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Chapter I   Introduction 

Weedy parasitic plants cause problems to agriculture and horticulture worldwide. 

“Parasitic plant” is a generic term for plants that parasitize other plants (host plants) 

and grow by absorbing nutrients from those. The total number of parasitic plant 

species is close to 4,500 in 270–275 genera, which accounts for about 1 % of all 

known seed plants (Govaerts, 2001; Heide-Jørgensen, 2013). The parasitic plants are 

classified according to capability of photosynthesis into hemiparasites and 

holoparasites. The hemiparasites have the ability to photosynthesize, by contrast, the 

holoparasites have lost this ability. Besides, a criterion for defining whether a 

parasitic plant is weedy or non-weedy is the importance of a host plant as a crop. If 

the host is an economically important crop species and affected by the infection of a 

parasitic plant species, this parasitic species is certainly regarded as a weed (Parker, 

2013). Particularly, obligate root parasitic weeds, which parasitize roots of hosts and 

do not survive without hosts, in the Orobanchaceae are among the most destructive 

agricultural weeds. Within this family, the holoparasitic weedy broomrapes, 

Orobanche spp., Phelipanche spp., and the hemiparasitic weedy witchweeds, Striga 

spp., cause particularly devastating damage to agricultural crops worldwide. Food 

and Agricultural Organization of the United Nations (FAO) reported serious 

problems caused by these species (Elzein and Kroschel, 2003). Orobanche spp. and 

Phelipanche spp., are mainly distributed in the Mediterranean region, Southern and 

Eastern Europe, and West Asia, and cause damage to a wide range of vegetables, 

beans, and other agricultural crops. Striga spp., which are mainly distributed in 

Africa, are thought to be the largest biological cause of serious crop losses on the 
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continent. (Elzein and Kroschel, 2003; Aly, 2007; Heide-Jørgense, 2008; Parker, 

2009). International Institute of Tropical Agriculture (IITA) researchers estimated 

that Striga spp. cause damage up to US$1.2 billion in every year to maize and 

cowpea in sub-Saharan Africa, and the Bill & Melinda Gates Foundation sponsored 

the project to help maize and cowpea farmers working in this region (International 

Institute of Tropical Agriculture, 2011). FAO estimated that Striga spp. cause 

financial losses of at least US$7 billion per year in African agriculture (Robson and 

Broad, 1989). There has been no case that these root parasitic weeds affect on food 

production in Japan. However, an alien species clover broomrape (Orobanche 

minor) (Fig. 1A) is spreading around Kanto area in Japan. Fortunately, harmful 

impact of O. minor on agricultural crops is still marginal even in the world, but there 

is no effective method to control its diffusion. 

 

 

Figure 1. Parasitism of a root parasitic weed, clover broomrape (Orobanche minor). 

(A) O. minor infecting clovers (Trifolium spp.) at Chiba in Japan. (B) A life cycle of 

O. minor. 
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Figure 1. (continued) Tiny and numerous seeds germinate by perception of 

germination stimulants from host plants following a conditioning process at a 

suitable temperature (i). Attachment to hosts is established through a terminal 

haustorium (ii), and then, tubercle (iii) and adventitious roots (iv) are formed. 

Development of shoot occurs in the soil (v). HR, host root. 

 

These obligate root parasitic weeds have evolved many parasitic adaptations 

and have unique life cycles that are tightly coupled with the ecological behavior of 

the host plants (Fig. 1B). For example, the seeds of root parasitic weeds in the 

Orobanchaceae require host-derived germination stimulants such as strigolactones to 

germinate (López-Ráez et al., 2009; Yoneyama et al., 2009). Recently, 

strigolactones have been shown to induce hyphal branching in arbuscular 

mycorrhizal fungi (Akiyama et al., 2005), and to function as a hormone to inhibit 

the branching of plant shoots (Gomez-Roldan et al., 2008; Umehara et al., 2008). 

Further studies have revealed that strigolactones might play a role in optimizing 

plant growth and development to cope with limiting resources (Brewer et al., 2013). 

Seeds of root parasitic weeds usually require a period of imbibition for several days 

at suitable temperatures (a preparatory step known as “conditioning”) before they 

can respond to germination stimulants (Logan and Stewart, 1992). After germination, 

the radicles of root parasitic weeds attach to the host roots via specialized parasitic 

organs known as haustoria, and draw away water and nutrients from the hosts, 

causing serious reductions in crop growth and yields. The mature flowers of root 

parasitic weeds produce numerous (10,000–50,000 seeds per plant annualy) (Joel et 

al., 1995, 2007), tiny (around 0.2 mm), and long-lived (several decades) (Bekker 

and Kwak, 2005) seeds. 
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This complex life cycle of root parasitic weeds and their close association with 

the host plants make conventional weed control strategies virtually ineffective (Joel 

et al., 1995, 2007). In addition, root parasitic weeds have often caused irreversible 

damage by the time the infestation is detected from the aboveground emergence of 

their shoots. To date several potential methods for controlling root parasitic weeds 

have been developed (Hearne, 20009). As a non-chemical method for control, 

breeding of crop varieties resistant to root parasitic weeds should be an effective 

strategy and some resistant varieties have been identified (Rubiales et al., 2009; 

Yoder and Scholes, 2010). Application of strigolactone deficient mutants of host 

plants is also an effective strategy and low level of infection of root parasitic weeds 

was seen in the mutants (Koltai et al., 2010; Jamil et al., 2011). However, use of 

resistant varieties is limited to some crops (Rubiales, 2003). A chemical control 

method is one of the practical strategies (Hearne, 2009). Herbicides can control root 

parasitic weeds to some extent (Aly, 2007; Rubiales and Fernández-Aparicio, 2012). 

For example, glyphosate, an inhibitor of 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSPS), and imidazolinones and sulfonylureas, inhibitors of acetolactate 

synthase (ALS), are used to control root parasitic weeds. However, these herbicides 

are not fully selective for root parasitic weeds and may damage host plants. 

To avoid damaging the host, the most effective strategy is to reduce the soil 

seed bank and/or inhibit the parasite at an early growth stage (e.g., germination and 

radicle elongation). In that sense, “suicidal germination” is one of the most attractive 

strategies to reduce the soil seed bank (Zwanenburg et al., 2009). In this approach, 

the seeds of the parasite are forced to germinate by applying a natural or synthesized 
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germination stimulant, generally a strigolactone, to fields without a host crop, 

resulting in the death of the root parasitic weeds. While this is a promising approach, 

it is expensive because it requires large-scale synthesis of structurally complex 

germination stimulants. Also, application of strigolactones could have adverse 

environmental effects, because they function as hormones and signaling molecules 

in plants and soil fungi. Recently new control approach combining strigolactone 

deficient mutants and a strigolactone mimic 4-Br debranone (4BD), which shows 

inhibitory activity against tiller bud outgrowth but less stimulating activity for seed 

germination of root parasitic weeds, is proposed (Fukui et al., 2011, 2013). In this 

approach, strigolactone deficient mutants grows normally by applying 4BD, but 

germination of root parasitic weeds is not induced because of the low amounts of 

natural strigolactones from mutant plants and the less activity of 4BD as the 

germination stimulant. Although there are challenges of the cost and the broad 

environmental effects as described above when considering the practical use of 

strigolactones, this finding represents a major breakthrough in the production of 

target-selective strigolactone mimics and the application of them as agricultural 

chemicals. 

Alternatively, inhibitors targeting the early growth stages of root parasitic 

weeds have been screened, and many natural compounds from fungi have been 

found (Vurro et al., 2009). Some compounds have been shown to strongly inhibit 

seed germination and radicle elongation; for example, some macrocyclic 

trichothecenes inhibited seed germination of Orobanche (Phelipanche) ramosa at 

0.1 µM. However, their mode(s) of action (MOA) is unknown, and their negative 
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effects on the growth of other organisms (e.g., host plants or environmental 

microorganisms) have not been fully evaluated. These situations call for new control 

strategies to reduce the soil seed bank and inhibit the early developmental stages. 

In order to establish a new control strategy, we have focused on the unique 

germination process of root parasitic weeds in the Orobanchaceae to identify 

potential targets, which could be used to develop a selective control method. For 

example, if these seeds have a specific metabolic process that is essential for 

germination, then inhibitors of that process could specifically inhibit germination 

without affecting the hosts or other organisms. Previously, it was shown that an 

unknown trisaccharide decreased in response to germination stimulant in O. minor 

seeds by metabolomics approach (Figs. 2A–C) (Joseph, 2009). Furthermore, 

nojirimycin bisulfite (NJ) (Fig. 2D), a glycosidase inhibitor, inhibited germination of 

O. minor but had no effect on seed germination of Arabidopsis and red clover 

(Trifolium pratense), a host of O. minor (Fig. 2E) (Joseph et al., unpublished). It was 

also revealed that germination of Striga hermonthica seeds was not affected (Fig. 

2E), but the radicle elongation was inhibited by NJ treatment (Joseph et al., 

unpublished). These pervious results suggested that sugar metabolism including the 

unknown trisaccharide is important for germination of O. minor, and NJ affects its 

metabolism resulting in inhibition of the germination. Therefore, the objective of 

this thesis is to elucidate the role of the unknown trisaccharide in an early stage of 

seed germination process of O. minor and other root parasitic weeds in the 

Orobanchaceae, and to evaluate the relationship between the inhibitory effect of NJ 

on the germination and the metabolism of unknown trisaccharide. Furthermore, 
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investigation of molecular mechanism of the inhibitory effect of NJ and discovery of 

other targets regulating the germination process using NJ as a germination inhibitor 

via transcriptome analysis of O. minor seeds were attempted. In Chapter 2, I 

identified the unknown trisaccharide as planteose by nuclear magnetic resonance 

(NMR) analysis, and surveyed its metabolism by gas chromatography-mass 

spectrometry (GC-MS) analysis. Subsequently, in Chapter 3, the effects of NJ on the 

germination and planteose metabolism were evaluated by comparing the sugar 

contents in the germinating seeds and the NJ-treated seeds. Finally, transcriptome 

analysis of O. minor seeds using de novo assembly of reads obtained by 

next-generation sequencing of expressed mRNAs (RNA-Seq) was conducted in 

Chapter 4, in order to identify genes associated with the inhibition of germination by 

NJ and further explore potential targets other than the planteose metabolism by 

understanding gene expression changes in the early stage of germination. 
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Figure 2. Metabolic profiling of germinating seeds of O. minor (Joseph, 2009) and 

inhibition of the germination by nojirimycin bisulfite (NJ) (Joseph et al., 

unpublished). (A) Squares (with GR24 treatment) or circles (without GR24 

treatment) show time points of sample collection. GR24 was applied on day 8 

(arrow). (B) Principal component analysis of metabolite profiles of seeds at different 

stages during conditioning and germination, shown as the combination of the first 

two principal components (representing 85% of metabolite variance). 
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Figure 2. (continued) Each data point is an independent sample. (C) Loading plot 

showing weight for each data point of the total ion current chromatogram in 

calculating principal component 1. (D) Structure of NJ. (E) Effect of NJ on seed 

germination rates in parasitic and non-parasitic plant species (mean ± SD, n = 3).  
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Chapter 2   Identification of planteose as a storage carbohydrate required for 

early stage of germination of Orobanche minor  

 

2-1. Introduction 

Root parasitic weed species in the Orobanchaceae have the unique germination 

process as described in Chapter 1. The control strategy based on the root parasitic 

weed-specific germination can be a promising approach, and an understanding of 

this specific biological event is important for developing selective control strategies. 

Metabolomics has proved to be a powerful technology in identifying the MOA of 

bioactive compounds (Aliferis and Chrysayi-Tokousbalides, 2011; Aliferis and 

Jabaji, 2011), in identifying novel metabolic pathways, and in evaluating the cellular 

responses of plants in detail (Weckwerth and Fiehn, 2002). Metabolomics using gas 

chromatography-time-of-flight mass spectrometry (GC-TOF-MS) in the early stage 

of germination process of O. minor found out previously a specific metabolism in 

this process (Joseph, 2009). The experiment was conducted as follows. The seeds 

were collected at various times during conditioning and germination that was 

induced by the synthetic strigolactone, GR24 (Thuring et al., 1997), after 8 days of 

conditioning (Fig. 2A). Subsequently, derivatized hydrophilic metabolites and fatty 

acids were analyzed according to previous reports (Jumtee et al., 2008, 2009). 

