|

) <

The University of Osaka
Institutional Knowledge Archive

Tale A Study on Low-Complexity Audio Encryption
Methods for Digital Rights Management

Author(s) |Twe Ta Qo

Citation |KFRKZ, 2015, HIHwX

Version Type|VoR

URL https://doi.org/10.18910/53937

rights Copyright(C)2014 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

A Study on Low-Complexity Audio Encryption
Methods for Digital Rights Management

Submitted to
Graduate School of Information Science and Technology
Osaka University

July 2015

Twe Ta Oo

Publication List

Journal Papers

1. Twe Ta Oo, T. Onoye, and K. Shin, “Partial encryption method that enhances MP3
security,” in IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E98-A, no. 8, Aug. 2015, to be published.

Conference Papers with Referee

1. Twe Ta Oo, T. Onoye, and K. Shin, “A partial encryption scheme for compressed audio
based on amplitude scaling,” in Proceedings of International Workshop on Smart Info-
Media Systems in Asia (SISA), pp. 73-77, Sept. 2013.

2. Twe Ta Oo and T. Onoye, “Progressive audio scrambling via wavelet transform,” in
Proceedings of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp.
97-100, Nov. 2014.

3. Twe Ta Oo and T. Onoye, “Progressive audio scrambling via complete binary tree’s
traversal and wavelet transform,” in Proceedings of Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC), Dec. 2014.

Conference Papers without Referee

1. Twe Ta Oo, Takao Onoye, and Kilho Shin, “An approach to amplitude scaling partial
encryption for compressed audio,” in IEICE Technical Report, vol. 113, no. 135, pp. 239-
244, July 2013.

PUBLICATION LIST

i

Abstract

This thesis discusses low-complexity audio encryption methods for Digital Rights Management
(DRM). Recent years have seen the rapid growth of Internet traffic and the proliferated
distribution of digitalized audio products such as music, audio books, and spoken news. As a
result, secure distribution and copyright protection of those products have been increasingly
important. The DRM technologies have been intensively studied in this area, and encryption
plays an important role to protect the contents from unauthorized accesses. Although encryption
ensures content security, the naive method of encrypting an audio file would destroy compliance
with the audio standard so the resulting encrypted file could not be rendered by existing standard
media players. This thesis focuses on low-complexity audio encryption methods that keep
compliance with the media standard and achieve the following DRM requirements: 1) providing
the confidentiality in audio distribution, 2) controllably degrading the audio quality by adjusting
the percentage of encryption, and 3) realizing the try-before-purchase model, which is one of the
important business models of DRM, in which the encrypted audio files are published for
commercial purpose; users can render those files for trial without decryption and enjoy the
contents in original quality by purchasing the decryption keys.

Firstly, this thesis presents a low-complexity partial encryption method for compressed
audio (MP3). Unlike conventional encryption which encrypts the whole file, partial encryption
can provide some interesting features such as yielding low-quality signals, reducing execution
time, and coexistence with the media standards. The main idea of partial encryption is to protect
the entire content by encrypting only the perceptually important parts. This thesis discusses how
to choose the perceptually important parts during the MP3 encoding process in accordance
with the concept of the Human Auditory System (HAS). Experimental results show that
encrypting the whole MP3 file renders the audio signal meaningless while encrypting 2-10% of
the file degrades the audio quality but not completely destroys the signal so it can be used as
trial music. That trial MP3 keeps compatibility with the standard so it can be rendered by any
existing MP3 players without need to decrypt. Under the access of the correct decryption keys
and specific MP3 players, the full-quality MP3 can be successfully recovered. In addition, this
thesis discusses the invalid amplitude problem regarding audio encryption: in any kinds of audio
format, there are valid amplitude ranges for audio samples, which differ based on the supported
bit-depth of an audio coder. If the audio samples to be coded are not within the valid range, they
are clipped. This becomes a problem when the encrypted audio samples are beyond the valid
ranges and get clipped because the data losses introduced by clipping deter the decryption
process from successfully recovering the signal. This thesis also presents a solution for this
problem.

il

ABSTRACT v

Secondly, this thesis presents two low-complexity audio scrambling methods, which are
kinds but not direct applications of audio encryption. Unlike audio encryption that renders an
audio signal meaningless by changing both the values and positions of the contents, audio
scrambling degrades the residual intelligibility of an audio signal by breaking the coherence
between data contents. They neither inject any new values nor change the values of the existing
contents. Due to this feature, they are more preferable to usual audio encryption to be used as
pre- and post-processing of data hiding methods. This thesis presents two effective audio
scrambling methods in the time domain: one based on the pre-order traversal of a complete
binary tree and the other on a pseudorandom number generation algorithm called Mersenne
Twister (MT). Experimental results show that the proposed methods are very effective in terms
of time and space complexity and scrambling effect. However, their cryptographic security is
limited because of the only use of permutation operations.

Thirdly, with the aim of strengthening the cryptographic security of the proposed audio
scrambling methods, this thesis presents two new schemes in the wavelet domain. First, an audio
signal is wavelet decomposed. Then, the layers of wavelet coefficients are separately scrambled
by considering not only the pre-order but also in-/post-order based scrambling methods in the
first scheme and using the MT based scrambling method with a series of keys in the second
scheme. Experimental results show that anyone without knowledge of the correct wavelet
decomposition parameters and the correct method/key used for each layer will not be able to
successfully descramble the signal. The new schemes also achieve progressive scrambling that
enables the audio outputs with different quality levels to be generated by controlling the
scrambling degree on the basis of the system requirement: slightly distorted ones for the try-
before-purchase model of the DRM systems and severely distorted ones for the systems with
strong security needs.

As a conclusion, this thesis presents low-complexity audio encryption methods for both
compressed and uncompressed audios with detailed discussions on 1) how to solve the invalid
amplitude problem regarding audio encryption, 2) how to effectively choose the perceptually
important parts for partial encryption, 3) how to conduct encryption while keeping compliance
with the media format, and 4) how to strengthen the cryptographic security of audio scrambling.
In addition to providing confidential audio distribution, the proposed methods can also be used
to realize the try-before-purchase model. Thus, these proposals strongly contribute to the
development of efficient DRM systems.

Acknowledgements

First of all, I would like to express my deep and sincere gratitude to my supervisor, Professor
Takao Onoye of Osaka University, for providing me a precious opportunity and an excellent
environment to study as a doctoral student in his laboratory. His encouragement, detailed and
constructive comments, and professional guidance have led me to this achievement.

I would like to express my heartfelt appreciation to Professor Yoshihiro Kilho Shin,
University of Hyogo, for his dedication of a considerable amount of time from his busy schedule
to guide and help me on my learning in the field of cryptography. His interesting discussions and
excellent advices on cryptographic technologies presented in this thesis have greatly contributed
to the success of this work.

I am deeply grateful to Professor Tatsuhiro Tsuchiya and Associate Professor Masanori
Hashimoto of Osaka University for agreeing to be on my dissertation committee. They were
more than generous with their expertise and precious time for reviewing my thesis.

I would like to take this opportunity to express my gratitude to all of the professors from
Information Systems Engineering Department of Osaka University. I am deeply thankful to
Professor Masaharu Imai, Professor Koji Nakamae, Professor Haruo Takemura, and Professor
Makoto Nakamura for their useful advices.

I am also thankful to Assistant Professor Masahide Hatanaka of Osaka University for
technical and other supports in the laboratory.

I am also thankful to all of my friends who kindly and actively helped me during the
subjective audio tests conducted to evaluate this work. I will never forget their dedication and
enthusiasm.

I also owe my gratitude to Ms. Mayuko Nakamura, Ms. Yuki Yoshida, and Ms. Tomomi
Kondo for all the things they have done for me. They kindly and willingly helped me whenever I
had difficulties in doing office procedures because of my language deficiency.

My appreciation also goes to all members of Information Systems Synthesis Laboratory
of Osaka University, especially to Mr. Zhao Wen Jun, for their understandings and various
supports throughout my student life.

I would like to dedicate this thesis to all of my teachers who mentored me throughout my
career. They installed in me sources of knowledge and firm determination which led to this
success.

Last but not least, I also dedicate this thesis to my parents and my uncles and aunts. [am
deeply indebted to them for their love and continuous support. They never failed to encourage
me whenever [had a hard time.

ACKNOWLEDGEMENTS

vi

Contents

1 Introduction

1.1
1.2

1.3

1.4
1.5
1.6
1.7

2 Partial Encryption Methods that Enhance Audio

1.2.1 Invalid amplitude problem
1.2.2 Operational conflict problem with data hiding methods

1.3.1 Waveform audio file format (WAV)
1.3.2 MPEG-1I layer III audio file format (MP3)

Background

Problems of encryption on audio data

Audio file formats

Partial encryption

Advanced Encryption Standard (AES)

Audio scrambling

Objective of this thesis

Security
2.1 Introduction
2.2 Partial encryption on raw audio

2.3

24

2.2.1 Solution for invalid amplitude problem
2.2.2 Procedure
2.2.3 Experimental results

2.3.1 Choice of data to encrypt
2.3.2 Procedure
2.3.3 Experimental results
2.3.4 Implementation necessity

Partial encryption on MP3

Conclusion

(-

o e L

10

14
15

17

17
18
19
19
21
22
22
24
26
30
31

3 Transposition-Based Audio Scrambling Methods in Time
Domain

3.1

Introduction

vii

32

32

CONTENTS

3.2 Audio scrambling method based on the pre-order traversal of a complete
binary tree

3.2.1 Algorithmic detail
3.2.2 Experimental results

3.3 Audio scrambling method based on a pseudorandom number generator
3.3.1 Algorithmic detail
3.3.2 Experimental results

34 Conclusion

4 Progressive Audio Scrambling Schemes in Wavelet
Domain

4.1 Introduction
4.2 Discrete Wavelet Transform (DWT)

4.3 The proposed schemes
4.4 Experimental results

4.4.1 Cryptographic security/anti-decryption capability
4.4.2 Scrambling effect
4.4.3 Execution time
4.4.4 Anti-attack capability
4.4.5 Performance comparison
4.5 Conclusion

5 Conclusion

Bibliography

viii

33
35
37
40
40
42
42

44

44
45
46
52
52
54
56
56
57
60

61

List of Tables

1.1
1.2
2.1
2.2
23
24
3.1
3.2
33
34
3.5
4.1
4.2
4.3
4.4
4.5
4.6

Valid audio amplitude ranges for different bit-depth systems

Algorithm specification of the AES
Grading scales of ODG

Grading scales of SDG

Subjective measures of audio quality for the encrypted MP3s

Effect of encryption on file size

Music items used in experiment

Execution time results for the pre

SNR and NCR of the scrambled signals for different £

Execution time results for different k&

Execution time results for the 4S-MT.

ODG after descrambling with wrong wavelet family

ODG after descrambling with wrong decomposition level
ODG after descrambling with wrong choice of methods

Subjective measures of audio quality for the scrambled signals
Execution time on layer-by-layer basis

Performance comparison with previous works

X

12
22
27
28
30
38
38
39
40
43
53
53
53
56
57
60

LIST OF TABLES

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
2.1
2.2
23
24
2.5
2.6
2.7
3.1
3.2

33
3.4
3.5

3.6
3.7

3.8

4.1
4.2
4.3
4.4
4.5
4.6

An example of a typical DRM system
Online audio distribution scenario in DRM environment
The canonical WAV file format
MP3 frame format
MP3 encoding process
MP3 decoding process
The state array input and output in the AES
The SubBytes transformation in the AES
The ShiftRows transformation in the AES
The MixColumns transformation in the AES
System flow of (a) partial encryption and (b) partial decryption on raw audio.........
ODG vs p of the encrypted WAVs
Execution time of the proposed method: (a) encryption (b) decryption..........
Proposed method (online/offline): (a) encryption (b) decryption
Partitioning of quantized values
ODG vs p of the encrypted MP3s
Execution time of the proposed method: (a) encryption (b) decryption ...

A tree representation of an array of audio samples ()
The breadth-first traversal result: s'= [So,s| ,sz,s3,s4]

The pre-order traversal result: §'= [so ,S1,53, 84,52]

The in-order traversal result: §'= [s; ,81,84,50,52]

The post-order traversal result: 5'= [S3,S4,S] ,82 ,so]

The step-by-step tracing of the pre on an example array
Waveforms of (a) the original signal and (b) the scrambled signal by pre; (c)-(d)

their respective frequency spectra
Waveforms of (a) the original signal and (b) the scrambled signal by AS-MT;
(c)-(d) their respective frequency spectra
Two-level DWT: (a) decomposition (b) reconstruction
System flow of the scheme 1
System flow of the scheme 2
The step-by-step tracing of the in on an example array
The step-by-step tracing of the post on an example array
ODG after scrambling (s)/descrambling (d) on layer-by-layer basis:

X1

O O O 9 D

12
13
13
14
20
22
23
25
25
27
29
34
34

35
35
35
37

38

43
45
47
47
50
51

LIST OF FIGURES

4.7
4.8

4.9

4.10

(a) scheme_ 1 (b) scheme 2
Waveform of the “Pop” audio signal
Waveforms of (a) the scrambled signal that is 60% randomly cropped and (b) the
recovered signal
Waveforms of (a) the scrambled signal that is white noise added to and (b) the
recovered signal
Waveforms of (a) the scrambled signal that is MP3 encoded and (b) the recovered
signal

Xii

55
58

58

58

59

CHAPTER 1 INTRODUCTION 1

Chapter 1

Introduction

This chapter describes the background and objectives of this thesis. This thesis focuses on
developing low-complexity audio encryption methods, for both uncompressed and compressed
audio formats, to be applied in Digital Rights Management (DRM) environment. The two basic
problems which make most of the usual encryption methods to be less preferable for audio
protection are discussed. Then, the concept of partial audio encryption and its desirable features
over usual encryption of the whole file are presented. The theories behind uncompressed and
compressed audio file formats are also briefly discussed. Finally, the objectives and
contributions of this thesis are explained.

1.1 Background

Nowadays, the multimedia technology has been widely used in various fields of industrial
production, scientific research, and daily life [1-2]. The proliferated distribution of digitalized
audio products has been seen in recent years due to the advents of multimedia compression
standards and high-speed Internet and communication networks. These latest technologies have
made our daily lives easier and more comfortable, but on the other hand they have been raising
serious issues of copyright violation and unauthorized access of digital contents on a scale never
before imagined. Many producers from music industries fear that online distribution of their
works, on which the revenue of these industries partly or wholly depends, will speed up illegal
distribution on the Internet or the Darknet [3]. For solving those issues, DRM [4-5] technologies
have been intensively studied by researchers from both academia and industry.

The DRM is a set of access-control techniques used by manufacturers, publishers, and
copyright holders to limit the usage of digital devices or information [6-7]. The most commonly
used DRM technologies are:

= Restrictive licensing agreements: The access to digital materials, copyright and public
domain is controlled. Some restrictive licenses are imposed on consumers as a condition of
entering a website or when downloading software [§].

= Encryption, scrambling of expressive material, and embedding of a tag: This technology
is designed to control access and reproduction of information.

Generally, a DRM system can be realized as shown in Fig. 1.1.

http://en.wikipedia.org/wiki/Digital_rights_management#cite_note-22
http://en.wikipedia.org/wiki/Encryption

CHAPTER 1 INTRODUCTION 2

e D

& P

DRM Centre

Content Provider

>
Client/User Payment Gateway

0 Payment

é Content and license request
Payment confirmation request
o Payment approval

é Sending billing list

6 Issuing license/authentication

o Sending authorized/encrypted content

Playback the authorized/encrypted content

Figure 1.1: An example of a typical DRM system.

= The user pays for the content and gains it through the provider.

= The content provider or Internet service provider (ISP) takes the billing list from the DRM
centre and sends the authorized or encrypted content to the user.

» The payment gateway takes payment request from the DRM center and sends an approval of
payment to it.

= The DRM center takes content request from the user after payment approval and then sends
the billing list to the content provider or ISP and authentication (e.g. license or decryption
key) to the user.

Nowadays, the DRM technology has been adopted by the entertainment industry, most e-
book publishers and online music stores. Electronic books read on a personal computer or an e-
book reader typically use the DRM technology to limit copying, printing, and sharing of e-books.
Examples of the e-book DRM schemes commonly used today are Adobe’s ADEPT DRM [9]
and Apple’s FairPlay DRM [10-11]. As for the multimedia industry, with the aim of restricting
usage of the media content purchased and downloaded, they employ the DRM technology in
various kinds of business scenarios that include [12]:

= Online scenarios: These scenarios require users to be online while they play back the media
content:

1.2 PROBLEMS OF ENCRYPTION ON AUDIO DATA 3

= Live streaming: Live streaming sends the content directly to the computer or device
without saving the file to a hard disk. A live stream is only available while it is being
broadcasted. Internet television and radio are examples of live streaming.

= Progressive download: Progressive download lets users play back the media while it is
downloading. The main difference between progressive download and live streaming,
from a user's point of view, is that progressively downloaded content is stored on the
user's computer or device, at least temporarily.

= Offline scenarios: These scenarios allow users to be offline while they play the content.

= Download file offline (onetime purchase): Users download the content from the
Internet and play it later whenever they want. The DRM software restricts redistribution
of the content to one or more devices.

= Subscription: It enables the customers to play back the content based on a subscription
model. For example, customers of the online television channel pay a monthly fee to
watch up to 100 hours of television content online. In order to renew their subscription,
they need to pay the monthly fee and connect to the service at least once a month
because the subscription license expires every 45 days.

The followings are examples of the online music stores that employ the DRM technology.
Prior to 2009, Apple’s iTunes store utilized the FairPlay DRM system [10-11] that enables
playback of the iTunes music only on Apple devices and Apple’s QuickTime media player. In
recent years, music tracks with DRM-free iTunes Plus format are available at a higher price
point. Napster music store [13] offers a subscription-based DRM approach alongside permanent
purchases. Users of the subscription service can download and stream an unlimited amount of
music during the subscription period. However, when the subscription period lapses, all the
downloaded music is unplayable until the user renews his or her subscription. Prior to 2008,
Sony operated a music download service called Connect [14] which used Sony’s proprietary
OpenMG DRM technology. Music sold at Sony Connect was only playable on Sony hardware
and computers running Microsoft Windows.

Although DRM is prevalent for Internet music, it also has an undesirable side of
frustrating the authorized customers. From the DRM regulations used by the above mentioned
online music stores, we can see that most of the DRM techniques restrict copying or viewing of
the contents regardless of whether such copying or other use is legally considered a “fair use” by
authorized customers. Under that circumstance, DRM has come under fire. Those opposed to
DRM contend there is no evidence that DRM helps prevent copyright infringement, arguing
instead that it serves only inconvenience to legitimate customers, and that DRM helps big
business stifle innovation and competition [15]. Thus, it has been very important to develop the
DRM technologies that ensure not to lock out the legitimate users.

1.2 Problems of encryption on audio data

Among the DRM techniques, encryption plays an important role to protect the contents from
unauthorized accesses.

A lot of audio encryption methods in different domains have been proposed in the
literature. In the time domain approaches, audio signals are generally encrypted by permuting

http://en.wikipedia.org/wiki/Big_business
http://en.wikipedia.org/wiki/Big_business

1.2.1 INVALID AMPLITUDE PROBLEM 4

the audio samples [16-17], blocks of the samples [16], or the bits which made up of each sample
[18]. In the transform domain approaches, the audio signal is first transformed into specified
domains (e.g. Fast Fourier Transform (FFT) [19-21]) and then encryption is performed on the
transformation results. Basically, any kinds of traditional encryption algorithms, including
symmetric or asymmetric ones, can be used for audio protection. However, the naive method of
encrypting the entire audio file would destroy compliance with the media standard due to
changing data format and increasing file size after encryption, especially in the time-domain
approaches. Then, the encrypted audio files could not be played back by existing standard music
players and this would hinder the convenient use for legitimate customers. In addition, the
problems that will be discussed in the following sections reduce the effectiveness of usual
encryption methods to be used for audio protection.

