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Abstract 

Considering that fraudulent adulterations are now commonly practiced in various 

consumer sectors, development of quality standards through labeling and composition 

regulations and routine evaluation protocol is needed. Asian palm civet coffee is a specialty 

coffee produced by its passage through the digestive part of Asian palm civet (Paradoxurus 

hermaphroditus). The rarity, exotic processing and unique flavor have contributed to its 

premium price. However, there is no reliable and standardized protocol to ensure the 

authenticity of civet coffee. This thesis emphasizes development of a protocol for authenticity 

evaluation of civet coffee, a world-renowned priciest coffee that has notoriously subjected to 

fraudulent adulteration and its routine application in industry.  

In Chapter 1, general introduction regarding the utility of metabolomics in food 

science, civet coffee and research background are presented. In Chapter 2, development of 

standardized protocol through GC/MS-based multimarker profiling of 21 coffee beans 

(Coffea arabica and Coffea canephora) from different cultivation areas was demonstrated to 

explore significant changes in the metabolite profiles as discriminant markers for 

authentication of civet coffee. Employing multivariate analyses, a set of significant 

metabolites, mainly organic acids, was selected for further verification by evaluating their 

differentiating abilities against various commercial coffee products. In Chapter 3, first 

practical application was presented by developing rapid, reliable and cost-effective analysis 

via GC coupled with universal detector, flame ionization detector (FID), and metabolite 

fingerprinting for discrimination 37 commercial and non-commercial civet coffee extracts. 

GC/FID provided higher sensitivity over a similar range of detected compounds than GC/MS 

and could successfully reproduce quality prediction from GC/MS for differentiation of 

commercial civet coffee, regular coffee and coffee blend with 50 wt % civet coffee content 

without prior metabolite details. In order to prevent illegal mixture of cheap coffee into civet 

coffee, the proof-of-concept of the utility of metabolomics approach and orthogonal 

projection to latent structures (OPLS) prediction technique to quantify the degree of coffee 

adulteration was demonstrated in Chapter 4. The prediction model exhibited accurate 

estimation of mixing ratio of known-unknown coffee samples. At last, general conclusion and 

future perspective are elaborated.  
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Chapter 1 

General introduction 

 
 
 In recent years, due to growing practice of frauds, interest among consumers over 

authenticity and quality of agricultural and food products have become one of the major 

issues in the food industry. Consequently, countless efforts to develop robust authentication 

systems have been deliberately accomplished by manufacturers and regulatory authorities to 

satisfy consumers’ quality and safety agricultural and food requirements. However, from the 

perspective of analytical chemistry, those products can be fundamentally considered as 

complex mixtures and interactions involving various chemical compounds, so that evaluation 

of the product quality by specific parameter, i.e., total acid, is challenging. Metabolomics, a 

new emerging ‘omics’ approach, provides comprehensive and high throughput analysis of set 

of metabolites, an advantageous feature for quality assessment of agricultural and food 

products. In this thesis, development of quality assessment of specialty coffee and its routine 

applications were presented employing metabolomics technology. 

 

1.1. Metabolomics  

1.1.1. General concept 

Due to its role to mediate the flow of genetic information with the phenotypic feature, 

metabolomics – exhaustive profiling of set of metabolites within an organism – has gained a 

lot of attention in various fields from biomarker discovery of diseases to food and nutrition 

science. The capacity of metabolomics approach to enable snapshot of metabolic process can 

be linked to the gene function, providing corresponding analysis for those biological samples 

without genome information1. Furthermore, transcripts and proteins are subjected to post-

transcriptional and translational modifications thus far removed from the phenotype; different 

at these levels may not represent the result of metabolism. In contrary, metabolites are not 
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merely the final result of gene expressions but also actively involved and/or produced in the 

regulatory system of metabolism suggesting there is direct correlation between metabolome 

and the phenotype2. Hence, metabolome is the best target to study metabolic and phenotypic 

alterations imposed by perturbation, which often found in the food fraud practices. 

 

Metabolomics study is intended to be interconnected multidisciplinary fields that 

include biological context, analytical chemistry, chemometrics and bioinformatics (Fig. 1-1).  

The workflow enables straightforward manner to examine the working hypothesis based on 

the existing result3. Ontology and data exchange group worked to provide standardization for 

the list of descriptive and experimental terms and standard format for data exchange between 

user and data storage in metabolomics research.  

 

 Separation and detection of the metabolites have been considered the key step in the 

metabolomics technology. Therefore, recent progress of metabolomics has been greatly 

driven by historical use and continuous improvement of separation (chromatography) and 

detection science. Common detector systems are based on UV (Ultraviolet), NIR (Near Infra-

Red), NMR (Nuclear Magnetic Resonance), or MS (Mass Spectrometry) techniques4–9. The 

former three techniques have provided fast, relatively non-laborious and non-destructive 

fingerprint analyses and with the capacity of NMR to allow identification of novel compound 

through structure elucidation. MS based detection system offers the best combination of 

chemical selectivity and sensitivity thus it has been used the most for food metabolomics (4). 

Coupling powerful MS detector with separation techniques such as liquid chromatography in 

its high performance (HPLC) or ultra performance (UPLC) forms, gas chromatography (GC), 

and capillary electrophoresis (CE) facilitates amendment of coverage of target compounds10. 

Furthermore, availability of plentiful mass spectral databases accelerates spectral matching to 

pinpoint metabolite identity. However, exhaustive profiling of metabolites within an organism 

is still challenging which require as many combinations of high-throughput techniques as 

possible and extremely depending on the availability of authentic chemical standard. 

Nevertheless, those challenges have opened tremendous prospect for future development of 

metabolomics technology. 

 

 



9 

 

 

 

Fig. 1-1. Metabolomics workflow involves multidisciplinary fields (adapted and modified 

from the metabolomics standards initiative (MSI); Fiehn et al.3). 

 

 Metabolomics technology can be conventionally classified into four major 

approaches; (i) targeted analysis, (ii) metabolite profiling, (iii) non-targeted analysis, and (iv) 

metabolite fingerprinting (Fig. 1-2)3,4,11,12. Targeted analysis involves precise identification 

and quantification of specific set of metabolites with most cases requiring high level of 

extraction and purification of metabolites. Metabolites profiling, also widely known as semi 

targeted approach, focus on broader analysis coverage for both identified and unidentified 

metabolites related to specific pathway or cellular phenomenon. Non-targeted analysis and 

metabolite fingerprinting can be essentially referred as detection of the utmost number of 

metabolites as biochemical fingerprint for rapid classification without necessarily identifying 

the metabolites. Yet, identification and quantification are often needed for non-targeted 

analysis13–15.  To examine global metabolic perturbation caused by illicit action to food and 

agricultural product, metabolite profiling is the most suitable approach that it can provide 

depth-of-coverage analysis without a priori target compounds and reliance to availability of 

authentic chemical standard thus marking possibility to capture novel metabolites as 
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biomarker. Meanwhile, metabolite fingerprinting offers profile of total metabolite, a 

fingerprint, without necessarily characterizing metabolite identity and their biochemical 

function which beneficial for routine application in industry. 

 

 Based on specific goal and data processing, Cevallos-Cevallos et al.4 divided 

metabolomics strategies into; informative, discriminative and predictive (Fig. 1-2). 

Informative analysis commonly covers principal work of metabolomics involving 

identification and quantification of metabolites to provide fundamental knowledge of the 

biological sample. Informative analysis has been utilized for various applications such as 

development of metabolite databases, functionality studies through metabolic flux analysis, 

metabolomics-assisted strain improvement and many others15–17. Metabolomics analysis has 

tended to be discriminative when applying statistical models for differentiation of two or 

more samples populations. The discriminative approach is commonly associated with 

biomarker identification18,19. The use of statistical models is also necessary for predictive 

metabolomics. Prediction of variables connecting a huge metabolite data and phenotypic trait 

that is problematic by other approaches can be done through statistical prediction model. 

When dealing with illegal attempts toward food and agricultural product, metabolomics 

reports have been generally discriminative and predictive.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-2. Classifications of metabolomics strategies (adapted and modified from Cevallos-

Cevallos et al.4). 

METABOLOMICS 
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1.1.2. Application to agricultural and food science 

Metabolomics provides novel approach to understand a thorough and comprehensive 

molecular snapshot of what gives certain food and agricultural products their phenotypic 

features such as taste, aroma, or color20. In food and agricultural products originates from 

plant, those features are likely defined from interactions of more than 10000 detectable 

metabolites, with more than 2000 of them are nutrient related metabolites, with environmental 

factors21. Due to its capacity for simultaneous profiling of large numbers of metabolites in 

various biological matrices, metabolomics technology has recently risen as a potential tool for 

manufacturing, safety and quality evaluation of food and agricultural products.  

 

Metabolomics in food component analysis and processing 

 From the perspective of metabolomics, most food and agricultural products are 

chemical pools consisting of thousands of metabolites from very broad groups such as protein, 

sugars, amino acids, fats, fiber, vitamins, and trace elements, and its interaction in a form of 

solid, semi-solid and liquid matrix20. The number and variety of chemical constituents in food 

and agricultural products are dependable on the level of processing and the natural diversity 

itself. Some processed products only consist of up to 20 different chemical constituents (soft 

drinks, artificial juices, vegetable oils) while some others may contain hundreds and 

thousands of compounds (raw fruits, meats, and most prepared food)20. Changes in the food 

components through food processing including physical and chemical modification can be 

also captured by metabolomics. The production of soy sauce, traditional fermented soybean 

beverage, industrial pasta and beer are among the study cases of metabolomics application in 

food manufacturing22–24.  

 

  The advent of metabolomics technology has been contributed to the impressive 

collection of 15000+ food related metabolites25. GC/MS and LC/MS remained to be the most 

popular platform used for most agricultural products, i.e., grapes, tomato, potato, rice, melon, 

green tea, coffee and herbal plants, due to its selectivity and sensitivity6,18,19,26–35. The use of 

NMR and FT-NIR non-destructive methods has also been progressively adapted for 

component analyses of green tea, milk, tomato juices, and beer36–40. For food science, 

metabolomics-based food component analysis will provide detailed knowledge in association 

with the effect of different food preparation (frying and baking; steaming and boiling) and 
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storage. Moreover, these studies help to improve the quality through selective breeding of 

agricultural products as well as livestock. 

 

Metabolomics in diets and food consumption monitoring  

 Considering that diseases brought on by appalling dietary lifestyle have become a 

rising concern among consumers, monitoring food consumption is one of the most important 

issues worldwide. While monitoring food consumption through a dietary program impacted 

physical health41, most of the nutritional scientists have reliant on the use of questionnaire 

based epidemiological studies, termed as food frequency questionnaire (FFQ) during pre-

metabolomics era, which unfortunately do not allow for measurement of biological fluids to 

corroborate direct association between certain foods or diet with its consequences25.  

 

 The onset of metabolomics have been concomitantly supported, or even replaced the 

practice of epidemiological study of large populations since biological circumstances, 

represented by circulating nutrients in plasma or blood, may vary from person to person42. 

The capacity of metabolomics to capture spectral alterations occurring from diet or food-

induced changes presenting a better interpretation of the physiological effects of a certain 

food or diet and identification of biomarkers that potentially beneficial for health. Those 

changes are present in the blood or urine for a couple hours and some of them last as long as 

48 hours43, marking the significance of both biological liquids for nutritional studies. Majority 

of biomarkers that can be used as food consumption are typically polar metabolites 

(chlorogenic acid for coffee, epicatechin for tea) while non-polar compounds dominating the 

biomarkers of physiological reaction to food or diet, i.e., triacylgycerol and total cholesterol 

increased risk of cardio vascular disease20.  

 

Metabolomics in quality and authenticity evaluation of food and agricultural products  

 Despite of annual fluctuation in the global production due to environmental and socio-

economy, agricultural crops and livestock remain to be most valuable commodities and 

starting material to yield various products from food to fuel. In recent years, concerns 

regarding safety, quality and authenticity of food and some valuable crops have become the 

major challenge in food science. Adulterations in many consumer sectors are commonly 

practiced, both intentionally and accidentally. Whereas intentional adulteration involve illicit 
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act to enhance the product values, accidental or non-intentional adulteration often associated 

with contamination and lack of proper hygiene during the overall processing, resulting in a 

downgrading of product values. Detection of fraudulent adulteration is essential for industry 

and legislative authority. Both parties are accountable to establish quality standards through 

labeling and composition regulations and routine evaluation protocol to circumvent unfair 

competition among manufacturers as well as to ensure safety, quality and authenticity of the 

product for consumers44,45.  

 

 According to Dennis44, authenticity evaluation of food and agricultural products can 

be generalized into these following issues.  

 

 Species of origin 

Authenticity issue arise when one species possess superior qualities due to differences 

in genetic makeup, physical and morphological properties, compared to others. 

Differentiation of panax (Panax ginseng and Panax quinquefolium) and coffee (Coffea 

arabica and Coffea canephora) are among the well-known incidents in which species of 

origin plays a significant benchmark for authentication. The discrepancy in the sale price of 

panax species is due to its medical value, while Arabica commanding selling prices up to 

three times higher than Robusta, market name of Coffea canephora, because the former has 

finer taste and aroma. The consequence of the price gap in both incidents are growing illegal 

attempt to mix one species with similar material from a cheaper species. 

 

 Geographical region of origin 

Several foodstuffs and beverages such as cheeses, sausages, olive oil, wine and beer 

are very common to be associated with geographical origin, particularly in European 

countries. Protocols to discriminate Japanese and Chinese herbal medicine have also been 

reported in attempt to detect adulteration19. The need to establish protection to those products 

on the account of geographical origin is mainly motivated because of environmental and 

heritage factors.  
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 Commercial treatment  

Several commercial treatments are considered to be the source of adulteration 

including cold pressed olive oil, pasteurization and food irradiation. Unlawful mixing or 

addition of water into olive oil, milk, wine and beer remains a common extender of those 

products (although it is indirect with commercial treatment). This particular issue led to 

attempt for protecting originality of brands and its quality, i.e., Scotch whisky.  

 

Particularly for agricultural crops such as coffee and tea, quality evaluation has been 

conventionally assessed on the basis of human sensory perception. Consumers’ preferences 

are represented with panel of assessors, on whom the products are evaluated utilizing human 

senses (sight, smell, taste and touch). However, this method tended to be highly subjective 

with only up to 20% precision46. Moreover, because it takes years of training to obtain 

specialty in sensory analysis, hiring highly trained specialists to assess product quality is 

unavoidably expensive. Therefore, it would be advantageous to develop an alternative method 

from nonhuman measurement.  

 

Metabolite, target in metabolomics technology, can be directly connected with 

phenotype that is sensitively affected by any type of perturbation or stress. The capacity of 

metabolomics to measure metabolites as well as to identify food components favor its 

usefulness for detection of adulterated crops or food products. Generally, technical 

approaches for detection of adulteration assisted by metabolomics can be largely divided into 

three categories45. The first approach focuses on determination of the ratio of some chemical 

constituents, specifically the ones that are likely influenced by perturbation, with assumption 

these ratios are constant in authentic product. The use of multivariate analysis is often 

required to deal with differentiation of large sample set. Seeking specific marker in the 

product that emerges in association with fraud can be posed as second approach. Comparative 

analysis utilizing statistical analyses can be easily classified adulterated and authentic samples. 

The last possibility for detection of counterfeit in food products involves global examination 

of the products applying combination of physical and chemical (metabolomics) analysis for 

observing the outcomes of adulteration to the food products thoroughly. The availability of 

numerous analytical platforms, data processing algorithms, and multivariate analysis highly 

embolden the application of metabolomics technology to counteract adulteration. 



15 

 

 

Coffee is one of the most valuable internationally traded crop products for an 

estimated 530 million bags in December 201447 and hence is very susceptible to any kind of 

adulterations.  Motivated by its economical values, different types of coffee adulteration have 

been frequently found in the market. The most common encountered adulteration cases as 

summarized by Briandet et al48 are as follow: 

 

 Adulteration with coffee substitutes such as chicory, malt, figs, cereal, caramel, starch, 

maltodextrins, glucose and coffee husks.  

 Unlawful replacing or mixing of two species. Among many coffee species, only two of 

them are commercially profitable, Arabica (C. arabica) and Robusta (C. canephora). 

Robusta has been branded as a weak-flavored coffee with low acidity and a strong 

bitterness, whereas Arabica provide a milder, intense aroma and finer taste.  

 Mixing of expensive coffee from a particular cultivation area with cheap beans grown in 

another region or mixing of premium coffee with superior features with common beans.   