Principal component analysis (PCA) of the GC-TOF-MS total ion current 

chromatograms provided a detailed view of the characteristic metabolic changes 

associated with the gradual transition of dormant seeds to germinating seeds via 

conditioning (Fig. 2B) (Joseph, 2009). In the PCA, principal component (PC) 1 
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accounted for 73% of the variation in metabolite contents among samples during 

conditioning and germination. The loading of PC 1 indicated that the levels of amino 

acids, organic acids, and some sugars (glucose, fructose, and trehalose) increased 

during germination, while the levels of sucrose and an unknown compound 

decreased (Fig. 2C) (Joseph, 2009). This unknown compound was predicted to be a 

trisaccharide, based on its retention time and mass spectrum. However, there was no 

corresponding spectrum in our in-house mass spectral library nor in the NIST MS 

database. The decreases in sucrose and the unknown trisaccharide implied that they 

play roles in the germination of O. minor seeds. 

Therefore, I made an attempt to purify the unknown trisaccharide from the 

extract of O. minor dry seeds by isocratic high-performance liquid chromatography 

(HPLC), and then identify its structure by GC-MS and NMR analyses. After the 

structural determination of the compound, its metabolism during the germination 

was evaluated. 

 

2-2. Materials and methods 

2-2-1. Germination test 

The seed germination assay for parasitic weeds was conducted as described 

previously (Chae et al., 2004), with some modifications. Seeds of root parasitic 

weeds were surface-sterilized with a solution containing 1% (v/v) sodium 

hypochlorite and 0.1% (v/v) Tween 20 for 2 min, rinsed with distilled water, and 

dried under vacuum. Approximately 50 surface-sterilized seeds were conditioned on 

a filter disk (10 mm, Whatman GF/D; GE Healthcare Bio-Sciences AB, Uppsala, 
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Sweden) placed on another filter paper (47 mm, Whatman GF/D) in a Petri dish (50 

mm) with 1.5 ml distilled water in the dark at 23°C for 1 week for O. minor, 

Orobanche crenata, and Phelipanche aegyptiaca, or 2 weeks for S. hermonthica. 

Four filter disks with seeds were placed in each Petri dish. After conditioning, the 

GF/D disks with the seeds were transferred to a new Petri dish containing fresh filter 

paper (47 mm, Whatman GF/D) to remove surplus water. Germination was induced 

by adding 1.5 ml GR24 solution [0.1–1.0 mg·l-1 (w/v)]. GR24 was kindly supplied 

by Dr. Yukihiro Sugimoto from Kobe University, Japan. After the germination 

stimulation treatment, seeds were observed under a microscope to count germinated 

seeds. The germinating seeds were stained with crystal violet to facilitate detection 

of radicles if necessary. 

 

2-2-2. Sample preparation for sugar analysis 

For sugar analysis, around 50 mg of seeds of root parasitic weeds were conditioned 

and germination was induced as described above. Samples were collected at various 

times during conditioning and after the GR24 treatment, and were stored at –80°C 

until use. 

Seeds of O. crenata, P. aegyptiaca, and S. hermonthica were collected at 

different days in each because their germination rates were different. It is known that 

seeds of Striga spp. can germinate faster than those of Orobanche spp. and 

Phelipanche spp. (Wigchert et al., 1999; Matusova et al., 2005). 

 

2-2-3. Sugar analysis by GC-MS 
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The frozen seeds were disrupted by ball milling (20 Hz, 2 min) with a MM 301 

mixer mill (Retsch GmbH, Haan, Germany) and then extracted in 300 µl distilled 

water at 95°C for 30 min. The solution was centrifuged at 12,000 g for 10 min, and 

the supernatant was collected in a new Eppendorf tube. Proteins were removed from 

the extract by ultrafiltration with an Amicon Ultra-0.5 10 K centrifugal filter (Merck 

KGaA, Darmstadt, Germany). The solution was passed through a Chromatodisk 

filter (Type: 4A, pore-size: 0.2 µm, GL Sciences Inc., Tokyo, Japan) and then 

freeze-dried. The sample was dissolved in 100 µl pyridine, and an aliquot of the 

sample was derivatized with the same volume of N-trimethylsilylimidazole 

(Sigma-Aldrich, St. Louis, MO, USA) at room temperature. 

GC-MS analysis was performed using a JMS-AMSUN200 quadrupole mass 

spectrometer (JEOL Ltd., Tokyo, Japan) coupled to a gas chromatograph (6890A; 

Agilent Technologies, Inc., Palo Alto, CA, USA) equipped with an HP-5MS 

capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness, Agilent 

Technologies, Inc.). Analyses were carried out in the splitless mode with a 1-µl 

injection volume. The injector temperature was 250°C, and the helium gas flow rate 

through the column was 1 ml·min-1. The column temperature was held at 70°C for 2 

min, then raised by 10°C·min-1 to 325°C and held at that temperature for 10 min. 

The interface temperature and ion source temperature were set at 280°C and 250°C, 

respectively. The ions were generated by a 70 eV electron beam, and two scans per 

second were recorded in the mass range of m/z 100–750. For each sample, 

chromatographic peaks were identified by comparing their retention time with those 

of authentic standards. Compounds were quantified from the peak areas using the 
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external standard method. 

 

2-2-4. Purification of planteose 

Sugars were extracted from dry seeds of O. minor as described above. The extract 

was concentrated by a centrifugal concentrator, and then the trisaccharide fraction 

was purified by isocratic HPLC with a COSMOSIL Sugar-D column (20 × 250 mm, 

5 µm, Nacalai Tesque, Inc., Kyoto, Japan). Eluted compounds were detected with a 

Shimadzu RID-10A refractive index detector (Shimadzu Corp., Kyoto, Japan). The 

mobile phase was 65% acetonitrile. The column oven was set at 30°C, and the flow 

rate was 9.0 ml·min-1. HPLC was performed using an LC workstation (Shimadzu 

Corp.) with CLASS-VP ver. 6.1 software. The HPLC system consisted of a system 

controller (SCL-10Avp), a column oven (CTO-10A), an auto-sampler (SIL-10Axl), 

and a pump (LC-10AT). 

 

2-2-5. NMR analysis  

NMR spectra (1H, 13C, COSY, HMBC, HSQC, TOCSY, HSQC-TOCSY, and 

NOESY) of the purified trisaccharide were recorded on a JMN ECA-500 system 

(JEOL Ltd.) in D2O. The internal standard was 

3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt. 

 

2-2-6. Sugar analysis by UPLC-ELSD 

The dried sugar extracts were dissolved in 80% acetonitrile and analyzed with the 

ACQUITY ultra-performance liquid chromatography (UPLC) system (Waters Corp., 
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Milford, MA, USA) using a Waters ACQUITY UPLC BEH AMIDE column (2.1 

mm × 100 mm, 1.7 µm). Eluted compounds were detected using a Waters 

evaporative light scattering detector (ELSD). The detector conditions were as 

follows: gain, 200; gas pressure, 50 psi; drift tube temperature, 55°C; nebulizer 

mode, cool. The mobile phase was acetonitrile with 0.2% triethylamine (TEA) 

(solvent A) and distilled water with 0.2% TEA (solvent B). Separations were 

performed using a gradient program with a mixture of solvents A and B, as follows: 

20–30% B for 0–2.8 min, 30–50% B for 2.8–4.5 min, 50–80% B for 4.5–5.0 min, 

80–20% B for 5.0–6.5 min, and 20% B for 6.5–7.0 min (re-equilibration). The flow 

rate was set as follows: 0.25 ml·min-1 for 0–4.5 min, 0.25–0.10 ml·min-1 for 4.5–5.0 

min, 0.10–0.25 ml·min-1 for 5.0–6.5 min, and 0.25 ml·min-1 for 6.5–7.0 min. The 

column oven was set at 35°C and the sample injection volume was 5 µl. For each 

sample, chromatographic peaks were identified by comparing the retention time 

with those of authentic standards. The chromatograms were analyzed with the 

Waters Empower 2 data processing program. 

 

2-3. Results 

2-3-1. Structure identification of the trisaccharide 

The unknown trisaccharide in seeds of O. minor was extracted from the dry seeds 

and purified by HPLC (Fig. 3). GC-MS analysis of the acid hydrolysate of the 

purified trisaccharide revealed that its constituent monosaccharides were glucose, 

fructose and galactose because released monosaccharides from the trisaccharide 

were consistent with those released from raffinose, 
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(α-D-galactopyranosyl-(1→6)-α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside),  

 
Figure 3. Purification of unknown trisaccharide from dry seeds of O. minor. Sugars 

were extracted from dry seeds of O. minor; unknown trisaccharide was purified 

from seed extract by HPLC-RID. The arrow marks unknown trisaccharide. 

 

and a subset of the hydrolytic product of trisaccharide was consistent with the 

constituent monosaccharides of sucrose 

(β-D-fructofuranosyl-(2→1)-α-D-glucopyranoside) (Fig. 4). Following the 
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position of each monosaccharide moiety is important because, in principle, the 
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from that in the axial-axial relation in glucose (6–14 Hz). Therefore, the structures 

of galactose and glucose were distinguished by the observed coupling constants (3.4, 

Figure S1�
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�
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1.3 Hz and 9.8, 9.0 Hz, repectively). It was also revealed that glucose and galactose 

were linked via α-glycosidic bonds to fructose moiety based on the coupling 

constants at the C1 position (4.0 Hz in glucose and 3.9 Hz in galactose, respectively). 

Moreover, the observed NOE (blue dashed arrows in Fig. 5) and HMBC correlations 

(red solid arrows in Fig. 5) supported the estimated steric structure. Consequently, 

the structure of unknown trisaccharide was determined as a planteose 

(α-D-galactopyranosyl-(1→6)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranoside). 

 

 
Figure 4. GC-MS analysis of acid hydrolysates of sucrose, raffinose, and unknown 

trisaccharide. Sucrose, raffinose, and purified trisaccharide were acid-hydrolyzed in 

1 N HCl at 95°C for 1 h. TMS derivatization forms multiple peaks for each 

monosaccharide because of the multiple conformers in the solution (e.g., α- and 

β-pyranose and α- and β-furanose). Monosaccharides released from the unknown 

trisaccharide by acid hydrolysis were consistent with those released from raffinose. 

Glc, glucose; Fru, fructose; Gal, galactose. 
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Figure 5. Structural identification of the unknown trisaccharide by NMR. (A) 1H 

and (B) 13C NMR signals. (C) HMBC and (D) NOESY spectra of trisaccharide. (E) 

Structure of identified trisaccharide, planteose 

(α-D-galactopyranosyl-(1→6)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranoside) in 

which C1 of galactose is attached to C6 of fructose moiety of sucrose via an 

α-glycosidic linkage. Figure shows selected long range correlations observed in 

HMBC spectrum and NOE of planteose. 

 

Table 1. 1H and 13C NMR spectral data of the trisaccharide. 