1.2.1 Invalid amplitude problem

In any kinds of audio format, there are valid amplitude ranges for audio samples [22-23], which
differ on the basis of the supported bit-depth of an audio coder and data type of the audio
samples. As shown in Table 1.1, integer-type audio samples can be encoded in 8-bit, 16-bit, or
24-bit bit-depth, and whereas floating point audio samples can be encoded in up to 64-bit. The
higher the bit-depth, the better the audio resolution but the larger file size is yielded.

Before writing an audio file, the audio encoder checks if the audio samples are within the
valid amplitude ranges and if they are not, the exceeding parts are clipped. This clipping process
becomes a problem for usual encryption algorithms to be directly used for audio protection.
Generally, encryption algorithms try to render an audio signal meaningless by applying a series
of mathematical operations on the audio samples such as shifting, adding or XOR-ing with key
sequences, substituting the samples in accordance with a look-up table, etc. After those
operations, it is highly unlikely to keep the audio samples in their original format or size and
there is a possibility that the amplitudes of the samples become beyond the valid ranges. Thus,
the above clipping process is inevitable and the data losses introduced by clipping will definitely
deter the decryption process from successfully recovering the audio signal. Thus, any kinds of
audio encryption methods need to pay attention to how to handle this problem. One of the
proposals in this thesis presents a solution for this problem.

1.2.2 Operational conflict problem with data hiding methods

Encryption and data hiding are widely used DRM techniques in which encryption mechanism
protects the content from unauthorized accesses and data hiding mechanism ensures copyright
protection by embedding the watermark (e.g. copyright related messages or signatures) into the
audio signal without sacrificing the audio quality. However, encryption techniques protect the
data just before decryption. Once the data is decrypted, there is no more protection. On the other
hand, data hiding techniques cannot provide secure distribution. For those reasons, employing
encryption and data hiding techniques individually is not fully desirable for today’s DRM
systems. There has been a lot of interest in developing a combined scheme of encryption and
data hiding for ensuring both confidential distribution and copyright protection.

1.2.1 INVALID AMPLITUDE PROBLEM 5

Table 1.1: Valid audio amplitude ranges for different bit-depth systems.

Bit-Depth Valid Range for Respective Data Type
Integer Floating Point

8-bit [0, 255] [-1.0, +1.0)

16-bit [-32768, +32767] |[-1.0,+1.0)

24-bit [-2723, 2723-1] [-1.0, +1.0)

Higher bit-depth [-1.0,+1.0]

Kothamasu and Sehgal [24] proposed a system that uses both encryption and data hiding
techniques in which a watermark image is embedded into an audio signal on the basis of the
energy of the signal in the discrete wavelet and cosine transform domains. Before embedding,
the watermark image is encrypted by using the Arnold transformation [25], which is a common
image transformation technique in the two-dimensional domain. A similar scheme was also
proposed by Mondal and Mandal [26] in which data hiding is done in the time domain and the
watermark (here it is a speech signal) is encrypted by using the chaos based encryption [27]. The
main purpose of these methods is to secure the watermark information in case the data hiding
methods break but not for secure distribution of the host audio signal.

However, if the main purpose of such a combined scheme is to provide both secure
distribution and copyright protection, encryption must be done on the host audio signal, not on
the watermark information. In that case, usual encryption methods are not appropriate for
combining with data hiding methods. It is because both encryption and data hiding try to change
the values of the audio contents and thus cause operational conflicts with each other. Let us
consider two example scenarios of combining the methods in which encryption is to perform
bitwise XOR between audio samples and keys and data hiding is to replace the least significant
bit (LSB) of each audio sample with the watermark bit. For an audio signal s, the first scenario is
as follows:

1) The watermark information is embedded on s: m(s)
2) The marked file is encrypted: e(m(s))

To detect the watermark in this scenario, the above steps must be done in exact reverse
order. That is, the watermark information cannot be detected from the encrypted signal e(m(s)).
For the second scenario,

1) The audio signal is encrypted: e(s)
2) The watermark information is embedded on the encrypted signal: m(e(s))

In this scenario, decryption before completely removing the watermark would result in
random decrypted values and the signal with nearly original quality could not be successfully
recovered. Moreover, most of the audio watermarking methods proposed in the literature are
irremovable methods in which removing the watermark will surely degrade the audio quality.

Let us consider how the above conflicts reduce the effectiveness of the DRM systems in
the application scenario shown in Fig. 1.2: in DRM, the media is usually encrypted for
confidentiality before distribution. The encrypted media may then be transmitted from owners to

1.3 AUDIO FILE FORMATS 6

Owner Distributor Customer

encrypt = ;

Audio file »| Encrypted audio
file
payment
key request watermark . |[Marked and encrypted
audio file
Decryption send key R
key - .
decryption
A 4
Decrypted marked file

Figure 1.2: Online audio distribution scenario in DRM environment.

customers through distributors. Those distributors have no right to access the unencrypted media
and are only entitled to distribute the encrypted media to end users and request the license server
in the DRM system to issue the license containing the decryption key to end users. However,
they sometimes need to watermark the media for copyright violation detection, distribution
control, proof of distributorship, or traitor tracing, and must embed the watermark on the
encrypted content. As for customers, they can get the decryption keys from owners for a fee and
then enjoy the high-quality content after decryption. Note here that decryption must be done on
the marked content. If the usual encryption methods were applied in this scenario, they would
completely destroy the objective of data hiding because decryption would never be successful
without removing the watermark.

Thus, it is very important to develop effective audio encryption methods that can be used
together with the data hiding process without causing any conflicts. This thesis proposes two
audio scrambling methods, which are kinds but not direct applications of audio encryption,
which can be effectively applied in the above application scenario.

1.3 Audio file formats

This section discusses the uncompressed and compressed audio file formats. An audio file
format is a file format for storing digital audio data on a computer system. The bit layout of the
audio data (excluding metadata) is called the audio coding format and can be uncompressed or
compressed to reduce the file size by often using the lossy compression. There are three major
groups of audio file formats:

» Uncompressed audio formats, e.g. waveform audio file format (WAV) [28-29], audio
interchange file format (AIFF) [30]
= Compressed audio formats (lossless), e.g. WavPack [31]

1.3.1 WAVEFORM AUDIO FILE FORMAT (WAV) 7

= Compressed audio formats (lossy), e.g. advanced audio coding (AAC) [32], MPEG-1
layer III (MP3) [33-35]

As this thesis proposes audio encryption methods for WAV and MP3 audio formats, the
following sections explain those file formats in detail.

1.3.1 Waveform audio file format (WAYV)

Waveform audio file format (commonly known as WAV) [28-29] is a Microsoft and IBM audio
file format standard for storing an audio bitstream on personal computers (PCs). It is the main
format used on Windows operating systems for raw and typically uncompressed audio. The
usual bitstream encoding is the pulse code modulation (PCM) format. Even though an
uncompressed WAYV file is large and thus not appropriate for file sharing over the Internet, it is a
commonly used file type suitable for retaining audio files of high quality, for using in
applications like audio editing where the time needed in compressing and decompressing data is
a concern or on a system where disk space is not a constraint.

The WAV is an application of the Resource Interchange File Format (RIFF) bitstream
format method for storing data in chunks. Fig. 1.3 shows the WAV file format. Every chunk
(including the header) starts with the chunk ID that defines what is included in the chunk, e.g.
“RIFF” chunk, “fmt” chunk, and “data” chunk. The other fields in the RIFF chunk define the
size of the overall file and file format (here it is “WAVE”). The format chunk is the metadata
chunk which describes the necessary information to decode the WAV file such as the sampling
rate, the bit-depth, the number of channels, etc. The data chunk contains the audio sample data
whose data type and range vary depending on the chosen bit-depth, as discussed in Sect. 1.2.1.

Field Name Value
ChunkID “RIFF”
The "RIFF” chunk 1" inkSize varies
|| Format “WAVE”
(| Subchunk1ID “fmt”
Subchunk1Size 16 for PCM
AudioFormat 1 for PCM, others for compressed formats
The “fmt” sub-chunk < NumChannels 1 for Mono, 2 for Stereo, etc
SampleRate 8000, 44100, etc
ByteRate SampleRate*NumChannels*BitDepth/8
BlockAlign NumChannels*BitDepth/8
\| BitDepth 8, 16, etc
The “data” sub-chunk { SubChunkZH.) “da.t a”
Subchunk2Size varies
Data sample data

Figure 1.3: The canonical WAV file format.

1.3.2 MPEG-1 LAYER III AUDIO FILE FORMAT (MP3) 8

1.3.2 MPEG-1 layer III audio file format (MP3)

The MP3 is a compressed audio format which is designed to greatly reduce the amount of data
required to represent the audio recording and still sound like a faithful reproduction of the
original uncompressed audio for most listeners [33-35]. Nowadays, the MP3 is ade facto
standard of digital audio compression for the transfer and playback of music on most digital
audio players as well as a common format for consumer audio streaming or storage.

All MP3 files are divided into smaller fragments called frames. Each frame stores 1,152
samples and lasts for 26 ms. As shown in Fig. 1.4, which is the structure of an MP3 frame, a
frame consists of five parts. The header contains important information such as the
synchronization word, the sampling rate, the bitrate, and so on. The synchronization word found
at the beginning of each frame enables the MP3 decoders to lock onto the signal at any point in
the stream [33]. This makes it possible to broadcast an MP3 file. A receiver tuning in at any
point of the broadcast just has to search for the synchronization word and then start playing.

The Cyclic Redundancy Check (CRC) field is used to check if there are transmission
errors in the header. According to the standard, bits 16 to 31 in both the header and the side
information field are very sensitive to errors to such an extent that it can corrupt the whole frame,
whereas an error in the main data only distorts a part of the frame. A corrupted frame can either
be muted or replaced by the previous frame [33].

The side information field carries the necessary information to decode the MP3 main
data (scalefactors and Huffman codes). For instance, it tells the decoder where to find the start of
the main data in a certain frame and which Huffman code tables to be used to decode that frame.
In the main data part, the purpose of scalefactors is to reduce the quantization noise. If the
samples in a particular scalefactor band are scaled in the right way, the quantization noise will
be completely masked. The second part of the main data consists of Huffman encoded bits.
Finally, the ancillary data part is optional.

Figure 1.5 shows a series of the MP3 encoding processes. First, the input PCM signal is
transformed from time-domain samples to frequency lines by passing through a filterbank
cascaded by a windowed Modified Discrete Cosine Transform (MDCT). The input PCM also
passes through the FFT process to yield the input for psychoacoustic model which provides
information to control the MDCT windows type: short windows for adjacent frequency spectra
with certain changes and long windows for others. This model also provides a set of masking
thresholds used to discard audio redundancy. That is, frequency components under those
thresholds cannot be perceived by human ear and thus the MDCT frequency lines can be non-
linearly quantized by using the lowest possible bitrate as long as the quantization noise is kept
under those thresholds. Then the quantized values are divided into different regions and encoded
with different Huffman tables that are tuned for the statistics of particular region. Finally, an
MP3 frame is constructed by appending a header as shown in Fig 1.4.

For decoding an MP3 bitstream, as shown in Fig. 1.6, the decoder firstly identifies every
frame in the bitstream by searching for the synchronization word. If the protection bit in the
header is set, the CRC field exists and checks the most sensitive data for transmission errors.
Then the MP3 main data (scalefactors and Huffman coded data) are decoded by using the
decoding parameters specified in the side information part. The decoded scalefactors are later

http://en.wikipedia.org/wiki/De_facto_standard
http://en.wikipedia.org/wiki/De_facto_standard
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Streaming_media

1.3.2 MPEG-1 LAYER III AUDIO FILE FORMAT (MP3)

used when re-quantizing the Huffman decoded values (quantized values). Then, the Inverse
MDCT (IMDCT) process is carried out on the re-quantization results (frequency lines). Finally,
the synthesis filterbank reconstructs the signal.

Scfsi
Syncword Big_values Region0
Layer Global gain Regionl
Bitrate Table select Region2
Sampling Rate Count1Table select Count1
Header CRC | Side Info Scale Huffman | Ancillary

Factors | Codes Data
N J
~
Main Data
Figure 1.4: MP3 frame format.
Input Polyphase Encoded
Audio i Audio
Analysis [® MDCT P Quantizing [® Huffman B1tstre§m —>
i Coding Formatting
Filterbank
r'y
Psychoacoustic
FFT ™ Modeling
Figure 1.5: MP3 encoding process.
MP3 Bitstream
Synchronization and Error Checking
Huffman Code Bits
v v

Scalefactor Decoding

Huffman Decoding

Scalefactors v

Re-quantization

vy Quantized values

Synthesis Polyphase Filterbank

'

PCM

Figure 1.6: MP3 decoding process.

1.4 PARTIAL ENCRYPTION 10

1.4 Partial encryption

Regarding audio protection, partial encryption methods have more desirable features than usual
encryption of the whole file. The main concept of partial encryption is to protect the entire
content by encrypting only the perceptually important parts which have smaller size. Unlike
encrypting the whole file, partial encryption just degrades the audio quality but not completely
destroys the file. Thus, if partial encryption is carefully carried out not to destroy the media
format, the encrypted file can be played back by existing music players without need to decrypt.
This feature is very attractive for realizing the try-before-purchase model, which is one of the
important business models of DRM.

Let us consider a real world audio distribution scenario. A customer walks up to the
music counter in the store and pick up an interesting CD. By using the CD player and headphone
provided by the store, the customer checks the taste of the music. If the customer thinks it is
worth a buy, he/she walks up to the counter and pays for it. As for online music stores, they
should also provide preview music files for commercial purpose. Customers should be able to
listen to those files via online streaming or by downloading to their own devices. The simplest
scenario for providing the preview music is as follows: a short part of the music file is provided
for preview and any customers can freely access it; for a fee, the customers are allowed to
download the whole music file. Regarding this scenario, there are three undesirable facts. Firstly,
it consumes the network bandwidth because of the need for two times of file transfer (for
downloading the preview file and the whole file). Secondly, providing the whole unprotected
music file for downloading after payment is not desirable. During data transfer between owner
and customer, there might be an adversary who would illegally capture the file. Thirdly,
providing a short part of the music file for trial may not be a good idea because it has a tendency
to reduce the sales of mobile ringtones or ring-back tones. According to the reports over the
Internet, sales of ringtones make up only 63 percent of the overall mobile music market in recent
years, whereas in 2007, they made up 80 percent of the market. The main reasons for such a
drop are:

= Due to the development of high-tech smart phones, it is very easy to create customized
ringtones;

= Musical ringtones could be costly. For instance, the 20- to 30-second snippets were often
pricier than buying the whole song. Someone who updated their ringtones frequently
could easily pay $20 a month or more.

Thus, using a short part of the music file for trial may add up fire to that “ringtones sales drop”
problem. In addition, a short part of the music file, e.g. chorus part of the music, may not be
good enough for listeners to taste the music. Even though that short part is good, it does not
reflect the whole song is good.

This thesis proposes partial audio encryption methods which provide more effective
alternative to generate preview music than the above one. The possible application scenario is as
follows: the whole music file whose quality is degraded by partial encryption is freely
distributed for preview. That file can be played back by any existing music players without need

1.5 ADVANCED ENCRYPTION STANDARD (AES) 11

to decrypt. Even though the quality is degraded, customers can listen to the whole music file and
thus they will be able to easily guess what the original music will sound like. After payment,
they can get the decryption key (no need to download the music file again) and no doubt a high-
quality music file can be enjoyed under the access of the correct decryption key and specific
media player. In addition, as the preview file is protected by partial encryption, it is not needed
to worry about illegal access during transmission.

Partial encryption on audio data also has other desirable properties of the followings:

» Lower complexity, which is suitable for real time applications;

» Adjustable security level based on the security requirement of the underlying system;

= Restraining synchronization error [36], which occurs when directly encrypted MP3 files
are Huffman decoded, to specific frames;

This thesis presents a low-complexity partial encryption method for MP3 security. Thus,
the basic concept of partial encryption on MP3 is introduced here. In most cases of partial
encryption on compressed audio data, encryption comes after compression process as stated
below.

An uncompressed audio signal M passes through the compression process and yields the
compressed audio signal Y.

Y = Compressed(M). (1.1)

While generating Y, the perceptually important parts Y, for encryption are identified apart
from the perceptually less important parts Y, to be left as plain.

Y=Y, UY. (1.2)
After encryption,

Y, = E(Y,. key), (13)
where E(.) represents an encryption process in general and Y, is the encrypted signal. After
bitstream formatting, the compressed-encrypted audio signal M’ is obtained.

M'=Y UY. (1.4)
The M’ must be decodable by any MPEG standard decoders without decrypting Y,. The

effectiveness of partial encryption depends on the choice of perceptually important parts for
encryption. Chapter 2 of this thesis discusses how to effectively choose the perceptually
important parts during the MP3 encoding process.

1.5 Advanced Encryption Standard (AES)

The methods proposed in Chapter 2 of this thesis use the Advanced Encryption Standard (AES)
algorithm for audio encryption and thus the AES algorithm is briefly described in this section.

The AES is based on the Rijndael cipher [37] designed by Vincent Rijmen and Joan
Daemen and proposed to the National Institute of Standards and Technology (NIST) during the
AES selection process. It was announced as the Federal Information Processing Standards
(FIPS)-approved cryptographic algorithm by the NIST in 2001 [38].

The AES is based on a design principle known as a substitution-permutation network. It
is a symmetric key block cipher [37-38]. As shown in Table 1.2, the lengths of the input block

1.5 ADVANCED ENCRYPTION STANDARD (AES) 12

and the output block are 128 bits. The length of the cipher key is 128, 192, or 256 bits. The
number of the rounds to be performed during the execution of the algorithm is dependent on the
key length. Internally, the operations in the AES algorithm are performed on a two-dimensional
(4x4) array of bytes called the state. Each individual byte in the state has two indices and can be
indexed as either s, or s[r,c], for 0<r<4 and 0<c<4. For executing the cipher or decipher process,
the input array of bytes [ino, in), ..., in;s] is copied into the state array, then the ciphering and
deciphering operations are conducted on this state array, and the final results are copied to the
output array of bytes [outy, out, ..., out;s] as shown in Fig. 1.7. The copying from the input
array and to the output array is carried out according to the following schemes:

s[r,c]=in[r+4c] for 0<r<4 and 0<c<4. (1.5)

out[r+4c]=s[r,c] for 0<r<4 and 0<c<4. (1.6)

As described in the high level description of the AES algorithm, the cipher and decipher
processes use a round function that is composed of four different byte-oriented transformations:
1) SubBytes, 2) ShiftRows, 3) MixColumns, and 4) AddRoundKey. In the AddRoundKey step,
each byte of the state is combined with a block of the round key using bitwise XOR.

Table 1.2: Algorithm specification of the AES.

Key Length (bits) | Block Size (bits) | Number of Rounds

AES-128 128 128 10

AES-192 192 128 12

AES-256 256 128 14
ing | ing | ing | iny 500 | So1 | So2 | So3 outy | outy | outy | outys
iny | ins | ing | ing > [SL0 | SL1|Si12 | S13 | | out | outs | outy | outis
Ny | Mg | IN10 | IN14 8§20 [S2.1 | S22 8523 outy | outg | outo | outy4
in3 | ing | inyy | ings 530 | 831 | 832 | 833 outs | out; | outy | outys

Figure 1.7: The state array input and output in the AES.