 

In relation to application of metabolomics for coffee discrimination and detection of 

adulteration, there are several studies were reported utilizing wide range of analytical systems 

(Table 1-1).  

 

Table 1-1.  Metabololomics technology for coffee science 

Objective Technique(s) Discriminant marker Ref 

Discrimination between Arabica 

and Robusta green coffee  

Raman 

spectroscopy  

Chlorogenic acid and lipid 

content 

46 

Discrimination of mature – 

immature Arabica beans  

LC/MS Tryptophan (immature beans) 49 

Differentiation of coffee owing to 

geographic growing origins 

ICP-AES Not reported 50 
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Table 1-1. (Continued) 

Objective Technique(s) Discriminant marker Ref 

Discrimination of Arabica and 

Robusta in instant coffee 

FT-IR Chlorogenic acid and caffeine 

(Robusta) 

51 

Discrimination of defective – 

non-defective among Brazilian 

Arabica (1) and between green 

Arabica – Robusta beans  

SPME-

GC/MS,  

ESI-MS 

Benzene acetic acid, 1H-pyrrole, 

4-Methylthiazole, methyl ester, 

etc. (defective beans), High 

sucrose (non-defective), low 

sucrose (defective), higher 

content of phenolic compounds, 

such as chlorogenic acid for 

Robusta 

52,53 

Detection of coffee blend 

between Arabica and Robusta 

Raman 

spectroscopy, 

FT-ICR/MS, 

QTOF 

Kahweol, three diterpene 

glycosides (Arabica), 

caffeoyltryptophan and 

caffeoyltyrosine (Robusta) 

54,55 

Classification of green coffee 

beans according to variety and 

origin 

NMR  Sucrose, caffeine, chlorogenic 

acids, choline, amino acids and 

trigonelline 

56 

 

 

1.2. Asian palm civet coffee: a case of perturbation in crop product 

1.2.1. History and processing 

Asian palm civet coffee (in short, civet coffee) or Kopi Luwak, Indonesian words for 

coffee and civet, respectively, is a premium coffee prepared from coffe berries that have been 

eaten by Asian palm civet (Paradoxurus hermaphroditus), a small mammal native to southern 

and northern Asia, widely spread from India, Bangladesh, Sri Lanka to central Indonesia (Fig. 

1-3). It is listed as one of the world’s priciest coffee with a price tag of 3000 Japanese yen per 

100 gr (or US$ 150 to 220 per pound), a hundred times higher than common beans. 

Approximately, only 300 kg to 1 ton of civet coffee are traded and exported annually to 

specialty coffee consumer in South Korea, Japan, USA, Australia and European countries 
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(personal communication with Indonesian Coffee and Cocoa Research Institute). The 

transient fermentation inside the civet’s gut hypothetically adds a distinct flavor to the coffee 

beans. However, its rarity as well as the coffee’s exotic and unique production process 

ultimately accounts for its high selling price. Civet also inhabit African continent with the 

most well known species, Civettictus civetta, are historically the main species from which was 

obtained a musky scent used in perfumery58.   

 

  

 

Fig. 1-3. Asian palm civet or Paradoxurus hermaphroditus (right) and its native habitat (left 

native in green, introduced in red color) 

 

Civets are primarily frugivorous, a fruit eater, feeding on berries and pulpy fruits. 

They also eat small vertebrates and insects57. This 3 – 10 pound animal normally inhabit 

primary tropical forest, showing nocturnal activity patterns with peaks between late evening 

until after midnight and often emit a nauseating secretion from their anal scent gland as a 

chemical defense58.  Based on IUCN (International Union for Conservation in Nature), Asian 

palm civet was classified as ‘Least Concern’ animal, as it is tolerant of a broad range of 

habitats, and is widely distributed with large populations that are unlikely to be declining 

(IUCN Red List of Threatened Species, 2008). It was reported that civet coffee has its origins 

in the Dutch coffee plantation estates during Dutch colonization in Indonesia (before 1945). 

The knowledge of existence of Luwak coffee was first reported in the March 1981 issue of 

National Geographic, which mentioned civet coffee by name in one of the feature articles 

entitled “The Bonanza Bean – Coffee”57. 

India 

Southeast 

Asia 
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The civet is an expert tree climber. They climb coffee trees at night and instinctively 

select the ripest coffee cherries. The coffee cherry is sweet and coffee pericarp is completely 

digested whereas the beans are excreted along with their feces. Transient fermentation, within 

a day, inside civets’ digestive tract, may alter the morphology and intrinsic features of coffee 

beans, proven with smoother surface, reddish color, and exhibit unique flavor described as 

earthy, musty, syrupy, smooth, low acidity, low bitterness and rich with chocolate undertone57, 

after beans are digested by civet.  

 

 There are two common methods of civet coffee production, traditional and 

conventional method. Traditional method allows civet roam freely within defined boundaries 

of coffee plantation or forest, unconsciously picking coffee cherries from the tree, compelling 

the farmer to collect defecated beans from the nature. In contrary, conventional method 

includes intensive farming where civet are put inside cage and fed with coffee beans on a 

daily basis. The latter, that is adopted by many farmers nowadays, has raised ethical concerns 

about animal cruelty from international organizations. Eventually, Indonesian coffee and 

cocoa research institute, one of pioneer of civet coffee production in Indonesia, initiated a 

‘less cruel, more friendly’ conventional method where the battery cage systems are only 

permitted during coffee harvest season. Afterward, the civets are released to its nature (or 

within defined boundaries), switching into traditional method and the cycles are recurring by 

capturing the wild civet prior to harvest period.  

 

After processed by digestive system of civet, the beans are excreted along with the 

feces, having kept their shape and still covered with some of fleshy pulp fruit. Bean clumps 

are then collected, cleaned, sorted into individual bean, wet-fermented, sun-dried, and further 

treated by roasted (Fig. 1-4). Civet coffee is considerably safe for consumption after extensive 

washing under running water, drying and roast at high temperature. The level of harmful 

microorganisms (enteric and coliform microorganisms) was significantly reduced comparing 

to untreated coffee beans. Upon roasting, reduction of colony occurred to near undetectable 

levels. Extensive wash and roasting would decrease microbial colony and lower their overall 

counts57. 
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Fig. 1-4. The civet coffee production starts with digestion of coffee cherries by civet ①, 

internal fermentation removes the pericarps and resulting in a bean clumps ②, followed with 

cleaning with running water – sorting – wet fermentation ③, sun-drying ④ to obtain proper 

green beans ⑤ and treated with roasting ⑥.  

 

1.2.2. Recent research and approach in this study 

Despite of its uniqueness to be one of few human food produced by its transitory route 

to digestive tract of animal, there is lack of scientific information on this exotic coffee. The 

reported studies, including one research article57 and one proceeding59, mainly focuses on 

discrimination between civet coffee from specific production areas and ‘regular coffee’ (not 

eaten by civet). The first report employed physiochemical characterization involving color, 

surface area, total protein, aroma, and cupping test to reveal dissimilarities between those 

coffees. Owing to physical and enzymatic treatment during passage to civet’s gut, civet coffee 

expectedly exhibited smoother appearance and reddish – darker color comparing control bean. 

Substantial degradation of storage protein was also observable confirming the penetration of 

proteolytic enzymes into coffee beans. Furthermore, cupping test and electronic nose showed 

① 

② 

③ 

④ 

⑤ 

⑥ 
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that civet and regular coffee were rather distinct each other based on their aroma, body and 

acidity. The latter report utilized electronic nose and GC/MS to distinguish civet from the 

control beans and to disclose that aroma and volatiles profiles of civet coffee were specific to 

varietal and production area.  However, both studies emphasized a mere discrimination 

analysis without providing information of candidates for authentication. It is therefore 

challenging to standardize the promising approaches, i.e., electronic nose and SDS-PAGE for 

future application.   

 

In this study, metabolomics technology is employed as an effective approach to 

pinpoint changes in the metabolite profile of coffee beans triggered by animal digestion, due 

to its direct association with phenotypic features. Semi targeted analysis, or metabolite 

profiling, and metabolite fingerprinting assisted by GC/MS and GC/FID are used to provide a 

wider coverage of metabolites to screen candidates of discriminant marker as well as to 

establish rapid protocol of civet coffee quality evaluation in industry. To thoroughly screen 

and isolate significant metabolites and to select proper candidates of discriminant marker, 

three types of metabolomics strategies, informative, discriminative and predictive are applied, 

represented by the use of multivariate analyses, such as PCA (Principal Component Analysis), 

OPLS  (Orthogonal Projection to Latent Structures) and its combination with discriminant 

analysis (OPLS-DA) (Fig. 1-5).  

 

 

 

 

 

 

 

Fig. 1-5. Experimental workflow and strategies in this study 
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1.3. Research Objective 

In the recent years, owing to extensive fraud attempts that have been commonly found 

in various consumer sectors, authentication of food and crop products is currently 

indispensible to ensure consumers’ safety and satisfaction. Aside from being one of the food 

product produced by animal perturbation, civet coffee also has been susceptible to fraudulent 

adulteration due to its uniqueness and economic value. As described in section 1.2.2, the 

scientific information of this exotic coffee is remained scarce. Consequently, there is no 

reliable, standardized protocol to evaluate authenticity of civet coffee.  

 

Metabolites are the ultimate readouts of metabolism, representing a closest link to 

phenotypic features, and thus are the most proper target to seek changes in their profiles 

resulted from animal perturbation as candidates of discriminant marker for quality evaluation 

of civet coffee. The objective of this study is to develop reliable protocol for authenticity and 

quality assessment of civet coffee as well as to expand its application for rapid, routine 

evaluation in industry. To accomplish this overall objective, the following strategies are 

needed: 

 

1) Seek and identify discriminant marker candidates to differentiate civet coffee and regular 

coffee on the regard of animal perturbation through metabolite profiling 

 
2)  Verify the applicability of discriminant marker candidates for evaluation of commercial 

coffee products 

 
3) Expand the usefulness of metabolomics for rapid analysis utilizing knowledge of 

discriminant markers via metabolite fingerprinting coupled with cost-effective analytical 

platform and construction of prediction model to determine degree of coffee adulteration 

for industrial applications. 
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1.4. Thesis outline  

This thesis consist five chapters emphasizing development of a protocol for 

authenticity evaluation of civet coffee, a world-renowned priciest coffee that has notoriously 

subjected to fraudulent adulteration and its routine application in industry. In Chapter 1, 

general introduction regarding the utility of metabolomics in food science, civet coffee and 

research background are presented. In Chapter 2, GC/MS-based multimarker profiling of 21 

coffee beans (Coffea arabica and Coffea canephora) from different cultivation areas was 

demonstrated to explore significant changes in the metabolite profiles as discriminant markers 

for authentication of civet coffee. Employing multivariate analyses, a set of significant 

metabolites was selected for further verification by evaluating their differentiating abilities 

against various commercial coffee products. In Chapter 3, first practical application was 

presented by developing rapid, reliable and cost-effective analysis via GC coupled with 

universal detector, flame ionization detector (FID), and metabolite fingerprinting for 

discrimination 37 commercial and non-commercial civet coffee extracts. GC/FID provided 

higher sensitivity over a similar range of detected compounds than GC/MS and could 

successfully reproduce quality prediction from GC/MS for differentiation of commercial civet 

coffee, regular coffee and coffee blend with 50 wt % civet coffee content without prior 

metabolite details. Considering that illegal mixture of cheap coffee into civet coffee is a 

growing concerns among consumers, the proof-of-concept of the utility of metabolomics 

approach and orthogonal projection to latent structures (OPLS) prediction technique to 

quantify the degree of coffee adulteration was demonstrated in Chapter 4. The prediction 

model exhibited accurate estimation of mixing ratio of known-unknown coffee samples. At 

last, general conclusion and future perspective are elaborated.  
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Chapter 2 

Selection of discriminant markers for authentication of Asian 

palm civet coffee via metabolite profiling 

 

2.1. Introduction  

As described in previous chapter, fraudulent adulterations are currently found in every 

consumer sectors including crops and livestock and forcing government as authorized 

regulator and manufacturers to provide verification vial products’ labeling. Different labeling 

and compositional regulations from one food to another, from country to country, has opened 

a challenge to seek appropriate method, technology and/or biomarker for food quality and 

safety evaluation44. With up to 530 million bags are exported across the globe during period 

of December 201447, coffee is undoubtedly one of the most valuable and traded agriculture 

products. The prominence of coffee market and its globalization have resulted in drawbacks 

including countless attempts for fraud. Adulteration with coffee substitutes and illegal 

mixing/replacing prestigious coffee species with the cheaper kind are commonly practiced in 

the market.  

 

Among all known coffee species, the most traded are C. arabica and C. canephora 

(Robusta) and among many varieties that are grown across the globe, a few, such as Jamaican 

Blue Mountain and Hawaiian Kona, have been recognized for its remarkable flavor thus, they 

are branded as premium or specialty coffee57. Of these premium coffees, civet coffee is 

considered to be the most expensive. The actions of civet’s gastro-intestinal tract and 

digestive enzymes modify the chemical composition of these coffees, thus yielding a unique 

flavor. It is however, the exotic process and short supply are the principal reasons for its high 

price, which is approximately 2 – 3 times higher than other premium coffees47. 
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Despite its profitable prospects, there is no reliable, standardized method for 

determining the authenticity of civet coffee. Moreover, there is limited scientific information 

on this exotic coffee. Recently, type 3 adulteration (commercial treatment), involving regular 

coffee that was treated enzymatically and physically (cold storage) and marketed with the tag 

of “Kopi Luwak”, was reported in the coffee market60. This poses serious concern among 

consumers over the authenticity and quality of the products currently available in the market. 

Discrimination between civet coffee and regular coffee has been achieved based on its aroma 

content via electronic nose data and total protein content using SDS-PAGE57. However, the 

selection of a discriminant marker for authentication was not addressed. Moreover, 1D SDS-

PAGE had a low dynamic range where 1 single band represents hundred of protein and 

commercial library of electronic nose data currently is not available, suggesting a challenge 

for standardization. The methods currently employed by civet coffee producers is sensory 

analysis include visual and olfactory testing, both of which are inadequate. For example, 

visual examination is only possible for green coffee beans prior to roasting, very few trained 

experts can perform the highly subjective sensory analysis to discriminate civet coffee and 

years of experiences are necessary to attain this expertise. 

 

Information flows in metabolic pathways are highly dynamic and represent the current 

biological states of individual cells. Hence, the metabolome has been considered as the best 

descriptor of physiological phenomena61. Metabolomics techniques can be powerful tools to 

elucidate variations in phenotypes imposed by perturbations such as gene modification, 

environmental factors, or physical stress. The “black box” process, or perturbation, during 

animal digestion can be translated as physical and enzymatic consequences to the coffee bean, 

which presents a smoother surface and color changes after digestion. Thus, metabolomics 

technique was chosen to select discriminant markers related to animal processing, to 

counteract those adulteration attempts. Metabolomics techniques have been effectively 

applied to distinguish the phytochemical compositions of agricultural products of different 

origins,62 varieties,56,62 and cultivars63 for quality control and breeding. 

 

In this chapter, gas chromatography coupled with quadrupole mass spectrometry (GC-

Q/MS)-based multimarker profiling was employed to explore significant metabolites as 

candidates of discriminant markers for the differentiation of civet coffee and regular coffees. 
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A combination of gas chromatography and mass spectrometry (GC/MS) provides high 

sensitivity, reproducibility, and the quantitation of a large number of metabolites with a 

single-step extraction.64,65 Sample classification by means of chemometrics was performed 

using principal component analysis (PCA). Subsequently, orthogonal projection to latent 

structures combined with discriminant analysis (OPLS-DA)66 was used to isolate statistically 

significant compounds as discriminant marker candidates.  

 

 OPLS-DA modeling is second derivative modification of partial least squares to latent 

structure, a regression analysis commonly used to decipher relationship between two data 

matrices, X (descriptors) and Y (responses). The X matrix, can be, for instance, 

chromatographic, microarray, or spectroscopic data with N samples and K wavelengths or 

mass-to-charge ratio and Y matrix are often represented phenotypic properties such as sensory 

profile, tolerance, toxicity etc. OPLS is first modification of PLS by removing variations in X 

that is not correlated to Y, mathematically termed as removal of systematic variation in X that 

is orthogonal to Y (Fig. 2-1)66,67. The separation of orthogonal variation from predictive 

variation, the one that correlates with Y, facilitates easier model interpretation and less 

complex model. 

