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NOMENCLATURE 

 

 

 ோ Rudder areaܣ

 ௅ Lateral projected areaܣ

 Transverse projected area ்ܣ

 ை஽ Lateral projected area of superstructure + otherܣ

tanks on deck 

ARef Effective rudder area ratio 

ANN Artificial Neural Network 

,௡ܣ  ,௠ Activation value of a unit n and m in hidden layerܣ

respectively 

ܽு Ratio of lateral force induced on hull by rudder to 

rudder normal force 

B Breath of a ship 

b Breath of a rudder 

ܾ௡, ܾ௠ Threshold value of a unit n and m in the hidden 

layer, respectively 

ܾ௟ Threshold value of a unit l in the output layer 

CLR Centre of lateral resistance 

C Distance from midship to centroid of lateral 

projected area 

CG Centre of gravity 

CBR Distance from midship to centre of superstructure 

area 

CX Coefficient of fore and aft component of wind force 

CY Coefficient lateral component of wind force 

CN Coefficient of wind-induced yawing moment 

C1, C2, C3 Coefficients for PID controller 

DCPA Distance of the closest point of approach 

DCPA’ Non-dimensionalised value of DCPA 
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dH Draught moulded at midship 

Dp Propeller diameter 

d1 Distance to imaginary line 

d2 Remained distance to berthing point 

e Vector of network errors 

f Rudder normal force coefficient 

 ே Rudder normal forceܨ

GPS Global positioning system 

g Gravity acceleration 

h Rudder height 

HBR Height from load water line to top of superstructure 

HC Height to the centre of lateral projected area 

 ை Activation value of a unit o in the input layerܫ

Izz Mass moment of inertia 

Jzz Added mass moment of inertia 

J Advance of propeller (ൌ  (௉ܦ݊/௉ݑ

Jm Jacobian matrix 

k A constant above water surface 

KT Thrust coefficient 

Kn Gain constant 

Lpp Ship length between perpendiculars 

 ை஺ Length overallܮ

MSE Mean squared error 

M An assigned integer number 

݉௫ Added mass in surge direction 

݉௬ Added mass in sway direction 

n  Engine revolution per second 

NLP Nonlinear programming 

ܰௐ Yawing moment due to wind force 

௟ܱ Activation value of a unit l in the output layer 

P Pitch at 0.7 R 
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p Pitch ratio at 0.7 R 

s Scale  

Sa Wetted surface area 

sg Sigmoid function 

Tu Time constant 

TCPA Time to closes point of approach 

TCPA’ Non-dimensionalised value of TCPA  

T Propeller thrust force 

tp Effective thrust deduction factor 

u Surge velocity 

U(t) Ship speed 

U10 Average wind velocity at 10m high above water 

surface 

UR Effective relative inflow velocity to rudder 

 ோ Effective relative inflow velocity in longitudinal toݑ

rudder 

 ௉ Effective relative inflow velocity in longitudinal toݑ

propeller 

v Sway velocity 

VR Relative wind speed 

W Point of influence of wind 

௡ܹ,௢ Weight on the link form unit o to unit n 

௠ܹ,௡ Weight on the link form unit n to unit m 

௟ܹ,௠ Weight on the link form unit m to unit l 

 ௣ Effective wake fraction on straight runningݓ

ܺ଴௠	~	ܺହ௠, 

଴ܻ௠	~	 ଷܻ௠, 

଴ܰ௠	~	 ଷܰ௠ 

Coefficients for Fujiwara wind model 

 

 ு X-coordinate of centre of lateral force induced onݔ

hull by rudder interaction. 

