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Abstract

This thesis presents the design and evaluation of a set of novel techniques for ma-

nipulating and annotating 3D graphics. These techniques are analysed in terms

of human performance and e�ciency. A series of four interaction techniques are

presented and evaluated. All the techniques consider the manipulation of a 3D

model located out of arms reach for the purposes of presentations or education

but also have application in virtual reality, augmented reality etc.

The first set of techniques, Mesh-Grab and Arcball-3D leverage proprioception

and general human performance when operating a pointing device (wand) from

the hip area. Evaluation results point to this technique performing similarly in

terms of task completion time with Scaled HOMER, a state of the art 3D ma-

nipulation technique, while at the same time being more accurate and requiring

smaller motions.

Unistroke is an extension to ray-based manipulation. Unistroke allows drawing

on a mesh with implicit switch to rotation for making smooth long strokes on

a 3D object. Evaluation of Unistroke shows that the technique is slower and

requires more strokes than a state-of-the-art 3D mesh drawing technique but is

more accurate in a tracing task.

The last set of techniques free/pivot Plane-Casting explore a low cost and low

fatigue o↵-screen means for 3D cursor translation. Evaluation of these tech-

niques shows superior performance to a baseline wand technique as well as the

users’ preference towards free Plane-Casting which is used as the basis for fur-

ther work. INSPECT presents a set of o↵-screen touch rotation techniques that

allow for smooth transitions between controlling di↵erent degrees of freedom.

Evaluation of INSPECT versus a state-of-the-art manipulation technique found

better movement times and on-par rotation times in a docking task.

The conclusion presents a summary of our findings and directions for future

improvement.
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Chapter 1

Introduction

1.1 Interactive 3D Computer Graphics

Computer graphics technology allows for the realistic depiction of objects, with

perspective projections, lighting and e↵ects which make it possible for us to

understand their surface properties, their functions and their internal structure.

This is important in a number of application domains. From city planning [52]

and CAD in immersive virtual reality [71], interior design [66] reality and virtual

prototyping [28], to manipulating a multi-dimensional dataset for scientific data

exploration [41], educational applications [67], medical training [62] and even

sandtray therapy [26].

In this thesis we are mostly concerned with the following two:

• In engineering and design: Computer aided design allows for the prototyp-

ing of objects at extremely low cost compared to actual prototypes. Com-

puter graphics also allow for the inspection of objects with significantly

reduced e↵ort. The latter is especially true for massive solid objects such

as engines, buildings, vehicles/vessels etc.

• In education: Computer graphics allow for the depiction of objects isolated

from their natural environment. It makes it possible to view a realistic

beating heart pumping blood, and to understand its structure and func-

tions something which would have otherwise been impossible.

Great progress has been made in the real-time realistic depiction of 3D ob-

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The state of the art in real-time interactive graphics. The Brigade
real-time path tracing engine [58].

jects [58], with significant increases in display resolution and realism (Figure

1.1). However, manipulation of 3D objects remains a challenge. The challenge

lies in the fact that in the real world, humans use their limbs to directly apply

forces to objects and change their position or rotation. Save for a few excep-

tions [14, 59] which are not yet ready for production work, with most types of

displays that is not feasible.

Thus typically, for the control of computer graphics with a certain granularity

we resort to electromechanical devices that transform forces from the limbs to

values that are interpreted by the system and are used to change one degree of

freedom (DOF). The most common of these devices is the mouse [13] invented

by Douglas Engelbart in 1967. Despite its age, the mouse is still the most

common input device for the control of computer graphics. The mouse controls

two degrees of freedom and usually via UI widgets these 2-DOF are being used

to control 1-DOF (Figure 1.3).

Integral control of 3D computer graphics, however, requires control of 6-DOF.,

i.e. if we were to manipulate objects naturally, like we do in the real world, we

would need to manipulate six integral degrees of freedom.

Just like in the real world, we manipulate objects with manipulating as many

DOF as possible to save time, the same is desirable in manipulations in com-

puter graphics. Jacob et al. [34] have shown that that some DOF are better

manipulated integral whereas others are better manipulated separately. Posi-
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Figure 1.2: A professor presenting a 3D model of a heart in an anatomy class.

tion and rotation are attributes that are considered perceptually integral and as

such we want to manipulate them together, as opposed to position and color. So

integrality in 3D manipulation might be desirable depending on the application.

Although there are a number of devices that allow for integral control of 6-DOF

for personal computers they su↵er from a number of issues which make them

di�cult to use (more details in Chapter 2). The problem is particularly evident

away from the desktop where users do not have access to such input devices.

Examples of situations where there is a need to interact with computer graphics

in 3D from a distance with a large display include the following:

• Education: A professor is demonstrating human anatomy by displaying

3D graphics on a large projector screen. He uses his device to rotate the

model and answer questions from the students. The professor leave the

podium and approach the students while still being able to interact with

the model, thus making the class more engaging (Figure 1.2).

• Engineering: An engineer is showing a 3D model of her latest design to her

team-mates. She rotates and translates the model, defines slicing planes to

inspect the interior and discuss the design with other participants (Figure

1.4). An architect is showing a proposed building to a group of clients

(Figure 1.5).

• Entertainment: A group of children are playing a game in a museum while

at the same time learning about physics by interacting with objects in a

sandbox-like 3D environment on a large screen.
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Figure 1.3: Typical usage in a CAD application (Blender [6]). The mouse clicks
on the RGB coloured arrows that represent each axis to control 1-DOF with
both DOF.

The design goals of an interface to be used in the aforementioned situations

include the following:

Eyes-Free: In a presentation, the gaze of the presenter guides the attention

of the audience. When the presenter looks at the audience, the audience know

they must focus on his face and his speech. It is therefore important that the

presenter is free to look at the display and the audience while interacting and

not be forced to look at the device.

O↵-Screen: Users would need to maintain a distance from the display so as to

not obstruct the view for others.

Without a desk surface or cables: Users should be able to move around,

approach the display with the controller in their hand (to show an area or point

to a feature with their hand).

Without complicated instrumentation or expensive hardware: Having

few hardware requirements lowers the barrier for entry, allowing classrooms and

meeting rooms equipped with a projector to make more out of their existing
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Figure 1.4: An engineer is demonstrating a new engine design to team members.

Figure 1.5: An architect is showing a proposed building to a group of clients.

setup.

No big arm/hand gestures: An interface that is to be used on a daily basis

and/or for many hours has to avoid large hand gestures which are bound to

induce fatigue [65] and, in rare cases, even cause physical injuries to bystanders.

Simplicity: Unlike technology enthusiasts, domain experts or educators often

do not have the patience or motivation to learn a new, complicated interface.

Accuracy: If the 3D model is detailed, the interface should allow the presenter

to bring it closer and make fine adjustments to position and rotation.

Among the aforementioned design goals, this thesis presents a set of interaction

techniques with the following three in mind:



6 CHAPTER 1. INTRODUCTION

Proximal to the torso - Small Motions: Avoid fatigue and allow for col-

laboration.

Simple Hardware Setup: Lower Cost, Easier Setup.

Integrality: Ability to manipulate many degrees of freedom simultaneously,

having the potential for becoming proficient.

The first set of presented techniques, Mesh-Grab and Arcball-3D, employ a wand

and an emitted ray to manipulate a 3D object. The second set of techniques

Plane-Casting and INSPECT attempt to further simplify the setup while at the

same time exploring o↵-screen touch input. Finally, we present a technique for

annotating 3D objects that explores the boundaries between the indirect and

direct interaction design space.

This thesis does not consider selection of a 3D object, it assumes manipulation

of an already selected object and selection is beyond the scope of this work.

1.2 Organisation of the thesis

In addition to this introduction, a related work section and the conclusion chap-

ter, the main body of the thesis is organised in five chapters.

1.2.1 Mesh-Grab and Arcball 3D

Chapters 3 and 4 present the design and evaluation of Mesh-Grab and Ar-

cball 3D. These are 6-DOF manipulation techniques designed with low-fatigue

in mind. Mesh-Grab and Arcball 3D can be performed without needing to

extend the arm and thus have a much smaller spatial footprint than their state-

of-the-art counterpart. We discuss the evaluation of the techniques and the

implications of the results.

1.2.2 Unistroke

Chapter 5 presents Unistroke, a technique for drawing long strokes on 3D mod-

els. The technique was conceived for annotating a 3D mesh during a presen-

tation on a large display that only provides a single input or on a handheld

tablet. Unistroke is to be performed either with a wand or with a tablet pc held
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with the o↵-hand while the user annotates with his dominant arm. In such a

situation the presenter would not have access to a large number or modes as

one would on a desktop CAD application. It is therefore important to allow for

intelligent implicit mode changes that allow the user to better annotate meshes

in this limited context. We present the features of unistroke and present results

from a pilot-study.

1.2.3 Plane-Casting and INSPECT

Chapters 6 and 7 present Plane-Casting and INSPECT, a 6-DOF extension of

Plane-Casting. To address the tracking requirements of wand techniques and

the line-of-sight limitations we implemented this technique using a smartphone

which has neither of these requirements. Plane-Casting is an indirect-touch 3-

DOF translation method that is suitable for smartphones. INSPECT allows for

full 6-DOF object manipulation using a series of explicit mode changes. Results

from a pilot study show that with Plane-Casting/INSPECT users did not access

all the available modes but that the techniques perform slightly better than a

baseline wand technique and were preferred overall by the users.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Related Work

3D Manipulation has been studied in a number of usage contexts. Listed in

order of broad chronological appearance: Desktop computing, Virtual Reality

using a head mounted display, Immersive Large Displays/Cave systems and

finally Tabletop/Tablet computing where touch is utilised. We discuss related

work with the state-of-the-art in each of these contexts and give an overview of

the remaining problems for each one:

2.1 Desktop Computing

For desktop computing 3D manipulations are typically performed with the

mouse. For translation, since the mouse can only control 2-DOF, UI widgets are

used for controlling the Z axis and for constraining motion to a certain axis [5].

Keyboard shortcuts are also commonly used (in software like Blender 3D [6]) for

switching modes or constraining axes. For rotation, in addition to UI widgets,

mapping the 2D motion of the mouse to 3D rotation is used extensively [63].

The major drawback of widget-based manipulations is the lack of combined ro-

tation and translation. To address this, some new desktop devices have been

proposed [32, 17, 1]. These devices o↵er integral 6-DOF manipulations. One of

these devices, the globefish [17] is shown in figure 2.1.

A drawback of these devices is the inability to ”undo” a motion in the exact

same path it was performed, and the lack of an easy way to switch modes (to

lock to certain axes etc.) while the long homing time [31] makes it tedious to

switch from device to keyboard/mouse. Accessing di↵erent modes is a point

9
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Figure 2.1: The Globefish [17]. An integral 6-DOF desktop controller.

that will be discussed further in this thesis. The design of these devices is also

prone to accidental input when the hand accidentally brushes up against the

device or when the desk surface is shaken.

2.2 Immersive Virtual Reality

In the Immersive VR domain typically a wand is used for 3D manipulation with

Scaled HOMER [73] being the latest in a long series of techniques [66, 53, 7, 56,

55]. Scaled HOMER is an extension to the classic hand-centerer manipulation,

HOMER technique [7].

In Scaled HOMER, a variable gain function is applied to the input depending

of the distance of the object to the user. Wilkes et al. reported an improvement

over the standard HOMER technique in a docking task.

A ray extended from the wand is used for object selection in most immersive

VR techniques. A common problem, however, is that they require accurate 6-

DOF tracking of the wand. As such they need complicated instrumentation to

set up with either magnetic trackers (Polhemus [54]) or optical tracking (Opti-

track [50]). Magnetic trackers are particularly susceptible to interference from

the environment while optical tracking systems depend on line-of-sight to the

wand which might accidentally be occluded during interaction, especially in a

collaborative setting. They also tend to induce fatigue [29], as the user must

keep their hands suspended in mid-air for extended periods of time.
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h’ = SC/2 

HOMER 

a

Scaled HOMER 

c 

Hand Hand 

User 

a 

b b

c 

h’ = SC 

Object Object 

User 

Figure 2.2: The classic HOMER technique on the left, Scaled HOMER on the
right. [73]. On Scaled HOMER, when the arm slows down, the objects position
is further scaled down to enhance precision.

2.3 Large Displays/Cave

3D interaction in front of a large display is not much di↵erent to immersive

VR with an HMD and some of the techniques used in immersive VR could

be applied to large displays. However, the major di↵erence with HMD’s and

CAVE systems is that interaction in front of a large display often involves more

than one user (e.g. a presenter and an audience, or two collaborators) and

that makes it problematic to track the viewpoint. If the viewpoint cannot

be tracked, implementation of ray-based techniques [39] becomes problematic

because the ray does not look like it is emanating from the wand. Navidget [21],

an alternative to ray techniques for large display interaction, uses 2D input on a

tablet to position the camera in a 3D environment. Although this is similar to

manipulating an object for inspection, their technique does not directly support

object manipulation so it cannot be applied to collaborative scenarios (more

than one users could not control the viewpoint simultaneously). The authors

reported good usability for both novice and expert users based on questionnaires.

Fröhlich et al. [16] presented the cubic mouse, a box with three perpendicular

rods passing through its center. The authors report positive reactions from

participants, yet the device form factor makes it di�cult to relax the non-

dominant arm in a presentation as the rods can be accidentally pressed against

the presenter’s body and thus induce accidental input.
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Song et al. used a Kinect to track the user’s limbs in front of a large display

and proposed a handlebar metaphor [65] for 3D object manipulation. Their

users, however, complained about fatigue. In an attempt to address fatigue in

large display interaction, our earlier work [39] proposed a set of techniques that

allow manipulation by holding the wand at hip height, yet that work, like other

ray-based work is hard to implement in a situation where the viewpoint is not

being tracked or when it is necessary to interact from the skewed position of a

presenter.

2.4 Tabletop/Touch

Touch surfaces share some of the problem of the mouse, being limited to two

integral DOF per touch point and typically do not allow for simultaneous trans-

lation and rotation. Various attempts have been made to address 3D manipu-

lation using on-screen multi-touch. Reisman et al. [60] presented a multi-touch

3D object manipulation technique that depends on a constraint solver based on

the user’s perspective. However, their system was not empirically evaluated,

and has some drawbacks such as ambiguous or unwanted rotations. Hancock

et al. [24, 25] introduced sticky tools, a technique used to support tabletop 3D

object manipulation. Hancock’s technique allows simultaneous translation and

rotation on a subset of the available axes. Martinet et al. citemartinet proposed

a 3D manipulation technique based on the separation of translation and rota-

tion. Martinet demonstrated benefits from separating translation and rotation

in 3D manipulation. Cohé et al. [11] introduced tBox, a 3D manipulation widget

for touch-screens.

The authors of tBox conducted a study using a 3D object assembly task by

novice users and found tBox was an e↵ective solution. A limitation of tBox is

that the user needs to reach the edge of the widget with the cylinder in order to

enact translation (Figure 2.3) which might not be suitable for rapid successive

manipulations.

Wilson et al. [74] used physics simulation to manipulate 3D objects with a

tabletop display. The solution by Wilson et al. is one of the few solutions

in on-screen touch that allows for integrality during manipulation. Tse [67]

investigated the use of touch and tangible objects for 3D object manipulation

in education (i.e. presentations). They found that participants struggled with

camera positioning but appreciated touch-based object rotation.
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Figure 2.3: tBox[11]. A sliding widget appears when a colored segment is
touched. The translation starts after the slider collides with the other edges
of the box. When the projected size of an edge is too small, the translation
slider is adapted, so the gesture performed before starting a translation is sim-
ilar for any situations.

The aforementioned 3D interaction techniques that utilise on-screen touch are

all limited by display size. When the display exceeds a certain size threshold,

touch input starts to become cumbersome. The user is required to cover a large

area with physical movements and parts of the display area are out of arm’s

reach. This is the case with large tiled displays, or those using projectors. In

addition, physically approaching the display limits the user’s activity to a very

small area while in collaborative systems the interacting user obstructs the view

for the rest of the group.

