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Abstract

This thesis mainly discusses the fast mode decision algorithms for the H.265/HEVC (high

efficiency video coding). HEVC has incorporated a series of the state-of-the-art technologies

and algorithms. These features help HEVC to achieve significantly high compression effi-

ciency. However, these features also increase the computational complexity. In order to find

the best encoding parameters (e.g. coding mode) for a certain block (comprised of luma and

chroma components), a huge number of combinations of block sizes and candidate modes

have to be checked, which is very time-consuming. Hence, in this work, a course of fast

mode decision algorithms are proposed to accelerate the mode decision process. Moreover,

the corresponding hardware architecture of the proposed fast decision algorithms as well as

the hardware design of the transform of H.265/HEVC are proposed.

First, this thesis gives a brief introduction about the H.265/HEVC. The HEVC codec em-

ploys the well-known hybrid block-based coding framework, including advanced intra pre-

diction with 35 modes, improved motion-compensation prediction with merge technique,

newly added large-sized transform engine, and high-efficiency entropy coding tool. More-

over, the reconstructed pixels are filtered by the similar de-blocking and newly adopt sample

adaptive offset filters before sent to the decoded picture buffer. Unlike the previous video cod-

ing standards, the HEVC adopts a flexible quadtree structure based block partition scheme

that enables effective use of different block sizes during the prediction and transform cod-

ing processes. Two strategies aiming at overcoming the limitations of the parallelization

approaches employed in H.264/AVC have been included in the HEVC, namely Tiles and

wavefront parallel processing.

Second, this dissertation presents a course of low complexity fast mode decision algo-

rithms. In order to skip some unlikely depths, the maximum depth information of a co-located

block is referred to predict the depth of current block. To make a prediction, after encoding

one frame, the depth information is saved, in order to enable later coded frames to refer to

these data. In order to reduce the complexity introduced by saving the depth information, it is

proposed in this dissertation that co-located LCU from the previous frame in encoding order

will be used. Next, for a certain sized block, the motion character of inter prediction residual

is analyzed to determine whether to terminate the current check or to skip over unnecessary

modes and split the block into smaller sizes. In order to detect the motion character of each

portion inside a block, we propose to divide the residual block and calculate the average and

the sum of absolute difference over average. Two conditions are defined to terminate the mode

check process or to skip current depth mode check process and move on to the next depth.

Moreover, in order to skip some unlikely partition modes, a skip strategy is also proposed. To

make compensation to a wrong split condition, a novel remedy process is introduced. After

inter prediction, a hardware-oriented low complexity fast intra prediction algorithm is pre-

sented. The proposed algorithm adopts a fast discrete cross differences (DCD) to detect the

dominate direction of the coding unit. Based on DCD information, only a subset of the 35
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candidate modes are selected for the rough mode decision process. Moreover, four simple

but efficient early termination strategies are proposed to terminate the RDO process properly.

Third, in this thesis, the corresponding hardware architectures of the proposed fast mode

decision algorithms are proposed. In order to achieve a better compatibility, the proposed

fast mode decision architectures are designed as an individual module that can be easily em-

bedded into a common video codec for H.265/HEVC. A state machine based mode dispatch

module for the depth prediction combined with the residual check algorithm is described. In

this mode dispatch module, mainly 4 kinds of elements are contained according to its func-

tional definition: information recording element, controlling and decision making element,

interface element, and the core mode dispatcher. For the proposed state machine, there are 13

states are defined. Then, the hardware implementation of the proposed fast DCD algorithm

and two previous works are discussed. Moreover, the complexity and performance of the

proposed DCD algorithm is compared with previous works.

Finally, this dissertation describes a hardware architecture of the transform applied in

HEVC. The proposed architecture can support a variety of transform sizes from 4x4 to 32x32.

The hardware design proposed in this work focuses on low cost and high throughput. To

achieve such objectives, some simplification strategies are adopted during the implementa-

tion, such as reusing part of the structure of the larger sized transform for smaller sized trans-

form, and turning multiplication by constant into shift and sum operations. The transform

architecture proposed in this dissertation is implemented in the form of pipeline structure.

Moreover, a high-performance transposition memory is proposed to store and transpose the

intermediate data between the 1-D and 2-D transform.

As a conclusion, in this thesis, a course of fast mode decision algorithms and its cor-

responding hardware architectures as well as the hardware design of the transform of

H.265/HEVC are proposed.
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Chapter 1

Introduction

This chapter describes the background and the objectives of this thesis. This thesis focuses

on the fast mode decision algorithms for the H.265/HEVC. HEVC has incorporated a series

of technologies and algorithms. These algorithms help HEVC to achieve a high compression

efficiency. However, these technologies also increase the complexity. In order to find the

best encoding mode for a block, a huge number of combinations of block sizes and modes

will be checked exhaustively. Moreover, larger sized transform is a newly-added feature in

HEVC and the traditional design of this part cannot be directly reused. Also, the transform

of HEVC involves heavy computations and the hardware allocation for this part should be

considered carefully. Therefore, in this work, a course of fast mode decision algorithms and

its corresponding hardware architectures as well as the hardware design of the transform of

H.265/HEVC are proposed.

1.1 Background and motivation

For the past several years, the great achievement in video compression area is the creation

of the H.264/MPEG-4 advanced video coding (AVC) standard [1], which has been world-

widely used in a variety of applications.

As technology advances, the definition and the quality of the digital video materials have

improved fast and steadily. More and more electronic terminals become capable to support

high resolution video capture and display. Therefore, studies on performance improvement

of video codec are becoming common concerns. The standardization of the next generation

video coding standard, i.e. high efficiency video coding (HEVC), was formally launched

by the same video compression standardization organizations, named ITU-T video coding

experts group (VCEG) and the ISO/IEC moving picture experts group (MPEG), in January

2010, and the first edition of the H.265/HEVC standard [2] was finalized in January 2013.

As a successor, the design of HEVC codec [3] has incorporated state-of-the-art technolo-

gies and algorithms, as shown in Figure 1.1. Following features are contained: intra pre-

diction with 35 modes, inter prediction with merge technique, large-sized transform coding,

high-efficiency entropy coding, de-blocking and sample adaptive offset (SAO) filters.

These features help HEVC to achieve significantly high compression efficiency. However,

these features also increase the computational complexity. As is depicted in Figure 1.2, the

blocks with solid lines denote the mode decision process in HEVC. In this process, first, the

size of a block is decided according to its depth. Second, the inter and intra prediction modes

are checked to find the best one for this block. Third, this block is split into the next depth



2 Chapter 1 Introduction

ME

Transform/

Quantization

Entropy 

coding

Choose 

Intra

Coeff.R

P

+

-

Inter

Intra

F'n R'
+

+

F'n-1

Ref.
MC

Intra 

Pred.

Decoded
Picture 
Buffer

Inv. Quant./

Inv.Trans.

Decoded

frame

Input

De-blocking

& SAO

Figure 1.1: Simplified block diagram of HM encoder.

Figure 1.2: The mode decision process for a block.

and the first two steps are repeated to find the best modes for the blocks in the next depth.

Finally, these two depths are compared to determine the better depth and mode.

On the basis of the above analysis, in order to find the best encoding mode for a certain

block, a huge number of combinations of block sizes and candidate modes have to be checked,

which is very time-consuming.

1.2 Previous researches

As stated, the complexity of HEVC has increased a lot, compared with the previous stan-

dards. In references [4–7], a series of simulations of complexity analysis have been con-

ducted. According to the results of complexity analysis of HEVC reference encoder [4, 5],
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Figure 1.3: Classification tree of proposals on fast mode decision algorithms for H.264/AVC.

the rate distortion optimization (RDO) [8, 9] based mode decision encoding stage always

holds a high percentage of the encoding time.

Therefore, a lot of research works have been proposed to reduce the computational com-

plexity caused by the exhaustive mode decision process adopted in the encoder of HEVC.

1.2.1 Fast mode decision algorithms for H.264/AVC

Since both the newly H.265/HEVC and the previous H.264/AVC adopt the well-known hy-

brid block- based coding framework, most of the fast mode decision algorithms proposed for

H.265/HEVC can trace back to the fast mode decision researches for H.264/AVC. Hence, we

first make a summary of the fast mode decision algorithms for H.264/AVC. Since the begin-

ning of the standardization of H.264/AVC, how to make a fast and accurate mode prediction

has been an important research topic and lots of research works have been proposed. These

previous algorithms are categorized according to decision stage and criteria, as shown in the

classification tree in Figure 1.3.

There are roughly two categories of algorithms: fast inter mode decision and fast intra

mode decision algorithms. References [10–16] propose to reduce the computational com-

plexity of the variable block-size motion estimation based on the temporal and spatial cor-

relation in a video sequence. C. Duanmu et al. [10] present an early detection of the 16x16

block or SKIP mode according to the condition that the sum of absolute difference corre-

sponding to the (0,0) motion vector is less than a predetermined threshold, and one of the

chosen modes of the spatially neighboring is SKIP or 16x16. K. Chang et al. [11] use the

best modes of the spatial neighboring blocks and the most correlated block from the previous

frame as prediction candidates. In reference [12], the mode decision process can be termi-

nated by referring the lowest RD Cost among the co-located blocks of the previous encoded

frames. Authors of [13] propose to classify the blocks into three sub-sets on the basis of the

luminance difference between current block and its collocated block in previous frame, and

then check some certain modes for each sub-set. References [14,15] propose novel intra pre-

diction mode selection schemes in P-frames by using the temporal correlation between the
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intra predicted block in the current frame and the corresponding block in its reference frame.

B. Hilmi et al. [16] propose reducing the number of candidate modes using direct information

of the co-located blocks from previous frames.

Authors of references [17, 18] propose using homogeneous character of a block to avoid

splitting into smaller blocks. In [17], the homogeneity of the block is evaluated based on the

edge information calculated by Sobel operator, while in [18], a fast hierarchal cross differ-

ences algorithm is proposed to estimate the homogeneity of the block.

References [19–21] propose some fast inter mode selection algorithms according to the

homogeneity of the residual block. A. Yu et al. [19] evaluate the homogeneity of the residual

block by comparing the difference between current and co-located residual blocks. In [20,21],

the homogeneity of each portion of the current residual block is used to decide whether this

block needs to be split into smaller blocks.

In [22], I. Choi et al. propose a fast SKIP mode detection algorithm on the basis of block

size, reference frame, motion vector, and the transformed coefficients. Authors of [23] pro-

pose to construct a priority-based mode candidate list by adaptively projecting the modes as

points onto a 2-D map, and perform mode decision of the modes from this list with early

termination conditions.

Reference [24] presents a mode classification strategy that fuzzy logic technique is used to

determine the possible candidate modes for a certain block. On the other hand, in work [25],

it is proposed that the energy function of the transformed coefficients is adopted to sort the

blocks to certain categories. Moreover, a learning based algorithm is proposed in [26], where

the number of candidate inter modes is reduced according to the statistical data obtained from

the previously encoded frames.

For the fast intra mode decision algorithms, in references [27–30], some fast algorithms are

proposed based on the local edge information of the block, e.g. dominant direction. F. Pan et

al. [27] advocate using Sobel operator to create a local edge direction histogram and a small

part of intra prediction modes are chosen for RDO calculation based on the distribution of

this histogram. In [28], the dominant direction is estimated based on the sum of absolute error

of the sub-sampled block. C. Miao et al. [29] propose an extensive pixel-based algorithm that

the direction strength of a certain mode i is calculated based on the differences between every

two neighboring pixels located along the direction defined by the mode i. In reference [30],

the same edge detection strategy is proposed and variance of current block is calculated to

decide whether smaller blocks should be checked or not.

References [31–33] exploit the correlation between optimal coding modes of temporal and

spatial adjacent blocks to reduce the computational complexity of the encoding. J. Xin et

al. [31] propose to measure the difference between current block and its co-located block

in the previous frame. If they are close enough, the current block will reuse the mode of

its co-located block and the entire mode decision process is skipped. Authors of [32, 33]

present a method based on the statistical properties (e.g. mode information and block size)

of references pixels and adjacent blocks.

Some early termination strategies are given in [34–36]. An early termination method with

adaptive threshold is developed by H. Zeng et al. [34], and the candidate modes are selected

according to their Hadamard distances and prediction directions. The authors of [35] exploit

the correlation between the sum of absolute transform difference and rate distortion to termi-

nate or skip some unlikely prediction modes efficiently. Reference [36] proposes to construct

a priority-based mode candidate list, and perform mode decision of the modes from this list
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Figure 1.4: Classification tree of proposals on fast mode decision algorithms for H.265/HEVC.

with early termination conditions.

In reference [37], the proposed algorithm finds the candidate modes by analyzing the

transformed coefficients of its neighboring blocks. This method modifies the mode decision

scheme, which estimates the direction of current block in frequency domain. C. Tseng et

al. [38] propose a simplified rate-distortion cost function to reduce the calculation complex-

ity.

1.2.2 Fast mode decision algorithms for H.265/HEVC

On the basis of the fast mode decision algorithms proposed for H.264/AVC, a lot of re-

searches have been conducted to accelerate the mode decision process for H.265/HEVC.

These previous algorithms are also classified according to decision stage and criteria, as

shown in the classification tree in Figure 1.4.

There are also roughly two categories of algorithms: fast inter mode decision and fast

intra mode decision algorithms. The large coding unit (LCU) depth prediction schemes of

both categories deliver a suitable prediction of the depth of current block. References [39–

43] propose using the depth information of LCUs from reference frames and/or neighboring

LCUs to predict the suitable depth range for current LCU, in order to skip unnecessary depths

and/or terminate current depth check. S. Tai et al. [44] suggest that some specific depths of

a coding unit (CU) quadtree can be eliminated by referring to the coding information of the

co-located CUs and CUs adjacent to the co-located CUs. M. Cassa et al. [45] present a Top

Skip technique in which the larger CU sizes are avoided by selecting a starting LCU depth

based on an observation that there exists a high correlation between the minimum depth of

the current LCU and that of the co-located LCU in the previous frame. In reference [46],

proposes to skip some unlikely depth based on the texture complexity of the down-sampled

LCU. Authors of [47] propose an algorithm that collects relevant and computational-friendly

features to assist decision of the depth of LCU on the basis of a predefined Bayesian decision

rule.

The algorithms of the coded block flag (CBF) based decision are designed to seek an early

detection of the SKIP mode. In references [48, 49], the difference motion vector (DMV) and
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CBF after searching the mode 2Nx2N are simply checked to detect the SKIP mode. Ref-

erence [50] introduces a method to reduce the encoding complexity by simply investigating

the CBF. For the SKIP mode decision scheme, the authors of [51] propose a simple tree-

pruning algorithm to exploit the observation that sub-tree computations can be skipped if the

coding mode of current block is SKIP. All the mentioned proposals from the above two sub-

categories have been adopted in the HEVC test model HM10 [3]. Moreover, the authors of

references [52, 53] present a depth range selection mechanism according to the location of a

depth with SKIP mode.

As for the algorithms of RD Cost based termination, some proposals advocate terminat-

ing the mode decision process by comparing the RD Cost of current CU with pre-defined

thresholds. Reference [54] presents a strategy that if the current best RD Cost is less than

a threshold, the mode decision process will stop. Authors of [55, 56] investigate a strategy

that no further splitting process is necessary when the RD Cost of current CU is lower than

the cost obtained from the modes already coded with SKIP mode. Work [57] proposes to

terminate the estimation of all the RD Costs of the merge candidates when for any candidate

of the list, the cost of the SKIP mode is inferior to the minimum of any previous RD Costs

already computed for previous candidates.

For the residual based decision proposals, authors of [58] propose terminating the splitting

process of LCU if the average and variance of the best residual of current CU are less than

a pre-defined threshold. The authors of reference [59] design a fast algorithm for residual

quadtree coding that replaces the original depth-first residual transform process by a merge-

and-split transform process. K. Choi et al. [60] propose to prune a residual quadtree in the

early stage based on the number of nonzero transformed coefficients. P. Chiang et al. [61]

investigate to reduce the computational complexity of residual coding according to a fast zero

block detection scheme based on the sum of absolute difference value which is available in

the inter prediction computation.

In HEVC, the number of modes for intra prediction has been increased to 35, which will

lead to a higher computational complexity when exhaustively checking over all candidate

modes. Therefore, intra mode decision algorithms have been proposed to reduce the num-

ber of modes to be checked. Some authors propose reducing the number of modes checked

by the rough mode decision (RMD) process. A. Motra et al. [62] propose to use the di-

rection information of the co-located block of a previous frame along with the neighboring

blocks of current frame as candidates to reduce the number of intra prediction modes in the

RMD process. The work in [63] presents an intra mode decision algorithm that reduces the

complexity by taking into account the dominant edge orientation of the current and previous

depths and then calculating the dominant edge based on the differences between neighboring

sub-sampled pixels along a certain direction. W. Jiang et al. [64] use the Sobel edge operators

to detect the gradient of a block to accelerate the intra prediction process in HEVC, while in

reference [65], the gradient of the block is calculated by summing the absolute differences

between neighboring pixels located along some pre-defined directions. G. Chen et al. [66]

propose a fix-point arithmetic based edge detector to analyze the textures of the source image

block and select a small set of possible modes to send to the RMD process.

Algorithms that reduce the number of modes checked by the RDO process have also been

proposed. Reference [67] proposes to use the mode information from spatial neighbors to re-

duce the number of candidates checked by the RDO process, ensuring that the most probable

mode (MPM) is always checked in the RDO. This method had been added into the HM [3].
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Reference [68] proposes a fast intra prediction mode decision based on estimating the rate

distortion cost using Hadamard transform to reduce the number of modes sent to the RDO

process. References [69, 70] propose analyzing the statistics generated by the RMD process

to select a smaller set of modes output from RMD process and then send it to the RDO pro-

cess combined with DC mode and MPM. The authors of [71, 72] propose to determine the

best prediction mode of a CU by referring to the mode of a parent CU in the previous depth.

In the technique in reference [73], a mode output from RMD can be selected as the best mode

when it is similar to modes from a co-located CU in a previous frame and spatial CUs in the

current fame. Various RDO termination strategies have been presented in [74] and [75].

In the last sub-category, another group of studies have been conducted based on various

training methods [76–79]. Information (such as threshold) obtained from the study process

can be used to stop the mode decision process of current CU if necessary or to skip modes

that are thought to be unlikely.

1.2.3 Hardware architecture of the transform for H.265/HEVC

Same as the previous video coding standard, an encoder can be decomposed into a series

of coding stages, and each stage is conducted on the basis of different compression norm.

Among these coding stages, transform coding stage plays a relatively important role. Gener-

ally, transform coding is achieved by discrete cosine transform (DCT), and the purpose of this

stage is to concentrate the energy of a residual block generated from the prediction stage to

the first few numerical coefficients, enabling the following quantization and entropy coding

stages to be performed more efficiently.

In order to decrease the computational complexity and solve the mismatch problem be-

tween forward and inverse transforms, integer DCT rather than floating DCT is used. The

largest transform size adopted in H.264/AVC is 8x8, while in HEVC, even larger sized DCT

including 16x16 and 32x32 is provided, since larger sized transform could achieve higher

compression ratio.

