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Abstract 

This thesis discusses low-complexity audio encryption methods for Digital Rights Management 

(DRM). Recent years have seen the rapid growth of Internet traffic and the proliferated 

distribution of digitalized audio products such as music, audio books, and spoken news. As a 

result, secure distribution and copyright protection of those products have been increasingly 

important. The DRM technologies have been intensively studied in this area, and encryption 

plays an important role to protect the contents from unauthorized accesses. Although encryption 

ensures content security, the naive method of encrypting an audio file would destroy compliance 

with the audio standard so the resulting encrypted file could not be rendered by existing standard 

media players. This thesis focuses on low-complexity audio encryption methods that keep 

compliance with the media standard and achieve the following DRM requirements: 1) providing 

the confidentiality in audio distribution, 2) controllably degrading the audio quality by adjusting 

the percentage of encryption, and 3) realizing the try-before-purchase model, which is one of the 

important business models of DRM, in which the encrypted audio files are published for 

commercial purpose; users can render those files for trial without decryption and enjoy the 

contents in original quality by purchasing the decryption keys. 

Firstly, this thesis presents a low-complexity partial encryption method for compressed 

audio (MP3). Unlike conventional encryption which encrypts the whole file, partial encryption 

can provide some interesting features such as yielding low-quality signals, reducing execution 

time, and coexistence with the media standards. The main idea of partial encryption is to protect 

the entire content by encrypting only the perceptually important parts. This thesis discusses how 

to choose the perceptually important parts during the MP3 encoding process in accordance 

with the concept of the Human Auditory System (HAS). Experimental results show that 

encrypting the whole MP3 file renders the audio signal meaningless while encrypting 2-10% of 

the file degrades the audio quality but not completely destroys the signal so it can be used as 

trial music. That trial MP3 keeps compatibility with the standard so it can be rendered by any 

existing MP3 players without need to decrypt. Under the access of the correct decryption keys 

and specific MP3 players, the full-quality MP3 can be successfully recovered. In addition, this 

thesis discusses the invalid amplitude problem regarding audio encryption: in any kinds of audio 

format, there are valid amplitude ranges for audio samples, which differ based on the supported 

bit-depth of an audio coder. If the audio samples to be coded are not within the valid range, they 

are clipped. This becomes a problem when the encrypted audio samples are beyond the valid 

ranges and get clipped because the data losses introduced by clipping deter the decryption 

process from successfully recovering the signal. This thesis also presents a solution for this 

problem.  
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Secondly, this thesis presents two low-complexity audio scrambling methods, which are 

kinds but not direct applications of audio encryption. Unlike audio encryption that renders an 

audio signal meaningless by changing both the values and positions of the contents, audio 

scrambling degrades the residual intelligibility of an audio signal by breaking the coherence 

between data contents. They neither inject any new values nor change the values of the existing 

contents. Due to this feature, they are more preferable to usual audio encryption to be used as 

pre- and post-processing of data hiding methods. This thesis presents two effective audio 

scrambling methods in the time domain: one based on the pre-order traversal of a complete 

binary tree and the other on a pseudorandom number generation algorithm called Mersenne 

Twister (MT). Experimental results show that the proposed methods are very effective in terms 

of time and space complexity and scrambling effect. However, their cryptographic security is 

limited because of the only use of permutation operations. 

Thirdly, with the aim of strengthening the cryptographic security of the proposed audio 

scrambling methods, this thesis presents two new schemes in the wavelet domain. First, an audio 

signal is wavelet decomposed. Then, the layers of wavelet coefficients are separately scrambled 

by considering not only the pre-order but also in-/post-order based scrambling methods in the 

first scheme and using the MT based scrambling method with a series of keys in the second 

scheme. Experimental results show that anyone without knowledge of the correct wavelet 

decomposition parameters and the correct method/key used for each layer will not be able to 

successfully descramble the signal. The new schemes also achieve progressive scrambling that 

enables the audio outputs with different quality levels to be generated by controlling the 

scrambling degree on the basis of the system requirement: slightly distorted ones for the try-

before-purchase model of the DRM systems and severely distorted ones for the systems with 

strong security needs.  

As a conclusion, this thesis presents low-complexity audio encryption methods for both 

compressed and uncompressed audios with detailed discussions on 1) how to solve the invalid 

amplitude problem regarding audio encryption, 2) how to effectively choose the perceptually 

important parts for partial encryption, 3) how to conduct encryption while keeping compliance 

with the media format, and 4) how to strengthen the cryptographic security of audio scrambling. 

In addition to providing confidential audio distribution, the proposed methods can also be used 

to realize the try-before-purchase model. Thus, these proposals strongly contribute to the 

development of efficient DRM systems. 
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Chapter 1 

Introduction 

This chapter describes the background and objectives of this thesis. This thesis focuses on 

developing low-complexity audio encryption methods, for both uncompressed and compressed 

audio formats, to be applied in Digital Rights Management (DRM) environment. The two basic 

problems which make most of the usual encryption methods to be less preferable for audio 

protection are discussed. Then, the concept of partial audio encryption and its desirable features 

over usual encryption of the whole file are presented. The theories behind uncompressed and 

compressed audio file formats are also briefly discussed. Finally, the objectives and 

contributions of this thesis are explained. 

1.1 Background 

Nowadays, the multimedia technology has been widely used in various fields of industrial 

production, scientific research, and daily life [1-2]. The proliferated distribution of digitalized 

audio products has been seen in recent years due to the advents of multimedia compression 

standards and high-speed Internet and communication networks. These latest technologies have 

made our daily lives easier and more comfortable, but on the other hand they have been raising 

serious issues of copyright violation and unauthorized access of digital contents on a scale never 

before imagined. Many producers from music industries fear that online distribution of their 

works, on which the revenue of these industries partly or wholly depends, will speed up illegal 

distribution on the Internet or the Darknet [3]. For solving those issues, DRM [4-5] technologies 

have been intensively studied by researchers from both academia and industry. 

The DRM is a set of access-control techniques used by manufacturers, publishers, and 

copyright holders to limit the usage of digital devices or information [6-7]. The most commonly 

used DRM technologies are: 

 Restrictive licensing agreements: The access to digital materials, copyright and public 

domain is controlled. Some restrictive licenses are imposed on consumers as a condition of 

entering a website or when downloading software [8]. 

 Encryption, scrambling of expressive material, and embedding of a tag: This technology 

is designed to control access and reproduction of information.  

Generally, a DRM system can be realized as shown in Fig. 1.1. 

http://en.wikipedia.org/wiki/Digital_rights_management#cite_note-22
http://en.wikipedia.org/wiki/Encryption
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Figure 1.1: An example of a typical DRM system. 

 The user pays for the content and gains it through the provider. 

 The content provider or Internet service provider (ISP) takes the billing list from the DRM 

centre and sends the authorized or encrypted content to the user. 

 The payment gateway takes payment request from the DRM center and sends an approval of 

payment to it. 

 The DRM center takes content request from the user after payment approval and then sends 

the billing list to the content provider or ISP and authentication (e.g. license or decryption 

key) to the user. 

Nowadays, the DRM technology has been adopted by the entertainment industry, most e-

book publishers and online music stores. Electronic books read on a personal computer or an e-

book reader typically use the DRM technology to limit copying, printing, and sharing of e-books.  

Examples of the e-book DRM schemes commonly used today are Adobe’s ADEPT DRM [9] 

and Apple’s FairPlay DRM [10-11]. As for the multimedia industry, with the aim of restricting 

usage of the media content purchased and downloaded, they employ the DRM technology in 

various kinds of business scenarios that include [12]: 

 Online scenarios: These scenarios require users to be online while they play back the media 

content:
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 Live streaming: Live streaming sends the content directly to the computer or device 

without saving the file to a hard disk. A live stream is only available while it is being 

broadcasted. Internet television and radio are examples of live streaming. 

 Progressive download: Progressive download lets users play back the media while it is 

downloading. The main difference between progressive download and live streaming, 

from a user's point of view, is that progressively downloaded content is stored on the 

user's computer or device, at least temporarily. 

 Offline scenarios: These scenarios allow users to be offline while they play the content.  

 Download file offline (onetime purchase): Users download the content from the 

Internet and play it later whenever they want. The DRM software restricts redistribution 

of the content to one or more devices. 

 Subscription: It enables the customers to play back the content based on a subscription 

model. For example, customers of the online television channel pay a monthly fee to 

watch up to 100 hours of television content online. In order to renew their subscription, 

they need to pay the monthly fee and connect to the service at least once a month 

because the subscription license expires every 45 days. 

 The followings are examples of the online music stores that employ the DRM technology. 

Prior to 2009, Apple’s iTunes store utilized the FairPlay DRM system [10-11] that enables 

playback of the iTunes music only on Apple devices and Apple’s QuickTime media player. In 

recent years, music tracks with DRM-free iTunes Plus format are available at a higher price 

point. Napster music store [13] offers a subscription-based DRM approach alongside permanent 

purchases. Users of the subscription service can download and stream an unlimited amount of 

music during the subscription period. However, when the subscription period lapses, all the 

downloaded music is unplayable until the user renews his or her subscription. Prior to 2008, 

Sony operated a music download service called Connect [14] which used Sony’s proprietary 

OpenMG DRM technology. Music sold at Sony Connect was only playable on Sony hardware 

and computers running Microsoft Windows.  

Although DRM is prevalent for Internet music, it also has an undesirable side of 

frustrating the authorized customers. From the DRM regulations used by the above mentioned 

online music stores, we can see that most of the DRM techniques restrict copying or viewing of 

the contents regardless of whether such copying or other use is legally considered a “fair use” by 

authorized customers. Under that circumstance, DRM has come under fire. Those opposed to 

DRM contend there is no evidence that DRM helps prevent copyright infringement, arguing 

instead that it serves only inconvenience to legitimate customers, and that DRM helps big 

business stifle innovation and competition [15]. Thus, it has been very important to develop the 

DRM technologies that ensure not to lock out the legitimate users. 

1.2 Problems of encryption on audio data 

Among the DRM techniques, encryption plays an important role to protect the contents from 

unauthorized accesses.  

A lot of audio encryption methods in different domains have been proposed in the 

literature. In the time domain approaches, audio signals are generally encrypted by permuting

http://en.wikipedia.org/wiki/Big_business
http://en.wikipedia.org/wiki/Big_business
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the audio samples [16-17], blocks of the samples [16], or the bits which made up of each sample 

[18]. In the transform domain approaches, the audio signal is first transformed into specified 

domains (e.g. Fast Fourier Transform (FFT) [19-21]) and then encryption is performed on the 

transformation results. Basically, any kinds of traditional encryption algorithms, including 

symmetric or asymmetric ones, can be used for audio protection. However, the naive method of 

encrypting the entire audio file would destroy compliance with the media standard due to 

changing data format and increasing file size after encryption, especially in the time-domain 

approaches. Then, the encrypted audio files could not be played back by existing standard music 

players and this would hinder the convenient use for legitimate customers. In addition, the 

problems that will be discussed in the following sections reduce the effectiveness of usual 

encryption methods to be used for audio protection. 

1.2.1 Invalid amplitude problem 

In any kinds of audio format, there are valid amplitude ranges for audio samples [22-23], which 

differ on the basis of the supported bit-depth of an audio coder and data type of the audio 

samples. As shown in Table 1.1, integer-type audio samples can be encoded in 8-bit, 16-bit, or 

24-bit bit-depth, and whereas floating point audio samples can be encoded in up to 64-bit. The 

higher the bit-depth, the better the audio resolution but the larger file size is yielded. 

Before writing an audio file, the audio encoder checks if the audio samples are within the 

valid amplitude ranges and if they are not, the exceeding parts are clipped. This clipping process 

becomes a problem for usual encryption algorithms to be directly used for audio protection. 

Generally, encryption algorithms try to render an audio signal meaningless by applying a series 

of mathematical operations on the audio samples such as shifting, adding or XOR-ing with key 

sequences, substituting the samples in accordance with a look-up table, etc. After those 

operations, it is highly unlikely to keep the audio samples in their original format or size and 

there is a possibility that the amplitudes of the samples become beyond the valid ranges. Thus, 

the above clipping process is inevitable and the data losses introduced by clipping will definitely 

deter the decryption process from successfully recovering the audio signal. Thus, any kinds of 

audio encryption methods need to pay attention to how to handle this problem. One of the 

proposals in this thesis presents a solution for this problem. 

1.2.2 Operational conflict problem with data hiding methods 

Encryption and data hiding are widely used DRM techniques in which encryption mechanism 

protects the content from unauthorized accesses and data hiding mechanism ensures copyright 

protection by embedding the watermark (e.g. copyright related messages or signatures) into the 

audio signal without sacrificing the audio quality. However, encryption techniques protect the 

data just before decryption. Once the data is decrypted, there is no more protection. On the other 

hand, data hiding techniques cannot provide secure distribution. For those reasons, employing 

encryption and data hiding techniques individually is not fully desirable for today’s DRM 

systems. There has been a lot of interest in developing a combined scheme of encryption and 

data hiding for ensuring both confidential distribution and copyright protection. 
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Table 1.1: Valid audio amplitude ranges for different bit-depth systems. 

Bit-Depth Valid Range for Respective Data Type 

Integer Floating Point 

8-bit  [0, 255] [-1.0, +1.0) 

16-bit  [-32768, +32767] [-1.0, +1.0) 

24-bit  [-2^23, 2^23-1] [-1.0, +1.0) 

Higher bit-depth  [-1.0, +1.0] 

Kothamasu and Sehgal [24] proposed a system that uses both encryption and data hiding 

techniques in which a watermark image is embedded into an audio signal on the basis of the 

energy of the signal in the discrete wavelet and cosine transform domains. Before embedding, 

the watermark image is encrypted by using the Arnold transformation [25], which is a common 

image transformation technique in the two-dimensional domain. A similar scheme was also 

proposed by Mondal and Mandal [26] in which data hiding is done in the time domain and the 

watermark (here it is a speech signal) is encrypted by using the chaos based encryption [27]. The 

main purpose of these methods is to secure the watermark information in case the data hiding 

methods break but not for secure distribution of the host audio signal. 

However, if the main purpose of such a combined scheme is to provide both secure 

distribution and copyright protection, encryption must be done on the host audio signal, not on 

the watermark information. In that case, usual encryption methods are not appropriate for 

combining with data hiding methods. It is because both encryption and data hiding try to change 

the values of the audio contents and thus cause operational conflicts with each other. Let us 

consider two example scenarios of combining the methods in which encryption is to perform 

bitwise XOR between audio samples and keys and data hiding is to replace the least significant 

bit (LSB) of each audio sample with the watermark bit. For an audio signal s, the first scenario is 

as follows:  

1) The watermark information is embedded on s: m(s) 

2) The marked file is encrypted: e(m(s)) 

To detect the watermark in this scenario, the above steps must be done in exact reverse 

order. That is, the watermark information cannot be detected from the encrypted signal e(m(s)). 

For the second scenario, 

1) The audio signal is encrypted: e(s) 

2) The watermark information is embedded on the encrypted signal: m(e(s)) 

In this scenario, decryption before completely removing the watermark would result in 

random decrypted values and the signal with nearly original quality could not be successfully 

recovered. Moreover, most of the audio watermarking methods proposed in the literature are 

irremovable methods in which removing the watermark will surely degrade the audio quality. 