  

 

 

Fig. 2-1. Overview of OPLS with K, M, and N represent data matrix of descriptor, e.g. 

chromatographic profile, predictor, e.g. quality ranking and number of samples, respectively. 
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 For OPLS-DA, to provide discriminant analysis, the response matrix or Y is formed a 

binary vector with the value 0 for one class and 1 for another class. Both OPLS and OPLS-

DA model comprises two blocks of variations, predictive (TpPp
T) which characterizes the 

between class variation and orthogonal (ToPo
T), which symbolizes the within class variation, 

into this formula: 

 

𝑋 = 𝑇𝑝𝑃𝑝
𝑇 + 𝑇𝑜𝑃𝑜

𝑇 + 𝐸 

 

T represents the score matrix, P is the loading matrix and E is a residual variable that is not 

correlated to both blocks of variations. To determine significant variables influenced the 

designed model, a visualization graph termed as S-plot can be easily built from OPLS-DA. 

This S alphabet-like plot combines the contribution or magnitude (covariance) and the 

reliability (correlation) of the metabolites as variables to model component scores. Those two 

vectors are determined as follows, 

 

𝐶𝑜𝑣(𝑡, 𝑋𝑖) =  
𝑡𝑇𝑋𝑖

𝑁 − 1
 

 

𝐶𝑜𝑟𝑟(𝑡, 𝑋𝑖) =  
𝐶𝑜𝑣(𝑡, 𝑋𝑖)

𝑠𝑡𝑠𝑋𝑖

 

 

t = component score in OPLS-DA 

i = centered variable in observation matrix X 

N = number of samples 

s = estimated standard deviation 

  

The applicability of the discriminant marker candidates was then further verified by 

evaluating their differentiating abilities against various commercial coffee products. This 

study presents the first report to address the selection and successful validation of 

discriminant markers for the authentication of civet coffee.   
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2.2. Experimental section 

2.2.1. Coffee materials, reagents and coffee preparation 

Coffee samples were divided into experimental and validation coffee groups. 

Experimental coffees were utilized to construct the discrimination model and to select 

significant compounds. Verification of the applicability of the discriminant markers was 

carried out using the validation coffee set. In this thesis, coffee that had been digested by the 

animal is referred to as civet coffee, and the other beans as regular coffee. Civet coffee and 

regular coffee samples of two species, C. arabica (Arabica) and C. canephora (Robusta), 

were used. Coffee samples were obtained from 21 sampling points in three cultivation areas 

in Indonesia (Java, Sumatra, and Bali). Samples were roasted in a Probat-Werke von Gimborn 

Maschinenfabrik GmbH model BRZ 2 (Probat, Rhein, Germany) at 205C for 10 min to 

obtain a medium degree of roasting, and then were air-cooled for 5 min. These samples were 

acquired from Indonesian coffee and cocoa research institute in August 2011. Half of intact 

roasted beans were packed in vacuumed-sealed plastic and stored at 4°C. Another half were 

ground and stored in 50 mL sealed BD Falcon tube at -30°C with light-shielding prior to 

analysis (September 2011). Wet-fermentation was applied to both the civet coffee and regular 

coffees. For regular coffees, conventional protocols were applied after harvesting, including 

de-pulping, wet fermentation, and drying. 

 

The validation set consisted of authentic civet coffee, commercial civet coffee, 

commercial regular coffee, fake coffee, and coffee blend. Authentic civet coffee was 

produced via controlled processing to ensure the quality of the beans pre- and post-digestion. 

The remaining samples were purchased commercially. The coffee blend was utilized to 

examine the feasibility of the method for differentiating mixed and pure coffees. The sample 

descriptions are shown in Table 2-1 and Supplementary Table 2-1. In Table 2-1, samples 

no. 1 – 5 and 7 – 11 were originated from same cultivation area whilst samples no.5 and 11 

are benchmark for control processing (pre- and post digestion).  

 

Methanol, chloroform, distilled water, ribitol, and pyridine were purchased from 

Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Methoxyamine hydrochloride, quinic 

acid, chlorogenic acid, and alkane standard solution were purchased from Sigma Aldrich 



28 

 

(Milwaukee, Wisconsin, USA). N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) was 

purchased from GL Science, Inc. (Tokyo, Japan). Caffeic acid and sucrose were acquired 

from TCI chemical (Tokyo) and Kisida chemical (Osaka), respectively. The six authentic 

standards of the discriminant markers, their providers, and purities were as follows: citric acid 

(Nacalai-Tesque, Kyoto, Japan, 99.5%), malic acid (Nacalai-Tesque, 99%), pyroglutamic acid 

(ICN Biomedicals, Ohio, USA, 99.5%), caffeine (Sigma Aldrich, 98.5%), inositol (Wako, 

99%), and glycolic acid (Sigma Aldrich, 99%). 

 

2.2.2. Coffee beans extraction and derivatization 

Coffee beans were put into a grinding mill container, cooled for 3 min on water ice 

cubes, and then ground with a Retsch ball mill (20 Hz, 3 min). Coffee bean powder (15 mg) 

was transferred into a 2 mL Eppendorf tube. In addition to pure samples, a 50:50 (wt%) blend 

of civet coffee and regular coffee was used. One milliliter of a single-phase extraction solvent 

consisting of 2.5/1/1 (v/v/v) methanol, distilled water, and chloroform, respectively, was 

added to extract a wide range of metabolites. A non-specific extraction procedure was applied 

to avoid limiting the target analysis to specific compounds and to comprehensively screen the 

components of civet coffee. As an internal standard, ribitol (60 L, diluted with deionized 

water to 0.2 mg/mL) was utilized. The mixture was shaken for 1 min and then centrifuged at 

4C and 16000 g for 3 min. The supernatant (900 L) was transferred into a 1.5 mL 

Eppendorf tube and diluted with 400 L Milli-Q water (Wako). The mixture was then 

vortexed and centrifuged for 3 min. A 400 L portion of the aqueous phase was transferred 

into a fresh 1.5 mL Eppendorf tube with a screw cap. The solvent was removed by vacuum 

centrifugation for 2 h, followed by freeze-drying overnight. All samples were analyzed in 

triplicate (n = 3).  

 

To donor volatility for those non-volatile metabolites, derivatization utilizing 

oximation and trimethylsilylation were conducted. Methoxyamine hydrochloride (100 L, 20 

mg/mL in pyridine) was added to the dried extract as the first derivatization agent. The 

mixture was incubated at 30C for 90 min. After addition of the second derivatization agent, 

N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA, 50 L), the mixture was incubated at 

37C for 30 min. 
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Table 2-1 

List of coffee samples (Experimental coffee set) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFor multivariate analysis 

 

No. Origin Species Type Harvest year Extraction period Samples codea 

1 Sumatra Coffea arabica Civet coffee 2011 Sept 2011 29 

2 Sumatra Coffea arabica Civet coffee 2011 Sept 2011 31 

3 Sumatra Coffea arabica Civet coffee 2011 Sept 2011 39 

4 Bali Coffea arabica Civet coffee 2011 Sept 2011 33 

5 Java Coffea arabica Civet coffee 2011 Sept 2011 24 

6 Java Coffea arabica Civet coffee 2011 Sept 2011 26 

7 Sumatra Coffea arabica Regular coffee 2011 Sept 2011 30 

8 Sumatra Coffea arabica Regular coffee 2011 Sept 2011 32 

9 Sumatra Coffea arabica Regular coffee 2011 Sept 2011 40 

10 Bali Coffea arabica Regular coffee 2010 Sept 2011 34 

11 Java Coffea arabica Regular coffee 2011 Sept 2011 22 

12 Java Coffea arabica Regular coffee 2011 Sept 2011 41 

13 Java Coffea arabica Regular coffee 2010 Sept 2011 42 

14 Java Coffea arabica Regular coffee 2011 Sept 2011 45 

15 Bali Coffea arabica Regular coffee 2011 Sept 2011 43 

16 Bali Coffea arabica Regular coffee 2011 Sept 2011 44 

17 Sumatra Coffea canephora Civet coffee 2010 Sept 2011 35 

18 Sumatra Coffea canephora Regular coffee 2010 Sept 2011 36 

19 Java Coffea canephora Regular coffee 2011 Sept 2011 46 

20 Java Coffea canephora Regular coffee 2011 Sept 2011 47 

21 Java Coffea canephora Regular coffee 2010 Sept 2011 51 
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2.2.3. Metabolite profiling and quantification 

Metabolite profiling utilizing gas chromatography coupled to quadruple mass 

spectrometry (GC-Q/MS) was performed on a GCMS-QP 2010 Ultra (Shimadzu, Kyoto, 

Japan) equipped with a CP-SIL 8 CB low bleed column (0.25 mm x 30 m, 0.25 m, Varian 

Inc., Palo Alto, California, USA) and an AOC-20i/s (Shimadzu) as an autosampler. The mass 

spectrometer was tuned and calibrated prior to analysis. The derivatized sample (1 L) was 

injected in split mode, 25/1 (v/v), with an injection temperature of 230C. The carrier gas 

(He) flow was 1.12 mL/min with a linear velocity of 39 cm/s. The column temperature was 

held at 80C for 2 min, increased by 15C/min to 330C, and then held for 6 min. The transfer 

line and ion source temperatures were 250 and 200C, respectively. Ions were generated by 

electron ionization (EI) at 0.93 kV. Spectra were recorded at 10000 u/s over the mass range 

85500 m/z. A standard alkane mixture (C8–C40) was injected at the beginning and end of the 

analysis for tentative identification. 

 

To corroborate profiling data, metabolite quantification was performed solely for 

candidates of discriminant markers using authentic chemical standards at various 

concentrations. The final concentrations of the authentic standards were adjusted to 1, 10, 50, 

100, 250, 500, 750, 1000, 1500, and 2000 μM with the extraction solvent to construct a 

calibration curve. For extraction, the authentic standards were processed identically to the 

coffee bean samples. The standards were co-injected during sample analysis. Two blank 

solutions were prepared by adding only extraction solvent and distilled water, respectively. 

The limits of detection (LOD) and quantitation (LOQ) were determined via known 

protocols68,69. The construction of the standard curve and quantitation were conducted using 

GC/MS Solution software (Shimadzu). No authentic standards were detected in either of the 

blank samples. 

 

2.2.4. Data preprocessing and metabolite identification  

Chromatographic data from GC/MS analysis were converted into ANDI files 

(Analytical Data Interchange Protocol, *.cdf) using the GC/MS Solution software package 

(Shimadzu). Peak detection, baseline correction, and peak alignment of retention times were 
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performed on the ANDI files using the freely available software package, MetAlign70 with 

described parameters shown in Table 2-2. Spectra were normalized manually by adjusting the 

peak intensity against the ribitol internal standard. 

 

Table 2-2. Set of MetAlign parameters for baseline correction and retention alignment. 

Baseline and noise elimination parameters 

Retention begin (Scan nr) 1 

Retention end (Scan nr) 30000 

Maximum amplitude  1000000000 

Peak slope factor (x Noise) 2 

Peak threshold factor (x Noise) 4 

Peak threshold (Abs.value) 10 

Average peak width at half height (Scans) 25 

Scaling and aligning data sets 

Scaling options No option 

Initial peak search criteria Scan Nr. Max. Shift 

Begin of 1st region 0 20 

End of 1st region 30000 30 

Begin of 2nd region 0 0 

End of 2nd region 0 0 

Tuning alignment options and criteria Pre-align 

processing 

(iterative) 

Maximum shift per 100 scans  35 

Mass peak selection 1st iteration Last iteration 

Min. Factor (x noise) 7 7 

Min. Nr. of masses 10 5 

Select min. Nr per peak set Group 1 Group 2 

 0 0 

 

  

According to the minimum reporting standards for chemical analysis from Chemical 

Analysis Working Group (CAWG) of Metabolomics Standards Initiative (MSI)71, level of 

metabolite identification are categorized into four levels.  

(i) Level 1: Identified compounds, require comparison with an authentic chemical 

standard with a minimum of two independent and orthogonal data (for example: 

retention time/retention index and mass spectrum), provide additional orthogonal 

data, i.e., isotope labeling and if spectral matching is performed then the method 

and libraries should be described and made publicly available. 
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(ii) Level 2, Putatively annotated compounds or tentatively identified compounds, 

based upon spectral similarities with public/commercial spectral libraries and 

without chemical reference standards. 

(iii) Level 3, putatively characterized compound classes, based on characteristic 

physicochemical properties of a chemical class of compounds  

(iv) Unknown compounds, metabolite identity does not match with any libraries or 

chemical standards. 

 

In this thesis, identification level 1, 2 and 4 are utilized. Level 1 identification was 

performed based on method described in section 2.2.3. For level 2, I compared the retention 

indexes and unique mass spectra with in-house reference library. Retention indexes of the 

eluted compounds were calculated based on the standard alkane mixture. To simplify and 

accelerate the tentative identifications of compounds that were registered in the in-house 

library database, AIoutput2 (version 1.29) annotation software, developed in the authors’ 

laboratory, was utilized72. The parameters were set as follows: height threshold: 1000, RT 

binning: 2, available index: retention index, analysis type: non-targeted, RI tolerance: 15, 

Match threshold: 0.75. For further comparison with the National Institute of Standards and 

Technology (NIST) spectral library, retention times were used instead. Metabolites without 

spectral similarities with these two libraries were classified as unknown compounds (level 4).  

 

2.2.5. Multivariate data analysis 

PCA and OPLS-DA were performed. OPLS-DA with an S alphabet-like plot, or S-

plot, was chosen to isolate and select statistically significant and potentially biochemically 

interesting compounds. The variables that changed significantly are plotted at the top and 

bottom of the S-plot, and those that do not significantly contribute are plotted in the middle66. 

A sevenfold cross validation was carried out to assess the accuracy of the discrimination 

model in practice. The goodness-of-fit (R2) and predictability (Q2) parameters were then 

determined. Analysis was performed with commercial software, SIMCA-P+ version 12 

(Umetrics, Umeå, Sweden). Data were Pareto-scaled (centering + 1/SD) to reduce the effect 

of noise in the chromatograms.  
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2.3. Results and discussion 

2.3.1. GC/MS-based metabolite profiling of civet coffee 

 GC-Q/MS analysis was performed on aqueous extracts of coffee beans to investigate 

the differences in their metabolite profiles and select discriminant markers for robust 

authentication. In addition, this research focused on increasing the scientific information 

about civet coffee. A quadrupole mass spectrometer was selected because of its availability as 

the most widely used mass analyzer. However, a conventional Q/MS can be operated only at 

a slow scan rate73. With processor improvements and high-speed data processing, newly 

developed GC-Q/MS instruments provide increased sensitivity at high scan speeds of up to 

10.000 u/s74.  

 

Because of their broad cultivation areas and commercial profitability, C. arabica and 

C. canephora, which represent 65% and 35% of the total annual coffee trade, respectively, 

were utilized for metabolomics analysis46. A total of 53 out of 182 reliable peaks from 21 

coffee beans were extracted using MetAlign. Moreover, 30 compounds were tentatively 

identified by comparison with in-house library (by retention index) and the NIST library (by 

retention time); ten of these were identified by co-injection with an authentic standard. 

Tentatively identified components consisted of organic acids, sugars, amino acids, and other 

compounds (Supplementary Table 2-2). Previously reported coffee bean constituents, 

including chlorogenic, quinic, succinic, citric, and malic acids; caffeine, one of the 

compounds supplying bitter taste in coffee; and sucrose, the most abundant simple 

carbohydrate, were identified75–79. 

 

In recent research, unsupervised analysis, PCA, has been employed for data 

exploration and to visualize information based on sample variance35,80. A PCA score plot 

derived from the 21 coffee beans differentiated two data groups based on their species, 

Arabica and Robusta (Fig. 2-2), and resulted in a goodness-of-fit parameter (R2) of 0.844. 

Caffeine and quinic acid were significant for the Robusta coffee data sets, whereas the 

Arabica data set was mainly supported by various organic acids such as malic, chlorogenic, 

citric, and succinic acids. The data differentiation was explained by 42.9% of variance along 
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PC1. The results indicated that genetic diversity more strongly influenced the data separation 

than animal perturbation.  

 

 

 

Fig. 2-2. PCA score plot of 21 experimental coffee set. Arabica (blue-filled circle) and 

Robusta coffee (green-filled circle) were clearly separated.  