The theory of the transform for HEVC is proposed in [80–83]. The transform size is

ranging from 4x4 to 32x32, and the computational complexity of which is much higher than

that of H.264/AVC (transform size is 4x4 or 8x8). The corresponding transform matrixes are

also given in [80–83]. The transform of HEVC is implemented on the basis of transform unit

(TU) in the HM [3] using butterfly combined with multipliers method. However, the matrix

multiplication is inevitable based on this method. Hence, in reference [84], it is proposed

to decompose the transform matrixes into orthogonal matrixes and general matrixes with

smaller elements. The number of different elements in these matrixes can be reduced after

decomposing, so that the number of multiplication can be reduced.

Since the development of H.264/AVC, a variety of researches [85–90] have been proposed

about the hardware implementation of its transform. Authors of [85–87] propose a direct

2-D forward transform architecture according to the symmetry properties of the transform

matrixes, while taking account of eliminating drift effects, multiplying free, and reducing

memory bandwidth. In [88, 89], a separate 1-D forward transform architecture with a trans-

position memory, realized by parallel register array, are proposed. K. Chen et al. [90] present

a high-performance direct 2-D transform coding IP.

However, larger sized transforms used in HEVC increase the computational complexity in

two aspects. One aspect is the computation logic of the transform. For larger sized transform

logics need more multipliers and adders, so that more hardware resource will be consumed.
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The other problem is the cost of the transpose memory. In order to store more intermediate

results, more areas will be consumed by the transpose architecture. To solve the above two

problems, several latest researches [91–94] about the HEVC transform have been reported.

The authors of reference [91] present area- and power-efficient architectures for the trans-

form of HEVC. The proposed structures could be reusable for DCT of all sizes, and power-

efficient structures for folded and full-parallel implementations of 2-D DCT are proposed. R.

Jeske et al. [92] provide a 16-point 1-D transform architecture used by a 16x16 2-D transform,

and this design is conducted in a fully combinational way. In reference [93], a fully pipeline

based 2-D transform engine supporting variable block sizes with the efficient hardware uti-

lization is proposed. A unified architecture for inverse transform and forward transform is

devised through the algorithm optimization. S. Park et al. [94] present high throughput and

power-efficient architectures with efficient matrix multiplication schemes.

Moreover, some works [95–97] propose combined transform architectures that support-

ing several popular video coding standards. In references [95, 96], unified transform archi-

tectures are investigated, which can support both the existing video coding standards like

H.264/AVC [1], MPEG-2/4 [98, 99], AVS [100], VC-1 [101], and the HEVC [2]. M. Mar-

tuza et al. [97] present a shared architecture which can compute the 8x8 inverse transform of

the HEVC from that of the H.264/AVC using a new mapping technique.

1.3 Objective and outline of this thesis

For the LCU depth prediction algorithm proposed in previous works, the depth information

of a co-located LCU from a reference frame is used to make a prediction. Hence, the depth

information of all possible reference frames needs to be stored, and this of course results in

the consumption of a large amount of memory. Therefore, in this dissertation, we propose

using the co-located LCU from the previous frame in an encoding order. This means that

the depth information of only one frame needs to be saved while still maintaining a better

performance. In the residual based decision algorithm mentioned above, the residual infor-

mation is only used to terminate the current depth mode decision, but in our proposal, this

obtained information is used not only to terminate but also to skip over unlikely modes and

directly split current CU into the next depth. We also propose a remedy strategy to prevent

prediction error propagation. For the RMD modes reduction algorithms for intra prediction,

such as those using the Sobel operator, the algorithm itself is very complex, and thus we

also propose a low complexity hardware-oriented fast intra prediction algorithm. Hardware

synthesis results show that only 1/9 of the resources are consumed compared with previous

works.

The purpose of this work is to reduce the computational complexity of the HEVC encoder

without causing any noticeable performance degradation. First, in order to determine the size

of current block, the depth information of a co-located block from the previous frame is used

to predict the proper block size. Then, for a certain sized block, the residual generated by

inter prediction is analyzed to determine whether to terminate current check or to skip over

unnecessary modes and split into smaller sizes. Finally, after inter prediction, a hardware-

oriented low complexity fast intra prediction algorithm is proposed. Our algorithm adopts

a fast discrete cross difference (DCD) to detect the dominant direction of the coding unit.

Based on DCD information, only a subset of the 35 candidate modes are selected for the

RMD process. We also propose four simple but efficient early termination strategies for
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Figure 1.5: The proposed mode decision process for a block.

terminating the RDO process properly. As shown in Figure 1.5, the blocks marked by dotted

lines are the added processes we propose in this work.

The rest of this thesis is organized as follows. Chapter 2 gives a brief introduction about

the H.265/HEVC, including the quadtree structure based block partition scheme, advanced

prediction and transform coding tools, improved in-loop reconstruction filters, and three pre-

diction structures. Chapter 3 proposes a course of low complexity fast mode decision algo-

rithms, namely depth prediction, residual check, and fast intra mode decision algorithm. The

performances of individual or combined algorithms are also analyzed. Chapter 4 presents

the corresponding hardware architectures of the proposed fast mode decision algorithms in

Chapter 3, and the synthesis results of each architecture are also provided. Chapter 5 de-

scribes a low cost and high throughput transform architecture for 1-D and 2-D transform in

HEVC. This architecture supports a transform size ranging from 4x4 to 32x32. Chapter 6

makes a conclusion about this thesis.
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Chapter 2

High efficiency video coding

2.1 Introduction

High efficiency video coding (HEVC) is the video coding standard of the VCEG and

MPEG. The main goal of the HEVC standardization effort is to enable significantly improved

compression performance relative to existing standards – in the range of 50% bit-rate reduc-

tion for equal perceptual video quality.

The HEVC standard adopts the well-known hybrid block-based coding framework, con-

taining advanced intra prediction with 35 modes, advanced motion-compensation prediction

with merge technique and large-sized transform coding followed by high-efficiency entropy

coding. Moreover, the reconstructed pixels will be processed by de-blocking and SAO filters

before sent to the decoded picture buffer. For special case, the lossless coding [102] is also

supported in the HEVC.

In the following sections, a brief introduction about the key technologies of HEVC is

presented, and more detail information about HEVC is provided in references [103, 104].

2.2 Block partition structure and parallel scalability

2.2.1 Block partition structure

Other than the previous video coding standards, this HEVC uses a flexible quadtree block

partition structure [105, 106] that enables effective use of different block sizes during the

prediction and transform coding processes. As depicted in Figure 1.1, an input video image

is first divided into a sequence of LCUs. An LCU, comprised of a 2Nx2N block of luma

samples, can be part of a slice or a tile defined by the configuration file. LCU is broadly

analogous to the concept of macroblock in H.264/AVC and an index is allocated to each

LCU in raster-scanning order. All encoding procedures are conducted on the basis of LCU.

Each LCU can be recursively split into four smaller blocks with the same size, called CUs.

One possible way to split an LCU into CUs is illustrated in Figure 2.1.

Each CU located inside an LCU is indexed in a Z-scanning order. The CU is the basic

coding region used in the intra/inter prediction coding procedure. The shape of an CU is

always square and may take a block size starting from the size of the LCU going all the

way down to a minimum size of 8x8 luma samples. This recursive CU splitting process

can generate a content-adaptive quadtree structure, providing a flexible partition scheme and

enabling efficient use of large and multiple block sizes.
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Figure 2.1: Example of CU partition scheme.

As shown in Figure 2.1, different sized CUs are given different depth indexes. For example,

the 1st CU with a size of 16x16 is indexed by depth 2, while the depth of 2nd CU sized by

8x8 is 3, and the whole LCU with a size of 64x64 is indexed by depth 0. Therefore, the size

of CU is expressed in terms of depth. There are totally four depths from 0 to 3 defined in

HEVC.

2.2.2 Parallel scalability

For the sake of overcoming the limitations of the parallelization approaches employed in

H.264/AVC, two strategies aiming at enhancing the parallel scalability [107] of the HEVC,

have been included in the HEVC, namely Tiles and wavefront parallel processing (WPP).

Both of these two approaches propose to divide each frame of the video sequence into multi-

ple partitions that can be processed in parallel. An integer number of LCUs are contained in

each partition.

When the Tiles strategy is enabled during encoding process, a picture will be divided into

rectangular groups of LCUs separated by vertical and horizontal boundaries, as shown in

Figure 2.2. The thick lines in this figure represent the Tile boundaries. The number of tiles

and the location of the corresponding boundaries can be controlled by the configuration com-

mand. The scanning order of each LCU will be also changed according to the Tiles, where

LCUs will be scanned from tile to tile. An example is given in Figure 2.2. To facilitate high

level parallel processing, each tile can be processed independently.

When the WPP strategy is used in the codec, each LCU row of a frame is recognized as a

separated partition, and can be processed independently. An example of the WPP approach is

illustrated in Figure 2.3. In this example, the LCU rows indexed by 1, 2, 3, 4 can be encoded

in parallel by the corresponding threads 1, 2, 3, 4. So that, several LCU rows can be encoded

in parallel. When the encoding of the LCU rows 1, 2, 3 finishes, that of the LCU rows 5,

6, 7 starts in parallel. Additionally, in order to further reduce the coding losses, the coding

information, e.g. probabilities, from the second LCU of the previous LCU row, can be taken

as reference when encoding current LCU row. For example, when thread 2 starts to encode

LCU 8 in LCU row 2, the coding information of LCU 1 will be used as reference. So, each

thread starts only when the first two LCUs are encoded in the previous thread.
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Figure 2.2: Example of dividing a frame into nine Tiles.

LCU Row 1

LCU Row 2

LCU Row 3

LCU Row 4

LCU Row 5

LCU Row 6

LCU Row 7

Thread 1 0 1 2 3 4 5 6 7

Thread 2 8 9 10 11 12 13 14 15

Thread 3 16 17 18 19 20 21 22 23

Thread 4 24 25 26 27 28 29

Thread 1 32 33 34 35

Thread 2 40 41

Thread 3

30 31

36 37 38 39

42 43 44 45 46 47

48 49 50 51 52 53 54 55

Figure 2.3: Parallel processing of each LCU row in WPP.

2.3 HEVC video coding technology

2.3.1 Prediction coding

As is stated, there are 35 intra prediction candidate modes [108] for each CU for all per-

missible sizes, as shown in Figure 2.4. The mode indexed by 0 is called Intra Planar [109],

which assumes the current block as an amplitude surface with horizontal and vertical slopes

derived from the boundaries. The mode 1 is defined as Intra DC, which is similar as the DC

mode defined in H.264/AVC. Other directional modes indexed by 2...34 are Intra Angular

modes.

In practice, the intra prediction process is generally divided into two steps. Firstly, a rough
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Figure 2.4: Intra prediction mode directions.

mode decision is conducted over the 35 candidate modes to select a number of sub-optimal

modes based on the Hadamard transform results and estimated mode bits. Then, the chosen

subset of modes are sent to the RDO process one by one to find out the best mode with lowest

cost, denoted as RD Cost, evaluated by the distortion and the encoded mode bits. Based on

the two-step search strategy, the complexity can be relatively reduced without decreasing the

quality remarkably. However, there still exits a high computational complexity.

For inter prediction, in order to match the boundary of real objects, a CU can be go on di-

vided into smaller blocks, called prediction units (PUs), as depicted in Figure 2.5. In general,

the PU is not restricted to be square in shape, and can be divided into asymmetric rectangle

blocks. Basically, all the possible PU partition modes should be checked to find the best one

for current CU. Even though a high degree of adaptability is achieved by this PU partitioning

scheme, this strategy has certain intrinsic drawbacks, that is, it may result in redundant sets of

motion parameters being encoded and transmitted. Hence, a block merging technique [110]

has been included in the HEVC.

2.3.2 Transform coding

The transform of HEVC is implemented on the basis of transform unit (TU), which is also

the basic unit for quantization. TUs are also formed in a quadtree structure with a root located

in residual CU, which means that a residual CU can be recursively divided into four blocks

with a size starting from that of residual CU down to a certain size, which is derived from
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Figure 2.5: Partition modes for inter PU.
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Figure 2.6: Example of TU splitting structure.

the parameter – maximum quadtree depth – specified in the slice header syntax. In HEVC, a

TU may take the size from 4x4 up to 32x32 luma samples. Therefore, each residual CU may

contain one or more TUs, in which the multiple TUs are arranged in a quadtree structure. As

the dashed line illustrated in Figure 2.6, the residual CU indexed by 23 is divided into smaller

blocks to transform. This division of residual CU 23 can be converted into tree structure as

the quadtree depicted on the right part.

To encode the transformed coefficients, a unique entropy coding tool is used in all con-

figurations of HEVC, i.e. context adaptive binary arithmetic coding (CABAC) [111, 112],

compared with H.264/AVC. The core of the CABAC coding engine of HEVC is essentially

the same as the CABAC used in H.264/AVC, other than some improvements in the details

of practice implementation. For example, relatively fewer contexts are used in HEVC com-

pared with H.264/AVC standard, and also the memory requirements are reduced to benefit

both throughput and implementation costs. Moreover, in reference [113], a method for ana-

lyzing the dynamic range along the data-path of the residual encoding and reconstruction is
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presented.

2.3.3 Pixel reconstruction

In HEVC, two filters are designed for the reconstructed pixels, namely de-blocking filter

and SAO filter. The de-blocking filter [114] is used to reduce visible artifacts at block bound-

aries, which are due to the usage of a series of block-based coding tools. The de-blocking

process is applied to all samples adjacent to each CU boundary in the same order as the re-

construction process, except following cases when the CU boundary is also the boundary of

a frame, or when de-blocking process is not permitted across slice or tiles boundaries. In

this process, vertical edges are first filtered by using the horizontal filter, and then horizontal

edges are filtered by vertical filter. The minimum CU with a size of 8x8 is the filtering unit,

for both luma and chroma components. Hence, the boundaries aligned on a 4x4 block are not

filtered, so as to reduce the complexity, which is different from H.264/AVC.

The SAO [115] is a process which modifies the values of the reconstructed pixels after

the de-blocking filter through look-up tables. The SAO filter aims to improve the accuracy

of the amplitudes of the reconstructed pixels compared with the original pixels. The SAO

is applied adaptively to all the pixels, by conditionally adding an offset value to each pixel

based on the information from look-up tables defined by the encoder. That is, depending on

the local gradient at the position of a certain pixel, a corresponding offset value picked up

from a look-up table is added to this reconstructed pixel. The SAO is designed to improve

the subjective performance of the codec, and this filter can be selectively turned on or turned

off in the configuration file.

2.4 Prediction structure

The HM encoder [3] defines three kinds of temporal prediction structures as test conditions

for simulation: intra-only, low-delay, and random access. The management of the reference

picture list(s) corresponding to each prediction structure is given in [116, 117].

For the intra-only prediction structure, all the frames of a video sequence are encoded as

instantaneous decoding refresh (IDR) pictures. Inter prediction between pictures is not used.

Coding parameters for a picture, such as Qp, do not change during the encoding process

of the whole sequence, and all the pictures belong to the same layer L0. Layer is used to

describe a group of pictures that are encoded with the same parameters. Layer is also used to

denote the importance of this group of pictures. The smaller the index of layer is, the more

importance it is. Figure 2.7 gives a graphical illustration of the intra-only prediction structure,

where the number assigned to each frame represents the encoding order.

In the test case of low-delay coding, as a normal coding configuration, only the first frame

of a video sequence is encoded as an IDR picture. All other pictures are coded as P pictures

using inter prediction. These P pictures are classified to different layers, from L1 to L3, ac-

cording to the encoding order. Coding parameters for a frame, such as Qp, will also change

as the layer index. Figure 2.8 shows a graphical presentation of this low-delay P configura-

tion. The number associated with each frame represents the encoding order. The arrow in

this figure points to the reference picture.

For the random access test condition, a so-called hierarchical B structure is adopted for

encoding. Figure 2.9 gives a graphical explanation of a random access prediction structure,
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Figure 2.7: Graphical presentation of intra-only prediction structure.

0 3 2 3 1 3 2 3 1

Figure 2.8: Graphical presentation of low-delay P prediction structure.

0 4 3 4 2 4 3 4 1

Figure 2.9: Graphical presentation of random access prediction structure.

where the index of each picture denotes the encoding order. Unlike the low-delay coding, an

intra picture is encoded at regular intervals defined in the configuration file. Among them, the

first intra picture of a video sequence is encoded as an IDR picture while others are non-IDR

intra pictures. The remaining pictures located between two intra pictures are encoded as P or

B pictures. That is, the picture belong to layer L1 is a P picture, and others associated with
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layers from L2 to L4, are encoded as B pictures.

2.5 Conclusion

In this chapter, a brief introduction about the H.265/HEVC was presented. In order to

achieve a better performance, a course of state-of-the-art techniques had been adopted in

HEVC. First, during the prediction and transform coding processes, a flexible quadtree based

block partition scheme was supported. Approaches, such as Tiles and WPP, were taken in to

enhance the parallel scalability. Then, for the prediction coding, an enhanced intra prediction

with 35 candidate modes as well as a flexible motion-compensation prediction with merging

technology were employed. Next, larger sized transform and advanced CABAC engine were

applied to encode the residual, and a de-blocking filter along with a newly SAO filter were

used to filter the reconstructed samples. Finally, three common used test conditions were

introduced.
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Chapter 3

Hierarchical structure based fast

mode decision for H.265/HEVC

3.1 Introduction

In this chapter, a course of low complexity fast mode decision algorithms [118] are pre-

sented. First, the depth information of a co-located block from a previous frame is used to

predict the size of current block. Next, for a certain sized block, the inter prediction residual

is analyzed to determine whether to terminate the current check or to skip over unneces-

sary modes and split the block into smaller sizes. After inter prediction, a hardware-oriented

low complexity fast intra prediction algorithm is proposed. A fast DCD is adopted to detect

the dominant direction of the block. In addition, four simple but efficient early termination

strategies are proposed to terminate the RDO process properly.

3.2 Depth prediction

It is well-known that, the consecutive frames from nature video sequence tend to be similar,

for the objects in the video always moving continuously. As is shown in Figure 3.1, the

contents of the two successive frames are almost same, and the partition structure of LCUs

located in the same position is also similar to each other. The partition structure is generated

using the HEVC reference software HM. Such as the first LCU in both frames, they split in

the same way, and generate same sized CUs in the same place.

As stated, the size of CU is expressed in terms of depth, which means that if the depth

of current CU can be predicted, its size will also be known. While other impossible sizes

(depths) can be directly skipped to reduce the complexity. Based on these analysises, maybe

the partition structure of the co-located LCU, which has already been encoded, can be used

to predict the depth of current LCU. To achieve this, the relationship between current LCU

and co-located one should be made clear first.