 ோ X-coordinate at the position of a rudderݔ
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 Non dimensional frequency ݔ́

ܺு, ுܻ, ܰு	 Hydrodynamic forces and moments acting on ship 

hull 

ܺ௉, ௉ܻ, ௉ܰ Hydrodynamic forces and moments due to 

propeller 

ܺோ, ோܻ, ோܰ Hydrodynamic forces and moments due to rudder 

ܺ௪, ௪ܻ, ܰ௪ Aerodynamic forces and moments due to wind 

x Vertical distance to berthing point form present 

ship position 

y Horizontal distance to berthing point form present 

ship position 

Z Number of blades 

  Ship heading 

߰ூ, ߰ௗ Order of course change 

߰ଵ Course of the shortest path to the next WP 

߰ଶ Course of the shortest path to the second next PP 

ሶ߰  Yaw rate 

߰ௐோ Realive wind direction 

 ௢௥ௗ௘௥ Order rudder angleߜ

δ Actual rudder 

Δa Displacement 

Λ Aspect ratio of rudder 

θ Encountering angle of way point from vertical axis 

α Bearing angle of waypoint from the ship 

 Aspect ratio ߣ

μ Scalar value 

 Density of water ߩ

 ௔ Density of airߩ
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Chapter 1 : INTRODUCTION 

 

1.1 Background and Objectives 

 

The ever-increasing modern technologies often demand a promising solution of 

highly demanding control problems. The evolution in the control area has been fuelled 

by three major needs. One for the need to deal with increasingly complex systems, 

second for accomplishing increasingly demanding design requirements and the last one 

for the need to attain these requirements under increased uncertainty. Although the 

conventional approaches have been proposed for such control problems, successful 

applications can only be found within well-constrained environment. As a result, 

numerous advancements have been made in developing the intelligent systems. One of 

them is inspired by human’s central nervous system called artificial neural network 

(ANN).  

Since ANN consists of several interconnected simple nonlinear systems that are 

typically modelled by the transfer function, it has the capability to replicate human 

brains and perform the same action that a human brain does in any particular situation. 

Regarding the potential of neural network for learning complicated behaviour of any 

nonlinear system, researchers from several disciplines are now designing ANN to solve 

different problems. Considering the advantages of artificial neural network, the first 

research using ANN as a controller was done by Yamato et al. (1) and it was for 

automatic ship berthing. Later on, Fujii and Ura (2) confirmed the effectiveness of ANN 

as a controller using both supervised and non-supervised learning system for 

autonomous under water vehicles (AUVs). After that, ANN was used in different 

controlling aspect like temperature control (Cui et al. 3), process control (Lee et al. 4), 

paper mill wastewater treatment control (Zeng et al. 5), engine air/fuel ratio control 

(Zhau et al. 6) etc. The ANN together with Fuzzy logic also created another field of 

research for hybrid controller as Aoyama et al. (7) used it for process control and Di et 

al. (8) used it for arc welding. The ANN was tried for self-tuning control systems by 

Ponce et al. (9) where previous training was not required and some changes in the set 

point were enough to adjust the learning coefficient. A nice description of controlling 
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nonlinear system using neural networks was given by Zilkova et al. (10) by 

demonstrating the induction motor control based on the principal of system inverse 

model. In the same year, an adaptive fuzzy neural network (FNN) was proposed to use 

for ship course tracking by Zhang et al. (11) where he used the FNN estimator to 

estimate the uncertainties and designed a robust controller to compensate the 

shortcoming of the FNN back-stepping controller. For the same purpose, Liu et al. (12) 

proposed an adaptive robust controller based on ANN for under actuated surface vessels. 

Some research studies also found focussing on using robust adaptive NN-based 

feedback control for a dynamic positioning of ship as explained by Yang et al. (13). 

For automatic ship berthing, after Yamato et al., Hasegawa and Kitera (14) and Im 

and Hasegawa (15, 16) continued the research. Hasegawa and Kitera proposed the ANN 

controller combined with expert system to assist ANN, while Im and Hasegawa 

proposed separate controllers instead of a centralised one for rudder and propeller 

revolution outputs, respectively. In case of wind disturbances, Im and Hasegawa also 

proposed a motion identification method using ANN for detecting ship’s lateral velocity 

and yaw rate. Then, based on two rule-based adjusters for the corresponding, the 

necessary action was taken. Using this procedure, although Im and Hasegawa succeeded 

to berth the ship in limited wind velocity, in case of wind blowing parallel to the ship’s 

direction, results were not fruitful. Later on, the proposed research theme was tried to 

upgrade by putting weights on the creation of teaching data. Some adopted human 

knowledge for creating teaching data and some used standard manoeuvring plan. 