 Let us consider how the above conflicts reduce the effectiveness of the DRM systems in 

the application scenario shown in Fig. 1.2: in DRM, the media is usually encrypted for 

confidentiality before distribution. The encrypted media may then be transmitted from owners to
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Figure 1.2: Online audio distribution scenario in DRM environment. 

customers through distributors. Those distributors have no right to access the unencrypted media 

and are only entitled to distribute the encrypted media to end users and request the license server 

in the DRM system to issue the license containing the decryption key to end users. However, 

they sometimes need to watermark the media for copyright violation detection, distribution 

control, proof of distributorship, or traitor tracing, and must embed the watermark on the 

encrypted content. As for customers, they can get the decryption keys from owners for a fee and 

then enjoy the high-quality content after decryption. Note here that decryption must be done on 

the marked content. If the usual encryption methods were applied in this scenario, they would 

completely destroy the objective of data hiding because decryption would never be successful 

without removing the watermark.  

Thus, it is very important to develop effective audio encryption methods that can be used 

together with the data hiding process without causing any conflicts. This thesis proposes two 

audio scrambling methods, which are kinds but not direct applications of audio encryption, 

which can be effectively applied in the above application scenario.  

1.3 Audio file formats 

This section discusses the uncompressed and compressed audio file formats. An audio file 

format is a file format for storing digital audio data on a computer system. The bit layout of the 

audio data (excluding metadata) is called the audio coding format and can be uncompressed or 

compressed to reduce the file size by often using the lossy compression. There are three major 

groups of audio file formats: 

 Uncompressed audio formats, e.g. waveform audio file format (WAV) [28-29], audio 

interchange file format (AIFF) [30] 

 Compressed audio formats (lossless), e.g. WavPack [31] 
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 Compressed audio formats (lossy), e.g. advanced audio coding (AAC) [32], MPEG-1 

layer III (MP3) [33-35] 

 As this thesis proposes audio encryption methods for WAV and MP3 audio formats, the 

following sections explain those file formats in detail.  

1.3.1 Waveform audio file format (WAV) 

Waveform audio file format (commonly known as WAV) [28-29] is a Microsoft and IBM audio 

file format standard for storing an audio bitstream on personal computers (PCs). It is the main 

format used on Windows operating systems for raw and typically uncompressed audio. The 

usual bitstream encoding is the pulse code modulation (PCM) format. Even though an 

uncompressed WAV file is large and thus not appropriate for file sharing over the Internet, it is a 

commonly used file type suitable for retaining audio files of high quality, for using in 

applications like audio editing where the time needed in compressing and decompressing data is 

a concern or on a system where disk space is not a constraint. 

 The WAV is an application of the Resource Interchange File Format (RIFF) bitstream 

format method for storing data in chunks. Fig. 1.3 shows the WAV file format. Every chunk 

(including the header) starts with the chunk ID that defines what is included in the chunk, e.g. 

“RIFF” chunk, “fmt” chunk, and “data” chunk. The other fields in the RIFF chunk define the 

size of the overall file and file format (here it is “WAVE”). The format chunk is the metadata 

chunk which describes the necessary information to decode the WAV file such as the sampling 

rate, the bit-depth, the number of channels, etc. The data chunk contains the audio sample data 

whose data type and range vary depending on the chosen bit-depth, as discussed in Sect. 1.2.1. 

 Field Name 

ChunkID 

ChunkSize 

Format 

Subchunk1ID 

Subchunk1Size 

AudioFormat 

NumChannels 

SampleRate 

ByteRate 

BlockAlign 

BitDepth 

Subchunk2ID 

Subchunk2Size 

Data 
 

Value 

“RIFF” 

varies 

“WAVE” 

“fmt” 

16 for PCM 

1 for PCM, others for compressed formats 

1 for Mono, 2 for Stereo, etc 

8000, 44100, etc 

SampleRate*NumChannels*BitDepth/8 

NumChannels*BitDepth/8 

8, 16, etc 

“data” 

varies 

sample data 
 

Figure 1.3: The canonical WAV file format.

The “RIFF” chunk 

The “fmt” sub-chunk 

The “data” sub-chunk 
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1.3.2 MPEG-1 layer III audio file format (MP3) 

The MP3 is a compressed audio format which is designed to greatly reduce the amount of data 

required to represent the audio recording and still sound like a faithful reproduction of the 

original uncompressed audio for most listeners [33-35]. Nowadays, the MP3 is a de facto 

standard of digital audio compression for the transfer and playback of music on most digital 

audio players as well as a common format for consumer audio streaming or storage.  

 All MP3 files are divided into smaller fragments called frames. Each frame stores 1,152 

samples and lasts for 26 ms. As shown in Fig. 1.4, which is the structure of an MP3 frame, a 

frame consists of five parts. The header contains important information such as the 

synchronization word, the sampling rate, the bitrate, and so on. The synchronization word found 

at the beginning of each frame enables the MP3 decoders to lock onto the signal at any point in 

the stream [33]. This makes it possible to broadcast an MP3 file. A receiver tuning in at any 

point of the broadcast just has to search for the synchronization word and then start playing.  

The Cyclic Redundancy Check (CRC) field is used to check if there are transmission 

errors in the header. According to the standard, bits 16 to 31 in both the header and the side 

information field are very sensitive to errors to such an extent that it can corrupt the whole frame, 

whereas an error in the main data only distorts a part of the frame. A corrupted frame can either 

be muted or replaced by the previous frame [33]. 

The side information field carries the necessary information to decode the MP3 main 

data (scalefactors and Huffman codes). For instance, it tells the decoder where to find the start of 

the main data in a certain frame and which Huffman code tables to be used to decode that frame.  

In the main data part, the purpose of scalefactors is to reduce the quantization noise. If the 

samples in a particular scalefactor band are scaled in the right way, the quantization noise will 

be completely masked. The second part of the main data consists of Huffman encoded bits. 

Finally, the ancillary data part is optional. 

 Figure 1.5 shows a series of the MP3 encoding processes. First, the input PCM signal is 

transformed from time-domain samples to frequency lines by passing through a filterbank 

cascaded by a windowed Modified Discrete Cosine Transform (MDCT). The input PCM also 

passes through the FFT process to yield the input for psychoacoustic model which provides 

information to control the MDCT windows type: short windows for adjacent frequency spectra 

with certain changes and long windows for others. This model also provides a set of masking 

thresholds used to discard audio redundancy. That is, frequency components under those 

thresholds cannot be perceived by human ear and thus the MDCT frequency lines can be non-

linearly quantized by using the lowest possible bitrate as long as the quantization noise is kept 

under those thresholds. Then the quantized values are divided into different regions and encoded 

with different Huffman tables that are tuned for the statistics of particular region. Finally, an 

MP3 frame is constructed by appending a header as shown in Fig 1.4. 

For decoding an MP3 bitstream, as shown in Fig. 1.6, the decoder firstly identifies every 

frame in the bitstream by searching for the synchronization word. If the protection bit in the 

header is set, the CRC field exists and checks the most sensitive data for transmission errors. 

Then the MP3 main data (scalefactors and Huffman coded data) are decoded by using the 

decoding parameters specified in the side information part. The decoded scalefactors are later 

http://en.wikipedia.org/wiki/De_facto_standard
http://en.wikipedia.org/wiki/De_facto_standard
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Streaming_media
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used when re-quantizing the Huffman decoded values (quantized values). Then, the Inverse 

MDCT (IMDCT) process is carried out on the re-quantization results (frequency lines). Finally, 

the synthesis filterbank reconstructs the signal. 

 

Syncword 

Layer 

Bitrate 

Sampling Rate 

 Scfsi 

Big_values 

Global_gain 

Table_select 

Count1Table_select 

  

Region0 

Region1 

Region2 

Count1 

 

Header CRC Side Info Scale 

Factors 

Huffman 

Codes 

Ancillary 

Data 

  

Main Data 
 

Figure 1.4: MP3 frame format. 

 

 

 

Figure 1.5: MP3 encoding process. 

 

 

 

 

 

 

 

 

 

Figure 1.6: MP3 decoding process. 
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1.4 Partial encryption 

Regarding audio protection, partial encryption methods have more desirable features than usual 

encryption of the whole file. The main concept of partial encryption is to protect the entire 

content by encrypting only the perceptually important parts which have smaller size. Unlike 

encrypting the whole file, partial encryption just degrades the audio quality but not completely 

destroys the file. Thus, if partial encryption is carefully carried out not to destroy the media 

format, the encrypted file can be played back by existing music players without need to decrypt. 

This feature is very attractive for realizing the try-before-purchase model, which is one of the 

important business models of DRM. 

 Let us consider a real world audio distribution scenario. A customer walks up to the 

music counter in the store and pick up an interesting CD. By using the CD player and headphone 

provided by the store, the customer checks the taste of the music. If the customer thinks it is 

worth a buy, he/she walks up to the counter and pays for it. As for online music stores, they 

should also provide preview music files for commercial purpose. Customers should be able to 

listen to those files via online streaming or by downloading to their own devices. The simplest 

scenario for providing the preview music is as follows: a short part of the music file is provided 

for preview and any customers can freely access it; for a fee, the customers are allowed to 

download the whole music file. Regarding this scenario, there are three undesirable facts. Firstly, 

it consumes the network bandwidth because of the need for two times of file transfer (for 

downloading the preview file and the whole file). Secondly, providing the whole unprotected 

music file for downloading after payment is not desirable. During data transfer between owner 

and customer, there might be an adversary who would illegally capture the file. Thirdly, 

providing a short part of the music file for trial may not be a good idea because it has a tendency 

to reduce the sales of mobile ringtones or ring-back tones. According to the reports over the 

Internet, sales of ringtones make up only 63 percent of the overall mobile music market in recent 

years, whereas in 2007, they made up 80 percent of the market. The main reasons for such a 

drop are:  

 Due to the development of high-tech smart phones, it is very easy to create customized 

ringtones; 

 Musical ringtones could be costly. For instance, the 20- to 30-second snippets were often 

pricier than buying the whole song. Someone who updated their ringtones frequently 

could easily pay $20 a month or more. 

Thus, using a short part of the music file for trial may add up fire to that “ringtones sales drop” 

problem. In addition, a short part of the music file, e.g. chorus part of the music, may not be 

good enough for listeners to taste the music. Even though that short part is good, it does not 

reflect the whole song is good.   

This thesis proposes partial audio encryption methods which provide more effective 

alternative to generate preview music than the above one. The possible application scenario is as 

follows: the whole music file whose quality is degraded by partial encryption is freely 

distributed for preview. That file can be played back by any existing music players without need 
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to decrypt. Even though the quality is degraded, customers can listen to the whole music file and 

thus they will be able to easily guess what the original music will sound like. After payment, 

they can get the decryption key (no need to download the music file again) and no doubt a high-

quality music file can be enjoyed under the access of the correct decryption key and specific 

media player. In addition, as the preview file is protected by partial encryption, it is not needed 

to worry about illegal access during transmission. 

Partial encryption on audio data also has other desirable properties of the followings: 

 Lower complexity, which is suitable for real time applications; 

 Adjustable security level based on the security requirement of the underlying system; 

 Restraining synchronization error [36], which occurs when directly encrypted MP3 files 

are Huffman decoded, to specific frames; 

This thesis presents a low-complexity partial encryption method for MP3 security. Thus, 

the basic concept of partial encryption on MP3 is introduced here. In most cases of partial 

encryption on compressed audio data, encryption comes after compression process as stated 

below. 

 An uncompressed audio signal M passes through the compression process and yields the 

compressed audio signal Y. 

 ).(MCompressedY   (1.1) 

While generating Y, the perceptually important parts Ye for encryption are identified apart 

from the perceptually less important parts Yc to be left as plain.  

 .ce YYY   (1.2)   

After encryption,  

 ),,( keyYEY ee   (1.3) 

where E(.) represents an encryption process in general and eY   is the encrypted signal. After 

bitstream formatting, the compressed-encrypted audio signal M′ is obtained. 

 .ce YYM   (1.4) 

The M  must be decodable by any MPEG standard decoders without decrypting .eY  The 

effectiveness of partial encryption depends on the choice of perceptually important parts for 

encryption. Chapter 2 of this thesis discusses how to effectively choose the perceptually 

important parts during the MP3 encoding process.  

1.5 Advanced Encryption Standard (AES) 

The methods proposed in Chapter 2 of this thesis use the Advanced Encryption Standard (AES) 

algorithm for audio encryption and thus the AES algorithm is briefly described in this section. 

 The AES is based on the Rijndael cipher [37] designed by Vincent Rijmen and Joan 

Daemen and proposed to the National Institute of Standards and Technology (NIST) during the 

AES selection process. It was announced as the Federal Information Processing Standards 

(FIPS)-approved cryptographic algorithm by the NIST in 2001 [38].  

The AES is based on a design principle known as a substitution-permutation network. It 

is a symmetric key block cipher [37-38]. As shown in Table 1.2, the lengths of the input block 
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and the output block are 128 bits. The length of the cipher key is 128, 192, or 256 bits. The 

number of the rounds to be performed during the execution of the algorithm is dependent on the 

key length. Internally, the operations in the AES algorithm are performed on a two-dimensional 

(4×4) array of bytes called the state. Each individual byte in the state has two indices and can be 

indexed as either sr,c or s[r,c], for 0≤r<4 and 0≤c<4. For executing the cipher or decipher process, 

the input array of bytes [in0, in1, …, in15] is copied into the state array, then the ciphering and 

deciphering operations are conducted on this state array, and the final results are copied to the 

output array of bytes [out0, out1, …, out15] as shown in Fig. 1.7. The copying from the input 

array and to the output array is carried out according to the following schemes: 

 .40  and  40for       ]4[],[  crcrincrs  (1.5) 

 .40  and  40for       ],[]4[  crcrscrout  (1.6) 

 As described in the high level description of the AES algorithm, the cipher and decipher 

processes use a round function that is composed of four different byte-oriented transformations: 

1) SubBytes, 2) ShiftRows, 3) MixColumns, and 4) AddRoundKey. In the AddRoundKey step, 

each byte of the state is combined with a block of the round key using bitwise XOR.  

Table 1.2: Algorithm specification of the AES. 

 Key Length (bits) Block Size (bits) Number of Rounds 

AES-128 128 128 10 

AES-192 192 128 12 

AES-256 256 128 14 

 

in0 in4 in8 in12 

in1 in5 in9 in13 

in2 in6 in10 in14 

in3 in7 in11 in15 
  

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 

out0 out4 out8 out12 

out1 out5 out9 out13 

out2 out6 out10 out14 

out3 out7 out11 out15 

 Figure 1.7: The state array input and output in the AES. 

AES Algorithm: High Level Description 

1. KeyExpansions - round keys are generated on the basis of the cipher key. AES requires 

a separate 128-bit round key block for each round including the initial round; 

2. InitialRound 

 AddRoundKey – adding a round key to the state; 

3. Rounds 

 SubBytes – byte substitution using a lookup table; 

 ShiftRows – shifting rows of the state array by different offset; 

 MixColumns - mixing data within each column of the state array; 

 AddRoundKey 

4. Final Round (no MixColumns) 

 SubBytes 

 ShiftRows 

 AddRoundKey 

http://en.wikipedia.org/wiki/Rijndael_S-box
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The SubBytes transformation shown in Fig. 1.8 is a non-linear byte substitution that 

independently operates on each byte of the state using a substitution table (S-box). For instance, 

if s1,1={53}, then the substitution value (s′1,1) would be the one in the S-box determined by the 

intersection of the row with index 5 and the column with index 3. 

