

ringtones;

 Musical ringtones could be costly. For instance, the 20- to 30-second snippets were often

pricier than buying the whole song. Someone who updated their ringtones frequently

could easily pay $20 a month or more.

Thus, using a short part of the music file for trial may add up fire to that “ringtones sales drop”

problem. In addition, a short part of the music file, e.g. chorus part of the music, may not be

good enough for listeners to taste the music. Even though that short part is good, it does not

reflect the whole song is good.

This thesis proposes partial audio encryption methods which provide more effective

alternative to generate preview music than the above one. The possible application scenario is as

follows: the whole music file whose quality is degraded by partial encryption is freely

distributed for preview. That file can be played back by any existing music players without need

1.5 ADVANCED ENCRYPTION STANDARD (AES) 11

to decrypt. Even though the quality is degraded, customers can listen to the whole music file and

thus they will be able to easily guess what the original music will sound like. After payment,

they can get the decryption key (no need to download the music file again) and no doubt a high-

quality music file can be enjoyed under the access of the correct decryption key and specific

media player. In addition, as the preview file is protected by partial encryption, it is not needed

to worry about illegal access during transmission.

Partial encryption on audio data also has other desirable properties of the followings:

 Lower complexity, which is suitable for real time applications;

 Adjustable security level based on the security requirement of the underlying system;

 Restraining synchronization error [36], which occurs when directly encrypted MP3 files

are Huffman decoded, to specific frames;

This thesis presents a low-complexity partial encryption method for MP3 security. Thus,

the basic concept of partial encryption on MP3 is introduced here. In most cases of partial

encryption on compressed audio data, encryption comes after compression process as stated

below.

 An uncompressed audio signal M passes through the compression process and yields the

compressed audio signal Y.

).(MCompressedY  (1.1)

While generating Y, the perceptually important parts Ye for encryption are identified apart

from the perceptually less important parts Yc to be left as plain.

 .ce YYY  (1.2)

After encryption,

),,(keyYEY ee  (1.3)

where E(.) represents an encryption process in general and eY  is the encrypted signal. After

bitstream formatting, the compressed-encrypted audio signal M′ is obtained.

 .ce YYM  (1.4)

The M  must be decodable by any MPEG standard decoders without decrypting .eY  The

effectiveness of partial encryption depends on the choice of perceptually important parts for

encryption. Chapter 2 of this thesis discusses how to effectively choose the perceptually

important parts during the MP3 encoding process.

1.5 Advanced Encryption Standard (AES)

The methods proposed in Chapter 2 of this thesis use the Advanced Encryption Standard (AES)

algorithm for audio encryption and thus the AES algorithm is briefly described in this section.

 The AES is based on the Rijndael cipher [37] designed by Vincent Rijmen and Joan

Daemen and proposed to the National Institute of Standards and Technology (NIST) during the

AES selection process. It was announced as the Federal Information Processing Standards

(FIPS)-approved cryptographic algorithm by the NIST in 2001 [38].

The AES is based on a design principle known as a substitution-permutation network. It

is a symmetric key block cipher [37-38]. As shown in Table 1.2, the lengths of the input block

1.5 ADVANCED ENCRYPTION STANDARD (AES) 12

and the output block are 128 bits. The length of the cipher key is 128, 192, or 256 bits. The

number of the rounds to be performed during the execution of the algorithm is dependent on the

key length. Internally, the operations in the AES algorithm are performed on a two-dimensional

(4×4) array of bytes called the state. Each individual byte in the state has two indices and can be

indexed as either sr,c or s[r,c], for 0≤r<4 and 0≤c<4. For executing the cipher or decipher process,

the input array of bytes [in0, in1, …, in15] is copied into the state array, then the ciphering and

deciphering operations are conducted on this state array, and the final results are copied to the

output array of bytes [out0, out1, …, out15] as shown in Fig. 1.7. The copying from the input

array and to the output array is carried out according to the following schemes:

 .40 and 40for]4[],[ crcrincrs (1.5)

 .40 and 40for],[]4[ crcrscrout (1.6)

 As described in the high level description of the AES algorithm, the cipher and decipher

processes use a round function that is composed of four different byte-oriented transformations:

1) SubBytes, 2) ShiftRows, 3) MixColumns, and 4) AddRoundKey. In the AddRoundKey step,

each byte of the state is combined with a block of the round key using bitwise XOR.

Table 1.2: Algorithm specification of the AES.

 Key Length (bits) Block Size (bits) Number of Rounds

AES-128 128 128 10

AES-192 192 128 12

AES-256 256 128 14

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

 Figure 1.7: The state array input and output in the AES.

AES Algorithm: High Level Description

1. KeyExpansions - round keys are generated on the basis of the cipher key. AES requires

a separate 128-bit round key block for each round including the initial round;

2. InitialRound

 AddRoundKey – adding a round key to the state;

3. Rounds

 SubBytes – byte substitution using a lookup table;

 ShiftRows – shifting rows of the state array by different offset;

 MixColumns - mixing data within each column of the state array;

 AddRoundKey

4. Final Round (no MixColumns)

 SubBytes

 ShiftRows

 AddRoundKey

http://en.wikipedia.org/wiki/Rijndael_S-box

1.5 ADVANCED ENCRYPTION STANDARD (AES) 13

The SubBytes transformation shown in Fig. 1.8 is a non-linear byte substitution that

independently operates on each byte of the state using a substitution table (S-box). For instance,

if s1,1={53}, then the substitution value (s′1,1) would be the one in the S-box determined by the

intersection of the row with index 5 and the column with index 3.

In the ShiftRows transformation, as shown in Fig. 1.9, the bytes in the last three rows of

the state are cyclically shifted over different number of bytes (offsets). The first row, r=0, is

unchanged. Specifically, the shifting proceeds as follows:

 ,40 and 40for)_(,, 
 crss offsetshiftcrcr (1.7)

where shift_offset depends on the row and it is 1 for r=1, 2 for r=2, and 3 for r=3. Thus, each

byte in the second row is shifted one to the left. Similarly, the bytes in the third and fourth rows

are shifted to the left by offsets of two and three, respectively. The importance of this step is to

avoid the columns being linearly independent, in which case, the AES degenerates into four

independent block ciphers.

 Like the ShiftRows, the MixColumns transformation provides diffusion in the cipher. As

shown in Fig. 1.10, this transformation operates on the state column-by-column, treating each

column as a four-term polynomial. The transformation rule is a matrix multiplication as follows:

 .40for

02 01 01 03
03 02 01 01
01 03 02 01
01 01 03 02

,3

,2

,1

,0

,3

,2

,1

,0





























































c

s

s

s

s

s

s

s

s

c

c

c

c

c

c

c

c

 (1.8)

 To perform the decipher process in the AES algorithm, the above cipher transformations

are inverted and then implemented in reverse order. The transformations used in the deciphering

process are: 1) InvShiftRows - each byte of the second, third, and fourth rows of the state is

cyclically shifted to the right by offsets of 1, 2, and 3, respectively; 2) InvSubBytes - each byte

of the state is independently substituted using an inverse S-box; 3) AddRoundKey; and 4)

InvMixColumns - each column of the state is transformed by multiplying with a matrix.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

Figure 1.8: The SubBytes transformation in the AES.

s s′

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

Figure 1.9: The ShiftRows transformation in the AES.

sr,c s′r,c

S-Box

1.6 AUDIO SCRAMBLING 14

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

Figure 1.10: The MixColumns transformation in the AES.

 Regarding the security of the AES, the U.S. Government announced that the AES could

be used to protect classified information [39]. In addition, many papers have been published on

the cryptanalysis of the AES and it has survived numerous cryptanalytic efforts [40-42]. It has

approved that the 128-bit key size used in the AES is resistant against the known cryptanalysis

attacks including the brute force attack. Moreover, the computational complexity of the

exhaustive key search for the AES depends on the length of the cipher key:

 For a 128-bit key, the first key recovery attack has computational complexity of 2
126.1

;

 For a 192-bit key, the first key recovery attack has computational complexity of 2
189.7

;

For a 256-bit key, the first key recovery attack has computational complexity of 2
254.4

;

As for the implementation, the AES is fast in both software and hardware [43-48]. It can

be implemented to run at speeds unusually fast for a block cipher on a Pentium (Pro) [37].

 In this thesis, although there is no restriction on the choice of encryption algorithms to be

used for the proposed methods, we choose the AES due to its speed, high level security, and

ease of implementation.

1.6 Audio scrambling

Nowadays, audio scrambling methods [16-17, 49-52] are widely used to provide confidentiality

in audio distribution. Transposition-based audio scrambling methods are kinds but not direct

applications of audio encryption. They try to reduce the residual intelligibility of an audio signal

by breaking the coherence between data contents so that the signal is unintelligible to

unintended recipients of the communication. As they neither inject any new values nor change

the values of the existing contents, they do not stop compliance with the audio format or neither

increase file size nor change data format after scrambling. In addition, they do not create the

operational conflict problem discussed in Sect. 1.2.2. They enable us to embed the watermark on

the scrambled signal and to extract it from either the scrambled or descrambled version of the

signal as well. Thus, they can be used more effectively as pre- and post-processing of the data

hiding process rather than the usual encryption methods.

A scrambling algorithm can be evaluated in many aspects, where the most important of

which are as follows:

s0,c

s1,c

s2,c

s3,c

s′0,c

s′1,c

s′2,c

s′3,c

MixColumns()

http://en.wikipedia.org/wiki/Classified_information

1.7 OBJECTIVE OF THIS THESIS 15

 Scrambling effect: even for one-time scrambling, the scrambling degree should be

achieved to a high extent;

 Efficiency: the scrambling and descrambling processes should not be too complex;

 Security/anti-decryption capability: even if the algorithm is made public, descrambling

should still be difficult or even impossible;

 Perceptual quality: the scrambled signal should achieve very low or even zero residual

intelligibility and the descrambling process must also be able to recover the signal with

nearly original quality;

 Execution time: as long as there is no harm to security, the shorter the time taken for

scrambling/descrambling, the more efficient the algorithm;

 In this thesis, with the purpose of applying together with data hiding methods, two low-

complexity audio scrambling methods are proposed. Their performances are also thoroughly

evaluated in terms of the above mentioned aspects.

1.7 Objective of this thesis

As described in the previous sections, the development of audio encryption methods that keep

compliance with the media standard and that can be used together with data hiding is very

important for today’s DRM systems. In addition, those methods should not create inconvenience

for the authorized users to access and enjoy the audio files. This thesis proposes low-complexity

audio encryption methods that satisfy those requirements.

Firstly, Chapter 2 introduces the concept of partial encryption on uncompressed audio

data together with a solution for invalid amplitude problem discussed in Sect. 1.2.1. Then, it

focuses on a low-complexity partial encryption method for MP3. The proposed method is

embedded in the MP3 encoding process in which only the quantized values that are perceptually

important according to the Human Auditory System (HAS) are encrypted. It reduces execution

time by encrypting only the parts of an MP3 file rather than the whole file. The resulting

encrypted file is still compatible with the MPEG standard so it can be rendered by any existing

MP3 players. For full-quality rendering, decryption using the appropriate cryptographic key is

necessary. Moreover, the effect of encryption on audio quality can be flexibly controlled by

adjusting the percentage of encryption. On the basis of this feature, we can realize the try-

before-purchase model discussed in Sect. 1.4: users can render the encrypted MP3 files for trial

and enjoy the contents in original quality by purchasing the decryption keys. From our

experiments, it turns out that encrypting 2-10% of the MP3 data suffices to generate trial music,

and furthermore file size increase after encryption is subtle.

 Secondly, Chapter 3 proposes two fast and simple transposition-based audio scrambling

methods: one is based on the pre-order traversal of a complete binary tree and the other on a

pseudorandom number generator (PRNG) called Mersenne Twister (MT). Since the methods

only affect the positions of the audio samples but not the values, they can be used together with

data hiding methods without the operational conflict problem discussed in Sect. 1.2.2.

According to the experimental results, both methods are very effective in terms of time and

space complexity and the scrambling effect. However, their cryptographic securities are limited.

1.7 OBJECTIVE OF THIS THESIS 16

 Thirdly, with the aim of strengthening the cryptographic security of the methods

proposed in Chapter 3, Chapter 4 proposed two new schemes that combine each of those

methods and the Discrete Wavelet Transform (DWT). First, an audio signal is wavelet

decomposed and the layers of wavelet coefficients are retrieved. Then the coefficients in each

layer are separately scrambled by considering not only the pre-order but also the in-/post-order

based scrambling methods in the first scheme and by using the MT based scrambling method

with a series of keys in the second scheme. Anyone who does not know the correct wavelet

decomposition parameters and the correct method/key used for each layer will not be able to

successfully descramble the signal. In addition, the new schemes also achieve the progressive

scrambling effect in which the audio outputs with different quality levels can be generated by

scrambling layer-after-layer. During the descrambling process, the audio signals with low-to-

high quality can be progressively recovered by descrambling layer-after-layer. This feature is

very attractive because it enables the audio quality to be controllably degraded on the basis of

the system requirement: slightly distorted ones for the try-before purchase model of the DRM

systems and severely distorted ones for the systems with strong security needs.

The rest of this thesis is organized as follows. Chapter 2 discusses two low-complexity

partial encryption methods for uncompressed (WAV) and compressed (MP3) audios along with

the experimental results. Chapter 3 proposes two transposition-based audio scrambling methods.

The evaluation results of their scrambling effect, execution time, and cryptographic security are

also described. Chapter 4 discusses how to enhance the cryptographic security of the methods

proposed in Chapter 3 with the detailed evaluation results. Finally, Chapter 5 concludes and

summarizes this thesis.

CHAPTER 2 PARTIAL ENCRYPTION METHODS THAT ENHANCE AUDIO SECURITY 17

Chapter 2

Partial Encryption Methods that

Enhance Audio Security

This chapter introduces the concept of partial encryption on raw audio (WAV) with a solution

for invalid amplitude problem discussed in Sect. 1.2.1 as well. Additionally, Sect. 2.3 presents a

low-complexity partial encryption method for MP3 as well as a detailed suggestion on how to

effectively choose the data for encryption during the MP3 encoding process.

2.1 Introduction

As discussed in Sect. 1.4, partial encryption has more desirable features than usual encryption of

the whole file such as reducing complexity and yielding low-quality audio signals. A lot of

works on partial/selective encryption of compressed audio (MP3) have been proposed in the

literature. All of those works are different based on the fact that how and which data are chosen

for encryption.