O↵-screem touch is ergonomically superior to on-screen touch while at the same

time overcoming the aforementioned problems with collaboration. Conversely,

with o↵-screen touch there is no cursor for selection [70]. In an attempt to over-

come this DOF limitation Ohnishi et al. [48] used two touch pads resting on a

desktop 3D selection and annotation scenario. Finally, Wigdor et al. [72] pro-

posed a set of techniques that employ shaped touches to control gain, overcome

occlusion avoidance, and manage separation of constraints in a 2D task. Their

approach, however novel, requires a tabletop and would be hard to implement

on a large screen interaction scenario.
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Despite many contributions having been made by earlier researchers, there is no

widely accepted standard for 3D model manipulation on a large display. Our

work, in an attempt to address the outstanding issues presents a number of

solutions in the following chapters.

2.5 Drawing on a 3D Mesh

Figure 2.4: Layerpaint [18]. Region in the front becomes transparent to allow
for the stroke to continue uninterrupted.

Chapter 5 examines making long strokes on a 3D mesh. Fu et al. introduced

layerpaint [18] , a system that automatically re-orders layers in a 3D mesh to

allow for long strokes (Figure 2.4). Layerpaint works by segmenting the mesh

into regions then popping up the appropriate occluded region to ensure a smooth

stroke. That solution, however, is only suitable for a certain type of mesh and

might not work well for meshes which are not smooth. The same limitation

applies to the work by Ortega et al. [51]. Their solution to making a long stroke

on a 3D mesh is to automatically move the camera around the 3D model so

that the system is able to keep the draw point under the mouse (Figure 2.5).
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Figure 2.5: ACCD [51]. Depending on the direction of the stroke the model
might drift o↵-screen (model is moving towards the top-right of the figure in
this case) and the user manually needs to bring it back to the center to continue
drawing.
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Chapter 3

Mesh-Grab and Arcball-3D:

Ray-Based 6-DOF object

manipulation

3.1 Introduction

Advances in computer graphics and display hardware technologies have made

it possible to render near-photorealistic graphics at interactive frame rates and

to enjoy rich content from a distance on large displays and projectors. Large

displays are especially important in education, engineering/CAD and science as

they allow for multiple users to simultaneously view the same contents without

obstructing one another. Naturally, users not only want to view the contents,

but also want to interact with them.

This work focuses on remote 3D object manipulation on a large display for

interactive presentations. An example could be in education, where a professor

in medical school is projecting a human heart during class. In such a scenario

the professor would need to rotate and translate the heart (6-DOF) to show

di↵erent perspectives and answer questions from students (Figure 1.2).

In an architectural meeting the participants would need to control the position

and location of the camera to inspect the building from various angles to discuss

improvements. Similarly in an engineering meeting participants often need to

interact with a 3D model to discuss design issues.

17
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Some available remote interaction controllers and techniques su↵er from fa-

tigue issues or lack intuitiveness in addition to the expensive and complicated

setup required. Motivated by this, we have developed two new ray-based 3D

interaction techniques: Mesh-Grab and Arcball-3D (inspired by Shoemake’s

Arcball[63]). The proposed techniques are an extension to techniques used with

a 2D pointer (like a mouse pointer[63] or a single finger [24]). The main con-

tribution of this work is the exploration of a mode that combines rotation and

translation into a single action. There is, to our knowledge, no ray-based inter-

action technique that accomplishes this.

As such, this study aims to answer the following questions:

• How do these 3D extensions of classic techniques perform relative to direct

manipulation (with a 6-DOF tracker)?

• How well can users combine rotation and translation into a single action

using the combined mode?

This study also aims to fill a gap in the literature ever since the evaluation

of the first ray casting techniques [56]. Whereas direct interaction techniques

have matured, notably by input scaling [73], there has been little progress in ray-

based techniques. Part of the problem was that tracking a wand in 3D used to be

expensive (Optitrack) or tethered (Polhemus FasTrack) but with the emergence

of novel hardware (PlayStation Move, Kinect) there are new opportunities for

wand-based interaction.

3.2 Related Work

There is a large body of work on manipulating objects from a distance in im-

mersive VR [53, 55, 66, 73]. Much of that work focuses on selecting and placing

remote objects. In applications where a 3D model is being demonstrated to

an audience, however, the user would most likely need to interact in a lim-

ited depth, a form of FishTank VR or “Shallow depth interaction”[24]. Some

other e↵orts for remote 3D object manipulation include work by Song et al. [65]

that uses Microsoft Kinect to track the user’s arms and manipulate objects us-

ing a handle-bar metaphor. Myers et al. looked at the performance of laser

pointer-like devices and concluded that conventional interaction techniques and

UI paradigms are not suitable for use with laser pointers [47] (ray-casting with

a wand is similar to using a laser-pointer).
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Touch-input : Cohe et al. [11] introduced tBox, a 3D manipulation widget for

touch-screens and found that users could easily assemble a 3D object with it.

Touch input enables users to interact with a display by removing an indirection

layer, and there are quite a few solutions for 3D interaction by using multi-

touch[24]. However when the display size exceeds a certain threshold, touch

input ceases to be an option as the user needs to cover a large area with physical

movements and in some cases the display area is out of reach (as is the case

with projectors and tile-displays). In addition to the aforementioned problems,

physically approaching the display to interact limits the user’s activity to a very

small area of the display and in the case of collaborative work, the interacting

user obscures the display for the rest of the group. In an attempt to address

these limitations, Katzakis et al. introduced Plane-Casting, a technique for 3D

cursor control using a Smartphone [38].

Performance-wise, direct interaction has long been accepted as the most natural

way to interact with an acquired 3D object [79], yet one of its problems lies in

tracking (Figure 3.1). To allow for free manipulation of the object with the

fingers using most currently available technologies requires a magnetic tracker.

Magnetic trackers are not practical for daily use, they require an expensive,

complicated setup and are prone to interference. As such they are unsuitable in

an active learning or presentation environment where presenters and audience

want to move around and interact with the display. With optical tracking,

attaching retro-reflective markers makes for a bulky controller and occluding the

retro-reflective markers during rotation often causes loss of tracking. There are

some e↵orts underway for RGBD-based 6-DOF tracking [27] but those methods

still lack robustness for practical use.

Wilkes and Bowman proposed Scaled HOMER [73]. Scaled HOMER is an exten-

sion to the classic hand-centered manipulation, HOMER technique by Bowman

and Hodges [8] in which the authors combine PRISM-like[15] velocity-scaling

with the, already input scaled, HOMER technique for improved performance.

The authors reported an improvement over the standard HOMER technique,

however, their evaluation task is, essentially, only a 2D movement task, not a

3D task. As such another goal of our study was to ascertain the performance

of Scaled HOMER in a proper 3D task.
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Figure 3.1: To rotate an object in 3D, direct interaction requires full range
tracking whereas ray-based techniques only require a small angle which can
be implemented at lower cost (e.g. IR leds + Wii-mote camera or PS Move
controller).

3.3 Proposed Techniques

The design philosophy behind the techniques is to allow as much as possible

for intuitive and fatigue-free interaction based on pointing. Pointing is very

intuitive to humans and it is used as a means of communication from a very

young age, even before the development of speech [9]. Similarly, pointing with a

laser pointer-like device is also intuitive, but extending the arms in front of the

torso is slow and induces fatigue over time. As such, we noticed users tend to

shoot laser pointers from the hip or the abdominal level during our pilot trials.

This is possible because pointing, even in the real world, is based on continuous

feedback from vision and proprioception. So similar to how users, along with

proprioception, see their arm and finger for feedback in natural pointing, they

use proprioception and the pointer’s dot as feedback when using a laser pointer.

The two proposed techniques are a combination of 3 di↵erent modes, depending

on the buttons the users are pressing. There is a translation mode, a rotation

mode and a combined Translation+Rotation mode.
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Mesh-Grab

In the first of our two evaluated techniques, Mesh-grab, the user casts a ray

from a handheld wand (Wiimote in our implementation). The ray intersects

the mesh at some point. With the simultaneous press of buttons A+B (thumb

and forefinger) the user can “skewer” the mesh at that point. While the buttons

are pressed the mesh behaves as if the ray was a solid link that hinges on the

mesh with freedom to move on one hemisphere, like a ball-point joint (Figure

3.3). Calculation of the behavior of the object is based on a constraint solver

that ensures that, while the buttons are pressed, the acquired point always

remains under the ray, at the same, locked, distance from the wand.

The axis of rotation ~R is calculated from the cross product of the two vectors

(Figure 3.2). ~v1 is a vector starting from the center of the object and ending

at the intersection point while ~v2 is the same vector following movement of the

ray:

Figure 3.2: The translation and rotation algorithm of the combined mode. C is
the center of the object.

~R = ~v1⇥ ~v2

and the angle ✓ from their dot product.
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✓ = arccos ~v1 · ~v2

Thus we calculate one transformation matrix Mr, that holds that rotation ✓

in its rotation component. To judge whether or not translation is applied we

compare if the length of ~v2 is di↵erent than ~v1. If it is, then we calculate a

transformation matrix Mt as a unit matrix with the translation component

being the vector ~t. ~t is a vector who’s length is the di↵erence in magnitude of

the two vectors ~v1 and ~v2, on the direction of ~v2.

|~t| = | ~v2|� | ~v1|

The transformation M applied finally is the combination of the rotation and

translation matrices:

[M ] = [Mr]⇥ [Mt]

Figure 3.3: Manipulating a 3D model using Mesh-Grab.

With only button B (forefinger) on the Wii-mote, the acquired mesh is only

translated (no rotation applied), then finally with only button A (thumb), inter-

action is limited to rotation only. Users can also use the d-pad on the Wii-mote

to retract or expand the ray while on any of these modes (instead of translating

the wand).
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In the innertia version of the techniques, if there was motion upon release of the

buttons, the object continued to move as if it were in a weightless environment

with the following function:

[M ]
i

= [M ]
i�1 · ↵

where M is the transformation matrix at the frame when the button was re-

leased (frame i) and ↵1 is the attenuation constant. The flicking algorithm

applied translation and rotation separately, as such it was possible to make

complicated combinations of moves, as if manipulating a weightless object in

space. If the object was re-grabbed during flicking, motion would stop. During

early trials we found that beginner users could not handle flicking very well, as

such flicking was disabled for the experiment tasks. We think that better tuning

of the flicking algorithm to take into account a backlog of more than the last

frame of motion could potentially result in a much better interaction.

Arcball-3D

The design rationale behind Arcball-3D was that for simple meshes, it would be

easy to predict how the mesh would behave when hit with the ray and “pulled”

or “pushed”, but for a complicated mesh with holes and extrusions the users

might struggle to hit the mesh or manipulate it in the desired way. As such we

hypothesized that a sphere bounding the mesh would result in an interaction

that is more predictable and consistent across di↵erent mesh types.

Arcball-3D works in exactly the same way as Mesh-Grab. The ray cast from the

wand intercepts a sphere, one that tightly encloses the manipulated mesh. The

interaction modalities available following acquisition of the sphere are identical

to Mesh-Grab.

Arcball-3D is fundamentally di↵erent from the original Arcball technique by

Shoemake [63]. In the original Arcball, the screen location of the 2D cursor

is projected onto a sphere and the resulting motion is an interpretation of the

2D mouse motion. In Arcball-3D the ray-sphere intersection is calculated from

real 3D inputs and the resulting motion is not a result of mathematical inter-

pretation. It’s the result of the actual motion, in 3D, of the intersection point.

Unlike the original Arcball, in Arcball-3D the ray can be cast from an arbitrary

point in 3D space and thus it is possible to achieve manipulation from skewed

1
0.95 in our implementation
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positions, as opposed to the original Arcball which only considers manipulation

from the front.

Figure 3.4: Arcball-3D, the ray intersects a bounding sphere instead of the
object.

3.4 Evaluation

We conducted a formal experiment to evaluate the performance of our proposed

techniques as compared with Scaled HOMER[73], one of the state-of-the-art in

direct manipulation techniques. We wanted to test the following hypotheses:

• Mesh-Grab and Arcball-3D will significantly underperform compared to

Scaled HOMER (hypothesis 1)

• Users will prefer the ray techniques overall because of fatigue using the

direct interaction technique (hypothesis 2)

Based on the literature on 3D interactions[17], users usually prefer to keep

DOF manipulation seperate when it comes to high DOF devices. As such we

hypothesize that:

• Users will prefer the separate modes as opposed to the combined mode.

i.e. users will prefer to separate translation from rotation (hypothesis 3).

Apparatus: Participants sat 3m away from a short-focus monoscopic 3D pro-

jector screen and held the wand in their dominant hand. The Wii-mote-based
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wand had a wooden extension where a 3D tracker (Polhemus Fasttrak) was at-

tached to avoid electromagnetic interference from the Wii-mote. The wand was

tracked in 6-DOF. The wooden extension was attached in such a way that it does

not in any way interfere with the Wii-mote’s natural grip position (Figure 3.5).

A foot pedal was provided to advance to the next trial (Figure 3.6). For Arcball-

3D participants held the Wii-mote in their dominant hand, whereas for Scaled

HOMER, users held the polhemus receiver wrapped in a spherical fingerball-like

container and held the Wii-mote in their o↵-hand for button presses. We had

users face the screen, as opposed to Figure 1.2, since we felt that interacting

from a skewed position would be disadvantageous to Scaled HOMER.

Figure 3.5: Wii-mote with the polhemus Fasttrak receiver attached. The exten-
sion does not a↵ect the natural grip position of the Wii-mote.

300 cm
138
cm

245 cm

Figure 3.6: The experimental setup.

Task : The hypotheses were tested based on the collective results of two di↵erent

tasks: A 6-DOF docking task, where a pyramid-shaped cursor was docked inside

a wireframe copy, and a rotation experiment where the pyramid cursor and

wireframe target were matched position-wise and all participants had to do was

match the rotation. Participants received a brief explanation of the techniques

and were allowed to practice briefly prior to commencement. They repeated
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the tests with all three techniques in a counter-balanced order: Mesh-Grab,

Arcball-3D and Scaled HOMER.

Subjects: 13 Male participants, undergraduate and graduate students in com-

puter science took part in the experiment (21-30 years old). The experiment

lasted approximately 30 mins.

Docking Experiment : In the 6-DOF docking experiment the target appears

in 12 pre-defined locations that lie on a sphere centered at the starting position

of the cursor, the center of the screen (Figure 3.7). The radius of the sphere was

approximately 52cm on screen. Locations 1-4 are on the X and Y axis whereas

locations 5-12 are each in one of the 8 octants of the system defined by the

cursor starting position.

Figure 3.7: Targets were located on the surface of a sphere equidistant from the
cursor starting point.

Targets were rotated about the (�1,�1,�1) axis by a 10� interval depending

on their position number starting from 20�, i.e., position 1 had a 20� rotation,

2 had 30�... 12 had 130�. Rather than random rotations, these rotations were

chosen to allow for easier reproducibilty of the experiment. Participants selected

the cursor using ray-casting (in all 3 techniques), then docked the cursor in the

wireframe target and when they felt they had a good match they could press the

foot-pedal to proceed. When the cursor pyramid’s colored vertices approached

the corresponding vertices of the target past a certain threshold (1.0f), the

vertex lit green to signify a match (Figure 3.8). Participants could then press

the pedal, in which case the cursor was reset in the starting position and the
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Figure 3.8: Docking the pyramid in the wireframe target.

target randomly appeared in one of the remaining positions until all 12 positions

had been cycled twice (for a total of 12 positions ⇥ 2 times ⇥ 3 techniques = 72

trials).

During the experiments, we measured the following performance metrics:

• Position O↵set, as a measure of the 3D Euclidean distance between the

(cursor and target’s) pyramid centers (only for the docking task).

• Rotation O↵set, as a measure of the sum of the distances between each

vertex of the cursor pyramid to the corresponding vertex of the target

(only for the rotation task).

• Movement Time (MT) from the time the cursor appeared, until the

time docking was complete (participant pressed the pedal).