In the ShiftRows transformation, as shown in Fig. 1.9, the bytes in the last three rows of 

the state are cyclically shifted over different number of bytes (offsets). The first row, r=0, is 

unchanged. Specifically, the shifting proceeds as follows: 

 ,40 and  40for  )_(,, 
 crss offsetshiftcrcr  (1.7) 

where shift_offset depends on the row and it is 1 for r=1, 2 for r=2, and 3 for r=3. Thus, each 

byte in the second row is shifted one to the left. Similarly, the bytes in the third and fourth rows 

are shifted to the left by offsets of two and three, respectively. The importance of this step is to 

avoid the columns being linearly independent, in which case, the AES degenerates into four 

independent block ciphers. 

 Like the ShiftRows, the MixColumns transformation provides diffusion in the cipher. As 

shown in Fig. 1.10, this transformation operates on the state column-by-column, treating each 

column as a four-term polynomial. The transformation rule is a matrix multiplication as follows: 

 .40for   

02  01  01  03
03  02  01  01
01  03  02  01
01  01  03  02
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 (1.8) 

 To perform the decipher process in the AES algorithm, the above cipher transformations 

are inverted and then implemented in reverse order. The transformations used in the deciphering 

process are: 1) InvShiftRows - each byte of the second, third, and fourth rows of the state is 

cyclically shifted to the right by offsets of 1, 2, and 3, respectively; 2) InvSubBytes - each byte 

of the state is independently substituted using an inverse S-box; 3) AddRoundKey; and 4) 

InvMixColumns - each column of the state is transformed by multiplying with a matrix. 

 

 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 

 

s′0,0 s′0,1 s′0,2 s′0,3 

s′1,0 s′1,1 s′1,2 s′1,3 

s′2,0 s′2,1 s′2,2 s′2,3 

s′3,0 s′3,1 s′3,2 s′3,3 

Figure 1.8: The SubBytes transformation in the AES. 

s  s′ 

 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 

 

s0,0 s0,1 s0,2 s0,3 

s1,1 s1,2 s1,3 s1,0 

s2,2 s2,3 s2,0 s2,1 

s3,3 s3,0 s3,1 s3,2 

Figure 1.9: The ShiftRows transformation in the AES.

sr,c s′r,c 

S-Box 
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s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 

 

s′0,0 s′0,1 s′0,2 s′0,3 

s′1,0 s′1,1 s′1,2 s′1,3 

s′2,0 s′2,1 s′2,2 s′2,3 

s′3,0 s′3,1 s′3,2 s′3,3 

Figure 1.10: The MixColumns transformation in the AES. 

 Regarding the security of the AES, the U.S. Government announced that the AES could 

be used to protect classified information [39]. In addition, many papers have been published on 

the cryptanalysis of the AES and it has survived numerous cryptanalytic efforts [40-42]. It has 

approved that the 128-bit key size used in the AES is resistant against the known cryptanalysis 

attacks including the brute force attack. Moreover, the computational complexity of the 

exhaustive key search for the AES depends on the length of the cipher key: 

 For a 128-bit key, the first key recovery attack has computational complexity of 2
126.1

; 

 For a 192-bit key, the first key recovery attack has computational complexity of 2
189.7

; 

For a 256-bit key, the first key recovery attack has computational complexity of 2
254.4

; 

As for the implementation, the AES is fast in both software and hardware [43-48]. It can 

be implemented to run at speeds unusually fast for a block cipher on a Pentium (Pro) [37]. 

 In this thesis, although there is no restriction on the choice of encryption algorithms to be 

used for the proposed methods, we choose the AES due to its speed, high level security, and 

ease of implementation. 

1.6 Audio scrambling 

Nowadays, audio scrambling methods [16-17, 49-52] are widely used to provide confidentiality 

in audio distribution. Transposition-based audio scrambling methods are kinds but not direct 

applications of audio encryption. They try to reduce the residual intelligibility of an audio signal 

by breaking the coherence between data contents so that the signal is unintelligible to 

unintended recipients of the communication. As they neither inject any new values nor change 

the values of the existing contents, they do not stop compliance with the audio format or neither 

increase file size nor change data format after scrambling. In addition, they do not create the 

operational conflict problem discussed in Sect. 1.2.2. They enable us to embed the watermark on 

the scrambled signal and to extract it from either the scrambled or descrambled version of the 

signal as well. Thus, they can be used more effectively as pre- and post-processing of the data 

hiding process rather than the usual encryption methods.  

A scrambling algorithm can be evaluated in many aspects, where the most important of 

which are as follows: 

s0,c 

s1,c 

s2,c 

s3,c 

s′0,c 

s′1,c 

s′2,c 

s′3,c 

MixColumns() 

http://en.wikipedia.org/wiki/Classified_information
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 Scrambling effect: even for one-time scrambling, the scrambling degree should be 

achieved to a high extent; 

 Efficiency: the scrambling and descrambling processes should not be too complex; 

 Security/anti-decryption capability: even if the algorithm is made public, descrambling 

should still be difficult or even impossible; 

 Perceptual quality: the scrambled signal should achieve very low or even zero residual 

intelligibility and the descrambling process must also be able to recover the signal with 

nearly original quality; 

 Execution time: as long as there is no harm to security, the shorter the time taken for 

scrambling/descrambling, the more efficient the algorithm; 

 In this thesis, with the purpose of applying together with data hiding methods, two low-

complexity audio scrambling methods are proposed.  Their performances are also thoroughly 

evaluated in terms of the above mentioned aspects. 

1.7 Objective of this thesis 

As described in the previous sections, the development of audio encryption methods that keep 

compliance with the media standard and that can be used together with data hiding is very 

important for today’s DRM systems. In addition, those methods should not create inconvenience 

for the authorized users to access and enjoy the audio files. This thesis proposes low-complexity 

audio encryption methods that satisfy those requirements. 

Firstly, Chapter 2 introduces the concept of partial encryption on uncompressed audio 

data together with a solution for invalid amplitude problem discussed in Sect. 1.2.1. Then, it 

focuses on a low-complexity partial encryption method for MP3. The proposed method is 

embedded in the MP3 encoding process in which only the quantized values that are perceptually 

important according to the Human Auditory System (HAS) are encrypted. It reduces execution 

time by encrypting only the parts of an MP3 file rather than the whole file. The resulting 

encrypted file is still compatible with the MPEG standard so it can be rendered by any existing 

MP3 players. For full-quality rendering, decryption using the appropriate cryptographic key is 

necessary. Moreover, the effect of encryption on audio quality can be flexibly controlled by 

adjusting the percentage of encryption. On the basis of this feature, we can realize the try-

before-purchase model discussed in Sect. 1.4: users can render the encrypted MP3 files for trial 

and enjoy the contents in original quality by purchasing the decryption keys. From our 

experiments, it turns out that encrypting 2-10% of the MP3 data suffices to generate trial music, 

and furthermore file size increase after encryption is subtle. 

 Secondly, Chapter 3 proposes two fast and simple transposition-based audio scrambling 

methods: one is based on the pre-order traversal of a complete binary tree and the other on a 

pseudorandom number generator (PRNG) called Mersenne Twister (MT). Since the methods 

only affect the positions of the audio samples but not the values, they can be used together with 

data hiding methods without the operational conflict problem discussed in Sect. 1.2.2. 

According to the experimental results, both methods are very effective in terms of time and 

space complexity and the scrambling effect. However, their cryptographic securities are limited. 
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 Thirdly, with the aim of strengthening the cryptographic security of the methods 

proposed in Chapter 3, Chapter 4 proposed two new schemes that combine each of those 

methods and the Discrete Wavelet Transform (DWT). First, an audio signal is wavelet 

decomposed and the layers of wavelet coefficients are retrieved. Then the coefficients in each 

layer are separately scrambled by considering not only the pre-order but also the in-/post-order 

based scrambling methods in the first scheme and by using the MT based scrambling method 

with a series of keys in the second scheme. Anyone who does not know the correct wavelet 

decomposition parameters and the correct method/key used for each layer will not be able to 

successfully descramble the signal. In addition, the new schemes also achieve the progressive 

scrambling effect in which the audio outputs with different quality levels can be generated by 

scrambling layer-after-layer. During the descrambling process, the audio signals with low-to-

high quality can be progressively recovered by descrambling layer-after-layer. This feature is 

very attractive because it enables the audio quality to be controllably degraded on the basis of 

the system requirement: slightly distorted ones for the try-before purchase model of the DRM 

systems and severely distorted ones for the systems with strong security needs. 

The rest of this thesis is organized as follows. Chapter 2 discusses two low-complexity 

partial encryption methods for uncompressed (WAV) and compressed (MP3) audios along with 

the experimental results. Chapter 3 proposes two transposition-based audio scrambling methods. 

The evaluation results of their scrambling effect, execution time, and cryptographic security are 

also described. Chapter 4 discusses how to enhance the cryptographic security of the methods 

proposed in Chapter 3 with the detailed evaluation results. Finally, Chapter 5 concludes and 

summarizes this thesis. 
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Chapter 2 

Partial Encryption Methods that 

Enhance Audio Security 

This chapter introduces the concept of partial encryption on raw audio (WAV) with a solution 

for invalid amplitude problem discussed in Sect. 1.2.1 as well. Additionally, Sect. 2.3 presents a 

low-complexity partial encryption method for MP3 as well as a detailed suggestion on how to 

effectively choose the data for encryption during the MP3 encoding process. 

2.1 Introduction 

As discussed in Sect. 1.4, partial encryption has more desirable features than usual encryption of 

the whole file such as reducing complexity and yielding low-quality audio signals. A lot of 

works on partial/selective encryption of compressed audio (MP3) have been proposed in the 

literature. All of those works are different based on the fact that how and which data are chosen 

for encryption. 

During the MP3 encoding process, the input PCM data transformed into several variants: 

frequency lines, quantization values, etc. Thorwirth et al. [53] proposed a partial encryption 

scheme that encrypts some selected frequency regions of the MP3 main data. The audio quality 

was degraded on the basis of the regions encrypted. However, neither the detailed procedure of 

encryption nor which frequency regions were selected for encryption was discussed. 

Servetti et al. [54] proposed a more detailed selective encryption scheme on frequency 

regions that yields the encrypted MP3s with low-pass filter quality. It was realized as follows: 

the selected frequency regions are limited by encrypting whose frequency lines and ordering the 

MP3 decoders not to decode them by setting their associated Huffman table indices to not-used 

values (4 and 14). That system needed to modify some fields in the MP3 header so that the 

decoder could successfully skip the encrypted parts. Modifying the header and forcing the 

decoders to behave in exceptional manners might cause problems of compatibility: not all 

decoders might function as expected. 

Torrubia and Mora [55] introduced the term “perceptual cipher” that means encryption 

that keeps the encrypted data to be perceptually acceptable (albeit lower quality). In that system, 

encryption was done on two variants of the MP3 data: selected scalefactors and Huffman codes. 

The selected scalefactors were encrypted by performing the XOR operation with the output of a
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PRNG, whereas the Huffman codes were encrypted by replacing the selected codewords with 

another codewords of the same size from the same codebook. In this system, the encryption on 

Huffman codes poses a limitation on the choice of encryption algorithm, and only the ones that 

do not affect file size and data format are suitable.  

Steinebach et al. [52] also proposed a partial encryption method on the scalefactor values 

in which the scalefactors of an MP3 frame are randomly formed into groups in accordance with 

a key and permuted within their corresponding group without changing the values. That method 

provided only a weak security because the number of possible permutations was not large 

enough. 

A selective encryption method on quantization values was proposed in [56] in which 

only the quantized values positioning at even indices are encrypted and the ones at odd indices 

are left unencrypted. Although the system was simple and easy to implement, the effect of 

encryption on the perceptual quality was limited. 

 This chapter proposes a low-complexity partial encryption method for MP3 that can be 

carried out without extensive computation, impact on compression ratio, and significant 

modification on MP3 headers. It is also very effective in terms of the perceptual quality because 

it chooses the data for encryption in accordance with the concept of the HAS. Moreover, the 

method does not impose any limitation on the choice of cipher algorithms although using the 

state-of-the-art AES will be a practical advantage. 

2.2 Partial encryption on raw audio 

As discussed in Sect. 1.3.1, in spite of its large size, the uncompressed/raw audio format (WAV) 

is a commonly used file type for storing high-fidelity audio files on a system where disk space is 

not a constraint. The uncompressed WAV files are sometimes used by some radio broadcasters, 

especially those that have adopted a tapeless system. For instance, BBC Radio in the UK uses 

the 44.1 kHz 16-bit two-channel WAV audio as standard in their VCS system (system for 

managing playout including media stores, playout systems and editing systems).  

In this section, an effective partial encryption method for uncompressed audio (WAV) is 

proposed in which the selected parts of a WAV file are encrypted by using the AES algorithm. 

Regarding the AES, there are some facts which we should pay attention to. Because it is a block 

cipher, the length of input needs to be multiple of 16 bytes and if they are not, some padding 

schemes are needed and this may increase file size after encryption. In our system, we choose 

the size of Ye (the data to encrypt) to be satisfied multiple of 16 bytes so that the AES can be 

used with no-padding scheme. The Electronic Code Book (ECB) mode among the AES modes 

of operations is chosen for the following reasons:  

 ECB mode does not have error propagation feature; 

 Other block chaining modes need the connected blocks to be decrypted in order and 

impose limitations in online streaming applications; 

 Other modes increase size after encryption due to the use of initialization vector (IV); 

For stronger security, the AES/CTR mode can be used instead of the ECB. Like the ECB, 

the CTR mode independently encrypts and decrypts each input block and hence avoids error 

http://en.wikipedia.org/wiki/BBC_Radio
http://en.wikipedia.org/w/index.php?title=VCS_AG&action=edit&redlink=1
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propagation. The CTR mode satisfies all of the above mentioned properties of the ECB except 

the use of the IV. The IV is used to randomize the encryption and hence it produces distinct 

ciphertexts even if the same plaintext is encrypted multiple times. Even though it strengthens the 

security, the IV must be somehow passed to the decryption process for successful decryption. 

The most common way is to concatenate the IV at the start of the ciphertext for the price of an 

increase in file size. If the CTR mode is to be applied in the proposed method, we can avoid 

increasing the file size by appending an additional file header that carries the encrypted IV 

information at the beginning of an audio track without violating the media standard. We can use 

the same key or different keys for encrypting the IV and the audio content. In this research, the 

ECB mode is still chosen because of its simplicity. In addition, although the ECB mode is 

vulnerable to dictionary attacks, that mode on audio bitstreams makes such attacks very hard due 

to large alphabet size. 

Although high-level security can be achieved by applying the AES, unfortunately, the 

encrypted results by the AES inevitably face the invalid amplitude problem that was discussed 

in Sect. 1.2.1 [22-23]. Thus, a solution for that problem is firstly proposed in the following 

section. 

2.2.1 Solution for invalid amplitude problem 

As discussed in Sect. 1.2.1, the invalid amplitude problem occurs when the encrypted audio 

samples are beyond the valid range and thus clipped by the audio coder. In our system, the 

MATLAB software that we use for simulation deals with any data as double (64-bit) format 

regardless of the original format and thus the valid amplitude range is [-1, +1]. As the AES 

algorithm used for ciphering the audio files works on array of bytes, the resulting encrypted 

audio samples are in the range of [0, 255] and hence need to be scaled to keep compliance with 

the original format. The proposed scaling scheme is as follows:  

After encryption, 

 
　,256/ee YY    (2.1) 

where eY   is the block with encrypted samples. Before decryption, 

 
.256  ee YY  (2.2) 

The only and most important thing is to keep high arithmetic precision accuracy when using Eq. 