3.2.1 Correlation between co-located LCU and current LCU

Generally, an LCU with a larger depth means that there is detail texture inside this block,

and hence, smaller CU sizes such as 8x8, are preferred to encode this LCU. Whereas, for LCU

within a homogeneous region, large block partition will be better. Therefore, in this work,
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Figure 3.1: Example of LCU partition for two consecutive frames.

we proposed to classify different LCUs into different categories corresponding to different

texture characters. There are three categories defined: simple, complex, medial. An LCU will

be classified as complex when at least one of the CUs inside this LCU takes the maximum

depth, 3 as defined. On the other hand, when all the CUs takes the depth not larger than 1,

this LCU will be seen as simple. The rest LCUs will be defined as medial.

The distributions of the occurrence ratios of these three kinds LCUs are estimated over

some video sequences, under three different coding structures (Section 2.4), and other con-

figurations are defined in [123]. A single Qp value of 32 is used for this simulation. The

results are shown in Table 3.1. From this table, we can see that the distributions of the ratios

under different coding structures are different from each other. But for all these three coding

structures, the sum of the ratios of simple and complex LCUs always holds a high percentage,

while the ratio of medial LCU is around 10%.

Based on Table 3.1, the relationship of the depths of the current LCU and the co-located

LCU from the previous frame is analyzed, and the results are given in Table 3.2. A single

Qp value of 32 is used for this simulation. In this table, the “NoMaxDepth” column shows

the occurrence ratio of such LCU that no CUs inside it takes the maximum depth when the
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Table 3.1: Distribution (%) of the ratios of simple, complex, and medial LCUs.

Sequence
All intra Low-delay P Random access

Simple Complex Medial Simple Complex Medial Simple Complex Medial

Class A
Traffic 10.8 81.7 7.5 67.7 21.1 11.2 77.0 15.5 7.5

PeopleOnStreet 6.1 91.3 2.7 24.4 64.0 11.6 31.4 54.4 14.2

Class B

Kimono 61.9 18.8 19.3 59.4 15.5 25.1 71.7 11.5 16.8

ParkScene 17.7 78.4 3.9 55.6 34.1 10.3 68.1 24.7 7.2

Cactus 14.0 77.7 8.3 63.1 25.8 11.1 71.1 20.6 8.3

BQTerrace 20.6 76.5 2.8 65.8 25.9 8.3 79.5 16.3 4.3

BasketballDrive 35.2 48.9 15.9 67.8 20.1 12.0 73.5 16.8 9.7

Class C

RaceHorsesC 5.1 90.5 4.3 22.0 63.1 14.9 33.2 50.5 16.4

BQMall 4.8 90.9 4.3 45.0 45.2 9.8 54.4 34.5 11.1

PartyScene 0.4 99.2 0.4 31.2 56.0 12.8 48.7 42.2 9.1

BasketballDrill 1.4 96.0 2.6 52.5 36.2 11.3 58.9 28.9 12.2

Class D

RaceHorses 0.6 98.4 1.0 4.0 81.6 14.4 11.0 64.5 24.5

BQSquare 0.0 97.7 2.3 26.8 45.2 28.0 52.6 23.6 23.8

BlowingBubbles 0.1 99.8 0.1 19.8 57.2 23.0 36.5 38.9 24.6

BasketballPass 11.4 83.0 5.6 42.6 34.4 23.0 50.4 24.8 24.8

Class E

Vidyo1 18.5 61.2 20.3 81.1 5.5 13.4 83.7 4.8 11.5

Vidyo3 26.8 61.1 12.1 75.8 10.2 14.1 81.1 6.8 12.1

Vidyo4 23.6 60.3 16.1 79.8 7.3 12.9 82.6 6.0 11.4

AVG 14.4 78.4 7.2 49.1 36.0 14.8 59.2 27.0 13.9
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Table 3.2: Correctness (%) of prediction from co-located LCU to current LCU.

Sequence
All intra Low-delay P Random access

NoMaxDepth NoMiniDepth NoMaxDepth NoMiniDepth NoMaxDepth NoMiniDepth

Class A
Traffic 84.1 99.0 90.5 76.4 91.3 68.7

PeopleOnStreet 86.7 99.5 88.9 98.2 84.2 96.3

Class B

Kimono 97.2 96.4 94.6 91.7 96.3 89.7

ParkScene 91.9 99.1 84.2 78.4 87.9 76.5

Cactus 90.2 99.2 93.7 90.3 92.4 85.1

BQTerrace 92.1 98.6 85.2 68.0 93.0 72.6

BasketballDrive 91.2 97.7 95.4 90.2 94.6 86.7

Class C

RaceHorsesC 75.9 99.6 76.3 96.7 74.0 94.9

BQMall 81.0 99.7 87.3 90.5 87.9 89.9

PartyScene 73.9 100.0 70.1 87.8 82.5 89.2

BasketballDrill 59.5 99.8 90.2 90.9 88.3 86.6

Class D

RaceHorses 60.0 99.9 49.2 99.8 53.6 97.9

BQSquare - 100.0 60.8 85.7 84.3 79.8

BlowingBubbles - 99.9 66.8 94.3 77.2 92.0

BasketballPass 86.2 99.9 92.1 93.8 90.4 90.2

Class E

Vidyo1 96.8 99.5 97.4 58.2 97.0 56.5

Vidyo3 93.4 98.4 97.1 78.0 96.2 66.0

Vidyo4 92.0 98.5 97.1 68.2 96.7 64.5

AVG 84.5 99.1 84.3 85.4 87.1 82.4
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co-located LCU is classified as simple. The average value of “NoMaxDepth” is around 85%.

In other words, if co-located LCU is a simple one, large sized CUs are coded inside it. Hence

there will also be a high probability that current LCU will be coded using large sized CUs,

and then maximum depth will not appear. While “NoMiniDepth” is equal to the occurrence

ratio of such LCU that the minimum depth is not suitable for it when the co-located LCU is

tested as complex. The value of “NoMiniDepth” is around 90%.

3.2.2 Complexity reduction

To make a prediction, after encoding one frame, the depth information has to be saved,

so that later coded frames can refer to these data. In reference [41], co-located LCUs from

reference frames are used, in this case, depth information of all the possible reference frames

has to be stored. This will cause a large memory cost, when implemented on hardware

platform. In order to reduce the complexity introduced by saving the depth information of

co-located LCU, it is proposed in this chapter that co-located LCU from the previous frame

in encoding order will be used so that depth information of only one frame needs to be saved.

Based on the definition of LCU classification, to classify one LCU, only the maximum

depth of the CUs inside it will be needed. Compared with [39, 42], in which the depth range

of current LCU is predicted using minimum and maximum depth information of co-located

or spatial neighboring LCUs, in our proposal only the maximum depth information needs to

store.

3.2.3 Implementation of depth prediction algorithm

As we can see from Table 3.2, the depth prediction is not always 100% accurate. The

optimal depth of an LCU might be skipped due to a wrong prediction, and such prediction

errors can accumulate during the encoding process. Therefore, we propose that for the last

frame of every N frames, all possible sized CUs corresponding to the whole depth range will

be checked in order to maintain the performance. That is, depth prediction is turned off for

the last one of every N frames. The number N is selected by taking account of the GOP size

and many simulation results.

The proposed depth prediction algorithm is explained by pseudo codes as:
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Algorithm Depth Prediction

while current LCU != last LCU do

if (depth information of co-located LCU is available

&& mod(POC of current picture, N) != 0 ) then

for depth = 0 to 3 do

if (co-located LCU is complex && depth == 0) then

skip check on current depth;

depth ++ ;

else if (co-located LCU is simple && depth == 3) then

terminate check on current depth;

break;

else

check current depth;

depth ++;

end if

end for

else

test all CU sizes according to the whole depth range;

end if

store maximum depth information of current LCU;

end while

3.3 Residual check

In this section, we will analyze the motion character of each portion of a CU based on its

residual information to decide the following encoding flow.

3.3.1 Residual characteristic analysis

After motion estimation, there may be some portions, whose motion compensation residu-

als may contain a significant amount of energy if motion estimation mismatches these regions.

Whereas energy will tend to be lower in matched area. If the mismatched energy is too high,

the movement of objects inside this CU is inconformity.

Therefore, a different motion estimation, motion vector to be exact, is needed for the mis-

matched region. Consequently, current CU will possibly need to split into PUs or smaller

sized CUs to match the movement of each small portion.

In order to detect the motion character of each portion inside a CU, we propose to divide

the residual block, generated by inter prediction with 2Nx2N partition mode, into sixteen

sub-blocks (four, when depth is maximum), as depicted in Figure 3.2. The sizes of these

sub-blocks are 16x16, 8x8, 4x4, 4x4 corresponding to the depth 0 to 3, respectively.

Then, the average and sum of absolute difference over average (S ADA) of each sub residual

block are calculated. The average and S ADA are calculated by

Avg =
1

S ∗ S

S−1∑

m=0

S−1∑

n=0

p(m, n), (3.1)
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Figure 3.2: Division a CU into 16 sub-blocks.

S ADAi j =

S−1∑

m=0

S−1∑

n=0

∣∣∣p(m, n) − Avgi j

∣∣∣, (3.2)

where (i, j) is the index of sub-blocks; p(m, n) is the value of the residual pixel in position

(m, n) inside the sub-block indexed by (i, j) and Avgi j is the average of this sub-block. S is

the size of current sub-block.

Since S ADA is broadly analogous to the concept of variance, it can be used to reflect the

character of a block. If the S ADA is lower than a threshold, noted as ThS mooth, current sub

residual block can be recognized as a smooth or homogeneous region.

ThS mooth is defined as

ThS mooth =

{
(d + uiDepth) ∗ ((1 << 2) << 2),

(d + uiDepth) ∗ ((1 << (4 − uiDepth)) << (4 − uiDepth)),

uiDepth = 3

otherwise

(3.3)

where uiDepth is equal to the index of the current depth; (1 << (4 − uiDepth)) << (4 −

uiDepth) stands for the number of residual pixels inside each sub-block. For example, if

uiDepth = 1 (the size of original residual CU is 32x32, and the size of each sub- block is

8x8), the number of residual pixels inside each of all 16 sub-blocks is 64 ((1 << 3) << 3).

The threshold ThS mooth is selected based on the assumption that if the average difference

between every residual pixel and the average of current sub-block is larger than (d+uiDepth),

this residual block may be a mismatched portion. Meanwhile, based on this assumption, this

threshold can adaptively adjust its value according to the depth of current CU.

3.3.2 CU termination and split conditions

After checking the smoothness of all the sub residual blocks, a termination condition called

p1 is checked, where the following two terms are tested:
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(1) All sixteen sub-blocks are checked as smooth for depth 0, or no more than one sub-

block is recognized as unsmooth for other depths.

(2) The absolute values of the averages of all sub-blocks are less than a threshold ThAvg.

If p1 is satisfied, i.e. both of (1) and (2) are true, the following check over PU partition

modes and following depths, will be terminated.

The selection of condition p1 is based on the fact that if most of the sub residual blocks are

homogeneous, current check is sufficient enough and no more check is needed. If condition

p1 is not satisfied, the second split condition, named p3 is checked, to decide whether current

residual block contains several mismatched portions.

Condition p3 is evaluated by virtual block (VB) basis, each of which comprises of four

neighboring sub-blocks as illustrated in Figure 3.2. A VB is treated as unsmooth in case

more than two sub-blocks inside this VB are checked as unsmooth. Following two terms are

tested:

(1) There are at least two unsmooth VBs, and current depth is not maximum.

(2) If co-located LCU is simple, which means maximum depth will be skipped, thus cur-

rent depth should be not equal to 2.

Term (2) aims to make a robust and easy integration of this residual check algorithm and the

depth prediction algorithm. According to the depth prediction, if co-located LCU is simple,

mode decision process of depth 3 of current LCU will be skipped. If current depth is equal

to 2 and p3 is decided as true, mode decision process of depth 3 will be conducted. Combine

these two situations together, if co-located LCU is simple and current depth is equal to 2, p3

cannot be set as true.

If p3 is satisfied – i.e., if both (1) and (2) are true – the following check of PU modes and

the intra modes of the current depth can be skipped and mode decision process of the next

depth will be conducted.

Condition p3 states a fact that if most of the sub residual blocks are unsmooth, current

CU contains several mismatched portions. This means that the current motion vector is not

sufficient to describe current CU and it should be split into smaller sized CUs.

We estimated the accuracy of conditions p1 and p3, and list them in Table 3.3. The columns

indexed by p1 and p3 are the accuracy of the corresponding condition. The accuracy of

condition p1 is measured by counting the percentage of the CUs whose best mode is decided

as inter mode 2Nx2N among the CUs with residual characteristic satisfying condition p1.

This is because that when the best mode of a CU is decided as inter mode 2Nx2N, it is

considered safe to terminate the mode check process of the following candidates. The same

applies to p3.

As shown in the table, the accuracy of condition p1 is as high as 97%. A single Qp value of

32 is used for this simulation. The index p2 indicates the ratio of CUs that satisfy condition

p1 among the CUs whose best mode is decided as inter mode 2Nx2N. The index p2 can be

considered as the norm used to evaluate the effectiveness of condition p1 from the opposite

perspective. From Table 3.3, about 88% of these CUs can be terminated in advance based

on condition p1. Index p4 in this table indicates the ratio of CUs that satisfy condition p3

among the CUs which are finally decided to split.
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Table 3.3: Accuracy (%) of termination and split over current depth based on residual check.

Sequence
Low-delay P Random access

p1 p2 p3 p4 p1 p2 p3 p4

Class A
Traffic 94.7 77.0 69.4 63.0 99.0 96.4 62.7 20.9

PeopleOnStreet 95.6 89.9 80.2 40.9 96.3 89.6 75.1 44.7

Class B

Kimono 95.4 90.5 59.1 18.8 94.3 91.2 47.0 22.7

ParkScene 98.6 91.2 57.0 35.9 98.6 92.8 51.9 33.5

Cactus 98.3 91.0 50.3 46.9 98.0 92.2 47.8 46.9

BQTerrace 98.8 83.5 29.0 58.6 99.4 84.0 15.0 53.5

BasketballDrive 95.8 96.5 63.3 31.8 95.2 96.2 55.9 36.6

Class C

RaceHorsesC 94.8 79.4 55.7 57.6 94.2 79.8 50.2 60.1

BQMall 98.3 88.4 54.8 48.0 98.4 90.6 52.1 45.5

PartyScene 96.8 67.8 50.7 78.0 97.5 69.8 41.4 77.5

BasketballDrill 97.6 92.6 66.7 38.6 97.6 93.0 62.7 38.3

Class D

RaceHorses 94.7 77.1 69.4 63.0 94.7 78.5 65.9 62.9

BQSquare 98.4 73.2 38.8 62.0 99.3 74.0 20.5 55.2

BlowingBubbles 97.6 79.0 50.6 62.8 97.9 81.2 44.6 58.7

BasketballPass 98.7 93.2 68.0 41.8 98.6 93.6 63.4 42.3

Class E

Vidyo1 99.3 98.1 49.0 12.6 99.3 98.6 54.2 14.9

Vidyo3 99.2 96.7 62.8 28.0 99.5 97.4 59.4 31.1

Vidyo4 99.5 98.3 43.5 6.8 99.3 98.8 54.5 9.1

AVG 97.3 86.8 56.6 44.2 97.6 88.8 51.4 41.9

3.3.3 PU skip strategy

If both condition p1 and p3 are not satisfied, following PU partition modes shown in

Figure 2.5 should be checked next. In order to skip some unlikely partition modes, following

schemes are introduced in this chapter:

(1) If the two left or right VBs are checked as smooth, mode with Nx2N partition will be

checked.

(2) If the two top or bottom VBs are checked as smooth, mode with 2NxN partition will

be checked.

In the simulation, we found that this assumption is not always right. To reduce the pre-

diction error resulted by this, the following remedy process is also proposed in this chapter.

After analyzing the residual generated by mode with 2Nx2N partition, if Nx2N is decided to

be checked while 2NxN is not, only mode Nx2N will be checked and its RD Cost is compared

with that of mode 2Nx2N. If cost of latter is smaller, which means the above assumption may

not be true, 2NxN will still be checked. If 2NxN is decided to be checked while Nx2N is not,

the same action will occur.
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Start mode check of current depth

P1 is true?
Y

Check inter mode 2Nx2N
Calculate average and SADA of the residual

P3 is true?

Check PU modes according to PU Skip Strategy

Do mode check of next depth, compare these two depths

Current depth is best 
&& p3 is true?

Check intra modes of current depth

Check the skipped PU modes

Finish current depth check

Y

Y

Y

N

N

N

N

Intra is better?

Check intra modes of current depth

Figure 3.3: Implementation flowchart of the residual check algorithm.

3.3.4 Implementation of residual check algorithm

As depicted by the blocks with solid lines in Figure 1.2, for the default mode decision

process in HEVC, inter mode 2Nx2N, PU modes, and intra modes are checked sequentially to

find the best. Intra modes are also checked for inter frames to maintain sufficient performance,

e.g., in cases where blocks with highly detailed texture are encoded. Therefore, after applying

the residual check algorithm, whether or when intra prediction needs to be checked should

be also considered. The integration of this algorithm into the HEVC encoder is shown in

Figure 3.3.

After checking inter mode 2Nx2N, the average and SADA of the generated residual is

analyzed. The current depth check will be terminated when condition p1 is true. If condition

p3 is true, current CU will directly split to the next depth. Otherwise, if both p1 and p3 are
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false, the PU skip strategy discussed above will be adopted to skip unlikely modes, and the

intra prediction modes are also checked, and then current CU will split to the next depth.

As stated in Section 1.1, when the mode check over the next depth is finished, the cost of

the current depth will compete with the whole cost generated from the next depth. If p3 is

true, and the current depth is still better, which means that one of the modes of the current

depth skipped by p3 may be the optimal one. From Table 3.3, the accuracy of p3 is less

than 60% on average, and the optimal mode of the current depth may be skipped when p3

is true. Therefore, another remedy process is also proposed. Under situation stated above,

the skipped PU and intra modes will be checked again. Based on the definition of p3, if the

next depth is not suitable, there will be a high probability that current CU contains detailed

texture. Then, intra prediction modes of the current depth will be checked first. If it is better

than inter mode 2Nx2N, other PU modes will still be skipped. Otherwise, all the PU modes

will be checked to find the best mode with the smallest cost. The part marked by the dashed

lines in Figure 3.3 shows this remedy process.

3.4 Fast intra mode decision

In practice, the intra prediction process is generally divided into two steps. First, the RMD

process is conducted over 35 predefined modes to select a number of sub-optimal modes

based on the Hadamard transform results and estimated mode bits. Second, the chosen sub-

set of modes are sent to the RDO process one by one to determine the best mode with the

lowest cost, denoted as RD Cost, which is evaluated by the distortion and the encoded mode

bits. Based on this two-step search strategy, the complexity can be relatively reduced with-

out significantly decreasing the quality. For real-time application, the complexity of intra

prediction is still a burden.

As is known, in most natural video sequences, the pixels are always tending to change

along a certain direction, and intra prediction tool is introduced into the codec based on this

idea. Therefore, many directional prediction modes are defined to exploit the spatial character

of the encoding block. If the content of a block is changing along one certain direction, the

difference between two neighboring pixels located within this direction will be relatively

smaller than those along other directions. This direction can be called as dominant direction.