During the MP3 encoding process, the input PCM data transformed into several variants:

frequency lines, quantization values, etc. Thorwirth et al. [53] proposed a partial encryption

scheme that encrypts some selected frequency regions of the MP3 main data. The audio quality

was degraded on the basis of the regions encrypted. However, neither the detailed procedure of

encryption nor which frequency regions were selected for encryption was discussed.

Servetti et al. [54] proposed a more detailed selective encryption scheme on frequency

regions that yields the encrypted MP3s with low-pass filter quality. It was realized as follows:

the selected frequency regions are limited by encrypting whose frequency lines and ordering the

MP3 decoders not to decode them by setting their associated Huffman table indices to not-used

values (4 and 14). That system needed to modify some fields in the MP3 header so that the

decoder could successfully skip the encrypted parts. Modifying the header and forcing the

decoders to behave in exceptional manners might cause problems of compatibility: not all

decoders might function as expected.

Torrubia and Mora [55] introduced the term “perceptual cipher” that means encryption

that keeps the encrypted data to be perceptually acceptable (albeit lower quality). In that system,

encryption was done on two variants of the MP3 data: selected scalefactors and Huffman codes.

The selected scalefactors were encrypted by performing the XOR operation with the output of a

2.2 PARTIAL ENCRYPTION ON RAW AUDIO 18

PRNG, whereas the Huffman codes were encrypted by replacing the selected codewords with

another codewords of the same size from the same codebook. In this system, the encryption on

Huffman codes poses a limitation on the choice of encryption algorithm, and only the ones that

do not affect file size and data format are suitable.

Steinebach et al. [52] also proposed a partial encryption method on the scalefactor values

in which the scalefactors of an MP3 frame are randomly formed into groups in accordance with

a key and permuted within their corresponding group without changing the values. That method

provided only a weak security because the number of possible permutations was not large

enough.

A selective encryption method on quantization values was proposed in [56] in which

only the quantized values positioning at even indices are encrypted and the ones at odd indices

are left unencrypted. Although the system was simple and easy to implement, the effect of

encryption on the perceptual quality was limited.

 This chapter proposes a low-complexity partial encryption method for MP3 that can be

carried out without extensive computation, impact on compression ratio, and significant

modification on MP3 headers. It is also very effective in terms of the perceptual quality because

it chooses the data for encryption in accordance with the concept of the HAS. Moreover, the

method does not impose any limitation on the choice of cipher algorithms although using the

state-of-the-art AES will be a practical advantage.

2.2 Partial encryption on raw audio

As discussed in Sect. 1.3.1, in spite of its large size, the uncompressed/raw audio format (WAV)

is a commonly used file type for storing high-fidelity audio files on a system where disk space is

not a constraint. The uncompressed WAV files are sometimes used by some radio broadcasters,

especially those that have adopted a tapeless system. For instance, BBC Radio in the UK uses

the 44.1 kHz 16-bit two-channel WAV audio as standard in their VCS system (system for

managing playout including media stores, playout systems and editing systems).

In this section, an effective partial encryption method for uncompressed audio (WAV) is

proposed in which the selected parts of a WAV file are encrypted by using the AES algorithm.

Regarding the AES, there are some facts which we should pay attention to. Because it is a block

cipher, the length of input needs to be multiple of 16 bytes and if they are not, some padding

schemes are needed and this may increase file size after encryption. In our system, we choose

the size of Ye (the data to encrypt) to be satisfied multiple of 16 bytes so that the AES can be

used with no-padding scheme. The Electronic Code Book (ECB) mode among the AES modes

of operations is chosen for the following reasons:

 ECB mode does not have error propagation feature;

 Other block chaining modes need the connected blocks to be decrypted in order and

impose limitations in online streaming applications;

 Other modes increase size after encryption due to the use of initialization vector (IV);

For stronger security, the AES/CTR mode can be used instead of the ECB. Like the ECB,

the CTR mode independently encrypts and decrypts each input block and hence avoids error

http://en.wikipedia.org/wiki/BBC_Radio
http://en.wikipedia.org/w/index.php?title=VCS_AG&action=edit&redlink=1

2.2.1 SOLUTION FOR INVALID AMPLITUDE PROBLEM 19

propagation. The CTR mode satisfies all of the above mentioned properties of the ECB except

the use of the IV. The IV is used to randomize the encryption and hence it produces distinct

ciphertexts even if the same plaintext is encrypted multiple times. Even though it strengthens the

security, the IV must be somehow passed to the decryption process for successful decryption.

The most common way is to concatenate the IV at the start of the ciphertext for the price of an

increase in file size. If the CTR mode is to be applied in the proposed method, we can avoid

increasing the file size by appending an additional file header that carries the encrypted IV

information at the beginning of an audio track without violating the media standard. We can use

the same key or different keys for encrypting the IV and the audio content. In this research, the

ECB mode is still chosen because of its simplicity. In addition, although the ECB mode is

vulnerable to dictionary attacks, that mode on audio bitstreams makes such attacks very hard due

to large alphabet size.

Although high-level security can be achieved by applying the AES, unfortunately, the

encrypted results by the AES inevitably face the invalid amplitude problem that was discussed

in Sect. 1.2.1 [22-23]. Thus, a solution for that problem is firstly proposed in the following

section.

2.2.1 Solution for invalid amplitude problem

As discussed in Sect. 1.2.1, the invalid amplitude problem occurs when the encrypted audio

samples are beyond the valid range and thus clipped by the audio coder. In our system, the

MATLAB software that we use for simulation deals with any data as double (64-bit) format

regardless of the original format and thus the valid amplitude range is [-1, +1]. As the AES

algorithm used for ciphering the audio files works on array of bytes, the resulting encrypted

audio samples are in the range of [0, 255] and hence need to be scaled to keep compliance with

the original format. The proposed scaling scheme is as follows:

After encryption,

　,256/ee YY   (2.1)

where eY  is the block with encrypted samples. Before decryption,

.256  ee YY (2.2)

The only and most important thing is to keep high arithmetic precision accuracy when using Eq.

(2.1) and Eq. (2.2) [57]. If we failed to keep high precision accuracy after applying Eq. (2.1) and

let the result round off, undesirable quality distortion might still occur in the decrypted audio file.

2.2.2 Procedure

Figures 2.1(a) and (b) show the block diagrams of partial encryption and decryption on raw

audio data, respectively. The detailed procedure is as follows [57]:

Parameters: user-defined key (u_key), encryption percentage (p), and PCM data (M);

Step 1: To facilitate the AES’s block size restriction, M is first divided into 128-sample blocks

S;

2.2.1 SOLUTION FOR INVALID AMPLITUDE PROBLEM 20

Figure 2.1: System flow of (a) partial encryption and (b) partial decryption on raw audio.

  

}.1281 ,block for sample|{

and 128/)(where

,

1






jijMsS

MlengthlSS

jii

i

l

i


 (2.3)

 .)\(SMSM  (2.4)

Step 2: On the basis of p, the number of blocks (Be) to be encrypted is determined;

  ,)100/(lpBe  (2.5)

where   128/)(Mlengthl  .

Step 3: The blocks for encryption },,,{ ,2,1, eBeee YYY  are randomly chosen from S; for high

security, the pseudorandom number generator is seeded with u_key.

Step 4: Each Ye is encrypted and amplitude scaling defined by Eq. (2.1) is applied on the

encrypted results of Ye to make sure compliance with the original audio format.

.
256

)_,(

1

,
B

k

e
ke

e

keyuYE
Y










 (2.6)

Hereafter, the E(.) represents the formal AES encryption process. Then the encrypted PCM is,

 , ce YYM  (2.7)

where Yc are the samples in M left unencrypted. By restraining the size of Ye to 128, the

AES/ECB mode with no-padding scheme can be used without any trouble and thus M′ will also

be the same size as M. After writing the M′ as a WAV file, the quality-degraded audio file that

can be securely distributed is obtained.

When writing the M′ (floating point) as a WAV file by using default 16-bit bit-depth, it

has to be converted to integer (int16 type). Instead of simple rounding which leads to data loss,

the “wavwrite” and “wavread” of MATLAB use Eq. (2.8) and Eq. (2.9) to change data type

between floating point and integer [57]. Those functions achieve nearly perfect reconstruction

with very small precision loss which has no effect on the decryption process. Thus by decrypting

with the authorized use of the u_key and p, the file with nearly original quality can be

successfully recovered.

(a)

(b)

u_key u_key, p

No

Yes
Start Read

WAV

Segment-

ation

AES

Decrypt
Decrypt

?

Amplitude

Re-scaling

Concate-

nation

Write

WAV
End

Yes
No

Start
Read

WAV

Segment-

ation

AES

Encrypt
Encrypt

?

Amplitude

Scaling

Concate-

nation

Write

WAV
End

2.2.3 EXPERIMENTAL RESULTS 21

To convert from floating point x to integer y (int16 type),

).32768( xroundy (2.8)

To convert from integer (int16 type) to floating point,

 . 32768/yx  (2.9)

2.2.3 Experimental results

In this thesis, we use the MATLAB software to simulate the proposed method on audio signals

belonging to different categories: pop, jazz, classical, and speech, which are encoded in 16-bit

PCM format with sampling frequency of 48 kHz. The results are thoroughly analysed in terms

of perceptual quality, execution time, and security.

The perceptual quality assessment is done by measuring the objective difference grade

(ODG) between the encrypted WAVs and the reference unencrypted WAVs. Table 2.1 shows

the grading scales of ODG [58]. The ODG, which is an objective measure of the perceived audio

quality, is calculated by the perceptual evaluation of the audio quality (PEAQ) algorithm

specified in the ITU-R BS 1387-1 [58].

Figure 2.2 shows the ODG values after applying the proposed method on the audio

signals with varying p (% of encryption). The p is calculated on the basis of the total number of

blocks (each with size of 128 samples) consisting in the audio file. From Fig. 2.2, we can see

that the qualities of the encrypted audios are getting worse along with the increasing p. For

p≥20%, the resulting ODG values are less than -3.2 for all signals. This shows that the proposed

method badly destroys the signals to such an extent that the resulting audio qualities are very

annoying. For p=2-10%, the ODG values are between -2.2 and -3.6 in general, which mean fine-

to-poor audio quality. Thus, it can be concluded that p=2-10% is suitable for generating the

preview-quality audio files to realize the try-before-purchase model of DRM.

 To test and verify execution time of the method, we simulate the system on a PC with 2.4

GHz, Intel ® Core™ i5-2430M Processor. Figures 2.3(a) and (b) show the execution time

results of the proposed method for encryption and decryption respectively. The results are the

time taken not only for encryption and decryption but also for pre and post processing (i.e.

segmentation and restructuring of an audio frame). For both encryption and decryption processes,

we can see from Fig. 2.3 that execution time increases along with the increasing p for all music

items. Note that execution time drops for p=100% because pre and post processing are not

needed. For all music items, the proposed method only takes about one-fifth of the duration of

the original signal even for encrypting half of that signal. For p=2-10%, which we assume that it

is suitable for generating trial music, it takes less than one second for encryption/decryption and

it is much shorter than the duration of the original music. Therefore, it can be concluded that the

proposed method is possibly applied in real time applications.

The security of the proposed method depends on the security of the AES algorithm,

whose security has been widely researched in the literature. The longer the key length is, the

higher the security that the AES can offer. In our system, we use the AES with 128-bit-long key

which is known to give strong resistance against the known cryptanalytic methods including the

brute force analysis. In addition, a pseudorandom sequence used to select the blocks of audio

samples for encryption/decryption is generated based on the user-defined key. Thus, it is

2.3 PARTIAL ENCRYPTION ON MP3 22

computationally impossible to generate the same sequence without knowledge of the key used.

2.3 Partial encryption on MP3

As we discussed in Sect. 1.3.2, the MP3 is the most widely used compressed audio format for

the transfer and playback of music on most digital audio players. However, it is not equipped

with security features to protect the content from unauthorized accesses. This section proposes a

low-complexity partial encryption method for MP3 together with a detailed performance

evaluation on execution time, perceptual quality of the encrypted signals, etc. Additionally, this

section presents a suggestion on how to choose data for encryption in accordance with the

concept of the HAS, which is very important for the effective use of partial encryption.

2.3.1 Choice of data to encrypt

The effectiveness of partial encryption on MP3 depends on how to select Ye (the data to encrypt).

The Ye can be chosen from

Table 2.1: Grading scales of ODG.

ODG Impairment Description Audio Quality

0 Imperceptible Excellent

-1 Perceptible but not annoying Good

-2 Slightly annoying Fine

-3 Annoying Poor

-4 Very annoying Bad

Figure 2.2: ODG vs p of the encrypted WAVs.

http://en.wikipedia.org/wiki/Digital_audio_player

2.3 PARTIAL ENCRYPTION ON MP3 23

Figure 2.3: Execution time of the proposed method: (a) encryption (b) decryption.

2.3.2 PROCEDURE 24

 Header-like information (e.g. side information, CRC, and Huffman tables) or

 Variant of the input PCM and its supplements (e.g. MDCT frequency lines, quantized

values, Huffman codes, and scalefactors);

The former are the information needed by the decoder to decode an MP3 file. Encryption

on them makes the decoder to decrypt them first before decoding and thus it is not suitable for

real time applications and music trial services. The latter are appropriate to be used in all kinds

of applications and among them, the proposed method chooses the quantized values as Ye

candidates for the following reasons [57]:

 Scalefactors and Huffman codes are not directly related to perceptibility. We cannot

decide which part of them is perceptually more important to choose as Ye;

 Huffman codes have error avalanche effect [36], and encryption on them leads to

synchronization problem;

 Huffman codes are sensitive to encryption algorithms. Only the algorithms which yield

the encrypted results with invariable format and length are suitable, e.g. the one that

replaces the codewords with other codewords of the same length;

 Although the MDCT frequency lines can be chosen on the basis of perceptibility,

encryption on them has a significant impact on compression efficiency of MP3 encoders;

2.3.2 Procedure

As shown in Fig. 2.4, the proposed method can be applied for both online and offline

applications. Online applications, e.g. live broadcast, are time critical and thus the encrypted

MP3 files should be generated by simultaneously compressing and encrypting raw PCM. In the

case of offline applications, encryption is done on already encoded MP3 files and thus partial

decoding is needed for obtaining data to encrypt. To understand the details behind the proposed

method, we need to have a closer look at the MP3 encoding process.

As discussed in Sect. 1.3.2, each MP3 frame carries 1,152 samples and lasts for 26 ms

[33]. After passing through the analysis filterbank and the MDCT process, the end result is

subdivided into two granules (each with 576 spectral lines sorted in order of low to high

frequencies). The non-uniform quantizer used in the MP3 encoding process makes use of the

nature of the HAS to effectively quantize those frequency lines. According to the HAS, most

human cannot sense frequencies below 20 Hz nor above 20 kHz. More precisely, frequencies

ranging from 2 kHz to 4 kHz are the easiest to perceive, they are detectable at a relatively low

volume [33].