(2.1) and Eq. (2.2) [57]. If we failed to keep high precision accuracy after applying Eq. (2.1) and 

let the result round off, undesirable quality distortion might still occur in the decrypted audio file. 

2.2.2 Procedure 

Figures 2.1(a) and (b) show the block diagrams of partial encryption and decryption on raw 

audio data, respectively. The detailed procedure is as follows [57]: 

Parameters: user-defined key (u_key), encryption percentage (p), and PCM data (M); 

Step 1:  To facilitate the AES’s block size restriction, M is first divided into 128-sample blocks 

S; 
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Figure 2.1: System flow of (a) partial encryption and (b) partial decryption on raw audio. 
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Step 2: On the basis of p, the number of blocks (Be) to be encrypted is determined; 

  ,)100/( lpBe   (2.5) 

where   128/)( Mlengthl  .  

Step 3: The blocks for encryption },,,{ ,2,1, eBeee YYY   are randomly chosen from S; for high 

security, the pseudorandom number generator is seeded with u_key.  

Step 4: Each Ye is encrypted and amplitude scaling defined by Eq. (2.1) is applied on the 

encrypted results of Ye to make sure compliance with the original audio format. 
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Hereafter, the E(.) represents the formal AES encryption process. Then the encrypted PCM is, 

 , ce YYM   (2.7) 

where Yc are the samples in M left unencrypted. By restraining the size of Ye to 128, the 

AES/ECB mode with no-padding scheme can be used without any trouble and thus M′ will also 

be the same size as M. After writing the M′ as a WAV file, the quality-degraded audio file that 

can be securely distributed is obtained. 

When writing the M′ (floating point) as a WAV file by using default 16-bit bit-depth, it 

has to be converted to integer (int16 type). Instead of simple rounding which leads to data loss, 

the “wavwrite” and “wavread” of MATLAB use Eq. (2.8) and Eq. (2.9) to change data type 

between floating point and integer [57]. Those functions achieve nearly perfect reconstruction 

with very small precision loss which has no effect on the decryption process. Thus by decrypting 

with the authorized use of the u_key and p, the file with nearly original quality can be 

successfully recovered. 
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To convert from floating point x to integer y (int16 type), 

 ).32768(  xroundy  (2.8) 

To convert from integer (int16 type) to floating point, 

 . 32768/yx   (2.9) 

2.2.3 Experimental results 

In this thesis, we use the MATLAB software to simulate the proposed method on audio signals 

belonging to different categories: pop, jazz, classical, and speech, which are encoded in 16-bit 

PCM format with sampling frequency of 48 kHz. The results are thoroughly analysed in terms 

of perceptual quality, execution time, and security. 

The perceptual quality assessment is done by measuring the objective difference grade 

(ODG) between the encrypted WAVs and the reference unencrypted WAVs. Table 2.1 shows 

the grading scales of ODG [58]. The ODG, which is an objective measure of the perceived audio 

quality, is calculated by the perceptual evaluation of the audio quality (PEAQ) algorithm 

specified in the ITU-R BS 1387-1 [58]. 

Figure 2.2 shows the ODG values after applying the proposed method on the audio 

signals with varying p (% of encryption). The p is calculated on the basis of the total number of 

blocks (each with size of 128 samples) consisting in the audio file. From Fig. 2.2, we can see 

that the qualities of the encrypted audios are getting worse along with the increasing p. For 

p≥20%, the resulting ODG values are less than -3.2 for all signals. This shows that the proposed 

method badly destroys the signals to such an extent that the resulting audio qualities are very 

annoying. For p=2-10%, the ODG values are between -2.2 and -3.6 in general, which mean fine-

to-poor audio quality. Thus, it can be concluded that p=2-10% is suitable for generating the 

preview-quality audio files to realize the try-before-purchase model of DRM.  

 To test and verify execution time of the method, we simulate the system on a PC with 2.4 

GHz, Intel ® Core™ i5-2430M Processor. Figures 2.3(a) and (b) show the execution time 

results of the proposed method for encryption and decryption respectively. The results are the 

time taken not only for encryption and decryption but also for pre and post processing (i.e. 

segmentation and restructuring of an audio frame). For both encryption and decryption processes, 

we can see from Fig. 2.3 that execution time increases along with the increasing p for all music 

items. Note that execution time drops for p=100% because pre and post processing are not 

needed. For all music items, the proposed method only takes about one-fifth of the duration of 

the original signal even for encrypting half of that signal. For p=2-10%, which we assume that it 

is suitable for generating trial music, it takes less than one second for encryption/decryption and 

it is much shorter than the duration of the original music. Therefore, it can be concluded that the 

proposed method is possibly applied in real time applications. 

The security of the proposed method depends on the security of the AES algorithm, 

whose security has been widely researched in the literature. The longer the key length is, the 

higher the security that the AES can offer. In our system, we use the AES with 128-bit-long key 

which is known to give strong resistance against the known cryptanalytic methods including the 

brute force analysis. In addition, a pseudorandom sequence used to select the blocks of audio 

samples for encryption/decryption is generated based on the user-defined key. Thus, it is 



2.3 PARTIAL ENCRYPTION ON MP3  22 

 

   

computationally impossible to generate the same sequence without knowledge of the key used.  

2.3 Partial encryption on MP3 

As we discussed in Sect. 1.3.2, the MP3 is the most widely used compressed audio format for 

the transfer and playback of music on most digital audio players. However, it is not equipped 

with security features to protect the content from unauthorized accesses. This section proposes a 

low-complexity partial encryption method for MP3 together with a detailed performance 

evaluation on execution time, perceptual quality of the encrypted signals, etc. Additionally, this 

section presents a suggestion on how to choose data for encryption in accordance with the 

concept of the HAS, which is very important for the effective use of partial encryption. 

2.3.1 Choice of data to encrypt 

The effectiveness of partial encryption on MP3 depends on how to select Ye (the data to encrypt). 

The Ye can be chosen from  

Table 2.1: Grading scales of ODG. 

ODG Impairment Description Audio Quality 

0 Imperceptible Excellent 

-1 Perceptible but not annoying Good 

-2 Slightly annoying Fine 

-3 Annoying Poor 

-4 Very annoying Bad 

 

 

Figure 2.2: ODG vs p of the encrypted WAVs.

http://en.wikipedia.org/wiki/Digital_audio_player
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Figure 2.3: Execution time of the proposed method: (a) encryption (b) decryption. 
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 Header-like information (e.g. side information, CRC, and Huffman tables) or 

 Variant of the input PCM and its supplements (e.g. MDCT frequency lines, quantized 

values, Huffman codes, and scalefactors); 

The former are the information needed by the decoder to decode an MP3 file. Encryption 

on them makes the decoder to decrypt them first before decoding and thus it is not suitable for 

real time applications and music trial services. The latter are appropriate to be used in all kinds 

of applications and among them, the proposed method chooses the quantized values as Ye 

candidates for the following reasons [57]: 

 Scalefactors and Huffman codes are not directly related to perceptibility. We cannot 

decide which part of them is perceptually more important to choose as Ye;  

 Huffman codes have error avalanche effect [36], and encryption on them leads to 

synchronization problem; 

 Huffman codes are sensitive to encryption algorithms. Only the algorithms which yield 

the encrypted results with invariable format and length are suitable, e.g. the one that 

replaces the codewords with other codewords of the same length; 

 Although the MDCT frequency lines can be chosen on the basis of perceptibility, 

encryption on them has a significant impact on compression efficiency of MP3 encoders; 

2.3.2 Procedure 

As shown in Fig. 2.4, the proposed method can be applied for both online and offline 

applications. Online applications, e.g. live broadcast, are time critical and thus the encrypted 

MP3 files should be generated by simultaneously compressing and encrypting raw PCM. In the 

case of offline applications, encryption is done on already encoded MP3 files and thus partial 

decoding is needed for obtaining data to encrypt. To understand the details behind the proposed 

method, we need to have a closer look at the MP3 encoding process. 

As discussed in Sect. 1.3.2, each MP3 frame carries 1,152 samples and lasts for 26 ms 

[33]. After passing through the analysis filterbank and the MDCT process, the end result is 

subdivided into two granules (each with 576 spectral lines sorted in order of low to high 

frequencies). The non-uniform quantizer used in the MP3 encoding process makes use of the 

nature of the HAS to effectively quantize those frequency lines. According to the HAS, most 

human cannot sense frequencies below 20 Hz nor above 20 kHz. More precisely, frequencies 

ranging from 2 kHz to 4 kHz are the easiest to perceive, they are detectable at a relatively low 

volume [33]. 

 To achieve the highest quality with the lowest possible bitrate, the non-uniform quantizer 

uses a large quantization step size for high frequency lines (leads to small quantized values) and 

a small step size for low frequency lines. The quantized values are then divided into five regions 

as shown in Fig. 2.5 and encoded by using different Huffman tables to enhance the performance 

of Huffman encoder.  

 Among the five regions, most of the spectral energy of an audio signal accumulates in 

big_values regions, the size of which is indicated by big_values field in the side information part 

of an MP3 frame hence the maximum value is 288. Most common region boundaries, for a 44.1 
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kHz sampled signal, are 0-2 kHz for region0, 2-5 kHz for region1, and 5-14 kHz for region2. 

These frequencies are very sensitive to human ear and thus the big_values regions are the most 

suitable for partial encryption. 

In the proposed method, Ye is chosen from the big_values regions, and the detailed 

procedure is as follows: 

Parameters: user-defined key (u_key), encryption percentage (p), and big_values (M); 

Step 1:  First the number of frames carried by an MP3 bitstream is calculated. As each MP3 

frame is 26 ms long, for a t-second long signal, it generally consists of 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Proposed method (online/offline): (a) encryption (b) decryption. 
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Figure 2.5: Partitioning of quantized values. 
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 frames.  38 tF   (2.10) 

Step 2: On the basis of p and F, the number of frames for encryption (Fe) is determined.  

  .)100/( 　FpFe   (2.11) 

Step 3: The Fe frames for encryption are pseudo-randomly selected. Note that each frame is 

made up of 2 granules (sub-frames) and the following procedure is applied on both granules of 

the selected frames though we just refer to as frame for simplicity. For each selected frame j, to 

make the length of the part to encrypt facilitate with the AES block size, the Ye,j is chosen from 

jM as follows: 

 
},128*1 ,frame of

from  valuequantized |{ ,,

li j big_values

 i-th MQY jjije




 (2.12) 

where  128/)( jMlengthl  . 

Step 4: After encrypting the Ye,j and putting back in their original positions, the encrypted jM  is 

obtained. 

  )._,( ,, keyuYEY jeje   (2.13) 

  .\  where ,,,, jejjcjcjej YMYYYM   (2.14) 

 The above procedure is done on all granules of the selected frames. Finally, after 

Huffman-encoding and bitstream formatting, the quality-degraded MP3 file is obtained. For the 

offline case where the input is an already encoded MP3 file, partial decoding is needed to obtain 

M. For decoding a frame and extracting M from it, the decoder has to read the fields in the 

header and the side information part, the most important of which are the followings: 

 Sync: points the start of a frame; 

 main_data_begin: indicates where the main data of a certain frame begins; 

 part2_3_length: states the number of bits allocated in the main data part of the frame for 

scalefactors (part2) and Huffman encoded data (part3); 

 big_values: indicates size of the big_values partition; 

 table_select: specifies the Huffman tables that must be used for decoding the big_values 

partition; 

Note here that the quantized values also have their own value range as shown in Fig. 2.5. 

If the encrypted results do not follow those specified ranges, it will destroy compliance with the 

MP3 standard and needs to be solved as the invalid amplitude problem discussed in Sect. 1.2.1 

and Sect. 2.2.1. In the proposed method, we avoid this problem by encrypting only the 

big_values regions. Because those regions carry the quantized values in [-8191, +8191] range, 

the encrypted results which are in [0, 255] range are valid. 

2.3.3 Experimental results 

Using the same music items used in Sect. 2.2.3, performance of the proposed method is 

evaluated in terms of perceptual quality, execution time, security, and the effect on compression 

ratio. The LAME encoder [59], which is open-source software, with default bit rate setting (128 
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Kbits per second) is used for encoding MP3 files. The perceptual quality assessment is done by 

measuring both ODG [58] and subjective difference grade (SDG) [60] between the original 

WAVs and the encrypted MP3s. The grading scales of SDG are shown in Table 2.2. 

 Figure 2.6 shows the ODG values of applying the proposed method on MP3 audios with 

varying p (% of encryption). The p is calculated on the basis of the total number of frames (each 

with size of 1,152 samples) that make up of an MP3 file. As shown in Fig. 2.6, the ODG values 

are getting smaller along with the increasing p. This means that the qualities of the encrypted 

MP3s are getting worse when the encryption percentage is getting larger. Note that the ODGs 

are around -0.3 even for p=0% because of the lossy MP3 compression. For all music items, the 

ODG values are less than -3.6 for p≥20% and show that the qualities of the encrypted MP3s are 

very annoying. For p=2-10%, the resulting ODG values are generally between -2.7 and -3.6 for 

all signals. These ODG values refer to fine-to-poor audio quality and hence it can be concluded 

that encrypting 2% to 10% of an MP3 file is suitable for generating a preview-quality file to be 

used in the try-before-purchase model of DRM. 

Table 2.2: Grading scales of SDG. 

SDG Impairment Description Audio Quality 

5 Imperceptible Excellent 

4 Perceptible but not annoying Good 

3 Slightly annoying Fine 

2 Annoying Poor 

1 Very annoying Bad 

 

 

Figure 2.6: ODG vs p of the encrypted MP3s. 
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To make the above assumption concrete, we also conducted subjective tests in which ten 

untrained subjects were given seven different audio files for each test without mentioning 

anything about encryption. One is the original WAV file and the others are the encrypted MP3 

files. Firstly, they were asked to compare the qualities of the WAV and the other files. Then, 

using the WAV file as a reference, they were asked to grade the quality impairment of the MP3 

files in accordance with the subjective grading scales shown in Table 2.2. The final grading 

results (G) calculated by using Eq. (2.15) are shown in Table 2.3. All of the listeners could 

correctly identify 100% encrypted files because they sound like a white noise signal. Most of 

them could perceive the gradual decrease in audio quality along with the increasing p starting 

from 5% to 100%. Some could even correctly differentiate between 2% and 5% encrypted files 

even though the quality impairment difference is very small. All of them confirmed that the 

quality impairment caused by p>10% is too annoying to use as a trial music. 

 ,
1

1




E

E

N

k k
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N
G  (2.15) 

where NE is the number of evaluators and SDGk is the subjective measure graded by k
th 

evaluator. 

Figure 2.7(a) shows the execution time results of the method for both online and offline 

cases. For online processing, the results are the total time taken for both encryption and MP3 

encoding processes, whereas the offline case results are the time taken for all partial decoding, 

encryption, and re-encoding processes. Generally, the more the file is encrypted, the longer it 

takes for processing. However, even for p=100%, it only takes less than 2 seconds for 9-11 

seconds long signals, and the time taken for p≤10% is found to be very short. 