AES Algorithm: High Level Description
1. KeyExpansions - round keys are generated on the basis of the cipher key. AES requires
a separate 128-bit round key block for each round including the initial round;
2. InitialRound
= AddRoundKey — adding a round key to the state;
3. Rounds
= SubBytes — byte substitution using a lookup table;
= ShiftRows — shifting rows of the state array by different offset;

= MixColumns - mixing data within each column of the state array;
= AddRoundKey
4. Final Round (no MixColumns)
= SubBytes
= ShiftRows
= AddRoundKey

http://en.wikipedia.org/wiki/Rijndael_S-box

1.5 ADVANCED ENCRYPTION STANDARD (AES) 13

The SubBytes transformation shown in Fig. 1.8 is a non-linear byte substitution that
independently operates on each byte of the state using a substitution table (S-box). For instance,
if 51,1={53}, then the substitution value (s';,;) would be the one in the S-box determined by the
intersection of the row with index 5 and the column with index 3.

In the ShiftRows transformation, as shown in Fig. 1.9, the bytes in the last three rows of
the state are cyclically shifted over different number of bytes (offsets). The first row, =0, is
unchanged. Specifically, the shifting proceeds as follows:

!

Sre =Sy (crshifi_offery 0T 0<r<4 and0<c<4, (1.7)

where shift offset depends on the row and it is 1 for »=1, 2 for »=2, and 3 for »=3. Thus, each
byte in the second row is shifted one to the left. Similarly, the bytes in the third and fourth rows
are shifted to the left by offsets of two and three, respectively. The importance of this step is to
avoid the columns being linearly independent, in which case, the AES degenerates into four
independent block ciphers.

Like the ShiftRows, the MixColumns transformation provides diffusion in the cipher. As
shown in Fig. 1.10, this transformation operates on the state column-by-column, treating each
column as a four-term polynomial. The transformation rule is a matrix multiplication as follows:

Soc | [02 03 01 017 S0
Sie [_101 0203 01},

sh.|7[01010203]s,,
03 01 01 02

for0<c<4. (1.8)

i S3.¢

To perform the decipher process in the AES algorithm, the above cipher transformations
are inverted and then implemented in reverse order. The transformations used in the deciphering
process are: 1) InvShiftRows - each byte of the second, third, and fourth rows of the state is
cyclically shifted to the right by offsets of 1, 2, and 3, respectively; 2) InvSubBytes - each byte
of the state is independently substituted using an inverse S-box; 3) AddRoundKey; and 4)

InvMixColumns - each column of the state is transformed by multiplying with a matrix.

S-Box
50,0 | S0.1 | S02 | So3] el S0 | 502 | 5%s
1 1]
S1,0 | S1 12 | S13 S0 | ST, 112|513
S",C ! ! S rcr ’
82,0 | S2.k 22 | 523 8§20 | S25 22 (823
830 | 831 | 32 | 833 830] 851832553

Figure 1.8: The SubBytes transformation in the AES.

50,0 | S0,1 | S0,2 | S0,3 50,0 | So,1 | S0.2 | S0,3
81,0 [S1,1 [S1.2 | S1.3 L[S1,1 81,2 | S1,3 | 51,0
S20 | 82,1 | S2p | So3 | [T |53 | 523 | 820 | S21
83,0 | $3,1 | 832 | 8§33 (.) §33 | 53,0 | §3,1 | 832

Figure 1.9: The ShiftRows transformation in the AES.

1.6 AUDIO SCRAMBLING 14

MixColumns()
!
S0,¢ i} S0, [} '
50,0 | S0.1 2 503 500 | 502503
S1e ' S1e] '
S$1,0 | S1.1 21513 51,0 - S12 (8513
S S,
820 | $211°240 | 823 80 |22 | 82 | 853
) [} s’ [})
8§30 | $311%3<)0 | 833 S30 (123 | 832 (833

Figure 1.10: The MixColumns transformation in the AES.

Regarding the security of the AES, the U.S. Government announced that the AES could
be used to protect classified information [39]. In addition, many papers have been published on
the cryptanalysis of the AES and it has survived numerous cryptanalytic efforts [40-42]. It has
approved that the 128-bit key size used in the AES is resistant against the known cryptanalysis
attacks including the brute force attack. Moreover, the computational complexity of the
exhaustive key search for the AES depends on the length of the cipher key:

= For a 128-bit key, the first key recovery attack has computational complexity of 2'**';
= For a 192-bit key, the first key recovery attack has computational complexity of 2'*;

For a 256-bit key, the first key recovery attack has computational complexity of 22°**;

As for the implementation, the AES is fast in both software and hardware [43-48]. It can
be implemented to run at speeds unusually fast for a block cipher on a Pentium (Pro) [37].

In this thesis, although there is no restriction on the choice of encryption algorithms to be
used for the proposed methods, we choose the AES due to its speed, high level security, and
ease of implementation.

1.6 Audio scrambling

Nowadays, audio scrambling methods [16-17, 49-52] are widely used to provide confidentiality
in audio distribution. Transposition-based audio scrambling methods are kinds but not direct
applications of audio encryption. They try to reduce the residual intelligibility of an audio signal
by breaking the coherence between data contents so that the signal is unintelligible to
unintended recipients of the communication. As they neither inject any new values nor change
the values of the existing contents, they do not stop compliance with the audio format or neither
increase file size nor change data format after scrambling. In addition, they do not create the
operational conflict problem discussed in Sect. 1.2.2. They enable us to embed the watermark on
the scrambled signal and to extract it from either the scrambled or descrambled version of the
signal as well. Thus, they can be used more effectively as pre- and post-processing of the data
hiding process rather than the usual encryption methods.

A scrambling algorithm can be evaluated in many aspects, where the most important of
which are as follows:

http://en.wikipedia.org/wiki/Classified_information

1.7 OBJECTIVE OF THIS THESIS 15

= Scrambling effect: even for one-time scrambling, the scrambling degree should be
achieved to a high extent;

= [Efficiency: the scrambling and descrambling processes should not be too complex;

= Security/anti-decryption capability: even if the algorithm is made public, descrambling
should still be difficult or even impossible;

= Perceptual quality: the scrambled signal should achieve very low or even zero residual
intelligibility and the descrambling process must also be able to recover the signal with
nearly original quality;

= Execution time: as long as there is no harm to security, the shorter the time taken for
scrambling/descrambling, the more efficient the algorithm;

In this thesis, with the purpose of applying together with data hiding methods, two low-
complexity audio scrambling methods are proposed. Their performances are also thoroughly
evaluated in terms of the above mentioned aspects.

1.7 Objective of this thesis

As described in the previous sections, the development of audio encryption methods that keep
compliance with the media standard and that can be used together with data hiding is very
important for today’s DRM systems. In addition, those methods should not create inconvenience
for the authorized users to access and enjoy the audio files. This thesis proposes low-complexity
audio encryption methods that satisfy those requirements.

Firstly, Chapter 2 introduces the concept of partial encryption on uncompressed audio
data together with a solution for invalid amplitude problem discussed in Sect. 1.2.1. Then, it
focuses on a low-complexity partial encryption method for MP3. The proposed method is
embedded in the MP3 encoding process in which only the quantized values that are perceptually
important according to the Human Auditory System (HAS) are encrypted. It reduces execution
time by encrypting only the parts of an MP3 file rather than the whole file. The resulting
encrypted file is still compatible with the MPEG standard so it can be rendered by any existing
MP3 players. For full-quality rendering, decryption using the appropriate cryptographic key is
necessary. Moreover, the effect of encryption on audio quality can be flexibly controlled by
adjusting the percentage of encryption. On the basis of this feature, we can realize the try-
before-purchase model discussed in Sect. 1.4: users can render the encrypted MP3 files for trial
and enjoy the contents in original quality by purchasing the decryption keys. From our
experiments, it turns out that encrypting 2-10% of the MP3 data suffices to generate trial music,
and furthermore file size increase after encryption is subtle.

Secondly, Chapter 3 proposes two fast and simple transposition-based audio scrambling
methods: one is based on the pre-order traversal of a complete binary tree and the other on a
pseudorandom number generator (PRNG) called Mersenne Twister (MT). Since the methods
only affect the positions of the audio samples but not the values, they can be used together with
data hiding methods without the operational conflict problem discussed in Sect. 1.2.2.
According to the experimental results, both methods are very effective in terms of time and
space complexity and the scrambling effect. However, their cryptographic securities are limited.

1.7 OBJECTIVE OF THIS THESIS 16

Thirdly, with the aim of strengthening the cryptographic security of the methods
proposed in Chapter 3, Chapter 4 proposed two new schemes that combine each of those
methods and the Discrete Wavelet Transform (DWT). First, an audio signal is wavelet
decomposed and the layers of wavelet coefficients are retrieved. Then the coefficients in each
layer are separately scrambled by considering not only the pre-order but also the in-/post-order
based scrambling methods in the first scheme and by using the MT based scrambling method
with a series of keys in the second scheme. Anyone who does not know the correct wavelet
decomposition parameters and the correct method/key used for each layer will not be able to
successfully descramble the signal. In addition, the new schemes also achieve the progressive
scrambling effect in which the audio outputs with different quality levels can be generated by
scrambling layer-after-layer. During the descrambling process, the audio signals with low-to-
high quality can be progressively recovered by descrambling layer-after-layer. This feature is
very attractive because it enables the audio quality to be controllably degraded on the basis of
the system requirement: slightly distorted ones for the try-before purchase model of the DRM
systems and severely distorted ones for the systems with strong security needs.

The rest of this thesis is organized as follows. Chapter 2 discusses two low-complexity
partial encryption methods for uncompressed (WAV) and compressed (MP3) audios along with
the experimental results. Chapter 3 proposes two transposition-based audio scrambling methods.
The evaluation results of their scrambling effect, execution time, and cryptographic security are
also described. Chapter 4 discusses how to enhance the cryptographic security of the methods
proposed in Chapter 3 with the detailed evaluation results. Finally, Chapter 5 concludes and
summarizes this thesis.

CHAPTER 2 PARTIAL ENCRYPTION METHODS THAT ENHANCE AUDIO SECURITY

Chapter 2

Partial Encryption Methods that
Enhance Audio Security

This chapter introduces the concept of partial encryption on raw audio (WAV) with a solution
for invalid amplitude problem discussed in Sect. 1.2.1 as well. Additionally, Sect. 2.3 presents a
low-complexity partial encryption method for MP3 as well as a detailed suggestion on how to
effectively choose the data for encryption during the MP3 encoding process.

2.1 Introduction

As discussed in Sect. 1.4, partial encryption has more desirable features than usual encryption of
the whole file such as reducing complexity and yielding low-quality audio signals. A lot of
works on partial/selective encryption of compressed audio (MP3) have been proposed in the
literature. All of those works are different based on the fact that how and which data are chosen
for encryption.

During the MP3 encoding process, the input PCM data transformed into several variants:
frequency lines, quantization values, etc. Thorwirth et al. [53] proposed a partial encryption
scheme that encrypts some selected frequency regions of the MP3 main data. The audio quality
was degraded on the basis of the regions encrypted. However, neither the detailed procedure of
encryption nor which frequency regions were selected for encryption was discussed.

Servetti et al. [54] proposed a more detailed selective encryption scheme on frequency
regions that yields the encrypted MP3s with low-pass filter quality. It was realized as follows:
the selected frequency regions are limited by encrypting whose frequency lines and ordering the
MP3 decoders not to decode them by setting their associated Huffman table indices to not-used
values (4 and 14). That system needed to modify some fields in the MP3 header so that the
decoder could successfully skip the encrypted parts. Modifying the header and forcing the
decoders to behave in exceptional manners might cause problems of compatibility: not all
decoders might function as expected.

Torrubia and Mora [55] introduced the term “perceptual cipher” that means encryption
that keeps the encrypted data to be perceptually acceptable (albeit lower quality). In that system,
encryption was done on two variants of the MP3 data: selected scalefactors and Huffman codes.
The selected scalefactors were encrypted by performing the XOR operation with the output of a

17

2.2 PARTIAL ENCRYPTION ON RAW AUDIO 18

PRNG, whereas the Huffman codes were encrypted by replacing the selected codewords with
another codewords of the same size from the same codebook. In this system, the encryption on
Huffman codes poses a limitation on the choice of encryption algorithm, and only the ones that
do not affect file size and data format are suitable.

Steinebach et al. [52] also proposed a partial encryption method on the scalefactor values
in which the scalefactors of an MP3 frame are randomly formed into groups in accordance with
a key and permuted within their corresponding group without changing the values. That method
provided only a weak security because the number of possible permutations was not large
enough.

A selective encryption method on quantization values was proposed in [56] in which
only the quantized values positioning at even indices are encrypted and the ones at odd indices
are left unencrypted. Although the system was simple and easy to implement, the effect of
encryption on the perceptual quality was limited.

This chapter proposes a low-complexity partial encryption method for MP3 that can be
carried out without extensive computation, impact on compression ratio, and significant
modification on MP3 headers. It is also very effective in terms of the perceptual quality because
it chooses the data for encryption in accordance with the concept of the HAS. Moreover, the
method does not impose any limitation on the choice of cipher algorithms although using the
state-of-the-art AES will be a practical advantage.

2.2 Partial encryption on raw audio

As discussed in Sect. 1.3.1, in spite of its large size, the uncompressed/raw audio format (WAV)
is a commonly used file type for storing high-fidelity audio files on a system where disk space is
not a constraint. The uncompressed WAYV files are sometimes used by some radio broadcasters,
especially those that have adopted a tapeless system. For instance, BBC Radio in the UK uses
the 44.1 kHz 16-bit two-channel WAV audio as standard in their VCS system (system for
managing playout including media stores, playout systems and editing systems).

In this section, an effective partial encryption method for uncompressed audio (WAV) is
proposed in which the selected parts of a WAV file are encrypted by using the AES algorithm.
Regarding the AES, there are some facts which we should pay attention to. Because it is a block
cipher, the length of input needs to be multiple of 16 bytes and if they are not, some padding
schemes are needed and this may increase file size after encryption. In our system, we choose
the size of Y, (the data to encrypt) to be satisfied multiple of 16 bytes so that the AES can be
used with no-padding scheme. The Electronic Code Book (ECB) mode among the AES modes
of operations is chosen for the following reasons:

= ECB mode does not have error propagation feature;

= Other block chaining modes need the connected blocks to be decrypted in order and
impose limitations in online streaming applications;

= Other modes increase size after encryption due to the use of initialization vector (IV);

For stronger security, the AES/CTR mode can be used instead of the ECB. Like the ECB,
the CTR mode independently encrypts and decrypts each input block and hence avoids error

http://en.wikipedia.org/wiki/BBC_Radio
http://en.wikipedia.org/w/index.php?title=VCS_AG&action=edit&redlink=1

2.2.1 SOLUTION FOR INVALID AMPLITUDE PROBLEM

propagation. The CTR mode satisfies all of the above mentioned properties of the ECB except
the use of the IV. The 1V is used to randomize the encryption and hence it produces distinct
ciphertexts even if the same plaintext is encrypted multiple times. Even though it strengthens the
security, the IV must be somehow passed to the decryption process for successful decryption.
The most common way is to concatenate the IV at the start of the ciphertext for the price of an
increase in file size. If the CTR mode is to be applied in the proposed method, we can avoid
increasing the file size by appending an additional file header that carries the encrypted IV
information at the beginning of an audio track without violating the media standard. We can use
the same key or different keys for encrypting the IV and the audio content. In this research, the
ECB mode is still chosen because of its simplicity. In addition, although the ECB mode is
vulnerable to dictionary attacks, that mode on audio bitstreams makes such attacks very hard due
to large alphabet size.

Although high-level security can be achieved by applying the AES, unfortunately, the
encrypted results by the AES inevitably face the invalid amplitude problem that was discussed
in Sect. 1.2.1 [22-23]. Thus, a solution for that problem is firstly proposed in the following
section.

2.2.1 Solution for invalid amplitude problem

As discussed in Sect. 1.2.1, the invalid amplitude problem occurs when the encrypted audio
samples are beyond the valid range and thus clipped by the audio coder. In our system, the
MATLAB software that we use for simulation deals with any data as double (64-bit) format
regardless of the original format and thus the valid amplitude range is [-1, +1]. As the AES
algorithm used for ciphering the audio files works on array of bytes, the resulting encrypted
audio samples are in the range of [0, 255] and hence need to be scaled to keep compliance with
the original format. The proposed scaling scheme is as follows:

After encryption,

Y)=Y,/256, (2.1)
where Y, is the block with encrypted samples. Before decryption,

Y, =Y x256. (2.2)
The only and most important thing is to keep high arithmetic precision accuracy when using Eq.

(2.1) and Eq. (2.2) [57]. If we failed to keep high precision accuracy after applying Eq. (2.1) and
let the result round off, undesirable quality distortion might still occur in the decrypted audio file.

2.2.2 Procedure

Figures 2.1(a) and (b) show the block diagrams of partial encryption and decryption on raw
audio data, respectively. The detailed procedure is as follows [57]:
Parameters: user-defined key (u_key), encryption percentage (p), and PCM data (M);

Step 1: To facilitate the AES’s block size restriction, M is first divided into 128-sample blocks
S;

2.2.1 SOLUTION FOR INVALID AMPLITUDE PROBLEM

No v

Read | | Segment- es AES || Ampli.tude || Concate- | | Write
WAV ation Encrypt Scaling nation WAV
(a) u_key, p L u_key _l

Read || Segment- es Amplitude N AES _>Concate- N \V;]’Xt\t;

WAV ation Re-scaling| |Decrypt na‘t‘ion
No

(b)

Figure 2.1: System flow of (a) partial encryption and (b) partial decryption on raw audio.

)
S =US where! =|length(M)/128 |and
i=1"*

(2.3)
S; ={s;; € M |sample j for block i,1 < j <128}.
M=SUM\S). (2.4)
Step 2: On the basis of p, the number of blocks (B,) to be encrypted is determined;
B,=[(p/100)=1], 2.5)

where [=|length(M)/128] .

Step 3: The blocks for encryption{Y,,Y,,, Y, 5 } are randomly chosen from S; for high

security, the pseudorandom number generator is seeded with u_key.

Step 4: Each Y, is encrypted and amplitude scaling defined by Eq. (2.1) is applied on the
encrypted results of Y, to make sure compliance with the original audio format.

Be(E(y, .u_key) j
Y,=U k™ — / . 2.6
k=l(256 2.6)
Hereafter, the E(.) represents the formal AES encryption process. Then the encrypted PCM is,
M' =Y UY,, (2.7)

where Y. are the samples in M left unencrypted. By restraining the size of Y. to 128, the
AES/ECB mode with no-padding scheme can be used without any trouble and thus M’ will also
be the same size as M. After writing the M’ as a WAV file, the quality-degraded audio file that
can be securely distributed is obtained.

When writing the M’ (floating point) as a WAV file by using default 16-bit bit-depth, it
has to be converted to integer (int16 type). Instead of simple rounding which leads to data loss,
the “wavwrite” and “wavread” of MATLAB use Eq. (2.8) and Eq. (2.9) to change data type
between floating point and integer [57]. Those functions achieve nearly perfect reconstruction
with very small precision loss which has no effect on the decryption process. Thus by decrypting
with the authorized use of the u key and p, the file with nearly original quality can be
successfully recovered.