3.5 Results

Docking Experiment Results: A within-subjects ANOVA showed a strong

e↵ect between technique and movement time (F(2,24) = 4.04 p < .031). Move-

ment times means are summarized in Figure 3.9. A Holm pairwise compari-

son revealed the significant di↵erences between the techniques (Mesh-Grab vs

Arcball-3D p < 0.1, Scaled-Homer vs Arcball-3D p < 0.017, Scaled-Homer vs

Mesh-Grab p < 0.1).

As predicted (hypothesis 1) Scaled HOMER was the fastest among the 3 tech-

niques. However, contrary to our expectations, Scaled HOMER was only slightly

faster than the other two techniques (8.47s), closely followed by Arcball-3D
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(9.69s) and then by Mesh-Grab (11.9s). We expected the performance gap to

be wider and this result was a surprise as it indicated that our proposed tech-

niques perform almost equally well when put up against the state-of-the-art.
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Figure 3.9: Mean movement time (MT) in seconds (Docking Task).

In terms of Position O↵set, again to our surprise, Arcball-3D was the most

accurate among the 3 techniques, marginally followed by Mesh-Grab and then

Scaled HOMER (F(2,24) = 12.81 p < 0.001). The Holm Post-hoc test revealed

significant di↵erences between Arcball-3D and Scaled HOMER (p < 001) as

well as Mesh-Grab and Scaled HOMER (p < .001). Position Accuracy results

are summarized in Figure 3.10.
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Figure 3.10: Mean position o↵set (Docking Task).

A reason for the poor performance of Scaled HOMER in accuracy could be the

fact that participants need to hold their arm suspended in mid air for a number

of seconds while they attempt to match the target accurately. Perhaps fatigue

motivated them to skip accurate matching and end the trial sooner. Fatigue

could also account for Scaled HOMER’s performance gain in Movement Time.

It is possible that because participants wanted to avoid fatigue, they attempted

to expedite the trials.

It should be noted that this experiment, being very short in duration, favors

Scaled HOMER, that probably requires a longer experiment before its weak-

nesses start becoming apparent (users annoyed by the cable of the tethered
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tracker, fatigue onset etc.). This assumption further strengthens the case for

Mesh-Grab and Arcball-3D.

There was also an e↵ect of technique on Rotation O↵set between techniques

(F(2,24) = 3.35 p < 0.01). A post-hoc analysis revealed that, using Arcball-3D,

participants matched the target’s rotation 12% more accurately than Mesh-

Grab, (p < 0.01) but the di↵erences with Scaled HOMER were not found to be

significant (p = 0.14). No statistically significant di↵erence was found between

Mesh-Grab and Scaled HOMER (p = 0.19).

Rotation Experiment : In the Rotation experiment the two pyramids were

centered at the same point and again users were asked to rotate to match the

wireframe’s rotation. Like the docking experiment, users were asked to match

12 preset rotations, twice, in random order. Again the vertices lit up when in

close proximity(0.5f) to signify a match and users could press the foot pedal to

advance to the next trial. Users repeated the task with all 3 techniques.

Rotation Experiment Results: On the rotation task, to our surprise, Arcball-

3D had the lowest completion time mean (8.77s) followed by mesh-grab (10.34s)

and then by Scaled HOMER (10.49). A repeated-measures ANOVA found no

statistical di↵erence (F(2,24) = 1.663 p < 0.22), however, a pairwise Holm test

revealed the significant di↵erences: Arcball-3D vs Scaled HOMER p < 0.001,

Arcball-3D vs Mesh-Grab p < 0.001, Mesh-Grab vs Scaled HOMER p = 0.7,

i.e., no significant di↵erence.

The results are summarized in Figure 3.11. Technique had no e↵ect on accuracy

in the rotation task (F(2,24) = 0.13 p = 0.87). It should be noted that had out-

liers been removed, the statistics were more in favor of our proposed techniques

but we chose to include all trials for the sake of completeness.

The rotation experiment results are slightly controversial as manipulating a

fingerball for rotation has long been believed to be the most intuitive means

for rotation [79]. Yet our results show that a ray-based technique can perform

equally well or even better than direct manipulation. This result calls for further

analysis and scrutiny. A potential explanation for Scaled HOMER’s reduced

performance in the rotation task is the fact that users had to hold the fingerball

in one hand. Manipulating, clutching and avoiding the tethered line with just

one hand could potentially be one of the reasons for the rotation performance

deficit.

When presenting a 3D model to an audience (depending on the situation) one

could argue that rotation is more important than translation, i.e., the model
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Figure 3.11: Rotation Task Completion Time means.

is centered and occupies as much of the screen as possible then the presenter

rotates to show the features (perhaps that would be the case in the scenario

where a professor is demonstrating anatomy). That is the reason the rotation

only task was chosen as one of the two evaluation tasks. For an application

scenario such as the aformentioned one, the results of the rotation experiment

overall bear more gravity than the docking task.

Finally, analysis of the docking time per position for each technique suggests that

Arcball-3D showed a slightly more “linear” response to the increasing rotation

angles per docking position (Figure 3.12). Scaled HOMER’s response was less
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Figure 3.12: Mean Completion Time per target position (refer to Figure 3.7)
for positions.

linear. This could perhaps be due to the fact that, past a certain angle of

rotation, when using the fingerball-like-tracker for Scaled HOMER participants

were often forced to clutch and handle the fingerball between their fingers. This

perhaps explains the sudden jump for Scaled HOMER around position 9 (100�

rotation). At that point users possibly having met the supination limit of their

wrist were forced to clutch to keep rotating. Regression analysis on the results

is required, however, before definite conclusions are reached.

Interaction Modes: The ray-based techniques had three interaction modes:
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Table 3.1: Summary of evaluation results. Techniques ranked depending on
their relative performance.

Technique Quantitative
Performance

User
Prefer-
ence

Cost
E↵ec-
tiveness

Freedom
to Move

Fatigue

Arcball-3D A- A A A A
Scaled HOMER A B C C B

Mesh-Grab B C A A A

Translation only (B), rotation only (A), and translation+rotation (A+B). We

calculated what percentage of the task time was used in each mode. The results

from the Mesh-Grab technique show that on average, during a trial, participants

spent 43% of the task time without pressing any buttons (i.e., aiming the ray),

27% rotating and 25% translating, while only 4% of the task time was spent us-

ing the combined mode. This result indicates that users found it di�cult to use

the mode that combines rotation and translation and preferred to manipulate 3-

DOF at a time. In Arcball-3D, results are almost identical but participants used

the combined mode even less (1% of the entire time). We believe that adding

to this discrepancy is perhaps the fact that users needed to press two buttons

for the rotation+translation mode, yet that is only a speculation. These results

confirm the third hypothesis and are in line with the literature on multi-DOF

manipulations. Even though this analysis addresses the 2nd research question

that was presented in the introduction, a better analysis that shows how much

each mode contributed to each type of motion (rotation, translation etc) in the

docking task could shed additional light to the usability of each mode.

Qualitative Evaluation : Following completion of the experiment with each

technique, participants were asked to rate the techniques on the following as-

pects: Ease of use, Accuracy, Fatigue and Fun to use using a 7-point likert scale

questionnaire (Example question: The technique was easy to use: [Strongly

Disagree 1... 3 Neutral ... 7 - Strongly Agree]). A Kruskal-Wallis test and

post-hoc analysis revealed that participants rated Arcball-3D as the easiest to

use, followed by Scaled HOMER then Mesh-Grab. This confirms the second

hypothesis.

The slightly poorer performance of Mesh-Grab could be due to the tetrahedron

shape of the item that was being manipulated and that perhaps a cube or

another convex shaped mesh could have di↵erent results.

Finally most participants commented on the arms fatigue and that it was easier

to cast a ray from the hip than holding the tracker in front of the torso. There
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were also comments on the awckward posture that is sometimes the case with

the fingerball-like tracker on Scaled HOMER. Results of the questionnaires are

summarized on table 3.2.

Table 3.2: Summary of the questionnaire responses.

Technique Mesh Arc3D HOMER K-Wallis
Easy to use 3.77 5.15 4.38 (p < .05)
Accurate 3.08 4.54 5.23 (p < .01)
Tiring 4.15 3.46 5.31 (p < .05)
Fun to use 3.92 5.31 5.31 (p < .05)

3.6 Discussion

All three techniques compared share similar weaknesses when it comes to per-

forming axis-aligned motions or returning to the exact same point or via the

exact same path. However such weaknesses exist in most devices with inte-

gral DOF control, like the mouse, the Space Navigator [1] or the Phantom [46]

but that sort of motion is not necessarily required by our intended application

scenario. Finally, a real-world application in education or visualization would

ideally allow for annotations that might not be easy to do from a distance with

a ray technique without input scaling and smoothing to account for distance

from the screen amplifying arm jitter. We summarize the relative strengths and

weaknesses of each technique on Table 3.1 by our subjective ranking.

Arcball-3D performed almost as well as Scaled HOMER, it was highly preferred

by the users, it can be implemented at lower cost, it allows for free movement

of the presenter or within a group of collaborators and induces little fatigue.

Mesh-Grab received similar scores but since users showed the least preference

and due to it’s lower quantitative performance it ranks third overall. Scaled

HOMER did well performance-wise but users did not prefer it and considering

the tethering, high costs and fatigue, it ranks second.

Our implementation of flicking proved to be slightly troublesome for the exper-

iment participants in the pilot trials but expert users users, that were exposed

to the techniques for a long time, showed interest in flicking. The results in this

work could potentially be transferred to interaction in Virtual Reality while

wearing an HMD or to Augmented Reality (AR).

Novice users did not prefer the combined mode (translation+rotation) but ex-

pert users commented favorably and we believe a better tuned combined mode
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algorithm could prove competent yet further studies need to be conducted.

3.7 Conclusion and Future Work

We presented an evaluation of two techniques for ray-based 3D object manipu-

lation, Mesh-Grab and Arcball-3D. Our evaluation demonstrates that the new

techniques perform very well against the state-of-the-art in direct manipulation,

Scaled HOMER. Arcball-3D was the overall winner in our evaluation and this

indicates that 3D object manipulation on a large display with ray-based tech-

niques can perform well at short-to-medium distances. In addition to the user’s

preference, as ray-casting based techniques can be implemented with a wider

variety of hardware or with o↵-the-shelf consumer products, we conclude that

they are a better alternative to direct interaction for remote 3D manipulations.

Future Work: Flicking with physics was disabled for the experiment and tun-

ing the physics algorithm better, remains as future work since we are interested

in establishing how well users can throw objects around and predict their motion

paths like they do with physical objects in the real world. We are also inter-

ested in exploring di↵erent controller form factors that can o↵er more input

modalities (text input or a stylus for annotations etc).
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Chapter 4

Spatial Characteristics of

Raycasting-based vs Direct

Interaction in a 6-DOF

Docking Task

4.1 Introduction

A handheld tracked wand is the most popular method for selecting and manip-

ulating data in 3D [75, 42]. As virtual reality, augmented reality or large/tile

displays technology advances and 3D manipulation becomes more commonplace

there is an increasing motivation to design e↵ective 3D manipulation tech-

niques1. understand the characteristics of 6-DOF interaction in depth in order .

Despite this motivation other than some early work by Zhai [78, 79, 77] there are

a limited number of previous studies on the subject. Analysing timestamped

spatial data gathered from such a task is a challenge partly due to the large

volume and the high dimensionality of the data.

This study contributes an analysis of a dataset from a 6-DOF docking exper-

iment and attempts to provide quantifiable evidence that can aid in under-

standing the fatigue induced by common 3D manipulation techniques. We also

contribute a methodology for averaging time-stamped 3D motion data in order

1
A discussion regarding terminology can be found in the appendix

35
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to study speed profiles from di↵erent docking trials. Finally we discuss our

findings and contrast them with some earlier findings in the literature.

4.2 Related Work

Zhai [78] attempted to quantify coordination in 3D manipulation. They propose

e�ciency as a measure of quantifying coordination. The e�ciency measure

revealed performance di↵erences between elastic rate and free position control.

The study however, does not consider whether or not an e�cient or coordinated

motor performance is actually the least fatiguing and no attempt has been made

since, to establish an association between their proposed measure, e�ciency,

and fatigue or e↵ort. Acott et al. [2] also studied trajectory based tasks and

proposed a “steering law” that models steering time.

Liu et al. [44] analysed dwelling in the ballistic and corrective phase of a 3D

manipulation between real world and virtual reality. In addition to time spent in

both phases being longer in VR, the authors also found that movements in VR

comprised of more discrete sub-movements than in the real world. In follow-up

work, the authors went on to propose a number of techniques that attempt to

do real-time classification of motion for improving interaction [43]. Our work

attempts to validate the existence of these stages in our docking task data and

to establish whether or not these phases exist only during direct manipulation

or also with raycasting-based manipulation.

In an attempt to tackle the issues of fatigue with direct techniques Katzakis et

al. proposed Mesh-Grab and Arcball3D [39]. The techniques were compared

against Scaled HOMER [73] and were found to perform on par. Although the

authors designed the techniques for reduced fatigue they only present qualitative

data from the questionnaires regarding fatigue.

The data used in this study come from the 6-DOF docking experiment of our

earlier work. [39]. In the following section we will briefly present the techniques

used in the study followed by the experiment, our analysis methodology and

our results.
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Figure 4.1: Manipulating a 3D model using Mesh-Grab.

Figure 4.2: Arcball-3D: The ray intersects a bounding sphere instead of the
object.

4.3 Ray Techniques: Mesh-Grab - Arcball-3D

Mesh-grab involves the user holding a wand and casting a ray from it into the

3D scene. The ray intersects a mesh. With the simultaneous press of buttons

A+B (thumb and forefinger) the user can “skewer” the mesh at the intersection

point. While the buttons are pressed the mesh behaves as if the ray was a solid

link that hinges on the mesh with freedom to move on one hemisphere, like a

ball-point joint (Figure 4.1). A constraint solver that ensures that, while the

object is acquired, the acquired point always remains under the ray, at the same,

locked, distance from the wand.

With only button B (forefinger) on the Wii-mote, the acquired mesh is only

translated (no rotation applied, standard HOMER technique), then finally with

only button A (thumb), interaction is limited to rotation only. Users can also

use the d-pad on the Wii-mote to retract or expand the ray while on any of

these modes (instead of translating the wand).

The logic behind Arcball-3D was that for simple meshes, it would be easy to pre-

dict how the mesh would behave when hit with the ray and “pulled” or “pushed”,
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but for a complicated mesh with holes and extrusions the users might struggle

to hit the mesh or manipulate it in the desired way. As such we hypothesised

that a sphere bounding the mesh would result in an interaction that is more pre-

dictable and consistent across di↵erent mesh types. Arcball-3D works in exactly

the same way as Mesh-Grab. The ray cast from the wand intercepts a sphere,

one that tightly encloses the manipulated mesh (figure 4.2). The interaction

modes available following acquisition of the sphere are identical to Mesh-Grab.

4.4 Direct Technique: Scaled HOMER

Wilkes et al. proposed Scaled HOMER [73]. Scaled HOMER is an extension

to the classic hand-centered manipulation HOMER technique by Bowman and

Hodges [8] in which the authors combine PRISM-like[15] velocity-scaling with

the already input scaled HOMER technique for improved performance. The

authors reported an improvement over the standard HOMER technique, how-

ever, their evaluation task is, essentially, only a 2D task, not a 3D task. Scaled

HOMER is one of the three techniques analysed in this work.

The reason these techniques were chosen is because both Scaled HOMER and

Mesh-Grab/Arcball-3D can be executed with a wand.

4.5 Experiment

We briefly describe the experiment from Chapter 3, more details can be found

there.

13 Male participants, undergraduate and graduate students in computer science

took part in the experiment (21-30 years old). Participants sat across a projector

screen and held a tracked wand. A foot pedal was provided to advance to the

next trial (Figure 4.3)

Task : Subjects performed a 6-DOF docking task, where a pyramid-shaped

cursor was docked inside a wireframe copy (Figure 4.4).