However, in both cases, the consistency, i.e. similarity in teaching data was not ensured. 

Thus, the problem regarding to create teaching data in a consistent way and to 

investigate the capability of a properly trained ANN to cope with any possible wind 

disturbances remain unsolved. As a continuation of this research, recently Im et al. (17) 

proposed a new algorithm for automatic berthing using selective controller. In the 

proposed algorithm, Im divided the approaching ship area into several zones and used 

separately trained ANN to guide the ship from one zone to another. The main intention 

of this research was to make the ANN independent of particular port shape and 

predetermined approaching pattern. On the contradictory, Nguyen et al. (18) tried 

non-supervised learning system using adaptive ANN for automatic ship berthing where 
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the neural network controller was trained online using adaptive interaction technique 

without any teaching data and off-line training phase. As a conclusion, it is clear that 

none of the mentioned research studies put weight on the creation of consistent teaching 

data and judges the effectiveness of consistently trained ANN controller. In the 

meantime, Ohtsu et al. (19) proposed a new minimum time ship manoeuvring method 

using nonlinear programming (NLP). Using this method, the user can set desired 

equality and non-equality constraints for any type of ship manoeuvre. The proposed 

method is then used to create teaching data consistently for berthing by Xu and 

Hasegawa (20). However, the usage of too many constraints as a termination condition 

caused fluctuations in the optimised rudder angle output and it also provided difficulties 

during training the net. Therefore, even in no wind condition, ANN controller resulted 

some yaw moment left after course changing that was strong enough to divert the ship 

from its desired path during straight running. Thus, the results were not fruitful during 

low speed manoeuvre. Moreover, this research also considered limited direction of wind 

blowing together with uniform wind disturbances up to certain small limit while 

investigating the effectiveness of the controller in wind condition. In real cases, wind 

blows in gust form rather than uniform and severe wind may also blow from any 

possible direction during travelling with reduced manoeuvrability in low speed running, 

which have not been investigated yet in the case of berthing problem. Nevertheless, in 

case of wind disturbances, the propeller revolution was adjusted according to the 

requirement manually rather than by ANN. To improve such shortcomings, this thesis is 

highly focused on creating consistent teaching data using NLP method and then judge 

the effectiveness of the controller under wind disturbances without any manual 

interruption. 

 

1.2 Overview of this Thesis 

 

In this thesis, to ensure a safe and appropriate berthing manoeuvre, the 

manoeuvring plan is divided into three basic elementary manoeuvres that are course 

changing, step deceleration and propeller reversing. For course changing manoeuvre, 

using NLP method a concept named ‘virtual window’ is introduced. Such window 
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consists of gradually changing ship position as well as ship heading. To ensure 

minimum time manoeuvre, a ship with its initial heading is expected to start from a 

desired starting point of that window. Then, by taking the calculated rudder as proposed 

by the optimal method, it is guaranteed for each ship with different heading to reach the 

so-called imaginary line well ahead, which is 15 times of ship length (according to the 

IMO standard) from berthing goal point. Such line is usually imagined by most ship 

operators during the berthing manoeuvre to ensure safe guidance of their ships. For the 

first time, Kose and Hashizume (21) mentioned about such strategy in their paper when 

the authors analysed the manoeuvring of ships in harbours. This imaginary line, then 

serves as a goal during the optimisation and acts as a reference line for further descent. 

In this thesis, virtual window is constructed by considering four different rudder angles 

±10°, ±15°, ±20° and ±25° as non-equality constraints for minimum time course 

changing. Thus, each case has its limitation of maximum usage of rudder angle during 

the optimisation.  