20

2.2.3 EXPERIMENTAL RESULTS 21

To convert from floating point x to integer y (intl6 type),

y =round(xx32768). (2.8)
To convert from integer (int16 type) to floating point,
x=1y/32768. (2.9)

2.2.3 Experimental results

In this thesis, we use the MATLAB software to simulate the proposed method on audio signals
belonging to different categories: pop, jazz, classical, and speech, which are encoded in 16-bit
PCM format with sampling frequency of 48 kHz. The results are thoroughly analysed in terms
of perceptual quality, execution time, and security.

The perceptual quality assessment is done by measuring the objective difference grade
(ODG) between the encrypted WAVs and the reference unencrypted WAVs. Table 2.1 shows
the grading scales of ODG [58]. The ODG, which is an objective measure of the perceived audio
quality, is calculated by the perceptual evaluation of the audio quality (PEAQ) algorithm
specified in the ITU-R BS 1387-1 [58].

Figure 2.2 shows the ODG values after applying the proposed method on the audio
signals with varying p (% of encryption). The p is calculated on the basis of the total number of
blocks (each with size of 128 samples) consisting in the audio file. From Fig. 2.2, we can see
that the qualities of the encrypted audios are getting worse along with the increasing p. For
p=>20%, the resulting ODG values are less than -3.2 for all signals. This shows that the proposed
method badly destroys the signals to such an extent that the resulting audio qualities are very
annoying. For p=2-10%, the ODG values are between -2.2 and -3.6 in general, which mean fine-
to-poor audio quality. Thus, it can be concluded that p=2-10% is suitable for generating the
preview-quality audio files to realize the try-before-purchase model of DRM.

To test and verify execution time of the method, we simulate the system on a PC with 2.4
GHz, Intel ® Core™ i5-2430M Processor. Figures 2.3(a) and (b) show the execution time
results of the proposed method for encryption and decryption respectively. The results are the
time taken not only for encryption and decryption but also for pre and post processing (i.e.
segmentation and restructuring of an audio frame). For both encryption and decryption processes,
we can see from Fig. 2.3 that execution time increases along with the increasing p for all music
items. Note that execution time drops for p=100% because pre and post processing are not
needed. For all music items, the proposed method only takes about one-fifth of the duration of
the original signal even for encrypting half of that signal. For p=2-10%, which we assume that it
is suitable for generating trial music, it takes less than one second for encryption/decryption and
it is much shorter than the duration of the original music. Therefore, it can be concluded that the
proposed method is possibly applied in real time applications.

The security of the proposed method depends on the security of the AES algorithm,
whose security has been widely researched in the literature. The longer the key length is, the
higher the security that the AES can offer. In our system, we use the AES with 128-bit-long key
which is known to give strong resistance against the known cryptanalytic methods including the
brute force analysis. In addition, a pseudorandom sequence used to select the blocks of audio
samples for encryption/decryption is generated based on the user-defined key. Thus, it is

2.3 PARTIAL ENCRYPTION ON MP3 22

computationally impossible to generate the same sequence without knowledge of the key used.

2.3 Partial encryption on MP3

As we discussed in Sect. 1.3.2, the MP3 is the most widely used compressed audio format for
the transfer and playback of music on most digital audio players. However, it is not equipped
with security features to protect the content from unauthorized accesses. This section proposes a
low-complexity partial encryption method for MP3 together with a detailed performance
evaluation on execution time, perceptual quality of the encrypted signals, etc. Additionally, this
section presents a suggestion on how to choose data for encryption in accordance with the
concept of the HAS, which is very important for the effective use of partial encryption.

2.3.1 Choice of data to encrypt

The effectiveness of partial encryption on MP3 depends on how to select Y, (the data to encrypt).
The Y, can be chosen from

Table 2.1: Grading scales of ODG.

ODG | Impairment Description Audio Quality
0 Imperceptible Excellent
-1 Perceptible but not annoying | Good
-2 Slightly annoying Fine
-3 Annoying Poor
-4 Very annoying Bad
-4 T T T
rl ! _ ;/;,,,-# *
- e :
-3.5 o /*,//;2,// """""" S — & —pop i
:?/ﬁb//: : - & —jazz
-3 Q"”a """""""" S — @ — classical |
| ‘/} } } — + — gpeech
-2.5 ﬁ R R 1
o r
o 1 A b
© P
A5 4
[
I
-1 e i
(.
SO5 F 1
G 1 1 I 1 1
02510 20 50 100
Encryption % (p)

Figure 2.2: ODG vs p of the encrypted WAVs.

http://en.wikipedia.org/wiki/Digital_audio_player

2.3 PARTIAL ENCRYPTION ON MP3

4 T ' '
— @ — pop (9 sec)
3.5 — ¢ — jazz (10 sec) B S
— @ — classical (11 sec) ; A
3| — + — speech (9 sec) D PR A
= | | | -7
S ‘ ‘ P ‘
gasp SIPEE
Q o ; - - e =
‘E b L R RV L R
g L : 4 -
2 A . . /7 P //
g S : % * ‘
§1.5";@"@' """ R /"'/"//'/'j """""""" ST
o D : /s s : S
& S P RO 1 -
S)-:///// : - -
1'1'?"(""" oS [= e
R 2 _ -
L, _ - ‘
057 7 e T
o
2
025 10 20 50 80
Encryption % (p)
@
4 . : :
— & —pop (9 sec) : :
3.5r| — ¢ — jazz (10 sec) B RS
. . . b
— © — classical (11 sec) ; S a
3r] — *+ —speech(10sec) |~ DL
~ T : : /// o
825 SRR ERERRRRE R PRGERREE PR |
° D : C _ - e
£ R
= 2 T e T
-% S : o7 e :
5 1.5 i R R R
Q . . . s 7 7 . . _0
@ | T | -
| R R SRR P
L W -
.o ./, 7. - .
“};/) P
05F B " o™
25 e
0‘II I 1 1 1
025 10 20 50 80
Decryption % (p)
®)

Figure 2.3: Execution time of the proposed method: (a) encryption (b) decryption.

2.3.2 PROCEDURE 24

= Header-like information (e.g. side information, CRC, and Huffman tables) or
= Variant of the input PCM and its supplements (e.g. MDCT frequency lines, quantized
values, Huffman codes, and scalefactors);

The former are the information needed by the decoder to decode an MP3 file. Encryption
on them makes the decoder to decrypt them first before decoding and thus it is not suitable for
real time applications and music trial services. The latter are appropriate to be used in all kinds
of applications and among them, the proposed method chooses the quantized values as Y,
candidates for the following reasons [57]:

= Scalefactors and Huffman codes are not directly related to perceptibility. We cannot
decide which part of them is perceptually more important to choose as Y,;

* Huffman codes have error avalanche effect [36], and encryption on them leads to
synchronization problem;

= Huffman codes are sensitive to encryption algorithms. Only the algorithms which yield
the encrypted results with invariable format and length are suitable, e.g. the one that
replaces the codewords with other codewords of the same length;

= Although the MDCT frequency lines can be chosen on the basis of perceptibility,
encryption on them has a significant impact on compression efficiency of MP3 encoders;

2.3.2 Procedure

As shown in Fig. 2.4, the proposed method can be applied for both online and offline
applications. Online applications, e.g. live broadcast, are time critical and thus the encrypted
MP3 files should be generated by simultaneously compressing and encrypting raw PCM. In the
case of offline applications, encryption is done on already encoded MP3 files and thus partial
decoding is needed for obtaining data to encrypt. To understand the details behind the proposed
method, we need to have a closer look at the MP3 encoding process.

As discussed in Sect. 1.3.2, each MP3 frame carries 1,152 samples and lasts for 26 ms
[33]. After passing through the analysis filterbank and the MDCT process, the end result is
subdivided into two granules (each with 576 spectral lines sorted in order of low to high
frequencies). The non-uniform quantizer used in the MP3 encoding process makes use of the
nature of the HAS to effectively quantize those frequency lines. According to the HAS, most
human cannot sense frequencies below 20 Hz nor above 20 kHz. More precisely, frequencies
ranging from 2 kHz to 4 kHz are the easiest to perceive, they are detectable at a relatively low
volume [33].

To achieve the highest quality with the lowest possible bitrate, the non-uniform quantizer
uses a large quantization step size for high frequency lines (leads to small quantized values) and
a small step size for low frequency lines. The quantized values are then divided into five regions
as shown in Fig. 2.5 and encoded by using different Huffman tables to enhance the performance
of Huffman encoder.

Among the five regions, most of the spectral energy of an audio signal accumulates in
big values regions, the size of which is indicated by big values field in the side information part
of an MP3 frame hence the maximum value is 288. Most common region boundaries, for a 44.1

2.3.2 PROCEDURE

25

kHz sampled signal, are 0-2 kHz for region0, 2-5 kHz for regionl, and 5-14 kHz for region2.
These frequencies are very sensitive to human ear and thus the big values regions are the most
suitable for partial encryption.

In the proposed method, Y, is chosen from the big values regions, and the detailed

procedure is as

follows:

Parameters: user-defined key (u_key), encryption percentage (p), and big values (M);

Step 1: First the number of frames carried by an MP3 bitstream is calculated. As each MP3
frame is 26 ms long, for a t-second long signal, it generally consists of

Psycho-
acoustic ‘
Modeling —l Partially
Encrypted
PCM Time- Quantiza- "| Huffman Bitstream | \IP3
—»| Frequency > N g ™
Mapping tion Encoding Formatting
Frame to AES |
Encrypt? Encrypt
. . Yes
MP3 B1tIs)tzeam Huffman Quantized | Switch 1
—» ve- Decoding values A B
multiplexing ;
Online | on off
Offline | off on
(a) u_key, p u_key
Partially
Encrypted Recovered
MP3 Bitstream Huffiman Frame to AES > Re- Synthesis | Signal
—> De- N ! Decrypt At Filterbank
s Decoding Decrypt? Quantization
multiplexing Partially
encrypted No

quantized values

(b)

Figure 2.4: Proposed method (online/offline): (a) encryption (b) decryption.

big values regions

<——— (-8191...4819]) —>

countl region

rzero_region
N

< (1..+])

(©)

region0 | regionl | region2

countl

1Z€ro

big values*2

big_values*2+count1*4

576

Figure 2.5: Partitioning of quantized values.

2.3.3 EXPERIMENTAL RESULTS 26

F =38t frames. (2.10)

Step 2: On the basis of p and F, the number of frames for encryption (F,) is determined.
F,=|(p/100)*F |. 2.11)

Step 3: The F, frames for encryption are pseudo-randomly selected. Note that each frame is
made up of 2 granules (sub-frames) and the following procedure is applied on both granules of
the selected frames though we just refer to as frame for simplicity. For each selected frame j, to
make the length of the part to encrypt facilitate with the AES block size, the Y, ; is chosen from
M ;as follows:

Y, =10, ; € M, |i-th quantized value from

big values of frame j,1<i <[*128},
where =|length(M ;)/128 .

(2.12)

Step 4: After encrypting the Y., and putting back in their original positions, the encrypted M is

obtained.
Ye”j:E(Ye,j,u_key). (2.13)

M =Y j Y j whereYe j =M j\Y,,;. (2.14)

The above procedure is done on all granules of the selected frames. Finally, after
Huffman-encoding and bitstream formatting, the quality-degraded MP3 file is obtained. For the
offline case where the input is an already encoded MP3 file, partial decoding is needed to obtain
M. For decoding a frame and extracting M from it, the decoder has to read the fields in the
header and the side information part, the most important of which are the followings:

= Sync: points the start of a frame;

* main_data_begin: indicates where the main data of a certain frame begins;

= part2_3 length: states the number of bits allocated in the main data part of the frame for
scalefactors (part2) and Huffman encoded data (part3);

= big values: indicates size of the big values partition;

= table_select: specifies the Huffman tables that must be used for decoding the big values
partition;

Note here that the quantized values also have their own value range as shown in Fig. 2.5.
If the encrypted results do not follow those specified ranges, it will destroy compliance with the
MP3 standard and needs to be solved as the invalid amplitude problem discussed in Sect. 1.2.1
and Sect. 2.2.1. In the proposed method, we avoid this problem by encrypting only the
big values regions. Because those regions carry the quantized values in [-8191, +8191] range,
the encrypted results which are in [0, 255] range are valid.

2.3.3 Experimental results

Using the same music items used in Sect. 2.2.3, performance of the proposed method is
evaluated in terms of perceptual quality, execution time, security, and the effect on compression
ratio. The LAME encoder [59], which is open-source software, with default bit rate setting (128

2.3.3 EXPERIMENTAL RESULTS 27

Kbits per second) is used for encoding MP3 files. The perceptual quality assessment is done by
measuring both ODG [58] and subjective difference grade (SDG) [60] between the original
WAVs and the encrypted MP3s. The grading scales of SDG are shown in Table 2.2.

Figure 2.6 shows the ODG values of applying the proposed method on MP3 audios with
varying p (% of encryption). The p is calculated on the basis of the total number of frames (each
with size of 1,152 samples) that make up of an MP3 file. As shown in Fig. 2.6, the ODG values
are getting smaller along with the increasing p. This means that the qualities of the encrypted
MP3s are getting worse when the encryption percentage is getting larger. Note that the ODGs
are around -0.3 even for p=0% because of the lossy MP3 compression. For all music items, the
ODG values are less than -3.6 for p>20% and show that the qualities of the encrypted MP3s are
very annoying. For p=2-10%, the resulting ODG values are generally between -2.7 and -3.6 for
all signals. These ODG values refer to fine-to-poor audio quality and hence it can be concluded
that encrypting 2% to 10% of an MP3 file is suitable for generating a preview-quality file to be
used in the try-before-purchase model of DRM.

Table 2.2: Grading scales of SDG.

SDG | Impairment Description Audio Quality
5 Imperceptible Excellent
4 Perceptible but not annoying | Good
3 Slightly annoying Fine
2 Annoying Poor
1 Very annoying Bad
—4 T T T — 1’_1‘__’—-,_*
| %4 /33——:;’—1 ‘
A : — & —pop
R A T .]
35 ,?;/, — ¢ —jazz
978 : : — @ — classical
-3 ﬁ P o . — + —gpeech | |
T ‘
-2.5-[S
[
) o
B F2H .
© I
2SHh :
o
I
-1 [
OSF]
A |
02510 20 50 100
Encryption % (p)

Figure 2.6: ODG vs p of the encrypted MP3s.

2.3.3 EXPERIMENTAL RESULTS 28

To make the above assumption concrete, we also conducted subjective tests in which ten
untrained subjects were given seven different audio files for each test without mentioning
anything about encryption. One is the original WAYV file and the others are the encrypted MP3
files. Firstly, they were asked to compare the qualities of the WAV and the other files. Then,
using the WAV file as a reference, they were asked to grade the quality impairment of the MP3
files in accordance with the subjective grading scales shown in Table 2.2. The final grading
results (G) calculated by using Eq. (2.15) are shown in Table 2.3. All of the listeners could
correctly identify 100% encrypted files because they sound like a white noise signal. Most of
them could perceive the gradual decrease in audio quality along with the increasing p starting
from 5% to 100%. Some could even correctly differentiate between 2% and 5% encrypted files
even though the quality impairment difference is very small. All of them confirmed that the
quality impairment caused by p>10% is too annoying to use as a trial music.

G=_1 %ESDG (2.15)
N, k=1 K '

where N is the number of evaluators and SDG; is the subjective measure graded by k" evaluator.

Figure 2.7(a) shows the execution time results of the method for both online and offline
cases. For online processing, the results are the total time taken for both encryption and MP3
encoding processes, whereas the offline case results are the time taken for all partial decoding,
encryption, and re-encoding processes. Generally, the more the file is encrypted, the longer it
takes for processing. However, even for p=100%, it only takes less than 2 seconds for 9-11
seconds long signals, and the time taken for p<10% is found to be very short.

For authorized users, an MP3 file with nearly original quality can be successfully
recovered by decrypting with the use of the correct decryption key and p. Figure 2.7(b) shows
the time taken for both decoding and decryption processes. For all signals, it takes less than 2.5
seconds for p=100% and less than one second for p<10%. Thus, it can be concluded that the
proposed method is effective so that it can be applied in real time applications.

As for the security of the method, it depends on the security of the AES algorithm as
discussed in Sect. 2.2.3. Although the AES/ECB mode is vulnerable to dictionary attacks, the
ECB mode on MP3 bitstreams makes such attacks very hard due to large alphabet size. For
instance, 128 bits per block result in 2'** possible input combinations, making the ECB block
ciphers too large to be handled using today’s dictionary attacks. In addition, since the
pseudorandom sequence used to select the MP3 frames for encryption/decryption is generated
based on the user-defined key, it is computationally impossible to generate the same sequence
without knowledge of the key used. In addition, the fact that encrypted bits are diffused after
decompression also enhances the security. If far stronger security is desired, the AES/CTR mode
instead of the ECB can be applied as discussed in Sect. 2.2.

Table 2.3: Subjective measures of audio quality for the encrypted MP3s.

. Grading on Varying p
Music 2% 5% 10% 20% 50% 100%
Pop 3.40 3.30 2.30 1.60 1.00 1.00
Jazz 3.30 3.20 2.20 1.40 1.00 1.00

Classical | 3.50 3.30 2.50 1.60 1.00 1.00
Speech 3.40 3.30 2.30 1.60 1.00 1.00

2.3.3 EXPERIMENTAL RESULTS 29

e :
3 — & — pop(online)
35F | = % — jazz(online) T
o ‘ | = © — classical(online)
3"3'3"'3 """ | — % — speech(online) |]
g o j ‘| —=— pop(offline)
;25'}'}"'} """ o —— jazz(offline) N
.E C ‘ —=&— classical(offline)
e 20 ——— speech(offline) | _{
§ 8
g =
=
3
&

0
025 10 20 50 100
Encryption % (p)
(@
4 l T T T T
R | = ® ~popOseo)
Ip | = @ —jazz (10 sec) R
3 777777777777777777777777777 | = @ — classical (11 sec) | |
e : | — + — speech (9 sec)
b s : ;
2250 L L]
o S : : q
£ N ///3
= ol PR
g =227
=t o ‘ ‘ - Z
(5] T e e e e e e e T e T
2 Lp : o7 -7 -
M S : -~ 8=
dfidb e T T BT
S o T ==
P |
0.5 '@'%"— :9 """"""""""""""""""""""""""
Ofl I 1 1
02510 20 50 100
Decryption % (p)
(b)

Figure 2.7: Execution time of the proposed method: (a) encryption (b) decryption.

Furthermore, we tried to correlate the encrypted-decoded MP3 with the unencrypted-
decoded MP3. A correlation coefficient below 0.35 gives a security level comparable to that
obtained by complete encryption of a frame [61-62]. In our system, for p=2-10% which we
assume that it is effective enough to generate trial music, the resulting correlation coefficients
vary from 0.45 to 0.62 for p=2%, 0.3 to 0.37 for p=5%, and 0.21 to 0.25 for p=10%. Thus in the

2.3.4 IMPLEMENTATION NECESSITY 30

proposed method, the security level can be adjusted by varying p on the basis of the
confidentiality level of the prospective customer to whom the trial music has to be distributed.
We also analyze the effect of the proposed method on compression ratio. Table 2.4
shows the size of the raw file (WAV) and the sizes of the compressed files (MP3s) with and
without encryption as well. The AES algorithm has a tendency to increase the file size after
encryption because the encrypted results are larger in value than the original ones. The original
quantized values in the big values partitions are [-8191, +8191] range but most are up to 15.
The encrypted results are in the range of [0, 255] and thus most values change to larger ones
after encryption and need more bits to code them. As shown in Table 2.4, there may be an
increase in the file size up to 2KB for p=100%. However, it turns out that encrypting up to 10%
of an MP3 file, which we suggest for generating trial music, has no effect on compression ratio.