 

Because of the large variance among coffee species, sample differentiation based on 

the type of coffee, civet coffee or regular coffee, could not be observed. Additional analyses 

were carried out independently for each coffee species originating from the same cultivation 

area. The PCA score plot revealed data separation based on the type of coffee, in which civet 

coffee and regular coffee could be clearly separated (Supplementary Fig. 2-1). For the 

Arabica coffee data set, the separation was explained by 45.5% and 23.7% variances in PC1 

and PC2, respectively. By PC2, civet coffee was closely clustered in the same region, whereas 

regular coffees tended to separate based on their cultivation areas. In the loading plot, malic 

and glycolic acids contributed highly to the civet coffee data (Supplementary Fig. 2-1). 

Thereby, coffee beans may possess similar profiles after animal digestion. Differences in 

cultivation areas were considered to have the least significance for data separation. In Robusta 

coffee, a clear separation between civet coffee and regular coffee was observed, which was 

explained by 79.1% variance of PC1. Significant compounds for separation, including inositol 

and pyroglutamic acid for civet coffee and quinic acid for regular coffee, were observed. 

Coffea arabica 

Coffea canephora 
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2.3.2. Discriminant analysis to select candidates for discriminant markers 

An overview of all data samples was provided by the unsupervised analysis, PCA. 

However, detailed information regarding compounds contributing to the data differentiation 

between civet coffee and regular coffee remained unclear. Therefore, coffee bean data sets 

were subjected to supervised discriminant analysis (OPLS-DA). For analyses having two or 

more classes, OPLS-DA is the most suitable platform for isolating and selecting 

differentiation markers. Compounds with reliable, high contributions to the model may 

possess potentially biochemically interesting characteristics; thus, they can be selected as 

biomarker candidates66. All OPLS-DA models exhibited R2 and Q2 values greater than 0.8, 

which would be categorized as excellent81. In addition, all models were in the range of 

validity after permutation tests using 200 variables. The model was considered valid after 

permutation for those that met the following criteria: R2Y-intercepts and Q2-intercepts which 

did not exceed 0.3–0.4 and 0.05, respectively82. 

 

 Potential candidates for discriminant markers can be selected via S-plots by setting the 

cut-off for covariance, p[1], and the correlation value, p[corr], to > 0.2. S-plots of the coffee 

data sets are shown in Fig. 2-3B and 2-3D. In addition to cut-off values, candidates for 

discriminant markers were selected by variable importance in projection values (VIP). Large 

VIP values (> 1) are more relevant for model construction. The OPLS-DA score plot of 

Arabica coffee data sets is shown in Fig. 2-3A. Discrimination between civet coffee and 

regular coffee was obtained. The model was evaluated with R2 and Q2 values of 0.965 and 

0.892, respectively. Interestingly, compounds that were uncorrelated with civet coffee were 

quinic acid, caffeine, and caffeic acid. These compounds have been reported as contributors 

of bitterness as well as acidity in coffee75–78. In contrast, compounds that were predictive to 

civet coffee, i.e., over the cut-off value, included citric, malic, and glycolic acids. The OPLS-

DA score plot of the Robusta coffee data sets (Fig. 2-3C) was explained by R2 and Q2 values 

of 0.957 and 0.818, respectively. Caffeine, one of the bitter principles in coffee, was found to 

be significantly correlated with Robusta civet coffee data sets. Robusta coffee has been 

reported to contain higher amounts of caffeine than Arabica. Thus, it tends to be bitter and 

flavorless, whereas Arabica coffee is considered to be milder, contain more aromatic 

compounds, and is more appreciated by the consumer83. 
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Fig. 2-3. OPLS-DA score plots (A, C) and loadings of S-plots (B, D) derived from experimental coffee set. Significant compounds were 

selected for p and p[corr] > |0.2|.

Civet coffee (Arabica) Regular coffee Civet coffee (Robusta) Peaks from GC/MS 

A B 

C D 
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Candidates for discriminant markers for the authenticity assessment of Arabica and 

Robusta coffees are listed in Table 2-3. Discriminant markers were chosen independently for 

the Arabica and Robusta coffee. To confirm whether these selected markers were generated as 

a result of animal digestion, I investigated cause-effect relationships by quantitating the 

discriminant marker candidates in green and roasted coffee beans from controlled processing, 

pre- and post- animal digestion (Samples No. 5 and No. 11 experimental set). The results are 

displayed in Supplementary Fig. 2-2. In both the raw and roasted beans, citric acid was 

present in higher concentration after animal digestion, exhibiting a significant value 

difference (p < 0.05) between civet coffee and regular coffee. The concentration of caffeine 

was also increased after digestion, but the difference was insignificant (p > 0.05). As a result 

of roasting, the glycolic acid concentration increased dramatically (p < 0.001) from 0.8 to 25–

28 μg/L. The production of aliphatic acids, including formic, acetic, glycolic, and lactic acids, 

has been reported during coffee roasting84. Therefore, among the selected marker candidates, 

I confirmed citric acid as a potential marker generated by animal digestion.  Citric acid, malic 

acid, quinic acid, and chlorogenic acid are the main acids in coffee, and acidity is generated 

by complex reactions involving these organic acids during roasting76. Civet coffee has been 

reported to exhibit slightly higher acidity than regular coffee57. However, the correlation 

between the increased levels of particular acids as result of animal digestion and the total 

acidity in coffee after roasting remains obscure and requires further investigation.  

 

Table 2-3. Candidates of discriminant markers from OPLS-DA and analytical parameters for 

quantitation 

Discriminant 

marker 

RT 

(min) 

VIP RSD [%]  

(n = 3) 

Linearity LOD 

(μg/L) 

LOQ 

(μg/L) 

RT Areaa R2 Range 

(M) 

Glycolic acid 4.96 3.93 0.12 1.87 0.9999 1-1000 0.021 0.066 

Malic acid 9.05 5.53 0.05 2.29 0.9996 1-1000 0.043 0.132 

Pyroglutamic acid 9.43 1.7 0.05 3.36 0.9992 1-750 0.054 0.164 

Citric acid 11.61 5.6 0.04 3.29 0.9997 1-1000 0.504 1.526 

Caffeine 12.18 2.28 0.04 3.51 0.9961 100-2000 1.531 4.638 

Inositol 13.45 4.47 0.03 5.09 0.9974 1-1000 0.082 0.247 
aat 100 M 
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2.3.3. Validation of the applicability of discriminant markers for authenticity assessment 

To verify the applicability of the selected marker candidates, I analyzed a validation 

coffee set that included authentic civet coffee, commercial civet coffee, commercial regular 

coffee, fake coffee, and coffee blend. With the exception of the authentic coffee, the 

remaining samples were purchased commercially. Generally, from harvest to pre-roasting, 

samples labeled “commercial civet coffee” and “commercial regular coffee” were processed 

similarly to the corresponding coffees in the experimental set. However, in some cases, 

different roasting parameters were applied. Fake coffee was processed to approximate the 

sensory profile of civet coffee60. Commercial regular coffees were selected from different 

production areas.  

 

To examine the effectiveness of the selected markers in differentiating pure and coffee 

blends, I mixed two commercial civet coffees, civet coffee with brand of “Golden” and 

“Wahana”, with a commercial regular coffee (Wahana regular) in a 50:50 (wt%) ratio. This 

would also compare the applicability of the discriminant markers when coffee beans from the 

same and different production areas were blended. Despite being selected independently, the 

six marker candidates were used together for method validation. 

 

 

 

Fig. 2-4. PCA score plot of validation coffee set. Red arrow represents authentic civet coffee. 

 

Civet coffee (Authentic & commercial ) 

Coffee blend Regular coffee (commercial) 

Fake coffee 
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By subjecting all detected peaks to PCA, samples were populated into four clusters. 

The largest variance corresponded to fake coffee, as its results were clearly separated from 

others (Supplementary Fig. 2-3). Next, I projected the six marker candidates as an inclusion 

list into the PCA to obtain an overview of their applicability toward sample differentiation. 

Similarly to the previous results, separation of the four coffee groups was observed. The PCA 

was explained by 59.5% and 20.9% variances in PC1 and PC2, respectively (Fig. 2-4). Fake 

coffee was clustered away by PC1. Separation was likely because of attempts by the producer 

to obtain a profile similar to Kopi Luwak. In PC2, commercial civet coffee, coffee blend, and 

commercial regular coffee could be differentiated. Both authentic and commercial civet 

coffee were clustered within a close distribution area. Regardless of their origins and 

processing (roasting) parameters, commercial regular coffee data were populated in a close 

area, suggesting that these factors had the least significance for data separation. From the 

loading plot information, citric acid, malic acid, and inositol exhibited high contribution 

values for the civet coffee data sets. Interestingly, these three marker candidates also showed 

the highest VIP values for constructing the discriminant model (Table 1). 

 

To display the applicability of the selected discriminant markers in the differentiation 

of samples in the validation set, box plots were constructed using the relative peak intensities 

of citric acid, malic acid, and inositol. Two different sets of coffee samples, set A and B were 

used for making the box plot (Supplementary Table 2-1). The box plots of malic acid and 

citric acid were able to differentiate commercial civet coffee (civet coffee “Wahana”), coffee 

blend, commercial regular coffee (regular coffee “Wahana”), and fake coffee. However, the 

inositol box plot failed to differentiate these samples. Hence, I selected a double marker that 

employed an inositol-pyroglutamic acid ratio (Fig. 2-5). Pyroglutamic acid was selected 

because it had the lowest contribution toward the separation of civet coffee and regular coffee 

(Supplementary Fig. 2-4). The box plot for the other commercial civet coffee (civet coffee 

“Golden”) and the comparisons with its coffee blend as well as fake coffee is displayed in 

Supplementary Fig. 2-5.  

 

I confirmed the ratio of the coffee blend by quantifying the discriminant marker 

constituents. The analytical parameters for quantitation are shown in Table 1. All authentic 

standards exhibited good linearity (0.99 or higher) and good repeatability for at least seven 
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points in the applied concentration range in which analysis could be performed. To examine 

the quantitation validity, the LOD and LOQ for each discriminant marker were determined. 

The concentrations of the discriminant marker candidates in the coffee samples were 

determined to be higher than the LOD and LOQ of authentic standards. The concentration 

ratios of the selected markers, malic acid, citric acid, and the inositol-pyroglutamic acid ratio, 

in all the sample blends ranged from 47.76% to 53.73%. This result showed a relatively low 

error in terms of the ratios of the discriminant markers in sample blends compared with their 

actual values. Moreover, the concentration of each discriminant marker corresponded well 

with the box plot constructed from its respective peak intensity (Fig. 2-4 and Supplementary 

Fig. 2-5). Hence, I confirmed the feasibility of using the proposed strategy for the robust 

authentication of coffee blend in a 50:50 (wt%) ratio.  

 

 

 

Fig. 2-5. Box plot of peak intensity and concentrations of selected discriminant markers from 

set A. Sample description of set A is displayed in Supplementary Table 2-1. (A) citric acid, 

(B) malic acid, and (C) inositol/pyroglutamic acid, of four coffee samples, (1) civet coffee 

“Wahana”, (2) coffee blend set B, (3) regular coffee “Wahana”, and (4) fake coffee. 
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2.4. Conclusions   

In summary, this investigation represents the first attempt to address discriminant 

markers for the authentication of civet coffee. Sample differentiation was greatly influenced 

by genetic diversity (coffee species), followed by decreasing contributions from animal 

perturbation and cultivation area. Because of the great variation among coffee species, 

candidates for the discriminant markers were selected independently for each species. The 

selected discriminant marker candidates were verified for the authentication of commercial 

coffee products. The proposed markers were able to differentiate commercial civet coffee, 

commercial regular coffee, and fake coffee. In addition, at a certain ratio (50 wt% civet coffee 

content), the feasibility of employing these discriminant markers to differentiate pure and 

mixed coffee was acceptable. This finding highlighted the utility of metabolic profiling using 

GC/MS combined with multivariate analysis for the selection of discriminant markers for the 

authenticity assessments of valuable agricultural products. Discriminant markers are expected 

to perform as sole markers or in combination with sensory analysis by trained experts for the 

authentication of civet coffee. 
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Chapter 3 

Application of gas chromatography-flame ionization detector 

(GC-FID)-based metabolite fingerprinting for authentication of 

Asian palm civet coffee 

 

3.1. Introduction  

 In Chapter 2, selection and successful validation of discriminant markers for 

differentiation of civet coffee, authentic and commercial, regular coffee, fake coffee and 

coffee blend with 50 wt % of civet coffee content was demonstrated, presenting the portion of 

development of reliable method for authenticity evaluation of civet coffee. In this following 

two chapters, application studies will be presented to confirm the developed method for 

practical use.  

 

As mentioned previously, metabolomics – the comprehensive study of metabolome – 

provides a snapshot of dynamics in metabolic pathways. Unlike the genome and 

transcriptome, metabolome has been considered as the best descriptor of an organism’s 

phenotype85,86. Dramatic changes within a cell due to various perturbations are presumed to 

be reflected in the metabolite profiles. Many analytical systems with various degrees of 

sensitivity and specificity have been developed and widely applied to metabolomics. 

Particularly for coffee metabolomics, several studies were reported utilizing mass 

spectrometry (MS)49,52,53,55, Inductively coupled plasma atomic emission spectrometry (ICP-

AES)50, Fourier transform infrared (FTIR) spectroscopy51, Raman spectroscopy46,54, and 

nuclear magnetic resonance (NMR)56,79.  MS has gained popularity in the past decade because 

of its superior sensitivity, thus it is extensively used for metabolomics studies. Coupling MS 

with available separation techniques such as GC and LC facilitates the selectivity of a wide 

range of compounds87–90. In Chapter 2, I performed metabolite profiling employing GC/MS to 
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pinpoint potential discrimination marker candidates for civet coffee and regular coffee. A 

combination of GC and MS provides straightforward analyses within a single-step extraction 

with good reproducibility. However, the cost for maintenance and the machine itself is 

relatively expensive. Therefore, it is necessary to develop a protocol that is robust, sensitive 

and cost-effective for quality and authenticity evaluation of civet coffee. 

 

Gas chromatography with a universal detector such as flame ion detector (FID), has 

established itself as an inexpensive analytical system which can cover high-throughput 

analysis of carbon containing compounds91. A few applications of GC/FID in metabolomics 

studies were reported for quality control of transgenic rice92, herbal plants18,93, green tea91, 

and pine wood tree94. The availability of GC/FID in most small coffee factories and research 

institutes favors its application for routine analysis to evaluate authenticity of civet coffee. In 

this chapter, I attempted to develop a robust authentication technique for civet coffee using 

GC/FID-based metabolite fingerprinting. Metabolite fingerprinting presents rapid sample 

classification according to biological background rather than focusing on the small set of 

individual compounds thus it is a suitable approach for large size sample screening. The 

application of GC-FID in this study is to represent the use of cost effective instrument for 

rapid and reliable quality evaluation of civet coffee in industry. An alternative to employ 

other analytical inexpensive instrument that can cover organic analysis, a chemical class of 

civet coffee’s marker, e.g. HPLC, should be applicable.  

 

 At first, GC/FID was employed for fingerprinting of metabolites extracted from the 

first set of coffee samples collected from different production areas. A discrimination model 

of the coffee’s metabolite profiles, constructed by orthogonal projection to latent structures-

discriminant analysis (OPLS-DA), was then compared to the previously reported GC/MS data 

to verify repeatability of the established protocol. Lastly, a second set of coffee samples 

composed of commercial coffees and coffee blends, were analyzed to confirm the validity of 

the method.  
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3.2. Experimental section 

3.2.1. Coffee bean materials and chemicals 

 Samples were divided into experimental and validation coffee sets. The first set 

included twenty coffee beans that were collected from several cultivation areas in Indonesia. 

It consisted of civet coffee (no. 1-6, Arabica) that had been digested by civet, and undigested 

beans referred to as regular coffees (no. 7-20, Arabica and Robusta). All coffee samples were 

treated identically for post harvesting. Coffee roasting and storage were identical to the 

described protocol in section 2.2.1. 

 

 The second set of coffee samples included 3 civet coffees and 3 regular coffees 

were bought commercially and 2 additional authentic civet coffees from the Indonesian 

Coffee and Cocoa Research Institute. In addition, each civet coffee and regular coffee was 

mixed in equal proportions (50:50, wt %) to obtain representative coffee blends. A total of 17 

coffee samples, 8 pure and 9 coffee blends, were then analyzed by GC/FID to verify the 

established protocol for coffee authentication. All coffee samples were measured in triplicates. 

The sample descriptions are shown in Table 3-1 and Supplementary Table 3-1.  