 To achieve the highest quality with the lowest possible bitrate, the non-uniform quantizer

uses a large quantization step size for high frequency lines (leads to small quantized values) and

a small step size for low frequency lines. The quantized values are then divided into five regions

as shown in Fig. 2.5 and encoded by using different Huffman tables to enhance the performance

of Huffman encoder.

 Among the five regions, most of the spectral energy of an audio signal accumulates in

big_values regions, the size of which is indicated by big_values field in the side information part

of an MP3 frame hence the maximum value is 288. Most common region boundaries, for a 44.1

2.3.2 PROCEDURE 25

kHz sampled signal, are 0-2 kHz for region0, 2-5 kHz for region1, and 5-14 kHz for region2.

These frequencies are very sensitive to human ear and thus the big_values regions are the most

suitable for partial encryption.

In the proposed method, Ye is chosen from the big_values regions, and the detailed

procedure is as follows:

Parameters: user-defined key (u_key), encryption percentage (p), and big_values (M);

Step 1: First the number of frames carried by an MP3 bitstream is calculated. As each MP3

frame is 26 ms long, for a t-second long signal, it generally consists of

Figure 2.4: Proposed method (online/offline): (a) encryption (b) decryption.

big_values regions

(-8191…+8191)

count1_region

(-1…+1)

rzero_region

(0)

region0 region1 region2 count1 rzero

Figure 2.5: Partitioning of quantized values.

1 big_values*2 big_values*2+count1*4 576

(a)

(b)

Switch 1

A B

Online

Offline

on off

off on

Partially

Encrypted

MP3

Quantized

values

B

A

Switch 1

PCM

MP3

Yes

AES

Encrypt

Frame to

Encrypt?

Huffman

Encoding
Bitstream

Formatting
No

Time-

Frequency

Mapping

Quantiza-

tion

Bitstream

De-

multiplexing

Huffman

Decoding

Psycho-

acoustic

Modeling

u_key, p

u_key

Partially

encrypted

quantized values

Partially

Encrypted

MP3
Yes

No

Recovered

Signal Bitstream

De-

multiplexing

Huffman

Decoding

Re-

Quantization

Synthesis

Filterbank
Frame to

Decrypt?

AES

Decrypt

2.3.3 EXPERIMENTAL RESULTS 26

 frames. 38 tF  (2.10)

Step 2: On the basis of p and F, the number of frames for encryption (Fe) is determined.

  .)100/(　FpFe  (2.11)

Step 3: The Fe frames for encryption are pseudo-randomly selected. Note that each frame is

made up of 2 granules (sub-frames) and the following procedure is applied on both granules of

the selected frames though we just refer to as frame for simplicity. For each selected frame j, to

make the length of the part to encrypt facilitate with the AES block size, the Ye,j is chosen from

jM as follows:

},128*1 ,frame of

from valuequantized |{ ,,

li j big_values

 i-th MQY jjije




 (2.12)

where  128/)(jMlengthl  .

Step 4: After encrypting the Ye,j and putting back in their original positions, the encrypted jM  is

obtained.

)._,(,, keyuYEY jeje  (2.13)

 .\ where ,,,, jejjcjcjej YMYYYM  (2.14)

 The above procedure is done on all granules of the selected frames. Finally, after

Huffman-encoding and bitstream formatting, the quality-degraded MP3 file is obtained. For the

offline case where the input is an already encoded MP3 file, partial decoding is needed to obtain

M. For decoding a frame and extracting M from it, the decoder has to read the fields in the

header and the side information part, the most important of which are the followings:

 Sync: points the start of a frame;

 main_data_begin: indicates where the main data of a certain frame begins;

 part2_3_length: states the number of bits allocated in the main data part of the frame for

scalefactors (part2) and Huffman encoded data (part3);

 big_values: indicates size of the big_values partition;

 table_select: specifies the Huffman tables that must be used for decoding the big_values

partition;

Note here that the quantized values also have their own value range as shown in Fig. 2.5.

If the encrypted results do not follow those specified ranges, it will destroy compliance with the

MP3 standard and needs to be solved as the invalid amplitude problem discussed in Sect. 1.2.1

and Sect. 2.2.1. In the proposed method, we avoid this problem by encrypting only the

big_values regions. Because those regions carry the quantized values in [-8191, +8191] range,

the encrypted results which are in [0, 255] range are valid.

2.3.3 Experimental results

Using the same music items used in Sect. 2.2.3, performance of the proposed method is

evaluated in terms of perceptual quality, execution time, security, and the effect on compression

ratio. The LAME encoder [59], which is open-source software, with default bit rate setting (128

2.3.3 EXPERIMENTAL RESULTS 27

Kbits per second) is used for encoding MP3 files. The perceptual quality assessment is done by

measuring both ODG [58] and subjective difference grade (SDG) [60] between the original

WAVs and the encrypted MP3s. The grading scales of SDG are shown in Table 2.2.

 Figure 2.6 shows the ODG values of applying the proposed method on MP3 audios with

varying p (% of encryption). The p is calculated on the basis of the total number of frames (each

with size of 1,152 samples) that make up of an MP3 file. As shown in Fig. 2.6, the ODG values

are getting smaller along with the increasing p. This means that the qualities of the encrypted

MP3s are getting worse when the encryption percentage is getting larger. Note that the ODGs

are around -0.3 even for p=0% because of the lossy MP3 compression. For all music items, the

ODG values are less than -3.6 for p≥20% and show that the qualities of the encrypted MP3s are

very annoying. For p=2-10%, the resulting ODG values are generally between -2.7 and -3.6 for

all signals. These ODG values refer to fine-to-poor audio quality and hence it can be concluded

that encrypting 2% to 10% of an MP3 file is suitable for generating a preview-quality file to be

used in the try-before-purchase model of DRM.

Table 2.2: Grading scales of SDG.

SDG Impairment Description Audio Quality

5 Imperceptible Excellent

4 Perceptible but not annoying Good

3 Slightly annoying Fine

2 Annoying Poor

1 Very annoying Bad

Figure 2.6: ODG vs p of the encrypted MP3s.

2.3.3 EXPERIMENTAL RESULTS 28

To make the above assumption concrete, we also conducted subjective tests in which ten

untrained subjects were given seven different audio files for each test without mentioning

anything about encryption. One is the original WAV file and the others are the encrypted MP3

files. Firstly, they were asked to compare the qualities of the WAV and the other files. Then,

using the WAV file as a reference, they were asked to grade the quality impairment of the MP3

files in accordance with the subjective grading scales shown in Table 2.2. The final grading

results (G) calculated by using Eq. (2.15) are shown in Table 2.3. All of the listeners could

correctly identify 100% encrypted files because they sound like a white noise signal. Most of

them could perceive the gradual decrease in audio quality along with the increasing p starting

from 5% to 100%. Some could even correctly differentiate between 2% and 5% encrypted files

even though the quality impairment difference is very small. All of them confirmed that the

quality impairment caused by p>10% is too annoying to use as a trial music.

 ,
1

1




E

E

N

k k
SDG

N
G (2.15)

where NE is the number of evaluators and SDGk is the subjective measure graded by k
th

evaluator.

Figure 2.7(a) shows the execution time results of the method for both online and offline

cases. For online processing, the results are the total time taken for both encryption and MP3

encoding processes, whereas the offline case results are the time taken for all partial decoding,

encryption, and re-encoding processes. Generally, the more the file is encrypted, the longer it

takes for processing. However, even for p=100%, it only takes less than 2 seconds for 9-11

seconds long signals, and the time taken for p≤10% is found to be very short.

For authorized users, an MP3 file with nearly original quality can be successfully

recovered by decrypting with the use of the correct decryption key and p. Figure 2.7(b) shows

the time taken for both decoding and decryption processes. For all signals, it takes less than 2.5

seconds for p=100% and less than one second for p≤10%. Thus, it can be concluded that the

proposed method is effective so that it can be applied in real time applications.

As for the security of the method, it depends on the security of the AES algorithm as

discussed in Sect. 2.2.3. Although the AES/ECB mode is vulnerable to dictionary attacks, the

ECB mode on MP3 bitstreams makes such attacks very hard due to large alphabet size. For

instance, 128 bits per block result in 2
128

 possible input combinations, making the ECB block

ciphers too large to be handled using today’s dictionary attacks. In addition, since the

pseudorandom sequence used to select the MP3 frames for encryption/decryption is generated

based on the user-defined key, it is computationally impossible to generate the same sequence

without knowledge of the key used. In addition, the fact that encrypted bits are diffused after

decompression also enhances the security. If far stronger security is desired, the AES/CTR mode

instead of the ECB can be applied as discussed in Sect. 2.2.

Table 2.3: Subjective measures of audio quality for the encrypted MP3s.

Music
Grading on Varying p

2% 5% 10% 20% 50% 100%

Pop 3.40 3.30 2.30 1.60 1.00 1.00

Jazz 3.30 3.20 2.20 1.40 1.00 1.00

Classical 3.50 3.30 2.50 1.60 1.00 1.00

Speech 3.40 3.30 2.30 1.60 1.00 1.00

2.3.3 EXPERIMENTAL RESULTS 29

Figure 2.7: Execution time of the proposed method: (a) encryption (b) decryption.

 Furthermore, we tried to correlate the encrypted-decoded MP3 with the unencrypted-

decoded MP3. A correlation coefficient below 0.35 gives a security level comparable to that

obtained by complete encryption of a frame [61-62]. In our system, for p=2-10% which we

assume that it is effective enough to generate trial music, the resulting correlation coefficients

vary from 0.45 to 0.62 for p=2%, 0.3 to 0.37 for p=5%, and 0.21 to 0.25 for p=10%. Thus in the

2.3.4 IMPLEMENTATION NECESSITY 30

proposed method, the security level can be adjusted by varying p on the basis of the

confidentiality level of the prospective customer to whom the trial music has to be distributed.

 We also analyze the effect of the proposed method on compression ratio. Table 2.4

shows the size of the raw file (WAV) and the sizes of the compressed files (MP3s) with and

without encryption as well. The AES algorithm has a tendency to increase the file size after

encryption because the encrypted results are larger in value than the original ones. The original

quantized values in the big_values partitions are [-8191, +8191] range but most are up to 15.

The encrypted results are in the range of [0, 255] and thus most values change to larger ones

after encryption and need more bits to code them. As shown in Table 2.4, there may be an

increase in the file size up to 2KB for p=100%. However, it turns out that encrypting up to 10%

of an MP3 file, which we suggest for generating trial music, has no effect on compression ratio.

2.3.4 Implementation necessity

In this section, we discuss the implementation requirement for the proposed partial encryption

method for MP3. The proposed method needs to be incorporated into existing encoders or it is

needed to develop new encoders that will embed it as a module. In our simulation, we use the

LAME encoder to encode the MP3 files and apply our proposed encryption method as an

external module.

 As for the try-before-purchase model of DRM, the resulting encrypted MP3 files can be

rendered by any standard MP3 players without need to decrypt as the usual unencrypted ones.

For enjoying the full-quality, however, it is needed to decrypt the file with the authorized use of

the encryption % (p) and the key. In order to provide those decryption parameters, we can

append an additional file header that carries them at the beginning of an audio track without

violating the MP3 standard [53-54]. That header needs to be protected from unauthorized

accesses by using some public-key cryptographic algorithms. More strictly, although appending

an additional header does not comply with the MPEG standard, any player implemented

according to the standard will ignore that header while successfully playing the encrypted file.

Without doubt, the file in the original quality can be recovered under the use of the correct

decryption parameters and specific MP3 decoders.

Table 2.4: Effect of encryption on file size.

Music

File Size

(WAV)

File Size

(MP3 before

Encryption)

File Size (MP3 after Encryption)

p=2-10% p=100%

Pop 918 KB 78 KB 78 KB 80 KB

Jazz 1.85 MB 159 KB 159 KB 160 KB

Classical 2.01 MB 173 KB 173 KB 175 KB

Speech 1.7 MB 146 KB 146 KB 148 KB

2.4 CONCLUSION 31

2.4 Conclusion

This chapter discussed effective partial encryption methods for both uncompressed (WAV) and

compressed (MP3) audio formats. The solution for the invalid amplitude problem was also

presented. For partial encryption on MP3, this chapter presented how to choose the perceptually

important parts for encryption in accordance with the HAS. Experimental results showed that

the quality of the encrypted MP3s can be controllably degraded by adjusting the encryption

percentage in which encrypting 2-10% of an MP3 file suffices to generate a preview-quality file.

Those files can be played back by existing standard MP3 players without decryption. In addition,

the proposed method can be carried out without extensive computation and significant impact on

compression efficiency.

CHAPTER 3 TRANSPOSITION-BASED AUDIO SCRAMBLING METHODS IN TIME DOMAIN 32

Chapter 3

Transposition-Based Audio Scrambling

Methods in Time Domain

With the aim of possibly applying together with data hiding methods, this chapter discusses two

transposition-based audio scrambling methods developed in the time domain: one is based on

the pre-order traversal of a complete binary tree and the other on a PRNG called Mersenne

Twister. The evaluation results of their scrambling effect, time and space complexity, and

cryptographic security are also discussed.

3.1 Introduction

As discussed in Sect. 1.2.2, usual encryption methods [61, 63-64] are not appropriate for using

together with the data hiding process because they cause the operational conflict problem. That

problem can be avoided on the condition that those encryption methods provide the

homomorphic property. Exactly speaking, homomorphic encryption is a form of encryption that

allows computations to be carried out on the ciphertext and generates an encrypted result which,

when decrypted, matches the result of those computations performed on the plaintext.

Subramanyam and Emmanuel [61] proposed a combined scheme of homomorphic encryption

and data hiding. In that system, the watermark information was embedded on the ciphertext and

it could be detected in either the encrypted or decrypted domain. However, a cryptosystem

which is unintentionally malleable can be subjected to attacks on this basis.

 Datta and Gupta [63] proposed another combined scheme in which the conflict between

encryption and data hiding operations is avoided by firstly segmenting the audio signal and then

performing the methods on disjointed segments. In that system, the marked segments could not

be encrypted and the encrypted segments could not carry the watermark information. Thus, the

data embedding rate (the amount of watermarking bits that can be hidden in the signal) was

reduced.