Hence, if the dominant direction of a block can be detected in advance, the predefined modes

whose direction is close to this direction will be chosen as the candidates for the rough mode

decision process, while others will be discarded without being checked.

In previous works [27,29], two common methods were used to find the dominant direction:

Sobel operator and extensive pixel based search.

3.4.1 Proposed discrete cross difference

In this work, we propose a fast DCD algorithm to detect the dominant direction. The DCD

is used to estimate the difference among pixels located along a certain direction. Take a 4x4

block as an example, to reduce complexity, in this work, the DCD is computed on the basis of

the cross differences between two pairs of pixels in different discrete locations. As depicted

in Figure 3.4, to calculate the DCD along horizontal direction, four pixels marked by cycle

are used. DCDs of four major directions of a block are calculated: horizontal (H), vertical

(V), diagonal-down-right (DR), and diagonal-down-left (DL). Every four pixels marked by
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the same symbol are used to calculate the DCD of one certain direction.

32
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Figure 3.4: Discrete cross difference calculation pattern.

The value of DCD can be used to evaluate the strength of each direction. The strength of

each direction is expressed as

d(H) = | f (1, 2) − f (1, 0)| + | f (2, 3) − f (2, 1)| , (3.4)

d(V) = | f (2, 1) − f (0, 1)| + | f (3, 2) − f (1, 2)| , (3.5)

d(DR) = | f (3, 2) − f (1, 0)| + | f (2, 3) − f (0, 1)| , (3.6)

d(DL) = | f (2, 0) − f (0, 2)| + | f (3, 1) − f (1, 3)| , (3.7)

where f (x, y) represents the value of the pixel located in position (x, y).

For a block with horizontal texture, the DCD strength stated in Eq. (3.4) will be smaller

than the other DCD strengths. The same holds true for the other three scenarios. Thus, the

dominant direction of a block can be accurately detected by using this DCD algorithm.

In this work, the DCD strengths are calculated by the unit of a 4x4 block. For a DCD

strength with certain direction of an 8x8 CU, it is calculated by making a summation of the

four DCD strengths with same direction of the four 4x4 blocks. These four 4x4 blocks are

located within this 8x8 CU. For even larger sized CUs (16x16), the DCD strengths can be

calculated by adding up those strengths of the 8x8 CUs within it. This process is continued

recursively until the size of LCU is reached. Therefore, for one LCU, the DCD calculation

process is only conducted once, and the results are used by CUs at different depths.

3.4.2 Candidate mode selection

After the four DCD strengths of current CU are estimated, a subset candidate modes can

be selected from the whole 35 modes based on the relationship among these four estimated

directions. First, the minimum and second minimum strengths are picked out from the four

DCD strengths, denoted as miniV1 and miniV2. Next, the derivation of dominant direction(s)

from the DCD results can be divided into three categories:
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(1) If miniV2 is larger than ThV ∗ miniV1, it is assumed that the dominant direction of

current CU is strong, and the estimated dominant direction is derived bo be the same

as the direction corresponding to miniV1.

(2) If miniV2 is smaller than ThV ∗ miniV1, and the directions corresponding to miniV1

and miniV2 are located next to each other – e.g., horizontal and diagonal-down-right

– the dominant direction can be assumed as weak. The estimated dominant directions

are derived the same as the directions corresponding to miniV1 and miniV2.

(3) If miniV2 is smaller than ThV ∗ miniV1, and the directions corresponding to miniV1

and miniV2 are perpendicular to each other – e.g., horizontal and vertical – it is as-

sumed that the direction of current block is not clear.

Based on the results of multiple simulations, ThV is set as 2 in order to obtain a satisfactory

tradeoff between performance loss and time reduction.

The specific candidate modes according to the estimated dominant direction(s) are listed

in Table 3.4. As seen in the table, the Intra Planar and Intra DC are always checked by the

RMD process to maintain the performance. If the estimated dominant direction is derived as

strong, the modes located on both sides of this direction are selected, while if it is derived as

weak, the modes located between the two estimated dominant directions are chosen. Finally,

if the dominant direction is not clear, only Intra Planar and Intra DC are checked.

Table 3.4: Candidate modes corresponding to the estimated dominate direction(s).

Category Est. Direction(s) Candidate modes Total

Strong

H 0, 1, 5...15 13

V 0, 1, 21...31 13

DR 0, 1, 13...23 13

DL 0, 1, 2...7, 29...34 14

Weak

H, DR 0, 1, 8..20 15

V, DR 0, 1, 16...28 15

H, DL 0, 1, 2...12 13

V, DL 0, 1, 24...34 13

Not Clear None 0, 1 2

3.4.3 Early RDO termination strategy

After the RMD process has been completed, a sub-optimal set of candidate modes are

obtained and arranged in such a way that the Hadamard transformed cost increases one after

another. The first mode in the set is considered as the best sub-optimal candidate. The

RDO process is performed over these modes to identify the best mode with the minimum

cost. RDO is typically a very time consuming process, and thus four early RDO termination

strategies are proposed in this chapter:

(1) If the best sub-optimal candidate is derived as Intra Planar or Intra DC, only this mode

will be checked by RDO, and the following candidates will be skipped.

(2) If the difference between the indexes of two neighboring candidate modes from the

sub-optimal set is larger than ThIndex, the RDO process will be terminated before
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checking the latter.

(3) If the difference between the Hadamard transformed cost of two neighboring candidate

modes from the sub-optimal set is large enough, the latter and those that follow will be

skipped, and the difference is estimated by deciding whether the latter is ThRMDCost

times larger than the former.

(4) If the RD Cost of current candidate is ThRDCost times larger than the best RD Cost

already obtained, the RDO process can be safely turned off.

Moreover, intra prediction on 4x4 blocks will be skipped when there is no significant trans-

form coefficient after checking the 8x8 CU. The proposed fast intra mode decision algorithm

consists of all the above-mentioned strategies, and the detail integration information is ex-

plained by pseudo codes as:

Algorithm Fast Intra Mode Decision

while current LCU != last LCU do

for depth = 0 to 3 do

if (depth == 0) then

calculate the four DCD strengths for CUs in all depths;

end if

find the dominant direction(s);

select the corresponding candidate modes;

conduct the RMD process;

for ith mode ∈ sub-optimal mode set do

if (|ModeIndexi − −ModeIndexi−1 | > ThIndex) then

break;

end if

if (RMDCosti > ThRMDCost ∗ RMDCosti−1) then

break;

end if

conduct the RDO process of this mode;

if (RDCosti >best RDCost already obtained) then

break;

end if

if ((ModeIndexi == 0) || (ModeIndexi == 1)) then

break;

end if

end for

if (depth == 3) then

check intra prediction on 4x4 blocks, if needed;

end if

end for

end while

3.5 Overall algorithm

In this section, the three aforementioned algorithms are integrated to form the proposed

hierarchical structure based fast mode decision algorithm. These three sub-algorithms are:

the depth prediction algorithm, used to decide the size of a block based on depth information
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of co-located LCU; the residual check algorithm, designed to skip some unnecessary modes

on the basis of the residual character; the fast intra mode decision algorithm, used to reduce

the number of modes checked by RMD process according to the dominant direction. The

detail integration information is given in the flowchart depicted in Figure 3.5. The overall

algorithm is explained stepwise as following:

Step 1. Start a new LCU encoding process.

Step 2. Read the saved depth information of the co-located LCU in the previous

frame, if it is available.

Step 3. Start the mode decision process at the current depth. If current depth is

equal to 0, go to step 4, otherwise, go to step 6.

Step 4. Calculate the DCD strength of the predefined four directions for all CUs at

all depths. Go to step 5.

Step 5. If the co-located LCU of current LCU is complex, go to step 20. Other-

wise, go to step 8.

Step 6. If the current depth is equal to 3, go to step 7. Otherwise, go to step 8.

Step 7. If the co-located LCU of current LCU is simple, go to step 20, otherwise,

go to step 8.

Step 8. Check the inter mode 2Nx2N of current CU and calculate the average and

SADA of the generated residual. Go to step 9.

Step 9. If the termination condition p1 (Section 3.3.2) is true, go to step 20. Oth-

erwise, go to step 10.

Step 10. If the split condition p3 defined in Section 3.3.2 is true, go to step 15.

Otherwise, go to step 11.

Step 11. Skip unnecessary PU modes based on the PU skip strategy (Section 3.3.3).

Go to step 12.

Step 12. Find the corresponding dominant direction(s) based on the DCD strengths

and select a set of candidate modes. Go to step 13.

Step 13. Conduct the RMD process for this set of candidate modes to find the sub-

optimal modes. Go to step 14.

Step 14. Conduct the RDO process over this set of sub-optimal modes combined

with the early termination conditions defined in Section 3.4.3. Go to step

15.

Step 15. Call the recursive CU splitting process and perform mode checks at the

next depth, then compare the costs of these two depths. Go to step 16.

Step 16. If the cost of current depth is smaller, and condition p3 is true, go to step

17. Otherwise, go to step 20.

Step 17. Check the intra prediction modes of current CU. Go to step 18.

Step 18. If cost of the best intra mode is smaller than that of inter mode 2Nx2N, go

to step 20. Otherwise, go to step 19.

Step 19. Check the skipped PU modes sequentially. Go to step 20.

Step 20. Finish the encoding process over the current depth. Go to step 21.

Step 21. If the current depth is equal to 3, go to step 22. Otherwise, return to step 3.

Step 22. Finish the encoding process of current LCU, and store the maximum depth

information.
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Figure 3.5: Flowchart of the proposed overall algorithm.
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3.6 Simulation results

The proposed algorithms are implemented into the HEVC reference software HM11.0 and

simulation specifications are provided in [123]. Three common test conditions, namely All

intra, Low-delay P, and Random access, are used for evaluations.

The comparison results are evaluated based on the difference of coding time (∆T - indi-

cating the average time reduction in the coding process), the PSNR difference (∆PS NR -

denoting the average difference of the peak signal-to-noise ratio), and the bitrate difference

(∆BR - indicating the average bit-rate increase). ∆PS NR and ∆BR are calculated according

to [124]. The test platform used is Intel Core i7-3.4GHz, 8.0GB RAM. The above-mentioned

parameters are defined as

∆T =
Tproposed − Tre f erence

Tre f erence

× 100%, (3.8)

∆PS NR = PS NRproposed − PS NRre f erence, (3.9)

∆BR =
BRproposed − BRre f erence

BRre f erence

× 100%. (3.10)

3.6.1 Performance of depth prediction

As discussed in section 3.2.3, depth prediction is turned off once for every N frames. In

this work, N is decided as 16 according to some simulation results. If a number larger than

16 is chosen, the performance of depth prediction will slightly decrease, while time saving by

this algorithm will increase due to the fact that more frames can be predicted by using depth

prediction. On the other hand, the opposite is true for a number smaller than 16.

The evaluation results of the proposed depth prediction algorithm are tabulated in Table 3.5.

In this table, the bitrate and PSNR loss as well as the encoding time reduction of the proposed

algorithm are given. In terms of complexity reduction, this proposed algorithm can save 41%

encoding time under All Intra condition, 42.9% under Low-delay P, and 42.6% under Random

access, on average. The largest complexity reduction is 57% when encoding sequence Ki-

mono under All Intra condition. On the other hand, the average bitrate increases are 0.001%

under All Intra, 0.084% under Low-delay P, and 0.342% under Random access conditions.

Consider the encoding time reduction, the average savings are almost same under all three

test conditions. This is because the sum ratios of simple and complex LCUs always hold a

high percentage under all these conditions, as shown in Table 3.1.

With regards to the bitrate, the bitrate increase under All intra condition is smaller than

the other two. For the Low-delay P case, the bitrate increase may come from the fact that

different frames are used for motion estimation and depth prediction process. As mentioned

in section 3.2.2, in order to reduce the complexity for saving the depth information, only the

frame right before current frame in encoding order is used by the depth prediction. With the

Random access case, the above mentioned difference is even larger. For under this condition,

reference frames with a larger temporal distance, compared with Low-delay P, are also used.

Therefore, the bitrate loss is the largest among the three conditions.
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Table 3.5: Simulation results for the proposed depth prediction algorithm.

Sequence
All intra Low-delay P Random access

∆BR
∆PS NR

∆T ∆BR
∆PS NR

∆T ∆BR
∆PS NR

∆T
Y U V Y U V Y U V

Class A
Traffic 0.008 -0.001 0.000 0.000 -40.4 0.498 -0.008 0.012 0.018 -46.1 0.367 -0.019 -0.001 -0.004 -47.1

PeopleOnStreet -0.010 -0.001 -0.002 0.004 -38.6 0.065 -0.004 0.003 -0.004 -39.4 0.124 -0.008 0.007 -0.003 -35.8

Class B

Kimono -0.024 -0.002 0.005 -0.001 -57.0 -0.092 0.000 -0.007 -0.005 -42.2 -0.030 -0.006 -0.006 0.001 -44.3

ParkScene -0.033 -0.002 -0.002 -0.002 -40.9 0.128 -0.014 0.009 0.009 -44.0 0.133 -0.018 -0.005 -0.007 -44.7

Cactus -0.021 -0.002 0.000 -0.002 -40.0 0.080 -0.007 0.005 0.003 -44.0 0.686 -0.012 0.002 -0.003 -45.0

BQTerrace -0.003 0.000 0.001 0.005 -43.7 -0.385 -0.010 0.008 0.006 -44.9 -0.034 -0.007 0.004 0.002 -46.6

BasketballDrive 0.101 -0.001 -0.006 0.001 -46.3 0.162 -0.001 -0.005 -0.008 -42.7 0.488 -0.011 -0.026 -0.012 -43.6

Class C

RaceHorsesC -0.027 -0.002 -0.002 -0.001 -37.3 -0.025 -0.006 -0.002 -0.002 -40.4 0.456 -0.015 -0.016 -0.030 -38.9

BQMall -0.013 0.000 0.002 -0.006 -39.1 -0.108 -0.006 -0.016 -0.030 -42.0 0.377 -0.021 -0.006 0.029 -40.9

PartyScene -0.001 0.000 0.001 0.001 -36.8 0.054 -0.009 0.028 -0.005 -39.4 0.253 -0.013 0.005 -0.001 -41.1

BasketballDrill -0.012 -0.001 0.004 -0.003 -38.2 -0.089 -0.011 -0.012 0.025 -43.2 0.318 -0.012 -0.023 -0.027 -42.4

Class D

RaceHorses -0.008 -0.001 -0.001 0.001 -36.2 0.283 0.006 -0.017 -0.038 -36.0 0.413 -0.013 0.021 0.005 -27.2

BQSquare 0.000 0.000 0.000 0.000 -35.9 0.308 -0.011 0.001 -0.031 -37.7 0.583 -0.005 0.010 0.006 -42.6

BlowingBubbles -0.011 0.000 0.003 0.002 -34.5 0.142 -0.036 0.041 -0.023 -37.6 0.430 -0.013 -0.002 -0.003 -40.5

BasketballPass 0.029 -0.001 0.012 0.002 -38.5 0.320 -0.012 0.017 0.035 -40.7 0.344 -0.023 -0.022 -0.029 -40.3

Class E

Vidyo1 0.005 0.001 0.004 0.002 -42.5 -0.136 -0.014 0.006 0.031 -51.3 0.505 -0.005 -0.002 0.008 -49.1

Vidyo3 0.045 -0.005 -0.004 0.015 -47.2 0.266 -0.014 -0.034 -0.014 -50.6 0.342 -0.014 0.008 0.007 -49.4

Vidyo4 -0.006 -0.002 0.009 0.010 -44.8 0.040 -0.004 -0.020 -0.013 -50.4 0.399 -0.010 -0.001 -0.004 -46.7

AVG 0.001 -0.001 0.001 0.002 -41.0 0.084 -0.009 0.001 -0.002 -42.9 0.342 -0.013 -0.003 -0.004 -42.6
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RD curves of PartyScene and BlowingBubbles are depicted in Figure 3.6 and 3.7 as ex-

amples. The sequences are encoded by the proposed depth prediction algorithm under Low-

delay P test condition, calculated with Qp set as 28, 32, 36, and 40. These curves have shown

that the proposed method has the similar RDO performance as that of HM.
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Figure 3.6: RD curve of PartyScene.

3.6.2 Performance of depth prediction combined with residual check

To decide the values of the thresholds, ThS mooth and ThAvg, some simulations are con-

ducted. A series of combinations of d and ThAvg are tested for the proposed residual check

algorithm with termination condition p1. Some sequences from Class C and Class D are

used. These simulations are conducted under low-delay P with a single Qp value of 32. The

results are tabulated in Table 3.6.

Table 3.6: Impact of the selection of ThS mooth and ThAvg.

d ThAvg
Class C Class D

∆BR ∆PS NR ∆T ∆BR ∆PS NR ∆T

1 4 -0.09 -0.01 21.2 -0.08 -0.01 20.7

3 6 -0.07 -0.02 31.3 -0.00 -0.01 28.9

4 7 -0.03 -0.02 37.5 0.03 -0.02 34.0

5 8 0.01 -0.05 43.3 0.13 -0.03 39.0

7 10 0.18 -0.12 51.4 0.34 -0.15 48.7
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According to Eq. (3.3), the value of ThS mooth becomes larger when d increases. From the

table, we can see that along with the increasing of ThS mooth and ThAvg, the bitrate loss as

well as the PSNR drop will increase at the same time, but, the corresponding time saving will

be more substantial. On the other hand, for certain fixed thresholds, the impact on different

Classes is almost the same in terms of the performance of time reduction. Therefore, to

maintain a tradeoff between performance and complexity reduction d and ThAvg are decided

as 4, and 7, respectively.

The evaluation results of the proposed residual check algorithm combined with the depth

prediction algorithm are tabulated in Table 3.7. For the residual check algorithm is proposed

based on inter frame prediction case, so there is no need to be evaluated under All Intra test

condition. In this table, the bitrate and PSNR loss as well as the encoding time reduction of

the combined algorithm are given.

In terms of complexity reduction, this combined algorithm can save 69.4% encoding time

under Low-delay P test condition, and 72.4% under Random access, on average. The largest

complexity reduction is 85.3% when encoding sequence Vidyo1 under Low-delay P condi-

tion. On the other hand, the average bitrate increases are 1.87% under Low-delay P, and

1.70% under Random access conditions. The bitrate loss is marginal compared with the

reduction in encoding time.

In terms of time reduction, the average savings are almost the same for both test conditions.

On the part of bitrate loss, the bitrate increase when encoding the sequences Kimono and

Cactus listed in Table VI, is relatively larger than the other test sequences. This is because

the contents of these two sequences include highly detailed textures. Hence the generated

residual tends to be irregular, and its character is not easy to be predicted by the residual

check conditions.
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Table 3.7: Simulation results for the proposed depth prediction combined with residual check algorithm.