 

To provide a verification for applicability of discriminant markers in metabolite 

fingerprinting strategy, chemical standards for confirmation of compound identification and 

their providers were as follows: citric acid and malic acid (Nacalai-Tesque), sucrose (Kisida 

chemical), pyroglutamic acid (ICN Biomedicals), inositol (Wako), quinic acid, chlorogenic 

acid and glycolic acid (Sigma Aldrich). 

 

3.2.2. Coffee beans extraction and derivatization 

Metabolite extraction and chemical derivatization were done using identical 

methods that have been described in detail in section 2.2.2.  
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Table 3-1 

List of coffee samples (Experimental coffee set) for GC/FID analysis 

 
aFor multivariate analysis 

 

 

3.2.3. Metabolite measurement with GC/MS and GC/FID 

The typical workflow for GC/MS analysis of aqueous coffee bean extract has been 

described in detail in Chapter 2. GC/FID was conducted on a GC-2010 (Shimadzu, Kyoto, 

Japan) installed with an AOC-20s autosampler and AOC-20i autoinjector. One microliter of 

each derivatized sample was injected in split mode, 25/1 (v/v). To establish proper 

comparison and validation with the reported GC/MS data, the same type of column, CP-SIL 8 

CB low bleed column (0.25 mm x 30 m, 0.25 m, Varian Inc., Palo Alto, California, USA), 

and identical temperature program were applied to GC/FID analysis. The carrier gas (He) was 

maintained at a constant velocity of 45 cm/s. The injector and FID temperature were set at 

230 and 320C, respectively.  

 

No. Production 

area 

Species Type Harvest 

year 

Samples 

IDa 

1 Sumatra Coffea arabica Civet coffee 2011 29 

2 Sumatra Coffea arabica Civet coffee 2011 31 

3 Sumatra Coffea arabica Civet coffee 2011 39 

4 Bali Coffea arabica Civet coffee 2011 33 

5 Java Coffea arabica Civet coffee 2011 24 

6 Java Coffea arabica Civet coffee 2011 26 

7 Sumatra Coffea arabica Regular coffee 2011 30 

8 Sumatra Coffea arabica Regular coffee 2011 32 

9 Sumatra Coffea arabica Regular coffee 2011 40 

10 Bali Coffea arabica Regular coffee 2010 34 

11 Java Coffea arabica Regular coffee 2011 22 

12 Java Coffea arabica Regular coffee 2011 41 

13 Java Coffea arabica Regular coffee 2010 42 

14 Java Coffea arabica Regular coffee 2011 45 

15 Bali Coffea arabica Regular coffee 2011 43 

16 Bali Coffea arabica Regular coffee 2011 44 

17 Sumatra Coffea canephora Regular coffee 2010 36 

18 Java Coffea canephora Regular coffee 2011 46 

19 Java Coffea canephora Regular coffee 2011 47 

20 Java Coffea canephora Regular coffee 2010 51 



46 

 

3.2.4. Data preprocessing and dataset construction  

Raw chromatographic data of GC/FID were converted into CDF format using GCMS 

Solution software package (Shimadzu, Kyoto, Japan). The converted files were subjected to 

baseline correction, normalization and alignment of retention times using the in-house 

software, PiroTran ver 1.41 (GL Sciences, Tokyo, Japan), utilizing these following 

parameters: Removal variable of solvents (0 to 4.2 min), internal standard normalization 

(10.96 min, 5 point), alignment (100 point), target (1), binning interval (20), baseline 

correction (5 point). The retention time of internal standard ribitol was confirmed with co-

injection of authentic chemical standard before being utilized as reference for normalization 

and retention time alignment. To reduce the run-to-run variation, the threshold for peak 

intensity (RSD) was set to < 20%, in each measurement replicate. To construct the data 

matrix, in which each row and column represent the samples and relative peak intensity at 

certain retention time, respectively, the outcome data were imported into Pirouette ver 4.0 

(Infometrix, Inc, Woodinville, Washington, USA). The data matrix was then subjected to 

multivariate analysis.  

 

3.2.5. Multivariate data analysis 

Multivariate analysis was carried out using SIMCA-P+ ver. 13 (Umetrics, Umeå, 

Sweden) to reduce dimensionality of the huge MS data and extract biological interpretation. 

PCA and OPLS-DA were used to decipher the relationships between two data matrices, X 

(predicted variables), and Y  (observed variables)66. Here, the chromatographic GC/FID data 

were used as X and for Y, the binary vector of 0 and 1 was assigned for civet coffee and 

regular coffee, respectively. The data were Pareto scaled prior to analysis without 

transformation.  
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3.3. Results and discussion 

3.3.1. Chromatographic data of GC/FID 

Representative GC/FID and GC/MS chromatograms of aqueous coffee extracts are 

shown in Fig. 3-1. I compared the chromatogram obtained from GC/FID with the one from 

GC/MS analysis using the same coffee extract and column type. The chromatographic data of 

GC/FID and GC/MS gave similar metabolite patterns, which contained the peaks from 

diverse metabolites, i.e., glycolic acid (peak no. 1), malic acid (peak no. 2), pyroglutamic acid 

(peak no. 3), citric acid, (peak no. 4) quinic acid (peak no. 5), inositol (peak no. 6), sucrose 

(peak no. 7) and chlorogenic acid (peak no. 8). A total of 678 peaks were obtained from 

GC/FID, compared to 182 peaks from GC/MS analysis. 

 

For metabolite fingerprinting, it is not necessary to determine the individual 

information of every peak1. Nonetheless to confirm the overall quality of GC/FID analysis, 

peak confirmation of the GC/FID chromatogram was performed by comparing to the 

identified peaks in the GC/MS data and co-injection of authentic chemical standards. Whilst 

most of the detected peaks that represented key coffee metabolites were identical between 

GC/FID and GC/MS, I also observed a shift in their retention times, such as in glycolic acid 

(5.02 and 4.96 min), malic acid (9.11 and 9.05 min), and citric acid (11.68 and 11.61 min), 

respectively. Since metabolomics data are often subject to unwanted variations95, the retention 

time shift reported here, albeit not severe, may be due to experimental variation between 

analytical instruments. 

 

As shown in Fig. 3-1, the overall chromatographic profiles between GC/FID and 

GC/MS were similar. However, it is noticeable that GC/FID analysis provided higher relative 

peak intensity than GC/MS for almost all detected peaks. The higher relative peak intensity 

often implies higher sensitivity, which has seen from the signal-to noise (S/N) ratio, as 

GC/FID analysis has been described to generate higher sensitivity compared to the mass 

detector which frequently operated in a full-scan mode for gathering entire profiles of 

biological samples1,18,91. Measurement of total ions over mass range resulted in the limitation 

of sensitivity for the mass detector. The efficient reduction of relative intensity for detected 

peaks within the range of 4.2 and 6 min was also observable for GC/FID analysis. The peaks 

were confirmed by comparison with the NIST library and identified as siloxane, common 
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peak contaminants from injector and vial septa (Fig. 3-1A). The result was explicable since 

FID primarily responds to a wide variety of carbon-containing organic compounds whereas a 

mass detector relies on the recognition of the entire ionized and fragmented molecules. The 

results suggested the practicability of using GC/FID for metabolite fingerprinting of coffee 

beans as it provided higher sensitivity over a similar range of detected compounds than 

GC/MS analysis.  

 

 

 

Fig. 3-1. Gas chromatograms of representative coffee bean extracts obtained from (A) 

GC/FID; and (B) GC/MS analysis. Both analyses used same column, CP-SIL 8 CB low bleed. 

Peak tentative identification: (1) glycolic acid, (2) malic acid, (3) pyroglutamic acid, (4) citric 

acid, (5) quinic acid, (6) inositol, (7) sucrose, and (8) chlorogenic acid. S/N, signal-to-noise 

ratio. 



49 

 

3.3.2. Multivariate data analysis of coffee bean extracts by GC/FID-based metabolite 

fingerprinting 

Metabolite fingerprinting of coffee extracts for the development of rapid assessment 

method was done using GC coupled with a universal detector, FID. Metabolite identification 

has been reported as tedious work and a major challenge in the metabolomics workflow1,96–98. 

However, determination of the individual level and identity for each metabolite is not a key 

requirement for metabolite fingerprinting strategy therefore, metabolite fingerprinting is 

suitable for quality screening of large number of coffee samples.  

 

 

 

Fig. 3-2. PCA score plot derived from (A) GC/FID and (B) GC/MS analyses. Green and blue 

filled-circles represent Robusta and Arabica coffee, respectively. 

 

A comparison of the multivariate analyses obtained from GC/MS analysis with that of 

GC/FID in order to evaluate the performance quality of the latter platform was carried out. 

The quality of PCA and OPLS-DA models constructed from GC/MS data has been described 

in Chapter 2. PCA was performed as unsupervised and non-biased method to reduce the 

dimensionality of multivariate data and visualize the differences in the metabolite fingerprints 

of coffee extracts. The score plot of PCA derived from GC/FID analysis, where the first two 

components (PC1 and PC2) accounted for 39.2% and 16.9% of the total variance, revealed 

distinct separation between samples due to their genetic trait, Arabica and Robusta (Fig. 3-2). 

Arabica and Robusta were analyzed in this study to represent the two major coffee species 

traded annually46. The Arabica coffee data set, comprised of both civet and regular coffee, 

clearly separated from Robusta coffee. Results indicate that genetic variability between 

species gave greater impact for data separation in comparison to perturbation during animal 
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digestion and cultivation area (along PC1-axis). The PCA obtained from GC/FID had better 

quality in terms of goodness-of-fit (R2X = 0.88) compared to the GC/MS data (R2X = 0.84) 

(Fig. 3-2).  

 

OPLS-DA modeling to indicate the role of animal perturbation in coffee sample 

separation by setting a binary vector with the value 0 for the civet coffee class and 1 for the 

regular coffee class were made. A discrimination model was then built from the total data set, 

in which the chromatographic data were used as predicted variable (X) and the binary vector 

as the observed variable (Y). The OPLS-DA score plot of the total data set of GC/FID 

indicated the apparent clustering between samples on the basis of animal perturbation (Fig. 3-

3). Civet coffee and regular coffee samples were clearly separated in the OPLS 1 (Fig. 3-3). 

Separation of Arabica and Robusta coffee remained observable in the right cluster occupied 

by regular coffee samples in OPLS 2. In GC/FID, the OPLS-DA model was built with an R2Y 

value of 0.996 and a Q2 value of 0.78 (Fig. 3-3A). The correlation coefficient (R2Y), describes 

how a model fit a set of predicted data set related to class separation. The model derived from 

GC/FID data is less robust in terms of model predictability (Q2) compared to the model from 

GC/MS data (R2Y = 0.965 and Q2 = 0.892, Fig. 3-3B). The lower Q2 value in GC/FID may 

signify an overfitted model which resulted from the use of all confirmed peaks from data 

processing to construct the discrimination model in GC/FID. The use of irrelevant 

components increases the risk of overfitting and eventually create poor predictive precision99–

101. However, the Q2 value ≥ 0.5 was widely considered as good and acceptable for a model 

derived from biological samples18,19,81. 
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Fig. 3-3. OPLS-DA score plots and S-plots based on (A,C) GC/FID  and (B, D) GC/MS 

chromatograms of 20 coffee bean extracts. The closed diamonds represent each variable 

(detected peak) used for model construction; identities of variables with high reliability to 

civet coffee are given in the inset figure. 

 

A B 

C D 

Civet coffee Civet coffee 

Regular 
Coffee Regular 

Coffee 

R2Y 0.996 

Q2 0.78 

R2Y 0.965 

Q2 0.892 
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Fig. 3-4. OPLS-DA score plot of validation test. Civet coffee samples (commercial) (orange 

filled-circle) and commercial regular coffee (tosca-filled circle) were projected into the same 

class with civet and regular coffee samples from experimental set, respectively.  

 

Permutation tests were performed in the PLS-DA model to confirm the quality of 

OPLS-DA model created from GC/FID. According to Setoyama et al, if the OPLS-DA model 

is overfitted, the R2Y and Q2 values would not virtually change after permutation49. Both 

parameters were in the range of the requirement for a reliable model; R2Y-intercepts 

fluctuated between 0.3−0.4 and Q2-intercept was below 0.05, respectively (Supplementary 

Fig. 3-1)82,102. These denoted that there was a change in the values of the two parameters.  

Furthermore, external validation was then performed to estimate the accuracy of the 

performance of the discrimination model in practice.  

 

I prepared and analyzed the GC/FID data of three commercial samples of civet and 

commercial regular coffee in separate days. The samples were then projected onto the 

constructed OPLS-DA model as external validation. Fig. 3-4 showed that commercial both fit 

into the discriminant model; if those samples were classified into the same class with prior 

data (R2 = 0.982 and Q2 = 0.741). Additionally, the six samples from each class were left 

randomly (test set) and the OPLS-DA was performed three times for the remaining samples 

only (training set). The R2Y and Q2 values after cross validation were simultaneously 
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calculated and the values obtained were in the range of 0.907–0.957 and 0.616–0.667, 

respectively. Although a drop in R2Y and Q2 values was seen, the quality of the model was 

still acceptable. To visualize how accurately external validation will perform to differentiate 

samples, I set the cut off of the prediction at 0.5. As a result, almost all test samples were 

correctly classified except for one civet coffee sample (sample ID 24_3) (Fig. 3-5). Taken 

together, the practicability of the GC/FID coupled to metabolite fingerprinting strategy for 

rapid discrimination and prediction of new samples with statistical significance, was 

confirmed. The results also suggested that the combined techniques could effectively 

minimize variability, i.e., error from day-to-day measurements. 

 

Statistically significant variables contributing to the differentiation of civet coffee and 

regular coffee were selected from the S-plot of the OPLS-DA. S-plot combines both 

covariance (contribution or magnitude) and correlation (reliability between the variables 

(metabolites) with the model class designation66. Consequently, on the basis of their 

contribution and reliability, the variables that changed significantly are plotted at the top and 

bottom of the S-plot, and those that do not significantly contribute are plotted in the middle. 

Three variables were highlighted in the S-plot of GC/FID, variable 5.02_, 9.11_, and 11.68_ 

(labeled after their retention time).  

 

To confirm the reproducibility of the metabolite fingerprinting strategy, selection of 

variables from GC/FID was done for those with identical retention time to that of the 

biomarker from the reported GC/MS analysis and later confirmed with co-injection of the 

chemical standard for giving a valid identification (Fig. 3-3C – 3-3D). In GC/FID, the S-plot 

shows that variable 11.68_ had the highest contribution p, which means a high correlation 

p(corr), for class separation, followed by variable 5.02_ (Fig. 3-3C). Variable 9.11_ was 

plotted in the middle region with ambiguous significance level.  The contribution of those 

variables in the model projection could also be explained using variable important in the 

projection (VIP). The average of 95% confidence interval VIP is equal to 1.091; therefore 

large VIP values (> 1) are often considered relevant for explaining the OPLS-DA model.  

 

Table 3-2 displays the comparison between the three variables extracted from the 

GC/FID data with corresponding biomarkers from GC/MS analysis. The VIP score of each 
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variable represents high contribution to the model. Lower VIP score for variable 9.11_ 

corroborated with the S-plot result. It is implied that passage through civet’s digestive tract 

may enhance the level of particular organic acids57. However, to understand the underlying 

biological meaning of these biomarkers as a result of animal digestion and its correlation to 

the sensory profile, further investigation is needed.  

 

Table 3-2. Comparison of significant variables extracted from GC/FID and GC/MS.  

 

 GC/MS GC/FID 

No. Variable IDa RT (min) VIPc Variable IDb RT (min) VIPc 

1 Glycolic acid 4.96 3.93 5.02_ 5.02 4.44 

2 Malic acid 9.05 5.53 9.11_ 9.11 1.48 

3 Citric acid 11.61 5.6 11.68_ 11.68 8.39 

 
aconfirmed with co-injection with chemical standard and comparison of mass fragment 

spectra with NIST database 
bselected on the basis of RT comparison with GC/MS data and co-injection of chemical 

standard 
cVariable Importance in the Projection, extracted from OPLS-DA 
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Fig. 3-5. Validation test of OPLS-DA model derived from GC/FID. The six samples from 

each class were left randomly (test set, grey filled-circle) and the OPLS-DA was performed 

three times for only remaining samples (training set, colored filled-circle) (A, B, C). The 

cutoff of the prediction (dashed line) was set at 0.5. 