Participants received a brief explanation of the techniques and were allowed to

practice briefly prior to commencement. They repeated the task with all three

techniques in a counter-balanced order: Mesh-Grab, Arcball-3D and Scaled

HOMER. It should be noted that essentially Mesh-Grab and Arcball-3D tech-
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Figure 4.3: The experimental setup.

Figure 4.4: Docking the cursor in the wireframe target.
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niques tested in chapter 3 were a subset of three techniques: The Mesh-Grab/Arcball-

3D translation mode, a Mesh-Grab/Arcball-3D rotation mode, and a standard

HOMER mode (not scaled) should the user wish to use it.

Task : The docking target appears in 12 pre-defined locations that lie on a

sphere centered at the starting position of the cursor, the center of the screen

(Figure 4.5). The radius of the sphere was approximately 52cm on screen.

Locations 1-4 are on the X and Y axis whereas locations 5-12 are each in one

of the 8 octants of the system defined by the cursor starting position.

cursor starting
position

Figure 4.5: Targets were located on the surface of a sphere equidistant from the
cursor starting point (used with permission).

Targets were rotated about the (�1,�1,�1) axis by a 10� interval depending

on their position number starting from 20�, i.e., position 1 had a 20� rotation, 2

had 30�... 12 had 130�. Participants selected the cursor using ray-casting (in all

3 techniques), then docked the cursor in the wireframe target. When they felt

they had a good match they could press the foot-pedal to proceed. When the

cursor pyramid’s colored vertices approached the corresponding vertices of the

target past a certain threshold, the vertex lit green to signify a match (Figure

4.4). Participants could then press the pedal, in which case the cursor was

reset in the starting position and the target randomly appeared in one of the

remaining positions until all 12 positions had been cycled twice (for a total of

12 positions ⇥ 2 times ⇥ 3 techniques = 72 trials).
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4.6 Analysis Methodology, Results and Discus-

sion

The authors of the original paper reported similar quantitative performance for

all three techniques in docking times and accuracy. But the qualitative results

were skewed in favor of Arcball 3D. Users were asked to rate techniques on a

scale of 1..7. In terms of fatigue, which is the focus point of this work, users

rated Scaled HOMER as the most fatiguing (average score 5.31) followed by

Mesh-Grab (4.15) with ArcBall-3D the least fatiguing (3.92, p < .05).

During the task, the position of the tracker on the wand was recorded in a time

series that spanned the beginning of the trial, until the pedal was pressed. A

time-stamped series of coordinates in the 3D space of Euclidean geometry can be

though of like any other time-series, yet standard statistical analysis tools [23]

are not straightforward to apply because of the 3D nature of the samples. All

analyses were conducted using R [57] and the raw data as well as the R scripts

are available as appendix.

Learning E↵ect

A plot of task completion times for each trial is shown in figure 4.6 along with the

learning curve from Zhai’s experiment [77]. We used Local Polynomial Regres-

sion Fitting [37] on the learning e↵ect data. The resulting fitted curve revealed

some unusual trends in the learning e↵ect. Usually, for each advancing trial

users performance improves[78], but in this case users show a high variation in

performance across the 24 trials. Despite the learning e↵ects of Katzakis et al.

being di↵erent from Zhai’s they are similar to more recent results by Liu [44].

Both Liu and Zhai’s experiments were longer than that of Katzakis et al. yet

in the early stages where the learning e↵ect should be greater there is a big dif-

ference. The discrepancy in learning e↵ect curves could be due to the fact that

Katzakis et al. allowed participants to practice beforehand (they don’t report

for exactly how long).

Although there was not much variation on the Y axis motion, participants arms

covered a large area in the X-Z axis (looking down from the top - (Figure 4.7).

In 3D manipulation, the X and Y axes are limited by the screen bounds but the

Z axis (depth) is where there is most space for movement. That is the reason

why we are examining the techniques from the top.
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Figure 4.6: Learning e↵ect for each technique. Trials using these techniques
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Figure 4.8: Total area covered by Arcball 3D vs Scaled HOMER. Y axis in m2.

Because when each trial started the arm of the participant could have been at

a di↵erent place, before looking at the area covered by the techniques, we first

translated all trials on the (Y-Z) axis so that their first recorded point is located

on (0,0), a form of normalization. We then calculated the area covered by the

user’s arm using the convex hull algorithm [12]. The convex hull of a planar set

of vertices is the minimum-area convex polygon containing the planar set. This

algorithm determines which points of a planar set are vertices of the convex hull.

We used the method by Venables et al. [68] to calculate the area of the convex

hull. In Arcball-3D the wand covered an area of 29.75cm2. In scaled HOMER,

the area covered was 80.24cm2, more than twice the area of Arcball-3D (Figure

4.8). These results loosely correlate with the qualitative results reported by

Katzakis et al. about fatigue.

Wrist speed across docking task

It has become commonplace for a 1-DOF or 2-DOF aimed motion to distinguish

two distinct phases: A ballistic phase with a large, rapid motion, and a corrective

phase where the user is making final adjustments before matching the target [76,

44]. Liu [44] proposed some measures for applying the same idea to 3D motions,

i.e. dividing the 3D motion in ballistic and corrective phases. However, we were
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interested in averaging all the trial profiles to see if the same phases can be

detected for the overall resulting profile. Such a method could be applied to

various interaction techniques and consistently provide a means for establishing

whether or not these phases exist.

In Scaled HOMER the object is being manipulated directly so we expected some

ballistic/corrective phases whereas in the ray-based techniques, large transla-

tions of the object can be performed by simply rotating the wrist, thus having

little e↵ect on the displacement of the tracker. It should be noted that Mesh-

Grab and Arcball-3D both have a HOMER component so it’s not unlikely that

they exhibit some similar characteristics.

What follows is a methodology we followed for calculating the average speed of

the wand across all trials in a set of docking trials of a technique:

1. We find the trial with the largest number of samples (i.e. trial with the

longest duration) across all users and all positions. All other trials are to

be re-sampled to match that number of samples. This decision was taken

because it makes more sense to re-sample the shortest trials to match the

longest one rather than re-sampling the longer trials to the shortest one,

thus losing samples. The time-stamps of this longest trial will be used

later on to interpolate the shortest ones.

2. For every docking trial l we calculate the speed of the tracker between

two samples. s
x

is the speed of the tracker. P
t

x

, P
t

y

and P
t

z

are the

x,y,z coordinates of the tracker at sample t while P
t�1
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the x,y,z, coordinates at the previous sample. We start calculating speeds

from the second sample of each trial and we assume a speed of zero on the

first one (simple pythagorean theorem to calculate euclidean distance):
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(4.1)

This gives us a series of speeds/time-stamp pairs for that trial (yet note

that at this point every trial has a di↵erent number of samples at di↵erent

time intervals).

3. We normalize every single trial so that their duration is 1 (by dividing

all time stamps by the last one). This gives us pairs for speeds/time-

stamp where the times are from 0..1 and the speeds are the same speeds

calculated before the normalisation.

4. All normalised trials are then linearly interpolated to find the speeds at the
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Figure 4.9: Interpolating a shorter trial to match the sample length and time-
stamp of the longest trial. The old speed samples are dropped and new ones
are interpolated based on the time-stamps of the longest trial.

sample times of the longest trial found in step 1 (Figure 4.9). Since there

is a high sampling rate (120hz) linear interpolation does not a↵ect the

quality of the results. Since now all time-series have been re-sampled and

intepolated, they all have the name number of speed samples at exactly

the same points in time.

5. All normalised trials are then averaged to find the average speed for a

certain time-stamp across ALL trials for this technique.

For the ray techniques, the exact same method was applied, for finding the ro-

tation speed of the wands since Katzakis et al. also recorded the rotation vector

of the wand at each sample. Between two di↵erent timestamps we calculated

the angle of the tracker

This method was applied to the coordinate data from the experiment provided

to us. The resulting speed profiles are plotted in figure 4.10.

The first thing to note is that speed of the wrist during scaled homer exceeded

6 cm/sec whereas speed of the tracker for the ray techniques remained under

0.5 cm/sec. This result also loosely correlates with the reduced fatigue reported

by the participants.

Scaled HOMER: The scaled homer speed profile (Figure 4.11) does not exhibit

a ballistic-correction phase like those reported by Liu. et al [44]. Based on

observations of the docking trials the speed profiles can be understood as follows:

In the beginning there is a small speed spike because participants make a rapid

motion to select the target. Following that there is a phase where participants

rotate the wand to match the desired rotation before finally translating the
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cursor into the target, where the last speed spike is seen. Based on Liu’s finding

one would expect to see a ballistic and corrective portion in that last docking

phase with Scaled HOMER but there is none. A possible explanation for this

could be Scaled HOMER’s motion characteristics which adapt the speed of the

object manipulated.

Arcball-3D and Mesh-Grab: The ray techniques, in addition to having much

lower speeds also exhibited some distinct phases which also correlate with ob-

servations from the experiment. There is an initial speed spike to select the

target, after which translation is handled by rotating the wrist, which is why

speed decreases so much. Finally, we observed users switching to direct manip-

ulation (HOMER) for the final part of the docking which is the final spike seen

in the speed graphs (Figures 4.12 and 4.13). The rotation speed profiles (dotted

lines) clearly show a ballistic phase where rotation of the ray was being used to

translate the cursor.

So for the ray techniques, a ballistic phase was apparent from the rotation speed

of the wand, but for the direct technique (scaled HOMER) the phases were not

distinguishable.

4.6.1 Distance wrist moved

The distance the wrist travels throughout a single trial could be a good indica-

tion of the fatigue a technique imposes on the user. We analysed the average dis-

tance travelled by the wrist for every technique and found significant di↵erences

between techniques. Figure 4.14 shows the average distance the wrist moved

across all trials for every technique. A within subjects ANOVA analysis showed a

significant e↵ect for technique on the measured variable distance (F2,24 = 389.1

p < 0.001). Post-Hoc tests (Holm’s Sequentially Rejective Bonferroni Proce-

dure) found significant di↵erences. Arcball 3D 2.5cm < 20.6cm Scaled HOMER

(t=20.2 p<0.001) and Mesh-Grab 2.6cm ¡ 20.6cm Scaled HOMER (t=19.49

p<0.001). No significant di↵erence was found between Mesh-Grab and Arcball

3D.

In our previous work (Chapter 3) most participants commented on the arms

fatigue and that it was easier to cast a ray from the hip than holding the tracker

in front of the torso. Table 4.1 is a reproduction from their questionnaire data.

It is unlikely to be able to accurately correlate likert-scale questionnaire data

with quantitative measurements yet our findings from the analyzed motion data
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Table 4.1: Summary of the questionnaire responses.

Technique Mesh Arc3D HOMER K-Wallis
Easy to use 3.77 5.15 4.38 (p < .05)
Accurate 3.08 4.54 5.23 (p < .01)
Tiring 4.15 3.46 5.31 (p < .05)
Fun to use 3.92 5.31 5.31 (p < .05)
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loosely correlates with the responses from the questionnaires. Whether or not

our analysis methodology is the most appropriate for trajectory data, remains

to be validated, nevertheless this study makes some headway into understanding

and quantifying.

Conclusion and Future Work

Summarising the contributions of this chapter: We proposed a methodology

to average speeds of trajectory based tasks with di↵erent lengths. We applied

this methodology to the results from a 6-DOF docking task and extracted some

data that can be used to understand the di↵erences between direct and ray-

based techniques, especially regarding fatigue. The data from this study can

be used to compare these techniques with other interaction techniques and thus

gain some insight into their relative performance.

Although visual inspection of the speed profiles clearly shows the areas where

speed spikes, a more rigorous analysis of the speed plots is necessary. Specifi-

cally, a set of mathematical tools that can be applied to a diverse set of inter-

action techniques must be identified and remains as future work.



Chapter 5

Unistroke:

Facilitating Long

Annotations on 3D Objects

5.1 Introduction

The ray techniques presented in chapter 3 established a way to manipulate a

mesh in an integral way, with a smaller spatial footprint

Drawing on a 3D surface is important in computer graphics, virtual reality,

computer aided design and entertainment or gaming. A 3D painting system

should allow the user to paint on the target object in an e�cient and intuitive

way. The strokes that are performed to paint a 3D mesh are similar to 3D model

sculpting, annotating etc. Drawing on a 3D surface is not as straightforward

as on a 2D surface due to a number of challenges. Since the surface normal of

the mesh can diverge from the view normal there are problems with consistent

spacing of brush strokes. It is therefore desirable to paint with the viewpoint

as much as possible close to the surface normal the mesh. For that purpose, it

is often necessary to rotate the view.

In the case of long strokes, which is also the target of this study, there is often

a disconnect, or a distortion when the user attempts to continue a stroke after

rotating the view (figure 5.1). Our proposed technique, Unistroke attempts to

allow long strokes on a mesh by automatically switching to rotation mode when
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the stroke reaches the edges of the mesh. More details on this in the following

section.

Figure 5.1: Attempting to resume the stroke after rotating the view. The
continuation of the stroke ended up o↵set from the original path.

One of the problems in interactive mesh painting is how to map the “painted”

segment on the 3D mesh’s UV coordinates. To address this issue Igarashi et

al. [33] presented a method to directly paint onto textures. They introduced

methods to paint both sides of a mesh as well as to limit painting to certain

areas when an abrupt change in geometry is detected.

Fu et al. [18] presented layerpaint a painting tool that is not limited to the front-

most visible surface on the screen. Layerpaint allows the users to e�ciently and

interactively draw long strokes across di↵erent depth layers. Fu’s evaluation,

however, was done using an indirect stylus tablet (drawing surface is di↵erent

from the display area) so the results of their evaluation are di�cult to extend

to tablet computers and touch.

Ortega et al. [51] presented ACCD a system for automatic camera control while

drawing on 3D meshes. ACCD overcomes the need to rotate the view by keeping

the camera close to the mesh surface normal as the stroke moves along the

mesh. This approach is very useful for curved surfaces but because the ACCD

algorithm needs to always raycast from the mouse point on the mesh it does

not work consider sharp angle changes (like box edges) (figure 5.2).

In addition to the problem of falling o↵ edges when ACCD is used against a

mesh that is uneven camera motion is erratic and this causes the model to

rotate in unpredictable ways. Depending on the mesh this behaviour could be

unpleasant to the user.
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Figure 5.2: One of the cases not handled by the ACCD algorithm. When the
stroke reaches an edge, it would fall of the edge and stop painting since there is
no more mesh left for calculating the next camera position.

5.2 Unistroke

Unistroke attempts to allow long strokes on a mesh by automatically switching

to an “arcball” rotation mode when the stroke reaches the edge of the mesh.

The user then can rotate the mesh without lifting his finger/stylus. As soon as

the desired viewpoint is reached the user hovers for a few seconds and can then

continue the stroke. At first this solution might seem straightforward, however,

there are a number of challenges involved. In order to keep the stroke smooth,

during virtual arcball rotation the point at which the stroke exited the mesh

must remain under the finger when the finger returns to rotate in the opposite

direction. We thus switch to modes during the following three conditions:

• When the stroke falls o↵ the mesh, the last point painted on the mesh

becomes the rotation point (figure 5.3a)

• When there is an abrupt change in surface normal between the point

painted and the last point panted (figure 5.3b)

• When there is an abrupt change in depth (figure 5.3c)

The algorithm that determines when to switch modes is straightforward (figure

5.4). For the case when the stroke falls out of the mesh the system casts a ray
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(a) switching to rota-

tion mode when the

stroke reaches the edge

of the mesh.

(b) A case where

the normal di-

rection does not

change much, but

the depth does

(c) switching to rota-

tion mode when the

stroke reaches a point

where the normal

changes abruptly

Figure 5.3: Situations when unistroke automatically switches mode to rotation.

from the stylus to the mesh every time the stylus moves. If the raycast does not

hit the mesh, then the last hit point is kept and that point is used as the basis

for the arcball rotation algorithm.

For the case of a normal change (figure 5.4b) if the normal between the previous

triangle and the current triangle passes a certain threshold, the system considers

that a switching point.

Unistroke allowed users to rotate the model by making strokes with their non-

dominant hand similar to INSPECT (chapter 7). A two axis valuator for the

x-y axes and two fingers pivoted about their center to rotate about the Z axis.