2.3.4 Implementation necessity

In this section, we discuss the implementation requirement for the proposed partial encryption
method for MP3. The proposed method needs to be incorporated into existing encoders or it is
needed to develop new encoders that will embed it as a module. In our simulation, we use the
LAME encoder to encode the MP3 files and apply our proposed encryption method as an
external module.

As for the try-before-purchase model of DRM, the resulting encrypted MP3 files can be
rendered by any standard MP3 players without need to decrypt as the usual unencrypted ones.
For enjoying the full-quality, however, it is needed to decrypt the file with the authorized use of
the encryption % (p) and the key. In order to provide those decryption parameters, we can
append an additional file header that carries them at the beginning of an audio track without
violating the MP3 standard [53-54]. That header needs to be protected from unauthorized
accesses by using some public-key cryptographic algorithms. More strictly, although appending
an additional header does not comply with the MPEG standard, any player implemented
according to the standard will ignore that header while successfully playing the encrypted file.
Without doubt, the file in the original quality can be recovered under the use of the correct
decryption parameters and specific MP3 decoders.

Table 2.4: Effect of encryption on file size.

File Size | File Size File Size (MP3 after Encryption)
Music (WAV) (MP3 before | p=2-10% | p=100%
Encryption)
Pop 918 KB 78 KB 78 KB 80 KB
Jazz 1.85MB | 159 KB 159 KB 160 KB
Classical | 2.01 MB | 173 KB 173 KB 175 KB
Speech 1.7 MB 146 KB 146 KB 148 KB

2.4 CONCLUSION 31

2.4 Conclusion

This chapter discussed effective partial encryption methods for both uncompressed (WAV) and
compressed (MP3) audio formats. The solution for the invalid amplitude problem was also
presented. For partial encryption on MP3, this chapter presented how to choose the perceptually
important parts for encryption in accordance with the HAS. Experimental results showed that
the quality of the encrypted MP3s can be controllably degraded by adjusting the encryption
percentage in which encrypting 2-10% of an MP3 file suffices to generate a preview-quality file.
Those files can be played back by existing standard MP3 players without decryption. In addition,
the proposed method can be carried out without extensive computation and significant impact on
compression efficiency.

CHAPTER 3 TRANSPOSITION-BASED AUDIO SCRAMBLING METHODS IN TIME DOMAIN 32

Chapter 3

Transposition-Based Audio Scrambling
Methods in Time Domain

With the aim of possibly applying together with data hiding methods, this chapter discusses two
transposition-based audio scrambling methods developed in the time domain: one is based on
the pre-order traversal of a complete binary tree and the other on a PRNG called Mersenne
Twister. The evaluation results of their scrambling effect, time and space complexity, and
cryptographic security are also discussed.

3.1 Introduction

As discussed in Sect. 1.2.2, usual encryption methods [61, 63-64] are not appropriate for using
together with the data hiding process because they cause the operational conflict problem. That
problem can be avoided on the condition that those encryption methods provide the
homomorphic property. Exactly speaking, homomorphic encryption is a form of encryption that
allows computations to be carried out on the ciphertext and generates an encrypted result which,
when decrypted, matches the result of those computations performed on the plaintext.
Subramanyam and Emmanuel [61] proposed a combined scheme of homomorphic encryption
and data hiding. In that system, the watermark information was embedded on the ciphertext and
it could be detected in either the encrypted or decrypted domain. However, a cryptosystem
which is unintentionally malleable can be subjected to attacks on this basis.

Datta and Gupta [63] proposed another combined scheme in which the conflict between
encryption and data hiding operations is avoided by firstly segmenting the audio signal and then
performing the methods on disjointed segments. In that system, the marked segments could not
be encrypted and the encrypted segments could not carry the watermark information. Thus, the
data embedding rate (the amount of watermarking bits that can be hidden in the signal) was
reduced.

On the other hand, transposition-based audio scrambling methods are highly preferable
for such a combined scheme. As discussed in Sect. 1.6, they do not affect the values of the audio
contents. Thus, they provide operational transparency when using together with the data hiding
process in which the watermark information embedded on the scrambled audio signal can be
extracted from either the scrambled or descrambled signal.

https://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Ciphertext

3.2 AUDIO SCRAMBLING METHOD BASED ON THE PRE-ORDER TRAVERSAL OF A COMPLETE 33
BINARY TREE

A lot of transposition-based scrambling methods have been proposed in the literature and
they can be classified as time domain (spatial domain) and transform domain methods.

Jayant et al. [16] presented comparison results of four speech scramblers which are based
on sample permutation (S), block permutation (B), frequency inversion (F), and a combination
of B and F, respectively. Their performances are thoroughly compared in terms of residual
intelligibility, bandwidth expansion, and encoding delay. Among those scramblers, S achieves
lower residual intelligibility than B and F due to the availability of the more possible
permutations, however it increases encoding delay. In addition, the time domain scramblers like
S and B are simpler to perform than F because the scrambling process can be directly done on
the time domain samples. However, in terms of the bandwidth, F is more efficient because it
ensures the bandwidth keep unchanged based on the frequency bands scrambled.

Chen and Hu [17] proposed two audio scrambling methods in the time domain in which
the audio samples are reordered in accordance with the indices generated on the basis of a key
and on the basis of the in-order traversal scrambling transformation, respectively. Then, the
methods were combined by introducing a new parameter. In comparison with the individual
methods, it was stated that the combined scheme strengthens the security even though there was
no specific analysis on how much it was strengthened. In addition, according to the reproduction
results, it is found out that the methods are relatively slow to execute. They take about half of
the duration of the music file to scramble/descramble.

In the transform domain approaches, scrambling methods based on Fibonacci
Transformation [49], digital chaotic ciphers [50], and Euler Transformation [51] have also been
subjects of study.

In this chapter, we propose two transposition-based audio scrambling methods developed
in the time domain together with the detailed evaluation results. The first method is based on the
pre-order traversal of a complete binary tree. That method is effective in terms of time and space
complexity and scrambling effect; however, its cryptographic security is not strong enough
because there is no secret key control in that method [65]. According to Kerckhoffs’s principle,
the security of a cryptosystem should depend solely on the secrecy of the key and the private
randomizer, not on the algorithm. Thus, the second method which is cryptographically more
secure is proposed. That method is based on a PRNG called Mersenne Twister in which the state
of the PRNG is controlled via a secret key [66].

3.2 Audio scrambling method based on the pre-
order traversal of a complete binary tree

This section presents the proposed method that is based on the pre-order traversal of a complete
binary tree. It is faster to execute than the in-order traversal based method proposed in [17].

First, let us introduce the traversal methods of a complete binary tree. A complete binary
tree can be traversed in either breadth-first or depth-first traversal. Most simply, the breadth-first
traverses a tree by visiting the node closest to the root it has not already visited (first child, then
second child before grandchildren) whereas the depth-first traverses a tree by recursively visiting
each node in the left and right subtrees of the root (first child, then grandchildren before second

3.2 AUDIO SCRAMBLING METHOD BASED ON THE PRE-ORDER TRAVERSAL OF A COMPLETE 34
BINARY TREE

child). The depth-first traversal can further be classified as pre-order, in-order, and post-order
traversals in accordance with the position of the root with regard to the right and left nodes.

= Pre-order visits the root, traverses the left subtree, and then traverses the right subtree.

= In-order traverses the left subtree, visits the root, and then traverses the right subtree.

= Post-order traverses the left subtree, traverses the right subtree, and finally visits the root.

If we consider the result of the breadth-first traversal as an original data array/sequence,
the results of the depth-first traversals will be like scrambling that sequence. As an example,
assume that S =[s,,s,,s,,s,,5, | is an array of audio samples. That array can be represented as a

complete binary tree by assuming the first sample as root node and filling the samples starting
from the left in both branches, as shown in Fig. 3.1. As the breadth-first traverses a tree level-by-
level, its traversal result is exactly the same as the given array, as shown in Fig. 3.2. As for the
depth-first traversals, the pre-order traverses each and every subtree in root-left-right order
which yields the result shown in Fig. 3.3. Similarly, the in-order (left-root-right) and the post-
order (left-right-root) traversal results are shown in Fig. 3.4 and Fig. 3.5 respectively. All of the
depth-first traversal results are different from S. Note that a tree is always traversed starting from
the root node; however, the arrows in Fig. 3.2 to Fig. 3.5 just show the order of the result nodes.

On the basis of the above feature, an audio scrambling method based on the pre-order
traversal is proposed in this thesis. For the sake of simplicity, the method is hereinafter referred
to as pre.

Figure 3.1: A tree representation of an array of audio samples (S).

Figure 3.2: The breadth-first traversal result: S'= [so,sl,sz,s3,s4].

3.2.1 ALGORITHMIC DETAIL 35

Figure 3.5: The post-order traversal result: S'= [53 ,84,81,82,80]

3.2.1 Algorithmic detail

Algorithm 1 describes the algorithmic detail of pre. As in the above example, assume that each
sample in an audio signal represents a node in a complete binary tree and that they are organized
in breadth-first order. The complete binary tree in breadth-first order can be stored in an array
instead of a linked list and thus the entire tree can be traversed by simply indexing like this: for a
node at index i, its parent is at _(i -1)/ 2J (assuming the root has index 0) and its children are at
2*j+1 (left child) and 2*i+2 (right child). Avoiding the use of a pointer makes the algorithm
highly efficient. In addition, a stack is used for storing some intermediate nodes for a later visit
during traversal and it also increases the efficiency by avoiding recursion.

3.2.1 ALGORITHMIC DETAIL

is also the root of a subtree, that subtree is traversed again in the same manner mentioned above.
This process continues until no more elements are in the stack. Figure 3.6 shows the step-by-step

According to Algorithm 1, the sample at index O (the root) of the original audio is also
the first sample/output in the scrambled audio. Then, if there is a sample at index 1 (left child), it
is the next output, and the right child (if there is a sample at index 2) is stored in the stack for a
later visit. If the left child is not the last node (if there are the samples left unvisited), it is
assumed as the root of a subtree and the above steps of outputting the root, finding the left and
right children, and outputting the left child are repeated. When there are no more left children to
traverse down the tree, an element from the stack is retrieved as the next output. If that element

tracing of the pre on an example array according to Algorithm 1.

Algorithm 1 Pre-order Based Audio Scrambling Method

[1] Given an audio signal s with n samples [so, s,

..., Sn-1], @ scrambled audio signal s

—

[so', s1', ..., sn.1'] 1s generated; Assume that each sample in s represents a node in a
complete binary tree; Initialize pos=0 as index of root;

[2] fori=0,1, ...,n-1do
[3] Construct the scrambled signal s’ with samples from s indexed by pos:
Si,:Spos
[4] Calculate index of the left child:
Ichild=2*pos+1
[5] Calculate index of the right child:
rchild=2*pos+2
[6] if rchild<n then
[7] Save the right child’s index in stack:
push(rchild)
(8] Assign pos=Ichild
[9] else if Ichild<n then
[10] Assign pos=Ichild
[11] else if stack is not empty then
[12] Output an element from the stack:
pos=pop()
[13] end if
[14] end for
Index| 0 1 2 3 4 5 6 7 n=8
outputroot; [|A|B|C [D|E[F|G [H] s Stack
[|
Al [T[T []
pos=0;
output Ichild(1);
saverchild@)in |[ATB] | | | | | | s |[C]
stack;

pos=1;

3.2.1 ALGORITHMIC DETAIL 37

output Ichild(3);
saverchildd)in [[A[B]D] | | | | | s |[CIE] | |
stack;

pos=3;
output Ichild(7); | FATBTD[H] | | | | s |[CTE] [|

pos=T,;

no more Ichild and
rchild; output an
element from
stack;

pos=4;

no more Ichild and
rchild; output an
element from
stack;

pos=2;

output Ichild(5);
saverchild6)in || A[H|D|H|E|C|F| | s [[G] | | |
stack;

(AlH[D[H[E] | |

clel [|

o]

(A[H|[D[H[E[C] |

N

=]

pos=3;

no more Ichild and
rchild; output an
element from
stack;

pos=06;

[A|H[D[H[E|C[F[G]

R

Figure 3.6: The step-by-step tracing of the pre on an example array.

3.2.2 Experimental results

In this section, the proposed method is thoroughly analysed in terms of its scrambling effect,
time and space complexity, and security. We use the MATLAB software to simulate the method
on a machine with an Intel(R) Core™ i5-2430M CPU @ 2.40GHz processor. The music items
described in Table 3.1, which are sampled at 48-kHz and coded in 16-bit WAV format, are used
in the experiments.

To verify the scrambling effect, the pre is applied on the “Pop” audio file and then the
waveforms before and after scrambling are compared. Figures 3.7(a) and (b) show the
waveforms of the original and scrambled audio signals respectively. From (b), it is difficult to
guess the structure of the original audio and this shows that the pre has good scrambling effect.
When listened to the scrambled audio, it has very low residual intelligibility.

The scrambling effect is also inspected in the frequency domain by applying the FFT
algorithm on an analysis frame of 1,024 samples. From Fig. 3.7(c) and (d), which show the
frequency spectra of the original and scrambled signals, we can see that the frequency spectrum
becomes flat in the average sense after scrambling. This flatness ensures a decrease in residual
intelligibility.

3.2.2 EXPERIMENTAL RESULTS 38

Let us consider the efficiency of the pre. For a single with n samples, it can be seen from
Algorithm 1 that the pre needs the stack space plus 2» memory spaces for storing the original
and scrambled samples. Thus, its space complexity is O(n). Time complexity also depends on
the length of the signal and it is O(n) as each sample is processed sequentially and independently.
More specifically, Table 3.2 shows the execution time results of the pre. For all signals, it takes
less than one-third of the duration of the original signal and thus the pre is possibly applied in

real time applications.

Table 3.1: Music items used in experiment.

Music Track Name Duration | Length
Category (sec) (samples)
Pop Bee Gees- Words 9 432651
Jazz Dave Brubeck- Take Five 10 481244
Classical Beethoven- Symphony No.5 in C Minor | 18 867594
40

2

Q

9

£

@

0 100k 200k 300k 400k 0 6k 12k 18k 24k
@ ©

‘ ‘ : ‘ 10 ; ; ‘
0 100k 200k 300k 400k 0 6k 12k 18k 24k
Samples # Frequency (Hz)

(b) (d)

Figure 3.7: Waveforms of (a) the original signal and (b) the scrambled signal by pre; (c)-(d) their respective
frequency spectra.

Table 3.2: Execution time results for the pre.

Category | Duration Execution Time (sec)
(sec) Scrambling Descrambling

Pop 9 1.99 2.70

Jazz 10 2.22 3.08

Classical 18 4.31 5.96

3.2.2 EXPERIMENTAL RESULTS 39

As for its cryptographic security, we need to firstly discuss the descrambling process. In
transposition-based algorithms, descrambling can be done by tracing the scrambling procedure
backward. For instance, if s= {d, ¢, a, b} is a sequence scrambled according to the scrambling
indices {4, 3, 1, 2}, then it means that the first sample in s comes from the 4™ position of the
original sequence, the second one from the 3™ position, the third one from the 1% position, and
the last one from the 2" position, respectively. Then, by putting the samples back in their
original positions, descrambling is successful. Thus, cryptographic security of the transposition-
based scrambling methods like the pre depends on the concealment of the algorithm. If the
algorithm is made public, there is no more security.

However, if the algorithms are in secrecy, an adversary needs to try a brute force attack
to generate all possible permutations. As for the pre, the number of possible permutations is 7!
where 7 is the length of the signal (the number of samples). For instance, the 9-second long “Pop”
audio signal in Table 3.1 consists of 432,651 samples. The number of possible permutations for
that signal is 432,651!, which is obviously impractical to try a brute force attack. Thus, the
cryptographic security of the pre is strong enough if the algorithm is in secrecy.

With the aim of enhancing the cryptographic security of the pre in case the algorithm is
made public, we briefly present a solution by introducing a new parameter k where a signal is
divided into two parts at index k and the pre is then applied separately. For instance, for a signal
s with n samples, the two parts {s;, ..., sx} and {s¢+,, ..., s,} for 1<k<n, are separately scrambled.
The idea is to enhance the security with the control of an unknown parameter. If an adversary
wants to descramble the signal, he/she must try a brute force attack to guess k by running the pre
2n-1 times with different £ as the worst case. Thus, the longer the signal is, the possible £ is
more varied and the security is getting higher. To verify if the above solution has undesirable
side effects although the security is strengthened, we also conducted some experiments on the
music items in Table 3.1 for k=n, 3n/4, n/2, n/4 where n is the length of the music item. Table
3.3 shows the scrambling effect for different &, which is measured in terms of the signal-to-noise
ratio (SNR) and normalized cross-correlation (NCR) between the original and scrambled signals.
For all signals, we can see from Table 3.3 that scrambling for different £ achieves the same
scrambling effect (almost the same SNRs and NCRs) like scrambling the whole signal. By
comparing the results of Table 3.2 and Table 3.4, we can also see that there is no significant
difference in execution time for different k£ although the tree is built in two parts.

Table 3.3: SNR and NCR of the scrambled signals for different k.

Category Value of k SNR (dB) NCR
Pop n/4 -2.99 0.03
n/2 -3.03 0.03
3n/4 -3.00 0.03
n -2.98 0.03
Jazz n/4 -3.00 0.02
n/2 -3.03 0.01
3n/4 -3.01 0.01
n -2.99 0.01
Classical n/4 -2.98 0.07
n/2 -3.01 0.07
3n/4 -3.07 0.07
n -3.01 0.07

3.3 AUDIO SCRAMBLING METHOD BASED ON A PSEUDORANDOM NUMBER GENERATOR 40

Table 3.4: Execution time results for different 4.

Category Value of k Execution Time (sec)
Scrambling Descrambling

Pop n/4 2.62 2.81

n/2 2.54 2.80

3n/4 2.27 2.82
Jazz n/4 2.94 3.20

n/2 2.44 3.21

3n/4 2.49 3.22
Classical n/4 5.42 5.74

n/2 5.30 5.98

3n/4 5.16 6.00

3.3 Audio scrambling method based on a pseudo-
random number generator

As discussed in the previous section, cryptographic security of the pre depends on the secrecy of
the algorithm. However, according to Kerckhoffs’s principle, a cryptosystem should be secure
even if everything about the system, except the key, is public knowledge. In other words, the
security of a cryptosystem should depend solely on the secrecy of the key and the private
randomizer. Thus, this section presents an audio scrambling method which is cryptographically
more secure than the pre.

The proposed method is based on a pseudorandom number generator called Mersenne
Twister (MT). Even though any kinds of PRNG can be applied in this proposal, the MT was
chosen because it is by far the most widely used PRNG. The MT was developed in 1997 by
Makoto Matsumoto and Takuji Nishimura [67]. It was designed to rectify most of the flaws
found in older PRNGs and was the first PRNG to provide fast generation of high-quality
pseudorandom integers. It is also the default PRNG for most software systems, e.g. Python [68],
Ruby [69], PHP [70], and MATLAB [71]. The most commonly used version, MT19937, uses a
32-bit word length and has the following properties:

= A super astronomical period of 2'°%"-1;

= 623 dimensional equidistribution up to 32-bit accuracy while consuming a working area
of only 624 words;

= Coded in C language and faster than the other PRNGs;

= Passes numerous tests for statistical randomness including the Diehard tests [72-74] and
most, but not all, of the stringent TestUO1 Crush [75-78] randomness tests;

3.3.1 Algorithmic detail

The proposed method uses the MT to generate the indices for the scrambled list, on the basis of
which the samples in the original audio signal are reordered. To ensure strong security, the MT
is seeded with a random seed which is generated by hashing a user-defined key with a

https://en.wikipedia.org/wiki/Cryptographic_key
https://en.wikipedia.org/wiki/Cryptosystem

3.3 AUDIO SCRAMBLING METHOD BASED ON A PSEUDORANDOM NUMBER GENERATOR 41

cryptographic hash function (e.g. the message digest 5 (MDS5) or the secure hash algorithm
(SHA)). Hereafter, the method is simply referred to as the AS-MT.
The algorithmic detail of the 4S-MT is as follows [66].