  δC δH  JHH 

      
Glc 1 94.7  5.44  d 4.0  

 2 74.0  3.56  dd 10.0, 3.9 

 3 75.5  3.76  dd 10.2, 8.7 

 4 72.4  3.44  dd 9.8, 9.0 

 5 75.2  3.86  ddd 9.8, 3.7, 1.5 

 6 63.3  3.86  dd 13.0, 2.3 

   3.78  m  

      
Fru 1 64.4  3.68  d 4.1  

 2 106.7     

 3 78.9  4.22  d 8.5  

 4 77.2  4.10  t 8.5  

 5 82.3  4.06  m  

 6 71.7  3.78  m  

   4.06  m  

      
Gal 1 101.4  5.00  d 3.9  

 2 71.2  3.84  dd 10.4, 3.8 

 3 72.2  3.91  dd 10.4, 3.2 

 4 72.0  4.03  dd 3.4, 1.3 

 5 73.9  3.99  m  

 6 63.9  3.75  m  
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2-3-2 Profiling of sugars in germinating seeds of O. minor 

Next, I quantified each sugars in O. minor seeds during germination by GC-MS 

analysis to investigate planteose metabolism (Fig. 6). In the dry seeds, the main 

sugars were planteose (3.48 ± 0.17 nmol·mg-1 seeds), sucrose (0.73 ± 0.29 

nmol·mg-1 seeds), glucose (3.54 ± 1.06 nmol·mg-1 seeds), and fructose (2.82 ± 1.30 

nmol·mg-1 seeds) (Fig. 6A). The amounts of glucose and fructose significantly 

reduced to about one-third shortly after imbibition, and, the levels of these sugars 

including sucrose and planteose did not change for two weeks without GR24 

treatment (Fig. 6B). After the GR24 treatment on the 7th day of imbibition, 

germination rate of O. minor seeds gradually increased and reached maximum rate 

86.2% at 7 days after GR24 treatment (DAG) (Fig. 6C). Planteose metabolism 

proceeded with a parallel increase in the amounts of glucose and fructose during 

germination (Figs. 6D–G). At 3 DAG, when the radicle had emerged, the planteose 

level began to decrease significantly, and the amounts of glucose and fructose 

gradually increased. The amount of sucrose, which is a intermediate of planteose 

metabolism, significantly decreased from 5 DAG subsequent to the decrease of 

planteose (Figs. 6F, G). Hydrolysis of the glucose moiety of planteose can release 

planteobiose (α-D-galactopyranosyl-(1→6)-β-D-fructofuranose). Therefore, 

planteobiose is a possible intermediate in planteose metabolism, but this compound 

was not detected in any of the samples. From these results, a metabolic pathway of 

planteose was predicted as follows. Hydorolysis of planteose might produce sucrose 

followed by production of glucose and fructose by hydrolysis of sucrose. Planteose 

and sucrose were almost completely consumed by 5 DAG while germination rate 
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increased drastically from 3 to 5 DAG (Figs. 6C, F and G). Galactose, a constituent 

of planteose, was not detected in any seed samples. 
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Figure 6. Sugar profiles in O. minor seeds during conditioning and germination. 

Galactose was not detected in any samples. (A) Total ion current chromatogram of 

sugars in dry seeds obtained by GC-MS analysis. Glc, glucose; Fru, fructose; Suc, 

sucrose; Pla, planteose. (B) Changes in the amounts of sugars in seeds without 

GR24 treatment (mean ± SD, n = 3). Conditioning period was 7 days and distilled 

water was applied on the final day of conditioning, therefore germination was not 

induced. Asterisks indicate significant differences in each sugar contents between 

dry seeds and during conditioning seeds (P < 0.05, Tukey-Kramer). (C) Germination 

rate of O. minor seeds after GR24 treatment. Conditioning period was 7 days; 10 

mg·l-1 (w/v) GR24 was applied on the final day of conditioning. Seeds did not 

germinate without GR24 treatment. Seeds were observed and germinated seeds were 

counted under a microscope (mean ± SD, n = 3). DAG; days after GR24 treatment. 

(D–G) Changes in the amounts of sugars in seeds with GR24 treatment (mean ± SD, 

n = 3). Conditioning period was 7 days and 10 mg·l-1 (w/v) GR24 was applied on 

the final day of conditioning. Different letters indicate significant differences in 

sugar contents during germination (P < 0.05, Tukey-Kramer). DAG; days after 

GR24 treatment. 

 

 

2-3-3. Planteose metabolism in weedy broomrapes and a witchweed 

Planteose metabolism was also evaluated in weedy broomrapes and a witchweed 

including O. crenata, P. aegyptiaca, and S. hermonthica, which actually cause 

serious crop losses in the world (Parker, 2013). I detected planteose in the seeds of 

these species (Fig. 7). The sugar composition in seeds of other broomrapes (O. 

crenata or P. aegyptiaca) was similar to that in the seeds of O. minor, and the 

amounts of planteose and sucrose (Fig. 7, black and gray arrows, respectively) 

decreased during germination. However, there was less amount of planteose in S. 

hermonthica seeds compared to those in the seeds of the three broomrapes. The 

sucrose level in S. hermonthica seeds drastically decreased during germination, and 
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there was a significant accumulation of monosaccharides at the later stage of 

germination, similar to that observed in the broomrapes. 
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Figure 7. UPLC-ELSD analysis of sugars in seeds of various root parasitic weeds. 

(A) Authentic standard compounds. (B) O. crenata. (C) P. aegyptiaca. (D) S. 

hermonthica. Black and gray arrows indicate planteose and sucrose, respectively. 

Days after GR24 treatment (DAG) and germination rate at that time are shown in 

upper left of chromatograms. Seeds of each parasitic weed were collected 

immediately after conditioning and at two time points during germination before 

reaching maximum germination rate. The dates of collection of seeds were different 

among species because germination rate of each plant species is different. 
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2-4. Discussion 

In the present study, the results show that planteose metabolism is involved in the 

early stage of germination of root parasitic weeds in the Orobanchaceae. To my 

knowledge, this is the first report of the presence of planteose in seeds of members 

of the Orobanchaceae. Planteose was first identified in Plantago seeds and has since 

been found in the seeds of a number of other plants (Amuti and Pollard, 1977). It has 

been reported that planteose exists mainly in seeds and functions as a storage 

carbohydrate because its amount increases during seed ripening and it is consumed 

during germination (Kandler and Hopf, 1982; Peterbauer and Richter, 2001; Downie 

et al., 2003). However, it is still unknown whether planteose metabolism is essential 

for seed germination or not (Peterbauer and Richter, 2001). Planteose is an isomer of 

raffinose, a member of the raffinose family oligosaccharides (RFOs), which are 

composed of sucrose and chains of α-galactosyl residues attached to the glucose 

moiety of sucrose via an α-(1→6) galactosidic linkage. Planteose has an 

α-galactosidic linkage at the fructose moiety. In some plant species, RFOs might 

function as an easily available source of energy during the early stages of seed 

germination (Blöchl et al., 2007). The most common RFO, raffinose, was not 

detected in O. minor seeds. Alternatively, there was approximately five times more 

planteose than sucrose in the dry seeds of O. minor. These findings suggest that 

planteose is the main storage carbohydrate providing energy required for the early 

stages of germination of O. minor seeds. 

I also detected planteose in the seeds of other root parasitic weeds in the 

Orobanchaceae; O. crenata, P. aegyptiaca, and S. hermonthica. In all of these 
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species, the amount of planteose in seeds decreased during germination (Fig. 7). 

Also, the change in sugar composition in seeds during germination was quite similar 

among the three broomrapes (O. minor, O. crenata, and P. aegyptiaca) (Fig. 6, Fig. 

7). These results suggest that sugar metabolism in germinating seeds is conserved 

among broomrapes. Planteose was also detected in the seeds of S. hermonthica. 

These findings indicate that planteose may function as a storage carbohydrate for 

use during the early stages of seed germination of root parasitic weeds in the 

Orobanchaceae. 

Plants generally store starch or lipids in seeds as a source of energy for 

germination. However, seeds of S. hermonthica lack detectable amount of starch 

(Vallance, 1951), suggesting that the dry seeds of root parasitic weeds may contain 

little or no starch. In S. asiatica seeds, triacylglycerol were not hydrolyzed during or 

after germination (Menetrez et al., 1988), indicating that this species does not rely 

on lipids to provide energy for germination. Previously, the levels of starch and total 

fatty acids in O. minor seeds were analyzed to evaluate contributions of their 

metabolism to the germination. The amount of starch (10.4 µg·mg-1 dry weight) in 

the seeds of O. minor gradually decreased during conditioning, but increased again 

after GR24 treatment (Fig. 8A) (Joseph, 2009). The amount of total fatty acids in the 

dry seeds of O. minor increased after GR24 treatment and was greater than that in 

GR24 untreated seeds at any time points (Fig. 8B) (Joseph et al., unpublished). 

These results indicate that starch and lipids are not significant energy sources for the 

seed germination of root parasitic weeds and support my hypothesis that planteose is 

the main storage compound for the germination. 
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Figure 8. Profiles of starch and total fatty acids in germinating O. minor seeds. 

Amounts of starch (A) (Joseph, 2009) and total fatty acids (B) (Joseph et al., 

unpublished) were measured in seeds with (+) or without (-) GR24 treatment (mean 

± SD, n = 3). Arrows indicate the day of GR24 treatment. 
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Chapter 3   Effect of nojirimycin on germination and planteose metabolism in 

the early stage of germination of O. minor 

 

3-1. Introduction 

NJ was firstly identified in metabolic products of Streptomyces spp. as an antibiotics 

showing remarkable biological activity against Sarcina lutea, Xanthomonas oryzae 

and Shigella flexneri (Inouye, 1968). The effect of NJ on plant growth was studied 

in Avena sativa, pea (Pisum sativum) and rice (Oryza sativa) (Nevins, 1975; 

Labrador and Nicolas, 1982). NJ, at concentrations of 0.1 to 3.0 mM, inhibited 

auxin-induced elongation of the coleoptile of A. sativa and the stem internode of pea 

(Nevins, 1975). Furthermore, NJ at 1.0 mM decreased autolytic activity of the cell 

wall in rice coleoptile in vitro (Labrador and Nicolas, 1982). However, there is no 

report showing inhibitory effect of NJ on germination of plant seeds. These results 

suggest that NJ has a small effect on plant growth, especially seed germination, and 

the inhibitory effects require high concentrations of NJ. Interestingly, the previous 

study showed that NJ strongly and selectively inhibited germination of O. minor at 

low concentrations (Fig. 2E) (Joseph et al., unpublished). This result suggested that 

NJ specifically inhibits a metabolism involving glycosidase(s) in the germination 

process of O. minor. As described in Chapter 2, planteose metabolism was 

considered to be characteristic and important for germination of root parasitic weeds 

in the Orobanchaceae, therefore, there was a possibility that planteose metabolic 

enzymes are inhibited by NJ. In this chapter, detailed effect of NJ and other 

glycosidase inhibitors on germination of O. minor seeds was studied and 
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subsequently, the relationship between the effects of NJ on germination of O. minor 

and on the planteose metabolism was investigated. Additionally, the effect of NJ on 

germination of non-parasitic seeds containing planteose was evaluated. 

 

3-2. Materials and methods 

3-2-1. Germination test 

The seed germination assay for parasitic weeds was conducted as described in 

Chapter 2, 2-2-1. 

Phtheirospermum japonicum seeds were kindly supplied by Dr. Satoko 

Yoshida at RIKEN Center for Sustainable Resource Science, Japan. The seeds were 

surface-sterilized, vernalized at 4°C for 2 days and then incubated at 25°C in the 

dark. The root length was measured at 5 days after imbibition. 

Seeds of planteose containing plants, tomato (Solanum lycopersicum) (Amuti 

and Pollard, 1977; Gurusinghe and Bradford, 2001), sesame (Sesamum indicum) 

(Hatanaka, 1959), and spearmint (Mentha spicata) (French et al., 1959) were 

surface-strilized, vernalized at 4°C for 2 days, and then incubated at 23°C under a 

16-h light/8-h dark photoperiod (sesame and spearmint) or at 25°C in the dark 

(tomato). Root lengths of tomato and sesame seeds were measured 4 days after 

imbibition, and that of spearmint was measured 10 days after imbibition. 

 

3-2-2. Glycosidase inhibitor assay 

The effects of glycosidase inhibitors; NJ (Niwa et al., 1970; Reese et al., 1971; Dale 

et al., 1985; Kodama et al., 1985), castanospermine (CS) (Saul et al., 1983), 
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1-deoxynojirimycin (DNJ) (Saunier et al., 1982) and 1-deoxygalactonojirimycin 

(DGJ) (Legler and Pohl, 1986), were tested by mixing them with GR24 solution. For 

the germination recovery test, sugar or UDP-glucose (final concentration 10 mM) 

was mixed with GR24 (final concentration 1.0 mg·l-1) and NJ (final concentration 

10 µM). Radicle and root lengths were measured using ImageJ 1.47v software 

(http://rsbweb.nih.gov/ij/). 