For authorized users, an MP3 file with nearly original quality can be successfully 

recovered by decrypting with the use of the correct decryption key and p. Figure 2.7(b) shows 

the time taken for both decoding and decryption processes. For all signals, it takes less than 2.5 

seconds for p=100% and less than one second for p≤10%. Thus, it can be concluded that the 

proposed method is effective so that it can be applied in real time applications. 

As for the security of the method, it depends on the security of the AES algorithm as 

discussed in Sect. 2.2.3. Although the AES/ECB mode is vulnerable to dictionary attacks, the 

ECB mode on MP3 bitstreams makes such attacks very hard due to large alphabet size. For 

instance, 128 bits per block result in 2
128

 possible input combinations, making the ECB block 

ciphers too large to be handled using today’s dictionary attacks. In addition, since the 

pseudorandom sequence used to select the MP3 frames for encryption/decryption is generated 

based on the user-defined key, it is computationally impossible to generate the same sequence 

without knowledge of the key used. In addition, the fact that encrypted bits are diffused after 

decompression also enhances the security. If far stronger security is desired, the AES/CTR mode 

instead of the ECB can be applied as discussed in Sect. 2.2. 

Table 2.3: Subjective measures of audio quality for the encrypted MP3s. 

Music 
Grading on Varying p 

2% 5% 10% 20% 50% 100% 

Pop 3.40 3.30 2.30 1.60 1.00 1.00 

Jazz 3.30 3.20 2.20 1.40 1.00 1.00 

Classical 3.50 3.30 2.50 1.60 1.00 1.00 

Speech 3.40 3.30 2.30 1.60 1.00 1.00 
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Figure 2.7: Execution time of the proposed method: (a) encryption (b) decryption. 

 Furthermore, we tried to correlate the encrypted-decoded MP3 with the unencrypted-

decoded MP3. A correlation coefficient below 0.35 gives a security level comparable to that 

obtained by complete encryption of a frame [61-62]. In our system, for p=2-10% which we 

assume that it is effective enough to generate trial music, the resulting correlation coefficients 

vary from 0.45 to 0.62 for p=2%, 0.3 to 0.37 for p=5%, and 0.21 to 0.25 for p=10%. Thus in the 
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proposed method, the security level can be adjusted by varying p on the basis of the 

confidentiality level of the prospective customer to whom the trial music has to be distributed. 

 We also analyze the effect of the proposed method on compression ratio. Table 2.4 

shows the size of the raw file (WAV) and the sizes of the compressed files (MP3s) with and 

without encryption as well. The AES algorithm has a tendency to increase the file size after 

encryption because the encrypted results are larger in value than the original ones. The original 

quantized values in the big_values partitions are [-8191, +8191] range but most are up to 15. 

The encrypted results are in the range of [0, 255] and thus most values change to larger ones 

after encryption and need more bits to code them. As shown in Table 2.4, there may be an 

increase in the file size up to 2KB for p=100%. However, it turns out that encrypting up to 10% 

of an MP3 file, which we suggest for generating trial music, has no effect on compression ratio.  

2.3.4 Implementation necessity 

In this section, we discuss the implementation requirement for the proposed partial encryption 

method for MP3. The proposed method needs to be incorporated into existing encoders or it is 

needed to develop new encoders that will embed it as a module. In our simulation, we use the 

LAME encoder to encode the MP3 files and apply our proposed encryption method as an 

external module.  

 As for the try-before-purchase model of DRM, the resulting encrypted MP3 files can be 

rendered by any standard MP3 players without need to decrypt as the usual unencrypted ones. 

For enjoying the full-quality, however, it is needed to decrypt the file with the authorized use of 

the encryption % (p) and the key. In order to provide those decryption parameters, we can 

append an additional file header that carries them at the beginning of an audio track without 

violating the MP3 standard [53-54]. That header needs to be protected from unauthorized 

accesses by using some public-key cryptographic algorithms. More strictly, although appending 

an additional header does not comply with the MPEG standard, any player implemented 

according to the standard will ignore that header while successfully playing the encrypted file. 

Without doubt, the file in the original quality can be recovered under the use of the correct 

decryption parameters and specific MP3 decoders. 

Table 2.4: Effect of encryption on file size. 

Music 

File Size 

(WAV) 

File Size 

(MP3 before 

Encryption) 

File Size (MP3 after Encryption) 

p=2-10% p=100% 

Pop 918 KB 78 KB 78 KB 80 KB 

Jazz 1.85 MB 159 KB 159 KB 160 KB 

Classical 2.01 MB 173 KB 173 KB 175 KB 

Speech 1.7 MB 146 KB 146 KB 148 KB 
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2.4 Conclusion 

This chapter discussed effective partial encryption methods for both uncompressed (WAV) and 

compressed (MP3) audio formats. The solution for the invalid amplitude problem was also 

presented. For partial encryption on MP3, this chapter presented how to choose the perceptually 

important parts for encryption in accordance with the HAS. Experimental results showed that 

the quality of the encrypted MP3s can be controllably degraded by adjusting the encryption 

percentage in which encrypting 2-10% of an MP3 file suffices to generate a preview-quality file. 

Those files can be played back by existing standard MP3 players without decryption. In addition, 

the proposed method can be carried out without extensive computation and significant impact on 

compression efficiency.  
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Chapter 3 

Transposition-Based Audio Scrambling 

Methods in Time Domain 

With the aim of possibly applying together with data hiding methods, this chapter discusses two 

transposition-based audio scrambling methods developed in the time domain: one is based on 

the pre-order traversal of a complete binary tree and the other on a PRNG called Mersenne 

Twister. The evaluation results of their scrambling effect, time and space complexity, and 

cryptographic security are also discussed. 

3.1 Introduction 

As discussed in Sect. 1.2.2, usual encryption methods [61, 63-64] are not appropriate for using 

together with the data hiding process because they cause the operational conflict problem. That 

problem can be avoided on the condition that those encryption methods provide the 

homomorphic property. Exactly speaking, homomorphic encryption is a form of encryption that 

allows computations to be carried out on the ciphertext and generates an encrypted result which, 

when decrypted, matches the result of those computations performed on the plaintext. 

Subramanyam and Emmanuel [61] proposed a combined scheme of homomorphic encryption 

and data hiding. In that system, the watermark information was embedded on the ciphertext and 

it could be detected in either the encrypted or decrypted domain. However, a cryptosystem 

which is unintentionally malleable can be subjected to attacks on this basis. 

 Datta and Gupta [63] proposed another combined scheme in which the conflict between 

encryption and data hiding operations is avoided by firstly segmenting the audio signal and then 

performing the methods on disjointed segments. In that system, the marked segments could not 

be encrypted and the encrypted segments could not carry the watermark information. Thus, the 

data embedding rate (the amount of watermarking bits that can be hidden in the signal) was 

reduced. 

 On the other hand, transposition-based audio scrambling methods are highly preferable 

for such a combined scheme. As discussed in Sect. 1.6, they do not affect the values of the audio 

contents. Thus, they provide operational transparency when using together with the data hiding 

process in which the watermark information embedded on the scrambled audio signal can be 

extracted from either the scrambled or descrambled signal. 

https://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Ciphertext
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A lot of transposition-based scrambling methods have been proposed in the literature and 

they can be classified as time domain (spatial domain) and transform domain methods.  

Jayant et al. [16] presented comparison results of four speech scramblers which are based 

on sample permutation (S), block permutation (B), frequency inversion (F), and a combination 

of B and F, respectively. Their performances are thoroughly compared in terms of residual 

intelligibility, bandwidth expansion, and encoding delay. Among those scramblers, S achieves 

lower residual intelligibility than B and F due to the availability of the more possible 

permutations, however it increases encoding delay. In addition, the time domain scramblers like 

S and B are simpler to perform than F because the scrambling process can be directly done on 

the time domain samples. However, in terms of the bandwidth, F is more efficient because it 

ensures the bandwidth keep unchanged based on the frequency bands scrambled.  

Chen and Hu [17] proposed two audio scrambling methods in the time domain in which 

the audio samples are reordered in accordance with the indices generated on the basis of a key 

and on the basis of the in-order traversal scrambling transformation, respectively. Then, the 

methods were combined by introducing a new parameter. In comparison with the individual 

methods, it was stated that the combined scheme strengthens the security even though there was 

no specific analysis on how much it was strengthened. In addition, according to the reproduction 

results, it is found out that the methods are relatively slow to execute. They take about half of 

the duration of the music file to scramble/descramble.  

In the transform domain approaches, scrambling methods based on Fibonacci 

Transformation [49], digital chaotic ciphers [50], and Euler Transformation [51] have also been 

subjects of study. 

In this chapter, we propose two transposition-based audio scrambling methods developed 

in the time domain together with the detailed evaluation results. The first method is based on the 

pre-order traversal of a complete binary tree. That method is effective in terms of time and space 

complexity and scrambling effect; however, its cryptographic security is not strong enough 

because there is no secret key control in that method [65]. According to Kerckhoffs’s principle, 

the security of a cryptosystem should depend solely on the secrecy of the key and the private 

randomizer, not on the algorithm. Thus, the second method which is cryptographically more 

secure is proposed. That method is based on a PRNG called Mersenne Twister in which the state 

of the PRNG is controlled via a secret key [66].   

3.2 Audio scrambling method based on the pre-

order traversal of a complete binary tree 

This section presents the proposed method that is based on the pre-order traversal of a complete 

binary tree. It is faster to execute than the in-order traversal based method proposed in [17].

 First, let us introduce the traversal methods of a complete binary tree. A complete binary 

tree can be traversed in either breadth-first or depth-first traversal. Most simply, the breadth-first 

traverses a tree by visiting the node closest to the root it has not already visited (first child, then 

second child before grandchildren) whereas the depth-first traverses a tree by recursively visiting 

each node in the left and right subtrees of the root (first child, then grandchildren before second 
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child). The depth-first traversal can further be classified as pre-order, in-order, and post-order 

traversals in accordance with the position of the root with regard to the right and left nodes. 

 Pre-order visits the root, traverses the left subtree, and then traverses the right subtree.  

 In-order traverses the left subtree, visits the root, and then traverses the right subtree.  

 Post-order traverses the left subtree, traverses the right subtree, and finally visits the root. 

If we consider the result of the breadth-first traversal as an original data array/sequence, 

the results of the depth-first traversals will be like scrambling that sequence. As an example, 

assume that  43210 ,,,, sssssS   is an array of audio samples. That array can be represented as a 

complete binary tree by assuming the first sample as root node and filling the samples starting 

from the left in both branches, as shown in Fig. 3.1. As the breadth-first traverses a tree level-by-

level, its traversal result is exactly the same as the given array, as shown in Fig. 3.2. As for the 

depth-first traversals, the pre-order traverses each and every subtree in root-left-right order 

which yields the result shown in Fig. 3.3. Similarly, the in-order (left-root-right) and the post-

order (left-right-root) traversal results are shown in Fig. 3.4 and Fig. 3.5 respectively. All of the 

depth-first traversal results are different from S. Note that a tree is always traversed starting from 

the root node; however, the arrows in Fig. 3.2 to Fig. 3.5 just show the order of the result nodes.  

On the basis of the above feature, an audio scrambling method based on the pre-order 

traversal is proposed in this thesis. For the sake of simplicity, the method is hereinafter referred 

to as pre.  

 

 

 

 

Figure 3.1: A tree representation of an array of audio samples (S). 

 

 

 

Figure 3.2: The breadth-first traversal result:  43210 ,,,,' sssssS  . 
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Figure 3.3: The pre-order traversal result:  24310 ,,,,' sssssS  . 

 

 

 

Figure 3.4: The in-order traversal result:  21 ,,,,' 043 sssssS  . 

 

 

 

Figure 3.5: The post-order traversal result:  02143 ,,,,' sssssS  . 

3.2.1 Algorithmic detail 

Algorithm 1 describes the algorithmic detail of pre. As in the above example, assume that each 

sample in an audio signal represents a node in a complete binary tree and that they are organized 

in breadth-first order. The complete binary tree in breadth-first order can be stored in an array 

instead of a linked list and thus the entire tree can be traversed by simply indexing like this: for a 

node at index i, its parent is at  2/)1( i  (assuming the root has index 0) and its children are at 

2*i+1 (left child) and 2*i+2 (right child). Avoiding the use of a pointer makes the algorithm 

highly efficient. In addition, a stack is used for storing some intermediate nodes for a later visit 

during traversal and it also increases the efficiency by avoiding recursion.  
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According to Algorithm 1, the sample at index 0 (the root) of the original audio is also 

the first sample/output in the scrambled audio. Then, if there is a sample at index 1 (left child), it 

is the next output, and the right child (if there is a sample at index 2) is stored in the stack for a 

later visit. If the left child is not the last node (if there are the samples left unvisited), it is 

assumed as the root of a subtree and the above steps of outputting the root, finding the left and 

right children, and outputting the left child are repeated. When there are no more left children to 

traverse down the tree, an element from the stack is retrieved as the next output. If that element 

is also the root of a subtree, that subtree is traversed again in the same manner mentioned above. 

This process continues until no more elements are in the stack. Figure 3.6 shows the step-by-step 

tracing of the pre on an example array according to Algorithm 1. 

 

Algorithm 1 Pre-order Based Audio Scrambling Method 

[1]  Given an audio signal s with n samples [s0, s1, …, sn-1], a scrambled audio signal s′= 

[s0′, s1′, …, sn-1′]  is generated; Assume that each sample in s represents a node in a 

complete binary tree; Initialize pos=0 as index of root; 

[2]   for i = 0, 1, …, n-1 do 

[3]           Construct the scrambled signal s′ with samples from s indexed by pos: 

siꞌ=spos 

[4]           Calculate index of the left child:  

lchild=2*pos+1 

[5]           Calculate index of the right child: 

rchild=2*pos+2 

[6]           if rchild<n then 

[7]                   Save the right child’s index in stack:  

                                push(rchild) 

[8]                   Assign pos=lchild 

[9]           else if lchild<n then 

[10]                 Assign pos=lchild 

[11]         else if stack is not empty then 

[12]                 Output an element from the stack: 

pos=pop() 

[13]         end if 

[14]  end for 

 

Index 
 

0 1 2 3 4 5 6 7 n=8 

output root; s A B C D E F G H Stack 

 
 

    

s′ A        

pos=0;   

output lchild(1); 

save rchild(2) in 
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s′ A B       

 

C    

pos=1;   
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output lchild(3); 

save rchild(4) in 

stack; 
s′ A B D      

 

C E   

pos=3;   

output lchild(7);  s′ A B D H     
 

C E   

pos=7;   

no more lchild and 

rchild; output an 

element from 

stack; 

s′ A H D H E    
 

C E   

pos=4;   

no more lchild and 

rchild; output an 

element from 

stack; 

s′ A H D H E C   
 

C    

pos=2;   

output lchild(5); 

save rchild(6) in 

stack; 
s′ A H D H E C F  

 

G    

pos=5;   

no more lchild and 

rchild; output an 

element from 

stack; 

s′ A H D H E C F G 
 

G    

pos=6;   

Figure 3.6: The step-by-step tracing of the pre on an example array. 

3.2.2 Experimental results 

In this section, the proposed method is thoroughly analysed in terms of its scrambling effect, 

time and space complexity, and security. We use the MATLAB software to simulate the method 

on a machine with an Intel(R) Core™ i5-2430M CPU @ 2.40GHz processor. The music items 

described in Table 3.1, which are sampled at 48-kHz and coded in 16-bit WAV format, are used 

in the experiments. 