Input: An audio signal with n samples [s,, s, ..., s,_;] and a user-defined key (key);

Step 1: The key is hashed by a cryptographic hash function. The resulting hash value is used
as a seed for seeding the MT; the use of a cryptographic hash function ensures the
randomness of the seed;

Step 2: Call the MT by passing the generated seed and n, and generate random integers
(indices, z);
Step 3: On the basis of the z;, the samples in the given audio signal are reordered;
S =5, fork=0,1, ..., n-l. (3.1)

z

Output: The scrambled audio signal with the reordered samples [s, s, ..., 5,1

Below is the procedure of the MT (Step 2) in detail.

* On the basis of the seed, initialize the generator in an array of length j [xo, x;, ..., xj.1];

= For a word x with w-bit width,
Xt)= X ® (x| x0, 4, k=01, n—1, (32)

where ®is bitwise XOR, | is bitwise or, x* and x' are upper u-bits and lower /-bits shifts of x,
respectively; A4 is a twisted transformation matrix in rational normal form

0o I
A=R= w-1 3.3
ol o) 63
] >>1 Xy = 0
so that XA = (x o> 1)® a x= 1, (3.4)

where [, ; is an (w-1)*(w-1) identity matrix and >> is bitwise right shift.

To compensate for the reduced dimensionality of equidistribution because of the choice of 4 as
rational normal form, the MT is cascaded with tempering transforms as follows:

Ve :=xk+j®(xk+j >>uj,k=o,1,...,n—1, (3.5)
v, =y, @y <<s)&b), (3.6)

Ve =V @((yk << t)& c), 3.7

z, :=yk(-B(yk >>1), (3.8)

where << s bitwise left shift, & is bitwise and. The coefficients of MT19937 are: (w, j, m) = (32,
624, 397); a = 9908BODF¢; (u, /) = (11, 18); (s, b, t, ¢) = (7, 9D2C5680,¢, 15, EFC60000;6).
Note that we do not change the above settings of the MT19937 and we only set the MT to make
sure z;< len and does not duplicate.

3.3.2 EXPERIMENTAL RESULTS 42

3.3.2 Experimental results

Like the pre in Sect. 3.2, the AS-MT is evaluated in terms of its scrambling effect, time and
space complexity, and cryptographic security by using the music items in Table 3.1.

To test and verify the scrambling effect, we apply the 4S-MT with user-defined key of
“secret” on the “Pop” audio file and compare the waveforms before and after scrambling.
Figures 3.8(a) and (b) show the waveforms of the original and scrambled audio signals
respectively. Comparing (a) and (b), we can see that the AS-MT completely destroys the signal
to such an extent that the envelopes of the waveforms are completely different. The NCR
between the original and scrambled signals is 0.01 and the SNR is -3.01. When listened to the
scrambled audio, it sounds like a white noise with zero residual intelligibility. Thus, it can be
concluded that the AS-MT has good scrambling effect.

Figures 3.8(c) and (d) show the frequency spectra of the original and scrambled signals
generated by applying the FFT algorithm on the signals for an analysis frame of 1,024 samples.
Like in the pre, we can see that the frequency spectra become flat in the average sense after
scrambling. This flatness ensures a decrease in residual intelligibility.

As for the efficiency, the AS-MT consumes 624 memory spaces for storing the initial
state of the generator in addition to 2n spaces for storing the samples before and after scrambling
for a signal with n samples. Thus, its space complexity is O(n). The time complexity is generally
O(n) as well. However, from Table 3.5 which shows the execution time results of the AS-MT,
we can see that the AS-MT is very fast so that its execution time can be negligible. This occurs
because the main MT algorithm (Step 2 of the AS-MT) is a MATLAB built-in function written
in C language for fast execution. In that regard, the AS-MT is more preferable to the pre to be
applied in real time applications.

As for the cryptographic security, unlike the pre, the security of the AS-MT depends on
the secrecy of the key which is used to seed the MT, not the algorithm itself. Even if the
algorithm is made public, one will find it difficult to descramble without knowing that key. If
the algorithm is in secrecy, an adversary needs to try a brute force attack to generate all possible
permutations. Like in the pre, the number of possible permutations is n! where 7 is the length of
the signal (the number of samples), which is obviously impractical to try a brute force attack.

3.4 Conclusion

This chapter proposed two low-complexity audio scrambling methods together with the detailed
evaluation results of their performances. As both methods affect only the positions of the audio
samples, they are appropriate to be applied together with data hiding. Experimental results
showed that their scrambling effect and time and space complexity are good enough to be
applied in real time applications. If the methods were compared, the AS-MT was far superior to
the pre in all aspects, especially for execution time and cryptographic security. Thus, this
chapter also presented a solution for how to improve the cryptographic security of the pre.

3.3.2 EXPERIMENTAL RESULTS 43

Amplitude

Magnitude (dB)

0 100k 200k 300k 400k 0 6k 12k 18k 24k
@ ©

12k 18k 24k

0 100k 200k 300k 400k 0 6k
Samples # Frequency (Hz)
(b) (d

Figure 3.8: Waveforms of (a) the original signal and (b) the scrambled signal by AS-MT; (c)-(d) their respective
frequency spectra.

Table 3.5: Execution time results for the AS-MT.

Category | Duration (sec) Execution Time (sec)
Scrambling Descrambling

Pop 9 0.07 0.07

Jazz 10 0.07 0.07

Classical | 18 0.14 0.12

CHAPTER 4 PROGRESSIVE AUDIO SCRAMBLING SCHEMES IN WAVELET DOMAIN 44

Chapter 4

Progressive Audio Scrambling Schemes
in Wavelet Domain

This chapter discusses how the cryptographic security of the audio scrambling methods (the pre
and the AS-MT) proposed in Chapter 3 can be strengthened in the wavelet domain. The two
schemes of combining the pre and the AS-MT with the discrete wavelet transform (DWT) are
proposed along with the detailed evaluation results. In addition to enhancing the security, the
new schemes also achieve the progressive scrambling effect which is a desirable feature for
DRM. This chapter also gives a detailed discussion on that matter.

4.1 Introduction

As discussed in Chapter 3, the pre-order based audio scrambling method has good scrambling
effect and efficient time and space complexity as well. However, its cryptographic security is
limited because it depends on the secrecy of the algorithm. Thus, in order to enhance its security,
this chapter presents a new scheme in the wavelet domain. In this scheme, an audio signal is
firstly decomposed into different frequency sub-bands by using the DWT with user-defined
parameters. Then, scrambling is performed independently on each subband. Any user without
knowledge of the wavelet decomposition parameters will not be able to successfully descramble
the signal. The main idea is to enhance the cryptographic security with the control of unknown
parameters.

In addition, the pre and the AS-MT in Chapter 3 performed scrambling on the whole
signal. In those time-domain based methods, the scrambling effect on audio quality could not be
controlled. Thus, the resulting scrambled signals became like noise and could not be used to
realize the try-before-purchase model of DRM. In the new wavelet based scheme of the pre, the
scrambling effect on audio quality can be controlled based on the sub-bands scrambled. This is
called the progressive scrambling effect, which will be discussed in detail later in this chapter.

Thus, with the aim of realizing the try-before-purchase model of DRM, the AS-MT is
also applied in the wavelet domain like the pre. No doubt, with the control of unknown wavelet
parameters, the cryptographic security of the new scheme will be stronger than the security of
the 4AS-MT in the time domain.

4.2 DISCRETE WAVELET TRANSFORM (DWT) 45

The main reason of using the DWT is to obtain the progressive (different frequency sub-
bands) representation of an audio signal [66]. To decompose a signal into frequency sub-bands,
we can also use another method such as the FFT filterbank instead of the wavelet transform;
however, the wavelet representation is more efficient for analysis and reconstruction because of
its multiresolution property [79-80]. More detail about the DWT is explained in the following
section.

4.2 Discrete Wavelet Transform (DWT)

For better understanding of the proposed schemes, we briefly explain the DWT [81-86]. The
DWT has been widely utilized in diversified applications including digital communications and
image/speech/video compression [79-80, 86]. It was developed to overcome the shortcoming of
the Short Time Fourier Transform (STFT) [79-80] which can be used to analyze non-stationary
signals. Unlike the STFT that uses a constant window size for all frequencies, the DWT uses a
window size that varies the frequency scale and is thus advantageous for analysis of the signals
containing both discontinuities and smooth components.

The DWT decomposes the host audio signal into several multiresolution sub-bands [81].
That is, it provides good time resolution for high frequency sub-bands and good frequency
resolution for low frequency sub-bands. The processes of DWT (decomposition) and IDWT
(reconstruction) are shown in Fig. 4.1(a) and (b), respectively. In DWT, a discrete time-domain
signal S is analysed by successive lowpass and highpass analysis filters, denoted by G, and H),
respectively. Given S of length n, the DWT consists of log, » levels at most. At the first level,

Hy and Gy followed by downsampling produce detail information (high frequency) dc; and
coarse approximations (low frequency) ac;, respectively. Downsampling by 2 doubles the
frequency resolution as the uncertainty in frequency is reduced by half and halves the time
resolution as the entire signal is now represented by only half of the number of samples. The
second level repeats the same scheme, replacing S by ac; and yielding dc; and ac,. This process

H,
S {
G()

l,2 —PdC']

A 4

A\ 4

H, 12 —>dc;

v

A 4
A 4

12

v
S
y

12 —»ac,

(a)

dC[_’ T2 L H]

de; — 12 H, D—» S
12 G,

<
>

4N
v

ac; — 12 G,

(b)

Figure 4.1: Two-level DWT: (a) decomposition (b) reconstruction.

4.3 THE PROPOSED SCHEMES 46

is continued until the desired level is reached. The final decomposition result at level N consists
of [acy, dcy,...,dc,, dc;]. With this approach, time resolution becomes arbitrarily good at high

frequencies and frequency resolution becomes arbitrarily good at low frequencies.

In IDWT, the original signal can be successfully reconstructed from the wavelet
coefficients. The ac and dc at every level are up-sampled by 2 and passed through the lowpass
and highpass synthesis filters, denoted by G; and H; respectively, and then added. This process
is continued through the same number of levels as in the decomposition process to obtain the
original signal.

4.3 The proposed schemes

This section proposes two schemes of combining the pre and the AS-MT with the DWT with the
aim of not only strengthening the security but also controllably degrading the audio quality. In
these schemes, scrambling is performed independently on different frequency sub-bands of an
audio signal in the wavelet domain. The detailed procedures of the proposed schemes are as
follows [65-66]:

Step 1: An audio signal is wavelet decomposed. Then, the layers of wavelet coefficients [acy,
dey, ..., dcj], ordered in low-to-high frequency, are retrieved for N-level decomposition.
Different layers have different frequency ranges.

Step 2: The coefficients in each layer are scrambled by:

scheme_I: considering not only the pre but also the in-/post-order based scrambling methods
and applying one method randomly chosen out of the three, as shown in Fig. 4.2;

scheme_2: applying the AS-MT with different keys as shown in Fig. 4.3;

Step 3: Reconstruct the signal with the scrambled coefficients;

In order to descramble the signal successfully, the user must know the correct wavelet
decomposition parameters such as the wavelet family and the decomposition level in addition to
the correct method/key used in each layer. Decomposition with different wavelet parameters
yields the layers of different coefficients and thus descrambling on them is similar to scrambling
the signal in another way even if the correct method/key is used for each layer. Thus, without
knowing the correct parameters, it is not possible to recover a high-quality audio signal. The
experimental results in the following section prove that the proposed schemes can strengthen the
cryptographic security of the pre and the AS-MT rather than in the time domain with the control
of unknown parameters.

Moreover, scrambling on different layers degrades the audio quality differently. This
feature ensures the progressive scrambling in which the audio signals with different quality
levels can be generated by scrambling layer after layer. During descrambling, low-to-high
quality can be progressively recovered by descrambling layer after layer as well, which will be
discussed in detail in Sect. 4.4.2.

As the in-order and post-order based scrambling methods are applied together with the
pre in scheme_1, their algorithmic details are described in Algorithms 2 and 3, respectively.
Hereafter, we simply refer to them as in and post respectively.

4.3 THE PROPOSED SCHEMES 47

Ly dc; || preorinor post >
Scrambled
Audio | dc; | preorin or post > A,Udlo
Signal | N-level Wavelet | Signal
—» Wavelet e e >
Decomn : Reconst-
: ction
position] el
—»{ dcy ¥ preorin or post >
—» acy —»| preorin or post >
Figure 4.2: System flow of the scheme 1.
*Key—l
—> dc; ¥ AS-MT >
*Key—2 Scrambled
Audio N-level | dc; ¥ AS-MT > W Audio
Sional avelet Signal
1gna Wavelet
—> b) Reconst- —»
ec’o’m— : *Key-N ruction
position

| »| dey | AS-MT >
*Key-NH

—» acy P AS-MT >

Figure 4.3: System flow of the scheme 2.

Like in the pre, assume that each sample in an audio signal represents a node in a
complete binary tree and that they are organized in breadth-first order. For in-order, as described
in Algorithm 2, the sample at index 0 (the root) of the original audio is stored in the stack for a
later visit. Then, if it has a left child (sample at index 1) and that left child is also the root of a
subtree, it will also be stored in the stack and the next left child (sample at index 3) is searched.
These steps of finding the left child and storing it in the stack are repeated until there are no
more left children. Then, an element from the stack is retrieved as the output/sample in the
scrambled audio. The retrieved element may have a right child. If it has, assuming that right
child is also the root of a subtree, all of the previous steps starting from step 1 of storing the root
in the stack are repeated again. Otherwise, the steps of outputting an element from the stack and
finding its right child are repeated. This process continues until no more elements are in the
stack. Figure 4.4 shows the step-by-step tracing of Algorithm 2 on an example array.

For post-order, as described in Algorithm 3, the sample at index O (the root) of the
original audio is stored in the stack. If it has both right and left children (samples at index 2 and
index 1 respectively), firstly the right child and then the left child are stored in the stack. Then,

4.3 THE PROPOSED SCHEMES

assuming the left child is the root of a subtree, the above steps are repeated. Otherwise, if the
root has only the left child, it is stored in the stack and then an element from the stack is
retrieved as the output/sample of the scrambled audio. If that retrieved element is a left child
(note that all of the left children are at odd indices as the root is at index 0), it may have its
neighbor, right child (subsequent element at the same level of a tree). If it has the subsequent
right child, assume that this right child as the root of a subtree and repeat all of the previous
steps starting from step 1 of storing the root in the stack. Otherwise, the steps of outputting an
element from the stack and checking its right child neighbor are repeated. This process continues
until no more elements are in the stack. Figure 4.5 shows the step-by-step tracing of Algorithm 3

on an example array.

Algorithm 2 In-order Based Audio Scrambling Method

[1] Given an audio signal s with n samples [so, s1, ..
., Sp-1'] 1s generated; Assume that each sample in s represents a node in a
complete binary tree; Initialize pos=0 as index of root and i=0;

[so’, s1', .

[2] Save the root’s index in stack:

push(pos)

[3] while true do

[4]

[5]
[6]

[7]
[8]

[9]
[10]

[11]
[12]
[13]

[14]
[15]
[16]
[17]
[18]

[19]
[20]
[21]
[22]

Calculate index of the left child:
Ichild=2*pos+1
while Ichild<n do
Save the left child’s index in the stack:
push(lchild)
Assign pos=Ichild
Calculate index of the left child:
Ichild=2*pos+1;
end while
Output an element from the stack:
pos=pop()
Construct the scrambled signal s’ with samples from s indexed by pos:
Si’:Spos
Increment i by 1:
++
Calculate index of the right child:
rchild=2*pos+2
while stack is not empty and rchild>=n do
Do Step 10-13
end while
if rchild<n then
Save the right child’s index in the stack:
push(rchild)
Assign pos=rchild
else
break
end if

[23] end while

., Sn-1], a scrambled audio signal s'=

4.3 THE PROPOSED SCHEMES

Algorithm 3 Post-order Based Audio Scrambling Method

[1] Given an audio signal s with n samples [so, 51, ..

., Su-1], @ scrambled audio signal s

—

[s0, s1', ..., su-1'] 1s generated; Assume that each sample in s represents a node in a

complete binary tree; Initialize pos=0 as index of root;

[2] Save the root’s index in stack:

push(pos)
[3] fori=0,1,...,n-1do

[4] Calculate index of the left child:
Ichild=2*pos+1
[5] Calculate index of the right child:
rchild=2*pos+2
[6] while rchild<n do
[7] Save the right child’s index in the stack:
push(rchild)
[8] Save the left child’s index in the stack:
push(Ichild)
[9] Assign pos=Ichild
[10] Calculate index of the left child:

Ichild=2*pos+1

[11] Calculate index of the right child:
rchild=2*pos+2

[12] end while
[13] if Ichild<n then

[14] Save the left child’s index in the stack:
push(lchild)

[15] end if

[16] while stack is not empty do

[17] Output an element from the stack:
Pos=pop()

[18] Construct the scrambled signal s’ with samples from s indexed by pos:
Si ,:Spos

[19] if l(pos%2=0) and pos+1<n/2 then

[20] pos++

[21] break

[22] end if

[23] end while
[24] end for

Index 0 1

2 3 4 5 6

save rootinstack; [A|B|C |D|E|F|G |H] s

pos=0;

save Ichild(1) in stack; ’ ‘

pos=1;

save Ichild(3) in stack; ‘ ‘

pos=3;

49

4.3 THE PROPOSED SCHEMES

save Ichild(7) in stack;

[A[B[D[H]

pos=T;

no more Ichild and
output an element from
stack;

[A[B[D]

pos=T;

no rchild and output an
element from stack;

mio| | [[[| |

[AlB | P

pos=3;

no rchild and output an
element from stack;

o[[[[| |

(ALB] |

pos=1;

save rchild(4) in stack;

o] [[| [|

INEII

pos=4;

no more Ichild and
output an element from
stack;

(HID[BJE] [[| |

(ALE] |

pos=4;

no rchild and output an
element from stack;

[H|D|B|E|A|

pos=0;

saverchild(2) instack; \[H[D[BJE[A| | | | cl | | |
pos=2;

save Ichild(5) instack; | [H[D|[B|E|A| | | | CIF] [|
pos=3;

no more Ichild and
output an element from
stack;

(HID[BJE[A[F[| |

(¥l |

pos=3;

no rchild and output an
element from stack;

(HID[BJEJA[F[C]| |

pos=2;

save rchild(6) in stack;

(HID[BJE[A[F[C]| |

pos=6;

no more Ichild and
output an element from
stack;

[HID[B|EJA[F[C]G]

pos=6;

Figure 4.4: The step-by-step tracing of the in on an example array.