 On the other hand, transposition-based audio scrambling methods are highly preferable

for such a combined scheme. As discussed in Sect. 1.6, they do not affect the values of the audio

contents. Thus, they provide operational transparency when using together with the data hiding

process in which the watermark information embedded on the scrambled audio signal can be

extracted from either the scrambled or descrambled signal.

https://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Ciphertext

3.2 AUDIO SCRAMBLING METHOD BASED ON THE PRE-ORDER TRAVERSAL OF A COMPLETE 33

BINARY TREE

A lot of transposition-based scrambling methods have been proposed in the literature and

they can be classified as time domain (spatial domain) and transform domain methods.

Jayant et al. [16] presented comparison results of four speech scramblers which are based

on sample permutation (S), block permutation (B), frequency inversion (F), and a combination

of B and F, respectively. Their performances are thoroughly compared in terms of residual

intelligibility, bandwidth expansion, and encoding delay. Among those scramblers, S achieves

lower residual intelligibility than B and F due to the availability of the more possible

permutations, however it increases encoding delay. In addition, the time domain scramblers like

S and B are simpler to perform than F because the scrambling process can be directly done on

the time domain samples. However, in terms of the bandwidth, F is more efficient because it

ensures the bandwidth keep unchanged based on the frequency bands scrambled.

Chen and Hu [17] proposed two audio scrambling methods in the time domain in which

the audio samples are reordered in accordance with the indices generated on the basis of a key

and on the basis of the in-order traversal scrambling transformation, respectively. Then, the

methods were combined by introducing a new parameter. In comparison with the individual

methods, it was stated that the combined scheme strengthens the security even though there was

no specific analysis on how much it was strengthened. In addition, according to the reproduction

results, it is found out that the methods are relatively slow to execute. They take about half of

the duration of the music file to scramble/descramble.

In the transform domain approaches, scrambling methods based on Fibonacci

Transformation [49], digital chaotic ciphers [50], and Euler Transformation [51] have also been

subjects of study.

In this chapter, we propose two transposition-based audio scrambling methods developed

in the time domain together with the detailed evaluation results. The first method is based on the

pre-order traversal of a complete binary tree. That method is effective in terms of time and space

complexity and scrambling effect; however, its cryptographic security is not strong enough

because there is no secret key control in that method [65]. According to Kerckhoffs’s principle,

the security of a cryptosystem should depend solely on the secrecy of the key and the private

randomizer, not on the algorithm. Thus, the second method which is cryptographically more

secure is proposed. That method is based on a PRNG called Mersenne Twister in which the state

of the PRNG is controlled via a secret key [66].

3.2 Audio scrambling method based on the pre-

order traversal of a complete binary tree

This section presents the proposed method that is based on the pre-order traversal of a complete

binary tree. It is faster to execute than the in-order traversal based method proposed in [17].

 First, let us introduce the traversal methods of a complete binary tree. A complete binary

tree can be traversed in either breadth-first or depth-first traversal. Most simply, the breadth-first

traverses a tree by visiting the node closest to the root it has not already visited (first child, then

second child before grandchildren) whereas the depth-first traverses a tree by recursively visiting

each node in the left and right subtrees of the root (first child, then grandchildren before second

3.2 AUDIO SCRAMBLING METHOD BASED ON THE PRE-ORDER TRAVERSAL OF A COMPLETE 34

BINARY TREE

child). The depth-first traversal can further be classified as pre-order, in-order, and post-order

traversals in accordance with the position of the root with regard to the right and left nodes.

 Pre-order visits the root, traverses the left subtree, and then traverses the right subtree.

 In-order traverses the left subtree, visits the root, and then traverses the right subtree.

 Post-order traverses the left subtree, traverses the right subtree, and finally visits the root.

If we consider the result of the breadth-first traversal as an original data array/sequence,

the results of the depth-first traversals will be like scrambling that sequence. As an example,

assume that  43210 ,,,, sssssS  is an array of audio samples. That array can be represented as a

complete binary tree by assuming the first sample as root node and filling the samples starting

from the left in both branches, as shown in Fig. 3.1. As the breadth-first traverses a tree level-by-

level, its traversal result is exactly the same as the given array, as shown in Fig. 3.2. As for the

depth-first traversals, the pre-order traverses each and every subtree in root-left-right order

which yields the result shown in Fig. 3.3. Similarly, the in-order (left-root-right) and the post-

order (left-right-root) traversal results are shown in Fig. 3.4 and Fig. 3.5 respectively. All of the

depth-first traversal results are different from S. Note that a tree is always traversed starting from

the root node; however, the arrows in Fig. 3.2 to Fig. 3.5 just show the order of the result nodes.

On the basis of the above feature, an audio scrambling method based on the pre-order

traversal is proposed in this thesis. For the sake of simplicity, the method is hereinafter referred

to as pre.

Figure 3.1: A tree representation of an array of audio samples (S).

Figure 3.2: The breadth-first traversal result:  43210 ,,,,' sssssS  .

s2

s0

s1

s3 s4

s2

s0

s1

s3 s4

3.2.1 ALGORITHMIC DETAIL 35

Figure 3.3: The pre-order traversal result:  24310 ,,,,' sssssS  .

Figure 3.4: The in-order traversal result:  21 ,,,,' 043 sssssS  .

Figure 3.5: The post-order traversal result:  02143 ,,,,' sssssS  .

3.2.1 Algorithmic detail

Algorithm 1 describes the algorithmic detail of pre. As in the above example, assume that each

sample in an audio signal represents a node in a complete binary tree and that they are organized

in breadth-first order. The complete binary tree in breadth-first order can be stored in an array

instead of a linked list and thus the entire tree can be traversed by simply indexing like this: for a

node at index i, its parent is at  2/)1(i (assuming the root has index 0) and its children are at

2*i+1 (left child) and 2*i+2 (right child). Avoiding the use of a pointer makes the algorithm

highly efficient. In addition, a stack is used for storing some intermediate nodes for a later visit

during traversal and it also increases the efficiency by avoiding recursion.

s2

s0

s1

s3 s4

s2

s0

s1

s3 s4

s2

s0

s1

s3 s4

3.2.1 ALGORITHMIC DETAIL 36

According to Algorithm 1, the sample at index 0 (the root) of the original audio is also

the first sample/output in the scrambled audio. Then, if there is a sample at index 1 (left child), it

is the next output, and the right child (if there is a sample at index 2) is stored in the stack for a

later visit. If the left child is not the last node (if there are the samples left unvisited), it is

assumed as the root of a subtree and the above steps of outputting the root, finding the left and

right children, and outputting the left child are repeated. When there are no more left children to

traverse down the tree, an element from the stack is retrieved as the next output. If that element

is also the root of a subtree, that subtree is traversed again in the same manner mentioned above.

This process continues until no more elements are in the stack. Figure 3.6 shows the step-by-step

tracing of the pre on an example array according to Algorithm 1.

Algorithm 1 Pre-order Based Audio Scrambling Method

[1] Given an audio signal s with n samples [s0, s1, …, sn-1], a scrambled audio signal s′=

[s0′, s1′, …, sn-1′] is generated; Assume that each sample in s represents a node in a

complete binary tree; Initialize pos=0 as index of root;

[2] for i = 0, 1, …, n-1 do

[3] Construct the scrambled signal s′ with samples from s indexed by pos:

siꞌ=spos

[4] Calculate index of the left child:

lchild=2*pos+1

[5] Calculate index of the right child:

rchild=2*pos+2

[6] if rchild<n then

[7] Save the right child’s index in stack:

 push(rchild)

[8] Assign pos=lchild

[9] else if lchild<n then

[10] Assign pos=lchild

[11] else if stack is not empty then

[12] Output an element from the stack:

pos=pop()

[13] end if

[14] end for

Index

0 1 2 3 4 5 6 7 n=8

output root; s A B C D E F G H Stack

s′ A

pos=0;

output lchild(1);

save rchild(2) in

stack;
s′ A B

C

pos=1;

3.2.1 ALGORITHMIC DETAIL 37

output lchild(3);

save rchild(4) in

stack;
s′ A B D

C E

pos=3;

output lchild(7); s′ A B D H

C E

pos=7;

no more lchild and

rchild; output an

element from

stack;

s′ A H D H E

C E

pos=4;

no more lchild and

rchild; output an

element from

stack;

s′ A H D H E C

C

pos=2;

output lchild(5);

save rchild(6) in

stack;
s′ A H D H E C F

G

pos=5;

no more lchild and

rchild; output an

element from

stack;

s′ A H D H E C F G

G

pos=6;

Figure 3.6: The step-by-step tracing of the pre on an example array.

3.2.2 Experimental results

In this section, the proposed method is thoroughly analysed in terms of its scrambling effect,

time and space complexity, and security. We use the MATLAB software to simulate the method

on a machine with an Intel(R) Core™ i5-2430M CPU @ 2.40GHz processor. The music items

described in Table 3.1, which are sampled at 48-kHz and coded in 16-bit WAV format, are used

in the experiments.

 To verify the scrambling effect, the pre is applied on the “Pop” audio file and then the

waveforms before and after scrambling are compared. Figures 3.7(a) and (b) show the

waveforms of the original and scrambled audio signals respectively. From (b), it is difficult to

guess the structure of the original audio and this shows that the pre has good scrambling effect.

When listened to the scrambled audio, it has very low residual intelligibility.

The scrambling effect is also inspected in the frequency domain by applying the FFT

algorithm on an analysis frame of 1,024 samples. From Fig. 3.7(c) and (d), which show the

frequency spectra of the original and scrambled signals, we can see that the frequency spectrum

becomes flat in the average sense after scrambling. This flatness ensures a decrease in residual

intelligibility.

3.2.2 EXPERIMENTAL RESULTS 38

Let us consider the efficiency of the pre. For a single with n samples, it can be seen from

Algorithm 1 that the pre needs the stack space plus 2n memory spaces for storing the original

and scrambled samples. Thus, its space complexity is O(n). Time complexity also depends on

the length of the signal and it is O(n) as each sample is processed sequentially and independently.

More specifically, Table 3.2 shows the execution time results of the pre. For all signals, it takes

less than one-third of the duration of the original signal and thus the pre is possibly applied in

real time applications.

Table 3.1: Music items used in experiment.

Music

Category

Track Name Duration

(sec)

Length

(samples)

Pop Bee Gees- Words 9 432651

Jazz Dave Brubeck- Take Five 10 481244

Classical Beethoven- Symphony No.5 in C Minor 18 867594

Figure 3.7: Waveforms of (a) the original signal and (b) the scrambled signal by pre; (c)-(d) their respective

frequency spectra.

Table 3.2: Execution time results for the pre.

Category Duration

(sec)

Execution Time (sec)

Scrambling Descrambling

Pop 9 1.99 2.70

Jazz 10 2.22 3.08

Classical 18 4.31 5.96

3.2.2 EXPERIMENTAL RESULTS 39

As for its cryptographic security, we need to firstly discuss the descrambling process. In

transposition-based algorithms, descrambling can be done by tracing the scrambling procedure

backward. For instance, if s= {d, c, a, b} is a sequence scrambled according to the scrambling

indices {4, 3, 1, 2}, then it means that the first sample in s comes from the 4
th

position of the

original sequence, the second one from the 3
rd

 position, the third one from the 1
st
 position, and

the last one from the 2
nd

 position, respectively. Then, by putting the samples back in their

original positions, descrambling is successful. Thus, cryptographic security of the transposition-

based scrambling methods like the pre depends on the concealment of the algorithm. If the

algorithm is made public, there is no more security.

However, if the algorithms are in secrecy, an adversary needs to try a brute force attack

to generate all possible permutations. As for the pre, the number of possible permutations is n!

where n is the length of the signal (the number of samples). For instance, the 9-second long “Pop”

audio signal in Table 3.1 consists of 432,651 samples. The number of possible permutations for

that signal is 432,651!, which is obviously impractical to try a brute force attack. Thus, the

cryptographic security of the pre is strong enough if the algorithm is in secrecy.

With the aim of enhancing the cryptographic security of the pre in case the algorithm is

made public, we briefly present a solution by introducing a new parameter k where a signal is

divided into two parts at index k and the pre is then applied separately. For instance, for a signal

s with n samples, the two parts {s1, …, sk} and {sk+1, …, sn} for 1≤k≤n, are separately scrambled.

The idea is to enhance the security with the control of an unknown parameter. If an adversary

wants to descramble the signal, he/she must try a brute force attack to guess k by running the pre

2n-1 times with different k as the worst case. Thus, the longer the signal is, the possible k is

more varied and the security is getting higher. To verify if the above solution has undesirable

side effects although the security is strengthened, we also conducted some experiments on the

music items in Table 3.1 for k=n, 3n/4, n/2, n/4 where n is the length of the music item. Table

3.3 shows the scrambling effect for different k, which is measured in terms of the signal-to-noise

ratio (SNR) and normalized cross-correlation (NCR) between the original and scrambled signals.

For all signals, we can see from Table 3.3 that scrambling for different k achieves the same

scrambling effect (almost the same SNRs and NCRs) like scrambling the whole signal. By

comparing the results of Table 3.2 and Table 3.4, we can also see that there is no significant

difference in execution time for different k although the tree is built in two parts.

Table 3.3: SNR and NCR of the scrambled signals for different k.

Category Value of k SNR (dB) NCR

Pop n/4 -2.99 0.03

n/2 -3.03 0.03

3n/4 -3.00 0.03

n -2.98 0.03

Jazz n/4 -3.00 0.02

n/2 -3.03 0.01

3n/4 -3.01 0.01

n -2.99 0.01

Classical n/4 -2.98 0.07

n/2 -3.01 0.07

3n/4 -3.07 0.07

n -3.01 0.07

3.3 AUDIO SCRAMBLING METHOD BASED ON A PSEUDORANDOM NUMBER GENERATOR 40

Table 3.4: Execution time results for different k.

Category Value of k Execution Time (sec)

Scrambling Descrambling

Pop n/4 2.62 2.81

n/2 2.54 2.80

3n/4 2.27 2.82

Jazz n/4 2.94 3.20

n/2 2.44 3.21

3n/4 2.49 3.22

Classical n/4 5.42 5.74

n/2 5.30 5.98

3n/4 5.16 6.00

3.3 Audio scrambling method based on a pseudo-

random number generator

As discussed in the previous section, cryptographic security of the pre depends on the secrecy of

the algorithm. However, according to Kerckhoffs’s principle, a cryptosystem should be secure

even if everything about the system, except the key, is public knowledge. In other words, the

security of a cryptosystem should depend solely on the secrecy of the key and the private

randomizer. Thus, this section presents an audio scrambling method which is cryptographically

more secure than the pre.