After merging to the imaginary line, the ship is commanded to go straight by 

following the sequential telegraph order made by maintaining the speed response 

equation. Finally, the engine idling, which is followed by propeller reversing is tuned to 

stop the ship as close as possible to the berthing goal point. During the berthing 

manoeuvre, there is a known fact that the ship manoeuvrability reduces drastically in 

low speed. Therefore, whenever the ship runs straight along with the imaginary line and 

its velocity gradually reduces due to the drop in propeller revolution, the effect of wind 

disturbances becomes severe. If a ship motion is considered as signal and environmental 

disturbances as noises, then in low speed straight running the signal-noise ratio becomes 

low enough for any controller to separate the noises from actual ship motion. Thus, even 

ANN is trained to deal with wind disturbances, the differences in ship motion during 

regular speed and low speed is quiet large and uncertain due to such high noises. As a 

result, instead of ANN, a more robust feedback controller is preferable to take an 

adequate rudder angle to guide the ship in such situation. In this thesis, among different 

types of controllers, a modified version of PID (proportional-integral-derivative) 

controller is chosen to deal with it. Such controller can correct not only ship heading, 

but also the distance between the ship’s CG (centre of gravity) and the imaginary line. 
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As a result, even be a conventional PID controller, it plays a significant role due to its 

robust nature and works effectively than any other controller or rule based adjuster as 

IM et al. (16) used during low speed running. Finally, by combining such course 

changing and track keeping trajectories, a complete set of consistent teaching data is 

created.  

Using the consistent teaching data, two separate feed-forward multi-layered ANN 

controllers have been investigated to find the suitable number of hidden layers together 

with the appropriate number of neurons in each layer for rudder angle and propeller 

revolution outputs, respectively. Such suitability is determined by considering the 

minimum squared error (MSE) as evaluation function. The famous back propagation 

that is gradient descent algorithm is used during training process where the network 

weights move along the negative of the gradient of the evaluation function. 

After proper training, several simulations are done for different staring points on 

virtual window to judge the effectiveness of the trained controller, considering gust 

wind up to 1.5 m/s for an Esso Osaka model ship (15 m/s for full scale considering the 

same Froude number). However, in real cases, it would be extremely difficult to 

navigate a ship through a given starting point under environmental disturbances to start 

the berthing approach. Therefore, the networks are also tested for ship staring from 

some unexpected point within the constructed virtual window area. It means that the 

ship may start from any point on virtual window that belongs to different initial heading 

or from any arbitrary point as well. Since the ANN has its inherent interpolation ability 

and teaching data are consistent in nature, it is expected for the controller of rudder 

angle to take adequate action even the ship faces any unexpected situation. It is natural 

that some errors may remain after course changing in such cases. However, the PID 

controller is believed to make further corrections for heading and minimise the distance 

between the ship and imaginary line as well throughout its decent. Such cases are 

investigated in this thesis. Finally, to analyse the success rate of the proposed controller, 

Monte Carlo simulations are done. The frequency distribution of the success indexes is 

then plotted to know the tendency. 

Although several simulations are done as mentioned above, many unknown 

situations may arise that cannot be simulated well before to judge the behaviour of the 
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controller. The first attempt to perform automatic ship berthing experiment using ANN 

was made by Nakata et al. (22) but unfortunately the success rate was very low due to 

improper training. Considering such fact and to demonstrate the virtual window concept, 

the consistently trained neural networks are then implemented in the free running 

experiment system to perform automatic ship berthing experiment. Initially, the 

experiments are carried out for desired starting points on virtual window. These results 

are then arranged into some groups depending on the similarities of network’s 

behaviour or the resulting trajectory pattern. The possible reasons of such behaviour are 

also investigated for different initial conditions as well as wind disturbances. Later on, 

several experiments are carried out for ship stating from arbitrary points to judge the 

controller’s robust nature. In such cases too, the network for rudder command has found 

to behave in a similar way as starting from the desired point on virtual window. 

In this thesis, the goal point of the proposed controller is set to a temporary berth to 

ensure the safety. Therefore, to execute the crabbing motion as a last stage of berthing 

operation, automatic tug assistance is introduced. Initially, to develop a controller for 

side thrusts/tugs assistance, ANN has been investigated as explained by Tran and Im 

(23) under no wind condition. However, considering the wind that is mostly 

unpredictable, there is no other easy way to maintain consistency in teaching data that is 

very important to ensure the effective ANN controller. As a result, PD controller is 

given preference over ANN in such cases. Moreover, to control the forward motion, 

especially in wind, longitudinal thrust is also involved. The proposed controller is then 

used to shake hands with the current controller to align the ship with pier under 

maximum allowable wind disturbances.  