5.3 Evaluation

Our hypothesis was that because ACCD moves the camera around, it would be

easier for users to draw a simple drawing on the side of a mesh using unistroke.

That would reflect in their accuracy, as ACCD moves the camera around auto-

matically. We thus asked users to trace two simple drawings on the side of a

mesh. One of the drawings (figure 5.5a) had a house drawn across two sides of

the teapot (to force users to rotate the view) while the other, a bunny (figure

5.5b)
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(a) Making a stroke on the mesh

(b) A case where the normal direction changes signifi-

cantly

(c) A case where the stroke falls outside the mesh.

Figure 5.4: Determining mode changes.
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(a) Image to be traced during first

task

(b) Image to be traced during sec-

ond task

Figure 5.5: Situations when unistroke automatically switches mode to rotation.

5.3.1 Participants

16 participants took part in the study (within-subjects). 10 participants were

male, 6 participants were female. Their ages ranged from 23 to 32 years (mean

age 28 years). All participants were right handed. Participants reported little

to no stylus/tablet experience.

5.3.2 Apparatus

Hardware Setup

The experiment was conducted using a computer running Mac OS X with a 2.9

GHz processor and 8 GB of RAM. The graphics card was an Intel HD Graphics

4000. A Wacom CINTIQ 13HD Touch was used as the display. Participants

sat at a desk with the tablet tilted at a 35 degree angle. Participants held the

stylus in their dominant hand, while touch-gesturing on the cintiq touchscreen

with their non-dominant hand.

Software Setup

The experiment used custom software running on the PC, which was written in

C++ and OpenGL 3.3. The software presented the experimental tasks described

below. In both tasks, the scene was displayed with the target object floating in

the middle of the screen against a dark background (figure 5.6). The software

logged the trial length, the stylus cursor position and the touch points as well

as other relevant metrics.
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5.3.3 Procedure

Upon arrival to the lab, participants were given a short briefing about the

experiment. This included a verbal explanation of the experiment purpose, the

tasks, and a description of the techniques being compared in each task (described

in detail below). Following the briefing, participants were asked to perform both

the tracing task.

A white teapot appeared at the center of the screen at an upright orientation

(figure 5.5b). Users were free to rotate before they started the trace but as soon

as any action was performed, the timer began timing the user and the task was

considered started.

Figure 5.6: Screenshot of the experiment. A user is tracing the drawing

The dependent variables for this task were stroke distance (D), measured in

mm, and completion time (CT) measured in seconds. D served as a measure of

accuracy. Completion time was measured as the time from when the trial began

to the time the participant pressed the foot pedal to indicate task completion.

5.3.4 Hypotheses

(h1) Unistroke will be more accurate than ACCD. We believe that camera

movements will have an e↵ect on the accuracy of participants (h2) Since ACCD

allows for camera manipulation without lifting the pen, users will complete the

task with less strokes using ACCD.
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5.4 Results

The results were analyzed with an ANOVA statistical test. As predicted by our

hypothesis, tracing without automatic camera control was significantly more

accurate (F1,15 = 278.8, p < 0.05) than ACCD (figure 5.7). As predicted by the

second hypothesis, users completed the task with less strokes (F1,15 = 117.2,

p < 0.05) and with significantly quicker times (F1,15 = 155.7, p < 0.05) using

ACCD (figure 5.8 - 5.9).
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Figure 5.7: Users were significantly more accurate using unistroke (results are
statistically significant).
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Figure 5.8: Users were significantly quicker using ACCD (results are statistically
significant).
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Figure 5.9: Users used less strokes with ACCD (results are statistically signifi-
cant).

Figure 5.10: Drawing near the edges of a mesh could lead to false positives and
switch the system to rotation mode.

5.5 Discussion

Unistroke has its limitations. Since our algorithm looks forward this makes it

challenging to paint near the edges of a mesh (the system might accidentally

switch to rotation mode). This is illustrated in figure 5.10.

This might also lead to problems when an uneven mesh is being panted, such

as a mesh scanned using a 3D scanner (kinect fusion etc.). Such a mesh would

have many holes, crevices and bumps which would result in many accidental

mode changes.

Another limitation of unistroke is that rotation always happens about the origin
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of the model (classic arcball). This rotation might not be a problem for drawing

around cylindrical meshes such as a bottle or a vase, but for more complicated

meshes the user might want to rotate di↵erently. This could be solved by press-

ing a finger to define a new rotation pivot point with the o↵-hand. That sort of

function though would require multi-touch which is not universally available in

all touch systems. Which leads to another limitation that should be mentioned.

Unistroke assumes the input device can di↵erentiate between touch and stylus

input. Most of these devices have some rudimentary palm rejection, however it

is sometimes erroneous and as such the palm contact point could be mistaken

for a touch or considered the pivot point for rotation.

These issues should be considered when designing systems that employ unistroke

for rotation of the mesh.

Finally, although unistroke was envisioned as a method to annotate a mesh

during a presentation, since it’s a technique that requires the presenter to look

at the tablet to annotate that would create a disconnect with the audience which

relies on the gaze of the presenter for guidance.

The ideal painting technique is one that combines ideas from chameleon [33],

ACCD [51] and unistroke and these techniques could all be used complementary

depending on the situation.

5.6 Conclusion

We have presented unistroke. A novel method for making long strokes on 3D

models from a single touch input.With additive manufacturing gaining popu-

larity there is an increasing motivation to facilitate painting on 3D objects from

simple inputs so that users can paint using touch screens and styli on tablets.

Finding ways to make mode changes more intuitive without relying on arbitrary

thresholds remains a target for future work.



Chapter 6

Plane-Casting: 3D Cursor

Translation using a

Smartphone

6.1 Introduction

As computer graphics technology advanced, and display sizes grew, it became

possible to view rich computer graphics from a distance, on a large display.

With this the need to interact also ensued. Examples of situations where there

is a need to interact in 3D from a distance include the following:

• A team of artists in a game studio is reviewing the latest 3D assets in

their weekly meeting on a large display. Participants interact, review and

discuss changes relating to the 3D models.

• A medical school professor is demonstrating the anatomy of the human

heart by projecting 3D graphics on a large screen (Figure 1.2). Such a

controller, that does not rely on external instrumentation for tracking,

allows the professor to leave the podium and approach the students while

still being able to interact with the model, thus making the class more

engaging. Students can also use their smartphones to actively participate.

• A group of children interact with a virtual exhibit in a museum setting.

They assemble a 3D puzzle of a fragmented archaeological find much like

61
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an archaeologist would do and learn about the process.

In all the aforementioned situations, users need to position a 3D object easily,

without being tethered by cables or confined to a small working volume because

of the tracker. Users also need to interact in a fatigue free position that will

not make their arms tired after a short period of time. Currently available

methods for remote 3D control tend to lack in expressiveness, intuitiveness and

are cumbersome and fatiguing to use.

As a solution to some of these issues, in this work we propose a novel technique

for 3D positioning using a smartphone. Smartphones feature an array of ori-

entation sensors which make it possible to calculate the device’s orientation in

3D. By further employing 2 degrees of freedom (DOF) from the touch screen we

demonstrate that with our proposed technique, Plane-Casting, it is possible to

translate 3D cursor in space. The core idea of Plane-Casting is that the rotation

of the smartphone controls a virtual plane that constrains the movement of the

3D cursor. Further to the potential for e�cient 3D control, the wide availability

of smartphones is an additional motivating factor for this work.

In the remainder of this paper we present two variations of Plane-Casting, Pivot

Plane-Casting and Free Plane-Casting. We discuss their strengths and limita-

tions and present results from a pilot study.

6.2 Related Work

Aside from the lack of head/viewpoint tracking, interacting with a 3D object

being displayed on a large screen is not much di↵erent from interacting with

a 3D object in immersive virtual reality (VR). There is a large body of work

on manipulating objects from a distance in immersive Virtual Reality (VR)

[53, 55, 66, 73]. Much of this work focuses on selecting and positioning remote

objects. In applications where a 3D model is being demonstrated to an audience,

however, the user would most likely need to interact in a limited depth, a form

of fish tank VR or “Shallow depth interaction”[24].

As an alternative to wands and gloves, touch-input technology enables users to

interact with digital contents by removing an indirection layer, and there are

quite a few solutions for 3D interaction by using multi-touch.

Cohe et al. [11] introduced tBox, a 3D manipulation widget for touch screens

and found that users could easily assemble a 3D object with it. Martinet et
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al.[45] introduced some techniques for direct 3D object manipulations based on

bimanual inputs.

Despite the existence of direct-touch based solutions, when the display size

exceeds a certain threshold, however, touch input ceases to be an option as the

user needs to cover a large area with physical movements while in some cases

the display is out of reach (as is the case with projectors and tiled displays).

In addition to the input problems of touch, physically approaching the display

to interact limits the user’s activity to a small area of the display, and the

interacting user obscures the display for the rest of the group in the case of

collaborative work.

Attempting to address some of the limitations of direct-touch input, freehand/ges-

ture approaches have been proposed.

The Nintendo Wii-moteTM is a popular choice for remote control but it de-

pends on a two-state directional-pad for additional degrees of freedom. Other

controllers like the 3Dconnexion SpaceNavigatorTM depend on desks and are

tethered by cables, thus making them unsuitable for an active, engaging expe-

rience or for use in public or shared spaces.

Some other studies have looked at smartphone based 3D interaction:

Hachet et al.[22] propose a controller that attaches to the side of mobile phones

to provide 3-DOF control, a solution which could be used for remote 3D control.

They evaluate the design in a navigation scenario and report positive reactions

from the users. Their approach is, however, based on proprietary hardware

external to the device, and limited to rate control.

More recently, Jimenez et al.[36] use a hand-held device in a museum scenario for

remote assembly of a puzzle-like task. Their work highlights some of the social

aspects of using a hand-held interface in a collaborative task. Their evaluation

suggests that a usable interface might better promote equal participation in a

group task.

Finally, Song et al.[64] use a hand-held device in a large-display scenario. The

device controls the position of a slicing plane in 5-DOF that explores volume

rendering data and the authors present a novel technique to annotate them.

Their approach unfortunately requires physical proximity to the screen which

makes it unsuitable for remote or collaborative work and also depends on propri-

etary hardware attached to the hand-held device thus limiting it’s applicability.

Their paper o↵ers a thorough review of the literature on hand-held/remote in-
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(a) Pivot PC: The

user gestures to

translate the ac-

quired object which

moves on the plane.

(b) Plane follows

rotation of device.

Rotates about the

pivot with the object

bound to it.

(c) The object’s

rotation does not

change, only its

position does.

(d) Free PC: The ac-

quired object moves

on the plane but the

plane stays attached

to it.

(e) The pivot point

of the plane is always

fixed at the center of

the object’s bound-

ing box.

(f) Free Plane-

Casting can be

thought of as a

means to track the

finger’s relative mo-

tion to the display.

Figure 6.1: The two variations of Plane-Casting. Pivot Plane-Casting
(6.1a,6.1b,6.1c) and Free Plane-Casting (6.1d,6.1e,6.1f)

.

teraction.

Although integral control of a plane used to constrain motion is unique to Plane-

Casting, Bier’s discussion on constraining motion in a scene composition sce-

nario is one of the earliest references in the literature [5]. Bier further emphasizes

the power of constraint-based systems in subsequent studies.

6.3 Plane-Casting

Pivot Plane-Casting

In Pivot Plane-Casting (Pivot PC) the shape of the touch screen is drawn as a

rectangle at the center of the scene (Figure 6.1a). The user can rotate the device
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Figure 6.2: Pivot PC, moving vertically to the plane becomes easier as the
object moves away from the pivot point of the plane.

to control the orientation of the plane (position-controlled). The plane’s pivot

point is at the center of the rectangle and always remains fixed at the center

of the virtual space. The 3D cursor’s movement is constrained on the plane

defined by the rectangle but not limited to it’s bounds. The user can translate

the cursor on the plane by gesturing on the touch screen and rotate the plane to

move the cursor to any point in 3D space (Figure 6.1b). In our implementation

the tactile-sensor is a touch screen but any touch panel that can be tracked is

suitable for Plane-Casting.

Free Plane-Casting

Free Plane-Casting (Free PC) is similar to Pivot PC but in this variation the

plane’s pivot point follows the cursor’s motion in 3D space. Free PC shifts the

center/pivot point around with every slide movement. The rectangle that defines

the plane is thus always attached to the cursor that is being manipulated and

they move as one (Figure 6.1d), with the orientation of the rectangle constantly

re-defining the plane (Figure 6.1e).

In Pivot PC, placing the cursor away from the pivot point of the plane makes

it easier to translate the object vertically, on the normal to the current plane

thus making it easier to quickly change direction as would be the case in a game

(Figure 6.2), yet by sacrificing accuracy. Due to Free PC’s nature, only 2-DOF

are instantly available at any time and moving in a direction on the normal to

the current plane requires a supination/pronation movement (Figure 6.1e).



66 CHAPTER 6. PLANE-CASTING

In our implementation of Free PC and Pivot PC selection of the object to be

manipulated is done by a spherical cursor that intersects the desired object in a

widely used “virtual hand” metaphor. Depending on the application, there are

many strategies for object selection but that remains beyond the scope of this

work.

6.4 Evaluation

Our pilot study evaluated the two techniques against each other in a 3D posi-

tioning task. A remote manipulation scenario like the ones mentioned in the

introduction would require the ability to move an object in 3D, but which tech-

nique would be better for this? We wanted to test the following two hypotheses:

• H1 : Pivot PC will perform faster than Free PC since it only requires an

initial alignment of the plane to the target.

• H2 : Free PC will be more accurate as it’s essentially bringing the pivot

point closer to the target and does not require a “steady hand” like Pivot

PC.

12 right-handed male participants, students and faculty volunteered for the

experiment (age mean 25). Participants had no prior experience in using the

techniques.

Figure 6.3: Illustration of the experimental setup.
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6.4.1 Set-up

Subjects sat 270 cm from the projection screen of an ultra-short-focus projec-

tor (Sanyo PDG-DWL2500J). They were instructed to hold the smartphone

(Samsung Galaxy SII) in their non-dominant hand while gesturing on the touch

screen with their dominant hand (Figure 6.3). A foot switch was provided for

advancing to the next trial. The projection screen had a width and height of

245 x138cm respectively with a 1280 x 800 display resolution in stereo (NVIDIA

3D Vision). Data transmission of the device orientation ( 400hz) was over an

IEEE 802.11g WiFi link and was filtered with a 30 sample moving average filter

for stabilization (see appendix A for more details).

Figure 6.4: Screenshot of the evaluation task using Pivot PC. Participants had
to dock the cursor (multi-colored-house) to the translucent target.

6.4.2 Task

In the evaluation task, the house-shaped cursor (and rectangle) appeared be-

tween the viewpoint and the far wall of the 3D space (Figure 6.4). When the

experiment commenced, a translucent copy of the cursor appeared randomly at

one of 12 pre-defined positions around the cursor (Figure 6.5) and subjects had

to match the position of the cursor with that of the target under two conditions:

1) as quickly and 2) as accurately as possible. The targets appeared in positions

distributed evenly on the surface of a sphere centered at the cursor’s starting

position with a radius of either 52 or 96 cm respectively (Figure 6.5). Each

position was tested twice with each technique, one in the Speed and one in the
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Accuracy condition (counterbalanced order).

Figure 6.5: Layout of the targets. 12 positions evenly distributed on a sphere
around the cursor starting position with 4 of them axis-aligned. Targets 1-8
are pivoted 45� about the Y and Z axes. The two missing front and back axis-
aligned positions were not tested since they would occlude or be occluded by
the cursor and thus slightly confuse participants.

When the cursor’s bounding box intersected the target’s bounding box, the

target’s bounding box would become visible signaling a match. Subjects could

not end the trial if they did not have a match. When subjects felt they had

achieved a good match, they pressed the foot switch and the trial ended with

both the cursor and the target disappearing. Only the rectangle remained. In

Free PC, the pivot point of the plane/rectangle would return to the center of

the scene. The next trial would only begin when subjects returned the device to

it’s original orientation parallel to the ground at which point the cursor would

re-appear at the center of the plane, and the target would appear at the next

position to be tested.