50

4.3 THE PROPOSED SCHEMES

51

Index

01 2 3 4 5 6 7

save root in stack;

|AIB][C[D|E[F[G|H] s

pos=0;

save rchild(2) in stack;
save Ichild(1) in stack;

pos=1;

save rchild(4) in stack;
save Ichild(3) in stack;

[AICIBIE[D] |

pos=3;

save Ichild(7) in stack;

[A|C|B|E[D[H]

pos=3;

output an element from
stack;

[AlC|B|E[D|H]

pos=T;

output an element from
stack;

o[| [[[[|

(AlC|B[E|P] |

pos=3; pos=4;

output an element from
stack;

HIDJ[E] | [| [|

lalciBlE] | |

pos=4;

output an element from
stack;

H[DJE[B] [| [|

(alcle] | | |

pos=1; pos=2;

save rchild(6) in stack;
save Ichild(5) in stack;

(HID[E[B] [[| |

(AlC|GlF] [|

pos=5;

output an element from
stack;

(HIDJE[B[F] | [|

(alcla[¥] | |

pos=5;

output an element from
stack;

(HID[E[B[F[G] [|

(alcle] | [|

pos=6;

output an element from
stack;

(HID|E[B|F[G|C]| |

alel [[]]

pos=2;

output an element from
stack;

(HID|E[B|F[G|C[A]

bl | L[]

pos=0;

Figure 4.5: The step-by-step tracing of the post on an example array.

4.4 EXPERIMENTAL RESULTS 52

4.4 Experimental results

In this section, by using the music items in Table 3.1, performances of the proposed schemes are
thoroughly evaluated in terms of cryptographic security, effect of scrambling on audio quality,
etc. In the experiment, an audio signal is two-level wavelet-decomposed by using the
Daubechies wavelet family (db4). All of the obtained layers of coefficients are scrambled in
such a way that [pre, in, post] in scheme [and the AS-MT with user-defined keys of [key 1, key2,
key3] in scheme_ 2 are applied on [ac,, dc,, dc;] respectively. There is no specific reason in the
choices of the parameters; it is just random.

4.4.1 Cryptographic security/anti-decryption capability

We mentioned that, in the proposed schemes, it is difficult to successfully descramble a signal
without knowing the correct wavelet decomposition parameters and the method/key used for
each layer.

To prove that fact, the “Classical” audio file is firstly scrambled by scheme [and then
descrambling is tried by using wrong wavelet parameters and wrong methods on the layers.
Whether the signal is successfully recovered or not is determined by measuring the ODG, whose
grading scales are described in Table 2.1.

Table 4.1 shows the ODG values resulting from descrambling with the wrong wavelet
family where the other parameters such as the decomposition level and the methods/key used for
each layer are correctly used. Different wavelet families use different filter-banks with different
cutoff frequencies and hence it is impossible to generate the same wavelet coefficients.
Descrambling on them is like scrambling the signal in another way. Thus, even though the other
parameters except the wavelet family are correct, all of the ODG values are less than -3.9. It
shows that the signal could not be successfully recovered and the resulting quality impairment
was very annoying.

The results of descrambling with wrong decomposition levels are shown in Table 4.2. In
this case, the signal is decomposed by using the correct wavelet family. As shown in the table,
decomposing a signal at a different decomposition level yields different coefficients layers. For
N-level decomposition, there are N+1 layers of coefficients. In addition, the sizes of the layers
yielded by the use of different decomposition levels are also different, which cause different
possible permutations on those layers. Thus, there is no way to successfully recover the signal
with good quality. The resulting ODG values which are less than -3.8 show that the recovered
audio quality is bad.

Then, the signal is decomposed at the correct decomposition level by using the correct
wavelet family but the wrong methods are used for descrambling the coefficients in each layer.
Table 4.3 shows the ODG values resulting from the use of wrong methods on the layers. Most
ODG values are less than -3.8 and show that the resulting quality impairment is very annoying.
We can also see that some ODG values are up to -2 when the correct methods are applied on two
out of three layers. More interestingly, these values always result from the use of the correct
method on the ac-part. As long as the wrong method is applied on the ac-part, the quality
impairment is annoying. This is because the ac-part carries the lowest frequency coefficients of

4.4 EXPERIMENTAL RESULTS

53

the signal, to which the HAS is very sensitive, and changes to them have a strong effect on
perceptual quality. However, even in that case, the ODG of -2 means that the quality impairment

is still annoying.

Thus, if an adversary wants to recover a signal with good quality, he/she must try a brute
force attack to guess the correct descrambling parameters. More precisely, he/she must at most

try

i=l1

N i+l .. .
126x > 3" times in scheme I and

N
126x Y i+1 times in scheme 2,

i=1

Table 4.1: ODG after descrambling with wrong wavelet family.

Table 4.2: ODG after descrambling with wrong decomposition level.

Wavelet Family ODG

Haar -3.906
Coiflets -3.903
Symlets -3.901
Discrete Meyer -3.904
Biorthogonal -3.906
Reverse Biorthogonal | -3.906

Level Methods on Layers ODG

2-level * | [pre, in, post]=>[ac,, dc,, d¢;] * -0.186
I-level | [pre, in][=>[ac,, dc] -3.878
3-level [pre, in, post, -]=> [acs, dcs, dc,, deq] -3.893
4-level [pre, in, post, -, -]=> [acy, dc,, dcs, de,, del] | -3.895

*Correct decomposition level and correct choice of methods;

Table 4.3: ODG after descrambling with wrong choice of methods.

°Correct choice of methods;

Methods on Layers | ODG Methods on Layers ODG
[ac,, dc,, dc] [ac,, dc,, dc]

[pre, in, post]’ -0.186 [pre, post, post] -3.781
[post, post, post] -3.891 [pre, post, pre] -3.842
[post, pre, in] -3.897 [pre, pre, post] -3.783
[post, pre, pre] -3.896 [pre, in, pre] -2.016
[post, in, in] -3.906 [pre, pre, in] -3.843
[in, pre, post] -3.890 [post, pre, post] -3.891
[in, post, pre] -3.897 [post, post, pre] -3.896
[in, in, in] -3.906 [post, in, post] -3.903
[in, post, post] -3.890 [post, post, in] -3.897
[in, pre, pre] -3.897 [in, post, in] -3.897
[post, in, pre] -3.906 [in, in, post] -3.903
[pre, post, in] -3.843 [in, pre, in] -3.897
[pre, pre, pre] -3.842 [in, in, pre] -3.906
[pre, in, in] -2.021

(4.1)

(4.2)

4.4.2 SCRAMBLING EFFECT 54

where 126 is a total of wavelet families (we only count those supported by the MATLAB [87])
and N is the decomposition level. The maximum possible value of N varies on the basis of the
length of the signal and the wavelet family used. For example, for a 9-second long signal, N may
be up to 18.

Considering the worst case scenario for that signal, an adversary must at most try

126 x _lzé:gl3i+1 =2.2x10"11 times for scheme I and 126x 'lgli +1=23,814 times for scheme 2.
i= i=

Let us assume for scheme [that the time taken for scrambling each layer is the time taken by
the pre (note that the pre is the fastest among the three methods). According to the simulation
results on a PC with Intel ® Core™ 15-2430M 2.4 GHz Processor, each trial in the above worst
case scenario takes 2.32 seconds and thus the total time taken for a brute force attack is nearly
16,045 years. For scheme 2, as the AS-MT is very fast to execute, the time taken is not a matter.
However, the adversary has to guess the correct key for each trial and thus a total of 23,814 keys
must be guessed. Thus, it can be concluded that the proposed DWT based schemes achieve the
stronger cryptographic security than the methods in the time domain proposed in Chapter 3.

In the above experiment, a single wavelet family is used to decompose an audio signal.
The cryptographic security of the schemes can be more strengthened by using multiple wavelet
families. For instance, for 1-level decomposition that yields two layers, we can use two different
wavelet families for yielding each layer. In this way, the level of difficulty for a brute force
attack is higher since the adversary needs to guess the correct wavelet family for each layer (not
for each level as in our experiment). However, this approach can increase the execution time
because we need to decompose the signal multiple times.

4.4.2 Scrambling effect

To test and verify the scrambling effect of the proposed schemes on the perceptual audio quality,
the ODG values after scrambling and descrambling each layer as well as all layers are shown in
Fig. 4.6.

The ODG is calculated by using the original audio signals as reference. For both schemes,
the ODGs after scrambling all layers are less than -3.9 for all test signals and show that the
signals are severely distorted by scrambling. After descrambling, the ODG values are between 0
and -1 and indicate that the descrambling process can recover the signals back to their nearly
original qualities. In addition, as discussed in Sect. 4.4.1, the coefficients in the ac-part are very
important for perceptual quality and thus the ODGs after scrambling only ac, are almost
comparable to those resulting from scrambling all layers.

Note here that the ODG values in Fig. 4.6 state a condition that we can call progressive
scrambling: SE(all)> SE(ac,)> SE(dc;)> SE(dc;), where SE means the scrambling effect on
audio quality. By progressively scrambling layer after layer, the resulting audio qualities are
getting worse and worse. During descrambling, the audio signals with low to high quality can be
progressively recovered by descrambling layer after layer. As for scheme 2, we can use a subset
of keys for descrambling to obtain the lower quality audios, whereas nearly full-quality can be
recovered by using all keys. The larger the decomposition level, the more layers are obtained
and the more progressively we can control the scrambling degree.

4.4.2 SCRAMBLING EFFECT 55

The above feature also provides flexibility in the choice of layers to be scrambled on the
basis of the system requirement: if the system requires high-level security, all layers are
scrambled; if the system is not very security-centric but demands severe quality degradation,
scrambling only the ac-part is enough; if the system demands low-quality audio files for
realizing the try-before-purchase model of DRM, scrambling only the dc-parts, which yields
fine-to-poor audio quality, is enough.

4

Ay ‘
/;/o— —9=pop (s)
om0
I P A S - —o— classical (s) |
977 s | —e— pop (d)
| ; —o— jazz (d)
K4 —e—classical (d
9)\ : ‘
A A
g
_1 ,,,
| />
N o &
dcl dc2 ac2 al
Layer of wavelet coefficients
(@)
. ‘
et o ®
L = 0= jazz (s)
—3<>/: Cop e - —0— classical (8)
) : —=— pop (d)
e ; —6— jazz (d)
8 L, ’ +classica1 d
S A . |
_1 ,,]
—— —_— i
dcl dc2 ac2 all

Layer of wavelet coefficients

®)

Figure 4.6: ODG after scrambling_(s)/descrambling (d) on layer-by-layer basis: (a) scheme I (b) scheme 2.

4.4.3 EXECUTION TIME

Table 4.4: Subjective measures of audio quality for the scrambled signals.

Music SDG after Scrambling: Layer-by-Layer Basis
dc, dc, ac, all

Pop 43 2 1 1

Jazz 43 2 1 1

Classical | 4.1 2 1 1

56

To verify the music quality after scrambling, we also conducted subjective tests. A total
of five music files (the original and scrambled files for each layer) were distributed to six
untrained listeners without mentioning anything about scrambling. Firstly, they were asked to
pick out the original audio signal and all of them were able to correctly identify the original
signal. Then, they were asked to feedback on the quality impairment of the scrambled signals in
comparison with the original one. The grading results are shown in Table 4.4.

Although the listeners are not experts, they could all perceive the difference in the audio
quality degradation based on the layer scrambled. Some could even identify the correct layer
that was scrambled on the basis of the music quality they perceived. For all music items, all
listeners confirmed that the quality impairment introduced by scrambling the dc parts, especially
dc,, 1s effective enough to use for trial music and scrambling the ac-part has almost exactly the
same effect as scrambling all layers.

4.4.3 Execution time

Table 4.5 shows the execution time results of the new schemes for scrambling/descrambling
each layer as well as all layers. Among the layers, the dc; is the largest in size and thus it takes
the longest time for both scrambling and descrambling processes. Generally, for scrambling or
descrambling all layers, the scheme I takes at most #/2 seconds for a #-second long signal, and
whereas the time taken for the scheme 2 is short enough to be negligible. Considering this fact,
it can be concluded that the scheme 2 is more appropriate for real time applications. However,
even for the scheme 1, if the underlying system is not very security-centric, we can significantly
reduce execution time by scrambling only the ac-part that achieves the same scrambling effect
as scrambling all layers.

4.4.4 Anti-attack capability

From Table 4.5, we can see that the proposed scheme 2 is very fast to execute. In addition, since
the scrambling process is carried out on different frequency sub-bands, the bandwidth of the
signal can also be limited according to the sub-bands scrambled. This feature is important for
speech scramblers which are applied to ensure privacy in real time speech transmission in
telephone networks and radio communications [88-90]. Thus, with the possibility of applying
the scheme_2 in those applications, this section verifies that the scheme_2 is fairly robust against
channel distortions (common signal processing attacks) providing that the attacked signals are
perfectly time-synchronized with the original ones.

The “Pop” audio signal in Table 3.1 is scrambled in accordance with the scheme 2 in
which all layers of the wavelet coefficients are scrambled by using the AS-MT with different

4.4.5 PERFORMANCE COMPARISON 57

keys. Figure 4.7 shows the waveform of the original signal. For a noisy channel, the transmitted
information may be partly or wholly lost during transmission. Thus, in the experiment, 60% of
the scrambled signal is randomly cropped (cropped samples are replaced with 0) and then
descrambling is tried. Figures 4.8(a) and (b) show the waveforms of the cropped signal and the
recovered signal respectively. Comparing Fig. 4.8(b) with Fig. 4.7, we can see that most of the
envelopes of the original audio still exist in the waveform recovered. It is because the lost
samples are scattered throughout the entire signal and thus do not affect the basic structure of the
audio. When we listened to the recovered audio, we can absolutely understand the music
contents although some slight noise is introduced.

We also conducted noise addition attack in which additive white Gaussian noise is added
to the scrambled signal by keeping SNR=10dB which indicates the noise is strong. Then,
descrambling is tried. Waveforms of the attacked signal and the recovered signal are shown in
Fig. 4.9(a) and (b) respectively. From Fig. 4.9(b), we can see that the envelopes of the recovered
waveform are not clear anymore. When listened to the recovered audio, it sounds like the
original audio which white noise is directly added to. However, we can still understand the
music contents. We also tried to compress the scrambled signal by using the LAME MP3
encoder [59] at a bit-rate of 96 Kbps and then decoding and descrambling are tried. As shown in
Fig. 4.10(b), the envelopes of the recovered waveforms are as clear as the original one. The
ODG between the descrambled MP3-coded music and the original music is -1.75, which is fine
quality. The audio quality is degraded due to data loss during compression but we can still
understand the music. When listened to, it has better quality than the one white noise added to.

4.4.5 Performance comparison

A large number of image and speech scrambling methods have been proposed in the literature.
However, there are few audio scrambling methods and even fewer well evaluated ones. Table
4.6 summarizes the performances of the proposed schemes including the methods proposed in
Chapter 3 and shows their comparison results with the reference works [17] [52] [64].

Table 4.5: Execution time on layer-by-layer basis.

Exec. Time (sec)
Music Length | Layer Scrambling Descrambling
scheme 1 scheme 2 | scheme 1 scheme 2
Pop 9 sec dc, 2.49 0.12 2.33 0.12
dc, 1.27 0.11 1.26 0.11
ac, 0.83 0.11 0.83 0.11
all 4.25 0.16 4.32 0.15
Jazz 10 sec dc; 2.68 0.14 2.70 0.14
dc, 1.42 0.12 1.45 0.12
ac, 0.96 0.12 0.95 0.12
all 4.85 0.18 4.85 0.17
Classical | 18 sec dc; 4.94 0.26 493 0.25
dc, 2.63 0.23 2.55 0.22
acy 1.88 0.23 1.77 0.22
all 8.67 0.34 8.71 0.30

4.4.5 PERFORMANCE COMPARISON

Figure 4.7: Waveform of the “Pop” audio signal.

200k
Samples #

400k

_2 Il
0 100k
2 f
1+ m L
_1 rrrrrrrrrrrrr SRR
9 j
[}
° 0 100k
£
g
2 .

0 100k

Figure 4.8: Waveforms of (a) the scrambled signal that is 60% randomly cropped and (b) the recovered signal.

200k
Samples #
()

300k

400k

0 100k

200k
@

300k

0 100k

Figure 4.9: Waveforms of (a) the scrambled signal that is white noise added to and (b) the recovered signal.

200k
Samples #

(b)

300k

400k

4.4.5 PERFORMANCE COMPARISON 59

[
=]
£ @
g
< 2 T T T T
1
0
-1 : : : :
- i i i i
0 100k 200k 300k 400k
Samples #
()

Figure 4.10: Waveforms of (a) the scrambled signal that is MP3 encoded and (b) the recovered signal.

Reference [17] proposed two audio scrambling methods in the time domain. One method
reorders the audio samples in accordance with the indexing sequence generated based on a secret
key and the other does the same thing in which the indexing sequence is generated based on the
in-order traversal scrambling transformation. Reference [52] proposed a combined watermarking
and scrambling scheme for MP3 in which the scalefactors in an MP3 frame are grouped in
accordance with a secret key. Then, the scrambling and watermarking processes are carried out
on the scalefactors of each group. The scrambling process here is swapping the scalefactors with
the other ones in the same group. Reference [64] proposed an audio scrambling method in the
compressed domain in which MP3 data are progressively scrambled by XOR-ing with the keys
in a key table.

According to the results in Table 4.6, efficiencies (time and space complexity) of the
methods are almost the same. Among the reference works, Reference [64] achieves the strongest
security with the control of a key table for the price of increasing space complexity for storing
that key table. However, the scrambling method in Reference [64] changes the values of the
audio contents and thus causes operational conflict with the data hiding process.

As for the proposed methods, the pre and scheme [have the comparable performances
like Reference [17]. As for the AS-MT and scheme 2, they have better performances than
Reference [17] in terms of security and scrambling effect (residual intelligibility). More
specifically, according to Table 3.5 and Table 4.5, it can be seen that the AS-MT and scheme 2
are very fast to execute, whereas the methods in Reference [17] are relatively slow (they take
about #/2 seconds to scramble a z-second long signal). In comparison with Reference [64], the
AS-MT and scheme_ 2 achieve the security level as strong as [64]. In addition, they are more
effective than Reference [64] in terms of space complexity and operational flexibility when
combining with data hiding.

4.5 CONCLUSION 60

Table 4.6: Performance comparison with previous works.

Reference Residual Time Space Security Conflict with
intelligibility | complexity | complexity control data hiding
[52] N/E N/E N/E key no
[17] (CDST) | very low O(n) O(n) key no
[17] ATST) very low O(n) O(n) - no
[64] very low O(n) O(n)tkey table | key table yes
Our Contribution
pre very low O(n) O(n) - no
AS-MT ~ Zero O(n) O(n) key no
scheme 1 very low O(n) O(n) via wavelet no
scheme 2 ~ Zero O(n) O(n) keys + via wavelet | no

N/E means “no evaluation”; n is the number of samples containing in the signal;

4.5 Conclusion

With the aim of strengthening the cryptographic security of the methods proposed in Chapter 3,
this chapter discussed two schemes that combine those methods and the DWT. In addition to
providing strong security, the proposed schemes achieved progressive scrambling effect that
enables the audio outputs with different quality levels to be generated by controlling the
scrambling degree as required. This feature is very attractive for realizing the try-before-
purchase model of DRM. In addition, the proposed schemes can also control the bandwidth of a
signal to be unchanged based on the frequency sub-bands scrambled. Thus, they are possibly
applied in real time speech scramblers, especially the scheme 2 due to its fast execution time.
Experimental results showed that the scheme 2 is fairly robust against some common signal
processing attacks.

CHAPTER 5 CONCLUSION 61

Chapter 5

Conclusion

This thesis discussed the importance of audio encryption methods for providing confidential
audio distribution in today’s DRM environment. However, the naive encryption on audio data
destroys compliance with the media format and thus the resulting encrypted file cannot be
directly played back by existing standard music players. This thesis presented the problems of
encryption on audio data and the solutions for those problems.