 

3-2-3. Sample preparation for protein extraction 

For protein extraction, 50 mg of seeds of O. minor were conditioned as described in 

Chapter 2, 2-2-2. The samples were prepared by addition of GR24 solution (1.0 

mg·l-1) without NJ, with NJ (10 µM), or with NJ (10 µM) and glucose (50 mM), and 

then collected at 5 DAG. The samples were stored at –80°C until use. 

 

3-2-4. Invertase extraction and enzymatic assay 

Protein extraction and the assay for activities of invertases (INVs) were conducted 

as described previously (Draie et al., 2011), with some modifications. The frozen 

seeds were disrupted by ball milling (20 Hz, 2 min) and extracted at 4°C in 1.5 ml 

extraction buffer (pH 7.0) composed of 50 mM HEPES, 1 mM dithiothreitol, 1 mM 

ethylenediaminetetraacetic acid, 0.5 mg·ml-1 polyvinylpolypyrrolidone (PVPP), and 

1% (v/v) Protease inhibitor cocktail (Sigma-Aldrich). The homogenate was 

centrifuged at 12,000 g for 10 min, and the supernatant was collected in a new 

Eppendorf tube. The pellet was re-extracted in the extraction buffer without PVPP 

and the extract was collected in same Eppendorf tube after centrifugation. The 
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collected enzyme solution was used for soluble acid invertase (SAI) and soluble 

neutral invertase (SNI) assays. The residue was rinsed with 1.0 ml extraction buffer 

without PVPP and Protease inhibitor cocktail and the supernatant was discarded 

after centrifugation. To extract cell wall invertase (CWI), the pellet was extracted in 

the extraction buffer containing 1.0 M NaCl. After centrifugation, the supernatant 

was used for CWI assay. 

Before the assay, the enzyme extract was desalted on a PD-10 desalting 

column (GE Healthcare Bio-Sciences AB) previously equilibrated with 50 mM 

HEPES buffer (pH 7.0), and then concentrated with an Amicon Ultra-15 10 K 

centrifugal filter (Merck KGaA, Darmstadt, Germany). The enzymatic reaction (200 

µl reaction mixture) was initiated by mixing the extracted enzyme (20 µg) and 

sucrose (final concentration 100 mM) in 50 mM sodium phosphate buffer (pH 5.0 

for SAI and CWI or PH 7.5 for SNI). When required, NJ was added to the reaction 

mixture at a final concentration of 100 µM. The reaction mixture was incubated at 

30°C for 2 h, and the reaction was stopped by heating at 95°C for 3 min. The 

amount of released glucose was determined using Glucose (HK) assay reagent 

(Sigma-Aldrich). 

 

3-2-5. Enzymatic assay of α-galactosidase 

Protein extraction was carried out as described in 3-2-4, and soluble and 

NaCl-soluble fractions were prepared. NaCl-soluble fraction may contain cell wall 

bound proteins. The enzymatic reaction (200 µl reaction mixture) was initiated by 

mixing the extracted enzyme (20 µg) and 4-nitrophenyl α-D-galactopyranoside (final 
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concentration 2 mM) in 50 mM sodium phosphate buffer (pH 5.0). The reaction 

mixture was incubated at 30°C for 1 h, and the reaction was stopped by addition of 

50 µl of Na2CO3 (0.2 M). The absorbance at 400 nm was measured to calculate 

released 4-nitrophenol, and the activity was calculated as follows. 

nmol·min-1·mg protein-1 = 
ΔA400 × Vt

18.4 × l × t × 0.02
 

Vt: total volume (µl), 18.4: molar extinction coefficient of 4-nitrophenol 

(µl·nmol-1·cm), l: light path length (cm), t: reaction time (min), 0.02: amount of 

protein (mg). 

 

3-2-6. RT-PCR analysis 

Total RNA was extracted from approximately 50 mg conditioned, germinating and 

NJ-treated seeds of O. minor and purified using PureLink® RNA Mini Kit (Life 

Technologies, Grand Island, NY, USA) according to the manufacture’s instruction. 

cDNA synthesis was performed from total RNA (0.5 µg) using PrimeScriptTM 

RT-PCR Kit (Takara Bio Inc., Shiga, Japan) according to the manufacture’s 

instruction. INV genes of O. minor were searched in our in-house EST library 

provided by Dr. Masaharu Mizutani (Kobe Univ., Japan), and three cDNA 

sequences encoding INVs expressed in the germinating seeds (OmSAI, OmSNI and 

OmCWI) were found. PCR was performed using primers OmSAI_F 

(CTCGATGGTGAAAAGTTATCCA) and OmSAI_R 

(AAAGTTGATCCAACGGGAAA) for OmSAI, OmSNI_F 

(GACCAGAGTTGGCCAGAAAG) and OmSNI_R 

(TGCCGTGTTTGGATTGTCTA) for OmSNI, and OmCWI_F 
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(AGTATGGCTCGATCGCAGAG) and OmCWI_R 

(CGGACCTAATCCACCTTCAA) for OmCWI, for 23 (for OmSAI and OmCWI) or 

25 (for OmSNI) cycles of 95°C (15 s), 55°C (15 s) and 72°C (30 s), and a single 

final step at 72 °C for 30 s. 

 

3-3. Results 

3-3-1. Effects of nojirimycin, a glycosidase inhibitor, on germination and radicle 

elongation of root parasitic weeds 

To determine the importance of planteose metabolism during germination, some 

glycosidase inhibitors were applied together with GR24. Among the tested inhibitors, 

NJ showed a strong and selective inhibitory effect on germination of O. minor seeds 

in a dose-dependent manner (Fig. 9A). NJ at 1 and 3 µM decreased the germination 

rate by 48.8% and 61.8%, respectively, and NJ at 10 µM or higher completely 

inhibited the seed germination (Fig. 9A). In the case of S. hermonthica, NJ did not 

inhibit the seed germination, but caused a dose-dependent reduction in radicle 

elongation (Figs. 9B, C). The radicle lengths of S. hermonthica with 10 µM and 100 

µM NJ were nearly one-half and one-fifth of that of the control, respectively (Fig. 

9C). To investigate whether NJ affects the growth of diverse plants in the 

Orobanchaceae, I analyzed the effect of NJ on P. japonicum which is a facultative 

hemiparasite closely related to Orobanche and Striga (Bennett and Mathews, 2006). 

Similar to the case in S. hermonthica, NJ did not affect the germination rate of P. 

japonicum seeds, but it inhibited the root elongation at concentrations of 10 µM or 

higher (Fig. 10).  
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Figure 9. Effect of NJ on seed germination of root parasitic plants in the 

Orobanchaceae. (A) Effect of NJ at various concentrations on germination rates of O. 

minor seeds (mean ± SD, n = 3). Germination rate of O. minor seeds decreased in a 

dose-dependent manner with NJ. (B, C) Effect of NJ on radicle elongation of S. 

hermonthica. (C) Morphological changes in radicle elongation in the presence of NJ. 

Staining by crystal violet facilitated visualization of the radicles. Treatments were as 

follows: (i) 10 mg·l-1 (w/v) GR24 only; (ii) GR24 + 1 µM NJ; (iii) GR24 + 10 µM 

NJ; and (iv) GR24 + 100 µM. Bar: 200 µm. (D) Radicle lengths of S. hermonthica 

treated with NJ at various concentrations. Radicle lengths of 100 germinating seeds 

were determined using ImageJ software. Radicle elongation was inhibited by NJ in a 

dose-dependent manner. Different letters indicate significant differences in radicle 

lengths (P < 0.05, Tukey-Kramer). 
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Figure 10. Effects of NJ on seed germination (A) and root elongation (B) of P. 

japonicum. (A) NJ, even at 100 µM, did not affect germination rate of P. japonicum. 

Number of germinated seeds (out of 20) was counted (mean ± SD, n = 3). (B) 

Effects of NJ on root elongation became visible at 10 µM; root length of seedlings 

treated with 100 µM NJ was approximately one-quarter that of control. Radicle 

lengths of 30 to 38 germinated seeds were measured using ImageJ software. 

Asterisks indicate significant differences in the root lengths between control and 

NJ-treated seeds (P < 0.05, Student’s t test). 

 

The glycosidase inhibitor CS inhibited O. minor seed germination at 

concentrations of 1 µM or higher, however its inhibitory effect was weaker than that 

of NJ (reduction of 7.2% at 1 µM and 15.6% at 10 µM) (Fig. 11A). Germination 

was not affected by two other iminosugars, DNJ and DGJ, at concentrations up to 

100 µM (Fig. 11B), but DNJ inhibited radicle elongation of O. minor (Figs. 11C, D) 

in a similar way to NJ on S. hermonthica. 
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Figure 11. Effects of glycosidase inhibitors on germination of O. minor. 

Germination rates of O. minor seeds in the presence of various concentrations of CS 

(A) and DNJ and DGJ (B). Number of germinated seeds (out of 200) was counted 

(mean ± SD, n = 3). Asterisks indicate significant differences in the root lengths 

between control and glycosidase inhibitor-treated seeds (P < 0.05, Student’s t test). 

(C, D) Effect of DNJ on radicle elongation of O. minor seeds.  
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Figure 11. (continued) Conditioning period was 7 days; 10 mg·l-1 (w/v) GR24 with 

or without DNJ was applied on the final day of conditioning. Effect of DNJ was 

observed 7 days after GR24 treatment. (C) Images of control seeds (left), 50 µM 

DNJ-treated seeds (middle), and 100 µM DNJ-treated seeds (right). Bar: 500 µm. 

(D) Radicle lengths of O. minor treated with DNJ. Radicle lengths of 100 

germinating seeds were determined using ImageJ software. The radicle length 

treated with 100 µM DNJ was approximately one-quarter that of control radicle 

length. Asterisk indicates significant difference in the root lengths between control 

and DNJ-treated seeds (P < 0.05, Student’s t test). 

 

 

3-3-2. Effect of nojirimycin on planteose metabolism in O. minor  

I speculated that NJ caused changes in sugar metabolism in O. minor seeds, 

ultimately inhibiting their germination. To investigate the MOA of NJ, I quantified 

the sugars in germinating O. minor seeds in the presence of NJ. In seeds at 3 DAG, 

the sugar compositions were almost same both in non-treated and NJ-treated seeds. 

However, compared with non-treated seeds at 7 DAG, the NJ-treated seeds at 7 

DAG showed increased levels of sucrose and severely decreased levels of glucose 

and fructose (Fig. 12). The amounts of glucose and fructose in NJ-treated seeds were 

about one-fourth of those in non-treated seeds, and, the amounts of sucrose and 

planteose in NJ-treated seeds were about hundred and five times higher than those in 

non-treated seeds, respectively.  

To investigate the relationship between the inhibitory effect of NJ on 

germination and sugar metabolism in O. minor seeds, I applied exogenous sugars or 

a nucleotide sugar together with GR24 and NJ. In plants, sucrose degradation is 

catalyzed by INVs (EC3.2.1.26, sucrose ↔ glucose + fructose) and sucrose 

synthases (SUSs) (EC2.4.1.13, sucrose + UDP ↔ UDP-glucose + fructose). To 
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determine whether the restricted supply of sucrose degradation products affects 

germination, I added UDP-glucose or the constituent sugars of planteose. The 

germination rate was significantly recovered to 71.2% by addition of glucose with 

NJ (Fig. 13). Exogenous galactose also recovered the germination rate of the 

NJ-treated seeds to 13.2%, but with a much lower efficiency than that of glucose. 

Fructose and UDP-glucose did not recover the germination rate of NJ-treated seeds. 

Sucrose recovered the germination rate to 4.8%, however, the degree of the recovery 

was significantly lower than that of glucose or galactose. 

 

 
Figure 12. Changes in sugar contents in O. minor seeds in the presence of NJ. (A) 

Amounts of sugars in seeds at 3 days after GR24 treatment (DAG) and at 7 DAG 

with (+NJ) or without (C: control) NJ treatment (mean ± SD, n = 3). 
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Figure 12. (continued) NJ (10 µM) was added along with GR24 after the 

conditioning period. (B) Magnification of graph showing amounts of sucrose and 

planteose. Asterisks indicate significant differences in amounts of sugars between 

control and NJ-treated seeds on the same day (P < 0.05, Student’s t test). Glc, 

glucose; Fru, fructose; Suc, sucrose; Pla, planteose. 