 To verify the scrambling effect, the pre is applied on the “Pop” audio file and then the 

waveforms before and after scrambling are compared. Figures 3.7(a) and (b) show the 

waveforms of the original and scrambled audio signals respectively. From (b), it is difficult to 

guess the structure of the original audio and this shows that the pre has good scrambling effect. 

When listened to the scrambled audio, it has very low residual intelligibility.  

The scrambling effect is also inspected in the frequency domain by applying the FFT 

algorithm on an analysis frame of 1,024 samples. From Fig. 3.7(c) and (d), which show the 

frequency spectra of the original and scrambled signals, we can see that the frequency spectrum 

becomes flat in the average sense after scrambling. This flatness ensures a decrease in residual 

intelligibility.
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Let us consider the efficiency of the pre. For a single with n samples, it can be seen from 

Algorithm 1 that the pre needs the stack space plus 2n memory spaces for storing the original 

and scrambled samples. Thus, its space complexity is O(n). Time complexity also depends on 

the length of the signal and it is O(n) as each sample is processed sequentially and independently. 

More specifically, Table 3.2 shows the execution time results of the pre. For all signals, it takes 

less than one-third of the duration of the original signal and thus the pre is possibly applied in 

real time applications. 

Table 3.1: Music items used in experiment. 

Music 

Category 

Track Name  Duration 

(sec) 

Length 

(samples ) 

Pop Bee Gees- Words 9 432651 

Jazz Dave Brubeck- Take Five  10 481244 

Classical Beethoven- Symphony No.5 in C Minor 18 867594 

 

Figure 3.7: Waveforms of (a) the original signal and (b) the scrambled signal by pre; (c)-(d) their respective 

frequency spectra. 

Table 3.2: Execution time results for the pre. 

Category Duration 

(sec) 

Execution Time (sec) 

Scrambling Descrambling 

Pop 9 1.99 2.70 

Jazz 10 2.22 3.08 

Classical 18 4.31 5.96 
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As for its cryptographic security, we need to firstly discuss the descrambling process. In 

transposition-based algorithms, descrambling can be done by tracing the scrambling procedure 

backward. For instance, if s= {d, c, a, b} is a sequence scrambled according to the scrambling 

indices {4, 3, 1, 2}, then it means that the first sample in s comes from the 4
th 

position of the 

original sequence, the second one from the 3
rd

 position, the third one from the 1
st
 position, and 

the last one from the 2
nd

 position, respectively. Then, by putting the samples back in their 

original positions, descrambling is successful. Thus, cryptographic security of the transposition-

based scrambling methods like the pre depends on the concealment of the algorithm. If the 

algorithm is made public, there is no more security. 

However, if the algorithms are in secrecy, an adversary needs to try a brute force attack 

to generate all possible permutations. As for the pre, the number of possible permutations is n! 

where n is the length of the signal (the number of samples). For instance, the 9-second long “Pop” 

audio signal in Table 3.1 consists of 432,651 samples. The number of possible permutations for 

that signal is 432,651!, which is obviously impractical to try a brute force attack. Thus, the 

cryptographic security of the pre is strong enough if the algorithm is in secrecy. 

With the aim of enhancing the cryptographic security of the pre in case the algorithm is 

made public, we briefly present a solution by introducing a new parameter k where a signal is 

divided into two parts at index k and the pre is then applied separately. For instance, for a signal 

s with n samples, the two parts {s1, …, sk} and {sk+1, …, sn} for 1≤k≤n, are separately scrambled. 

The idea is to enhance the security with the control of an unknown parameter. If an adversary 

wants to descramble the signal, he/she must try a brute force attack to guess k by running the pre 

2n-1 times with different k as the worst case. Thus, the longer the signal is, the possible k is 

more varied and the security is getting higher. To verify if the above solution has undesirable 

side effects although the security is strengthened, we also conducted some experiments on the 

music items in Table 3.1 for k=n, 3n/4, n/2, n/4 where n is the length of the music item. Table 

3.3 shows the scrambling effect for different k, which is measured in terms of the signal-to-noise 

ratio (SNR) and normalized cross-correlation (NCR) between the original and scrambled signals. 

For all signals, we can see from Table 3.3 that scrambling for different k achieves the same 

scrambling effect (almost the same SNRs and NCRs) like scrambling the whole signal. By 

comparing the results of Table 3.2 and Table 3.4, we can also see that there is no significant 

difference in execution time for different k although the tree is built in two parts.  

Table 3.3: SNR and NCR of the scrambled signals for different k. 

Category Value of k SNR (dB) NCR 

Pop n/4 -2.99 0.03 

n/2  -3.03 0.03 

3n/4 -3.00 0.03 

n -2.98 0.03 

Jazz n/4 -3.00 0.02 

n/2 -3.03 0.01 

3n/4 -3.01 0.01 

n -2.99 0.01 

Classical n/4 -2.98 0.07 

n/2  -3.01 0.07 

3n/4 -3.07 0.07 

n -3.01 0.07 
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Table 3.4: Execution time results for different k. 

Category Value of k Execution Time (sec) 

Scrambling Descrambling 

Pop n/4  2.62 2.81 

n/2 2.54 2.80 

3n/4 2.27 2.82 

Jazz n/4  2.94 3.20 

n/2 2.44 3.21 

3n/4 2.49 3.22 

Classical n/4  5.42 5.74 

n/2 5.30 5.98 

3n/4 5.16 6.00 

3.3 Audio scrambling method based on a pseudo-

random number generator 

As discussed in the previous section, cryptographic security of the pre depends on the secrecy of 

the algorithm. However, according to Kerckhoffs’s principle, a cryptosystem should be secure 

even if everything about the system, except the key, is public knowledge. In other words, the 

security of a cryptosystem should depend solely on the secrecy of the key and the private 

randomizer. Thus, this section presents an audio scrambling method which is cryptographically 

more secure than the pre. 

The proposed method is based on a pseudorandom number generator called Mersenne 

Twister (MT). Even though any kinds of PRNG can be applied in this proposal, the MT was 

chosen because it is by far the most widely used PRNG. The MT was developed in 1997 by 

Makoto Matsumoto and Takuji Nishimura [67]. It was designed to rectify most of the flaws 

found in older PRNGs and was the first PRNG to provide fast generation of high-quality 

pseudorandom integers. It is also the default PRNG for most software systems, e.g. Python [68], 

Ruby [69], PHP [70], and MATLAB [71]. The most commonly used version, MT19937, uses a 

32-bit word length and has the following properties: 

 A super astronomical period of 2
19937

-1; 

 623 dimensional equidistribution up to 32-bit accuracy while consuming a working area 

of only 624 words; 

 Coded in C language and faster than the other PRNGs; 

 Passes numerous tests for statistical randomness including the Diehard tests [72-74] and 

most, but not all, of the stringent TestU01 Crush [75-78] randomness tests; 

3.3.1 Algorithmic detail 

The proposed method uses the MT to generate the indices for the scrambled list, on the basis of 

which the samples in the original audio signal are reordered. To ensure strong security, the MT 

is seeded with a random seed which is generated by hashing a user-defined key with a 

https://en.wikipedia.org/wiki/Cryptographic_key
https://en.wikipedia.org/wiki/Cryptosystem
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cryptographic hash function (e.g. the message digest 5 (MD5) or the secure hash algorithm 

(SHA)). Hereafter, the method is simply referred to as the AS-MT. 

The algorithmic detail of the AS-MT is as follows [66]. 

Input: An audio signal with n samples ] ..., , ,[ 110 nsss  and a user-defined key (key); 

Step 1:  The key is hashed by a cryptographic hash function. The resulting hash value is used 

as a seed for seeding the MT; the use of a cryptographic hash function ensures the 

randomness of the seed; 

Step 2: Call the MT by passing the generated seed and n, and generate random integers 

(indices, zk); 

Step 3: On the basis of the zk, the samples in the given audio signal are reordered; 

 .11 0for  , ..., n-,kss
kzk   (3.1) 

Output: The scrambled audio signal with the reordered samples ] ..., , ,[ 110 

nsss ;  

 Below is the procedure of the MT (Step 2) in detail. 

 On the basis of the seed, initialize the generator in an array of length j [x0, x1, …, xj-1]; 

 For a word x with w-bit width, 

   ,1 ..., ,1 ,0  ,|: 1   nkAxxxx l
k

u
kmkjk  (3.2) 

where is bitwise XOR, | is bitwise or, x
u
 and x

l
 are upper u-bits and lower l-bits shifts of x, 

respectively; A is a twisted transformation matrix in rational normal form 
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where Iw-1 is an (w-1)*(w-1) identity matrix and >> is bitwise right shift. 

To compensate for the reduced dimensionality of equidistribution because of the choice of A as 

rational normal form, the MT is cascaded with tempering transforms as follows: 

 ,1 ..., ,1 ,0,: 




 


nkuxxy

jkjkk
 (3.5) 

   , &: bsyyy
kkk
  (3.6) 

   , &: ctyyy
kkk
  (3.7) 

 
 , : lyyz

kkk
  (3.8) 

where << is bitwise left shift, & is bitwise and. The coefficients of MT19937 are: (w, j, m) = (32, 

624, 397); a = 9908B0DF16; (u, l) = (11, 18); (s, b, t, c) = (7, 9D2C568016, 15, EFC6000016). 

Note that we do not change the above settings of the MT19937 and we only set the MT to make 

sure zk≤ len and does not duplicate.  
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3.3.2 Experimental results 

Like the pre in Sect. 3.2, the AS-MT is evaluated in terms of its scrambling effect, time and 

space complexity, and cryptographic security by using the music items in Table 3.1. 

 To test and verify the scrambling effect, we apply the AS-MT with user-defined key of 

“secret” on the “Pop” audio file and compare the waveforms before and after scrambling. 

Figures 3.8(a) and (b) show the waveforms of the original and scrambled audio signals 

respectively. Comparing (a) and (b), we can see that the AS-MT completely destroys the signal 

to such an extent that the envelopes of the waveforms are completely different. The NCR 

between the original and scrambled signals is 0.01 and the SNR is -3.01. When listened to the 

scrambled audio, it sounds like a white noise with zero residual intelligibility. Thus, it can be 

concluded that the AS-MT has good scrambling effect. 

Figures 3.8(c) and (d) show the frequency spectra of the original and scrambled signals 

generated by applying the FFT algorithm on the signals for an analysis frame of 1,024 samples. 

Like in the pre, we can see that the frequency spectra become flat in the average sense after 

scrambling. This flatness ensures a decrease in residual intelligibility. 

 As for the efficiency, the AS-MT consumes 624 memory spaces for storing the initial 

state of the generator in addition to 2n spaces for storing the samples before and after scrambling 

for a signal with n samples. Thus, its space complexity is O(n). The time complexity is generally 

O(n) as well. However, from Table 3.5 which shows the execution time results of the AS-MT, 

we can see that the AS-MT is very fast so that its execution time can be negligible. This occurs 

because the main MT algorithm (Step 2 of the AS-MT) is a MATLAB built-in function written 

in C language for fast execution. In that regard, the AS-MT is more preferable to the pre to be 

applied in real time applications. 

As for the cryptographic security, unlike the pre, the security of the AS-MT depends on 

the secrecy of the key which is used to seed the MT, not the algorithm itself. Even if the 

algorithm is made public, one will find it difficult to descramble without knowing that key. If 

the algorithm is in secrecy, an adversary needs to try a brute force attack to generate all possible 

permutations. Like in the pre, the number of possible permutations is n! where n is the length of 

the signal (the number of samples), which is obviously impractical to try a brute force attack. 

3.4 Conclusion 

This chapter proposed two low-complexity audio scrambling methods together with the detailed 

evaluation results of their performances. As both methods affect only the positions of the audio 

samples, they are appropriate to be applied together with data hiding. Experimental results 

showed that their scrambling effect and time and space complexity are good enough to be 

applied in real time applications. If the methods were compared, the AS-MT was far superior to 

the pre in all aspects, especially for execution time and cryptographic security. Thus, this 

chapter also presented a solution for how to improve the cryptographic security of the pre. 
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Figure 3.8: Waveforms of  (a) the original signal and (b) the scrambled signal by AS-MT; (c)-(d) their respective 

frequency spectra. 

Table 3.5: Execution time results for the AS-MT. 

Category Duration (sec) Execution Time (sec) 

Scrambling Descrambling 

Pop 9 0.07 0.07 

Jazz 10 0.07 0.07 

Classical 18 0.14 0.12 
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Chapter 4 

Progressive Audio Scrambling Schemes 

in Wavelet Domain 

This chapter discusses how the cryptographic security of the audio scrambling methods (the pre 

and the AS-MT) proposed in Chapter 3 can be strengthened in the wavelet domain. The two 

schemes of combining the pre and the AS-MT with the discrete wavelet transform (DWT) are 

proposed along with the detailed evaluation results. In addition to enhancing the security, the 

new schemes also achieve the progressive scrambling effect which is a desirable feature for 

DRM. This chapter also gives a detailed discussion on that matter. 

4.1 Introduction 

As discussed in Chapter 3, the pre-order based audio scrambling method has good scrambling 

effect and efficient time and space complexity as well. However, its cryptographic security is 

limited because it depends on the secrecy of the algorithm. Thus, in order to enhance its security, 

this chapter presents a new scheme in the wavelet domain. In this scheme, an audio signal is 

firstly decomposed into different frequency sub-bands by using the DWT with user-defined 

parameters. Then, scrambling is performed independently on each subband. Any user without 

knowledge of the wavelet decomposition parameters will not be able to successfully descramble 

the signal. The main idea is to enhance the cryptographic security with the control of unknown 

parameters. 

In addition, the pre and the AS-MT in Chapter 3 performed scrambling on the whole 

signal. In those time-domain based methods, the scrambling effect on audio quality could not be 

controlled. Thus, the resulting scrambled signals became like noise and could not be used to 

realize the try-before-purchase model of DRM. In the new wavelet based scheme of the pre, the 

scrambling effect on audio quality can be controlled based on the sub-bands scrambled. This is 

called the progressive scrambling effect, which will be discussed in detail later in this chapter. 

Thus, with the aim of realizing the try-before-purchase model of DRM, the AS-MT is 

also applied in the wavelet domain like the pre. No doubt, with the control of unknown wavelet 

parameters, the cryptographic security of the new scheme will be stronger than the security of 

the AS-MT in the time domain.  
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The main reason of using the DWT is to obtain the progressive (different frequency sub-

bands) representation of an audio signal [66]. To decompose a signal into frequency sub-bands, 

we can also use another method such as the FFT filterbank instead of the wavelet transform; 

however, the wavelet representation is more efficient for analysis and reconstruction because of 

its multiresolution property [79-80]. More detail about the DWT is explained in the following 

section. 

4.2 Discrete Wavelet Transform (DWT) 

For better understanding of the proposed schemes, we briefly explain the DWT [81-86]. The 

DWT has been widely utilized in diversified applications including digital communications and 

image/speech/video compression [79-80, 86]. It was developed to overcome the shortcoming of 

the Short Time Fourier Transform (STFT) [79-80] which can be used to analyze non-stationary 

signals. Unlike the STFT that uses a constant window size for all frequencies, the DWT uses a 

window size that varies the frequency scale and is thus advantageous for analysis of the signals 

containing both discontinuities and smooth components. 

The DWT decomposes the host audio signal into several multiresolution sub-bands [81]. 