The proposed method is based on a pseudorandom number generator called Mersenne

Twister (MT). Even though any kinds of PRNG can be applied in this proposal, the MT was

chosen because it is by far the most widely used PRNG. The MT was developed in 1997 by

Makoto Matsumoto and Takuji Nishimura [67]. It was designed to rectify most of the flaws

found in older PRNGs and was the first PRNG to provide fast generation of high-quality

pseudorandom integers. It is also the default PRNG for most software systems, e.g. Python [68],

Ruby [69], PHP [70], and MATLAB [71]. The most commonly used version, MT19937, uses a

32-bit word length and has the following properties:

 A super astronomical period of 2
19937

-1;

 623 dimensional equidistribution up to 32-bit accuracy while consuming a working area

of only 624 words;

 Coded in C language and faster than the other PRNGs;

 Passes numerous tests for statistical randomness including the Diehard tests [72-74] and

most, but not all, of the stringent TestU01 Crush [75-78] randomness tests;

3.3.1 Algorithmic detail

The proposed method uses the MT to generate the indices for the scrambled list, on the basis of

which the samples in the original audio signal are reordered. To ensure strong security, the MT

is seeded with a random seed which is generated by hashing a user-defined key with a

https://en.wikipedia.org/wiki/Cryptographic_key
https://en.wikipedia.org/wiki/Cryptosystem

3.3 AUDIO SCRAMBLING METHOD BASED ON A PSEUDORANDOM NUMBER GENERATOR 41

cryptographic hash function (e.g. the message digest 5 (MD5) or the secure hash algorithm

(SHA)). Hereafter, the method is simply referred to as the AS-MT.

The algorithmic detail of the AS-MT is as follows [66].

Input: An audio signal with n samples] ..., , ,[110 nsss and a user-defined key (key);

Step 1: The key is hashed by a cryptographic hash function. The resulting hash value is used

as a seed for seeding the MT; the use of a cryptographic hash function ensures the

randomness of the seed;

Step 2: Call the MT by passing the generated seed and n, and generate random integers

(indices, zk);

Step 3: On the basis of the zk, the samples in the given audio signal are reordered;

 .11 0for , ..., n-,kss
kzk  (3.1)

Output: The scrambled audio signal with the reordered samples] ..., , ,[110 

nsss ;

 Below is the procedure of the MT (Step 2) in detail.

 On the basis of the seed, initialize the generator in an array of length j [x0, x1, …, xj-1];

 For a word x with w-bit width,

   ,1 ..., ,1 ,0 ,|: 1   nkAxxxx l
k

u
kmkjk (3.2)

where is bitwise XOR, | is bitwise or, x
u
 and x

l
 are upper u-bits and lower l-bits shifts of x,

respectively; A is a twisted transformation matrix in rational normal form

   ,
0,...,

0

2

1

1













 w

w

w a

I
aRA (3.3)

so that  
,1 1

0 1

0

0










xax

xx
xA (3.4)

where Iw-1 is an (w-1)*(w-1) identity matrix and >> is bitwise right shift.

To compensate for the reduced dimensionality of equidistribution because of the choice of A as

rational normal form, the MT is cascaded with tempering transforms as follows:

 ,1 ..., ,1 ,0,: 




 


nkuxxy

jkjkk
 (3.5)

   , &: bsyyy
kkk
 (3.6)

   , &: ctyyy
kkk
 (3.7)

 , : lyyz

kkk
 (3.8)

where << is bitwise left shift, & is bitwise and. The coefficients of MT19937 are: (w, j, m) = (32,

624, 397); a = 9908B0DF16; (u, l) = (11, 18); (s, b, t, c) = (7, 9D2C568016, 15, EFC6000016).

Note that we do not change the above settings of the MT19937 and we only set the MT to make

sure zk≤ len and does not duplicate.

3.3.2 EXPERIMENTAL RESULTS 42

3.3.2 Experimental results

Like the pre in Sect. 3.2, the AS-MT is evaluated in terms of its scrambling effect, time and

space complexity, and cryptographic security by using the music items in Table 3.1.

 To test and verify the scrambling effect, we apply the AS-MT with user-defined key of

“secret” on the “Pop” audio file and compare the waveforms before and after scrambling.

Figures 3.8(a) and (b) show the waveforms of the original and scrambled audio signals

respectively. Comparing (a) and (b), we can see that the AS-MT completely destroys the signal

to such an extent that the envelopes of the waveforms are completely different. The NCR

between the original and scrambled signals is 0.01 and the SNR is -3.01. When listened to the

scrambled audio, it sounds like a white noise with zero residual intelligibility. Thus, it can be

concluded that the AS-MT has good scrambling effect.

Figures 3.8(c) and (d) show the frequency spectra of the original and scrambled signals

generated by applying the FFT algorithm on the signals for an analysis frame of 1,024 samples.

Like in the pre, we can see that the frequency spectra become flat in the average sense after

scrambling. This flatness ensures a decrease in residual intelligibility.

 As for the efficiency, the AS-MT consumes 624 memory spaces for storing the initial

state of the generator in addition to 2n spaces for storing the samples before and after scrambling

for a signal with n samples. Thus, its space complexity is O(n). The time complexity is generally

O(n) as well. However, from Table 3.5 which shows the execution time results of the AS-MT,

we can see that the AS-MT is very fast so that its execution time can be negligible. This occurs

because the main MT algorithm (Step 2 of the AS-MT) is a MATLAB built-in function written

in C language for fast execution. In that regard, the AS-MT is more preferable to the pre to be

applied in real time applications.

As for the cryptographic security, unlike the pre, the security of the AS-MT depends on

the secrecy of the key which is used to seed the MT, not the algorithm itself. Even if the

algorithm is made public, one will find it difficult to descramble without knowing that key. If

the algorithm is in secrecy, an adversary needs to try a brute force attack to generate all possible

permutations. Like in the pre, the number of possible permutations is n! where n is the length of

the signal (the number of samples), which is obviously impractical to try a brute force attack.

3.4 Conclusion

This chapter proposed two low-complexity audio scrambling methods together with the detailed

evaluation results of their performances. As both methods affect only the positions of the audio

samples, they are appropriate to be applied together with data hiding. Experimental results

showed that their scrambling effect and time and space complexity are good enough to be

applied in real time applications. If the methods were compared, the AS-MT was far superior to

the pre in all aspects, especially for execution time and cryptographic security. Thus, this

chapter also presented a solution for how to improve the cryptographic security of the pre.

3.3.2 EXPERIMENTAL RESULTS 43

Figure 3.8: Waveforms of (a) the original signal and (b) the scrambled signal by AS-MT; (c)-(d) their respective

frequency spectra.

Table 3.5: Execution time results for the AS-MT.

Category Duration (sec) Execution Time (sec)

Scrambling Descrambling

Pop 9 0.07 0.07

Jazz 10 0.07 0.07

Classical 18 0.14 0.12

CHAPTER 4 PROGRESSIVE AUDIO SCRAMBLING SCHEMES IN WAVELET DOMAIN 44

Chapter 4

Progressive Audio Scrambling Schemes

in Wavelet Domain

This chapter discusses how the cryptographic security of the audio scrambling methods (the pre

and the AS-MT) proposed in Chapter 3 can be strengthened in the wavelet domain. The two

schemes of combining the pre and the AS-MT with the discrete wavelet transform (DWT) are

proposed along with the detailed evaluation results. In addition to enhancing the security, the

new schemes also achieve the progressive scrambling effect which is a desirable feature for

DRM. This chapter also gives a detailed discussion on that matter.

4.1 Introduction

As discussed in Chapter 3, the pre-order based audio scrambling method has good scrambling

effect and efficient time and space complexity as well. However, its cryptographic security is

limited because it depends on the secrecy of the algorithm. Thus, in order to enhance its security,

this chapter presents a new scheme in the wavelet domain. In this scheme, an audio signal is

firstly decomposed into different frequency sub-bands by using the DWT with user-defined

parameters. Then, scrambling is performed independently on each subband. Any user without

knowledge of the wavelet decomposition parameters will not be able to successfully descramble

the signal. The main idea is to enhance the cryptographic security with the control of unknown

parameters.

In addition, the pre and the AS-MT in Chapter 3 performed scrambling on the whole

signal. In those time-domain based methods, the scrambling effect on audio quality could not be

controlled. Thus, the resulting scrambled signals became like noise and could not be used to

realize the try-before-purchase model of DRM. In the new wavelet based scheme of the pre, the

scrambling effect on audio quality can be controlled based on the sub-bands scrambled. This is

called the progressive scrambling effect, which will be discussed in detail later in this chapter.

Thus, with the aim of realizing the try-before-purchase model of DRM, the AS-MT is

also applied in the wavelet domain like the pre. No doubt, with the control of unknown wavelet

parameters, the cryptographic security of the new scheme will be stronger than the security of

the AS-MT in the time domain.

4.2 DISCRETE WAVELET TRANSFORM (DWT) 45

The main reason of using the DWT is to obtain the progressive (different frequency sub-

bands) representation of an audio signal [66]. To decompose a signal into frequency sub-bands,

we can also use another method such as the FFT filterbank instead of the wavelet transform;

however, the wavelet representation is more efficient for analysis and reconstruction because of

its multiresolution property [79-80]. More detail about the DWT is explained in the following

section.

4.2 Discrete Wavelet Transform (DWT)

For better understanding of the proposed schemes, we briefly explain the DWT [81-86]. The

DWT has been widely utilized in diversified applications including digital communications and

image/speech/video compression [79-80, 86]. It was developed to overcome the shortcoming of

the Short Time Fourier Transform (STFT) [79-80] which can be used to analyze non-stationary

signals. Unlike the STFT that uses a constant window size for all frequencies, the DWT uses a

window size that varies the frequency scale and is thus advantageous for analysis of the signals

containing both discontinuities and smooth components.

The DWT decomposes the host audio signal into several multiresolution sub-bands [81].

That is, it provides good time resolution for high frequency sub-bands and good frequency

resolution for low frequency sub-bands. The processes of DWT (decomposition) and IDWT

(reconstruction) are shown in Fig. 4.1(a) and (b), respectively. In DWT, a discrete time-domain

signal S is analysed by successive lowpass and highpass analysis filters, denoted by G0 and H0,

respectively. Given S of length n, the DWT consists of n2log levels at most. At the first level,

H0 and G0 followed by downsampling produce detail information (high frequency) dc1 and

coarse approximations (low frequency) ac1, respectively. Downsampling by 2 doubles the

frequency resolution as the uncertainty in frequency is reduced by half and halves the time

resolution as the entire signal is now represented by only half of the number of samples. The

second level repeats the same scheme, replacing S by ac1 and yielding dc2 and ac2. This process

Figure 4.1: Two-level DWT: (a) decomposition (b) reconstruction.

G1

H0

G0

↓2

↓2

H0

G0

↓2

↓2

S

dc1

dc2

ac2

(a)

H1

G1 ↑2

↑2

H1 ↑2

↑2

dc2

ac2

dc1

S

(b)

4.3 THE PROPOSED SCHEMES 46

is continued until the desired level is reached. The final decomposition result at level N consists

of] , ..., , ,[12 dcdcdcac NN . With this approach, time resolution becomes arbitrarily good at high

frequencies and frequency resolution becomes arbitrarily good at low frequencies.

In IDWT, the original signal can be successfully reconstructed from the wavelet

coefficients. The ac and dc at every level are up-sampled by 2 and passed through the lowpass

and highpass synthesis filters, denoted by G1 and H1 respectively, and then added. This process

is continued through the same number of levels as in the decomposition process to obtain the

original signal.

4.3 The proposed schemes

This section proposes two schemes of combining the pre and the AS-MT with the DWT with the

aim of not only strengthening the security but also controllably degrading the audio quality. In

these schemes, scrambling is performed independently on different frequency sub-bands of an

audio signal in the wavelet domain. The detailed procedures of the proposed schemes are as

follows [65-66]:

Step 1: An audio signal is wavelet decomposed. Then, the layers of wavelet coefficients [acN,

dcN, …, dc1], ordered in low-to-high frequency, are retrieved for N-level decomposition.

Different layers have different frequency ranges.

Step 2: The coefficients in each layer are scrambled by:

scheme_1: considering not only the pre but also the in-/post-order based scrambling methods

and applying one method randomly chosen out of the three, as shown in Fig. 4.2;

scheme_2: applying the AS-MT with different keys as shown in Fig. 4.3;

Step 3: Reconstruct the signal with the scrambled coefficients;

In order to descramble the signal successfully, the user must know the correct wavelet

decomposition parameters such as the wavelet family and the decomposition level in addition to

the correct method/key used in each layer. Decomposition with different wavelet parameters

yields the layers of different coefficients and thus descrambling on them is similar to scrambling

the signal in another way even if the correct method/key is used for each layer. Thus, without

knowing the correct parameters, it is not possible to recover a high-quality audio signal. The

experimental results in the following section prove that the proposed schemes can strengthen the

cryptographic security of the pre and the AS-MT rather than in the time domain with the control

of unknown parameters.

 Moreover, scrambling on different layers degrades the audio quality differently. This

feature ensures the progressive scrambling in which the audio signals with different quality

levels can be generated by scrambling layer after layer. During descrambling, low-to-high

quality can be progressively recovered by descrambling layer after layer as well, which will be

discussed in detail in Sect. 4.4.2.

As the in-order and post-order based scrambling methods are applied together with the

pre in scheme_1, their algorithmic details are described in Algorithms 2 and 3, respectively.

Hereafter, we simply refer to them as in and post respectively.

4.3 THE PROPOSED SCHEMES 47

Figure 4.2: System flow of the scheme_1.

Figure 4.3: System flow of the scheme_2.

Like in the pre, assume that each sample in an audio signal represents a node in a

complete binary tree and that they are organized in breadth-first order. For in-order, as described

in Algorithm 2, the sample at index 0 (the root) of the original audio is stored in the stack for a

later visit. Then, if it has a left child (sample at index 1) and that left child is also the root of a

subtree, it will also be stored in the stack and the next left child (sample at index 3) is searched.

These steps of finding the left child and storing it in the stack are repeated until there are no

more left children. Then, an element from the stack is retrieved as the output/sample in the

scrambled audio. The retrieved element may have a right child. If it has, assuming that right

child is also the root of a subtree, all of the previous steps starting from step 1 of storing the root

in the stack are repeated again. Otherwise, the steps of outputting an element from the stack and

finding its right child are repeated. This process continues until no more elements are in the

stack. Figure 4.4 shows the step-by-step tracing of Algorithm 2 on an example array.