All subjects received a brief explanation of the techniques and performed the

task once with each technique as practice (order of techniques was also coun-

tebalanced). Subjects performed 12 positions ⇥ 2 radii ⇥ 2 techniques ⇥ 2

(speed vs. accuracy) = 96 trials (1152 total). The experiment lasted around 40

minutes per participant with no break between conditions.
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6.5 Result and Discussion

We recorded the movement time (MT )1, the accuracy as a measure of the

euclidean distance (d) between the center of the cursor’s bounding box and

the target’s bounding box at the time the subject pressed the foot switch. We

also recorded the distance the participant’s finger traveled on the touch screen

(T )2 during every trial.

6.5.1 Technique E↵ect

Results of a repeated-measures ANOVA showed that Technique had a strong

e↵ect on movement time (MT ). The average MT for Free PC was 9.7 sec. vs

8.2 sec. for Pivot PC (F(1,11)=17.1, p<.001). This confirms our first hypothesis

(H1) of Pivot PC being the quicker technique of the two, though based on

the fact that Free PC requires repeated supination/pronation we expected the

performance di↵erence to be greater.

Technique also had a significant e↵ect on T, the amount participants gestured

on the touch screen. An average amount of 190 pixels traveled was recorded

when using Pivot PC whereas when using Free PC users gestured an average

of 225 pixels (F(1,11)=23.6, p<.001). These results suggest that Pivot PC is

potentially suitable to implement on devices with smaller touch surfaces than

Free PC.

Contrary to our second hypothesis (H2), neither technique was found to be more

accurate (d=6.5 for FixedPC vs 6.8 for Free PC F(1,11)=0.3, p=0.58).

6.5.2 Target Distance E↵ect

Whether the target was placed in the near radius 52 cm or the far radius 96 cm

had no significant e↵ect on the time cursors took to reach the target (F(1,11)=3.2,

p<0.09) with 8.9 sec. to reach the far ones vs. 8.7 sec. to reach the near ones.

There was also no e↵ect on the amount users gestured on the touch screen

between radii (F(1,11)=1.5, p=0.2) with participants gesturing 203 px for the

1
Movement time started counting either when participants rotated the device past a 2%

threshold - thus signaling their attempt to align the plane to the target - or when they first

swiped on the touch screen, whichever came first.

2
The T measurement is the result of the total distance in pixels the finger traveled on the

touch screen while pressed down during the trial.
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near targets vs 210 px for the far targets.

Finally the distance of the target had no e↵ect on accuracy as users were equally

accurate on near and far targets (F(1,11)=0.4, p=0.5).

Accuracy/Speed Tradeo↵

As would be expected, there was a strong e↵ect on movement time and accuracy

by the speed/accuracy condition. As such when MT is concerned users had an

average of 5.2 sec. in the Speed condition vs 12.7 sec. in the Accuracy condi-

tion (F(1,11)=115.8 p<0.001). Similarly accuracy (d) was 5.6 in the Accuracy

condition vs 8.7 in the Speed condition (F(1,11)=27 p<0.001).

6.5.3 Target Position E↵ect

Target position had a strong e↵ect on MT. Particularly positions 9 and 10

which are horizontally aligned to the starting position were the fastest in both

techniques, as expected (Figure 6.6-6.7).

In Free PC (Figure 6.6) there was a relatively even distribution of movement

times between the various positions. In Pivot PC (Figure 6.7), however, partic-

ipants struggled with position 8 (mean time 15.5 sec., - F(11,121)=3.8, p<0.01).

Observations of the subjects indicate that the reason for the problem in position

8 was the limited ulnar and radial flexion of the human arm which makes it

slightly strenuous to reach that position. One of the strengths of Pivot PC

is that there are many combinations of touch and rotation to reach the same

position in 3D space. That is also part of it’s weakness as it requires training to

find which is the best combination of tilt/swiping to achieve the desired motion,

something which, however, remains to be validated.

Finally, position of the target had no significant e↵ect on accuracy (F(11,121)=1.5,

p=0.12) as participants were equally accurate in all positions.

6.5.4 Qualitative Results

Participants answered a post-experimental questionnaire asking them to rate

Pivot PC and Free PC in terms of their intuitiveness and physical demands.

10/12 participants chose Free Plane-Casting over Pivot Plane-Casting both in
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intuitiveness and in physical demands. This is despite the overall quantitative

performance was better in Pivot PC for this specific task. Subjects also com-

mented that in Free PC, since the cursor can only move when gesturing, there

is less “pressure” to keep the device aligned with the target (as is required in

Pivot PC - Figure 6.2) and that is cognitively (and physically) less demanding.

6.6 Conclusion and Future Work

We have introduced two variations of a novel technique for 3D cursor manipula-

tion using a smartphone. Our pilot study verifies their usability and highlights

some of the issues associated with each one. For the docking task Pivot PC

seems to be the quantitative overall winner, but participants preferred Free PC.

Further evaluation is required to ascertain their applicability to real-life scenar-

ios. This work establishes a broad base upon which more specific Plane-Casting

based 3D applications can be built.
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Figure 6.6: Free PC: Mean movement time for every target position (Figure
6.5).

Figure 6.7: Pivot PC: Mean movement time for every target position. Position
8 (Figure 6.5) was significantly slower to reach (Y axis in seconds).



Chapter 7

INSPECT: Extending

Plane-Casting for 6-DOF

Manipulation

7.1 Introduction

Virtual object manipulation is required in a wide variety of application do-

mains. From city planning [52] and CAD in immersive virtual reality [71],

interior design [66] reality and virtual prototyping [28], to manipulating a multi-

dimensional dataset for scientific data exploration [41], educational applica-

tions [67], medical training [62] and even sandtray therapy [26]. There is, in

all these application domains, a demand for low-cost, intuitive and fatigue-free

control of six degrees of freedom (DOF). Our work focuses on 6-DOF object

manipulation at a distance with a large display for presentations and education.

Examples of situations where there is a need to interact in 3D from a distance

include the following:

Education: A professor is demonstrating human anatomy by displaying 3D

graphics on a large projector screen. He uses his device to rotate the model

and answer questions from the students. The nature of the device allows him

to leave the podium and approach the students while still being able to interact

with the model, thus making the class more engaging.

Engineering: An engineer is showing a 3D model of her latest design to team-

73
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mates. The device is used to rotate and translate the model, define slicing planes

to inspect the interior and discuss the design with other participants.

Entertainment: A group of children are playing a game in a museum while at

the same time learning about physics by interacting with wooden blocks on a

sandbox-like 3D environment on a large screen.

This work builds on Plane-Casting (Chapter 6) for 3D translation using a

tracked touch-panel, motivated by its applicability on smartphones. Plane-

Casting o↵ers isotonic position control without using any external position track-

ers, save for the orientation sensors in the device. We extend Plane-Casting and

introduce INSPECT, a set of novel interaction techniques for o↵-screen vir-

tual object manipulation using a smartphone. INSPECT stands for INdirect

Six-DOF PlanE Control Technique, and it was designed for the purpose of

inspecting a 3D object. We demonstrate that by using INSPECT it is possible,

with a low-cost mode change, to perform 6-DOF virtual object selection and

manipulation using a 3-DOF orientation-tracked touch panel and the 2-DOF

per finger from the touch points.

The wide availability of smartphones and smartwatches motivates the need to

explore the indirect touch design space and to identify an appropriate way to

map the degrees of freedom a↵orded. We also evaluate INSPECT in a 3D

movement task and a 3D rotation task, against a ‘gold standard’ direct technique

with a magnetic tracker, to serve as baseline reference.

Please refer to chapter 2 for related work.

7.2 Proposed Techniques

7.2.1 Plane-Casting

The original Plane-Casting technique [38] supported 3D positioning of a pre-

selected object. The core idea of plane-casting was that the manipulated object

was free to move in 2D along a plane that was freely oriented in 3D space by

the user. Two variants of Plane-Casting were proposed:

In the first variant, Pivot Plane-Casting, the plane rotated about a pivot point

located in the center of the 3D space. The orientation of the smartphone con-

trolled the orientation of the movement plane about the pivot point. Swiping

on the display translated the object in the corresponding axis on the movement
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plane pivot point

plane

acquired
object

(a) Pivot Plane-Casting: Gesturing trans-

lates the acquired object away from the

pivot point.

(b) The plane is constrained at the midpoint

of the scene, so tilting translates the ob-

ject in 3D space.

(c) Further rotating the object, notice that

the original orientation remains un-

changed.

(d) When the object is far from the pivot

point translation with tilting is larger.

Figure 7.1: Pivot Plane-Casting.

plane. Thus, by translating the object on the plane away from the pivot point

and then rotating the plane, the object could be positioned at any point (Fig-

ure 7.1). A disadvantage of Pivot Plane-Casting is that it requires a “clutch”

button to disable plane rotation. Without this capability, users would have to

always hold the device at a fixed orientation to stabilize the object’s position.

They would thus be unable to relax their non-dominant hand (Figure 7.1d).

The second variation, Free Plane-Casting, is similar to Pivot Plane-Casting in

that swiping on the touch surface translates the object on the movement plane.

The primary di↵erence between the techniques is that Free Plane-Casting also

translates the plane and its pivot point along with the object (Figure 7.2). In

a sense, the object and the plane are “interlocked”, and move together in 3D

space, always in the direction a↵orded by the plane’s orientation.

The two Plane-Casting variants o↵ered comparable quantitative performance.

However, participants strongly preferred Free Plane-Casting. We hence use this

variant as the basis for INSPECT, and simply refer to it as Plane-Casting for

the remainder of this article.
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(a) Free Plane-Casting: Gesturing translates

the acquired object along with the plane.

(b) Pronating aligns the plane vertically.

(c) A vertical swipe moves the object verti-

cally.

(d) On free Plane-Casting, only 2-DOF are

instantly available at one time.

Figure 7.2: Free Plane-Casting. This technique was preferred by the
users and is used as the basis for INSPECT.
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Figure 7.3: Finite state machine transitions between the modes available
in INSPECT.
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7.2.2 INSPECT - Design Decisions

Like Plane-Casting before it, INSPECT was intended for use with smartphones.

Hence we carefully considered the capabilities of these devices in implementing

INSPECT. Smartphones typically provide 3-DOF rotations from the combina-

tion of accelerometer, magnetometer and gyroscope, 2-DOF per finger from the

touch-screen (usually with 2-3 fingers), and volume-up and volume-down but-

tons. Although some devices provide additional inputs, we used this minimal

subset as these are the only universally available input streams on smartphones.

INSPECT was designed based on Jacob’s findings on performance gains when“the

structure of the perceptual space of a graphical interaction task mirrors that of

the control space of the input device” [35]. This is indeed the case with IN-

SPECT, which in addition to having a good perceptual match (smartphone

orientation matches that of the movement plane), benefits from the use small

muscle-groups [79], since most of the work is done by the fingers. Finally, the

technique works with the dominant hand fingers interacting very close to the

o↵-hand palm. This establishes a frame of reference for the dominant hand to

manipulate against [20]. This design leverages the benefits of bimanual interac-

tion that have been repeatedly discussed in the literature [4].

We also wanted to allow users to use the technique while looking directly at

the large display, without having to look at the device. During presentations,

the presenter’s gaze guides the audience and if the presenter were to look at his

device screen to manipulate it would create a disconnect with the audience. This

also allows the presenter to interact in a natural standing pose, with their arms

resting by their torso while the device is supported by both hands. Holding

the device near the torso was a key design point for fatigue-free interaction.

In contrast, many wand or gesture-based techniques require the user to hold

the device with the arms extended, which induces fatigue. Finally, a small

device held with the non-dominant hand gives users the freedom to point to

the display with their dominant hand between manipulations. This is essential

during presentations, for example.

Extensions to translation mode

To improve object translation, we added a “flick” gesture to Plane-Casting. This

allows the user to launch the object inertially in the direction of the flick. In

position-tracked wands, controlled by the arm, flicking motions are not so easy

to perform because flicking requires a rapid acceleration of the wand. Such an



78 CHAPTER 7. INSPECT

accelerated motion is less than trivial to perform, and gets even more di�cult

when repetition is required. A finger gliding on a touch-surface, on the other

hand, lends itself well to flicking. Flicking provides an alternative to the gain

functions often used in 3D user interfaces to scale input [73]. Moreover, inertial

flicking is often used in smartphone UIs for scrolling and other tasks. Conse-

quently, we expect that smartphone users will be able to adopt flicking quickly

due to its familiarity. Much like smartphone UIs, touching the touchscreen after

flicking an object stops its movement. While inertial flicking has been explored

previously for direct touch techniques [74, 11], and for 2D graphics[3] to the best

of our knowledge, it has not been used with o↵-screen touch for 3D manipula-

tions. To translate using flicking, the same gesture is used, as in Plane-Casting.

When the finger is lifted following a gesture, if it has crossed a certain speed

threshold, the object is launched inertially with flicking.

Translating objects with Plane-Casting required repeated supination/pronation

motions for fine positioning orthogonal to the movement plane. We expected

that this may frustrate users. Consequently, we added pinch gestures to move

the object along the current movement plane’s normal vector. Pinching the

fingers away translates the object parallel to, and in the direction of the plane

normal. Conversely, pinching the fingers together (or “un-pinching”) translates

the object in the opposite direction. When holding the device upright, this

mapping is similar to that used by Sticky Tools [25] or most touch interfaces

where pinching away brings the object closer to the surface (zoom). This yields

vertical motion relative to the movement plane, and could be useful in visual-

isation applications where the plane acts as a slicing plane. We refer to this

mode as pinch translate.

Extensions for rotation

In addition to the translation extensions discussed above, we added a new mode

to enable rotation. Several tabletop systems use rotation techniques where the

fingers directly touch the manipulated object and/or the display surface [74,

24, 25, 67]. However, we propose o↵-screen rotation using indirect touch which

has not been explored previously in 3D graphics. The smartphone’s volume-up

button switches the system to rotation mode while being held pressed.

Including an explicit mode change for rotation might initially appear cumber-

some. However, we argue that low-cost mode changes do not introduce a high

cognitive demand. For example, the smartphone’s volume buttons are available

at natural grip positions. Pressing these buttons has a very low cognitive cost,
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similar to the “shoulder” or trigger buttons on modern game controllers. In

addition, thumb pressure is counteracted by the forefinger when pressing these

buttons, so the mode change has minimal (if any) e↵ect on the movement plane

orientation.

There is another interesting side e↵ect of holding a button to switch between the

translation and rotation modes. It is possible for experienced users to use the

inertial flick feature, switch to rotation mode, and rotate while the object is still

flying. While a form of simultaneous rotation and translation is also possible

with Sticky Tools [25] and Wilson’s work [74], we argue that this is easier with

an explicit mode change and that integrated translation and rotation modes

might lead to accidental input or unpredictable/irreversible motions.

The rotation modes are straightforward:

Horizontal finger motion (on the touch-screen X axis1) rotates the object about

the world Y axis (Figure 7.4). Vertical motion (device Y axis) rotates about

the world X axis. This mode provides integral rotations on the X and Y axes

that are performed with a single finger and will be referred to as XY rotate.

XY rotate should not be confused with ARCBALL [63] despite the similarities.

ARCBALL uses a function to project the 2D touch points onto a virtual sphere

whereas XY rotate simply converts translation of the touch point to rotation.

XY rotate thus exhibits a distinctly di↵erent behavior to ARCBALL. XY Rotate

is a form of two-axes valuator [10] implementation for indirect touch.

Figure 7.4: Vertical motion rotates about the X axis of the 3D world.