Sequence
Low-delay P Random access

∆BR
∆PS NR

∆T ∆BR
∆PS NR

∆T
Y U V Y U V

Class A
Traffic 0.359 -0.146 -0.051 -0.051 -77.8 0.346 -0.111 -0.014 -0.007 -81.1

PeopleOnStreet 1.021 -0.086 -0.037 -0.019 -65.1 1.199 -0.072 -0.010 0.006 -66.5

Class B

Kimono 3.322 -0.047 -0.041 -0.026 -71.0 3.643 -0.052 -0.023 -0.005 -73.2

ParkScene 0.298 -0.082 -0.021 -0.006 -71.9 -0.309 -0.092 -0.013 -0.011 -76.1

Cactus 4.443 -0.068 -0.030 -0.045 -71.9 2.505 -0.057 -0.003 -0.014 -75.1

BQTerrace 2.826 -0.073 -0.019 -0.019 -71.1 1.694 -0.069 0.013 0.014 -71.5

BasketballDrive 2.442 -0.051 -0.033 -0.076 -73.2 2.573 -0.049 -0.036 -0.059 -75.7

Class C

RaceHorsesC 1.416 -0.036 -0.065 -0.102 -65.7 1.740 -0.067 -0.067 -0.084 -66.1

BQMall 3.023 -0.081 -0.047 -0.052 -67.7 1.983 -0.107 -0.022 -0.039 -71.0

PartyScene 1.954 -0.065 -0.013 -0.044 -57.1 1.678 -0.107 -0.045 -0.051 -62.2

BasketballDrill 1.782 -0.081 -0.057 -0.082 -66.8 1.951 -0.069 -0.049 -0.081 -73.3

Class D

RaceHorses 1.416 -0.044 -0.059 -0.086 -58.8 1.705 -0.051 -0.033 -0.056 -62.5

BQSquare 0.923 -0.045 -0.016 -0.004 -57.8 2.952 -0.130 -0.006 -0.002 -62.9

BlowingBubbles 1.464 -0.044 -0.026 -0.008 -54.7 1.201 -0.074 -0.046 -0.046 -62.2

BasketballPass 0.850 -0.068 -0.081 -0.050 -70.7 1.146 -0.072 -0.003 -0.047 -71.9

Class E

Vidyo1 1.335 -0.224 -0.047 -0.056 -84.5 1.293 -0.122 0.067 0.071 -85.3

Vidyo3 2.236 -0.156 -0.017 -0.032 -81.1 2.054 -0.085 0.042 0.079 -83.4

Vidyo4 2.582 -0.130 -0.032 -0.012 -83.0 1.230 -0.087 0.099 0.085 -82.9

AVG 1.872 -0.085 -0.038 -0.043 -69.4 1.699 -0.082 -0.008 -0.014 -72.4
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3.6.3 Performance of fast intra mode decision

Based on the results of multiple simulations, ThV is set as 2 in order to obtain a satisfac-

tory tradeoff between performance loss and time reduction. If ThV is set larger than 2, the

performance of this algorithm will slightly decrease, while time saving will increase. For the

number of blocks with dominant direction decided as not clear will increase under such kind

of threshold. On the other hand, the opposite is true for the ThV smaller than 2. Other thresh-

olds, ThIndex, ThRMDCost, and ThRDCost, are selected as 3, 1.5, and 1.2, respectively.

According to simulation results, smaller values of these three thresholds may decrease the

performance with more time reductions. For a fewer number of modes will be checked under

thus condition. On the other hand, the opposite is true for larger thresholds.

Table 3.8 shows the simulation results of the proposed fast intra mode decision algorithm.

In this table, the bitrate and PSNR loss as well as the encoding time reduction of the proposed

algorithm are tabulated.

In terms of complexity reduction, this proposed algorithm can save 53.2% encoding time

under All Intra, 25.1% under Low-delay P, and 24.0% under Random access conditions, on

average. The largest complexity reduction is 60.0% when encoding sequence Vidyo3 under

All Intra condition. This is because the inter mode decision process is much more complex

than that of intra mode decision process due to the motion estimation in inter prediction.

Hence, the time to perform inter mode decision is much longer than that of intra prediction,

and time saving obtained by the proposed fast intra mode decision algorithm is relatively

small in Low-delay P and Random access conditions.

On the other hand, the average bitrate increases are 2.44% under All Intra, 0.51% under

Low-delay P, and 0.15% under Random access conditions, on average. It should be noted

that, CUs in inter predicted fames, can choose both the intra and inter modes as possible

candidates, and this proposed algorithm only affects the performance of intra modes, so the

bitrate losses in both Low-delay P and Random access cases are relatively small.

3.6.4 Performance of overall algorithm

In Table 3.9, the performance comparison of the proposed overall algorithm with HM is

tabulated. In this table, the bitrate and PSNR loss along with the complexity reduction of the

proposed algorithms are listed.

With regards to the encoding time reduction, the overall algorithm achieves a similar per-

formance as the combined algorithm of depth prediction and residual check. As shown in

Figure 3.5, when encoding a new LCU, the DCD strengths of the four predefined directions

are firstly calculated for all the CUs with different depths. However, after the depth predic-

tion and residual check algorithms being applied, the intra prediction process of most CUs is

skipped, so the time saving obtained from the proposed fast intra mode decision algorithm

is very small, meanwhile the time consumed by DCD strength calculation offsets the time

saving to an even more smaller percentage. Therefore, the contribution of the fast intra pre-

diction algorithm tends to be smaller than the other two algorithms under Low-delay P and

Random access conditions.

Therefore, we propose to for the All intra case, use the depth prediction algorithm com-

bined with the fast intra prediction algorithm, while for the Low-delay P and Random access

test conditions, use the combined algorithm of depth prediction and residual check algo-
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Table 3.8: Simulation results for the proposed fast intra mode decision algorithm.

Sequence
All intra Low-delay P Random access

∆BR
∆PS NR

∆T ∆BR
∆PS NR

∆T ∆BR
∆PS NR

∆T
Y U V Y U V Y U V

Class A
Traffic 2.236 -0.085 0.003 0.005 -52.2 - - - - - 0.129 -0.013 0.004 0.000 -26.5

PeopleOnStreet 3.174 -0.084 0.002 0.005 -52.6 - - - - - 0.372 -0.006 -0.004 0.008 -21.6

Class B

Kimono 1.123 -0.041 -0.009 -0.014 -53.2 0.179 -0.003 -0.001 -0.005 -31.5 0.091 -0.001 -0.001 0.001 -25.4

ParkScene 0.150 -0.075 0.010 0.001 -52.4 0.062 -0.008 -0.002 0.003 -31.2 -0.223 -0.008 0.013 0.002 -25.5

Cactus 2.272 -0.066 0.002 -0.012 -53.0 0.490 -0.009 0.002 0.002 -31.3 0.344 -0.008 -0.001 0.002 -25.2

BQTerrace 1.788 -0.076 0.011 0.010 -55.3 0.331 -0.012 0.002 -0.001 -29.9 0.042 -0.008 -0.005 0.008 -22.7

BasketballDrive 3.408 -0.044 0.007 0.005 -55.8 1.336 -0.007 -0.003 -0.025 -21.5 0.686 -0.008 -0.018 -0.009 -23.3

Class C

RaceHorsesC 1.527 -0.094 -0.009 -0.013 -51.0 0.849 -0.005 -0.026 -0.031 -28.6 0.233 -0.015 -0.008 -0.004 -25.6

BQMall 2.421 -0.120 0.001 0.001 -52.0 0.373 -0.023 -0.024 -0.006 -27.4 0.002 -0.011 -0.015 -0.024 -23.5

PartyScene 1.206 -0.156 -0.006 -0.007 -48.8 0.448 -0.021 0.001 -0.005 -20.2 0.218 -0.016 0.009 0.003 -22.9

BasketballDrill 2.852 -0.085 -0.004 -0.008 -53.7 0.558 -0.028 0.002 -0.019 -19.8 -0.085 -0.024 0.009 -0.011 -24.7

Class D

RaceHorses 2.084 -0.109 -0.011 -0.010 -49.8 0.777 -0.020 -0.025 -0.035 -21.5 0.217 -0.006 -0.005 0.006 -23.8

BQSquare 1.883 -0.155 -0.014 -0.015 -52.3 0.140 -0.022 -0.039 0.004 -21.3 0.029 -0.020 0.037 0.013 -23.7

BlowingBubbles 1.743 -0.118 -0.015 -0.011 -48.0 0.138 -0.014 -0.023 0.006 -16.1 -0.033 -0.013 -0.020 -0.008 -22.6

BasketballPass 3.544 -0.094 -0.016 -0.009 -51.7 0.431 -0.029 -0.048 0.006 -29.9 0.200 -0.031 0.004 0.022 -22.9

Class E

Vidyo1 4.905 -0.106 0.016 0.014 -57.7 0.698 -0.018 0.028 0.014 -24.1 - - - - -

Vidyo3 3.794 -0.084 0.004 0.027 -60.0 0.631 -0.012 -0.028 -0.046 -19.3 - - - - -

Vidyo4 3.893 -0.089 0.009 -0.009 -57.9 0.779 -0.026 -0.059 -0.027 -28.7 - - - - -

AVG 2.445 -0.093 -0.001 -0.002 -53.2 0.514 -0.016 -0.015 -0.010 -25.1 0.148 -0.012 0.000 0.001 -24.0
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Table 3.9: Simulation results for the proposed overall algorithm.

Sequence
All intra Low-delay P Random access

∆BR
∆PS NR

∆T ∆BR
∆PS NR

∆T ∆BR
∆PS NR

∆T
Y U V Y U V Y U V

Class A
Traffic 2.223 -0.085 0.003 0.004 -53.3 - - - - - 0.410 -0.111 -0.011 -0.007 -79.9

PeopleOnStreet 3.201 -0.081 0.001 0.000 -51.6 - - - - - 1.558 -0.072 -0.002 0.009 -64.8

Class B

Kimono 1.161 -0.041 -0.006 -0.011 -66.6 3.487 -0.054 -0.036 -0.020 -69.7 3.833 -0.056 -0.030 -0.009 -71.9

ParkScene 0.190 -0.073 0.010 0.003 -53.6 0.473 -0.082 -0.023 -0.002 -70.3 -0.334 -0.090 -0.012 -0.009 -74.7

Cactus 2.291 -0.064 0.000 -0.011 -53.8 4.928 -0.066 -0.034 -0.049 -70.4 2.722 -0.058 -0.001 -0.015 -73.8

BQTerrace 1.807 -0.074 0.013 0.011 -55.8 2.779 -0.069 -0.021 -0.015 -69.3 1.670 -0.070 0.011 0.010 -69.7

BasketballDrive 3.423 -0.046 -0.001 0.000 -59.1 3.648 -0.053 -0.047 -0.101 -71.9 3.269 -0.049 -0.031 -0.061 -74.5

Class C

RaceHorsesC 1.545 -0.091 -0.008 -0.009 -51.1 2.114 -0.035 -0.084 -0.110 -64.3 1.827 -0.066 -0.073 -0.100 -64.2

BQMall 2.391 -0.117 0.002 -0.006 -52.8 4.025 -0.091 -0.048 -0.059 -66.1 2.175 -0.103 -0.021 -0.042 -69.4

PartyScene 1.182 -0.151 -0.005 -0.006 -49.6 2.352 -0.059 -0.020 -0.048 -55.3 1.961 -0.108 -0.048 -0.052 -60.1

BasketballDrill 3.170 -0.078 -0.001 -0.007 -51.1 2.094 -0.091 -0.066 -0.112 -65.2 2.154 -0.067 -0.055 -0.071 -71.9

Class D

RaceHorses 2.042 -0.106 -0.022 -0.019 -49.3 1.990 -0.041 -0.084 -0.094 -57.0 1.743 -0.057 -0.062 -0.060 -60.3

BQSquare 1.909 -0.147 -0.003 -0.014 -49.8 1.124 -0.050 -0.007 -0.036 -55.3 2.940 -0.128 0.006 0.000 -60.5

BlowingBubbles 1.744 -0.116 -0.002 -0.015 -47.6 1.648 -0.042 -0.022 0.007 -52.4 1.508 -0.070 -0.041 -0.040 -60.2

BasketballPass 3.550 -0.099 -0.013 0.001 -52.0 1.254 -0.072 -0.091 -0.054 -69.2 1.392 -0.068 -0.011 -0.062 -70.3

Class E

Vidyo1 5.078 -0.103 0.013 0.012 -57.5 1.426 -0.218 -0.062 -0.049 -83.5 - - - - -

Vidyo3 4.302 -0.090 0.001 0.039 -59.7 2.298 -0.158 -0.006 -0.009 -80.0 - - - - -

Vidyo4 3.970 -0.088 0.004 -0.002 -58.2 2.462 -0.135 -0.035 -0.029 -82.0 - - - - -

AVG 2.510 -0.092 -0.001 -0.002 -54.0 2.381 -0.082 -0.043 -0.049 -67.6 1.922 -0.078 -0.025 -0.034 -68.4
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rithms.

3.6.5 Performance compared with previous works

The performance of the proposed depth prediction algorithm is compared with that of sev-

eral previous works, listed in [39–42, 44, 45]. The complexity reduction and corresponding

bitrate loss are adopted as criteria to make a reasonable comparison. The performance com-

parison results are tabulated in Table 3.10. Results show that the proposed algorithm achieves

better effect in terms of encoding time reduction with a negligible bitrate increase.

In reference [41], co-located LCUs from reference frames are used, and depth information

of all possible reference frames has to be stored. While our proposed depth prediction only

uses the depth information of the co-located LCU from the previous frame in an encoding

order. Therefore, reference [41] can serve as a sensible benchmark. According to the results,

this proposed algorithm achieves more time savings with similar bitrate loss. Compared with

other works, this algorithm also achieves more time savings with less bitrate loss.

Then, the performance of the proposed residual check (3.3) is also analyzed. In previous

work, such as reference [58], the residual information is only used to terminate the mode

decision process and such well-established concept can serve as a benchmark. Therefore, we

implement the residual check only with CU termination (condition p1) as a sensible bench-

mark to evaluate other strategies such as split condition p3, PU skip strategy, and remedy

process. The results are given in Table 3.11. Results show that this proposed algorithm can

save about 40% encoding time with negligible bitrate loss compared with the above men-

tioned benchmark.

3.7 Conclusion

In this chapter, a course of hierarchical structure based low complexity fast mode decision

algorithms were presented. Firstly, the co-located depth information from previous frame

was used to predict the split structure of current LCU. Then, the residual generated by inter

prediction was analyzed to determine the encoding flow: terminating the encoding process or

directly skipping to the next depth of the quadtree, or eliminating some unnecessary modes.

Finally, a hardware-oriented low complexity fast intra prediction algorithm was proposed.

This proposed algorithm adopted a fast DCD to detect the dominant direction of the CU.

Moreover, four simple but efficient early termination strategies were proposed to terminate

the RDO process properly. Simulation results showed that the proposed overall algorithm

reduced the encoding time by 54.0 ∼ 68.4%, without introducing any noticeable performance

degradation.



4
4

C
h

ap
ter

3
H

ierarch
ical

stru
ctu

re
b

ased
fast

m
o

d
e

d
ecisio

n
fo

r
H

.2
6

5
/H

E
V

C

Table 3.10: Performance of the depth prediction compared with previous works.

Condition Method
Class A Class B Class C Class D Class E

AVG
(∆BR,∆T ) (∆BR,∆T ) (∆BR,∆T ) (∆BR,∆T ) (∆BR,∆T )

All intra

Proposed (0.00, -39.5) (0.00, -45.6) (-0.01, -37.8) (0.00, -36.3) (0.01, -44.8) (0.00, -40.8)

Ref. [39] (0.20, -25.4) (0.20, -21.0) (0.10, -14.5) (0.00, -16.1) (0.20, -26.0) (0.14, -20.6)

Ref. [40] (2.28, -22.0) (2.16, -28.6) (1.50, -17.8) (1.20, 14.5) (-, -) (1.79, -13.5)

Ref. [41]] (0.00, -14.7) (0.00, -19.4) (0.00, -12.0) (0.00, -14.7) (0.00, -19.3) (0.00, -16.0)

Low-delay P

Proposed (0.28, -42.8) (-0.02, -43.5) (-0.04, -41.2) (0.26, -38.0) (0.06, -50.7) (0.11, -43.2)

Ref. [41] (-, -) (0.40, -30.9) (0.40, -24.7) (0.30, -16.9) (0.50, -38.7) (0.40, -27.8)

Ref. [42] (-, -) (0.80, -34.7) (1.20, -28.4) (1.06, -16.3) (1.06, -41.3) (1.03, -30.2)

Ref. [44] (-, -) (0.57, -27.5) (0.43, -21.0) (0.25, -18.8) (0.83, -43.3) (0.52, -27.7)

Random access

Proposed (0.25, -41.5) (0.25, -44.8) (0.35, -40.8) (0.44, -37.6) (0.42, -48.4) (0.34, -42.6)

Ref. [41] (0.70, -22.0) (0.80, -25.5) (0.50, -19.8) (0.30, -16.5) (-, -) (0.58, -21.0)

Ref. [42] (1.34, -32.5) (1.02, -36.3) (1.41, -29.8) (0.99, -18.0) (-, -) (1.19, -29.2)

Ref. [44] (-, -) (0.08, -16.5) (0.11, -13.0) (0.14, -12.5) (0.07, -31.3) (0.10, -18.3)

Ref. [45] (-, -) (0.89, -6.0) (0.75, -12.1) (0.59, -12.6) (-, -) (0.74, -10.2)
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Table 3.11: Performance of the residual check.

Sequence
Low-delay P Random access

∆BR
∆PS NR

∆T ∆BR
∆PS NR

∆T
Y U V Y U V

Class A 0.612 -0.001 -0.005 -0.006 -41.8 0.553 -0.005 -0.005 0.002 -40.6

Class B 2.353 -0.006 -0.001 -0.004 -39.3 2.107 -0.007 -0.012 -0.012 -37.7

Class C 2.192 0.000 -0.013 -0.012 -45.0 1.677 -0.012 -0.017 -0.018 -44.0

Class D 1.135 0.003 -0.014 -0.006 -45.8 1.311 -0.005 -0.020 -0.022 -43.0

Class E 0.244 -0.002 0.000 -0.005 -35.4 0.223 -0.009 -0.001 -0.001 -33.7

AVG 1.307 -0.001 -0.007 -0.007 -41.5 1.174 -0.008 -0.011 -0.010 -39.8
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Chapter 4

Hardware architecture of the fast

mode decision algorithm for

H.265/HEVC

4.1 Introduction

In this chapter, the corresponding hardware architectures of the proposed fast mode de-

cision algorithms in Chapter 3 are presented. First, a state machine based module for the

depth prediction combined with the residual check algorithm is described [119]. The system

framework where this proposed module located is introduced and the realization of the in-

ternal architecture of this module is analyzed. Furthermore, for the proposed state machine,

there are 13 states are defined and the transition conditions are discussed. Then, the hardware

implementation of the proposed fast DCD algorithm and two previous works is given [120].

Finally, these hardware architectures are synthesised and the results are also provided. More-

over, the complexity and performance of the proposed DCD algorithm are compared with

previous works.