It is stated that the proposed ANN-PID controller works effectively while starting 

from any arbitrary point. However, it is better if the ship starts from its desired point on 

virtual window or near to it to avoid any abrupt behaviour. To do that, i.e. to guide the 

ship from its current state to a set point on virtual window, a waypoint controller based 

on fuzzy reasoning is discussed in this thesis. The fuzzy reasoning used for the 

waypoint controller is similar to that used for marine traffic collision avoidance system 

by Hasegawa (24, 25, and 26). Here, instead of collision risk, nearness is reasoned by 

the fuzzy controller. After guiding the ship up to its desired starting point, the proposed 
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ANN-PID controller is activated. Several experiments are done to judge the 

compatibility of these two controllers and the results are included. 

Finally, the thesis work can be concluded as follows: at first, the fuzzy reasoned 

waypoint controller is used to guide the ship from its current state to a set desired 

stating point. Then, the ANN-PID controller is activated to start the berthing approach. 

At last, the PD controlled thrusters provide relevant side and longitudinal thrusts to 

execute the crabbing motion and aligning the ship with the actual pier as a final step of 

berthing operation. All such controllers are found effective enough under wind up to 1.5 

m/s for Esso Osaka model 3-m model ship that is 15m/s for full scale considering the 

same Froude number. This 15 m/s is also considered as maximum limit to get the 

permission for berthing under windy condition in most ports of Japan  
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Chapter 2 : SUBJECT SHIP AND MATHEMATICAL MODEL 

 

2.1 Model Ship 

 

In this thesis, among the different types of model available, ‘Esso Osaka’ 3-m 

model is chosen. The main reason of choosing this model is the availability of large 

amounts of captive model test results as well as a physical model itself. Its details are 

given in Table 2.1. 

 

Table 2.1. Principal particulars of model and full-scale ship 

Items Ship model Full-scale ship 

Scale s  1/108.33  

Length between perpendicular  Lpp (m) 3.000 325.00 

Breadth moulded B (m) 0.48925 53.00 

Draught moulded at midship dH (m) 0.20114 21.73 

Wetted surface area Sa (m2) 2.358 27,680 

Displacement Δa  244.4kg 319,040t 

Propeller     

Diameter Dp (m) 0.08400 9.100 

Pitch at 0.7 R P (m) 0.06007 6.507 

Pitch ratio at 0.7 R p (non) 0.7151 0.7049 

Number of blades Z  5 5 

Rudder:  Rectangular in shape 

& Normal type in 

section 

  

  

Breadth b (m) 0.08308 9.0 

Height h (m) 0.1279 13.85 

Aspect ratio Λ (non) 1.539 1.539 

Effective rudder area ratio ARef (non) 1/56.66 1/56.66 

 

The Esso Osaka ship model used for berthing experiment is made of FRP 
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(fiber-reinforced plastic) and scaled as 1:108.33. Figure 2.1, shows the model used for 

the experiment purpose. 

 

 
Figure 2.1. Esso Osaka 3-m model 

 

2.2 Mathematical Model 

 

To use precise and accurate mathematical model is very important in this thesis. 

Based on the model’s predictability, the consistent teaching data are crated. Therefore, 

any inappropriate prediction will directly hamper the effectiveness of the trained 

controller. In this thesis, a modified version of mathematical model based on MMG is 

used for describing the ship hydrodynamics in three degrees of freedoms in this thesis. 

In the MMG model, not only hull, propeller and rudder forces are considered separately, 

but their interactions are also taken into account. This MMG model can predict both 

forward and astern motion of ship for any particular rudder angle and propeller 

revolution. The corresponding equations of motions at CG (centre of gravity) of the ship 

are expressed in Equation 2.1.  
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where, XH, YH, NH are hydrodynamic forces and moments acting on a hull, XR, YR, NR 

are hydrodynamic forces and moments due to rudder, XP, YP, NP are hydrodynamic 

forces and moments due to propeller and XW, YW, NW are aerodynamic forces and 

moments due to wind. 