1
A note on axes: When the device is held upright (Figure 7.5), the axes on the device are

identical to the axes on the display.
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To rotate the object about the Z axis we use two fingers which are pivoted

about their midpoint. If the two fingers are moved in parallel, their motion

is interpreted as a single touch point which induces the same rotation as XY

rotate. This feature allows minor corrective adjustments to the X and Y axes

while rotating about the Z axis without requiring lifting a finger from the screen

or further mode changes. This mode will be referred to as Z+XY rotate. The

Z+XY rotate mode is only possible because INSPECT is based on indirect

touch. In direct touch systems the parallel motion of the two fingers is usually

mapped to translation [25]. As such, a three axis integral rotation mode is, to

the best of our knowledge, unique to our system. Users can also make fluid

transitions between single finger and two finger rotations as desired. Z+XY

rotate feels similar to rotating a physical trackball yet is di↵erent from Arcball+

by Rousset et al. [61]. Arcball+ uses the midpoint to rotate like the classical

ARCBALL [63] algorithm. We avoided this approach because ARCBALL is

known to a↵ect the Z axis as well.

In any of the rotation modes, the orientation of the device is ignored. Rotations

are always performed as if the device was held vertical facing the display.

During pilot testing, participants indicated that rotating unfamiliar objects

without an obvious “up” orientation did not present any problems. However, ro-

tating objects that had a clear “up” direction required more controlled rotations.

For example, when rotating the human heart (a comparatively unfamiliar ob-

ject), participants were happy with their rotation, even if the heart was slightly

tilted o↵ the Y axis. In contrast, when rotating an o�ce chair (a familiar object

with a clear “up” direction) participants would try harder to ensure the ori-

entation was absolutely correct. For this reason, we decided to add single-axis

constrained rotations.

Single-axis constrained rotations are activated by touching the display corners.

Analysis of our pilot study touch data revealed that users rarely reach the

touchscreen corners while moving objects with Plane-Casting (Figure 7.11a).

Consequently, we decided to use the screen corners for explicit rotation mode

changes. The natural shape of the hand allows for a stationary finger in the

screen corner, while another finger moves freely to control one DOF (Figure

7.5). Thus, we introduced the following rotation mode changes depending on

the touch point of the first finger to touch the display. Fingers are obviously

not detected, but we make recommendations on which finger to use for better

ergonomics:

(X) The forefinger on the top-right corner constrains rotation about the dis-
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play’s Y axis. The thumb is used to control rotation. (Figure 7.5). (Y) A thumb

on the bottom-left corner constrains rotation to the display’s X axis with the

forefinger is used to control rotation. (Z) A thumb on the bottom-right corner

constrains rotation to the the display’s Z axis. The forefinger is used to control

rotation.

For example, touching the top-right corner of the touchscreen activates Y axis

constrained rotation mode (Figure 7.5). The thumb’s vertical motion on the

touchscreen is ignored and only the horizontal component rotates the object

about the constrained Y axis.

Figure 7.5: When in rotation mode, placing the first finger on the corner
constrains rotation to a single axis (Y-axis in this case).

Using axis constraint mode requires the first touch to be near the corner. The

finger is subsequently free to roam the touch-screen so long as it remains touched.

This was intended so that the initiating finger doesn’t impede the motion of

the second finger, which actually performs the rotation. This novel way of

accessing additional modes by placing a touch on the corners is a feature unique

to INSPECT, and could be further extended for accessing additional modes

with double-taps, swipes, etc.

We decided against using more than two fingers for switching modes or added

functionality. Unlike tablets, where users have access to a large surface, small

smartphone touch screens cannot easily accommodate many fingers. Similarly,

using more than two fingers precludes implementing our technique on very small

touch screens, such as those found on smart watches. Similar to the translation

mode, we added inertial flicking to all three axes in rotation mode. Similar to

the translation mode, if a finger exceeded a certain speed threshold, the system

kept the object spinning about its center with a fixed decay rate. This entire

set of indirect touch rotation techniques will be referred to as touch-rotate in
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the evaluation section.

Finally, we also supported direct rotation using the smartphone orientation sen-

sors. Direct rotation was activated by double-tapping and holding the volume-

up button. Rotation was relative to the device orientation at the time of the

button press. This mode allowed users to clutch to avoid strenuous wrist po-

sitions. This technique will be referred to as phone-inertial in the evaluation.

INSPECT’s inertial rotation mode is similar to that of the Flying Mouse [69].

However, the designers of the Flying Mouse made an unexpected design choice.

They require users to keep their thumb on a UI widget on the touch screen

to access various modes (including the inertial rotation mode). In addition to

having to aim (and keep the finger stationary) to access the mode, when the

device is rotated the user can no longer see the UI widget and is thus di�cult

to know if he/she is pressing it correctly. Finally, such a design choice makes it

di�cult to do the rotation bimanually.

It should be noted that some state-of-the-art direct touch techniques (like tBox [11]

and Sticky Tools [25]) which are designed for tabletops, can be adapted for use

on vertical or handheld touch displays. Such techniques are not mutually ex-

clusive and could complement INSPECT, depending on how close the user is to

the display.

7.2.3 Selection

We also considered two object selection modes for use with INSPECT. The first

used a relative 2D cursor. In this mode, one finger moves the cursor relative

to its current position, similar to the trackpad commonly found on notebook

computers [3]. Objects under the 2D cursor are highlighted and touching the

screen with a second finger or double-tapping selected the object. We also

prototyped a virtual hand -like selection mode. In this mode, a spherical cursor

(virtual hand) is controlled by Plane-Casting and intersects the desired object.

Either of these two selection modes could be applicable depending on the context

of usage. We found the former to be quicker, yet the latter o↵ers the potential

to select occluded objects or “nudge” objects to reveal the desired one (e.g. in a

3D sandbox game/educational application with collision detection). A double-

tap and long press on the volume-down button switched between the 2D and 3D

cursors. When in 3D cursor mode, holding the volume down button made the

3D cursor solid for bumping against other objects (Figure 7.3). Neither of those

selection modes was formally evaluated because there is extensive literature on

3D selection.
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7.3 Evaluation

There is no widely accepted standard for o↵-screen 6-DOF control and the

Flying Mouse[69] for the iPhone only works with companion apps. We thus

elected to compare against a ‘gold standard’ technique using a 6-DOF Polhemus

sensor. Direct manipulation using a tracked wand is widely used and accepted

as being an intuitive way of interacting with a 3D object. For example, similar

techniques are extensively used in 3D interaction for visualization and virtual

reality [73]. Although we did not expect INSPECT to outperform the wand

technique, we thought it necessary to provide this comparison as reference.

Although numerous precision-enhancing techniques have been proposed for di-

rect manipulation techniques, we instead opted for a basic “virtual hand” type

technique using the Polhemus-tracked wand. There are three main reasons

for this. First, most precision-enhancing techniques require tracking the user’s

body[73], which is contrary to our low-instrumentation objective. Second, our

intended application scenario assumes a shallow 3D space, which does not re-

quire users to position objects so far away (remote positioning was a primary

reason why enhanced precision functions were first developed [55, 73]). Finally,

using a “raw” direct manipulation technique such as that used in our study

makes it easier to replicate the experiment. We used a Polhemus tracker as it

should o↵er better accuracy than other low-cost devices (e.g., the Sony PS Move

and PSEye camera).

7.3.1 Participants

Twenty participants took part in the study (within-subjects). Fourteen partic-

ipants were male. Their ages ranged from 21 to 36 years (mean age 28 years).

All had normal or corrected-to-normal vision. All but one were right handed.

Participants self-reported regular gaming habits but little to no 3D user inter-

face experience. Participants were compensated with $20 upon completion of

the experiment.
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7.3.2 Apparatus

Hardware Setup

The experiment was conducted using a PC running Ubuntu Linux with a 2.4

GHz processor and 16 GB of RAM. The graphics card was an NVIDIA 680GT

with 2 GB of RAM. A Sanyo PDG-DWL2500J ultra-short focus projector was

used as the display. The projector o↵ers a 1920x1080 pixel resolution at a

16:9 aspect ratio. The display size was 320 cm diagonally, and the display was

monoscopic. Participants stood 300 cm from the projected screen. Figure 7.6

depicts the equipment setup used in the experiment.

In the INSPECT condition, participants held a smartphone in their non-dominant

hand, while touch-gesturing on the smartphone’s touchscreen with their dom-

inant hand. The smartphone used for the experiment was a Samsung Galaxy

SII running Android OS 4.0.3. This device features a 10.5 cm diagonal screen

at a 1280 x 720 pixel resolution, a quad-core 1.4 GHz processor, and 1 GB of

RAM. The smartphone was connected to the PC via a WiFi network.

In the wand condition participants held a Sony Move controller in their dominant

hand. Although the Move is normally tracked by the Sony PSEye camera, we

instead used a Polhemus Fastrack receiver for superior tracking accuracy. The

control-display ratio was set to a fixed gain (no acceleration) for both translation

and rotation in this condition. Participants held the top button (thumb) on the

wand to activate object translation and the rear trigger button (forefinger) to

activate object rotation. Both translation and rotation were relative to the

position/orientation of the wand upon pressing the button.

A 3Dconnexion Space Navigator was also used as a foot switch. The sole purpose

of the device was to advance trials.

Software Setup

The experiment used custom software running on the PC, which was written

in C++ and OpenGL 3.3. Custom software on the smartphone was written

in Java and communicated with the PC software via Google protocol bu↵ers

for the sensor data and TUIO messages for the touch events. The software

presented the experimental tasks described below. In both tasks, the scene was

displayed with the target object floating over a “floor” - a flat plane with a cross-

hatch pattern textured on it. Shadow rendering was included to help facilitate



7.3. EVALUATION 85

depth perception. Both the cursor and the target cast shadows onto the floor

(figure 7.7). The software also logged the trial length, the cursor position and

orientation, touch events on the smartphone, and other relevant metrics.

Figure 7.6: Photo of a user taking the experiment.

7.3.3 Procedure

Upon arrival to the lab, participants were given a short briefing about the

experiment. This included a verbal explanation of the experiment purpose,

the tasks, and a description of the techniques being compared in each task

(described in detail below). The experimenter then demonstrated the available

control modes and participants were allowed to practice both techniques until

they felt confident to begin the task. Following the briefing, participants were

asked to perform both the movement task and the rotation task.

Once participants felt they had a good match to either the target position

or orientation (depending on the task), they would press the foot switch to

advance to the next trial. Rather than enforcing a fixed “success” threshold,

participants were free to judge when the match was accurate enough. This allows

data from the experiment to be additionally analysed for 3D pointing (Fitts-
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law) type studies. Participants were asked to maintain a consistent balance

between speed and accuracy throughout the task. They always completed the

movement task followed by the rotation task. The motivation to split the 6-

DOF docking task to a movement and rotation task was that depending on

the form factor of the smartphone, the volume up and down buttons can be

di�cult to press. We thought that this would introduce a new variable to the

completion time and would make it di�cult for other researchers to replicate our

study. Additionally, because INSPECT is a set of techniques, a 6-DOF docking

task would not allow us to individually assess the strengths and weaknesses of

each sub-technique of INSPECT. Splitting the task in a movement task and a

rotation task will potentially reveal weak points of INSPECT and show areas

that need improvement.

Specific procedural details for each task are outlined below.

Movement Task

The movement task required matching the cursor position to the target position.

INSPECT and the Wand technique were compared using this task.

Figure 7.7: Screenshot of the rotation (left) and movement (right) task
respectively.

Upon starting a movement task trial, a semi-transparent tetrahedral cursor was

already acquired for movement. The cursor appeared in the center of the screen

(Figure 7.7). Participants were instructed to move the cursor to match the

position of a wireframe target using the current technique (either INSPECT, or

Wand). The target was the same shape and size as the cursor. The four corners

of the cursor and target were each a di↵erent color sphere. The coloured corners

were primarily important in the rotation task (i.e., to determine orientation of

the cursor and target), but were shown in the movement task for consistency.

During the movement task, the cursor and target always maintained an upright
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orientation so as to rule out e↵ects of rotation during this task. The software

presented targets at 12 pre-defined positions, one at a time, randomly shu✏ed

for every participant. Each position corresponded to one of 12 vertices of a

regular icosahedron centered at the origin. Each position was tested with two

di↵erent distances from the origin (same direction, twice the euclidean distance).

Rotation Task

The rotation task required that the participant match the cursor orientation

to the target orientation (Figure 7.7). This was performed independent of the

movement task, and was used to compare the two smartphone based rotation

techniques (rotation using touch and using the inertial sensors) to direct rotation

using the wand.

As in the movement task, the cursor and the target both appeared centered

at the origin in the rotation task. Participants had to match the cursor to 12

pre-defined rotations shu✏ed for each participant, twice. Target rotations were

generated in the same pseudo-random order for all participants. The rotation

task included two techniques using the smartphone (touch rotation and direct

rotation) and direct rotation using the wand.

7.3.4 Design

Due to the di↵erences in the tasks, we present design details for each task sepa-

rately. Participants always completed the movement task prior to the rotation

task. However, all other condition orderings within each task were counterbal-

anced according to a Latin square.

Movement Task

The movement task used a single within-subjects independent variable, move-

ment technique. The two movement techniques compared were wand and IN-

SPECT. For each movement technique, participants performed multiple move-

ment tasks at two di↵erent distances in each of 12 directions. Consequently,

each participant completed a total 2 movement techniques ⇥ 2 movement dis-

tances ⇥ 12 directions = 48 movement trials. Over all 20 participants, this

corresponds to a total of 960 movement trials.
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The dependent variables for this task were movement time (MT), measured in

seconds, and the euclidean distance between the target and cursor centres upon

trial completion, measured in cm. This latter dependent variable served as a

measure of accuracy. Movement time was measured as the time from when the

trial began to the time the participant pressed the foot pedal.

Rotation Task

The single within-subjects independent variable for the rotation task was rota-

tion technique. Three rotation techniques were compared: touch-rotate, phone-

inertial, and wand direct. Each rotation technique was evaluated twice with

each of 12 randomly generated target rotation angles. This produced a total

of 3 rotation techniques ⇥ 2 repetitions ⇥ 12 target orientations = 72 rotation

trials for each participant. Over all 20 participants, this yielded 1440 rotation

trials in total. The dependent variables for the rotation task were rotation time

(RT), measured in seconds. This was measured as the time from when the tar-

get appeared until the time participants pressed the foot pedal upon completing

the rotation trial.

7.3.5 Hypotheses

We hypothesized that the wand technique will be faster than the other tech-

niques (h1) as it leverages natural movements that participants are accustomed

with from their daily life. Also that the wand technique and phone-inertial mode

will be less accurate than the touch rotation techniques (h2) because holding

the wand in a distal position will have an adverse e↵ect. We also believe that the

phone inertial mode will su↵er from the form factor of the smartphone, which

is not ideal for rotations like a fingerball [30] is for example. Finally, that due

to the nature of holding the smartphone close to the torso and the wand in a

distal position we expected that overall participants will prefer INSPECT and

will complain about fatigue using the wand technique (h3).
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7.4 Results

7.4.1 Movement Task Results

During the movement task there were only two techniques. Consequently, the

data were analyzed using a one-way ANOVA. Technique had a significant e↵ect

on movement time (MT). (F = 126.9, p < 0.001). Participants completed the

task 12% quicker using INSPECT (Figure 7.8a). This is contrary to our first

hypothesis, but encouraging overall as it shows that interaction with INSPECT

is quicker than direct manipulation with the wand.
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Figure 7.8: Results from the movement task (with Standard Error).

A one way ANOVA revealed a significant e↵ect on accuracy for movement tech-

nique (F = 188.764, p < 0.001) (Figure 7.8b). Participants were more accurate

in matching the target position using INSPECT than with the wand - the error

distance with the wand was about 40% higher than that of INSPECT. The av-

erage distance mismatch for the wand was 0.19 cm with 0.11 cm for INSPECT.

This confirms our second hypothesis: (h2) INSPECT is more accurate than the

wand.

Log file analysis revealed that participants rarely used the flick gestures. Ap-

proximately 10% of the recorded frames used flicking. We believe there are

two reasons for this. First, participants had no prior experience using the tech-

niques. As such, they did not feel confident launching the object around with
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inertia-based flicks. Second, the distance to the targets were not long enough

to warrant flicking. We believe a di↵erent task requiring longer translation

distances (e.g., an outdoor AR task) would increase the value of flicking.