For post-order, as described in Algorithm 3, the sample at index 0 (the root) of the

original audio is stored in the stack. If it has both right and left children (samples at index 2 and

index 1 respectively), firstly the right child and then the left child are stored in the stack. Then,

Key-N …

Key-2

Key-N+1

Key-1

Scrambled

Audio

Signal Wavelet

Reconst-

ruction

AS-MT

AS-MT

AS-MT

AS-MT

Audio

Signal
N-level

Wavelet

Decom-

position

dc1

dc2

dcN

acN

…

Scrambled

Audio

Signal Wavelet

Reconst-

ruction

pre or in or post

pre or in or post

pre or in or post

pre or in or post acN

Audio

Signal N-level

Wavelet

Decom-

position

dc1

dc2

dcN

4.3 THE PROPOSED SCHEMES 48

assuming the left child is the root of a subtree, the above steps are repeated. Otherwise, if the

root has only the left child, it is stored in the stack and then an element from the stack is

retrieved as the output/sample of the scrambled audio. If that retrieved element is a left child

(note that all of the left children are at odd indices as the root is at index 0), it may have its

neighbor, right child (subsequent element at the same level of a tree). If it has the subsequent

right child, assume that this right child as the root of a subtree and repeat all of the previous

steps starting from step 1 of storing the root in the stack. Otherwise, the steps of outputting an

element from the stack and checking its right child neighbor are repeated. This process continues

until no more elements are in the stack. Figure 4.5 shows the step-by-step tracing of Algorithm 3

on an example array.

Algorithm 2 In-order Based Audio Scrambling Method

[1] Given an audio signal s with n samples [s0, s1, …, sn-1], a scrambled audio signal s′=

[s0′, s1′, …, sn-1′] is generated; Assume that each sample in s represents a node in a

complete binary tree; Initialize pos=0 as index of root and i=0;

[2] Save the root’s index in stack:

 push(pos)

[3] while true do

[4] Calculate index of the left child:

lchild=2*pos+1

[5] while lchild<n do

[6] Save the left child’s index in the stack:

 push(lchild)

[7] Assign pos=lchild

[8] Calculate index of the left child:

 lchild=2*pos+1;

[9] end while

[10] Output an element from the stack:

pos=pop()

[11] Construct the scrambled signal s′ with samples from s indexed by pos:

siꞌ=spos

[12] Increment i by 1:

i++

[13] Calculate index of the right child:

rchild=2*pos+2

[14] while stack is not empty and rchild>=n do

[15] Do Step 10-13

[16] end while

[17] if rchild<n then

[18] Save the right child’s index in the stack:

 push(rchild)

[19] Assign pos=rchild

[20] else

[21] break

[22] end if

[23] end while

4.3 THE PROPOSED SCHEMES 49

Algorithm 3 Post-order Based Audio Scrambling Method

[1] Given an audio signal s with n samples [s0, s1, …, sn-1], a scrambled audio signal s′=

[s0′, s1′, …, sn-1′] is generated; Assume that each sample in s represents a node in a

complete binary tree; Initialize pos=0 as index of root;

[2] Save the root’s index in stack:

 push(pos)

[3] for i = 0, 1, …, n-1 do

[4] Calculate index of the left child:

lchild=2*pos+1

[5] Calculate index of the right child:

rchild=2*pos+2

[6] while rchild<n do

[7] Save the right child’s index in the stack:

 push(rchild)

[8] Save the left child’s index in the stack:

 push(lchild)

[9] Assign pos=lchild

[10] Calculate index of the left child:

lchild=2*pos+1

[11] Calculate index of the right child:

rchild=2*pos+2

[12] end while

[13] if lchild<n then

[14] Save the left child’s index in the stack:

 push(lchild)

[15] end if

[16] while stack is not empty do

[17] Output an element from the stack:

pos=pop()

[18] Construct the scrambled signal s′ with samples from s indexed by pos:

siꞌ=spos

[19] if !(pos%2=0) and pos+1<n/2 then

[20] pos++

[21] break

[22] end if

[23] end while

[24] end for

Index

0 1 2 3 4 5 6 7 n=8

save root in stack; s A B C D E F G H Stack

A

s′

pos=0;

save lchild(1) in stack; s′

A B

pos=1;

save lchild(3) in stack; s′

A B D

pos=3;

4.3 THE PROPOSED SCHEMES 50

save lchild(7) in stack; s′

A B D H

pos=7;

no more lchild and

output an element from

stack;

s′ H

A B D H

pos=7;

no rchild and output an

element from stack;
s′ H D

A B D

pos=3;

no rchild and output an

element from stack;
s′ H D B

A B

pos=1;

save rchild(4) in stack; s′ H D B

A E

pos=4;

no more lchild and

output an element from

stack;

s′ H D B E

A E

pos=4;

no rchild and output an

element from stack;
s′ H D B E A

A

pos=0;

save rchild(2) in stack; s′ H D B E A

C

pos=2;

save lchild(5) in stack; s′ H D B E A

C F

pos=5;

no more lchild and

output an element from

stack;

s′ H D B E A F

C F

pos=5;

no rchild and output an

element from stack;
s′ H D B E A F C

C

pos=2;

save rchild(6) in stack; s′ H D B E A F C

G

pos=6;

no more lchild and

output an element from

stack;

s′ H D B E A F C G

G

pos=6;

Figure 4.4: The step-by-step tracing of the in on an example array.

4.3 THE PROPOSED SCHEMES 51

Index

0 1 2 3 4 5 6 7 n=8

save root in stack; s A B C D E F G H Stack

A

s′

pos=0;

save rchild(2) in stack;

save lchild(1) in stack;
s′

A C B

pos=1;

save rchild(4) in stack;

save lchild(3) in stack;
s′

A C B E D

pos=3;

save lchild(7) in stack; s′

A C B E D H

pos=3;

output an element from

stack;
s′ H

A C B E D H

pos=7;

output an element from

stack;
s′ H D

A C B E D

pos=3; pos=4;

output an element from

stack; s′ H D E

A C B E

pos=4;

output an element from

stack;
s′ H D E B

A C B

pos=1; pos=2;

save rchild(6) in stack;

save lchild(5) in stack;
s′ H D E B

A C G F

pos=5;

output an element from

stack; s′ H D E B F

A C G F

pos=5;

output an element from

stack;
s′ H D E B F G

A C G

pos=6;

output an element from

stack;
s′ H D E B F G C

A C

pos=2;

output an element from

stack;
s′ H D E B F G C A

A

pos=0;

Figure 4.5: The step-by-step tracing of the post on an example array.

4.4 EXPERIMENTAL RESULTS 52

4.4 Experimental results

In this section, by using the music items in Table 3.1, performances of the proposed schemes are

thoroughly evaluated in terms of cryptographic security, effect of scrambling on audio quality,

etc. In the experiment, an audio signal is two-level wavelet-decomposed by using the

Daubechies wavelet family (db4). All of the obtained layers of coefficients are scrambled in

such a way that [pre, in, post] in scheme_1 and the AS-MT with user-defined keys of [key1, key2,

key3] in scheme_2 are applied on [ac2, dc2, dc1] respectively. There is no specific reason in the

choices of the parameters; it is just random.

4.4.1 Cryptographic security/anti-decryption capability

We mentioned that, in the proposed schemes, it is difficult to successfully descramble a signal

without knowing the correct wavelet decomposition parameters and the method/key used for

each layer.

To prove that fact, the “Classical” audio file is firstly scrambled by scheme_1 and then

descrambling is tried by using wrong wavelet parameters and wrong methods on the layers.

Whether the signal is successfully recovered or not is determined by measuring the ODG, whose

grading scales are described in Table 2.1.

Table 4.1 shows the ODG values resulting from descrambling with the wrong wavelet

family where the other parameters such as the decomposition level and the methods/key used for

each layer are correctly used. Different wavelet families use different filter-banks with different

cutoff frequencies and hence it is impossible to generate the same wavelet coefficients.

Descrambling on them is like scrambling the signal in another way. Thus, even though the other

parameters except the wavelet family are correct, all of the ODG values are less than -3.9. It

shows that the signal could not be successfully recovered and the resulting quality impairment

was very annoying.

The results of descrambling with wrong decomposition levels are shown in Table 4.2. In

this case, the signal is decomposed by using the correct wavelet family. As shown in the table,

decomposing a signal at a different decomposition level yields different coefficients layers. For

N-level decomposition, there are N+1 layers of coefficients. In addition, the sizes of the layers

yielded by the use of different decomposition levels are also different, which cause different

possible permutations on those layers. Thus, there is no way to successfully recover the signal

with good quality. The resulting ODG values which are less than -3.8 show that the recovered

audio quality is bad.

Then, the signal is decomposed at the correct decomposition level by using the correct

wavelet family but the wrong methods are used for descrambling the coefficients in each layer.

Table 4.3 shows the ODG values resulting from the use of wrong methods on the layers. Most

ODG values are less than -3.8 and show that the resulting quality impairment is very annoying.

We can also see that some ODG values are up to -2 when the correct methods are applied on two

out of three layers. More interestingly, these values always result from the use of the correct

method on the ac-part. As long as the wrong method is applied on the ac-part, the quality

impairment is annoying. This is because the ac-part carries the lowest frequency coefficients of

4.4 EXPERIMENTAL RESULTS 53

the signal, to which the HAS is very sensitive, and changes to them have a strong effect on

perceptual quality. However, even in that case, the ODG of -2 means that the quality impairment

is still annoying.

Thus, if an adversary wants to recover a signal with good quality, he/she must try a brute

force attack to guess the correct descrambling parameters. More precisely, he/she must at most

try

 



N

i

i

1

13126 times in scheme_1 and (4.1)

 



N

i
i

1
1126 times in scheme_2, (4.2)

Table 4.1: ODG after descrambling with wrong wavelet family.

Wavelet Family ODG

Haar -3.906

Coiflets -3.903

Symlets -3.901

Discrete Meyer -3.904

Biorthogonal -3.906

Reverse Biorthogonal -3.906

Table 4.2: ODG after descrambling with wrong decomposition level.

Level Methods on Layers ODG

2-level
a
 [pre, in, post]=>[ac2, dc2, dc1]

a
 -0.186

1-level [pre, in]=>[ac1, dc1] -3.878

3-level [pre, in, post, -]=> [ac3, dc3, dc2, dc1] -3.893

4-level [pre, in, post, -, -]=> [ac4, dc4, dc3, dc2, dc1] -3.895

a
Correct decomposition level and correct choice of methods;

Table 4.3: ODG after descrambling with wrong choice of methods.

Methods on Layers

[ac2, dc2, dc1]

ODG Methods on Layers

[ac2, dc2, dc1]

ODG

[pre, in, post]
b
 -0.186 [pre, post, post] -3.781

[post, post, post] -3.891 [pre, post, pre] -3.842

[post, pre, in] -3.897 [pre, pre, post] -3.783

[post, pre, pre] -3.896 [pre, in, pre] -2.016

[post, in, in] -3.906 [pre, pre, in] -3.843

[in, pre, post] -3.890 [post, pre, post] -3.891

[in, post, pre] -3.897 [post, post, pre] -3.896

[in, in, in] -3.906 [post, in, post] -3.903

[in, post, post] -3.890 [post, post, in] -3.897

[in, pre, pre] -3.897 [in, post, in] -3.897

[post, in, pre] -3.906 [in, in, post] -3.903

[pre, post, in] -3.843 [in, pre, in] -3.897

[pre, pre, pre] -3.842 [in, in, pre] -3.906

[pre, in, in] -2.021

b
Correct choice of methods;

4.4.2 SCRAMBLING EFFECT 54

where 126 is a total of wavelet families (we only count those supported by the MATLAB [87])

and N is the decomposition level. The maximum possible value of N varies on the basis of the

length of the signal and the wavelet family used. For example, for a 9-second long signal, N may

be up to 18.

Considering the worst case scenario for that signal, an adversary must at most try

11^102.2
18

1

13126 



i

i times for scheme_1 and
18

1
814,231126 




i
i times for scheme_2.

Let us assume for scheme_1 that the time taken for scrambling each layer is the time taken by

the pre (note that the pre is the fastest among the three methods). According to the simulation

results on a PC with Intel ® Core™ i5-2430M 2.4 GHz Processor, each trial in the above worst

case scenario takes 2.32 seconds and thus the total time taken for a brute force attack is nearly

16,045 years. For scheme_2, as the AS-MT is very fast to execute, the time taken is not a matter.

However, the adversary has to guess the correct key for each trial and thus a total of 23,814 keys

must be guessed. Thus, it can be concluded that the proposed DWT based schemes achieve the

stronger cryptographic security than the methods in the time domain proposed in Chapter 3.

In the above experiment, a single wavelet family is used to decompose an audio signal.

The cryptographic security of the schemes can be more strengthened by using multiple wavelet

families. For instance, for 1-level decomposition that yields two layers, we can use two different

wavelet families for yielding each layer. In this way, the level of difficulty for a brute force

attack is higher since the adversary needs to guess the correct wavelet family for each layer (not

for each level as in our experiment). However, this approach can increase the execution time

because we need to decompose the signal multiple times.

4.4.2 Scrambling effect

To test and verify the scrambling effect of the proposed schemes on the perceptual audio quality,

the ODG values after scrambling and descrambling each layer as well as all layers are shown in

Fig. 4.6.

The ODG is calculated by using the original audio signals as reference. For both schemes,

the ODGs after scrambling all layers are less than -3.9 for all test signals and show that the

signals are severely distorted by scrambling. After descrambling, the ODG values are between 0

and -1 and indicate that the descrambling process can recover the signals back to their nearly

original qualities. In addition, as discussed in Sect. 4.4.1, the coefficients in the ac-part are very

important for perceptual quality and thus the ODGs after scrambling only ac2 are almost

comparable to those resulting from scrambling all layers.

Note here that the ODG values in Fig. 4.6 state a condition that we can call progressive

scrambling: SE(all)> SE(ac2)> SE(dc2)> SE(dc1), where SE means the scrambling effect on

audio quality. By progressively scrambling layer after layer, the resulting audio qualities are

getting worse and worse. During descrambling, the audio signals with low to high quality can be

progressively recovered by descrambling layer after layer. As for scheme_2, we can use a subset

of keys for descrambling to obtain the lower quality audios, whereas nearly full-quality can be

recovered by using all keys. The larger the decomposition level, the more layers are obtained

and the more progressively we can control the scrambling degree.

4.4.2 SCRAMBLING EFFECT 55

The above feature also provides flexibility in the choice of layers to be scrambled on the

basis of the system requirement: if the system requires high-level security, all layers are

scrambled; if the system is not very security-centric but demands severe quality degradation,

scrambling only the ac-part is enough; if the system demands low-quality audio files for

realizing the try-before-purchase model of DRM, scrambling only the dc-parts, which yields

fine-to-poor audio quality, is enough.