4.2 Hardware architecture of the depth prediction combined

with residual check

4.2.1 Proposed mode dispatch system

In order to achieve a better compatibility, in this work, we propose to design the fast mode

decision algorithms as an individual module that can be easily embedded into a common

video codec for H.265/HEVC. Hence, the input and output interfaces between the proposed

hardware architecture and the video codec system are designed based on simple handshake

protocol. The framework of the video codec system where our proposed module located is

illustrated in Figure 4.1.

The framework of this system mainly contains 5 parts: the picture buffer, the inter/intra

prediction coding engine, the transform and entropy coding engine, the mode cost calculation

engine, and the state machine based fast mode decision module along with its surrounding

circuits.
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Distortion
& bits

Address
& Data
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& Data
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& Data

Depth of 
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Prediction
flags

Figure 4.1: The framework of video codec where the mode dispatch module is embedded.

The picture buffer is used to store the original YUV data and residual data generated from

the prediction coding process. The configuration parameters, e.g. picture order count (POC),

Qp, frame size, etc, are also recorded in this buffer. Other modules can access these data

according to the corresponding address using the standard read/write operation. In the in-

ter/intra coding engine, the normative prediction coding processes stated in Section 2.3.1 are

conducted following the instructions generated by our proposed mode dispatch module. By

defining the interface in advance, inter/intra modules designed by others can also be easily

integrated into this framework, to maintain the compatibility.

Then, the generated prediction residual will be transformed to the frequency domain and

encoded in the following transform and entropy coding engine to form a standard bitstream.

To decide the cost of a certain candidate mode, the distortion and the number of bits used to

encode this mode are adopted in the mode cost computation engine.

Finally, the cost information and other information, such as the co-located maximum depth

and the residual characters are employed in the state machine based fast mode dispatch mod-

ule, which is used to dispatch the mode decision process. The output of this module is the

candidate mode needs to be estimated by inter/intra prediction. Two surrounding circuits, the

residual character analyzer and the local buffer are also designed to support the mode dispatch

module.

As for the module of residual character analyzer, it is used to analyze the character of

the generated residual by inter mode 2Nx2N, and to decide the conditions defined in Sec-
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tion 3.3.2. This part involves high computational complexity in order to analyze the residual,

and we propose to implement this module in the on-chip processor using software algorithm

as stated in Section 3.3.1 to decrease the consumed resources. For the depth prediction algo-

rithm (Section 3.2), the maximum depth information of the previous frame should be stored

for later usage in the prediction stage. Hence, a local buffer is also designed to store these

information and the access to the local buffer is also based on the standard read/write opera-

tion.

In this section, we mainly focus on the hardware implementation of the state machine based

mode dispatch module. The realization of the internal architecture of this module is depicted

using block diagram in Figure 4.2.
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Figure 4.2: The proposed hardware architecture for the mode dispatch module.

In this mode dispatch module, mainly 4 kinds of elements are contained according to

their functional definition: information recording element, controlling and decision making

element, interface element, and the core mode dispatcher.

The information recording elements are LCUIdx recorder, depth recorder, CUIdx and Par-

tIdx recorder, and best depth recorder. The LCUIdx recorder is used to keep track of the

address of current LCU, and this address will be used as the address to access the maxi-

mum depth of the co-located LCU from previous frame and the address to save the maximum

depth of current LCU at the end of the check of current LCU for later reference. For the depth
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recorder, the current depth and the next depth (the index of next depth is increased by 1) are

recorded inside it. When all the candidate modes of current depth are all checked and it is

decided to split, current depth will be increased by 1. On the other hand, when the checks of

every 4 CUs of current depth are finished, current depth will be decreased by 1.

The index of each CU is generated in the CUIdx and PartIdx recorder to control the process

flow among different CUs with different depthes. The method adopted to index each CU is

illustrated in Figure 4.3. All the CUs belong to the same depth are indexed by CUIdx in an

ascending way and every 4 CUs rooted in the same parent CU are indexed by PartIdx.

3

13 151412
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0 3

1 570

1 2

2 3 56 58 59

1 2

2 3 2 30 0

0

1 2

0 2

Depth 0

Depth 1

Depth 2

Depth 3

CUIdx PartIdx

0 31

20 3

1 1

Figure 4.3: The index of the CUs.

The best depth recorder is used to record the division statuses of the CUs with depth 1 and

2. If a certain CU is decided to split, it will be marked as 0 using a 1 bit flag. Hence, 20 bits

in total are needed to record the division information. The best depth recorder works together

with the max depth decider, which is one of the controlling and decision making elements.

From the best depth recorder, a depth map will be sent to the max depth decider to find the

maximum depth of current LCU. For example, if all the CUs with depth 1 are marked as 1,

the maximum depth is decided as 1. As depicted in Figure 4.4, the maximum depth is decided

as 3.

The controlling and decision making elements are counter generator, cost comparator,

depth prediction controller, depth prediction flags controller, residual check flags controller,

remedy controller, best depth decider, and max depth decider. Two counters are generated

in the counter generator: cnt init and cnt cm. The cnt init is designed to control the flow of

reading depth information from the local buffer. The cnt cm is adopted to control the process

of fetching the cost data of current CU and split cost of 4 sub-CUs in the next depth. Under

the control of cnt cm, the cost information of these 5 CUs is loaded to the cost comparator

one by one, and then, the cost comparator will do a comparison between the cost of current

depth and the overall split cost of next depth to find out the smaller one.
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Figure 4.4: An example of the depth map.

As stated in Section 3.2.3, the proposed depth prediction algorithm is periodically disabled

to prevent error accumulation. Hence, the depth prediction controller serves to turn on/off

the depth prediction according to the POC of current picture. The implementation logic of

this controller is depicted in Fig. 4.5. When it is enabled, the depth prediction flags controller

will set the flags (denoted “SkipMiniDepth” and “SkipMaxDepth”) used to skip unnecessary

depth on the basis of the maximum depth of co-located LCU.

POC
Comparator

Comparator

4'd15

10'd0

[3:0]

[9:0]

eq?

eq?

DisableDp

Figure 4.5: The implementation logic of the depth prediction controller.

As for the residual check flags controller, it is used to set the flags adopted to control

the mode check flow according to the analysis results produced from the on-chip processor.

These flags are “RightTerminate”, “DirectSplit”, and “PUSkip” corresponding to the condi-

tions defined in Section 3.3.2 and the PU skip strategy stated in Section 3.3.3, respectively.

For the “DirectSplit” flag, it is referred not only in the mode check of CU of current depth, but

also used when the check over 4 sub-CUs of next depth is finished. Consequentially, this flag

is stored for each CU during the whole check process of current LCU, and it is recorded in a

series of registers according to the depth and the index of current CU. This saved information

will be loaded to the remedy controller to decide whether remedy process is needed in line

with the discussion in Section 3.3.4.

In the best depth decider, current depth will be judged to determine whether it is better than

the next depth. If one of the following conditions is satisfied, current depth can be recognized

as the best depth of current CU.

(1) The cost of current depth is smaller than the overall split cost of next depth;

(2) The “RightTerminate” flag is true. That is, no check is performed in the next depth;

(3) Current depth is the maximum depth of 3 to be exactly as defined;

(4) The “DirectSplit” flag is true and the remedy process is needed.
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The executer & receiver and buffer reader & writer are interface elements. The executer

& receiver serves as the interface between the proposed module and the inter/intra prediction

engine as well as residual character analyzer. Through this interface, the instruction and the

data are sent outside. The inter/intra prediction engine or the residual character analyzer will

start when receiving the instruction. The data denotes the mode which needs to be checked.

The complete signal and residual analysis results are received in from outside. This interface

works on the basis of simple handshake protocol shown in Figure 4.6.

clk

ready

start

data_out

data_in

finish

t1 t2

Figure 4.6: The simple handshake based protocol for the executer & receiver.

In Figure 4.6, signals “ready”, “finish”, and “data in” are input, while signals “start” and

“data out” are output, relative to the proposed module. Signals “ready” and “finish” denote

that the inter/intra prediction engine as well as residual character analyzer have been prepared

well and complete the corresponding process, respectively. In this time chart, only when both

“ready” and “start” are true, i.e. t1, the data transaction between proposed module and outside

modules is recognized as successful. On the other hand, t2 denotes that the processing results

from outsider modules have been received successfully.

According to above analysis, the communication and data transaction between the pro-

posed module and the inter/intra prediction engine can be established using only three signals.

This simply protocol can work effectively and reduce the number of interface signals.

The buffer reader & writer is designed as the interface between the proposed module and

the local buffer. The maximum depth information of co-located LCU and cost data are loaded

into the proposed module according to the standard ram read/write protocol, as shown in

Figure 4.7. The maximum depth information is stored in accordance with the index of LCU,

while cost data is saved in line with the depth and the CU index.
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Figure 4.7: The standard read/write protocol for the buffer reader & writer.

4.2.2 Proposed state machine based fast mode decision architecture

In this section, the realization of the state machine based dispatcher is dis-

cussed. In this work, 13 states are defined: INITIAL, INTER 2Nx2N, INTER 2NxN,

INTER Nx2N, INTER 2NxnU, INTER 2NxnD, INTER nLx2N, INTER nRx2N, IN-

TRA 2Nx2N, RESI CHECK, SAVE SPLIT, CHECK MODE, and SAVE MAX DEPTH.

In the INITIAL state, the maximum depth data of the co-located LCU is loaded into the

mode dispatch module under the control of counter cnt init, and according to this information,

the value of the flags “SkipMiniDepth” and “SkipMaxDepth” are decided. The states from

INTER 2Nx2N to INTRA 2Nx2N denote the check process of the corresponding mode.

The analysis process of the character of the residual is conducted in the state

RESI CHECK. In the SAVE SPLIT state, the intermediate information of current depth is

saved, and the mode check process moves on to the next depth.

For the CHECK MODE state, first, the cost information is read in; then, the cost of current

depth competes with the overall split cost of next depth, and the smaller one is written out to

the local buffer, controlled by cnt cm. Also, the index of CU is updated during this state.

Finally, in the state SAVE MAX DEPTH, the maximum depth of current LCU is sent to

the local buffer, for later reference by next frame.

Four kinds of state transition are defined according to the fast decision algorithms. First of

all, the normal state transition without using fast algorithms is illustrated in Figure 4.8.

After a new LCU check starts, all the candidate modes of current depth will be checked se-

quentially, and when all these modes are checked (this condition is abbreviated as “ACMC”),
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Figure 4.8: The normal state transition diagram.

the state will be set as SAVE SPLIT. If current depth is not equal to the maximum depth (in-

dexed by 3), the check of next depth will start, and the next state will be set as INTER 2Nx2N.

On the other hand, if current depth is equal to 3 and all four CUs rooted in the same parent CU

are checked (this condition is abbreviated as “CD3F”), next state will be CHECK MODE.

In CHECK MODE, current depth will be assigned as the value of its upper depth, and then

by comparing the costs, whether this node (in the view point of quadtree structure) needs to

split will be determined. If this node is the fourth one of its parent node, current depth will be

upgraded to the upper level again to decide whether to split this parent node. This process is

marked as “iteration” in Figure 4.8. Conversely, if this node is not the fourth one of its parent

node, its neighboring CU of the same depth will be check, INTER 2Nx2N will be the next

state. When all the CUs of all depths are checked, the check of this LCU will be finished.

When the depth prediction algorithm is enabled, the corresponding state transition is de-

picted in Figure 4.9.

If “SkipMiniDepth” is true, the check of depth 0 will be skipped, and next state will be set

as SAVE SPLIT. Otherwise, the same check process as stated above will be activated.

When current depth is equal to 2 and the flag “SkipMaxDepth” is true, the maximum depth

will not be checked, and CHECK MODE will be next state, as shown in Figure 4.9. When

all the CUs of all depths are checked, the maximum depth of current LCU will be saved in

the SAVE MAX DEPTH state.

Figure 4.10 demonstrates the state transition when the residual check algorithm is adopted.

The INTER 2Nx2N will be first conducted, and then during RESI CHECK, the generated

residual will be analyzed in an on-chip processer. According to the analysis results, the values

of the flags will be determined. If flag “RightTerminate” is true, mode check processes of the
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Figure 4.9: The state transition diagram for depth prediction algorithm.
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Figure 4.10: The state transition diagram for residual check algorithm.
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following depths will be skipped, and CHECK MODE will be set as next state. Then, if

“DirectSplit” flag is true, check of current depth candidates will be unnecessary, and mode

check process will carry on to the next depth, so next state will be SAVE SPLIT. Finally,

when “PUSkip” flag is set as true, one or both of the INTER 2NxN and INTER Nx2N will

be checked according to the discussion presented in Section 3.3.3. Otherwise, the same check

process as the normal process in Figure 4.8 will be conducted.

After comparing the costs of current depth and next depth in CHECK MODE, whether a

remedy processes is needed when “DirectSplit” flag is true will be decided. If current depth

is still better, the remedy process will be activated, and INTRA 2Nx2N will be checked

first as stated in Section 3.3.4. If INTRA 2Nx2N is found to be a better candidate, other

PU candidates will be discarded and the mode decision process will go back to the state

CHECK MODE. On the contrary, all the 6 PU candidate modes will be check sequentially to

find out the best coding mode for current depth. The above stated state transition for remedy

process is depicted in Figure 4.11.

Combine the above-mentioned four kinds of state transition together, the overall state tran-

sition diagram is illustrated is Figure 4.12. The corresponding state transition conditions are

described in tabular form, shown in Table 4.1.
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Figure 4.11: The state transition diagram for remedy process.

The number of states checked in each transition is also estimated and the results are given

in Table 4.2. The minimum and maximum number of states are evaluated on the basis of a

whole LCU for each condition. As for the common transition, 10 states are checked for each

of 21 CUs indexed by depth 0, 1, 2, and 9 states are checked for each of 64 CUs indexed

by depth 3. With the addition of one Initial state, there are totally 787 states needed to be

checked. When SkipMiniDepth is true, 8 states can be skipped. With the addition of one

SAVE MAX DEPTH state, there are totally 780 states needed to be checked. Although only

8 states are skipped, but all these states are conducted on the basis of LCU and hence, the
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Figure 4.12: The overall state transition diagram.

time saving is considerable. On the other hand, when SkipMaxDepth is true, all the states of

CUs in depth 3 are skipped.

When residual check is enabled, sometimes only 4 states need to be checked, while some-

times, the total number of states are more than that of common transition. This is because,

the RESI CHECK state will always be checked for all the 85 CUs in a whole LCU. For ex-

ample, the minimum number of states when PUSkip is true is the same with that common

transition. However, under this situation, time saving can also be obtained. This is because

the time consumed by the extra RESI CHECK state is relatively smaller than the time saved

from skipping some states, such as INTER 2NxN or INTER Nx2N.

4.3 Hardware implementation of the proposed fast DCD

algorithm

As is known, in most natural video sequences, the pixels of a certain block are always

tending to change along a certain direction. This direction can be called dominant direction.

Hence, if the dominant direction of a block can be estimated in advance, the candidate modes

whose directions are close to this direction can be chosen as the candidates, while others will

be skipped without being checked.

In previous works [27, 29, 30], two common methods were adopted to detect the dominant

direction: Sobel operator and extensive pixel based search.

According to the theory of Sobel operator, the dominant direction is estimated as following.
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Table 4.1: The overall state transition.

Current state Conditions Next state

INITIAL
(SkipMiniDepth=1) & (cur depth=0) SAVE SPLIT

Otherwise INTER 2NxnU

INTER 2Nx2N Always RESI CHECK

INTER 2NxN
PU skip strategy INTER 2NxnU

Otherwise INTER Nx2N

INTER Nx2N
PU skip strategy INTER 2NxN

Otherwise INTER 2NxnU

INTER 2NxnU Always INTER 2NxnD

INTER 2NxnD Always INTER nLx2N

INTER nLx2N Always INTER nRx2N

INTER nRx2N
Finish remedy process CHECK MODE

Otherwise INTRA 2Nx2N

INTRA 2Nx2N

(Remedy process needed) & (Intra is better) CHECK MODE

(Remedy process needed) & (Intra is not better) INTER 2NxN

Otherwise SAVE SPLIT

SAVE SPLIT

(SkipMaxDepth=1) & (cur depth=2) CHECK MODE

cur depth=3 CHECK MODE

Otherwise INTER 2Nx2N

CHECK MODE

All 4 CUs rooted in same parent CU are checked CHECK MODE

Remedy process needed INTRA 2Nx2N

All CUs of all depths are checked SAVE MAX DEPTH

Otherwise INTER 2Nx2N

RESI CHECK

DirectSplit=1 SAVE SPLIT

RightTerminate=1 CHECK MODE

Check 2NxN and not Nx2N INTER 2NxN

Check Nx2N and not 2NxN INTER Nx2N

Otherwise INTER 2NxN

SAVE MAX DEPTH Always INITIAL

Table 4.2: The number of states checked in each transition.

Transition Condition Minimum Maximum

Common 787 787

Depth prediction
SkipMiniDepth 780 780

SkipMaxDepth 212 212

Residual check

RightTerminate 4 864

PUSkip 787 872

DirectSplit 746 872

Generally, Sobel operator adopts two convolution kernels which respond to the degree of

the differences in vertical and horizontal directions, respectively. These kernels are called

Sobel masks, as shown in Figure 4.13.
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Figure 4.13: Sobel masks for gradients calculation.

For a certain pixel pi, j, in a block of a frame, its corresponding edge vector,
−→
Di, j =

{dxi, j, dyi, j}, is defined as

dxi, j = pi+1, j−1 + 2 × pi+1, j + pi+1, j+1

− pi−1, j−1 − 2 × pi−1, j − pi−1, j+1
, (4.1)

dyi, j = pi−1, j−1 + 2 × pi, j−1 + pi+1, j−1

− pi−1, j+1 − 2 × pi, j+1 − pi+1, j+1
, (4.2)

where dxi, j and dyi, j stand for the degree of the differences in vertical and horizontal direc-

tions, and the amplitude of the edge vector can be evaluated by

Amp

(
−→
Di, j

)
=

∣∣∣dxi, j

∣∣∣ +
∣∣∣dyi, j

∣∣∣ . (4.3)

Finally, the gradient of the pixel pi, j, i.e. the estimated direction, is calculated as

Ang

(
−→
Di, j

)
= arctan

(
dyi, j

dxi, j

)
. (4.4)

When the gradients of all the pixels in a certain block are calculated, a statistics histogram

is established to decide the dominant direction of this block. In order to achieve this, the

amplitudes of the edge vectors of the pixels with similar direction are summed up. The one

with the highest amplitude can be assumed as dominant direction.

For the extensive pixel based search algorithm, following strategy is adopted to find the

dominant direction.