 

 

 

Figure 13. Recovery of seed germination rate by simultaneous addition of 

exogenous sugars and NJ. Seed germination rates were measured at 7 DAG (mean ± 

SD, n = 3). Asterisks indicate significant differences in germination rates between 

seeds treated with NJ and those treated with NJ + exogenous sugars (P < 0.05, 

Student’s t test). Glc, glucose; Fru, fructose; Gal, galactose; Suc, sucrose; Pla, 

planteose; UDP-Glc, UDP-glucose. 

 

3-3-3. Effect of nojirimycin on activities of invertases 

The results described above indicated that the inhibition of germination of O. minor 

by NJ is caused by a lack of adequate supply of glucose. Therefore, the inhibition 

might be attributed to suppression of activities of INVs in the planteose metabolic 
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pathway. In plants, INVs can be classified into three types according to their 

solubilities, subcellular localizations, pH optima, and isoelectric points. SAIs 

localize in the vacuoles, SNIs localize in the cytosol, and CWIs are in the cell walls. 

These types of INVs were prepared as crude enzymes from germinating seeds of O. 

minor at 5 DAG. When NJ was added to the enzyme assays, it did not affect the 

activities of these INVs, even at 100 µM (Fig. 14A). 

Next, I investigated the changes in the activities of INVs over time during 

germination, and the effects of NJ on them. I prepared crude enzyme extracts from 

germinating seeds and NJ-treated seeds. In the germinating seeds, the activities of 

INVs increased during germination (Fig.14B, solid line). The activities of INVs also 

gradually increased in the NJ-treated seeds, but they were significantly lower in the 

NJ-treated than in the non-treated seeds at 5 DAG (Fig. 14B, dashed line). The 

activities of acid INVs (SAI and CWI) in the NJ-treated seeds were about 

one-quarter those in the germinating seeds. The activity of SNI was less affected by 

NJ treatment, and the activity in the NJ-treated seeds was reduced by about 60% 

compared to that in the non-treated germinating seeds. On the other hand, 

comparable level of activity of α-galactosidase, which may catalyze the first step of 

planteose degradation, was observed in both non-treated and NJ-treated seeds at 5 

DAG (Fig. 14C). 

Activities of acid INVs can be regulated by invertase inhibitors (INHs), and 

INHs have been studied in some plant species (Weil et al., 1994; Link et al., 2004; 

Privat et al., 2008; Reca et al., 2008; Tauzin et al., 2014). To test the possibility that 

NJ induces INHs causing the decrement of acid INV activities, the INV activities in 
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the mixture of equal amounts of crude proteins prepared from the germinating (10 

µg) seeds and the NJ-treated seeds (10 µg) were measured. However, the activities 

did not decrease by addition of crude proteins prepared from the NJ-treated seeds 

(Fig. 14D). As described above, exogenous glucose recovered the germination of 

NJ-treated seeds. Therefore, INV activities in the NJ-treated seeds with exogenous 

glucose were evaluated (Fig. 14E). The acid INV activities in NJ-treated seeds with 

glucose were higher than those in the NJ-treated seeds without glucose, suggesting 

that exogenous glucose recovered acid INV activities. 

Furthermore, I investigated gene expression levels of INVs during germination 

in the presence of NJ by semi-quantitative RT-PCR. The primers used for RT-PCR 

analysis were designed based on the sequences found in our in-house EST library of 

O. minor, however I could not prepare a suitable housekeeping gene to standardize 

the gene expression levels. The results showed that the expression levels of all INV 

genes of O. minor (OmSAI, OmCWI and OmSNI) were not significantly changed 

through the germination by NJ treatment (Fig. 14F). 
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Figure 14. Effects of NJ on activities of INVs. (A) Effects of NJ on activities of 

INVs in vitro. A reaction mixture contained crude enzyme extract from germinating 

seeds at 5 DAG and NJ at a final concentration of 0.1 mM. NJ effect was calculated 

as a ratio of activity with NJ treatment to that without NJ (mean ± SD, n = 3). (B) 

Effects of NJ on activities of INVs in vivo. Crude enzyme extracts were prepared 

from germinating and 10 µM NJ-treated seeds of O. minor. Activities of SAI, SNI, 

and CWI were assayed. 
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Figure 14. (continued) Solid and dashed lines show mean values of enzyme 

activities in the non-treated and the NJ-treated seeds, respectively (mean ± SD, n = 6 

to 8). Enzyme activity is expressed as nmol glucose·min-1·mg protein-1. DAG; days 

after GR24 treatment. Asterisks indicate significant differences in enzyme activities 

between non-treated and NJ-treated seeds at same time point (* P < 0.05, ** P < 

0.01, Student’s t test). (C) Effect of NJ on activity of α-galactosidase in vivo. Crude 

enzyme extracts were prepared from germinating and 10 µM NJ-treated seeds of O. 

minor at 5 DAG. The activity was assayed using a soluble fraction and a 

NaCl-soluble fraction. The activity was calculated as a ratio of activity in the 

germinating seeds to that in the NJ-treated seeds. The graph shows mean values (n = 

2). (D) The INV activities of the mixture with crude enzymes from the germinating 

(10 µg) and the NJ-treated seeds (10 µg). The enzyme activity was calculated as a 

ratio of the amount of released glucose in the mixed enzyme solution to that in the 

control enzyme solution (10 µg crude protein derived from the germinating seeds) 

(mean ± SD, n = 3). (E) The activities of INVs in the NJ-treated seeds with or 

without exogenous glucose in vivo. Acid INV activities in the NJ-treated seeds with 

glucose were higher than those in the NJ-treated seeds without glucose. The graph 

shows mean ± SD (Control and NJ-treatment) or only mean value 

(NJ+Glc-treatment). Control, germinating seeds at 5 DAG (n = 6–8); NJ-treatment, 

NJ-treated seeds at 5 DAG (n = 6); NJ+Glc-treatment, NJ-treated seeds with glucose 

at 5 DAG (n = 2). (F) RT-PCR analysis of OmSAI, OmSNI and OmCWI in the 

germinating (G) and the NJ-treated (N) seeds after GR24 treatment (12–120 h after; 

C, conditioned seeds). 

 

 

3-3-4. Effect of nojirimycin on germination of planteose-containing seeds of 

non-parasitic plants  

The results shown so far indicated that planteose degradation might be involved in 

the early stage of germination, and that sucrose degradation and the supply of 

glucose after planteose degradation might be key steps in seed germination of O. 

minor. NJ might inhibit seed germination in O. minor by interfering with activities 
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of INVs, thereby inhibiting the degradation of sucrose in the planteose metabolic 

pathway. Therefore, NJ may also inhibit germination in seeds of other non-parasitic 

plants that contain the planteose metabolic pathway. To investigate the effects of NJ 

on planteose containing seeds, I conducted germination assays and root length 

measurements using seeds of tomato (Solanum lycopersicum), sesame (Sesamum 

indicum), and spearmint (Mentha spicata). The germination rates of these seeds 

were not affected by NJ, even at 1 mM (Fig. 15A). NJ inhibited root elongation of 

sesame and spearmint, but not tomato (Fig. 15B). However, the concentration of NJ 

required to inhibit the root elongation was higher for sesame and spearmint than for 

S. hermonthica and P. japonicum (Fig 9, Fig 10). Sugar analysis of NJ-treated and 

non-treated tomato seeds showed that they had the same sugar composition. In the 

NJ-treated and the non-treated tomato seeds, planteose was degraded, but the 

amount of sucrose remained constant throughout the germination process (Fig. 15C).  
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Figure 15. Effects of NJ on germination, root elongation, and planteose metabolism 

in planteose-containing seeds. (A) Effect of NJ on germination of seeds containing 

planteose. Number of germinated seeds (out of 20) was counted. Analysis was 

carried out in triplicate (mean ± SD, n = 3). (B) Effect of NJ on root elongation. 

Germinated seeds were selected and radicle lengths were determined using ImageJ 

software. Numbers of counted seeds were as follows: 22 (control) and 29 (1 mM NJ) 

for tomato; 29 (control), 31 (100 µM NJ), and 21 (1 mM NJ) for sesame; and 24 

(control), 26 (10 µM NJ), 33 (100 µM NJ), and 33 (1 mM NJ) for spearmint. 

Asterisks indicate significant differences in the root lengths between control and 

NJ-treated seeds (P < 0.05, Student’s t test). (C) GC-MS analyses of sugar 

compositions in dry, germinating, and NJ-treated tomato seeds. There were no 

differences in sugar compositions between the non-treated germinated seeds and the 

NJ-treated seed. 
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3-4. Discussion 

In the NJ-treated O. minor seeds at 7 DAG, highly accumulated level of sucrose was 

observed (Fig. 12), which suggested that NJ might inhibit sucrose degradation. The 

sum total of sucrose and planteose in the dry seeds (4.2 nmol·mg-1 FW seed) was 

almost equal to the amount of sucrose (4.1 nmol·mg-1 FW seed) in the NJ-treated 

seeds at 7 DAG. This result implied that the accumulated sucrose was a result of the 

inhibited degradation of the sucrose in the planteose metabolism and of that 

originally present in the dry seeds. Glucose recovered the germination rate in the 

presence of NJ but other sugars did not show high activity of germination recovery 

(Fig. 13), which indicates that glucose is required for seed germination of O. minor. 

Whereas it was concerned that the difference of the extents of germination recovery 

by addition of different sugars (Fig. 13) was attributed to the difference of 

efficiencies of uptake of sugars into the seeds, it is thought that the efficiencies are 

almost equal because applications of different sugars at same concentration (e.g., 

glucose, galactose and sucrose) delayed Arabidopsis seed germination in a similar 

way (Dekker et al., 2004). There was significantly less glucose in the NJ-treated O. 

minor seeds than in the non-treated seeds (Fig. 12). This decreased glucose level 

may have a fatal effect on seed germination. There was also less fructose in 

NJ-treated seeds than in non-treated seeds. However, exogenous fructose could not 

fully recover the germination rate (Fig. 13), suggesting that there is a much stronger 

requirement for glucose than for fructose during O. minor seed germination. The 

weak recovery of the germination rate by sucrose indicated that O. minor seeds were 

unable to metabolize sucrose in the presence of NJ. In addition, galactose recovered 
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the inhibited germination rate, however, it was not detected in any seed samples. 

These results suggest that galactose is immediately converted to another compound 

(e.g., galactose-1-phosphate) in the galactose salvage pathway upon its release 

(Blöchl, 2007), and the converted compounds involve the promotion of germination. 

In general, two classes of enzymes, INVs and SUSs, are involved in sucrose 

degradation. Both types of enzymes have important roles in plant development at 

diverse stages (Koch, 2004). Recent studies on P. ramosa showed that the transcript 

levels of INV and SUS genes and the activities of INVs increased in germinating 

seeds (Draie et al., 2011; Péron et al., 2012). Therefore, these two classes of 

enzymes might have important roles in the germination of broomrape seeds. I 

assume that NJ affects the activities of INVs rather than SUSs because the inhibition 

of germination was fully recovered only by adding exogenous glucose which is a 

product of sucrose hydrolysis by INVs, and UDP-glucose, which is a product of 

sucrose hydrolysis by SUSs, did not recover the germination rate. In O. minor seeds, 

the activities of INVs gradually increased during germination, consistent with the 

results of previous studies on P. ramosa (Draie et al., 2011). The activities of INVs 

were significantly lower in the NJ-treated seeds than in the non-treated seeds at 5 

DAG (Fig. 14B). On the other hand, the activity of α-galactosidase at 5 DAG 

seemed not to be changed in the presence of NJ (Fig. 14B). These results suggest 

that NJ specifically decreased the activities of INVs. Additionally, the activities of 

acid INVs at 5 DAG were recovered in the seeds treated with NJ and glucose (Fig. 

14E). This recovery effect by glucose implies that the accumulation of glucose in the 

early stage of germination enhances acid INV activities. 
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There should be other pathways producing monosaccharides during the late 

stages of germination because, the amounts of monosaccharides in the seeds at 7 

DAG were higher than the estimated amounts produced from sucrose and planteose 

degradation. Additionally, the monosaccharides were significantly increased from 5 

to 7 DAG, whereas sucrose and planteose were almost consumed by 5 DAG (Figs. 