Figure 4.6: ODG after scrambling_(s)/descrambling_(d) on layer-by-layer basis: (a) scheme_1 (b) scheme_2.

4.4.3 EXECUTION TIME 56

Table 4.4: Subjective measures of audio quality for the scrambled signals.

Music
SDG after Scrambling: Layer-by-Layer Basis

dc1 dc2 ac2 all

Pop 4.3 2 1 1

Jazz 4.3 2 1 1

Classical 4.1 2 1 1

To verify the music quality after scrambling, we also conducted subjective tests. A total

of five music files (the original and scrambled files for each layer) were distributed to six

untrained listeners without mentioning anything about scrambling. Firstly, they were asked to

pick out the original audio signal and all of them were able to correctly identify the original

signal. Then, they were asked to feedback on the quality impairment of the scrambled signals in

comparison with the original one. The grading results are shown in Table 4.4.

Although the listeners are not experts, they could all perceive the difference in the audio

quality degradation based on the layer scrambled. Some could even identify the correct layer

that was scrambled on the basis of the music quality they perceived. For all music items, all

listeners confirmed that the quality impairment introduced by scrambling the dc parts, especially

dc2, is effective enough to use for trial music and scrambling the ac-part has almost exactly the

same effect as scrambling all layers.

4.4.3 Execution time

Table 4.5 shows the execution time results of the new schemes for scrambling/descrambling

each layer as well as all layers. Among the layers, the dc2 is the largest in size and thus it takes

the longest time for both scrambling and descrambling processes. Generally, for scrambling or

descrambling all layers, the scheme_1 takes at most t/2 seconds for a t-second long signal, and

whereas the time taken for the scheme_2 is short enough to be negligible. Considering this fact,

it can be concluded that the scheme_2 is more appropriate for real time applications. However,

even for the scheme_1, if the underlying system is not very security-centric, we can significantly

reduce execution time by scrambling only the ac-part that achieves the same scrambling effect

as scrambling all layers.

4.4.4 Anti-attack capability

From Table 4.5, we can see that the proposed scheme_2 is very fast to execute. In addition, since

the scrambling process is carried out on different frequency sub-bands, the bandwidth of the

signal can also be limited according to the sub-bands scrambled. This feature is important for

speech scramblers which are applied to ensure privacy in real time speech transmission in

telephone networks and radio communications [88-90]. Thus, with the possibility of applying

the scheme_2 in those applications, this section verifies that the scheme_2 is fairly robust against

channel distortions (common signal processing attacks) providing that the attacked signals are

perfectly time-synchronized with the original ones.

The “Pop” audio signal in Table 3.1 is scrambled in accordance with the scheme_2 in

which all layers of the wavelet coefficients are scrambled by using the AS-MT with different

4.4.5 PERFORMANCE COMPARISON 57

keys. Figure 4.7 shows the waveform of the original signal. For a noisy channel, the transmitted

information may be partly or wholly lost during transmission. Thus, in the experiment, 60% of

the scrambled signal is randomly cropped (cropped samples are replaced with 0) and then

descrambling is tried. Figures 4.8(a) and (b) show the waveforms of the cropped signal and the

recovered signal respectively. Comparing Fig. 4.8(b) with Fig. 4.7, we can see that most of the

envelopes of the original audio still exist in the waveform recovered. It is because the lost

samples are scattered throughout the entire signal and thus do not affect the basic structure of the

audio. When we listened to the recovered audio, we can absolutely understand the music

contents although some slight noise is introduced.

We also conducted noise addition attack in which additive white Gaussian noise is added

to the scrambled signal by keeping SNR=10dB which indicates the noise is strong. Then,

descrambling is tried. Waveforms of the attacked signal and the recovered signal are shown in

Fig. 4.9(a) and (b) respectively. From Fig. 4.9(b), we can see that the envelopes of the recovered

waveform are not clear anymore. When listened to the recovered audio, it sounds like the

original audio which white noise is directly added to. However, we can still understand the

music contents. We also tried to compress the scrambled signal by using the LAME MP3

encoder [59] at a bit-rate of 96 Kbps and then decoding and descrambling are tried. As shown in

Fig. 4.10(b), the envelopes of the recovered waveforms are as clear as the original one. The

ODG between the descrambled MP3-coded music and the original music is -1.75, which is fine

quality. The audio quality is degraded due to data loss during compression but we can still

understand the music. When listened to, it has better quality than the one white noise added to.

4.4.5 Performance comparison

A large number of image and speech scrambling methods have been proposed in the literature.

However, there are few audio scrambling methods and even fewer well evaluated ones. Table

4.6 summarizes the performances of the proposed schemes including the methods proposed in

Chapter 3 and shows their comparison results with the reference works [17] [52] [64].

Table 4.5: Execution time on layer-by-layer basis.

Music Length Layer

Exec. Time (sec)

Scrambling Descrambling

scheme_1 scheme_2 scheme_1 scheme_2

Pop 9 sec dc1 2.49 0.12 2.33 0.12

dc2 1.27 0.11 1.26 0.11

ac2 0.83 0.11 0.83 0.11

all 4.25 0.16 4.32 0.15

Jazz 10 sec dc1 2.68 0.14 2.70 0.14

dc2 1.42 0.12 1.45 0.12

ac2 0.96 0.12 0.95 0.12

all 4.85 0.18 4.85 0.17

Classical 18 sec dc1 4.94 0.26 4.93 0.25

dc2 2.63 0.23 2.55 0.22

ac2 1.88 0.23 1.77 0.22

all 8.67 0.34 8.71 0.30

4.4.5 PERFORMANCE COMPARISON 58

Figure 4.7: Waveform of the “Pop” audio signal.

Figure 4.8: Waveforms of (a) the scrambled signal that is 60% randomly cropped and (b) the recovered signal.

Figure 4.9: Waveforms of (a) the scrambled signal that is white noise added to and (b) the recovered signal.

4.4.5 PERFORMANCE COMPARISON 59

Figure 4.10: Waveforms of (a) the scrambled signal that is MP3 encoded and (b) the recovered signal.

Reference [17] proposed two audio scrambling methods in the time domain. One method

reorders the audio samples in accordance with the indexing sequence generated based on a secret

key and the other does the same thing in which the indexing sequence is generated based on the

in-order traversal scrambling transformation. Reference [52] proposed a combined watermarking

and scrambling scheme for MP3 in which the scalefactors in an MP3 frame are grouped in

accordance with a secret key. Then, the scrambling and watermarking processes are carried out

on the scalefactors of each group. The scrambling process here is swapping the scalefactors with

the other ones in the same group. Reference [64] proposed an audio scrambling method in the

compressed domain in which MP3 data are progressively scrambled by XOR-ing with the keys

in a key table.

According to the results in Table 4.6, efficiencies (time and space complexity) of the

methods are almost the same. Among the reference works, Reference [64] achieves the strongest

security with the control of a key table for the price of increasing space complexity for storing

that key table. However, the scrambling method in Reference [64] changes the values of the

audio contents and thus causes operational conflict with the data hiding process.

As for the proposed methods, the pre and scheme_1 have the comparable performances

like Reference [17]. As for the AS-MT and scheme_2, they have better performances than

Reference [17] in terms of security and scrambling effect (residual intelligibility). More

specifically, according to Table 3.5 and Table 4.5, it can be seen that the AS-MT and scheme_2

are very fast to execute, whereas the methods in Reference [17] are relatively slow (they take

about t/2 seconds to scramble a t-second long signal). In comparison with Reference [64], the

AS-MT and scheme_2 achieve the security level as strong as [64]. In addition, they are more

effective than Reference [64] in terms of space complexity and operational flexibility when

combining with data hiding.

4.5 CONCLUSION 60

Table 4.6: Performance comparison with previous works.

Reference Residual

intelligibility

Time

complexity

Space

complexity

Security

control

Conflict with

data hiding

 [52] N/E N/E N/E key no

 [17] (CDST) very low O(n) O(n) key no

 [17] (ITST) very low O(n) O(n) - no

 [64] very low O(n) O(n)+key table key table yes

Our Contribution

pre very low O(n) O(n) - no

AS-MT ~ zero O(n) O(n) key no

scheme_1 very low O(n) O(n) via wavelet no

scheme_2 ~ zero O(n) O(n) keys + via wavelet no

 N/E means “no evaluation”; n is the number of samples containing in the signal;

4.5 Conclusion

With the aim of strengthening the cryptographic security of the methods proposed in Chapter 3,

this chapter discussed two schemes that combine those methods and the DWT. In addition to

providing strong security, the proposed schemes achieved progressive scrambling effect that

enables the audio outputs with different quality levels to be generated by controlling the

scrambling degree as required. This feature is very attractive for realizing the try-before-

purchase model of DRM. In addition, the proposed schemes can also control the bandwidth of a

signal to be unchanged based on the frequency sub-bands scrambled. Thus, they are possibly

applied in real time speech scramblers, especially the scheme_2 due to its fast execution time.

Experimental results showed that the scheme_2 is fairly robust against some common signal

processing attacks.

CHAPTER 5 CONCLUSION 61

Chapter 5

Conclusion

This thesis discussed the importance of audio encryption methods for providing confidential

audio distribution in today’s DRM environment. However, the naive encryption on audio data

destroys compliance with the media format and thus the resulting encrypted file cannot be

directly played back by existing standard music players. This thesis presented the problems of

encryption on audio data and the solutions for those problems.

This thesis proposed a low-complexity partial encryption method for raw audio (WAV)

together with a solution for the invalid amplitude problem. That problem makes the decryption

process to be unsuccessful when the encrypted audio samples are beyond the valid audio

amplitude range and thus they are clipped by the audio coder. This thesis also proposed an

effective low-complexity partial encryption method for compressed audio (MP3). The idea of

partial encryption is to protect the data by encrypting only perceptually important parts. During

the MP3 encoding process, the input PCM signal transforms into several variants such as the

frequency lines, quantized values, etc. Some of them are directly related to perceptibility and

some are not. Thus, the effectiveness of partial encryption on MP3 depends on the choice of data

to be encrypted. This thesis discussed how to effectively choose the perceptually important parts

for encryption in accordance with the concept of the HAS. Experimental results showed that

encrypting the whole MP3 audio file renders the audio signal meaningless while encrypting 2-

10% of the file degrades the audio quality but not completely destroys the signal so it can be

used as trial music for commercial purpose. That trial MP3 keeps compatibility with the

standard so it can be rendered by any existing MP3 players without need to decrypt. Under the

access of the correct decryption keys and specific MP3 players, full-quality MP3 can be

successfully recovered. Experimental results also showed that the proposed method can be

carried out without extensive computation, significant modification on the MP3 frame headers,

and significant impact on compression efficiency of the MP3 encoders.

 This thesis also presented two low-complexity transposition-based audio scrambling

methods in the time domain. Audio scrambling methods are widely used for confidential

distribution of audio data. They are more preferable to usual audio encryption to be used as pre-

and post-processing of data hiding methods due to their nature of operational flexibility. They

enable us to embed the watermark on the scrambled signal and to extract it from either the

scrambled or descrambled version of the signal. Experimental results showed that the proposed

CHAPTER 5 CONCLUSION 62

methods are very effective in terms of time and space complexity and scrambling effect although

their cryptographic securities are limited. With the aim of enhancing their security, this thesis

proposed two new schemes in the wavelet domain that combine those methods and the DWT.

Instead of scrambling the whole signal, the new schemes firstly decompose an audio signal into

different frequency sub-bands by using the DWT. Then the wavelet coefficients in each subband

are separately scrambled. Experimental results showed that anyone without knowledge of the

correct wavelet decomposition parameters and the correct method/key used for scrambling each

subband will never be able to successfully descramble the signal. Those schemes also achieve

the progressive scrambling effect that enables the audio outputs with different quality levels to

be generated by controlling the scrambling degree on the basis of the system requirement:

slightly distorted ones for the try-before-purchase model of the DRM systems and severely

distorted ones for the systems with strong security needs. In addition, the new schemes are also

fairly robust against common signal processing attacks. The resistances to those attacks are

important for speech scramblers used in telecommunication and radio networks and hence the

proposed schemes are possibly applied in those applications.

As a conclusion, this thesis presented various audio encryption methods to be used in

today’s DRM environment for both compressed and uncompressed audio data. This thesis gave

a detailed discussion on 1) the problems of encryption on audio data and their solutions, 2) how

to choose the data for partial encryption on MP3, 3) how to conduct encryption while keeping

compliance with the media format, and 4) how to strengthen the security of audio scrambling. In

addition to providing confidentiality in audio distribution, the proposed methods can also be

used to realize the try-before-purchase model, which is one of the important business models of

DRM. Thus, the proposals in this thesis strongly contribute to the development of efficient DRM

systems.

One of the future works of this thesis is to develop an effective combined encryption and

data hiding scheme. As discussed in Chapter 1, using encryption or data hiding alone is not

sufficient for today’s DRM systems. Encryption protects the content just before decryption, and

whereas data hiding only ensures copyright protection. In the literature, there have been many

audio encryption and data hiding methods proposed individually; however, there are very few

combined schemes. Thus, developing an effective combined scheme is very important.

In addition, the concept of the Human Auditory System (HAS) is very important for

developing effective audio encryption or audio data hiding methods. The HAS is more sensitive

than the Human Visual System (HVS). Even small changes to the audio samples can be detected

by the HAS and it is very difficult to develop a data hiding method that perfectly hides the secret

information in the host audio signal. Thus, studying the HAS is also one of the future works of

this thesis.

BIBLIOGRAPHY 63

Bibliography

[1] B. J. Sheu, M. Ismail, M. Y. Wang, and R. H. Tsai, Multimedia Technology for Applications,

Wiley-IEEE Press, June 1998.

[2] V. W. S. Chow, Multimedia Technology and Applications, Springer, 1997.

[3] P. Biddle, P. England, M. Peinado, and B. Willman, “The darknet and the future of content

protection,” Digital Rights Management- Lecture Notes in Computer Science, vol.2770, pp.344-

365, ISBN 978-3-540-40465-1, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[4] “Digital rights management final report,” European Committee for Standardization/

Information Society Standardization System (CEN/ISSS), September 2003.

[5] X. Zhang and R. Jain, “A survey of digital rights management technologies,”

http://www.cse.wustl.edu/~jain/cse571-11/ftp/drm/index.html

[6] EC-Council, Computer Forensics: Investigating Network Intrusions and Cybercrime,

Cengage Learning Inc., pp.9-26, 2009.

[7] A. K. Talukder and M. Chaitanya, Architecting Secure Software Systems, CRC Press, 2009.