7.4.2 Rotation Task Results

The data from the rotation task was subjected to a repeated measures ANOVA

test. Technique had a significant e↵ect on rotation time (RT) (F2,23 = 162.15, p <

0.05). A post-hoc analysis indicated that the phone inertial rotation was slower

than touch rotation and the wand. No statistical significance was found between

the wand and touch rotate. Mean scores for rotation time are shown in Figure

7.9a.
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Figure 7.9: Results from the rotation task (with Standard Error).

Upon ending each rotation trial, rotation accuracy was calculated as the angular

di↵erence (extracted from the quaternion) between the cursor orientation and

the target orientation (Figure 7.9b). The repeated measures ANOVA showed

no statistical significance (F2,22 = 1.13, p = 0.78).

These results partially validate h2 for the rotation task yet we expected the time

gap to be larger than two seconds. The form factor of the smartphone is indeed

not ideal for rotations. We also hypothesized that touch rotate will perform

better than the direct rotation techniques (wand and the phone inertial). This

was not the case, however, and in an attempt to discover the reasons we analysed

the time users spent on each rotation mode of touch rotate.
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7.4.3 Mode dwelling during rotation task

During the rotation task, some of the pre-defined target orientations were simple

90� rotations about a single axis. In those trials, participants simply had to use

the corresponding axis constraint rotation mode and control one DOF to accu-

rately match the rotation. Had the participants used the axis lock modes they

would have achieved almost perfect rotations However, despite the availability

of the constraint modes, participants did not use them very much (Figure 7.10)
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Figure 7.10: Mode dweling during the rotation task: It is interesting
to note that participants did not use the Z axis constraint mode at all.
They completely ignored that mode in favor of Z+XY rotate.

We believe one reason for the relative under-use of the constrained rotation

modes was the somewhat arbitrary choice of corner-to-axis mapping. There

was no easy mnemonic or meaningful mapping for the participants to remember

to activate the constraint rotation modes. Consequently, participants instead

spent most of their time in the single finger rotation mode (XY Rotate), followed

by the pinch rotation mode for Z axis control. The XY Rotate mode (single

finger) controls two axes. That is two out of three axes to be manipulated. This

should theoretically give it close to a 66% use. Interestingly, this was not the

case. We speculate that this was because while the pinch rotate mode is mainly

used for Z axis rotation, it can also control rotation about the X and Y axes by

simultaneously moving both fingers parallel to each other.

We postulate that these mode dwelling results partially explain why, during

the rotation task, touch rotate and wand performed similarly both in terms of

completion time and accuracy. Because participants did not use the additional

modes that would have potentially o↵ered an advantage of accuracy and speed.
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7.4.4 Touch Areas

Visualization of participants’ touch-points confirms findings from our pilot stud-

ies. Depending on the control mode, the participants’ touches do not cover the

entire touchscreen and some areas are unused (Figure 7.11). For example, the

bottom of the screen during the Z+XY rotation mode (Figure 7.11b) was un-

used. These under-utilized parts of the touchscreen o↵er screen real-estate for

adding further system control options, or UI-widgets.

(a) Touch points from a pilot

study (Plane-Casting).

(b) Touch points during

Z+XY rotation.

(c) Constrained X axis mode. (d) Constrained Y axis mode.

Figure 7.11: Touch points during the various rotation modes. Red points rep-
resent the first finger to touch the screen whereas blue represents the second
finger.

7.5 Subjective Results

Following completion of the experiment, participants were asked to state their

preference between INSPECT and the wand technique. They were also asked
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to choose which technique felt more accurate and which technique had greater

impact on the limbs (in terms of fatigue), 3 questions in total.

The qualitative results were notably skewed in favor of INSPECT. 17/20 par-

ticipants preferred INSPECT overall. 18/20 thought that it felt more accurate

and was less fatiguing. Participants commented that INSPECT was both fun to

use and easy to understand. They further commented that the buttons on the

side of the Samsung Galaxy SII were slightly hard to press which made mode

changes slightly di�cult. We agree with this assessment, and believe that IN-

SPECT would benefit from having a few easy to press buttons on the forefinger

side of the device. Finally, a number of participants commented favourably on

the Z+XY rotation mode. The liked that the mode also allowed for XY rotation

adjustments, and commented that they found it easy to use.

7.6 Discussion

Indirect touch, as opposed to direct touch interaction, su↵ers from the problem

of selection. With Sticky Tools or tBox, the beginning of the touch gesture

can simultaneously indicate object selection. With INSPECT, the manipulated

object must be explicitly selected first with a selection step. This might com-

plicate the use of INSPECT in applications requiring frequent selection among

multiple di↵erent objects. Also, the magnetometer in smartphones is slightly

susceptible to electromagnetic interference. If the user moves away from the dis-

play and sits while resting his arms on a metal structure (e.g., a desk) they may

need to re-calibrate the orientation to avoid drift. The rotation mode would be

una↵ected in this case.

The movement task results come as a bit of a surprise. The wand technique

leverages experience from daily use of the arms. We thus expected novice par-

ticipants to perform better with it than with INSPECT. However, performance

with INSPECT was actually better than the wand. This result validates our

design decisions and indicates that a technique designed based on the aforemen-

tioned design principles shows tangible benefits. Namely:

• Bimanual in nature.

• Perceptual space of interaction task mirroring control space of input de-

vice.

• Small muscle groups - Interacting with palm/fingers rather than arm/-
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forearm.

• Dominant hand interacting close to the O↵-hand.

The rotation mode dwelling results as well as the low use of the flicking mode in-

dicate that our novice participants were not familiarised enough with INSPECT

to access the additional modes and confined themselves to just using the basic

ones. Even if performance in the evaluation tasks could have benefited from the

use of these modes, the task did not demand their use and as such participants

did not make the extra e↵ort to utilise them. We think that with time and ex-

perience users will feel comfortable accessing, and benefit from these additional

modes. Nevertheless, making these modes as well as additional ones more easily

accessible could possibly have significant benefits for INSPECT. This is a point

for improvement that must be carefully considered. Although the wide avail-

ability of smartphones motivates designs that can be used with smartphones, a

di↵erent form factor, one that has access to a greater number of easily accessible

buttons without a↵ecting the size of the touch area could be beneficial.

In our experiments, users stood directly across from the display. In a collab-

orative situation that might be the case, but in a presentation scenario, the

presenter would most likely be standing in a skewed position, to the side of the

display. Unlike HOMER and other ray based techniques, INSPECT does not

require the smartphone’s position to be tracked relative to the display. Because

of this we believe INSPECT will be more robust to the user moving relative to

the display. That, however, remains to be demonstrated experimentally and is

a potential goal for future research.

The recent proliferation of touch devices such as smartwatches and smart-

phones/tablets of di↵erent sizes begs the following questions: What e↵ect does

the screen size have on the performance of INSPECT? The screen real-estate of

a smart-watch would potentially make it di�cult to control modes that require

more than one finger, like pinch translate and Z(+X-Y) rotate. How could one

overcome screen size limitations?

7.7 Conclusion and Future Work

We have presented INSPECT, a set of novel indirect touch techniques for 3D

manipulation using a low cost input device such as a smartphone. The proposed

technique to a certain extent meets the design goals set at the beginning of this
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paper, such as simplicity, accuracy and low-instrumentation/cost. INSPECT

was overwhelmingly preferred over the wand technique by our experiment par-

ticipants. The evaluation revealed that INSPECT performs 12% faster than a

baseline wand technique for a 3D translation task while achieving 40% better

accuracy and performs almost on-par at a 3D rotation task. The diverse rota-

tion modes proved challenging for our novice participants and finding ways to

enable simple access to a variety of modes remains a target for future work.
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Chapter 8

Conclusion

8.1 Discussion

An interface that is to be used for 3D manipulation during presentations should

satisfy a number of design criteria. In this section we attempt to demonstrate

how each part of this thesis addresses the design goals set at the beginning.

This thesis set out to mainly address the following goals:

• Interacting with small movements (to avoid interfering with other users -

bystanders)

• Keeping limbs close to the body to avoid fatigue.

• Simplicity in input and tracking.

• Low cost.

In the following sections we clarify how each proposed technique individually

satisfies these goals:

8.1.1 Mesh-Grab and Arcball 3D

Mesh-Grab and Arcball 3D were designed so that the wand can be held close

to the body and so users can simultaneously rotate and translate the object

by casting a ray and flicking the wrist. The introduction of inertial physics in

97
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the manipulation allows for big distances to be covered with only small flick-

ing motions to launch the object. The rationale behind this design was that

users would get accustomed to the physics and the interaction style and would

eventually be able to master the technique, achieving their desired rotation and

translation with minimal wrist motions, similar to how somebody can skilfully

throw a crumbled piece of paper into a waste basket from a distance without

standing up and walking to it.

Implementation of Mesh-Grab and Arcball 3D requires that the wand is tracked

in a much smaller range compared to existing techniques (figure 8.1).

Ray Casting

Laser-pointer
style

Interaction

Small
Tracking
Range

360 Degree
Tracking Range

Display +
Tracking point

Direct
Interaction

Fingerball
Data Gloves

Figure 8.1: INSPECT requires tracking a shorter range as opposed to finger-ball
or other wand-based direct techniques.

As a result these techniques can be implemented with single point tracking such

as a camera or a set of infrared LEDs on the display with the camera on the

wand (like the wii-mote) as opposed to multiple tracking points or tethered

magnetic trackers (PolhemusTM [54]) used by other solutions.

Our evaluation demonstrated that Mesh-Grab and Arcball 3D perform similarly

against a state-of-the-art baseline interaction technique while at the same time

being more accurate. Given this similar quantitative performance combined

with the preference of the users and the gains in hardware setup simplicity it’s

safe to conclude that Mesh-Grab and Arcball 3D to a large extent meet the

design goals set at the beginning of the thesis.
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8.1.2 Plane-Casting and INSPECT

Although ray-based techniques such as Mesh-Grab and Arcball 3D allow for

simpler tracking compared to the state of the art techniques, there was much

room for improvement. Plane-Casting makes further improvements in the setup

simplicity since it is applicable on any smartphone. The design of Plane-Casting

and INSPECT means the smartphone controller does not need proximity or line-

of-sight to the display and is, therefore, even more suitable for situations with

multiple users such as a large display in a busy classroom or an interactive

museum exhibit. Finally, the nature of the hardware, with smartphones being

widely available and users being very familiar with them adds further gains in

cost and simplicity.

Although the work on Plane-Casting and INSPECT did not quantify position

of the arms like the wand techniques, they are also designed with reduced limb

strain in mind, since it is possible to hold the smartphone against the torso

and operate it with the small muscle groups of the forearm (figure 8.2). Finally

flicking in INSPECT is employed to help cover large distances, just like the

ray techniques only this time flicking is performed with the fingers rather than

the wrist, which further reduces strain to the limbs. Flicking is often used in

direct 2D touch interfaces to scroll up and down so we postulate that employing

flicking in a touch interaction setting will leverage the user’s experience from

daily smartphone use.

Figure 8.2: INSPECT and Plane-Casting are meant to be used bi-manually with
the arms resting on the ribcage with only the forearms and the fingers moving.
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8.1.3 Unistroke

Unistroke addresses the problem of making long strokes for annotation on a 3D

mesh with a single input. In the event of a large display with a laser-pointer like

device as input or an interactive whiteboard there is often a single point input

point for interaction. Unistroke, therefore makes headway by facilitating easy

painting of long strokes from a single 2D input point, thus facilitating interaction

with a simpler hardware setup. Users in our pilot study found unistroke easy

to learn and use but that perhaps a more competent version of unistroke would

require multiple input points and that this would complicate the input hardware

setup.

8.2 Design of Interaction Techniques

A school of thought in virtual reality argues for the design of techniques as

close as possible to real-world metaphors so that users can interact seamlessly

and can leverage their real world skills. i.e. Direct interaction using the hands,

haptic feedback and immersion.

Results from our experiment on Mesh-Grab and Arcball 3D though demon-

strate that because users often need to interact using other means rather than

directly with their hands that is not always desirable. e.g. When using ray-

based techniques for 6-DOF manipulation, putting a “bubble” around the 3D

object resulted in better performance from the users. The same cannot be said

to hold true for manipulating objects in the real world. Putting a plastic bubble

around all objects would not make handling them easier.

The same is true for Plane-Casting and INSPECT. There is no real-world

metaphor equivalent to those interaction techniques yet users were able to mas-

ter them and even out-perform the direct techniques that match the real world

much better. The inertial flicking in Mesh-Grab and INSPECT emulate weight-

less conditions in space. Although users don’t have experience from the real

world (except a few astronauts perhaps) they quickly adopted the techniques

and preferred them over the ones that matched the real world more closely.

Designers of interactive systems might tend to design techniques with real-world

metaphors in mind but we postulate that perhaps that is not always the best

approach. Kulik et al. [40] have also previously discussed this same point.
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The techniques presented in this thesis were designed with large displays and

presentations in mind, but we argue that they could be equally applicable to

immersive Virtual Reality with an HMD or a CAVE system, augmented reality,

electronic entertainment etc.

8.3 Summary - Future Work

This thesis contributes three novel interaction techniques that address fatigue,

simplicity and cost in 6-DOF virtual object manipulation for presentations ed-

ucations and collaborations in front of large displays. The techniques presented

to a large extent satisfy the design goals set at the beginning of this thesis. They

perform on par or on occasion better than their baseline counterparts and were

overall preferred by participants in our user studies.

The set of techniques studied as part of this thesis indicate that interacting

using the fingers with the limbs close to the body and with small movements is

a competent alternative to similar state-of-the-art devices and techniques.

A problem that remains in all the solutions presented in this thesis is system

control this was particularly evident in INSPECT where the form factor of the

smartphone only provides two hardware volume buttons. Desktop computing

has access to the keyboard and therefore immediate access to 101 buttons (mul-

tipled by 3 using modifiers for 303+ keys). These buttons in combination with

the WIMP interface paradigm provide an easy hierarchical, discoverable means

for accessing modes and for sending commands to the system. How could a

small factor handheld device have similar accessibility to modes is a question

worth answering.

We envision a future where a single point RGBD1 camera [49], an electromyo-

graphic (EMG) band or some other tracking technology is used for tracking the

hands and fingers. Just like in INSPECT users gestured against the smartphone

screen and that input was transferred into the 3D world, we believe that the

main hand will be touching/gesturing against the o↵-hand (figure 8.3 - This

sort of pressure to the fingers/arm could be picked up by an EMG band). As

soon such a tracking system is robust the question then becomes: “How can we

better leverage the rich expressiveness of the human hand to control computer

graphics, issue commands to systems or control robots?”.

1
RGBD camera: a camera that can sense depth by casting infrared light into the scene in

addition to normal RGB color.



102 CHAPTER 8. CONCLUSION

Figure 8.3: Vision of the future: Users gesturing against their o↵ hand while an
RGBD camera or an EMG armband is responsible for tracking the fingers.
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Appendix A

Relaying sensor data

A.1 Data relay

There are two forms of data being sent from the smartphone to the system that

renders the graphics. The smartphone’s sensor data and touch events. The

relay happens as follows:

There are two di↵erent threads on the smartphone that send data to the main

system. The first thread serialises the sensor data and puts them on the net-

work in the form of UDP packets. Serialization is done using google protocol

bu↵ers[19]. In the main system side, a thread keeps scanning the input bu↵er

for incoming protocol bu↵er messages,

The protobuf data structure defined in the ”.proto” file for the compiler is as

follows:

opt ion op t im i z e f o r = LITE RUNTIME;

package keimote ;

enum MsgType {
ROTATION = 0 ;

BUTTON = 4 ;

}

message PhoneEvent {

111
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r equ i r ed MsgType type = 1 ;

op t i ona l f l o a t x = 2 ;

op t i ona l f l o a t y = 3 ;

op t i ona l f l o a t z = 4 ;

op t i ona l f l o a t w = 5 ;

op t i ona l in t32 buttontype = 7 ;

op t i ona l bool s t a t e = 8 ;

}
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