That is, it provides good time resolution for high frequency sub-bands and good frequency 

resolution for low frequency sub-bands. The processes of DWT (decomposition) and IDWT 

(reconstruction) are shown in Fig. 4.1(a) and (b), respectively. In DWT, a discrete time-domain 

signal S is analysed by successive lowpass and highpass analysis filters, denoted by G0 and H0, 

respectively. Given S of length n, the DWT consists of n2log  levels at most. At the first level, 

H0 and G0 followed by downsampling produce detail information (high frequency) dc1 and 

coarse approximations (low frequency) ac1, respectively. Downsampling by 2 doubles the 

frequency resolution as the uncertainty in frequency is reduced by half and halves the time 

resolution as the entire signal is now represented by only half of the number of samples. The 

second level repeats the same scheme, replacing S by ac1 and yielding dc2 and ac2. This process 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Two-level DWT: (a) decomposition (b) reconstruction.
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is continued until the desired level is reached. The final decomposition result at level N consists 

of ] , ..., , ,[ 12 dcdcdcac NN . With this approach, time resolution becomes arbitrarily good at high 

frequencies and frequency resolution becomes arbitrarily good at low frequencies. 

In IDWT, the original signal can be successfully reconstructed from the wavelet 

coefficients. The ac and dc at every level are up-sampled by 2 and passed through the lowpass 

and highpass synthesis filters, denoted by G1 and H1 respectively, and then added. This process 

is continued through the same number of levels as in the decomposition process to obtain the 

original signal. 

4.3 The proposed schemes 

This section proposes two schemes of combining the pre and the AS-MT with the DWT with the 

aim of not only strengthening the security but also controllably degrading the audio quality. In 

these schemes, scrambling is performed independently on different frequency sub-bands of an 

audio signal in the wavelet domain. The detailed procedures of the proposed schemes are as 

follows [65-66]: 

Step 1:  An audio signal is wavelet decomposed. Then, the layers of wavelet coefficients [acN, 

dcN, …, dc1], ordered in low-to-high frequency, are retrieved for N-level decomposition. 

Different layers have different frequency ranges. 

Step 2:  The coefficients in each layer are scrambled by: 

scheme_1: considering not only the pre but also the in-/post-order based scrambling methods 

and applying one method randomly chosen out of the three, as shown in Fig. 4.2; 

scheme_2: applying the AS-MT with different keys as shown in Fig. 4.3; 

Step 3: Reconstruct the signal with the scrambled coefficients; 

In order to descramble the signal successfully, the user must know the correct wavelet 

decomposition parameters such as the wavelet family and the decomposition level in addition to 

the correct method/key used in each layer. Decomposition with different wavelet parameters 

yields the layers of different coefficients and thus descrambling on them is similar to scrambling 

the signal in another way even if the correct method/key is used for each layer. Thus, without 

knowing the correct parameters, it is not possible to recover a high-quality audio signal. The 

experimental results in the following section prove that the proposed schemes can strengthen the 

cryptographic security of the pre and the AS-MT rather than in the time domain with the control 

of unknown parameters.  

 Moreover, scrambling on different layers degrades the audio quality differently. This 

feature ensures the progressive scrambling in which the audio signals with different quality 

levels can be generated by scrambling layer after layer. During descrambling, low-to-high 

quality can be progressively recovered by descrambling layer after layer as well, which will be 

discussed in detail in Sect. 4.4.2. 

As the in-order and post-order based scrambling methods are applied together with the 

pre in scheme_1, their algorithmic details are described in Algorithms 2 and 3, respectively. 

Hereafter, we simply refer to them as in and post respectively. 



4.3 THE PROPOSED SCHEMES  47 

 

   

 

 

 

 

 

 

 

 

Figure 4.2: System flow of the scheme_1. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: System flow of the scheme_2. 

Like in the pre, assume that each sample in an audio signal represents a node in a 

complete binary tree and that they are organized in breadth-first order. For in-order, as described 

in Algorithm 2, the sample at index 0 (the root) of the original audio is stored in the stack for a 

later visit. Then, if it has a left child (sample at index 1) and that left child is also the root of a 

subtree, it will also be stored in the stack and the next left child (sample at index 3) is searched. 

These steps of finding the left child and storing it in the stack are repeated until there are no 

more left children. Then, an element from the stack is retrieved as the output/sample in the 

scrambled audio. The retrieved element may have a right child. If it has, assuming that right 

child is also the root of a subtree, all of the previous steps starting from step 1 of storing the root 

in the stack are repeated again. Otherwise, the steps of outputting an element from the stack and 

finding its right child are repeated. This process continues until no more elements are in the 

stack. Figure 4.4 shows the step-by-step tracing of Algorithm 2 on an example array. 

For post-order, as described in Algorithm 3, the sample at index 0 (the root) of the 

original audio is stored in the stack.  If it has both right and left children (samples at index 2 and 

index 1 respectively), firstly the right child and then the left child are stored in the stack. Then, 
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assuming the left child is the root of a subtree, the above steps are repeated. Otherwise, if the 

root has only the left child, it is stored in the stack and then an element from the stack is 

retrieved as the output/sample of the scrambled audio. If that retrieved element is a left child 

(note that all of the left children are at odd indices as the root is at index 0), it may have its 

neighbor, right child (subsequent element at the same level of a tree). If it has the subsequent 

right child, assume that this right child as the root of a subtree and repeat all of the previous 

steps starting from step 1 of storing the root in the stack. Otherwise, the steps of outputting an 

element from the stack and checking its right child neighbor are repeated. This process continues 

until no more elements are in the stack. Figure 4.5 shows the step-by-step tracing of Algorithm 3 

on an example array. 

Algorithm 2 In-order Based Audio Scrambling Method 

[1]  Given an audio signal s with n samples [s0, s1, …, sn-1], a scrambled audio signal s′= 

[s0′, s1′, …, sn-1′] is generated; Assume that each sample in s represents a node in a 

complete binary tree; Initialize pos=0 as index of root and i=0; 

[2]   Save the root’s index in stack: 

                 push(pos) 

[3]   while true do 

[4]            Calculate index of the left child: 

lchild=2*pos+1 

[5]            while lchild<n do 

[6]                     Save the left child’s index in the stack: 

                                 push(lchild) 

[7]                     Assign pos=lchild 

[8]                     Calculate index of the left child: 

                                 lchild=2*pos+1; 

[9]            end while 

[10]          Output an element from the stack: 

pos=pop() 

[11]          Construct the scrambled signal s′ with samples from s indexed by pos: 

siꞌ=spos 

[12]          Increment i by 1: 

i++ 

[13]          Calculate index of the right child: 

rchild=2*pos+2 

[14]          while stack is not empty and rchild>=n do 

[15]                   Do Step 10-13 

[16]          end while 

[17]          if rchild<n then 

[18]                   Save the right child’s index in the stack: 

                              push(rchild) 

[19]                   Assign pos=rchild 

[20]          else 

[21]                  break 

[22]          end if 

[23]  end while 
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Algorithm 3 Post-order Based Audio Scrambling Method 

[1]  Given an audio signal s with n samples [s0, s1, …, sn-1], a scrambled audio signal s′= 

[s0′, s1′, …, sn-1′] is generated; Assume that each sample in s represents a node in a 

complete binary tree; Initialize pos=0 as index of root;  

[2]   Save the root’s index in stack: 

                push(pos) 

[3]   for i = 0, 1, …, n-1 do 

[4]           Calculate index of the left child: 

lchild=2*pos+1 

[5]           Calculate index of the right child: 

rchild=2*pos+2 

[6]           while rchild<n do 

[7]                     Save the right child’s index in the stack: 

                                  push(rchild) 

[8]                     Save the left child’s index in the stack: 

                                  push(lchild) 

[9]                     Assign pos=lchild 

[10]                   Calculate index of the left child: 

lchild=2*pos+1 

[11]                   Calculate index of the right child: 

rchild=2*pos+2 

[12]          end while 

[13]          if lchild<n then 

[14]                   Save the left child’s index in the stack: 

                                  push(lchild) 

[15]          end if 

[16]          while stack is not empty do 

[17]                   Output an element from the stack: 

pos=pop() 

[18]                   Construct the scrambled signal s′ with samples from s indexed by pos: 

siꞌ=spos 

[19]                   if !(pos%2=0) and pos+1<n/2 then 

[20]                           pos++ 

[21]                           break 

[22]                   end if 

[23]          end while 

[24]  end for 
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save lchild(7) in stack; s′         
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Figure 4.4: The step-by-step tracing of the in on an example array. 
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Figure 4.5: The step-by-step tracing of the post on an example array. 
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4.4 Experimental results 

In this section, by using the music items in Table 3.1, performances of the proposed schemes are 

thoroughly evaluated in terms of cryptographic security, effect of scrambling on audio quality, 

etc. In the experiment, an audio signal is two-level wavelet-decomposed by using the 

Daubechies wavelet family (db4). All of the obtained layers of coefficients are scrambled in 

such a way that [pre, in, post] in scheme_1 and the AS-MT with user-defined keys of [key1, key2, 

key3] in scheme_2 are applied on [ac2, dc2, dc1] respectively. There is no specific reason in the 

choices of the parameters; it is just random. 

4.4.1 Cryptographic security/anti-decryption capability 

We mentioned that, in the proposed schemes, it is difficult to successfully descramble a signal 

without knowing the correct wavelet decomposition parameters and the method/key used for 

each layer. 

To prove that fact, the “Classical” audio file is firstly scrambled by scheme_1 and then 

descrambling is tried by using wrong wavelet parameters and wrong methods on the layers. 

Whether the signal is successfully recovered or not is determined by measuring the ODG, whose 

grading scales are described in Table 2.1. 

Table 4.1 shows the ODG values resulting from descrambling with the wrong wavelet 

family where the other parameters such as the decomposition level and the methods/key used for 

each layer are correctly used. Different wavelet families use different filter-banks with different 

cutoff frequencies and hence it is impossible to generate the same wavelet coefficients. 

Descrambling on them is like scrambling the signal in another way. Thus, even though the other 

parameters except the wavelet family are correct, all of the ODG values are less than -3.9. It 

shows that the signal could not be successfully recovered and the resulting quality impairment 

was very annoying. 

The results of descrambling with wrong decomposition levels are shown in Table 4.2. In 

this case, the signal is decomposed by using the correct wavelet family. As shown in the table, 

decomposing a signal at a different decomposition level yields different coefficients layers. For 

N-level decomposition, there are N+1 layers of coefficients. In addition, the sizes of the layers 

yielded by the use of different decomposition levels are also different, which cause different 

possible permutations on those layers. Thus, there is no way to successfully recover the signal 

with good quality. The resulting ODG values which are less than -3.8 show that the recovered 

audio quality is bad. 

Then, the signal is decomposed at the correct decomposition level by using the correct 

wavelet family but the wrong methods are used for descrambling the coefficients in each layer. 

Table 4.3 shows the ODG values resulting from the use of wrong methods on the layers. Most 

ODG values are less than -3.8 and show that the resulting quality impairment is very annoying. 

We can also see that some ODG values are up to -2 when the correct methods are applied on two 

out of three layers. More interestingly, these values always result from the use of the correct 

method on the ac-part. As long as the wrong method is applied on the ac-part, the quality 

impairment is annoying. This is because the ac-part carries the lowest frequency coefficients of 
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the signal, to which the HAS is very sensitive, and changes to them have a strong effect on 

perceptual quality. However, even in that case, the ODG of -2 means that the quality impairment 

is still annoying. 

Thus, if an adversary wants to recover a signal with good quality, he/she must try a brute 

force attack to guess the correct descrambling parameters. More precisely, he/she must at most 

try  

 



N

i

i

1

13126  times in scheme_1 and  (4.1)

 



N

i
i

1
1126  times in scheme_2, (4.2) 

Table 4.1: ODG after descrambling with wrong wavelet family. 

Wavelet Family  ODG  

Haar -3.906  

Coiflets -3.903  

Symlets -3.901  

Discrete Meyer  -3.904  

Biorthogonal  -3.906  

Reverse Biorthogonal  -3.906  

Table 4.2: ODG after descrambling with wrong decomposition level. 

Level Methods on Layers ODG 

2-level 
a 
 [pre, in, post]=>[ac2, dc2, dc1] 

a
 -0.186  

1-level  [pre, in]=>[ac1, dc1] -3.878  

3-level  [pre, in, post, -]=> [ac3, dc3, dc2, dc1] -3.893  

4-level  [pre, in, post, -, -]=> [ac4, dc4, dc3, dc2, dc1] -3.895  

a
Correct decomposition level and correct choice of methods; 

Table 4.3: ODG after descrambling with wrong choice of methods. 

Methods on Layers  

[ac2, dc2, dc1] 

ODG  Methods on Layers  

[ac2, dc2, dc1] 

ODG 

[pre, in, post]
b
 -0.186  [pre, post, post]  -3.781  

[post, post, post]  -3.891  [pre, post, pre]  -3.842  

[post, pre, in]  -3.897  [pre, pre, post]  -3.783  

[post, pre, pre]  -3.896  [pre, in, pre]  -2.016  

[post, in, in]  -3.906  [pre, pre, in]  -3.843  

[in, pre, post]  -3.890  [post, pre, post]  -3.891  

[in, post, pre]  -3.897  [post, post, pre]  -3.896  

[in, in, in]  -3.906  [post, in, post]  -3.903  

[in, post, post]  -3.890  [post, post, in]  -3.897  

[in, pre, pre]  -3.897  [in, post, in]  -3.897  

[post, in, pre]  -3.906  [in, in, post]  -3.903  

[pre, post, in]  -3.843  [in, pre, in]  -3.897  

[pre, pre, pre]  -3.842  [in, in, pre]  -3.906  

[pre, in, in]  -2.021    

b
Correct choice of methods; 
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where 126 is a total of wavelet families (we only count those supported by the MATLAB [87]) 

and N is the decomposition level. The maximum possible value of N varies on the basis of the 

length of the signal and the wavelet family used. For example, for a 9-second long signal, N may 

be up to 18.  

Considering the worst case scenario for that signal, an adversary must at most try 

11^102.2
18

1

13126 



i

i  times for scheme_1 and  
18

1
814,231126 




i
i times for scheme_2. 

Let us assume for scheme_1 that the time taken for scrambling each layer is the time taken by 

the pre (note that the pre is the fastest among the three methods). According to the simulation 

results on a PC with Intel ® Core™ i5-2430M 2.4 GHz Processor, each trial in the above worst 

case scenario takes 2.32 seconds and thus the total time taken for a brute force attack is nearly 

16,045 years. For scheme_2, as the AS-MT is very fast to execute, the time taken is not a matter. 

However, the adversary has to guess the correct key for each trial and thus a total of 23,814 keys 

must be guessed. Thus, it can be concluded that the proposed DWT based schemes achieve the 

stronger cryptographic security than the methods in the time domain proposed in Chapter 3. 

In the above experiment, a single wavelet family is used to decompose an audio signal. 

The cryptographic security of the schemes can be more strengthened by using multiple wavelet 

families. For instance, for 1-level decomposition that yields two layers, we can use two different 

wavelet families for yielding each layer. In this way, the level of difficulty for a brute force 

attack is higher since the adversary needs to guess the correct wavelet family for each layer (not 

for each level as in our experiment). However, this approach can increase the execution time 

because we need to decompose the signal multiple times. 