[8] Electronic Frontier Foundation, “Digital rights management and copy protection schemes,”

https://w2.eff.org/IP/DRM

[9] Adobe, “Adobe digital editions 1.0,”

https://www.adobe.com/aboutadobe/pressroom/pressreleases/pdfs/200706/061907DigitalEdition

s.pdf

[10] https://en.wikipedia.org/wiki/FairPlay#cite_note-2

[11] R. Venkataramu, “Analysis and enhancement of Apple's FairPlay digital rights

management,” Project Report, May 2007.

[12] Microsoft Developer Network, “Digital rights management,”

https://msdn.microsoft.com/en-us/library/cc838192(VS.95).aspx

[13] https://en.wikipedia.org/wiki/Napster_(pay_service)

[14] https://en.wikipedia.org/wiki/Sony_Connect

[15] Electronic Frontier Foundation, “DRM,” 2012, https://www.eff.org/issues/drm

[16] N. Jayant, B. McDermott, S. Christensen, and A. Quinn, “A comparison of four methods for

analog speech privacy,” IEEE Trans. on Communications, vol.COM-29, no.1, pp.18-23, January

http://link.springer.com/book/10.1007/b12637
http://link.springer.com/bookseries/558

BIBLIOGRAPHY 64

1981.

[17] G. Chen and Q. Hu, “An audio scrambling method based on combination strategy,” IEEE

Intl. Conf. on Computer Science and Information Technology, vol.5, pp.62-66, July 2010.

[18] H. Kaur and G. S. Sekhon, “A four level speech signal encryption algorithm,” Intl. Journal

of Computer Science & Communication, vol.3, no.2, September 2012.

[19] S. Sharma, L. Kumar, and H. Sharma, “Encryption of an audio file on lower frequency band

for secure communication,” Intl. Journal of Advanced Research in Computer Science and

Software Engineering, vol.3, no.7, July 2013.

[20] S. Sharma, H. Sharma, and L. Kumar, “Power spectrum encryption and decryption of an

audio file,” Intl. Journal of Scientific Research in Computer Science, vol.1, no.1, August 2013.

[21] V. Makwana and N. Parmar, “Encrypt an audio file using combine approach of

transformation and cryptography,” Intl. Journal of Computer Science and Information

Technologies, vol.5, no.3, 2014.

[22] Twe Ta Oo, T. Onoye, and K. Shin, “An approach to amplitude scaling partial encryption

for compressed audio,” IEICE Technical Report, vol.113, no.135, pp.239-244, July 2013.

[23] Twe Ta Oo, T. Onoye, and K. Shin, “A partial encryption scheme for compressed audio

based on amplitude scaling,” Proc. of Intl. Workshop on Smart Info-Media Systems in Asia

(SISA), pp. 73-77, September 2013.

[24] K. K. Kothamasu and V. K. Sehgal, “An audio watermarking algorithm using encryption,

transformations, and quantization,” Intl. Journal of Advances in Engineering Science and

Technology, vol.2, no.1, 2013.

[25] W. Bender, D. Gruhl, and N. Morimoto, “Techniques for data hiding,” IBM Systems

Journal, vol.35, no.3.4, pp.313-336, 1996.

[26] B. Mondal and T. Mandal, “A multilevel security scheme using chaos based encryption and

steganography for secure audio communication,” Intl. Journal of Research in Engineering and

Technology, vol.2, no.10, October 2013.

[27] G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications,

World Scientific, Singapore, 1998.

[28] IBM Corporation and Microsoft Corporation, “Multimedia programming interface and data

specifications 1.0,” August 1991.

http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf

[29] Microsoft Corporation, “New multimedia data types and data techniques,” April 1994.

[30] Apple Computer Inc., “Audio interchange file format: AIFF version 1.3,” January 1989.

[31] “WavPack: hybrid lossless audio compression,” http://www.wavpack.com.

[32] K. Brandenburg, “MP3 and AAC explained,” Proc. of 17
th

 AES Intl. Conf. on High-Quality

Audio Coding, August 1999.

[33] R. Raissi, “The theory behind MP3,” December 2002.

http://www.kk.iij4u.or.jp/~kondo/wave/mpidata.txt
http://www.kk.iij4u.or.jp/~kondo/wave/mpidata.txt

BIBLIOGRAPHY 65

http://www.mp3-tech.org/programmer/docs/mp3_theory.pdf

[34] K. Brandenburg and G. Stoll, “ISO MPEG-1 audio: a generic standard for coding of high-

quality digital audio,” Journal of the AES, vol.42, no.10, pp.780-792, October 1994.

[35] P. Noll, “MPEG digital audio coding,” IEEE Signal Processing Magazine, vol.14, no.5,

pp.59-81, September 1997.

[36] M. Biskup, “Error resilience in compressed data,” PhD Dissertation, Faculty of

Mathematics, Informatics and Mechanics, University of Warsaw.

https://www.mimuw.edu.pl/wiadomosci/aktualnosci/doktoraty/pliki/marek_biskup/mb-praca.pdf

[37] J. Daemen and V. Rijmen, “AES proposal: Rijndael,”

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf#page=1

[38] National Institute of Science and Technology (NIST), “Announcing the advanced

encryption standard (AES),” Federal Information Processing Standards Publication 197,

November 2001.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[39] “National policy on the use of the Advanced Encryption Standard (AES) to protect national

security systems and national security information,” CNSS Policy No.15, Fact Sheet No.1, June

2003.

[40] O. Dunkelman, N. Keller, and A. Shamir, “Improved single-key attacks on 8-round AES-

192 and AES-256,” Proc. of 16
th

 Intl. Conf. on the Theory and Application of Cryptology and

Information Security, December 2010.

[41] H. Mala, M. Dakhilalian, V. Rijmen, and M. Modarres-Hashemi, “Improved impossible

differential cryptanalysis of 7-round AES-128,” Proc. of 11
th

 Intl. Conf. on Cryptology in India,

December 2010.

[42] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the full AES,”

http://research.microsoft.com/en-us/projects/cryptanalysis/aesbc.pdf

[43] J. Daemen and V. Rijmen, “Efficient block ciphers for smart-cards,” Workshop on

Smartcard Technology (Smartcard’ 99), pp.29–36, USENIX Eds., 1999.

[44] D. Whiting, B. Schneier, and S. Bellovin, “AES key agility issues in high-speed IPsec

implementations,” Counterpane Internet Security, May 2000.

https://www.cs.columbia.edu/~smb/papers/AES-KeyAgile.pdf

[45] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin, “Efficient software

implementation of AES on 32-bit platforms,” Proc. of 4
th

 Intl. Workshop on Cryptographic

Hardware and Embedded Systems (CHES), August 2002.

[46] M. McLoone and J. V. McCanny, “High performance single-chip FPGA Rijndael algorithm

implementations,” Proc. of 3
rd

 Intl. Workshop on Cryptographic Hardware and Embedded

Systems (CHES), May 2001.

[47] V. Fischer and M. Drutarovsky, “Two methods of Rijndael implementation in

reconfigurable hardware,” Proc. of 3
rd

 Intl. Workshop on Cryptographic Hardware and

http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
http://link.springer.com/book/10.1007/3-540-44709-1
http://link.springer.com/book/10.1007/3-540-44709-1
http://link.springer.com/book/10.1007/3-540-44709-1

BIBLIOGRAPHY 66

Embedded Systems (CHES), May 2001.

[48] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, “An adaptive cryptographic engine for

IPSec architectures,” IEEE Symposium on Field-Programmable Custom Computing Machines,

pp.132–141, April 2000.

[49] N. Li, Y. H. Shang, and J. C. Zou, “An audio scrambling method based on Fibonacci

transformation,” Journal of North China University of Technology, vol.16(3), pp.8-12, 2004.

[50] H. Y. Nie, C. Y. Zhu, and Q. Lu, “Audio encryption based on digital chaotic ciphers,”

Signal Processing, vol.21(4A), 2005.

[51] H. L. Li and R. S. Ye, “Audio signal scrambling based on the Euler transformation,”

Chinese Journal of Scientific Instrument, vol.28(4), pp.904-907, 2007.

[52] M. Steinebach, S. Zmudzinski, and T. Bolke, “Audio watermarking and partial encryption,”

Proc. of SPIE, Security, Steganography, and Watermarking of Multimedia Contents VII,

vol.5681, pp.779-788, March 2005.

[53] N. J. Thorwirth, P. Horvatic, R. Weis, and Jian Zhao, “Security methods for MP3 music

delivery,” Proc. of the 34
th

 Asilomar Conf. on IEEE Signals, Systems and Computers, vol.2,

pp.1831-1835, November 2000.

[54] A. Servetti, C. Testa, and J. C. De Martin, “Frequency-selective partial encryption of

compressed audio,” Proc. of IEEE Intl. Conf. on Acoustics, Speech, Signal Processing., vol.5,

pp.668-671, April 2003.

[55] A. Torrubia and F. Mora, “Perceptual cryptography on MPEG-1 layer III bit-streams,” Proc.

of IEEE Trans. on Consumer Electronics, vol.48, no.4, pp.1046-1050, November 2003.

[56] B. Gadanayak and C. Pradhan, “Selective encryption of MP3 compression,” Intl. Journal of

Computer Applications, ICIST vol.1, pp.23-26, August 2011.

[57] Twe Ta Oo, T. Onoye, and K. Shin, “Partial encryption method that enhances MP3 security,’’

IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, vol.

E98-A, no. 8, August 2015, to be published.

[58] “Method for objective measurements of perceived audio quality,” Rec. ITU-R BS.1387-1,

1998-2001.

[59] http://lame.sourceforge.net/links.php#OpenSource

[60] “General methods for the subjective assessment of sound quality,” Rec. ITU-R BS.1284-1,

1997-2003.

[61] A. V. Subramanyam and S. Emmanuel, “Audio watermarking in partially compressed-

encrypted domain,” IEEE Intl. Conf. on Systems, Man, and Cybernetics, pp.2867-2872, October

2012.

[62] H. Wang, M. Hempel, D. Peng, W. Wang, H. Sharif, and H. H. Chen, “Index-based

selective audio encryption for wireless multimedia sensor networks,” IEEE Trans. on

Multimedia, vol. 12, no. 3, pp. 215-223, April 2010.

http://link.springer.com/book/10.1007/3-540-44709-1

BIBLIOGRAPHY 67

[63] K. Datta and I. S. Gupta, “Partial encryption and watermarking scheme for audio files with

controlled degradation of quality,” Multimedia Tools and Applications, vol.64, no.3, pp.649-669,

June 2013.

[64] W.-Q. Yan, W.-G. Fu, and M. S. Kankanhalli, “Progressive audio scrambling in compressed

domain,” IEEE Trans. on Multimedia, vol.10, no.6, pp.960-968, October 2008.

[65] Twe Ta Oo and T. Onoye, “Progressive audio scrambling via complete binary tree’s

traversal and wavelet transform,” Proc. of Asia-Pacific Signal and Information Processing

Association Annual Summit and Conference (APSIPA ASC), December 2014.

[66] Twe Ta Oo and T. Onoye, “Progressive audio scrambling via wavelet transform,” Proc. of

IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), pp.97-100, November 2014.

[67] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidistributed

uniform pseudorandom number generator,” ACM Trans. on Modeling and Computer

Simulations: Special Issue on Uniform Random Number Generation, 1998.

[68] “9.6 random - generate pseudo-random numbers,” Pythonv2.6.8 documentation,

https://docs.python.org/release/2.6.8/library/random.html

[69] “Randomclass documentation,” Ruby 1.9.3 documentation,

http://ruby-doc.org/core-1.9.3/Random.html

[70] “mt_srand,” PHP documentation, http://php.net/manual/en/function.mt-srand.php

[71] “Random number generator algorithms,” Documentation Center, MathWorks.

[72] http://en.wikipedia.org/wiki/Diehard_tests

[73] J. Soto, “Statistical testing of random number generators,” National Institute of Standards

and Technology (NIST), http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf

[74] W. Rotz, E. Falk, D. Wood, and J. Mulrow, “A comparison of random number generators

used in business,” Proc. of the Annual Meeting of the American Statistical Association, August

2001.

[75] http://en.wikipedia.org/wiki/TestU01

[76] B. D. McCULLOUGH, “Software reviews: a review of TestU01,” Journal of Applied

Econometrics, pp.677-682, 2006.

[77] P. Leopardi, “Testing the tests: using random number generators to improve empirical tests,”

http://maths-people.anu.edu.au/~leopardi/Leopardi-TestU01-paper-final.pdf

[78] P. L’Ecuyer and R. Simard, “TestU01: a C library for empirical testing of random number

generators,” ACM Trans. on Mathematical Software, vol.33, no.4, article.22, August 2007.

[79] A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and

Applications, John Wiley & Sons Ltd., 1999.

[80] R. X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing, Springer,

2011.

[81] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, Englewood

https://docs.python.org/release/2.6.8/library/random.html
http://www.ruby-doc.org/core-1.9.3/Random.html
http://php.net/manual/en/function.mt-srand.php
http://www.mathworks.co.uk/help/matlab/ref/randstream.list.html
http://en.wikipedia.org/wiki/MathWorks

BIBLIOGRAPHY 68

Cliffs, NJ, 1995.

[82] http://en.wikipedia.org/wiki/Wavelet#Multiresolution_based_discrete_wavelet_transforms

[83] K. K. Shukla and A. K. Tiwari, Efficient Algorithms for Discrete Wavelet Transform,

SpringerBriefs in Computer Science, 2013.

[84] M. Weeks and M. Bayoumi, “Discrete wavelet transform: architectures, design and

performance issues,” Journal of VLSI Signal Processing, 2003.

[85] C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet transforms,” Society for

Industrial and Applied Mathematics, vol.31, no.4, pp.628-666, December 1989.

[86] J. Olkkonen, Discrete Wavelet Transforms – Theory and Applications, InTech, March 2011.

[87] http://www.mathworks.co.jp/jp/help/wavelet/ref/waveletfamilies.html

[88] S. Sridharan, E. Dawson, and B. M. Goldburg, “Speech encryption using discrete

orthogonal transforms,” Intl. Conf. on Acoustics, Speech, and Signal Processing, April 1990.

[89] S. Sridharan, E. Dawson, and B. Goldburg, “Fast Fourier transform based speech

encryption system,” IEEE Proc. of Communications, Speech and Vision, vol.138, no.3, pp.215-

223, June 1991.

[90] D. S. Anjana and M. Kuriakose, “Frequency speech scrambler based on Hartley transform

and OFDM algorithm,” Intl. Journal of Computer Applications, vol.61, no.8, January 2013.