6D–G). This increment might indicate the involvement of other pathways to produce 

monosaccharides (e.g., cell wall polysaccharide and/or fructan). It is known that 

sugars act as important signaling molecules like phytohormones throughout all 

stages of plant development (Rolland et al., 2006; Eveland and Jackson, 2012). For 

example as a sugar-inducible carbohydrate related metabolism, a supply of sucrose, 

glucose or fructose to Arabidopsis plant induces expression of a gene for β-amylase 

(Mita et al., 1995). Because the substantial increase in monosaccharides was not 

observed in the NJ-treated seeds at 7 DAG (Fig. 12), it is likely that glucose 

provided from sucrose and planteose triggers the following processes required for 

germination including the degradation of other storage products. 

NJ is an iminosugar, and some other iminosugars have been reported to inhibit 

seedling growth of some plant species. Seedling growth and root elongation in 

Raphanus sativus (kaiware radish) were inhibited by CS at 0.5 mM or higher, or 

DNJ at 5 mM or higher (Mega, 2004, 2005). Similarly, DNJ, N-butyl DNJ, and 

miglitol at 0.5 mM inhibited root elongation in germinating barley (Stanley et al., 

2011). In both studies, the iminosugars did not inhibit seed germination. 

Additionally, the concentrations of iminosugars used in those studies were higher 

than those used in the present study (1–100 µM NJ for the inhibition of O. minor 
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germination). At present, the MOA of these iminosugars remains unclear. In the 

case of O. minor, DNJ at 0.1 mM inhibited the radicle elongation, but did not affect 

the seed germination, as is the case in other plants (Figs. 11B–D). Since NJ inhibited 

O. minor seed germination at a much lower concentration, the inhibitory mechanism 

of NJ likely differs from those of other iminosugars such as DNJ. CS also inhibited 

the germination of O. minor, but higher concentrations of CS than NJ were required 

for the inhibitory effect (Fig. 11A). This finding suggests that NJ and CS inhibit 

germination via the same mechanism, but that they have different affinities for their 

target site(s). NJ did not inhibit seed germination in species other than O. minor, and 

only inhibited the root and radicle elongation of other species at high concentrations. 

Therefore, NJ may inhibit root elongation of these plants via a similar mechanism to 

that of other iminosugars. 

Aoki and Hatanaka (1991) reported that 1,4-dideoxy-1,4-iminoarabinitol 

(DIA), which is a class of iminosugar along with NJ, at concentrations of 0.1 to 10 

mM inhibited growth of seedlings of rape, lucerne, castor bean, barley, and rice, but 

had little effect on their seed germination. As in the present study, the activities of 

SAI and CWI were lower in 0.5 mM DIA-treated lucerne seedlings than in 

non-treated seedlings. They also reported that DIA did not affect activities of acid 

INVs in vitro as NJ. Furthermore, I revealed that gene expression levels of INVs 

were not affected by NJ treatment (Fig. 14F). Together with the results of this and 

previous studies, it is suggested that NJ and DIA affect the activities of INVs 

indirectly by inhibiting translational or post-translational processes. Recently, 

heterologous expression of tomato SAI (TIV-1) in Pichia pastoris revealed that 
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N-glycosylation in TIV-1 was important for its activity and stability (Tauzin et al., 

2014). Considering the role of NJ as a glycosidase inhibitor, NJ may affect 

glycosylation of INVs in O. minor. 

NJ specifically inhibited the germination of O. minor seeds, but not those of 

the other tested plants. The plant species could be ranked in terms of their sensitivity 

to NJ, from the most sensitive to the least sensitive, as follows: O. minor (obligate 

holoparasite), S. hermonthica (obligate hemiparasite), P. japonicum (facultative 

hemiparasite), spearmint (Lamiaceae), sesame (Pedaliaceae), and Arabidopsis 

(Brassicaceae), red clover (Fabaceae) and tomato (Solanaceae) were not affected by 

NJ treatment (Fig. 9, 10 and 15). Evolutionary events of parasitism are thought to 

originate in an invasive haustorium formation in the Orobanchaceae (Westwood et 

al., 2010). Facultative hemiparasite species develop lateral haustoria on the sides of 

their roots. In obligate parasites including Striga spp., Orobanche spp. and 

Phelipanche spp., an evolutionary event subsequent to the development of lateral 

haustorium might be evolution of terminal haustorium formation, which develops at 

the apexes of the radicles soon after germination. Holoparasites evolved from 

hemiparasites accompanied with loss of plastid genes associated with photosynthesis 

(Krause, 2008; Westwood et al., 2010). Interestingly, the order of sensitivity of 

tested plants to NJ is the reverse order of the evolutionary process of parasitism (Fig. 

16) (Stevens, 2001; Angiosperm Phylogeny Group, 2009; Westwood et al., 2010). 

These results imply that the difference in the sensitivity to NJ among the tested 

plants is related to the divergence of the way of sugar use during the evolutionary 

process of parasitism. In other words, sugar metabolism during germination may 
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differ between broomrapes, parasitic plants in the Orobanchaceae, and non-parasitic 

plants. In fact, sugar metabolism in germinating seeds of S. hermonthica may 

slightly differ from that in germinating seeds of broomrapes because there was less 

planteose in S. hermonthica seeds than in the broomrape seeds (Fig. 8) In tomato, 

the sucrose content in seeds did not change during germination (Fig. 15C), while the 

sucrose content in seeds of root parasitic weeds decreased. The differences in sugar 

use during germination of root parasitic weeds in the Orobanchaceae may be 

attributed to their ability to photosynthesize because hemiparasites are capable of 

fixing carbon themselves, while holoparasites obtain all of their reduced carbon 

from their hosts (Press et al.,1991; Irving and Cameron 2009). Since NJ inhibits 

only the germination of O. minor, some physiological events during its germination 

that are targeted by NJ may have arisen during evolution. Comparing the effects of 

NJ among a wide variety of plant species will clarify the relationship between NJ 

inhibition and the evolution of parasitism. 
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Figure 16. Relationship between plant evolution and NJ effect. The order and 

family were classified based on Angiosperm Phylogeny Group III system 

(Angiosperm Phylogeny Group, 2009), and parasitic plants in the Orobanchaceae 

were assigned by proposed evolutional process (Westwood et al., 2010). The plant 

species is closer to O. minor, the stronger the effect of NJ appeared. (++) indicates 

strong inhibitory effect; (+) indicates weak inhibitory effect.  
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Chapter 4   De novo assembly of transcriptome in O. minor germinating seeds 

and analysis of differential gene expression in the NJ treated 

seeds 

 

4-1. Introduction 

Transcriptome analysis is used to understand a genome-wide changes in gene 

expression in a wide range of biological processes. Next-generation sequencing 

(NGS) technology allows us to perform cost-effective genomic sequencing 

(DNA-Seq) and transcriptome sequencing (RNA-Seq) at an unprecedented high 

speed. RNA-Seq using the feature of NGS is a powerful way to survey gene 

expression levels with low background noise and large dynamic range (Wang et al., 

2009). Another attractive advantage of RNA-Seq is that RNA-Seq can be utilized to 

functional genomics research in non-model organisms whose genomic sequences 

have not been fully determined by de novo transcriptome assembly (Haas and Zody, 

2010; Surget-Groba and Montoya-Burgos, 2010; Martin and Wang, 2011; Zhao et 

al., 2011). Therefore, RNA-Seq and de novo transcriptome assembly have been 

applied to several non-model plant species in order to characterize gene expression 

changes during plant development (Feng et al., 2012; Alkio et al., 2014), in response 

to biotic stress and pathogen infection (Rubio et al., 2014; Yates et al., 2014), or to 

reveal specific genes related to biosyntheses of plant specialized metabolites (Liu et 

al., 2013; Jung et al., 2014). 

The Parasitic Plant Genome Project (PPGP; http:// ppgp.huck.psu.edu/) has 

provided transcriptomic data, obtained by NGS technology, of key developmental 
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stages from seeds conditioning to anthesis in S. hermonthica and P. aegyptiaca to 

understand genetic changes associated with parasitism, and to contribute to the 

control of the parasitic weeds (Westwood et al., 2010; 2012). Moreover, mechanism 

of host plant–parasitic plant interaction has gradually become clear recently at 

genetic level through the de novo assembly of parasitic plant transcriptomes (Honaas 

et al., 2013; Ranjan et al., 2014). Thus, RNA-Seq analysis enables us to address a 

key question about parasitic plant evolution and mechanisms of unique 

developmental processes. 

The planteose metabolism in early stage of germination of O. minor seeds was 

shown as a promising target for selective control of root parasitic weeds in the 

Orobanchaceae as described in Chapters 2 and 3. In this study, de novo assembly of 

transcriptome in O. minor seeds at an early stage of germination process and the 

subsequent differential gene expression analysis between the germinating seeds and 

the NJ-treated seeds were performed to understand the inhibitory mechanism of NJ 

against O. minor seeds at molecular level, which is helpful in establishing the 

control method targeting the planteose metabolism. Moreover, genes that affected by 

NJ treatment should be important for germination of O. minor, therefore, 

physiological events associated with functions of these genes might be other 

potential targets for the selective control. 

 

4-2. Materials and methods 

4-2-1. Plant materials and purification of total RNA 

Seeds of O. minor were prepared as described in Chapter 2, 2-2-1. NJ-treated seeds 
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were prepared by addition of GR24 solution (1.0 mg·l-1) with NJ (10 µM) at the 

final day of conditioning. The conditioned seeds, germinating seeds and NJ-treated 

seeds (0.5, 3, 24, 48 h after GR24 treatment) were collected. Total RNA was 

extracted as described in Chapter 3, 3-2-6. More than 20 µg of total RNA was 

pooled and kept at –80°C. 

 

4-2-2. RNA sequencing 

RNA-Seq was performed by HiSeq2000 (Illumina, San Diego, CA) at BGI (Beijing, 

China) and paired-end reads (2×90 bp in length) were obtained. The RNA-Seq data 

were provided as FASTQ format. 

 

4-2-3. De novo transcriptome assembly 

The Trinity software package (version r2013-02-25) was used for the construction of 

a reference transcriptome (Grabherr et al., 2011; Haas et al., 2013). Transcriptome 

assembly was performed via DNA Data Bank Japan (DDBJ) Read Annotation 

Pipeline (Nagasaki et al., 2013). The command line used for assembly was Trinity.pl 

--seqType fq --JM 160G --bflyHeapSpaceMax 20G --bflyGCThreads 1 --CPU 8 

--left read_1.fastq --right read_2.fastq --output output_dir --min_contig_length 201. 

Subsequently, CD-HIT-EST with sequence similarity threshold of 95% was used to 

remove the redundant contigs (Huang et al., 2010). 

 

4-2-4. Differential gene expression analysis 

Each read was aligned to the reference transcriptome by Bowtie (v 1.1.1) using 
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following command line, bowtie -aS -X 800 --offrate 1 --phred64-quals reference 

transcripts -1 left read_1.fastq -2 right read_2.fastq (Langmead et al., 2009). 

Subsequently, alignment results obtained as Sequence Alignment/Map (SAM) 

format were converted to Binary Alignment/Map (BAM) format using SAMtools 

(Li et al., 2009). 

Differential gene expression analysis was carried out using TCC, an R 

package (Sun et al., 2013). The raw read counts were normalized with the 

iDEGES/DESeq method, and pairwise comparisons of gene expression were 

conducted with the DESeq program in R, which corresponds to the 

iDEGES/DESeq-DESeq pipeline in the previous report (Sun et al., 2013) to analyze 

two-group count data without replicates. The differentially expressed genes were 

identified with a false discovery rate (FDR) threshold of 0.05. 

 

4-2-5. Functional annotation of the differentially expressed contigs 

The contigs that were determined as differentially expressed were compared to the 

National Center for Biotechnology Information (NCBI) non-redundant (nr) database 

using BLASTX with an e-value threshold of 1e-3. 

 

4-3. Results 

4-3-1. De novo assembly of RNA-Seq data 

The scheme of de novo assembly and following analyses was described in Figure 17. 