 

 

 

 

 

 

 

 

 



56 

 

3.3.3. Validation of metabolite fingerprinting strategy to confirm authenticity of commercial 

coffee products 

 A set of commercial samples from the coffee market has been analyzed to provide 

scientific evidence of the GC/FID application in the coffee industry. Since processing 

commercial samples is based on the customers’ preference, the roasting temperature may vary 

from experimental coffee. Commercially available regular and civet coffee were selected 

from different production areas. To set the validation threshold, I acquired two authentic civet 

coffees from different production years as benchmark samples. Furthermore, a total of 9 

coffee blends were prepared from the combination of each commercial sample with mixing 

ratio of 50:50 (wt %). These four differentiation parameters, occurrence of perturbation, 

production area, roasting parameter and mixing ratio, would present comprehensive coverage 

for validation.  

 

 PCA modeling was applied to the validation coffee data set. As shown in Fig. 3-6, 

commercial coffee samples were distinguished from one another on account of perturbation 

and mixing ratio by 47.5% variance in PC1 (R2X = 0.838). Both civet coffees, commercial 

and authentic, were populated in a wide margin at the right region of the intercept (0,0). Four 

civet coffee samples (2 commercial and 2 authentic coffee) from neighboring production 

areas were clustered within close range in PC2. It is suggested that the production area may 

play a significant role for separation of civet coffee. One commercial civet coffee (No. 5) was 

located outside the 95% confidence interval of the Hotelling’s T2, thus marking the possibility 

of an outlier. Coffee blends were populated within the area around the intercept. This is 

probably linked to the equal mixing ratio between civet and regular coffee. Interestingly, 

regular coffee samples were populated in a close area, only partially separated owing to 

production area (foreign and local).  According to the loading scatter plot (Supplementary 

Fig. 3-2), some significant variables, including variables 11.68_, 9.11_ and 5.02_, were 

captured and highlighted as responsible for the differentiation of commercial samples in the 

PCA score plot.  
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Fig. 3-6. PCA score plot derived from GC/FID chromatograms of 17 coffee samples in 

validation set (n = 3). Arrow indicates a possibility of counterfeit. 

 

 Fig. 3-7 summarizes the box plot construction to visualize performance of significant 

variables captured by PCA and OPLS-DA for sample classification. Relative peak intensities 

of significant variables were used to create a whisker-box plot. Generally, the box plot was 

divided into three groups on the account of relative intensity level; civet coffee, coffee blends, 

regular coffee. An overlap box plot was spotted only between civet coffee and coffee blend 

clusters due to equal mixing ratio, but not for civet coffee and regular coffee. The box plot 

clustering was clearly observed for variables 9.11_ and 11.68_, corresponding to malic and 

citric acid, respectively, in GC/MS analysis. Although represented with high VIP and 

correlation, such result could not be reproduced for variable 5.02_ (Fig. 3-8). Variable 5.02_ 

corresponds to glycolic acid in GC/MS analysis, a biomarker candidate that has been shown 

to have poor predictive performance for authentication (described in Chapter 2). The box plot 

pattern of variable 5.02_ conflicted with the other two variables, indicating a dependency to 

regular coffee. As shown in Fig. 3-7A – 3-7B, the commercial civet coffee No. 5 gave very 

low relative intensities for variable 9.11_ and 11.68_, therefore suffered from overlap with the 
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other clusters. This outlier can also be found in PCA score plot in Fig. 3-6, suggesting a 

possible counterfeit or a difference in coffee species used for analysis, i.e., Robusta, since the 

rest of the civet coffee samples were Arabica coffee and display relevant margin in their 

relative intensities (regardless of roasting temperature and production area). If sample No. 5 is 

indeed civet coffee (Arabica), its relative intensity for those significant variables should be 

much higher. These results verified the feasibility of employing the significant variables 

obtained from GC/FID for practical use (for authentication). Collectively, the results 

demonstrate in principle that GC/FID coupled with metabolite fingerprinting is a good 

complementary and cost effective analysis platform for quality assessment of civet coffee.  
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Fig. 3-7. Box plot of significantly different variables between samples in validation set from 

result of OPLS-DA, (A) 11.68_ and (B) 9.11_.  

Both variables successfully differentiated group of commercial samples from one another, 

except one commercial civet coffee, sample No. 5 in Supplementary Table 3-1 (red arrow) 

that was spotted as potential outlier in Fig. 3-6. 

 

 

 

Fig. 3-8. Box plot of variable 5.02_. 
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3.4. Conclusions   

In previous chapter, a metabolite profiling strategy for civet coffee quality assessment 

through GC/MS was demonstrated. In this method, automated procedures for tentative 

identification of unknown peaks by matching the information derived from mass spectral 

fragmentation patterns with chemical databases are necessary. However, the unambiguous 

and exhaustive metabolite identification in a biological system has been well documented as 

challenging1,96–98. In contrast, an alternative strategy using GC/FID analysis paired with 

metabolite fingerprinting provided rapid classification of coffee samples without prior 

metabolite details. The significant compounds contributing to civet coffee quality assessment, 

such as malic and citric acid, showed better sensitivity in FID compared to an MS detector. 

By employing multivariate data analysis such as OPLS-DA, construction of a good prediction 

model to confirm authenticity of commercial samples was accomplished. This chapter 

presented that metabolite fingerprinting through GC/FID could effectively reproduce coffee 

quality prediction from the previous technique. With elimination of the tedious identification 

steps, the GC/FID system offered high-speed analysis for coffee quality assessment. This 

advantage can be beneficial to manufacturers for quality control, especially for authentication 

of commercial coffee and other agricultural products in industrial scale. 
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Chapter 4 

Quantification of Asian palm civet coffee fraction in a coffee blend 

via metabolomics: a proof of concept 

 

4.1. Introduction  

Considering that illegal mixture of cheap coffee into civet coffee is a growing concern 

among consumers and government, I emphasized a proof of concept of metabolomics 

application to develop prediction model for determination of degree of coffee adulteration by 

quantifying mixing ratio of coffee blend.   

 

Among many varieties of commercially marketed coffee, few are highly valued as 

“premium” or “gourmet” coffees due to their superior flavor or rarity. Of these premium 

coffees, Asian palm civet coffee has developed a reputation as one of the world’s priciest and 

rarest coffee due to its exotic production process. The transient fermentation inside the civet’s 

gut hypothetically adds a distinct flavor to the coffee beans. As a result, its rarity as well as 

the coffee’s exotic and unique production process ultimately accounts for its high selling price.  

 

An important concern related to the price gap between civet and regular coffees is the 

growing attempt of fraud involving mixture of cheaper coffee into premium civet coffee. 

Blending between two or more coffees is deliberated as illegal when manufacturer does not 

emphasize the action during product’s labeling. Mixing of expensive coffee due to its valued 

trait with cheap beans has been considered as one of the most common incidents regarding 

coffee adulteration.  It is therefore essential to develop robust methods to determine the ratio 

of civet coffee in blends. Particularly for agricultural products such as coffee and tea, quality 

evaluation has been conventionally assessed on the basis of human sensory perception103–105. 

However, this method tended to be highly subjective with only up to 20% precision46. 
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Moreover, hiring highly trained specialists to assess product quality is unavoidably expensive. 

Visual examination is only possible for green coffee beans, as civet coffee appears to be 

reddish and darker in color compared to non-animal treated coffee57. When coffee is roasted, 

a color-based discrimination might lead to false results. Therefore, an alternative, instrument- 

and non-human-based measurement method to estimate the quality of coffee similar to the 

previously developed protocols for various food and agricultural products should be 

established6,34,106,107. 

 

 

 

Fig. 4-1. The difference between PLS and OPLS, the model rotation allows (order) separation 

between different colored circles (between class) by the predictive component tp and same 

colored circles (within class) by the orthogonal component to. 

 

 An effective and reliable method to differentiate civet coffee from regular coffee has 

been described previously in Chapter 1 based on the identification and quantification of 

biochemical markers through metabolomics. Furthermore, metabolomics analysis to detect 

and quantify coffee adulteration, i.e., Arabica-Robusta fractions in coffee blends, have been 

stated employing a wide range of analytical instruments46,55,108,109. In this chapter, evaluation 

of the use of gas chromatography – mass spectrometry (GC/MS) combined with orthogonal 

projection to latent structures (OPLS) regression analysis as a reliable method to quantify the 

degree of civet coffee adulteration on the basis of the mixing ratio, as well as to characterize 

the major compounds responsible for samples distinction, was conducted. A set of coffee 

x1 

x2 

x3 

x1 

x2 
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blends of civet coffee and cheap coffee with known-ratio was used to construct a prediction 

model and subsequently evaluated to predict the knownunknown samples.  

 

 As described in Chapter 2, OPLS splits the variations in X into two directions, one that 

is linearly related and another that is orthogonal to Y 66,110. Moreover, the model is rotated so 

that variation that correlated with class separation is found in the predictive component, tp, 

and variation not related to class separation, or uncorrelated variation, is located in orthogonal 

components, to, providing maximal connection to Y and allows easier, straightforward model 

interpretation (Fig. 4-1). Additional information about steps to construct OPLS and OPLS-

DA can be found in Supplementary Principle 1. 

 

 

4.2. Experimental section 

4.2.1. Coffee bean materials  

 Two sets of coffee blends from certified (authentic) and commercial coffee were 

prepared to construct the prediction model. The certified samples of civet coffee, regular 

coffee and non-animal treated coffee were provided by the Indonesian Coffee and Cocoa 

Research Institute (ICCRI). Civet coffee and regular coffee from Sidikalang, Indonesia, which 

have been well known for its scarcity and unique aroma111, were acquired commercially. The 

samples were ground and mixed in different mixing proportions to obtain representative 

blends. Ultimately, samples with 1 g of pure civet coffee, pure regular coffee, and blends of 

10, 20, 30, 40, 50, 60, 70, 80, and 90% civet coffee were made. These groups of samples were 

referred to as training or experimental set. 

 

For validation, two sets of coffee blends were made from authentic and commercial 

civet coffees with unknown regular coffees (acquired commercially), with 25 and 75% 

mixing ratio. The validation set was analyzed in a separate week to investigate the influence 

of expected variance resulting from day-to-day measurements. This sample set was then 

projected to the model to verify its performance for prediction of mixing ratio of unknown 

samples. The list of samples is described in Supplementary Table 4-1. 
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4.2.2. Sample preparation, chromatographic and quantitative analyses with GC/MS 

 Coffee bean samples were subjected to metabolite extraction using mixture of polar 

and non-polar solvent and chemical derivatization utilizing same procedures in Chapter 2 

section 2.2.2. 

 

 Analysis of coffee bean extract was performed on a GCMS-QP 2010 Ultra (Shimadzu, 

Kyoto, Japan) fitted with a 30 m  0.25 mm i.d. fused silica capillary column coated with 0.25 

m low bleed, CP SIL 8 CB column (Varian Inc., Palo Alto, CA, USA). The instrument was 

installed with an AOC-20i/s autosampler (Shimadzu). The injection, transfer line and ion 

source temperature were 230, 250 and 200C, respectively. The helium gas flow rate through 

column was 1.12 mL/min with a linear velocity of 39 cm/s. The temperature programs of GC 

were as follows: held at 80C for 2 min isothermally and then increased at 15C/min to 330C 

and held for 6 min. Ions were generated by a 0.93 kV and were recorded over the mass range 

m/z 85 – 500. Prior to analysis, tuning and calibration of mass spectrometry were carried out 

to confirm its stability. One microliter of sample was injected in split mode (25:1, v/v). The 

coffee samples and blank (only extraction solvent) were analyzed in a randomized order. To 

calculate retention index for tentative identification, standard alkane mixtures were injected at 

the beginning and end of the analysis. Concentration of selected significant metabolites in 

coffee blends was calculated using the linear calibration curve between concentration of 

chemical standards and peak area. The concentration of chemical standards was adjusted to 1, 

10, 50, 100, 250, 500, 750 and 1000 M with the extraction solvent. Construction of 

calibration curve was performed with co-injection of respective chemical standards at various 

concentrations and comparing their retention time and mass fragment with databases. Details 

of quantitative analysis were explained in Chapter 2 section 2.2.3.  

 

4.2.3. Data handling and statistical analysis 

 To provide compatibility between mass spectral data over various data processing 

software packages, raw chromatographic data were converted into ANDI files (Analytical 

Data Interchange Protocol, *.cdf) using the GC-MS Solution software from Shimadzu. The 

converted total ion chromatograms were imported to freely available software package, 
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MetAlign70, for peak detection and multiple alignments of the retention times, using 

optimized parameters described in section 2.2.4. 

 

 Tentative identification by comparing the mass spectral fragmentation pattern and 

retention indices with in-house spectral database was carried out.  Retention indices were 

calculated based on retention times of standard alkane mixture. The identification was 

accelerated with the use of the annotation software, AIoutput272. This software package was 

merged with the in-house mass spectral database, which was developed from authentic 

chemical standards. For verification of tentatively identified compounds and unknown peaks, 

the database provided by NIST was also used.  

 

 The result outcome (a 2-D data matrix of comma-separated values (.csv) files in which 

each row and column denotes for sample identity and relative peak intensity at certain 

retention time, respectively) was normalized by manually adjusting the peak intensity to the 

ribitol internal standard. The RSD threshold (< 20%) was applied for peak intensity across 

four measurement replicates to filter out measurement-to-measurement variation. 

Subsequently, the data matrix was then subjected to SIMCA-P version 13 (Umetrics, Umea, 

Sweden) for multivariate analysis. Principal component analysis (PCA) was initially 

performed in a non-biased, unsupervised way, to visualize the differences in the metabolite 

profiles corresponding to each mixing ratio. Orthogonal projection to latent structures, OPLS, 

a modified PLS regression technique, was then chosen to create a prediction model between 

two sets of variables namely: 1) responses or prediction (X) corresponding to the metabolite 

profiles from GC/MS data and 2) observation (Y), corresponding to the mixing ratio of coffee 

blends. 
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4.3. Results and discussion 

4.3.1. Chromatographic profiles of coffee bean extract 

 Due to its remarkable sensitivity and resourcefulness to rapidly elucidate chemical 

structures, the technique using a combination of gas chromatography and mass spectrometry 

(GC/MS) remains to be one of the most widely used techniques for plant metabolomics 34,112–

114. Thus, this technique was used on the coffee bean extract samples to construct blend ratio-

prediction model for authentication. Fig. 4-2 illustrated the total ion chromatogram of the 

pure and blended samples of coffee bean extract. Both pure and blended extracts revealed 

similar chromatographic patterns over 24 minutes of analysis. However, substantial and 

characteristic differences in the relative intensity among three extracts can be observed 

visually. Relative intensity of peaks in the blended sample represented the mixing ratio of 

50:50 between two pure samples (Fig. 4-2B). Therefore, chromatographic profiles of coffee 

beans play an essential role for sample discrimination. 

 

 Mass spectrometry-based analysis produces enormous data, featuring essential 

information from large number of data points and experimental noise. A data processing 

software was utilized to extract information out of the complex matrix as well as to transform 

it into a more comparable form. The software package MetAlign, with an optimized 

parameter for coffee metabolomics, was chosen for processing of the GC chromatographic 

data since it provides options for baseline subtraction, peak distinction from noises and 

retention time alignment over multiple samples. To generate comparable analysis for both 

experimental and validation data sets, 72 unique coffee peaks were extracted out of a 

convoluted data corroborated with blank sample, with 24 peaks were tentatively identified 

from spectral similarity with at least two compound spectra databases and 11 peaks were 

identified after confirmed by comparison with corresponding chemical standards 

(Supplementary Table 2-2). 

 

Diverse chemical constituents, comprised of a large number of low molecular weight 

acids including quinic acid, chlorogenic acid (the major acid in coffee76), sugars, amino acids, 

health benefits or risks-related compounds such as trigonelline and caffeine115–118, were 

tentatively identified from the chromatogram of the coffee extract. Then, authentic chemical 

standards were co-injected to give a valid identification of important metabolites.  
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Fig. 4-2. Total ion chromatograms of the pure and coffee blend samples with 50:50 ratio (A). 

Inset (B) showed substantial differences in the peak intensity among pure and coffee blends. 

Representative peak annotations: (1) glycolic acid, (2) malic acid, (3) pyroglutamic acid, (4) 

citric acid, (5) quinic acid, (6) inositol, (7) caffeic acid, (8) sucrose, (9) chlorogenic acid. 
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4.3.1. Metabolite profiles of coffee bean extract 

4.3.1.1. Chromatographic profile of coffee blends 

Unsupervised PCA was employed to emphasize the overview of all data trends and 

their relationship with different mixing ratio. Total data set was preprocessed by autoscaling 

or unit variance (UV): 𝑥̃𝑖𝑗 = (𝑥𝑖𝑗 −  𝑥̅𝑖)/𝑠𝑖, where 𝑥̅𝑖𝑗 is the value of the variable i relative to 

the sample j, 𝑥̅𝑖  is the mean of variable i, and 𝑠𝑖  is the standard deviation of the variable 

I107,119. 