As is known, there are 8 directional candidates defined in H.264/AVC, as shown in Fig-

ure 4.14. The extensive pixel based search algorithm proposes to calculate all the differences

between two neighboring pixels located along all these predefined directions, and use the

differences to estimate the strengths of these directions. These pixel directional strengths are

expressed as

dm (Mode0) =
∣∣∣pi, j+1 − pi, j

∣∣∣ , (4.5)
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Figure 4.14: The directional intra modes in H.264/AVC.

dm (Mode1) =
∣∣∣pi+1, j − pi, j

∣∣∣ , (4.6)

dm (Mode3) =
∣∣∣pi−1, j+1 − pi, j

∣∣∣ , (4.7)

dm (Mode4) =
∣∣∣pi+1, j+1 − pi, j

∣∣∣ , (4.8)

dm (Mode5) =
∣∣∣pi+1, j+2 − pi, j

∣∣∣ , (4.9)

dm (Mode6) =
∣∣∣pi+2, j+1 − pi, j

∣∣∣ , (4.10)

dm (Mode7) =
∣∣∣pi−1, j+1 − pi, j

∣∣∣ , (4.11)

dm (Mode8) =
∣∣∣pi+2, j−1 − pi, j

∣∣∣ , (4.12)

where i and j represent the horizontal and vertical positions of the pixel pi, j. Then, the all the

differences along one certain direction are summed up and averaged to form the strength of

this direction. They are formulated as

D (Mode0) =


12∑

m=1

dm (Mode0)

 /12 , (4.13)
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D (Mode1) =


12∑

m=1

dm (Mode1)

 /12 , (4.14)

D (Mode3) =


9∑

m=1

dm (Mode3)

 /9 , (4.15)

D (Mode4) =


9∑

m=1

dm (Mode4)

 /9 , (4.16)

D (Mode5) =


6∑

m=1

dm (Mode5)

 /6 , (4.17)

D (Mode6) =


6∑

m=1

dm (Mode6)

 /6 , (4.18)

D (Mode7) =


6∑

m=1

dm (Mode7)

 /6 , (4.19)

D (Mode8) =


6∑

m=1

dm (Mode9)

 /6 . (4.20)

Finally, the direction which is estimated with lowest strength will be chosen as the domi-

nant direction.

In this work, the above-mentioned two previous algorithms and the proposed fast DCD

algorithm (proposed in Section 3.4.1) are implemented on the hardware platform to make an

evaluation about the consumed hardware resources.

4.4 Synthesis results

4.4.1 Synthesis results for the proposed mode dispatch module

In this section, the synthesis results of the proposed mode dispatch module are first pro-

vided. This proposed architecture is described by using Verilog HDL and synthesized on the

FPGA platform, and the results are given in Table 4.3

From the table, we can see that the proposed architecture achieves a maximum frequency

as around 193 MHz with less than 1% of the total resources consumed.

Due to the fact that the proposed mode dispatch module is mainly used to decide the next

candidate mode needed to be checked, the actual throughput of this module primarily depends

on that of the inter/intra coding engine. However, we can make an estimation about the

throughput by comparing with a common codec without using FMD algorithms. For a certain

codec, the architecture of it is fixed, and the time consumed by checking each mode is also

fixed. According to Chapter 3, it can be found that in order to find the best mode for a certain

CU, only 30% of the time is consumed. That is, with the same hardware resources, more
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Table 4.3: Synthesis results of the proposed mode dispatch module on FPGA.

FPGA Cyclone IV GX

Device EP4CGX150DF31I7

Logic element 334 / 149,760 ( < 1 % )

- Combinational Functions 323 / 149,760 ( < 1% )

- Total registers 204 / 149,760 ( < 1 % )

Slow 1200mV 100C Model 193.65 MHz

Slow 1200mV -40C Model 218.67 MHz

Table 4.4: Total memory bits consumed by the proposed local buffer on FPGA.

Variable Bits Number Total bits Overall bits

Max. depth 2 2048 4096 6784 / 6635520

Mode cost 32 84 2688 (≈ 1 %)

modes can be checked compared with the a codec without FMD. Therefore, the proposed

module can improve the overall throughput of the codec by almost three times.

Moreover, when maintaining the same throughput as a codec without FMD, the overall

hardware resources can be reduced by using the proposed mode dispatch module. Now, we

consider a certain codec with a frequency of 100MHz. A throughput of 377.48 Msamlpes/s is

required when processing 4Kx2K (4096x2048, 30fps, 4:2:0 format) video sequences. When

FMD algorithms are not used, to achieve this requirement, we can design three inter/intra cod-

ing engines working in parallel and the throughput of each engine is set as 126 Msamlpes/s.

However, when using the proposed mode dispatch module, only one inter/intra coding engine

with a throughput of 126 Msamlpes/s can satisfy the above requirement. This is because the

proposed module can triple the overall throughout as discussed above. Therefore, the overall

hardware resources are reduced for a certain codec containing the proposed mode dispatch

module.

Finally, the total memory bits consumed by the proposed local buffer are evaluated and

the results are tabulated in Table 4.4. The maximum depth of current LCU is represented

by using a 2 bits register (e.g., (01)2 == depth 1). In this work, 4Kx2K video sequence

is targeted. Hence, there are 2048 ((4096 × 2048)/(64 × 64)) LCUs inside each frame and

4096 bits are consumed to save the maximum depth of all LCUs of one frame. To maintain

a high accuracy, the cost of the best mode of current CU is represented by using a 32 bits

variable. As stated, the mode cost information will be used throughout the mode decision

process of a LCU. Therefore, the mode costs of all CUs of one LCU need to be stored and

there are 84 (4(depth 1)+ 16(depth 2)+ 64(depth 3)) CUs inside one LCU. Hence, 2688 bits

are consumed to save the mode cost information. The overall bits consumed by the proposed

local buffer is approximate 1% of the total memory bits of the selected FPGA in Table 4.3.
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4.4.2 Synthesis results for the proposed fast DCD algorithm

The complexity of the proposed fast intra mode decision algorithm is compared with that

of the previous algorithms, stated in above section. The complexities of these algorithms are

estimated on the basis of the number of arithmetic operations used to derive the dominant

direction. The evaluation is conducted on the basis of 4x4 block. Results are shown in

Table 4.5.

Table 4.5: Number of arithmetic operations used to derive the dominant direction.

Method
arithmetic operations

Addition Subtraction Multiplication abs()

Proposed 4 8 0 8

Sobel Operator [64] 95 96 64 32

Extensive Detection [29] 38 42 0 42

To perform a further comparison, the three algorithms listed in Table 4.5, are described

by using Verilog and synthesized on the FPGA platform. The results are given in Tables 4.6

and 4.7.

Table 4.6: Synthesis results of the three fast intra mode decision algorithms on FPGA.

Algorithm Proposed Extensive Detection [29] Sobel Operator [64]

FPGA Cyclone IV E

Device EP4CE115F29I8L

Circuit type Combinational

Logic element 316 1954 2856

Table 4.7: Estimated throughput of the proposed fast DCD algorithm.

Synthesis condition Frequency (MHz) Throughput(MSamples/s)

Slow 1000mV 100C Model 139.1 2225.6

Slow 1000mV -40C Model 146.7 2347.2

According to Table 4.5, the proposed DCD algorithm achieves a significantly lower com-

plexity, i.e., when implemented on the hardware platform, it consumes the fewest hardware

resources compared with the other two works. This is illustrated in Table 4.6, where the pro-

posed DCD algorithm consumes only 1/6 and 1/9 of the resources of the two previous works,

respectively. Moreover, the simple calculation pattern leads to easy hardware implementa-

tion.

As shown in Table 4.7, the maximum working frequency is higher than 139.1 MHz, and

the corresponding estimated throughput is about 2225.6 MSamples/s. This demonstrates that
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it can support the real-time processing of 4Kx2K (4096x2048, 30fps, 4:2:0 format, 377.5

MSamples/s) video sequences.

Finally, the performance of the proposed fast mode decision algorithm is compared with

that of several previous works, listed in [64, 65]. The performance comparison results are

given in Table 4.8. It can be seen from this table that our algorithm achieves the same time

reduction while maintains a lower bitrate loss, compared with the work in [65].

When compared with previous work in [64], this fast intra decision algorithm achieves a

two times more complexity reduction, at the cost of certain degree of bitrate increase. How-

ever, combined with Table 4.5 and 4.6, our low complexity algorithm can save more than

88.9% resources when implemented on the hardware platform.

Table 4.8: Performance of fast intra decision algorithm compared with previous works.

Method
Proposed Ref. [65] Ref. [64]

(∆BR,∆T ) (∆BR,∆T ) (∆BR,∆T )

Class A (2.71, -52.4) (5.85, -52.8) (0.55, -20.4)

Class B (1.75, -53.9) (6.65, -55.5) (0.70, -20.5)

Class C (2.00, -51.4) (3.50, -56.1) (0.74, -19.4)

Class D (2.31, -50.5) (4.35, -62.5) (0.94, -19.5)

Class E (4.19, -58.5) (-, -) (0.84, -20.1)

AVG (2.59, -53.3) (5.09, -56.7) (0.75, -20.0)

4.5 Conclusion

In this chapter, the hardware architectures of the fast mode decision algorithms were dis-

cussed. First, a state machine based module for the depth prediction combined with the

residual check algorithm was presented, and the corresponding system framework as well as

the realization of the internal architecture of this module were analyzed in detail. Hardware

synthesis results demonstrated that the proposed architecture achieved a maximum frequency

of about 193 MHz.

Then, the hardware implementation of the proposed fast DCD algorithm along with two

previous works was presented. The performance comparison results showed that this pro-

posed algorithm achieved almost the same time reduction while maintained a lower bitrate

loss compared with other work. Furthermore, our low complexity algorithm could save more

than 88.9% resources when implemented on the hardware platform.
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Chapter 5

High-performance transform

architecture for H.265/HEVC

5.1 Introduction

As is stated, one key feature of the H.265/HEVC is supporting transform of different block

sizes, ranging from 4x4 to 32x32. Therefore, the corresponding hardware architecture should

also be flexible enough to enable the computation of all these sized transform. The exist-

ing designs for conventional transform of H.264/AVC can only support transform sizes of

4x4 and 8x8, resulting that they cannot be reused directly by H.265/HEVC. Taking account

of this issue, we have investigated the possibility of the implementation of the transform

for HEVC under the context of resource requirement and reusability. From this point of

view, a hardware-oriented algorithm is devised for hardware implementation. A low cost and

high throughput transform architecture has been designed for 1-D and 2-D transforms for

HEVC [121, 122].

To achieve such objectives, some simplification strategies are adopted during the imple-

mentation, such as reusing part of the structure of larger sized transform by smaller size,

and turning multiplication by constant into shift and sum operations. Moreover, a high-

performance transposition memory is proposed to store and transpose the intermediate data

between the 1-D and 2-D transforms. The transform architecture proposed in this chapter is

implemented in the form of pipeline structure.

5.2 Algorithm for hardware implementation

5.2.1 Review of the transform of HEVC

The calculation of the 1-D transform of size NxN for HEVC is conducted as following. Let

R = [r(0), r(1), ..., r(N − 1), ]T be an N-point input vector (a column of the residual matrix, to

be exactly), and M = [m(0),m(1), ...,m(N − 1), ]T be the corresponding 1-D transform result.

M is expressed as

M = CNR, N = 4, 8, 16, and 32, (5.1)

where CN denotes the N-point transform matrix. When N = 4, the 4-point 1-D transform is

calculated as



66 Chapter 5 High-performance transform architecture for H.265/HEVC
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
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r(3)
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. (5.2)

The matrix calculation of Eq. (5.2) can be separated into two parts containing even- or

odd-indexed components. This simplification is expressed as

[
m(0)

m(2)

]
=

[
c0 c0

c0 −c0

]
∗

[
a(0)

a(1)

]
, (5.3)

and

[
m(1)

m(3)

]
=

[
c1 c2

c2 −c1

]
∗

[
b(0)

b(1)

]
, (5.4)

where a(0) = r(0)+r(3), a(1) = r(1)+r(2), b(0) = r(0)−r(3), and b(1) = r(1)−r(2). Same as

the case of 4-point transform, the computations of transforms of sizes 8x8, 16x16, and 32x32

can also be simplified to the separated calculations of even- and odd-indexed components.

The detail is
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

= CN/2



a(0)

a(1)

.

.

.

a(N/2 − 2)

a(N/2 − 1)



, (5.5)

and



m(1)

m(3)

.

.

.

m(N − 3)

m(N − 1)



= MN/2



b(0)

b(1)

.

.

.

b(N/2 − 2)

b(N/2 − 1)



, (5.6)

where a(i) = r(i) + r(N − i − 1), and b(i) = r(i) − r(N − i − 1), for i = 0, 1, ...,N/2 − 1. CN/2

denotes the N/2-point transform matrix, and MN/2 is a matrix of size (N/2) × (N/2), whose

entry on (i, j)th is defined as

m
i, j

N/2
= c

2i+1, j

N
, 0 ≤ i, j ≤ N/2 − 1, (5.7)

where c
2i+1, j

N
is the (2i + 1, j)th entry of CN .

From Eq. (5.5) and Eq. (5.6), we can see that the N-point 1-D transform for HEVC can be

computed by a partial butterfly approach using a (N/2)-point transform and a matrix-vector
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product of (N/2) × (N/2) matrix with an (N/2)-point vector. Moreover, Eq. (5.5) could be

similarly further decomposed into CN/4 and MN/4, if N = 16 or 32. In this chapter, the direct

implementation of DCT based on Eq. (5.5) and (5.6) is referred as the reference algorithm in

the remainder of this chapter.

5.2.2 Hardware-oriented algorithm

Base on the analysis of above section, the 2-D forward transform in HEVC is defined as

D = CRCT
, (5.8)

where CRCT is called core 2-D transform and D,C,R denote the transformed coefficients,

the transform matrix and the residual samples outputted from prediction coding process, re-

spectively. This core 2-D transform contains two 1-D transforms.

In order to implement both the first and second 1-D transforms with a unique architecture,

we proposed to separate the core 2-D transform as follows. For the first 1-D transform, it is

calculated as

M = CRT . (5.9)

For the second 1-D transform, following computation is conducted,

D = CMT . (5.10)

On the basis of following matrix transformation,

D = CMT = C(CRT )T = C(RCT ) = CRCT , (5.11)

we can see that the proposed separation of two 1-D transforms achieves the same results as

the core 2-D transform.

According to [80], the coefficients of the transform matrixes are integer approximation

of mathematical DCT matrixes, which are rounded to 8 bit integer accuracy including sign.

These approximate matrixes are optimized with maximizing orthogonality. As stated, trans-

forms of size 4x4 up to 32x32 are supported in HEVC. The transform matrixes used in 1-D

8x8 and 16x16 transform are given as follows.

64 64 64 64 64 64 64 64

89 75 50 18 -18 -50 -75 -89

83 36 -36 -83 -83 -36 36 83

75 -18 -89 -50 50 89 18 -75

64 -64 -64 64 64 -64 -64 64

50 -89 18 75 -75 -18 89 -50

36 -83 83 -36 -36 83 -83 36

18 -50 75 -89 89 -75 50 -18

, (5.12)
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64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

90 87 80 70 57 43 25 9 -9 -25 -43 -57 -70 -80 -87 -90

89 75 50 18 -18 -50 -75 -89 -89 -75 -50 -18 18 50 75 89

87 57 9 -43 -80 -90 -70 -25 25 70 90 80 43 -9 -57 -87

83 36 -36 -83 -83 -36 36 83 83 36 -36 -83 -83 -36 36 83

80 9 -70 -87 -25 57 90 43 -43 -90 -57 25 87 70 -9 -80

75 -18 -89 -50 50 89 18 -75 -75 18 89 50 -50 -89 -18 75

70 -43 -87 9 90 25 -80 -57 57 80 -25 -90 -9 87 43 -70

64 -64 -64 64 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64

57 -80 -25 90 -9 -87 43 70 -70 -43 87 9 -90 25 80 -57

50 -89 18 75 -75 -18 89 -50 -50 89 -18 -75 75 18 -89 50

43 -90 57 25 -87 70 9 -80 80 -9 -70 87 -25 -57 90 -43

36 -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -83 36

25 -70 90 -80 43 9 -57 87 -87 57 -9 -43 80 -90 70 -25

18 -50 75 -89 89 -75 50 -18 -18 50 -75 89 -89 75 -50 18

9 -25 43 -57 70 -80 87 -90 90 -87 80 -70 57 -43 25 -9

.

(5.13)

It is easy to find out that the matrix coefficients Ci j (i, j = 0...7) given in Eq. (5.12) have

symmetry properties that are consistent with the DCT transform adopted in the previous

standard:

(1) Even rows with indexes 0, 2, 4, 6 have symmetric property with a symmetry point be-

tween the 3rd and 4th coefficients.

(2) Odd rows with indexes 1, 3, 5, 7 have anti-symmetric property with an anti-symmetry

point between the 3rd and 4th coefficients.

(3) Even rows with indexes 0, 4 have additional symmetry points before the 2nd and 6th

coefficients.

(4) Other even rows with indexes 2, 6 have additional anti-symmetry points before the 2nd

and 6th coefficients.

For transforms of larger sizes, the above mentioned symmetric (anti-symmetric) properties

with symmetry points before the (N/2)th coefficients are repeated as well as the additional

symmetry and anti-symmetry points before coefficients N/4, 3N/4, n ∗ N/8, n ∗ N/16 etc.

In the first step, we consider the calculation of 1-D transform

Mi = CRi
T , i = 0...7, (5.14)

where Mi represents the ith column of intermediate matrix and Ri denotes the ith row of

residual matrix. When using each row indexed by j ( j = 0...7) from transform matrix to

multiply Ri, the sum results can be obtained as follows.

The calculation of even rows with indexes 0, 4 can be summarized as the same group, and

the results are

m0i = (((ri0 + ri7) + (ri3 + ri4))

+ ((ri1 + ri6) + (ri2 + ri5))) ∗ 64,
(5.15)

m4i = (((ri0 + ri7) + (ri3 + ri4))

− ((ri1 + ri6) + (ri2 + ri5))) ∗ 64.
(5.16)

The calculation of even rows with indexes 2, 6 can be also summarized as the same group,

take 2nd row as an example and the result is
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m2i = ((ri0 + ri7) − (ri3 + ri4)) ∗ 83

+ ((ri1 + ri6) − (ri2 + ri5)) ∗ 36,
(5.17)

The calculation of odd rows with indexes 1, 3, 5, 7 can also be summarized as the same

group, take 1th row as an example and the result is

m1i = (ri0 − ri7) ∗ 89 + (ri1 − ri6) ∗ 75

+ (ri2 − ri5) ∗ 50 + (ri3 − ri4) ∗ 18.
(5.18)

Based on Eqs. (5.15 - 5.18), the calculation of 1-D 8x8 transform can be implemented

through the flow-group depicted in Figure 5.1.

x2

x4

0i

2i

7i

6i

5i

1i

4i

3i

i0

i2

i7

i6

i5

i1

i4

i3

Figure 5.1: Flow-chart of the 1-D 8x8 transform.

The whole transform process is split into elementary parts, and each part operates with no

more than two operands. The first calculation stage of this simplified 1-D forward transform

is presented in Table 5.1.

Table 5.1: Operations in the first stage.