Total RNAs from O. minor seeds at after conditioning (conditioned seeds), 0.5 h, 3 h, 

24 h and 48 h after GR24 treatment, and 0.5 h, 3 h, 24 h and 48 h after GR24 with 
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NJ treatment were extracted and purified. RNA-Seq was conducted and libraries 

each containing about 50 million clean paired-end reads (90 bp) with a high Q20 

percentage were obtained (Table 2). 

 

Table 2. Summary of RNA-Seq data. 

Sample Name Total Reads Total bases Q20 (%) GC (%) 

Conditioning 48,828,104 4,393,809,360 98.18 47.24 

GR0.5h 51,977,034 4,677,933,060 96.88 45.64 

GR3h 51,683,432 4,651,508,880 96.82 45.8 

GR24h 50,768,506 4,569,165,540 97.14 44.88 

GR48h 484,469,10 4,360,221,900 98.25 46.9 

NJ0.5h 51,394,680 4,625,521,200 96.96 45.7 

NJ3h 51,634,450 4,647,100,500 96.82 45.69 

NJ24h 50,140,132 4,512,611,880 97.09 45.03 

NJ48h 48,478,574 4,363,071,660 99.12 45.43 

 

A reference genome or transcriptome sequence of O. minor was not available 

therefore de novo assembly with Trinity software package (Grabherr et al., 2011; 

Haas et al., 2013) was utilized to generate a reference transcriptome sequence. A 

total of 97,275,014 reads from libraries of conditioned seeds and seeds 48 h after 

GR24 treatment were de novo assembled then a total of 119,181 contigs (length > 

200 bp) with N50 of 1.5 kb, and an average length of 951 bp were obtained 

(Om-seed-transcripts). Subsequently, in order to reduce redundant contigs contained 

in Om-seed-transcripts, CD-HIT-EST software (Huand et al., 2010) was used with a 

sequence similarity threshold of 95 %, then a total of 105,904 contigs with N50 of 

1.4 kb, and an average length of 868 bp were obtained 

(Om-seed-‘CD-HIT-EST’-transcripts) (Table 3).  
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Table 3. Assembly statistics of transcriptome of O. minor seeds. 

Parameters Om-seed Om-seed-‘CD-HIT-EST’ 

Total length (Mb) 113 92 

Number of contigs 119,181 105,904 

Average length (bp) 952 868 

Median length (bp) 600 525 

Max length (bp) 13,486 13,486 

Min length (bp) 202 202 

N50 (bp) 1,542 1,422 

 

4-3-2. Analysis of differential gene expression in NJ-treated O. minor seeds 

As described in Chapters 2 and 3, NJ has the selective inhibitory effect on 

germination of O. minor affecting the metabolism in the early stage of germination. 

To reveal the molecular mechanism of the inhibitory effect of NJ, and to investigate 

the essential gene expression for the germination, short reads from the GR24-treated 

and the NJ-treated seed libraries were aligned to the reference transcriptome by 

Bowtie software (Langmead et al., 2009). Tag count data obtained from mapping 

reads with Bowtie was used for identification of differentially expressed contigs by 

iDEGES/DESeq pipeline in TCC, an R package (Sun et al., 2013). The differential 

gene expression analysis was conducted by comparing the tag count data of the 

GR24-treated and NJ-treated seed samples at the same time point using FDR < 0.05 

as a cutoff value (Fig. 17). 
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Figure 17. Scheme of de novo assembly and differential gene expression analysis. 

 

The differentially expressed contigs were queried against the NCBI nr database with 

the BLASTX algorithm with an e-value cutoff of 1e-3. Consequently, 54 contigs 
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expressions of contigs encoding sugar transporters [hexose transporters and 
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protein, and β-amylase chloroplastic-like protein. In addition, the expressions of 

contigs encoding kinase (receptor-like cytosolic serine/threonine-protein kinases, 

LRR receptor-like serine/threonine-protein kinase, and CBL-interacting 

serine/threonine-protein kinase 23 isoform X1) and phosphatases (protein 

phosphatase 2C 29-like, and probable protein phosphatase 2C 63), which may be 

involved in signal transduction, were affected by NJ treatment. Notably, it was 

revealed that the expression of kinases promptly decreased in response to 

germination stimulant 3 h after GR24 treatment in the presence of NJ (Table 4).  
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Table 4. List of differentially expressed contigs in the NJ-treated seeds. 
Down-regulated 

Contig ID Time point Length (bp) Log (fold change) Gene annotation 

comp65741_c0_seq1 

0.5 h (24 

h-down, 48 

h-up) 

640 -2.817 Ycf1, partial 

comp63347_c0_seq1 

0.5 h (24 

h-down, 48 

h-up) 

2441 -1.241 Ycf1, partial 

comp67108_c7_seq21 0.5 h 3672 -0.985 
Cytochrome oxidase subunit 1, 

partial (mitochondrion) 

comp67108_c5_seq1 0.5 h 2145 -0.935 
ATPase subunit 1 

(mitochondrion) 

comp61840_c0_seq1 

0.5 h (24 

h-down, 48 

h-up) 

351 -0.743 Ycf1 (chloroplast) 

comp68209_c0_seq1 0.5 h 956 -0.683 Thioredoxin 

comp167704_c0_seq1 3 h 394 -5.332 

Receptor-like cytosolic 

serine/threonine-protein kinase 

RBK2 

comp232524_c0_seq1 3 h 918 -5.182 

Receptor-like cytosolic 

serine/threonine-protein kinase 

RBK2 

comp67927_c3_seq78 3 h 701 -4.991 

Probable LRR receptor-like 

serine/threonine-protein kinase 

At1g07650 

comp46787_c0_seq1 3 h (0.5 h-up) 1180 -3.165 
Axoneme-associated protein 

mst101 like 

comp33755_c0_seq1 3 h (0.5 h-up) 899 -2.634 

21-kDa protein, Plant 

invertase/pectin 

methylesterase inhibitor 

superfamily protein 

comp34798_c0_seq1 3 h (0.5 h-up) 2566 -2.430 COBRA-like protein 7 

comp55520_c0_seq1 3 h 1283 -2.233 Nucleic acid binding protein 
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Table 4. (continued) 
comp68818_c0_seq1 3 h (0.5 h-up) 1839 -2.184 Hexose transporter 1 

comp66368_c2_seq2 3 h 907 -2.166 
GAG-protease-integrase-RT-R 

polyprotein 

comp46528_c1_seq1 3 h 1019 -1.991 Dehydrin 

comp66762_c1_seq66 3 h 749 -1.917 Phosphatidylserine synthase 

comp70500_c0_seq1 3 h 407 -1.640 
CDP-diacylglycerol—glycerol-3

-phosphate 3, partial 

comp67904_c0_seq9 3 h 1563 -1.511 NAD-malic enzyme 

comp64195_c0_seq6 3 h 1004 -1.289 
Ribosomal RNA processing 

protein 36 homologue 

comp56494_c1_seq2 3 h 1623 -1.217 GATA transcription factor 8-like 

comp67639_c0_seq1 3 h 2272 -1.145 

CBL-interacting 

serine/threonine-protein kinase 

23 isoform X1 

comp65305_c0_seq6 3 h (0.5 h-up) 1699 -1.092 Protein notum homologue 

comp66745_c1_seq3 3 h 992 -1.066 
Bidirectional sugar transporter 

SWEET7-like 

comp66991_c0_seq14 3 h 1664 -1.049 
HNH endonuclease 

domain-containing protein 

comp71418_c0_seq1 3 h 1955 -1.024 
beta-1,4-xylosyltransferase IRX 

14-like 

comp34670_c0_seq1 3 h 5257 -0.993 
Myosin heavy chain family 

protein 

comp67895_c0_seq11 3 h 745 -0.950 Protein phosphatase 2C 29-like 

comp68092_c0_seq68 3 h 1381 -0.948 Phospholipase D 

comp66650_c2_seq20 3 h 1623 -0.855 

Peroxisomal fatty acid 

beta-oxidation multifunctional 

protein AIM1-like 

comp33690_c0_seq1 3 h 1516 -0.814 Activating signal cointegrator 1 

comp46425_c0_seq1 3 h 785 -0.784 Glutathione s-transferase 

comp34256_c0_seq1 3 h 1886 -0.738 NRT1 PTR family protein 

comp67192_c1_seq3 3 h 1612 -0.733 GRF-interacting factor 3-like 
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Table 4. (continued) 

comp63809_c1_seq1 3 h 1180 -0.707 
Dead-box ATP-dependent RNA 

helicase 46-like 

comp69983_c0_seq1 3 h 1999 -0.686 
Transcription initiation factor 

TFIID subunit isoform 1 

comp36170_c0_seq2 3 h 1615 -0.682 Annexin D5-like 

comp47044_c0_seq1 3 h 4025 -0.655 T-complex protein 11-like 

comp65468_c1_seq2 3 h 1797 -0.643 NADAP-malic enzyme 

comp65741_c0_seq1 

24 h (0.5 

h-down, 48 

h-up) 

640 -2.313 Ycf1, partial 

comp60645_c1_seq1 24h 968 -1.616 
U-box domain-containing 

protein 19-like 

comp67258_c0_seq1 24h 888 -1.448 Histone-like 

comp34108_c0_seq1 24h 1150 -1.330 Protein exordium-like 2 

comp68369_c0_seq1 24h 1085 -1.089 Translocator homologue 

comp63347_c0_seq1 

24 h (0.5 

h-down, 48 

h-up) 

2441 -0.974 Ycf1, partial 

comp68183_c0_seq1 24h 1203 -0.938 Maturation protein pPM2 

comp45446_c1_seq1 24h 1273 -0.869 
Probable BOI-related E3 

ubiquitin-protein ligase 3 

comp69179_c0_seq1 24h 1497 -0.857 NINJA-family protein AFP3-like 

comp61840_c0_seq1 

24 h (0.5 

h-down, 48 

h-up) 

351 -0.663 Ycf1 (chloroplast) 

comp34638_c0_seq1 24h 3401 -0.644 F-box protein PP2-A15-like 

comp60668_c0_seq1 48h 566 -7.021 MLP-like protein 328 

comp65763_c1_seq1 48h 1480 -6.164 Methionine gamma-lyase-like 

comp82286_c0_seq1 48h 674 -6.139 

21-kDa protein, Plant 

invertase/pectin 

methylesterase inhibitor 

superfamily protein 
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Table 4. (continued) 

comp35210_c0_seq1 48h 970 -6.034 
Bidirectional sugar transporter 

SWEET12-like 

comp62700_c2_seq1 48h 1560 -6.034 Beta-amylase chloroplastic-like 

comp77546_c0_seq1 48h 1576 -2.818 Basic 7s globulin-like 

comp68114_c0_seq1 48h 887 -2.429 40s ribosomal protein s30 

 