This thesis proposed a low-complexity partial encryption method for raw audio (WAV)
together with a solution for the invalid amplitude problem. That problem makes the decryption
process to be unsuccessful when the encrypted audio samples are beyond the valid audio
amplitude range and thus they are clipped by the audio coder. This thesis also proposed an
effective low-complexity partial encryption method for compressed audio (MP3). The idea of
partial encryption is to protect the data by encrypting only perceptually important parts. During
the MP3 encoding process, the input PCM signal transforms into several variants such as the
frequency lines, quantized values, etc. Some of them are directly related to perceptibility and
some are not. Thus, the effectiveness of partial encryption on MP3 depends on the choice of data
to be encrypted. This thesis discussed how to effectively choose the perceptually important parts
for encryption in accordance with the concept of the HAS. Experimental results showed that
encrypting the whole MP3 audio file renders the audio signal meaningless while encrypting 2-
10% of the file degrades the audio quality but not completely destroys the signal so it can be
used as trial music for commercial purpose. That trial MP3 keeps compatibility with the
standard so it can be rendered by any existing MP3 players without need to decrypt. Under the
access of the correct decryption keys and specific MP3 players, full-quality MP3 can be
successfully recovered. Experimental results also showed that the proposed method can be
carried out without extensive computation, significant modification on the MP3 frame headers,
and significant impact on compression efficiency of the MP3 encoders.

This thesis also presented two low-complexity transposition-based audio scrambling
methods in the time domain. Audio scrambling methods are widely used for confidential
distribution of audio data. They are more preferable to usual audio encryption to be used as pre-
and post-processing of data hiding methods due to their nature of operational flexibility. They
enable us to embed the watermark on the scrambled signal and to extract it from either the
scrambled or descrambled version of the signal. Experimental results showed that the proposed

CHAPTER 5 CONCLUSION 62

methods are very effective in terms of time and space complexity and scrambling effect although
their cryptographic securities are limited. With the aim of enhancing their security, this thesis
proposed two new schemes in the wavelet domain that combine those methods and the DWT.
Instead of scrambling the whole signal, the new schemes firstly decompose an audio signal into
different frequency sub-bands by using the DWT. Then the wavelet coefficients in each subband
are separately scrambled. Experimental results showed that anyone without knowledge of the
correct wavelet decomposition parameters and the correct method/key used for scrambling each
subband will never be able to successfully descramble the signal. Those schemes also achieve
the progressive scrambling effect that enables the audio outputs with different quality levels to
be generated by controlling the scrambling degree on the basis of the system requirement:
slightly distorted ones for the try-before-purchase model of the DRM systems and severely
distorted ones for the systems with strong security needs. In addition, the new schemes are also
fairly robust against common signal processing attacks. The resistances to those attacks are
important for speech scramblers used in telecommunication and radio networks and hence the
proposed schemes are possibly applied in those applications.

As a conclusion, this thesis presented various audio encryption methods to be used in
today’s DRM environment for both compressed and uncompressed audio data. This thesis gave
a detailed discussion on 1) the problems of encryption on audio data and their solutions, 2) how
to choose the data for partial encryption on MP3, 3) how to conduct encryption while keeping
compliance with the media format, and 4) how to strengthen the security of audio scrambling. In
addition to providing confidentiality in audio distribution, the proposed methods can also be
used to realize the try-before-purchase model, which is one of the important business models of
DRM. Thus, the proposals in this thesis strongly contribute to the development of efficient DRM
systems.

One of the future works of this thesis is to develop an effective combined encryption and
data hiding scheme. As discussed in Chapter 1, using encryption or data hiding alone is not
sufficient for today’s DRM systems. Encryption protects the content just before decryption, and
whereas data hiding only ensures copyright protection. In the literature, there have been many
audio encryption and data hiding methods proposed individually; however, there are very few
combined schemes. Thus, developing an effective combined scheme is very important.

In addition, the concept of the Human Auditory System (HAS) is very important for
developing effective audio encryption or audio data hiding methods. The HAS is more sensitive
than the Human Visual System (HVS). Even small changes to the audio samples can be detected
by the HAS and it is very difficult to develop a data hiding method that perfectly hides the secret
information in the host audio signal. Thus, studying the HAS is also one of the future works of
this thesis.

BIBLIOGRAPHY 63

Bibliography

[1] B. J. Sheu, M. Ismail, M. Y. Wang, and R. H. Tsai, Multimedia Technology for Applications,
Wiley-1EEE Press, June 1998.

[2] V. W. S. Chow, Multimedia Technology and Applications, Springer, 1997.

[3] P. Biddle, P. England, M. Peinado, and B. Willman, “The darknet and the future of content
protection,” Digital Rights Management- Lecture Notes in Computer Science, vol.2770, pp.344-
365, ISBN 978-3-540-40465-1, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[4] “Digital rights management final report,” European Committee for Standardization/
Information Society Standardization System (CEN/ISSS), September 2003.

[5] X. Zhang and R. Jain, “A survey of digital rights management technologies,”
http://www.cse.wustl.edu/~jain/cse571-11/ftp/drm/index.html

[6] EC-Council, Computer Forensics: Investigating Network Intrusions and Cybercrime,
Cengage Learning Inc., pp.9-26, 2009.

[7] A. K. Talukder and M. Chaitanya, Architecting Secure Software Systems, CRC Press, 20009.

[8] Electronic Frontier Foundation, “Digital rights management and copy protection schemes,”
https://w2.eff.org/IP/DRM

[9] Adobe, “Adobe digital editions 1.0,”
https://www.adobe.com/aboutadobe/pressroom/pressreleases/pdfs/200706/061907Digital Edition
s.pdf

[10] https://en.wikipedia.org/wiki/FairPlay#cite note-2

[11] R. Venkataramu, “Analysis and enhancement of Apple's FairPlay digital rights
management,” Project Report, May 2007.

[12] Microsoft Developer Network, “Digital rights management,”
https://msdn.microsoft.com/en-us/library/cc838192(VS.95).aspx

[13] https://en.wikipedia.org/wiki/Napster (pay_service)
[14] https://en.wikipedia.org/wiki/Sony Connect
[15] Electronic Frontier Foundation, “DRM,” 2012, https://www.eff.org/issues/drm

[16] N. Jayant, B. McDermott, S. Christensen, and A. Quinn, “A comparison of four methods for
analog speech privacy,” IEEE Trans. on Communications, vol. COM-29, no.1, pp.18-23, January

http://link.springer.com/book/10.1007/b12637
http://link.springer.com/bookseries/558

BIBLIOGRAPHY 64

1981.

[17] G. Chen and Q. Hu, “An audio scrambling method based on combination strategy,” IEEE
Intl. Conf. on Computer Science and Information Technology, vol.5, pp.62-66, July 2010.

[18] H. Kaur and G. S. Sekhon, “A four level speech signal encryption algorithm,” Intl. Journal
of Computer Science & Communication, vol.3, no.2, September 2012.

[19] S. Sharma, L. Kumar, and H. Sharma, “Encryption of an audio file on lower frequency band
for secure communication,” Intl. Journal of Advanced Research in Computer Science and
Software Engineering, vol.3, no.7, July 2013.

[20] S. Sharma, H. Sharma, and L. Kumar, “Power spectrum encryption and decryption of an
audio file,” Intl. Journal of Scientific Research in Computer Science, vol.1, no.1, August 2013.

[21] V. Makwana and N. Parmar, “Encrypt an audio file using combine approach of
transformation and cryptography,” Intl. Journal of Computer Science and Information
Technologies, vol.5, no.3, 2014.

[22] Twe Ta Oo, T. Onoye, and K. Shin, “An approach to amplitude scaling partial encryption
for compressed audio,” IEICE Technical Report, vol.113, no.135, pp.239-244, July 2013.

[23] Twe Ta Oo, T. Onoye, and K. Shin, “A partial encryption scheme for compressed audio
based on amplitude scaling,” Proc. of Intl. Workshop on Smart Info-Media Systems in Asia
(SISA), pp. 73-77, September 2013.

[24] K. K. Kothamasu and V. K. Sehgal, “An audio watermarking algorithm using encryption,
transformations, and quantization,” Intl. Journal of Advances in Engineering Science and
Technology, vol.2, no.1, 2013.

[25] W. Bender, D. Gruhl, and N. Morimoto, “Techniques for data hiding,” IBM Systems
Journal, vol.35, no.3.4, pp.313-336, 1996.

[26] B. Mondal and T. Mandal, “A multilevel security scheme using chaos based encryption and
steganography for secure audio communication,” Intl. Journal of Research in Engineering and
Technology, vol.2, no.10, October 2013.

[27] G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications,
World Scientific, Singapore, 1998.

[28] IBM Corporation and Microsoft Corporation, “Multimedia programming interface and data
specifications 1.0,” August 1991.
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf

[29] Microsoft Corporation, “New multimedia data types and data techniques,” April 1994.
[30] Apple Computer Inc., “Audio interchange file format: AIFF version 1.3,” January 1989.
[31] “WavPack: hybrid lossless audio compression,” http://www.wavpack.com.

[32] K. Brandenburg, “MP3 and AAC explained,” Proc. of 17" AES Intl. Conf. on High-Quality
Audio Coding, August 1999.

[33] R. Raissi, “The theory behind MP3,” December 2002.

http://www.kk.iij4u.or.jp/~kondo/wave/mpidata.txt
http://www.kk.iij4u.or.jp/~kondo/wave/mpidata.txt

BIBLIOGRAPHY 65

http://www.mp3-tech.org/programmer/docs/mp3 _theory.pdf

[34] K. Brandenburg and G. Stoll, “ISO MPEG-1 audio: a generic standard for coding of high-
quality digital audio,” Journal of the AES, vol.42, no.10, pp.780-792, October 1994.

[35] P. Noll, “MPEG digital audio coding,” IEEE Signal Processing Magazine, vol.14, no.5,
pp.59-81, September 1997.

[36] M. Biskup, “Error resilience in compressed data,” PhD Dissertation, Faculty of
Mathematics, Informatics and Mechanics, University of Warsaw.
https://www.mimuw.edu.pl/wiadomosci/aktualnosci/doktoraty/pliki/marek biskup/mb-praca.pdf

[37] J. Daemen and V. Rijmen, “AES proposal: Rijndael,”
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf#page=1

[38] National Institute of Science and Technology (NIST), “Announcing the advanced
encryption standard (AES),” Federal Information Processing Standards Publication 197,
November 2001.

http://csrc.nist.gov/publications/fips/fips197/tips-197.pdf

[39] “National policy on the use of the Advanced Encryption Standard (AES) to protect national
security systems and national security information,” CNSS Policy No.15, Fact Sheet No.1, June
2003.

[40] O. Dunkelman, N. Keller, and A. Shamir, “Improved single-key attacks on 8-round AES-
192 and AES-256,” Proc. of 16™ Intl. Conf. on the Theory and Application of Cryptology and
Information Security, December 2010.

[41] H. Mala, M. Dakhilalian, V. Rijmen, and M. Modarres-Hashemi, “Improved impossible
differential cryptanalysis of 7-round AES-128,” Proc. of 11"™ Intl. Conf. on Cryptology in India,
December 2010.

[42] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the full AES,”
http://research.microsoft.com/en-us/projects/cryptanalysis/aesbe.pdf

[43] J. Daemen and V. Rijmen, “Efficient block ciphers for smart-cards,” Workshop on
Smartcard Technology (Smartcard’ 99), pp.29-36, USENIX Eds., 1999.

[44] D. Whiting, B. Schneier, and S. Bellovin, “AES key agility issues in high-speed IPsec
implementations,” Counterpane Internet Security, May 2000.
https://www.cs.columbia.edu/~smb/papers/AES-KeyAgile.pdf

[45] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin, “Efficient software
implementation of AES on 32-bit platforms,” Proc. of 4™ 1ntl. Workshop on Cryptographic
Hardware and Embedded Systems (CHES), August 2002.

[46] M. McLoone and J. V. McCanny, “High performance single-chip FPGA Rijndael algorithm
implementations,” Proc. of 3™ Intl. Workshop on Cryptographic Hardware and Embedded
Systems (CHES), May 2001.

[47] V. Fischer and M. Drutarovsky, “Two methods of Rijndael implementation in
reconfigurable hardware,” Proc. of 3" Intl. Workshop on Cryptographic Hardware and

http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
http://link.springer.com/book/10.1007/3-540-44709-1
http://link.springer.com/book/10.1007/3-540-44709-1
http://link.springer.com/book/10.1007/3-540-44709-1

BIBLIOGRAPHY 66

Embedded Systems (CHES), May 2001.

[48] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, “An adaptive cryptographic engine for
[PSec architectures,” IEEE Symposium on Field-Programmable Custom Computing Machines,
pp-132—-141, April 2000.

[49] N. Li, Y. H. Shang, and J. C. Zou, “An audio scrambling method based on Fibonacci
transformation,” Journal of North China University of Technology, vol.16(3), pp.8-12, 2004.

[50] H. Y. Nie, C. Y. Zhu, and Q. Lu, “Audio encryption based on digital chaotic ciphers,”
Signal Processing, vol.21(4A), 2005.

[51] H. L. Li and R. S. Ye, “Audio signal scrambling based on the Euler transformation,”
Chinese Journal of Scientific Instrument, vol.28(4), pp.904-907, 2007.

[52] M. Steinebach, S. Zmudzinski, and T. Bolke, “Audio watermarking and partial encryption,”
Proc. of SPIE, Security, Steganography, and Watermarking of Multimedia Contents VII,
vol.5681, pp.779-788, March 2005.

[53] N. J. Thorwirth, P. Horvatic, R. Weis, and Jian Zhao, “Security methods for MP3 music
delivery,” Proc. of the 34™ Asilomar Conf. on IEEE Signals, Systems and Computers, vol.2,
pp.1831-1835, November 2000.

[54] A. Servetti, C. Testa, and J. C. De Martin, “Frequency-selective partial encryption of
compressed audio,” Proc. of IEEE Intl. Conf. on Acoustics, Speech, Signal Processing., vol.5,
pp.668-671, April 2003.

[55] A. Torrubia and F. Mora, “Perceptual cryptography on MPEG-1 layer III bit-streams,” Proc.
of IEEE Trans. on Consumer Electronics, vol.48, no.4, pp.1046-1050, November 2003.

[56] B. Gadanayak and C. Pradhan, “Selective encryption of MP3 compression,” Intl. Journal of
Computer Applications, ICIST vol.1, pp.23-26, August 2011.

[57] Twe Ta Oo, T. Onoye, and K. Shin, “Partial encryption method that enhances MP3 security,”
IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, vol.
E98-A, no. 8, August 2015, to be published.

[58] “Method for objective measurements of perceived audio quality,” Rec. ITU-R BS.1387-1,
1998-2001.

[59] http://lame.sourceforge.net/links.php#OpenSource

[60] “General methods for the subjective assessment of sound quality,” Rec. ITU-R BS.1284-1,
1997-2003.

[61] A. V. Subramanyam and S. Emmanuel, “Audio watermarking in partially compressed-
encrypted domain,” IEEE Intl. Conf. on Systems, Man, and Cybernetics, pp.2867-2872, October
2012.

[62] H. Wang, M. Hempel, D. Peng, W. Wang, H. Sharif, and H. H. Chen, “Index-based
selective audio encryption for wireless multimedia sensor networks,” IEEE Trans. on
Multimedia, vol. 12, no. 3, pp. 215-223, April 2010.

http://link.springer.com/book/10.1007/3-540-44709-1

BIBLIOGRAPHY 67

[63] K. Datta and I. S. Gupta, “Partial encryption and watermarking scheme for audio files with
controlled degradation of quality,” Multimedia Tools and Applications, vol.64, no.3, pp.649-669,
June 2013.

[64] W.-Q. Yan, W.-G. Fu, and M. S. Kankanhalli, “Progressive audio scrambling in compressed
domain,” IEEE Trans. on Multimedia, vol.10, no.6, pp.960-968, October 2008.

[65] Twe Ta Oo and T. Onoye, “Progressive audio scrambling via complete binary tree’s
traversal and wavelet transform,” Proc. of Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC), December 2014.

[66] Twe Ta Oo and T. Onoye, “Progressive audio scrambling via wavelet transform,” Proc. of
IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), pp.97-100, November 2014.

[67] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidistributed
uniform pseudorandom number generator,” ACM Trans. on Modeling and Computer
Simulations: Special Issue on Uniform Random Number Generation, 1998.

[68] “9.6 random - generate pseudo-random numbers,” Pythonv2.6.8 documentation,
https://docs.python.org/release/2.6.8/library/random.html

[69] “Randomclass documentation,” Ruby 1.9.3 documentation,
http://ruby-doc.org/core-1.9.3/Random.html

[70] “mt_srand,” PHP documentation, http://php.net/manual/en/function.mt-srand.php
[71] “Random number generator algorithms,” Documentation Center, MathWorks.
[72] http://en.wikipedia.org/wiki/Diehard tests

[73] J. Soto, “Statistical testing of random number generators,” National Institute of Standards
and Technology (NIST), http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf

[74] W. Rotz, E. Falk, D. Wood, and J. Mulrow, “A comparison of random number generators
used in business,” Proc. of the Annual Meeting of the American Statistical Association, August
2001.

[75] http://en.wikipedia.org/wiki/TestUO01

[76] B. D. McCULLOUGH, “Software reviews: a review of TestUO1,” Journal of Applied
Econometrics, pp.677-682, 2006.

[77] P. Leopardi, “Testing the tests: using random number generators to improve empirical tests,”
http://maths-people.anu.edu.au/~leopardi/Leopardi-TestUO1-paper-final.pdf

[78] P. L’Ecuyer and R. Simard, “TestUO1: a C library for empirical testing of random number
generators,” ACM Trans. on Mathematical Software, vol.33, no.4, article.22, August 2007.

[79] A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and
Applications, John Wiley & Sons Ltd., 1999.

[80] R. X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing, Springer,
2011.

[81] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, Englewood

https://docs.python.org/release/2.6.8/library/random.html
http://www.ruby-doc.org/core-1.9.3/Random.html
http://php.net/manual/en/function.mt-srand.php
http://www.mathworks.co.uk/help/matlab/ref/randstream.list.html
http://en.wikipedia.org/wiki/MathWorks

BIBLIOGRAPHY 68

Clifts, NJ, 1995.
[82] http://en.wikipedia.org/wiki/Wavelet#Multiresolution based discrete wavelet transforms

[83] K. K. Shukla and A. K. Tiwari, Efficient Algorithms for Discrete Wavelet Transform,
SpringerBriefs in Computer Science, 2013.

[84] M. Weeks and M. Bayoumi, “Discrete wavelet transform: architectures, design and
performance issues,” Journal of VLSI Signal Processing, 2003.

[85] C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet transforms,” Society for
Industrial and Applied Mathematics, vol.31, no.4, pp.628-666, December 1989.

[86] J. Olkkonen, Discrete Wavelet Transforms — Theory and Applications, InTech, March 2011.

[87] http://www.mathworks.co.jp/jp/help/wavelet/ref/waveletfamilies.html

[88] S. Sridharan, E. Dawson, and B. M. Goldburg, “Speech encryption using discrete
orthogonal transforms,” Intl. Conf. on Acoustics, Speech, and Signal Processing, April 1990.

[89] S. Sridharan, E. Dawson, and B. Goldburg, “Fast Fourier transform based speech
encryption system,” IEEE Proc. of Communications, Speech and Vision, vol.138, no.3, pp.215-
223, June 1991.

[90] D. S. Anjana and M. Kuriakose, “Frequency speech scrambler based on Hartley transform
and OFDM algorithm,” Intl. Journal of Computer Applications, vol.61, no.8, January 2013.