 

Fig. 4-3A – 4-3B depicted the PCA score plots of authentic and commercial coffee 

sets. A well-defined sample separation in conformity with low- and high-mixing percentage 

was achieved, explaining 65.5 and 53.2% variance of PC1, respectively. The blends 

containing more than 50% civet coffee contents occupied the left region of PC1, samples with 

50% ratio were grouped around the intercept (0,0) while the lower mixing percentage blends 

were clustered in the right region. The score plots of authentic and commercial coffee had R2X 

(goodness-of-fit) values of 0.769 and 0.753, respectively. For both data sets, almost all data 

were plotted inside 95% hotelling-T2 (except for one outlier) indicating the reliability of 

metabolite measurement among sample replicates. The results suggested that metabolite 

profiles play a significant role in sample differentiation through a variety of mixing ratio.  

 

Additionally, metabolites that contribute to the separation of low- and high-mixing 

ratio coffee blends were extracted from corresponding loading plots (Supplementary Fig. 4-

1). Several metabolites, such as chlorogenic acid, citric acid, sucrose, quinic acid, and caffeic 

acid showed strong significance on the clear separation of the two major groups of coffee 

blends along PC1. Particularly, the first three metabolites strongly contributed to the high-

mixing ratio coffee blends, whilst quinic acid and caffeic acid gave a low impact. 
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Fig. 4-3. PCA displayed well-defined samples separation according to low- and high-mixing ratio in (A) authentic and (B) commercial coffee 

sets. High-mixing ratio samples were clustered along the negative axis of PC1, while the lower mixing ratio blends were grouped at the 

positive axis. External validation sets (coffee with 25 and 75% of civet coffee content) were unevenly distributed due to day-to-day variation 

(C, D). 
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Next, incorporation of the external validation data into the experimental data set to 

obtain the total data set was conducted. Prior to multivariate analysis, the total data was 

normalized to the ribitol internal standard and scaled to unit variance. The PCA score 

plots are shown in Fig. 4-3C – 4-3D. It is obvious that in the external validation set, 

coffee blends with 25 and 75% civet coffee contents were segregated from experimental 

data along PC2; The PC1 axis represented blend percentage. This variation could arise 

from many causes such as signal-time drift due to instrumental fluctuation, uncontrollable 

variation in coffee processing and other factors. Ultimately, such unwanted variation can 

hinder the interpretation of biologically important phenomena from data set 95,120,121.  

 

4.3.1.2. Subset-wise scaling to minimize run-to-run variation 

In order to extract biological information, the unwanted variation mentioned 

above must be adequately dealt in an appropriate way. Many efforts have been made over 

the years for managing data preprocessing and normalization of multivariate data in 

metabolomics95,121,122. In addition to unit variance, data preprocessing with Pareto; 𝑥̃𝑖𝑗 = 

(𝑥𝑖𝑗 − 𝑥̅𝑖)/√𝑠𝑖, Centering; 𝑥̃𝑖𝑗 = 𝑥𝑖𝑗 − 𝑥̅𝑖, and combination with log transformation have 

been done, but none was effective in removing such variation.  

 

Thus, preprocessing of each matrix subset before data integration was performed 

using subset-wise scaling. The concept is adopted from blockwise scaling123, which 

allows each matrix subset to be thought as a unit and to be given the appropriate variance. 

Matrix subset from each data set, experimental and validation, were normalized to the 

internal standard and UV scaled separately before integration (Fig. 4-4). According to 

Eriksson et al, Pareto, UV and no scaling may be applied as the basis scaling method in 

this particular data pretreatment123.  

 

The method effectively removed biological and experimental variabilities (day-to-

day measurement, instrumental drift, etc.) in the experimental (0, 10, 20, 30, 40, 50, 60, 

70, 80, 90, 100% civet coffee) and validation data set (25 and 75% civet coffee) as shown 

in Fig. 4-5. The given variance was considered smaller than the value obtained if the total 

subset was scaled thoroughly. Validation subsets fitted onto the former data set; the 

separation can be seen along the PC1 axis in accordance to the percentage of coffee 
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blends. No significant changes were found in the data structure of important metabolites 

displayed in loading plot (Supplementary Fig. 4-2). A better data structure and good data 

fitness were constructed when using unit variance as the basis scaling method. Unit 

variance gives all metabolites an equal contribution of influencing the data analysis 

regardless of their discrepancies, i.e., two independent data sets, and therefore it has been 

proven to minimize between-batches variation122. 

 

 

Fig. 4-4. Scheme of subset-wise scaling 
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Fig. 4-5. PCA score plots of authentic (A) and commercial (B) coffee sets after pretreatment with subset-wise scaling. The data pretreatment 

technique effectively removed experimental variability among experimental and validation coffee sets. 
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4.3.2.  Mixing ratio-prediction model with OPLA 

4.3.2.1. Construction of OPLS model 

 In PCA results, it was obvious that coffee blends were clustered into two groups 

on the basis of low- and high-mixing ratio. Nonetheless, overlapping data points were 

also observed among samples in each group. Therefore, it is important to create a quality-

prediction model by means of OPLS regression to determine whether the ratio of each 

coffee blend can be associated with their metabolite profiles. In contrast to PCA, a priori 

information is a prerequisite in OPLS to redirect the analysis towards the proposed 

objectives66,67. In this study, priori information was the mixing ratio of coffee blends, 

represented as Y variable, whereas X was calculated from the relative peak intensity of 

each metabolite.  

 

 The entire dataset from each coffee blend was divided into two parts: eleven 

training set samples (coffee blends with the following civet coffee contents: 0, 10, 20, 30, 

40, 50, 60, 70, 80, 90 and 100%) and test set from validation set, coffee blends with 25% 

and 75% civet coffee contents. The test set was then excluded for model validation. The 

OPLS regression was built with the remaining data of training set and then validated with 

projection of the left out test set onto the constructed model. To compare the 

consequences of different scaling methods for minimizing data variability, both 

conventional and subset-wise scaling were applied.  

 

Initially, matrix subset of experimental and external validation coffees were 

integrated to obtain the total data set. The total data set was then scaled to unit variance. 

The model resulted in R2Y and Q2 values of 0.975 and 0.974 for authentic coffee and 

0.987 and 0.982 for commercial coffee set. The model predictability to estimate the 

mixing ratio of new coffee blend samples was tested by projecting the test set into 

prediction model (Fig. 4-6A – 4-6D). Both OPLS models showed overfitting and poor 

predictive ability, implied by the large validation error (RMSEP = 31.8 and 25.9 for 

authentic and commercial coffee, respectively) over the model estimations on the basis of 

training set (RMSEE = 5.1 and 3.77). The prediction model suffered from variation in the 

samples’ properties, processing and inter-day measurement.  
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In the past, uncorrelated metabolite data of X variables interfering in the prediction 

of mixing ratio (Y variables) often cause imprecise predictions. A spectral filtering 

technique, orthogonal signal correction (OSC) was used to enhance the quality of PLS 

prediction that is associated with this interference34,63,124. Nevertheless, OSC filter is 

prone to overfitting and may give results that are too optimistic67. Its application are then 

progressively replaced concomitantly with the development of a generic preprocessing 

technique, OPLS/O2PLS67 that is more robust to simplify the complexity of systematic 

variation from X. By employing the OPLS technique, the quality of prediction model was 

still poor. Therefore in this study, the interference of uncorrelated variables is not a 

relevant factor affecting the robustness of the prediction model. Other possible causes are 

experimental and biological variations. Subset-wise scaling was then applied to 

preprocess data subset for prediction of mixing ratio of authentic and commercial coffee 

sets. Data pretreatment methods can correct the aspects, i.e., samples’ variability, that 

distort the predictability of the model thus hampering the biological interpretation119. By 

using subset wise-scaling technique, the training set fit the OPLS model resulting in a 

linear regression model (Fig. 4-6E – 4-6F). Interestingly, whilst the RMSEP value 

significantly improved from 31.8 to 5.81 and 25.9 to 5.52 for former and latter data sets, 

the R2Y and Q2 values were unaffected. The unchanged R2Y, Q2 and the decrease in 

RMSEP value suggested that the scaling method improved the model estimation of 

training set by removing unwanted variations while maintaining the fitness and 

predictability power of the model. The details of OPLS features are described in Table 4-

1. I used this prediction model to estimate the composition of the external validation 

samples (%), and the values obtained were 27.43 and 72.68.1 for civet coffee content 

in authentic coffee set while that from commercial coffee were 26.57 and 73.55.2, 

respectively. Table 4-2 summarizes the observed and predicted value of the mixing ratio 

of all coffee samples. The prediction models presented rather high error particularly for 

lower-mixing ratio samples but the predicted values remained relevant considering the 

variability of samples’ properties. Generally, prediction model built from commercial 

coffee exhibited better precision than those from the authentic coffee set.  
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Fig. 4-6. Prediction models were built using 11 sets of experimental coffee blend as 

training set (A, B) and verified with projection of validation coffee set as testing set, 

coffee blend with 25 and 75% civet coffee (red) (C, D). OPLS models showed overfitting 

and poor predictive ability. By employing subset-wise scaling technique, the testing set fit 

the OPLS model (E, F) for both coffee sets. 
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Conventionally, variables that are highly relevant for explaining the mixing ratio 

of coffees can be extracted from VIP (variable importance in the projection) values. VIP 

values greater than 1 are considered to be the most relevant. However, due to pretreatment 

using unit variance, all metabolites become equally important as shown by comparable 

VIP values in Fig. 4-7. In addition to the VIP value, there are many ways to interpret 

relevance of OPLS model, such as PLS weights and regression coefficients. Here, I have 

focused on the regression coefficients to examine the model variables. Whereas VIP is a 

weighted sum of squares of the OPLS weights (strengths), regression coefficients 

represent the strength as well as direction of correlation between X and Y variables125. In 

this study, positive regression coefficients implied high correlation to civet coffee 

properties. Taken from VIP and regression coefficients values, organic acids and sugars 

showed high association with civet coffee. Malic acid and citric acid, the selected 

discriminant markers of civet coffee, were among the relevant metabolites in both 

authentic and commercial coffee sets.  
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Table 4-1. Features of OPLS prediction models 

Coffee set Scaling OPLS features 

R2Y Q2 RMSEE RMSEP 

Authentic Conventional 0.975 0.974 5.11 31.8 

Subset-wise 0.975 0.974 5.11 5.81 

Commercial Conventional 0.987 0.982 3.77 25.9 

Subset-wise 0.987 0.982 3.77 5.52 

 

Table 4-2. The observed and predicted mixing ratio from OPLS models 

Observed 

ratio (%) 

Predicted ratio (%)a 

Authentic coffee Commercial coffee 

0 -3.2±1.7 1.5±3 

10 11.4±7.4 8.7±2.9 

20 27.6±3.7 20.3±4.5 

25 27.4±3 26.5±7 

30 27.5±5.9 28.9±1.5 

40 43.7±7.8 37.9±2.4 

50 46.5±1.2 54.7±5.4 

60 61.4±2.6 61.9±4.5 

70 68.1±3.7 69.5±4.3 

75 72.6±8.1 73.5±5.2 

80 80±3.2 80.2±3.4 

90 89.1±1.6 89±2.3 

100 97.9±1.7 97.4±2.3 

amean±SD, n=4 
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4.3.3. Quantification of important metabolites 

To further confirm the OPLS prediction, quantification of important metabolites 

for prediction of coffee blends was carried out. The calibration curves for all authentic 

standards displayed remarkable linearity (0.99 or more) and repeatability for the applied 

concentration range (Supplementary Table 4-2). The concentrations of important 

metabolites were determined to be higher than the LOD (limit of detection) and LOQ 

(limit of quantitation), therefore demonstrating a valid quantification. The important 

metabolites exhibited concentrations that were proportionally elevated with the increase 

of civet coffee contents (Fig. 4-8). However, only citric acid showed a reasonable 

concentration level of external validation coffee set (Supplementary Fig. 4-3). It was 

revealed in Chapter 2 and 3 that citric acid showed the strongest correlation to civet 

coffee among other candidates. I have repeated the quantification using a new calibration 

set to explore the involvement of instrumental drift in which the result obtained was 

consistent with the above finding (Supplementary Fig. 4-4). Particularly for high-mixing 

ratio, the value of citric acid concentration reached a plateau. At certain concentration, the 

coffee signals may overreach the dynamic range of the instrument, become saturated and 

subsequently generate the plateau effect. The results suggested the necessity to perform 

validation, i.e., quantification, after multivariate analysis. Data pretreatment indisputably 

gives influence to each constituent in the matrix subset thus their signal intensities may 

not represent the actual values. Picking the best data pretreatment technique is an 

important ‘key’ step in metabolomics126. A particular data pretreatment technique is not 

always the most suitable for analysis and it may depend on the data structure. 
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Fig. 4-7. VIP (variable importance in the projection) and coeffiecient values extracted from 

the best OPLS prediction model. (A) authentic, (B) commercial coffee. 
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Fig. 4-8. Concentrations of citric acid and malic acid were evenly corresponded to the mixing 

ratio across various coffee blend samples. 
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4.4. Conclusions  

The work discussed in this chapter was conducted to develop a prediction method and 

evaluate its accuracy for civet coffee quality assessment. The OPLS model was built using a 

limited number and variety of coffee samples with known blend ratio and may not address the 

influence of variability of coffee species, origins, and processing. However, the prediction 

model constructed from metabolite profiles of different coffee blends combinations, authentic 

and commercial coffees, resulted in a linear regression, indicating a proof-of-concept of the 

reliability of the GC/MS-based metabolomics approach to feasibly quantify the degree of 

coffee adulteration. Additionally, the result demonstrated robust application of data 

pretreatment in multivariate prediction technique for accurate estimation of coffee fraction in 

blends and its relevance to counteract adulteration of specialty coffee. 
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Chapter 5 Conclusions and perspectives 

 The capacity of metabolomics approach to serve as descriptor of phenotype, that is 

sensitively affected by perturbations or stresses, favor its practicability for detection of 

changes in the food and crop components resulted from fraudulent adulteration. Screening of 

specific marker in association with fraud and comparative component analysis to classify 

authentic and fraud products are among the strategies for detection of adulteration assisted by 

metabolomics. In this thesis, the use of metabolomics technology was demonstrated to select 

discriminant markers and its applicability for rapid authentication screening of civet coffee. 

 

 Civet coffee is among human foods produced by its passage through the digestive tract 

of an animal. Despite of its natural perturbation, civet coffee is also subjected to various 

human perturbations. At first, screening and selection of discriminant marker that associated 

with digestion of civet were demonstrated through metabolite profiling employing common 

instrument, GC/MS. The increase of acidity principles and reduced level of bitterness- and 

astringent-related compounds, such as caffeine and quinic acid, were observed in the 

metabolite profile of civet coffee, consistently in agreement with previous report concerning 

chemical changes occurred to coffee beans after animal digestion. I then tested the 

applicability of the discriminant marker candidates to verify authenticity of commercial 

coffee products. Citric acid, malic acid and ratio of inositol/pyroglutamic acid exhibited 

potential application in the differentiation authentic, fake civet coffee, regular coffee and 

coffee blend samples with 5 wt % civet coffee content.  

 

 Further application studies were presented in the second part. Firstly, attempt to 

develop rapid and reliable protocol for authenticity screening in industry was carried out. To 

accomplish, I applied metabolite fingerprinting utilizing GC coupled with universal and cost-

effective detector, FID (flame ionization detector). In contrary to metabolite profiling, 

authenticity evaluation via metabolite fingerprinting can be done without metabolite details. 

GC/FID analysis provided higher sensitivity for almost all detected peaks and could 

successfully reproduce quality of prediction from GC/MS for discrimination of various 

commercial coffee products.  
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  In the second part of application study, I developed a proof-of-concept of 

metabolomics technology for determining degree of coffee adulteration on the basis of mixing 

ratio from 10 to 90%. Through OPLS regression analysis, I made prediction model to 

quantify mixing ratio of coffee blends of civet and regular coffee. The model presented 

accurate ratio estimation of known-unknown samples according to citric and malic acid. To 

the best of my knowledge, this is the first study to address the screening, identification and 

successful validation of discriminant markers for the authentication and differentiation of 

civet coffee, regular coffee, coffee blends and fake coffee, that uncovered by other previous 

techniques, and for routine application in industry. Identification of discriminant markers 

allows method standardization, i.e., determination of the threshold level of discriminant 

markers, for future practical purposes.  