 
UP-regulated 

Contig ID Time point Length (bp) Log (fold change) Gene annotation 

comp46787_c0_seq1 0.5 h (3 h-down) 1180 3.259 
Axoneme-associated protein 

mst101 like 

comp45573_c0_seq1 0.5 h 699 3.200 
Nudix hydrolase 

mitochondrial-like 

comp34798_c0_seq1 0.5 h (3 h-down) 2566 2.842 COBRA-like protein 7 

comp33755_c0_seq1 0.5 h (3 h-down) 899 2.782 

21-kDa protein, Plant 

invertase/pectin methylesterase 

inhibitor superfamily protein 

comp68818_c0_seq1 0.5 h (3 h-down) 1839 2.565 Hexose transporter 1 

comp59432_c0_seq2 0.5 h 1440 2.552 
Probable 

galacturonosyltransferase 

comp65474_c0_seq3 0.5 h 1502 2.387 F-box protein At1g30790-like 

comp70283_c0_seq1 0.5 h 627 2.061 
Probable calcium-binding 

protein CML 

comp67089_c1_seq3 0.5 h 1834 1.712 Nuclease HARBI 1 

comp65219_c0_seq4 0.5 h 1317 1.627 
Probable protein phosphatase 

2C 63 

comp64688_c0_seq3 0.5 h 250 1.120 Polyubiquitin-like protein 

comp65305_c0_seq6 0.5 h (3 h-down) 1699 1.108 Protein notum homologue 

comp55520_c0_seq1 0.5 h 1283 1.073 Nucleic acid binding isoform 2 

comp70252_c0_seq1 0.5 h 2245 0.856 
Probable transcription factor 

PosF21 

comp46435_c0_seq2 0.5 h (3 h-up) 644 0.806 60s ribosomal protein L39 

comp66369_c0_seq11 3 h (48 h-up) 282 1.182 Probable histone 
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Table 4. (continued) 
comp46435_c0_seq2 3 h (0.5 h-up) 644 0.942 60s ribosomal protein L39 

comp64239_c0_seq3 24 h 2111 0.754 Glycine dehydrogenase 

comp68856_c0_seq1 24 h 676 0.675 LYR motif-containing protein 

comp65741_c0_seq1 
48 h (0.5 h and 

24 h-down) 
640 6.470 Ycf1, partial 

comp61150_c0_seq2 48 h 338 6.422 

Acetyl-CoA carboxylase 

carboxyltransferase beta 

subunit (chloroplast) 

comp63347_c0_seq1 
48 h (0.5 h and 

24 h-down) 
2441 3.189 Ycf1, partial 

comp54688_c0_seq1 48 h 223 3.149 
UDP-glycosyltransferase 

86A1-like 

comp61593_c3_seq1 48 h 1042 3.066 
Ribosomal protein S14 

(chloroplast) 

comp61840_c0_seq1 
48 h (0.5 h and 

24 h-down) 
351 2.684 Ycf1 (chloroplast) 

comp66369_c0_seq11 48 h (3 h-up) 282 2.585 Probable histone 
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4-4. Discussion 

The NGS technology contributes considerably to discover the genes regulating 

growth and development in non-model plants. In this chapter, a comprehensive 

transcriptome was built from RNA-Seq data of seeds of O. minor after conditioning 

and 48 h after GR24 treatment. The contig N50 is the length of the smallest contig in 

the set that contains the fewest (largest) contigs whose combined length represents at 

least 50% of the assembly (Miller et al., 2010). The assembled reference 

transcriptome showed the remarkably higher N50, achieving 1,422, and the average 

length (Table 3) than those of the published unigene data of conditioned seeds 

(OrAe0GB1) and germinated seeds (OrAe0GB1) of P. aegyptiaca (obtained from 

PPGP; http:// ppgp.huck.psu.edu/), therefore, I established the comprehensive data 

of substantially longer transcripts in broomrape seeds, which is helpful for obtaining 

open reading frames and functional annotations (Table 5). 

 

Table 5. Assembly statistics of transcriptome of P. aegyptiaca conditioned 

(OrAe0GB1) and germinated (OrAe1GB1) seeds obtained from PPGP. 

Parameters OrAe0GB1 OrAe1GB1 

Total length (Mb) 28 40 

Number of contigs 72,042 121,129 

Average length (bp) 384 326 

Median length (bp) 285 266 

Max length (bp) 5,295 3,704 

Min length (bp) 200 84 

N50 (bp) 397 318 
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Previous transcriptomics with NGS technology in seeds of root parasitic 

weeds in the Orobanchaceae used completely germinated seeds (Westwood et al., 

2012). The assembled reference transcriptome in this study reflects the information 

of gene expression during a very short term after GR24 treatment including 

strigolactone-responsive genes associated with transition from conditioning to 

germination process. Moreover, it was considered that a comparative analysis of 

gene expression with the germinating and the NJ-treated seeds is useful to clarify 

key regulatory genes for the germination because NJ has the selective and strong 

inhibitory activity against the seed germination, which may result from inhibition of 

the specific germination mechanisms in the root parasitic weeds. The candidate 

genes involved in the seed germination of O. minor was found in the differentially 

expressed contigs in the NJ-treated seeds. It was predicted that expression of sugar 

metabolism related contigs should be changed because NJ interfered with sugar 

metabolism resulting inhibition of the germination as described in Chapter 3. NJ 

altered the expression of contigs encoding sugar transporters, plant invertase/pectin 

methylesterase inhibitor superfamily proteins and a β-1,4-xylosyltransferase protein 

as cell wall structure modification enzymes, and a β-amylase as polysaccharide 

degrading enzyme. 

For example, the expression of SWEET12 homologue significantly decreased 

in the NJ-treated seeds 48 h after GR24 treatment. A sugar transporter of 

Arabidopsis, AtSWEET12, localizes to the plasma membrane of the phloem and 

transports sucrose during apoplastic phloem loading by exporting sucrose from 

phloem parenchyma cells, and in double mutant plants carrying insertions both in 
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AtSWEET11 and 12 leaf assimilate exudation was reduced leading to increased 

sugar accumulation in the leaves (Chen et al., 2012). The down-regulated expression 

of SWEET12 by NJ treatment in O. minor seeds may cause the alteration of the 

sugar metabolism by inhibition of sucrose transport. However, expression level of 

AtSWEET12 was low in germinated seeds of Arabidopsis (Chen et al., 2012), 

therefore, the expression profile of AtSWEET12 homologous gene in seeds of O. 

minor may be a characteristic to the root parasitic weeds and a promising candidate 

for the control of germination. 

In addition, the expressions of contigs encoding some kinases decreased 

promptly after perception of GR24 in the NJ-treated seeds. The identified kinase 

showing significantly decreased expression is known as a receptor-like kinase 

(RLK) or a receptor-like cytosolic kinase (RLCK). The plant RLK was firstly 

identified in maize (Zea mays) (Walker and Zhang, 1990), and subsequently, several 

RLKs were isolated from Arabidopsis (Chang et al., 1992; Kohorn et al., 1992; 

Walker, 1993). The Arabidopsis genome sequence has revealed a surprisingly 

extensive array of receptor-like kinase (RLK) genes and it was reveled that 

Arabidopsis contained more than 400 RLKs and 200 RLCKs (Shiu and Bleecker, 

2001). Theses RLKs are known to function in various aspects of development and 

plant defense (Becraft, 2002; Morris and Walker, 2003), however, germination 

regulating RLKs or RLCKs were not found to the present. The identified RLKs and 

RLCKs in the NJ-treated seeds may have function as germination inducers, and 

further intensive study will promote a better understanding of the germination 

mechanism and contribute to the advancement of germination control. 
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Finally, further data analysis focusing on time course of transcriptional 

changes in early germination process of O. minor will provide insight into the 

molecular mechanism such as regulatory mechanisms regulated by 

strigolactone-responsive genes and detailed sugar use in the characteristic 

germination process of root parasitic weeds in the Orobanchaceae, and that 

characteristic mechanisms are expected as the clues for searching other targets for 

the control. 
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Chapter 5   General conclusion 

Whereas the chemical control of root parasitic weeds in the Orobanchaceae 

representing use of herbicides showed effectiveness to some extent, it still has 

difficulty in their selectivity. Systemic herbicides may be effective for control of 

root parasitic weeds because the herbicides can translocate from hosts to the 

parasites through the conductive tissue of the parasites directly connected to those of 

hosts. Systemic herbicide such as EPSPS, ALS inhibitors were used for Orobanche 

and Phelipanche control, and systemic herbicide dicamba and hormonal herbicides 

2,4-dichlorophenoxyacetic acid were used for Striga control (Aly, 2007). However, 

these are non-selective herbicides, thus, damage to host plants is concerned unless 

the hosts are herbicide-resistant plants. Additionally, the herbicide treatment to the 

root parasitic weeds after the aboveground emergence is too late to prevent yield 

losses of host plants because most of the damage to the hosts has already occurred 

underground (Eizenberg et al., 2006). Thus, regulation of the root parasitic weeds in 

underground is essential for the effective control in infested areas. In this thesis, a 

novel target site by chemical control was searched, and the germination process, key 

developmental stage in underground, was focused on. It was considered that the 

control method by inhibition of the germination solves the problems described 

above. Previous results showing involvement of structurally unknown trisaccharide 

in germination of O. minor seeds and selective inhibitory effect of NJ, a glycosidase 

inhibitor, on the germination indicated the relationship between the NJ inhibitory 

effect and the trisaccharide metabolism in germination (Joseph et al., unpublished), 

and the possibility of the trisaccharide metabolism as a target for the selective 
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control. Therefore, I aimed to elucidate the role of the trisaccharide in germination 

of O. minor, and to evaluate the effect of NJ on the trisaccharide metabolism. 

In Chapter 2, the unknown trisaccharide was identified as planteose. The 

amount of planteose in O. minor seeds decreased during germination and the 

amounts of glucose and fructose, constituent monosaccharide of planteose, increased 

inversely. This planteose metabolism was conserved in seeds of weedy broomrapes, 

O. crenata and P. aegyptiaca, and a witchweed, S. hermonthica, suggesting that root 

parasitic weeds in the Orobanchaceae have common sugar metabolism during 

germination. 

In Chapter 3, inhibitory effect of NJ and other glycosidase inhibitors 

structurally similar to NJ on germination was studied in detail. NJ showed strong 

reduction of germination rate of O. minor seeds in a dose-dependent manner, 

however, a compound exhibiting the same effect as NJ was not found among tested 

inhibitors. The inhibitory effect of NJ on germination was associated with change of 

sugar metabolism. NJ inhibited the germination by altering sucrose degradation in 

the planteose metabolic pathway, which caused by suppression of the activities of 

INVs. Therefor, the importance of planteose metabolism in seed germination of O. 

minor was shown. It was considered that NJ inhibits activities of INVs indirectly 

because the activities were not inhibited by NJ in vitro. 

Moreover, inhibitory activity of NJ on germination against other root parasitic 

weeds in the Orobanchaceae and non-parasitic plants containing planteose was 

studied. NJ did not inhibited germination other than O. minor, but NJ inhibited the 

radicle or root elongations in some plants. The order of sensitivity of tested plants to 
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NJ was the reverse order of evolutionary process of parasitism, which suggested that 

sugar metabolism or a regulatory mechanism of sugar metabolism targeted by NJ is 

changed according to acquisition of parasitism. Considering the strong inhibitory 

effect of NJ on germination of O. minor and the small effect on non-parasitic plants, 

the inhibitory site targeted by NJ is a promising target for selective control. 

Additionally, this target could be applied to other weedy root parasitic weeds, 

especially broomrapes, because of the similarity of their sugar metabolism during 

germination, which may be inhibited by NJ treatment. Therefore, chemical control 

of the planteose metabolism could provide new, specific methods to control the root 

parasitic weeds. 

In Chapter 4, de novo assembly of transcriptome in O. minor seeds and 

differential gene expression analysis in the NJ-treated seeds were conducted in order 

to understand the molecular mechanisms associated with the inhibition of 

germination by NJ, and to find out other targets that can control the germination. NJ 

altered the expression of genes encoding sugar transporters, cell wall structure 

modification enzymes, and polysaccharide degrading enzymes. It was considered 

that the down-regulated SWEET12 homologous in the NJ-treated seeds was related 

to the alteration of sugar compositions caused by NJ treatment because the present 

result of sugar profile in the NJ-treated O. minor seeds was corresponding to the 

previous result showing the accumulated sucrose level in leaves of the double 

mutant atsweet11, 12 in Arabidopsis (Chen et al., 2012). Moreover, the result 

showing that SWEET12 is expressed in seeds of O. minor but low in seeds of 
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Arabidopsis indicates the importance of this sucrose transporter in seeds of the root 

parasitic weeds, and a possibility of SWEET12 as a candidate target for the control. 

This is the first study showing planteose metabolism in root parasitic weeds in 

the Orobanchaceae, and selective inhibition of germination of O. minor by a 

chemical targeting the metabolism in the germination process. It is difficult to use 

NJ itself as a selective herbicide for the root parasitic weeds because NJ is unstable 

in aqueous solution and its action spectrum may be wide. To develop the selective 

herbicide, it is necessary to clarify the site of action of NJ, and to establish a simple 

experimental system which can screen the compounds inhibiting the target site(s) 

with similar activity to NJ. The actual target site of NJ associated with sucrose 

degradation in the planteose metabolism is still unknown, but further elucidation of 

the mechanism of disrupting effect of NJ on sugar metabolism as a possible target 

for selective chemical control is next challenge to open the way for a new 

technology in the root parasitic weed control.  
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