4.4.2 Scrambling effect 

To test and verify the scrambling effect of the proposed schemes on the perceptual audio quality, 

the ODG values after scrambling and descrambling each layer as well as all layers are shown in 

Fig. 4.6.  

The ODG is calculated by using the original audio signals as reference. For both schemes, 

the ODGs after scrambling all layers are less than -3.9 for all test signals and show that the 

signals are severely distorted by scrambling. After descrambling, the ODG values are between 0 

and -1 and indicate that the descrambling process can recover the signals back to their nearly 

original qualities. In addition, as discussed in Sect. 4.4.1, the coefficients in the ac-part are very 

important for perceptual quality and thus the ODGs after scrambling only ac2 are almost 

comparable to those resulting from scrambling all layers. 

Note here that the ODG values in Fig. 4.6 state a condition that we can call progressive 

scrambling: SE(all)> SE(ac2)> SE(dc2)> SE(dc1), where SE means the scrambling effect on 

audio quality. By progressively scrambling layer after layer, the resulting audio qualities are 

getting worse and worse. During descrambling, the audio signals with low to high quality can be 

progressively recovered by descrambling layer after layer. As for scheme_2, we can use a subset 

of keys for descrambling to obtain the lower quality audios, whereas nearly full-quality can be 

recovered by using all keys. The larger the decomposition level, the more layers are obtained 

and the more progressively we can control the scrambling degree. 
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The above feature also provides flexibility in the choice of layers to be scrambled on the 

basis of the system requirement: if the system requires high-level security, all layers are 

scrambled; if the system is not very security-centric but demands severe quality degradation, 

scrambling only the ac-part is enough; if the system demands low-quality audio files for 

realizing the try-before-purchase model of DRM, scrambling only the dc-parts, which yields 

fine-to-poor audio quality, is enough. 

 

 

Figure 4.6: ODG after scrambling_(s)/descrambling_(d) on layer-by-layer basis: (a) scheme_1 (b) scheme_2.
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Table 4.4: Subjective measures of audio quality for the scrambled signals. 

Music  
SDG after Scrambling: Layer-by-Layer Basis 

dc1 dc2 ac2 all 

Pop 4.3 2 1 1 

Jazz 4.3 2 1 1 

Classical 4.1 2 1 1 

To verify the music quality after scrambling, we also conducted subjective tests. A total 

of five music files (the original and scrambled files for each layer) were distributed to six 

untrained listeners without mentioning anything about scrambling. Firstly, they were asked to 

pick out the original audio signal and all of them were able to correctly identify the original 

signal. Then, they were asked to feedback on the quality impairment of the scrambled signals in 

comparison with the original one. The grading results are shown in Table 4.4.  

Although the listeners are not experts, they could all perceive the difference in the audio 

quality degradation based on the layer scrambled. Some could even identify the correct layer 

that was scrambled on the basis of the music quality they perceived. For all music items, all 

listeners confirmed that the quality impairment introduced by scrambling the dc parts, especially 

dc2, is effective enough to use for trial music and scrambling the ac-part has almost exactly the 

same effect as scrambling all layers. 

4.4.3 Execution time 

Table 4.5 shows the execution time results of the new schemes for scrambling/descrambling 

each layer as well as all layers. Among the layers, the dc2 is the largest in size and thus it takes 

the longest time for both scrambling and descrambling processes. Generally, for scrambling or 

descrambling all layers, the scheme_1 takes at most t/2 seconds for a t-second long signal, and 

whereas the time taken for the scheme_2 is short enough to be negligible. Considering this fact, 

it can be concluded that the scheme_2 is more appropriate for real time applications. However, 

even for the scheme_1, if the underlying system is not very security-centric, we can significantly 

reduce execution time by scrambling only the ac-part that achieves the same scrambling effect 

as scrambling all layers. 

4.4.4 Anti-attack capability 

From Table 4.5, we can see that the proposed scheme_2 is very fast to execute. In addition, since 

the scrambling process is carried out on different frequency sub-bands, the bandwidth of the 

signal can also be limited according to the sub-bands scrambled. This feature is important for 

speech scramblers which are applied to ensure privacy in real time speech transmission in 

telephone networks and radio communications [88-90]. Thus, with the possibility of applying 

the scheme_2 in those applications, this section verifies that the scheme_2 is fairly robust against 

channel distortions (common signal processing attacks) providing that the attacked signals are 

perfectly time-synchronized with the original ones. 

The “Pop” audio signal in Table 3.1 is scrambled in accordance with the scheme_2 in 

which all layers of the wavelet coefficients are scrambled by using the AS-MT with different
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keys. Figure 4.7 shows the waveform of the original signal. For a noisy channel, the transmitted 

information may be partly or wholly lost during transmission. Thus, in the experiment, 60% of 

the scrambled signal is randomly cropped (cropped samples are replaced with 0) and then 

descrambling is tried. Figures 4.8(a) and (b) show the waveforms of the cropped signal and the 

recovered signal respectively. Comparing Fig. 4.8(b) with Fig. 4.7, we can see that most of the 

envelopes of the original audio still exist in the waveform recovered. It is because the lost 

samples are scattered throughout the entire signal and thus do not affect the basic structure of the 

audio. When we listened to the recovered audio, we can absolutely understand the music 

contents although some slight noise is introduced. 

We also conducted noise addition attack in which additive white Gaussian noise is added 

to the scrambled signal by keeping SNR=10dB which indicates the noise is strong. Then, 

descrambling is tried. Waveforms of the attacked signal and the recovered signal are shown in 

Fig. 4.9(a) and (b) respectively. From Fig. 4.9(b), we can see that the envelopes of the recovered 

waveform are not clear anymore. When listened to the recovered audio, it sounds like the 

original audio which white noise is directly added to. However, we can still understand the 

music contents. We also tried to compress the scrambled signal by using the LAME MP3 

encoder [59] at a bit-rate of 96 Kbps and then decoding and descrambling are tried. As shown in 

Fig. 4.10(b), the envelopes of the recovered waveforms are as clear as the original one. The 

ODG between the descrambled MP3-coded music and the original music is -1.75, which is fine 

quality. The audio quality is degraded due to data loss during compression but we can still 

understand the music. When listened to, it has better quality than the one white noise added to. 

4.4.5 Performance comparison 

A large number of image and speech scrambling methods have been proposed in the literature. 

However, there are few audio scrambling methods and even fewer well evaluated ones. Table 

4.6 summarizes the performances of the proposed schemes including the methods proposed in 

Chapter 3 and shows their comparison results with the reference works [17] [52] [64].  

Table 4.5: Execution time on layer-by-layer basis. 

Music Length Layer 

Exec. Time (sec) 

Scrambling Descrambling 

scheme_1 scheme_2 scheme_1 scheme_2 

Pop 9 sec dc1 2.49 0.12  2.33 0.12  

dc2 1.27 0.11 1.26 0.11 

ac2 0.83 0.11 0.83 0.11 

all 4.25 0.16 4.32 0.15 

Jazz 10 sec dc1 2.68 0.14  2.70 0.14  

dc2 1.42 0.12 1.45 0.12 

ac2 0.96 0.12 0.95 0.12 

all 4.85 0.18 4.85 0.17 

Classical 18 sec dc1 4.94 0.26  4.93 0.25  

dc2 2.63 0.23 2.55 0.22 

ac2 1.88 0.23 1.77 0.22 

all 8.67 0.34 8.71 0.30 
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Figure 4.7: Waveform of the “Pop” audio signal. 

 

Figure 4.8: Waveforms of (a) the scrambled signal that is 60% randomly cropped and (b) the recovered signal. 

 

Figure 4.9: Waveforms of (a) the scrambled signal that is white noise added to and (b) the recovered signal. 
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Figure 4.10: Waveforms of (a) the scrambled signal that is MP3 encoded and (b) the recovered signal. 

Reference [17] proposed two audio scrambling methods in the time domain. One method 

reorders the audio samples in accordance with the indexing sequence generated based on a secret 

key and the other does the same thing in which the indexing sequence is generated based on the 

in-order traversal scrambling transformation. Reference [52] proposed a combined watermarking 

and scrambling scheme for MP3 in which the scalefactors in an MP3 frame are grouped in 

accordance with a secret key. Then, the scrambling and watermarking processes are carried out 

on the scalefactors of each group. The scrambling process here is swapping the scalefactors with 

the other ones in the same group. Reference [64] proposed an audio scrambling method in the 

compressed domain in which MP3 data are progressively scrambled by XOR-ing with the keys 

in a key table.  

According to the results in Table 4.6, efficiencies (time and space complexity) of the 

methods are almost the same. Among the reference works, Reference [64] achieves the strongest 

security with the control of a key table for the price of increasing space complexity for storing 

that key table. However, the scrambling method in Reference [64] changes the values of the 

audio contents and thus causes operational conflict with the data hiding process. 

As for the proposed methods, the pre and scheme_1 have the comparable performances 

like Reference [17]. As for the AS-MT and scheme_2, they have better performances than 

Reference [17] in terms of security and scrambling effect (residual intelligibility). More 

specifically, according to Table 3.5 and Table 4.5, it can be seen that the AS-MT and scheme_2 

are very fast to execute, whereas the methods in Reference [17] are relatively slow (they take 

about t/2 seconds to scramble a t-second long signal). In comparison with Reference [64], the 

AS-MT and scheme_2 achieve the security level as strong as [64]. In addition, they are more 

effective than Reference [64] in terms of space complexity and operational flexibility when 

combining with data hiding.  
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Table 4.6: Performance comparison with previous works. 

Reference Residual 

intelligibility 

Time 

complexity 

Space  

complexity 

Security  

control 

Conflict with 

data hiding 

 [52] N/E N/E N/E key no 

 [17] (CDST) very low O(n) O(n) key no 

 [17] (ITST) very low O(n) O(n) - no 

 [64] very low O(n) O(n)+key table key table yes 

Our Contribution 

pre very low O(n) O(n) - no 

AS-MT ~ zero O(n) O(n) key no 

scheme_1 very low O(n) O(n) via wavelet no 

scheme_2 ~ zero O(n) O(n) keys + via wavelet no 

 N/E means “no evaluation”; n is the number of samples containing in the signal; 

4.5 Conclusion 

With the aim of strengthening the cryptographic security of the methods proposed in Chapter 3, 

this chapter discussed two schemes that combine those methods and the DWT. In addition to 

providing strong security, the proposed schemes achieved progressive scrambling effect that 

enables the audio outputs with different quality levels to be generated by controlling the 

scrambling degree as required. This feature is very attractive for realizing the try-before-

purchase model of DRM. In addition, the proposed schemes can also control the bandwidth of a 

signal to be unchanged based on the frequency sub-bands scrambled. Thus, they are possibly 

applied in real time speech scramblers, especially the scheme_2 due to its fast execution time. 

Experimental results showed that the scheme_2 is fairly robust against some common signal 

processing attacks. 
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Chapter 5 

Conclusion 

This thesis discussed the importance of audio encryption methods for providing confidential 

audio distribution in today’s DRM environment. However, the naive encryption on audio data 

destroys compliance with the media format and thus the resulting encrypted file cannot be 

directly played back by existing standard music players. This thesis presented the problems of 

encryption on audio data and the solutions for those problems. 

This thesis proposed a low-complexity partial encryption method for raw audio (WAV) 

together with a solution for the invalid amplitude problem. That problem makes the decryption 

process to be unsuccessful when the encrypted audio samples are beyond the valid audio 

amplitude range and thus they are clipped by the audio coder. This thesis also proposed an 

effective low-complexity partial encryption method for compressed audio (MP3). The idea of 

partial encryption is to protect the data by encrypting only perceptually important parts. During 

the MP3 encoding process, the input PCM signal transforms into several variants such as the 

frequency lines, quantized values, etc. Some of them are directly related to perceptibility and 

some are not. Thus, the effectiveness of partial encryption on MP3 depends on the choice of data 

to be encrypted. This thesis discussed how to effectively choose the perceptually important parts 

for encryption in accordance with the concept of the HAS. Experimental results showed that 

encrypting the whole MP3 audio file renders the audio signal meaningless while encrypting 2-

10% of the file degrades the audio quality but not completely destroys the signal so it can be 

used as trial music for commercial purpose. That trial MP3 keeps compatibility with the 

standard so it can be rendered by any existing MP3 players without need to decrypt. Under the 

access of the correct decryption keys and specific MP3 players, full-quality MP3 can be 

successfully recovered. Experimental results also showed that the proposed method can be 

carried out without extensive computation, significant modification on the MP3 frame headers, 

and significant impact on compression efficiency of the MP3 encoders. 

 This thesis also presented two low-complexity transposition-based audio scrambling 

methods in the time domain. Audio scrambling methods are widely used for confidential 

distribution of audio data. They are more preferable to usual audio encryption to be used as pre- 

and post-processing of data hiding methods due to their nature of operational flexibility. They 

enable us to embed the watermark on the scrambled signal and to extract it from either the 

scrambled or descrambled version of the signal. Experimental results showed that the proposed 
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methods are very effective in terms of time and space complexity and scrambling effect although 

their cryptographic securities are limited. With the aim of enhancing their security, this thesis 

proposed two new schemes in the wavelet domain that combine those methods and the DWT. 

Instead of scrambling the whole signal, the new schemes firstly decompose an audio signal into 

different frequency sub-bands by using the DWT. Then the wavelet coefficients in each subband 

are separately scrambled. Experimental results showed that anyone without knowledge of the 

correct wavelet decomposition parameters and the correct method/key used for scrambling each 

subband will never be able to successfully descramble the signal. Those schemes also achieve 

the progressive scrambling effect that enables the audio outputs with different quality levels to 

be generated by controlling the scrambling degree on the basis of the system requirement: 

slightly distorted ones for the try-before-purchase model of the DRM systems and severely 

distorted ones for the systems with strong security needs. In addition, the new schemes are also 

fairly robust against common signal processing attacks. The resistances to those attacks are 

important for speech scramblers used in telecommunication and radio networks and hence the 

proposed schemes are possibly applied in those applications.  

As a conclusion, this thesis presented various audio encryption methods to be used in 

today’s DRM environment for both compressed and uncompressed audio data. This thesis gave 

a detailed discussion on 1) the problems of encryption on audio data and their solutions, 2) how 

to choose the data for partial encryption on MP3, 3) how to conduct encryption while keeping 

compliance with the media format, and 4) how to strengthen the security of audio scrambling. In 

addition to providing confidentiality in audio distribution, the proposed methods can also be 

used to realize the try-before-purchase model, which is one of the important business models of 

DRM. Thus, the proposals in this thesis strongly contribute to the development of efficient DRM 

systems. 

One of the future works of this thesis is to develop an effective combined encryption and 

data hiding scheme. As discussed in Chapter 1, using encryption or data hiding alone is not 

sufficient for today’s DRM systems. Encryption protects the content just before decryption, and 

whereas data hiding only ensures copyright protection. In the literature, there have been many 

audio encryption and data hiding methods proposed individually; however, there are very few 

combined schemes. Thus, developing an effective combined scheme is very important.  

In addition, the concept of the Human Auditory System (HAS) is very important for 

developing effective audio encryption or audio data hiding methods. The HAS is more sensitive 

than the Human Visual System (HVS). Even small changes to the audio samples can be detected 

by the HAS and it is very difficult to develop a data hiding method that perfectly hides the secret 

information in the host audio signal. Thus, studying the HAS is also one of the future works of 

this thesis. 
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