 

 Presently, the quality of several valuable crop products such as coffee and tea have 

traditionally assessed on the basis of human sensory perception (sight, smell, taste and touch). 

However, this method tended to be highly subjective with only up to 20% precision. Due to 

the need of long-termed training, it is inevitably expensive to hire highly trained assessor. 

Moreover, trained specialist for civet coffee evaluation is still a few (personal communication 

with ICCRI). Because civet coffee is a crop product used for human consumption, option to 

do sensory evaluation cannot be fully omitted. Sensory evaluation is useful to broaden 

knowledge concerning discriminant markers and its relation with aroma and flavor.  Yet, the 

selected discriminant markers chosen from this study are expected to perform as sole markers 

or in combination with sensory test.  

 

 Practical application of this study in industry can be performed by combining 

knowledge of discriminant markers and sensory profile. At first, rapid test using GC/FID to 

measure level of the desired markers is expedient to significantly reduce effort and time of 

analysis for screening of large number of coffee samples. Subsequently, assessment of the 

short list coffee samples which shown characteristics of civet coffee, i.e., certain level of 

markers, by sensory specialists will improve the result’s confidence regarding authenticity of 

the samples. Since the taste of food is likely defined from complex interactions of many 

compounds20-21, the use of sensory evaluation is also beneficial to counteract illicit attempt of 
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putting chemical substances in order to enhance the level of discriminant markers in the 

coffee samples.  

 

 However, due to the skill specificity, coffee sensory specialist may not be available in 

each coffee factories or research institutes. In this instance, the selected discriminant markers 

can be used solely. To prevent unlawful mixing with chemical substances, analysis in this 

platform is highly recommended to include green beans as a control, in addition to roasted 

coffees that are being subject of evaluation. After roasting of green beans, both control and 

tested coffees are analyzed with rapid GC/FID test. Authentication is then confirmed by 

discriminant analysis employing statistical model or by merely quantifying the level of the 

markers among those samples. Furthermore, because the discriminant markers chosen in this 

study are mainly organic acids, the established authenticity evaluation is projected to be 

widely applicable for other conventional analytical techniques to measure organic acids, i.e., 

HPLC.  
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Appendices 

 

Supplementary Table 2-1. List of coffee samples (Validation coffee set) (Chapter 2) 

aProvider 

 

       

 

 

 

 

For Box-plot 

Set A: Wahana (civet coffee), Coffee blend A, Wahana (regular coffee), and fake coffee 

Set B: Golden, Coffee blend B, Wahana (regular coffee), and fake coffee

No. Branda Origin Species Type Production 

year 

Samples extraction 

period 

1 Andungsari East Java, Indonesia Arabica (Authentic) Civet coffee 2012 Feb 2013 

2 Golden West Java, Indonesia Arabica (Commercial) Civet coffee 2012 Feb 2013 

3 Wahana Sumatra, Indonesia Arabica (Commercial) Civet coffee 2012 Feb 2013 

4 Bali Bali, Indonesia Unknown (Commercial) Civet coffee 2011 Feb 2013 

5 Wahana  Sumatra, Indonesia Arabica (Commercial) regular coffee 2012 Feb 2013 

6 Kona coffee Hawaii, USA Arabica (Commercial) regular coffee 2012 Feb 2013 

7 Cerrado Chapado coffee Brazil Arabica (Commercial) regular coffee 2012 Feb 2013 

8 Aceh Special coffee Sumatra, Indonesia Arabica (Commercial) regular coffee 2012 Feb 2013 

9 Confidential brand Java, Indonesia Arabica Fake coffee 2012 Feb 2013 

10 Coffee blend A Blend between “Wahana (civet coffee)” and “Wahana (regular coffee)” with ratio of 50:50 (wt %) 

11 Coffee blend B Blend between “Golden” and “Wahana (regular coffee)” with ratio of 50:50 (wt %) 

(1) ICCRI, Indonesia (6) Hiro coffee, Japan 

(2) CV. Kopi Luwak, Indonesia (7) Hiro coffee, Japan 

(3) Wahana-Mandheling Kopi, Indonesia (8) Hiro coffee, Japan 

(4) Hema-Wiwi Bali, Indonesia (9) PT. Java Prima Abadi, Indonesia 

(5) Wahana-Mandheling Kopi, Indonesia 
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Supplementary Table 2-2. Tentative and confident metabolite identification 

Chapter 2 Chapter 4 

Metabolite RT 

(min) 

RI Nominal 

mass 

Identification  

methoda 

Metabolite RT 

(min) 

RI Nominal 

mass 

Identification  

methoda 

Hydroxypyridine 4.61 1036.86 152 A, B 2-Hydroxypyridine 4.35 1032.86 152 A, B 

Pyruvate 4.69 1044.72 174 A Pyruvate  4.45 1040.95 174 A 

Lactic acid 4.79 1053.43 117 A, B Lactic acid 4.55 1049.79 147 A, B 

Glycolic acid 4.99 1070.33 147 A, B, C Glycolic acid 4.75 1067.31 147 A, B, C 

n-Butylamine 5.38 1101.33 174 A ND 

Hydroxybutyric acid 5.56 1118.95 131 A, B Hydroxybutyric acid 5.31 1117.71 131 A, B 

Oxalate 5.63 1125.33 147 A ND 

Glycerol 7.093 1262.68 147 A Glycerol 6.83 1262.32 147 A, B 

Pyrophosphate 7.095 1262.52 299 A, B Pyrophosphate 6.87 1266.11 299 A, B 

Nicotinic acid 7.45 1295.98 180 A, B Nicotinic acid 7.18 1295.88 180 A, B 

Succinic acid 7.55 1306.23 147 A Succinic acid 7.28 1306.92 147 A 

Catechol  7.62 1313.76 254 A, B Catechol 7.34 1313.65 254 A, B 

Glyceric acid 7.65 1317.77 147 A, B Glyceric acid 7.39 1318.44 147 A, B 

Fumaric acid 7.89 1343.41 245 A, B Fumaric acid 7.63 1343.44 245 A, B 

ND Methylmaleic acid 8.08 1392.19 147 A. B 

Glutaric acid 8.32 1387.93 147 A Glutaric acid  8.14 1398.05 147 A, B 

Malic acid 9.09 1473.82 147 A, B, C Malic acid 8.83 1476.1 147 A, B, C 

Trigonelline 9.12 1477.46 210 B Trigonelline 9.14 1512.65 210 B 

Aspartic acid 9.38 1505.19 232 A, B ND 

Pyroglutamic acid 9.47 1517.45 156 A, B, C  Pyroglutamic acid 9.19 1519.75 156 A, B, C 

Pyrogallol 9.6 1532.66 239 A Pyrogallol 9.32 1534.75 239 A 

ND Benzoic acid 9.55 1562.73 267 A 

Arabinose 10.47 1640.22 103 A, B Arabinose 10.19 1643.91 103 A, B 

Xylulose 10.56 1653.98 205 A, B Xylulose 10.3 1657.46 205 A, B 

Ribose  10.57 1654.84 103 A, B Ribose 10.31 1658.32 103 A, B 

ND 1,6-Anhydroglucose 10.59 1694.88 204 A, B 
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Supplementary Table 2-2 (Continued) 

 

a(a = in-house mass spectral library, b = NIST library, c = authentic standard). Comparison with only mass spectral libraries termed as tentative 

identification (A or B or A, B). Confident identification was done by comparison with libraries and authentic standard (A, B, C) 

ND = not detected or not matched with any libraries. 

Chapter 2 Chapter 4 

Metabolite RT 

(min) 

RI Nominal 

mass 

Identification  

methoda 

Metabolite RT 

(min) 

RI Nominal 

mass 

Identification  

methoda 

Arabitol 10.94 1700.51 217 A, B Arabitol 10.63 1688.61 217 A, B 

Ribitol 10.95 1700. 75 217 A, B, C Ribitol 10.67 1705.05 217 A, B, C 

Shikimic acid 11.57 1785.81 204 A Shikimic acid 11.29 1788.72 147 A 

Citric acid  11.67 1798.12 147 A, B, C Citric acid 11.38 1802.25 147 A, B, C 

Quinic acid 11.93 1836.38 345 A, B, C Quinic acid 11.65 1840.33 345 A, B, C 

Fructose 11.97 1843.07 103 A, B Fructose 11.71 1849.9 103 A, B 

Sorbose 12.07 1855.89 217 A, B Sorbose 11.78 1859.72 217 A, B 

Glucose 12.15 1867.45 147 A, B Glucose  11.86 1870.97 147 A, B 

Caffeine 12.19 1873.08 194 A, B, C  Caffeine 11.89 1875.53 194 A, B, C 

Sorbitol 12.45 1911.54 147 A, B Sorbitol 12.17 1915.74 147 A, B 

Inositol 13.51 2071.76 217 A, B, C Inositol 13.21 2075.39 217 A, B, C 

Caffeic acid 13.85 2127.54 219 A, B, C Caffeic acid 13.55 2131.29 219 A, B, C 

Tryptophan 14.36 2211.41 202 A, B ND 

Octadecanoate 14.49 2234.82 117 A, B Octadecanoic acid 14.19 2237.86 117 A, B 

Uridine  15.79 2466.49 217 A, B Uridine 15.45 2465.55 217 A, B 

Sucrose 16.49 2598.29 217 A, B Sucrose 16.17 2603.78 217 A, B, C 

Melibiose 17.33 2770.21 204 A, B Melibiose 17.01 2775.94 204 A, B 

Chlorogenic acid 18.76 3083.23 345 A, B Chlorogenic acid 18.42 3089.79 345 A, B, C 
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Supplementary Table 3-1. List of coffee samples (Validation coffee set) (Chapter 3) 

 
 

        aProvider 

 

 

 

 

 
 

bFor multivariate analysis 

 

No. Branda Production area Classification  Production year Samples IDb 

1 Andungsari Java, Indonesia Civet coffee (authentic) 2012 Au_1 

2 Andungsari Java, Indonesia Civet coffee (authentic) 2013 Au_2 

3 Golden Java, Indonesia Civet coffee (commercial) 2012 GO 

4 Wahana Sumatra, Indonesia Civet coffee (commercial) 2012 WL 

5 Bali Bali, Indonesia Civet coffee (commercial) 2011 BA 

6 Wahana  Sumatra, Indonesia Regular coffee (commercial) 2012 WR 

7 Kona Hawaii, USA Regular coffee (commercial) 2012 KO 

8 Cerrado Chapado  Brazil, Brazil Regular coffee (commercial) 2012 CE 

9 Coffee blends (9 samples) Combination of 3 civet coffee (commercial) & 3 regular coffee (commercial) 

1, 2 ICCRI, Indonesia 

3 CV. Kopi Luwak, Indonesia 

4, 5 Wahana-Mandheling, Indonesia 

6 Hema-Wiwi Bali, Indonesia 

7, 8 Hiro coffee, Japan 
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Supplementary Table 4-1. List of coffee samples for construction and verification of OPLS prediction model (Chapter 4). 

 

aCoffee samples were roasted in Probat-Werke von Gimborn Maschinenfabrik GmbH model BRZ 2 (Probat, Rhein, Germany) at 205C for 10 

min and followed by immediate air-cooling for 5 min. Roasted coffee beans were kept in sealed Falcon tubes at -30C until they were used 

(experiment was done in early to mid 2013) 
bWith mixing percentage, 25 and 75% of civet cofee contents. Regular coffee A and B were acquired commercially from local market. 

 

 

Coffee sets No. Brand Production area Classification Production year 

Authentic coffee seta 1 Andungsari Java, Indonesia Civet coffee  2012 

2 Andungsari Java, Indonesia Regular coffee 2013 

Commercial coffee set 3 Kopi Luwak Sidikalang Sumatra, Indonesia Civet coffee  2012 

4 Wahana Sidikalang Sumatra, Indonesia Regular coffee  2012 

External validation set I  

(For authentic coffee set) 

Mixing between civet coffee No. 1 and unknown commercial regular coffee Ab 

 

External validation II 

(For commercial coffee set) 

Mixing between civet coffee No. 3 and unknown commercial regular coffee Bb 
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Supplementary Table 4-2. Analytical parameters for quantification 

Significant 

metabolites 

RT 

(min) 

RSD [%] (n = 4) Linearity LOD 

(M) 

LOQ 

(M) RT Areaa R2 Range (M) 

Malic acid 8.82 0.06 7.74 0.998 1  1000 0.737 2.234 

Citric acid 11.38 0.04 4.35 0.994 1  1000 1.087 3.295 

Chlorogenic acid 18.42 0.03 9.9 0.998 1  1000 0.429 1.299 

aAt concentration 100M
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Supplementary Fig. 2-1. PCA score and loading of civet  and regular coffee from same cultivation area, Arabica (A, B) and Robusta (C, D). 

 

Civet coffee (Arabica) 

Regular coffee 

Civet coffee (Robusta) 

Regular coffee 

A B 

C D 
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Supplementary Fig. 2-2. Concentrations levels of six marker candidates from controlled 

processing (samples no.5 and 11 experimental set). *, p < 0.001; **, p < 0.05. 

 

 

 

Supplementary Fig. 2-3. PCA score plot of validation coffee set using all detected 

compounds.  

 

 

 

Civet coffee (Authentic & commercial ) 

Coffee blend Regular coffee (commercial) 

Fake coffee 
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Supplementary Fig. 2-4. Loading plot of PCA derived from validation coffee set in Fig. 

2-3. 

 

 

 

Supplementary Fig. 2-5. Box plot of peak intensity and concentrations of selected 

discriminant markers from set B. Sample description of set B is displayed in 

Supplementary Table 2-1. (A) citric acid, (B) malic acid, and (C) inositol/pyroglutamic 

acid, of four coffee samples, (1) civet coffee “Golden”, (2) coffee blend set B, (3) regular 

coffee “Wahana”, and (4) fake coffee. 

 



109 

 

Supplementary Fig. 3-1. Permutation test of OPLS-DA models with 200 random 

permutation variables. 

 

 

 

 

Supplementary Fig. 3-2. PCA loading plot of validation coffee set shown in Fig. 3-6. 

Red letters indicate variables important for constructing OPLS-DA model. 
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Supplementary Fig. 4-1. PCA loading plot derived from coffee samples with high- and 

low-mixing ratio, (A) authentic and (B) commercial coffee. 
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Supplementary Fig. 4-2. PCA loading plot derived from coffee samples with high- and 

low-mixing ratio after block-wise scaling, (A) authentic and (B) commercial coffee. 
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Supplementary Fig. 4-3. Concentration of citric acid (A) elevated proportionally with 

the increase of coffee mixing ratio; the level of the external validation samples fit the 

experimental coffee in both data sets. Each sample was measured in four replicates (n=4). 

In contrary, malic acid is only feasible for quantification of coffee blends with ratio less 

than 25%. 
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Supplementary Fig. 4-4. Reproducibility test of citric acid concentration in authentic 

civet coffee utilizing new calibration curve from intra-day experiment.  
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Supplementary Principle 1. Orthogonal partial to latent structures (OPLS) and 

orthogonal partial to latent structures-discriminant analysis (OPLS-DA) 

 
 

(1) Constructing X (descriptors or observations) matrix with N quantities (i.e., samples) 

and K variables (i.e., mass-to-charge ratio) and Y (responses) matrix (i.e., coffee 

mixing ratio). Each variable in descriptors corresponds to 2 data point, X and Y.  

 

 

(2) The first component is computed. The first component of the model will orient itself 

so that it can describe the point in X-space while at the same time giving a maximal 

correlation with Y. The projections of the descriptors onto the line in the X-space give 

the score for each descriptor and summarize into score vector t1. P is the relationship 
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between X and t. When t is used to predict Y, regression equation is formed as ŷ = 

C1t1 with C represents the weight of the Y-vector.  

 

 

3) The second component is then computed. Two components Y modeling is 

preferable than by one because the conformity between descriptors and estimated 

responses data is better with two components.  

 

OPLS-DA is modification of OPLS modeling specifically in its Y variable. In OPLS-

DA, Y  is a binary vector with the value of 0 for civet coffee class and 1 for the 

regular coffee. 

 

 

Geometrically, OPLS-DA separates or somehow rotates variations in X into two parts, 

one that is linearly correlated with Y (to) and one that is uncorrelated or orthogonal to 

Y (tp). OPLS-DA will then finds variations or new axis in X dimension that is 

maximally correlated with Y.  
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