Input Output

ri0 + ri7 Ei0

ri0 − ri7 Oi0

ri1 + ri6 Ei1

ri1 − ri6 Oi1

ri2 + ri5 Ei2

ri2 − ri5 Oi2

ri3 + ri4 Ei3

ri3 − ri4 Oi3
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Table 5.2: Demonstration of the constants in multiplication converted into shift and sum.

Transform size Row index Coefficient
Shift Operation

Sum Operation
≪6 ≪5 ≪4 ≪3 ≪2 ≪1 ≪0

4x4

even 64 + ≪6

odd
83 + + + + ≪6+≪4+≪1+≪0

36 + + ≪5+≪2

8x8 odd

89 + + + + ≪6+≪4+≪3+≪0

75 + + + + ≪6+≪3+≪1+≪0

50 + + + ≪5+≪4+≪1

18 + + ≪4+≪1

16x16 odd

90 + + + + ≪6+≪4+≪3+≪1

87 + + - - ≪6+≪5-≪3-≪0

80 + + ≪6+≪4

70 + + + ≪6+≪2+≪1

57 + + + + ≪5+≪4+≪3+≪0

43 + + + + ≪5+≪3+≪1+≪0

25 + + + ≪4+≪3+≪0

9 + + ≪3+≪0

32x32 odd

88 + + + ≪6+≪4+≪3

85 + + + + ≪6+≪4+≪2+≪0

82 + + + ≪6+≪4+≪1

78 + + + + ≪6+≪3+≪2+≪1

73 + + + ≪6+≪3+≪0

67 + + + ≪6+≪1+≪0

61 + - - ≪6-≪1-≪0

54 + + + + ≪5+≪4+≪2+≪1

46 + + + + ≪5+≪3+≪2+≪1

38 + + + ≪5+≪2+≪1

31 + - ≪5-≪0

22 + + + ≪4+≪2+≪1

13 + + + ≪3+≪2+≪0

4 + ≪2
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Figure 5.2: Flow-chart of the 1-D 32x32 transform.
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In this process stage, only sums and subtractions are performed to the input. All the other

following operations and corresponding calculation simplifications are conducted based on

these results. In this table, ri j ( j = 0, 1, ..., 7) denote the input data from the ith row

of the residual matrix generated from the prediction stage in the encoder and Ei j, and Oi j

( j = 0, 1, ..., 3) represent the output from the sum/subtraction operations.

When outputs from first stage are ready, the second process stage starts with different op-

erations with respect to the row index. For even rows with indexes 0, 2, 4, 6, the similar sum

and subtraction processes are conducted based on the same rule as first stage. As for the

odd rows with indexes 1, 3, 5, 7, no other symmetric properties can be used, so multiplica-

tions between the outputs from first stage and the coefficients from the corresponding row of

transform matrix are calculated.

As is known, the direct implementation of multiplication on hardware platform will lead

to a relatively high resource cost. Therefore, for this kind of multiplied by constant oper-

ation, we propose to use shift and sum operations to produce the same result to decrease

the hardware resource cost. Table 5.2 gives an explanation on how to convert multiplied by

constant into shift and sum operations. The shift operation can be easily implemented by

concatenating a number of zeros to the input data from the first stage.

Due to the fact that the coefficients in the same position of different rows with odd in-

dexes in the transform matrix given by Eq. (5.12) are different, the multiplications have to

be recalculated for each row. Therefore, for rows with indexes 1, 3, 5, 7, the same part of the

calculation flow chart is repeated four times in the flow-graph depicted in Figure. 5.1.

The third and fourth process stages are conducted by the same rules as stated above. Here,

the same part of multiplication flow chart is repeated twice for the 2nd and 6th rows, while rows

with indexes 0, 4 do not need to repeat the multiplication operation based on the additional

symmetry points before the 2nd and 6th coefficients. Moreover, the products of the each row

are summed except for 0th and 4th rows.

After the first 1-D transform, the resulting transformed coefficients are scaled using right

shift operation to 16 bit. This ensures a bit width of 16 after each transform stage.

Likewise, on the basis of similar derivation, the data flow of the transform with size 32x32

is depicted in Figure 5.2.

5.3 Hardware Architecture design

5.3.1 Hardware reuse

The proposed architecture design is presented based on the above-mentioned simplified

algorithm. This architecture is described using Verilog HDL and implemented in the form of

pipeline structure.

Moreover, the hardware of the proposed architecture can be easily reused by transforms of

different sizes, which means that part of the structure of larger sized transform can be used

by smaller sized transform without any change. In order to prove the above property, here we

take a look at the transform matrix of size 4x4, shown as

∣∣∣∣∣∣∣∣∣∣∣

64 64 64 64

83 36 −36 −83

64 −64 −64 64

36 −83 83 −36

∣∣∣∣∣∣∣∣∣∣∣
. (5.19)
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It is easily found out that the coefficients of the 4x4 transform matrix also have symmetry

properties that are consistent with that of 8x8 transform matrix:

(1) Even rows with indexes 0, 2 have symmetric property with a symmetry point between

the 3rd and 4th coefficients.

(2) Odd rows with indexes 1, 3 have anti-symmetric property with an anti-symmetry point

between the 3rd and 4th coefficients.

By the same way, we consider the calculation of first 1-D transform

Mi = CR̃i, i = 0...3, (5.20)

where Mi represents the ith column of intermediate matrix and R̃i denotes the ith row of 4x4

residual matrix. When using each row indexed by j ( j = 0...3) from the transform matrix to

multiply R̃i, the sum results can also be obtained as follows.

The calculation of even rows with indexes 0, 2 can be summarized as the same group, and

the results are

m0 j = ((̃ri0 + r̃i3) + (̃ri1 + r̃i2)) ∗ 64 , (5.21)

m2 j = ((̃ri0 + r̃i3) − (̃ri1 + r̃i2)) ∗ 64 . (5.22)

The calculation of odd rows with indexes 1, 3 can also be summarized as the same group,

take 3rd row as an example and the result is

m3 j = (̃ri0 − r̃i3) ∗ 36 + (̃ri1 − r̃i2) ∗ (−83) . (5.23)

Based on Eqs. (5.21), (5.22), and (5.23), the calculation of 1-D 4x4 transform can be

implemented through the flow-group depicted in Figure 5.3.

i0

i2

i1

i3

0i

1i

3i

2i

Figure 5.3: Flow-chart of the 1-D 4x4 transform.

Combine Figures 5.3 and 5.1 together, it is easily found out that the 4x4 transform structure

is part of the 8x8 transform flow-chart. The combined result is depicted in Figure 5.4.

The proposed unified hardware architecture of the 8x8 and 4x4 transforms is illustrated in

Figure 5.5. The “n-point Adder cluster” blocks denote a series of adders to complete certain

addition and subtraction operations over the input, and parts of the results from these blocks

will be multiplied with the coefficients of the transform matrixes in corresponding “n-point

Multi. cluster” blocks. Then, in the “Adder tree n” blocks, the sums of the multiplication
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Figure 5.4: Combined flow-chart of the 1-D 8x8 and 4x4 transform.

results will be made. Moreover, we can see that the architecture designed for 4x4 transform

is embedded in that of 8x8.

Figure 5.5: Hardware architecture for the 8x8 transform in HEVC.

By the same analysis method, the hardware of the proposed architecture can be reused by

transforms of sizes from 4x4 up to 32x32.

5.3.2 Transposition memory design

According to Eq. (5.9), for each cycle, all the pixels from a whole row of the residual block

are sent to the transform engine, and the output from it is a whole column of the transformed
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coefficient block. As depicted in Figure 5.6, the indexes of the pixels denote the order of the

input/output to/from the transform engine. According to Eq. (5.10), the second 1-D transform

can only start after getting a complete row of the first 1-D transform results, and the results

generated from the first 1-D transform should first be stored then used as the input to the

second 1-D transform.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Transform

Engine

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Before 1D-Transfrom After 1D-Transfrom

Figure 5.6: The order of the pixels during transform process.

Therefore, a transposition memory is designed following the first 1-D transform operation,

and the size of this transposition memory is also 32x32, which can also be reused by 4x4

up to 32x32 transforms as the proposed architecture does. Part of the proposed transposition

memory architecture with a size of 4x4 is shown in Figure 5.7.

Figure 5.7: 4x4 transposition memory architecture.

The whole transposition memory is composed of 32x32 identical registers, and each trans-

pose register contains a three input multiplexer and a register. The register is a 16-bit width
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register and 16-bit width is defined by the data width outputted from the first 1-D transform

stage as explained in Section 5.2.2.

The multiplexer of each transpose register is designed to control the state and the data

flow direction of the transposition memory. When the first input is selected, which is a self

feedback from its output, the data inside this memory remains unchanged. While if the second

input, which is an output from the register located by its left side, is selected, the data will

shift from the left to right. If the third one is chosen, the output from the bottom register will

be transmitted to the top one, allowing data to shift from bottom to top.

Finally, the output from this memory is controlled by a two input multiplexer to select

the proper one. This designed architecture performs the transpose operation under the same

clock as the transform stage used.

The whole architecture for the transform in HEVC is depicted in Figure 5.8. The transpo-

sition memory shown in Figure 5.7 is added between the first and second 1-D transforms as

analyzed above.
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Figure 5.8: Whole architecture for transform in HEVC.

According to Eqs. (5.9) and (5.10), we can find out that the first and second 1-D transforms

use the exact same transform matrixes. Therefore, these two 1-D transforms can share the

same structure proposed in the above sections. A multiplexer is used to select the proper

input between the original residual data and the data from transposition memory, as the “Sel.”

signal given in Figure 5.8. Furthermore, this signal can be used to select the transform size.

After the second 1-D transform, the resulting transform coefficients are also scaled using right

shift operation to 16 bit. This also ensures a bit width of 16 after each transform stage.
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5.4 Synthesis results

A detailed complexity analysis is conducted comparing to the original transform design in

the HEVC reference software HM [3]. The numbers of different arithmetic operations for 2-

D forward transforms of various sizes are shown in Table 5.3. As a fact that multiplication is

converted into shift and sum operations, the numbers of these are increased while the number

of multiplication is zero.

Table 5.3: Number of arithmetic operations used to perform the transform.

Transform size
HM [3] Proposed

Multiplication Addition Shift Multiplication Addition Shift

4x4 48 64 32 0 128 128

8x8 352 448 128 0 1152 1024

16x16 2752 3200 512 0 9216 7872

32x32 21888 23808 2048 0 68608 60928

The functional correctness of the proposed architecture is first simulated using Altera Mod-

elsim software. The test vectors used by the testbench are directly dumped from the HEVC

reference software HM, and the output from this proposed transform architecture is compared

with the calculation results generated by the same reference software HM.

The proposed architecture is synthesized with Altera Quartus II software, and the selected

FPGA is from Cyclone IV E serials with device number: EP4CE115F29I8L. The synthesis

result is listed in Table 5.4. After synthesis, timing simulation with a 125 MHz clock using

netlist and structure delay information is conducted, and the results are also checked using

the reference software HM.

Table 5.4: Synthesis results on FPGA.

Condition Frequency (MHz) Logic Elements

Slow 1000mV 100C Model 128.73
40541

Slow 1000mV -40C Model 134.05

Timing Simulation 125 -

The results show that the designed architecture achieves a maximum operation frequency

of 134 MHz.

In Table 5.5, the estimated throughput of the proposed architecture is listed.

The HEVC standard is targeting at videos with higher resolution. Take Class A sequences

defined in HM common test conditions [123] as an example, that is 2560x1600 pixels, 30

frames per second with a 4:2:0 sampling format, a throughput of 184.32 Msamlpes/s is re-

quired. According to Table 5.5, the proposed design can process high definition sequences in

real time.
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Table 5.5: Estimated throughput (Msamlpes/s) at 125 MHz on FPGA.

Transform size Cycle Throughput Weight* Average

32x32 75 1707.91 1/85

238.13
16x16 41 780.49 4/85

8x8 23 347.83 16/85

4x4 13 153.85 64/85

* weight is determined by the size of each block

Table 5.6 gives a performance comparison between [92] and the proposed design. In [92],

a 16 point 1-D transform architecture is designed, so the number of Logic elements in our

design is scaled, based on the add operations relationship given in Table 5.3, to keep a rea-

sonable comparison. Results indicate that the proposed design can double (780.49/376.2) the

throughput with almost same (about 101.9%)hardware cost.

Table 5.6: Performance comparison with previous work on FPGA.

Design Jeske [92] Proposed

FPGA Cyclone II Cyclone IV

Structure Combination Pipeline

Transform Type 1-D Transform 2-D Transform

Logic elements 5343 5446*

Frequency (MHz) 23.51 125

Throughput 376.2 780.49

* 5446
.
= 40541 ∗ (9216/68608)

The proposed architecture is then synthesized using 45nm technology, and efficiency com-

parison results are listed in Table 5.7. As it is stated in [95], one SRAM bit is equivalent

to 10 2-input NAND gates in terms of silicon area. Concerning the hardware efficiency of a

design, we adopt a performance metric called data throughput per unit area (DTUA), which

is defined as the ratio of data throughput over the hardware cost given in terms of gate count.

When DTUA is adopted as the comparison metric, the higher the value of DTUA is, the more

efficient the design is. As a fact that the transform coefficients used for inverse transform

are the same as those for forward. So it will still make sense to compare the hardware effi-

ciency, and the proposed architecture is more than 5 (155.6/29.7) times more efficient than

the previous design.

The efficiency of the proposed transpose memory is also analyzed and results in Table 5.8

indicate that this design can fulfill the transpose operation in less clock cycles while remaining

a fewer hardware cost.

In Table 5.9 the estimated throughput of the proposed architecture is calculated. Results

show that it can support real-time process of 4Kx2K (4096x2048, 30fps, 4:2:0 format) video

sequences.
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Table 5.7: Efficiency comparison with previous work on ASIC platform.

Design Shen [95] Proposed

Gate Count 109.2K 205.5K

SRAM (bit) 2560 -

Total Area (gate) 134.8K 205.5K

Frequency (MHz) 350 333

Throughput (pixels/cycle) 4 32

Latency (cycle) 256+5 32+6

DTUA (pixels/cycle/gate) 29.7 × 10−6 155.6 × 10−6

Table 5.8: Transpose memory comparison with previous work on ASIC platform.

Design Shen [95] Proposed

Gates - 139.5K

SRAM (bit) 16384 -

Total Area 163.8K 139.5K

Frequency (MHz) - 333

Latency 256 32

Table 5.9: Estimated throughput (Msamlpes/s) at 333MHz on ASIC platform.

Transform size Cycle Throughput Weight Average

32x32 75 4546.56 1/85

634.35
16x16 41 2079.22 4/85

8x8 23 926.609 16/85

4x4 13 409.846 64/85

5.5 Conclusion

This chapter presented a high-performance VLSI architecture of the transform applied

in the video coding standard-HEVC. The proposed architecture could support 1-D and 2-

D transforms with a variety of transform sizes from 4x4 to 32x32. Synthesis results on

FPGA platform indicated that the proposed design could double the throughput, compared

to previous work, with almost same hardware cost. Moreover, synthesis results under 45nm

technology showed that it could support real-time process of 4Kx2K (4096x2048, 30fps)

video sequences. When a comparison index DTUA was adopted, the proposed architecture

was almost 5 times more efficient than previous design.
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Chapter 6

Conclusion

In this dissertation, a series of fast mode decision algorithms and its corresponding hard-

ware architectures as well as the hardware design of the transform of H.265/HEVC were

proposed.

In Chapter 1, background information and previous researches as well as the objective of

this thesis were listed. HEVC had incorporated a series of the state-of-the-art technologies

and algorithms which increased the computational complexity. To find the best encoding

mode for a certain block, a huge number of combinations of block sizes and candidate modes

had to be checked, which was very time-consuming. Hence, in this work, a number of fast

mode decision algorithms were proposed to accelerate the mode decision process.

In Chapter 2, a brief introduction about the H.265/HEVC was presented. During the pre-

diction and transform coding processes, a flexible quadtree based block partition scheme was

employed. Approaches, namely Tiles and WPP, were taken in to enhance the parallel scal-

ability. For the prediction coding, an enhanced intra prediction with 35 candidate modes as

well as a flexible motion-compensation prediction with merging technology were employed.

To encode the residual, larger sized transform and advanced CABAC engine were applied,

and a de-blocking filter and a newly SAO filter were used to filter the reconstructed samples.

In Chapter 3, a course of hierarchical structure based low complexity fast mode decision

algorithms were presented. The co-located depth information from previous frame was used

to predict the split structure of current LCU. The residual generated by inter prediction was

analyzed to determine the encoding flow. A hardware-oriented low complexity fast intra

prediction algorithm was proposed. This proposed algorithm adopted a fast DCD to detect the

dominant direction of the CU. Moreover, four simple but efficient early termination strategies

were proposed to terminate the RDO process properly. Simulation results showed that the

proposed overall algorithm reduced the encoding time by 54.0 ∼ 68.4%, without introducing

any noticeable performance degradation.

In Chapter 4, the hardware architectures of the fast mode decision algorithms were dis-

cussed. A state machine based module for the depth prediction combined with the residual

check algorithm was presented, and the corresponding system framework as well as the real-

ization of the internal architecture of this module were analyzed in detail. Hardware synthesis

results demonstrated that the proposed architecture achieved a maximum frequency of about

193 MHz. The hardware implementation of the proposed fast DCD algorithm along with two

previous works was presented. The performance comparison results showed that this pro-

posed algorithm achieved almost the same time reduction while maintained a lower bitrate

loss compared with other work. Furthermore, our low complexity algorithm could save more
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than 88.9% resources when implemented on the hardware platform.

Chapter 5 presented a high-performance VLSI architecture of the transform applied in

HEVC . The proposed architecture could support 1-D and 2-D transforms with a variety of

transform sizes from 4x4 to 32x32. Synthesis results on FPGA platform indicated that the

proposed design could double the throughput, compared to the previous work, with almost

same hardware cost. Moreover, synthesis results under 45nm technology showed that it could

support real-time process of 4Kx2K (4096x2048, 30fps) video sequences. When a compar-

ison index DTUA was adopted, the proposed architecture was almost 5 times more efficient

than the previous design.

One of the future works of this thesis is to design the remaining parts of the proposed

hardware system, including buffer systems, and the coding engines, as shown in Figure 4.1.

For the hardware implementation, the following aspects should be considered carefully:

(1) The memory cost introduced by storing the maximum depth information of the co-

located LCU from the previous frame.

(2) The tradeoff between the cost resulting from requiring data from previous frame and

the complexity reduction.

(3) The buffer system used to compensate the fluctuation of the processing time for each

frame due to the periodic on/off of depth prediction.

(4) The allocation of hardware resources for the frames encoded with or without depth

prediction.

As discussed in Chapter 5, the hardware architecture of the forward transform had been

proposed. As another future work, the hardware design of the inverse transform is an in-

teresting and important topic to study. As the transform matrixes used by both forward and

inverse transforms are identical, the design of a unique architecture that supports both forward

and inverse transforms with all possible sizes is also a challenging research topic.
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