The corresponding expressions for calculating the forces and moments are listed in 

Appendix A for both forward and astern motion. In case of forward motion, the 

hydrodynamic coefficients are determined by curve fitting through the captive model 

test results (27) for drift angle, β =20° to -20°. On the other hand, the reversing 

mathematical model is prepared by considering a larger drift angle. Details of such 

mathematical model can be found in the 23rd ITTC meeting report (28) and Ueda and 

Ueno’s (29) paper on Esso Osaka. 

To consider the influence of wind disturbances during ship manoeuvring, famous 

Fujiwara wind model (30) is used for calculating the wind forces and moment. Equation 

2.2 is used for such calculation. 

 

OALRNW

LRYW

TRXW

LAVCN

AVCY

AVCX

2

2

2

2

1
2

1
2

1













 
(2.2)

 

where, LOA is length overall of the ship, AT is transverse projected area of the ship, AL is 

lateral projected area of the ship, VR is relative wind speed, XW is fore-aft component of 

wind force, YW is lateral component of wind force, NW is yawing moment and CX, CY, 

CN are the coefficients calculated using Fujiwara’s model.  

A simple way of considering the wind effect on ship manoeuvring motion is to 

apply uniform wind load. Previous research studies on ship berthing often considered 

such uniform wind velocity. However, to create a realistic environment in simulation, 

fluctuating wind pattern, i.e. gust wind should be considered. In this thesis, Equation 2.3 

is used to make an irregular wave pattern by using power spectral density function S(ω). 
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The power spectrum of wind expressed by Davenport (31) is used as follows: 
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where, M is an assigned integer number, k = 0.003 above the water surface, U10 is the 

average wind velocity at 10m high above the water surface and x is non dimensional 

frequency
10

600

U


 .  

Thus, by using inverse Fourier transformation, the time series of fluctuating wind 

is realised. In order to validate the predictability of the MMG model for course 

changing and straight running, several speed and turning experiments are carried out 

with Esso Osaka model ship and compared with the simulation results. Since the virtual 

window is created for four different rudder angles (used as non-equality constraint), 

turning tests are also performed for such rudder angles considering both port and 

starboard turn. Figure 2.2, shows the speed test result for different propeller revolutions 

where the experiment result seems to diverge from the simulation result with the 

increment of propeller revolution. However, within half ahead, i.e. propeller rps 14 

(used during course changing in this thesis), such deviation is well within considerable 

limit.  
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Figure 2.2. Speed test 

 

Figure 2.3 to 2.6 show the turning test results as compared with the simulation one. 

These tests are carried out for half-ahead speed that is used for course changing part in 

this thesis.  

 

 

 

Figure 2.3. Turning circle comparison for ±10° 
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Figure 2.4. Turning circle comparison for ±15° 

 

  
Figure 2.5. Turning circle comparison for ±20° 
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Figure 2.6. Turning circle comparison for ±25° 
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Chapter 3 : TEACHING DATA CREATION & TRAINING OF ANN 
 

3.1 Berthing Plan and Execution  

 

In this thesis, similar to aircraft landing, the berthing manoeuvre is planned to 

make first course changing from any given initial heading to a final desired ship 

heading. For this purpose, nonlinear programming (NLP) method for minimum time 

course changing is used. This NPL method for minimum time manoeuvring was also 

used by Okazaki and Ohtsu (32) for berthing purpose. In that study, a tracking controller 

was developed to follow the waypoint, target speed and heading in waypoint as a 

solution of the minimum time berthing problem. However, in this thesis, the NLP is 

used to ensure the final heading with no sway and yaw angular velocity and these 

constraints will align the ship to a reference line known as imaginary line. To imagine 

such reference line during berthing operation is usually a common practice for most 

ship operators. After merging to this line, the ship will keep its path and drop its speed 

according to the speed response equation. Then, the engine idling followed by propeller 

reversing will stop the ship at its desired zone. Since the optimisation is used for the 

course changing to ensure the final heading with no sway velocity and yaw rate, the 

ship is expected to go straight along with the reference line if there would no wind 

disturbances. However, in real situation considering the effect of wind in low speed 

running, PID is used as a feedback controller to minimise the ship deviation from 

imaginary line as well as correct the ship heading after course changing. 

Kose and Hashizume (21) proposed two concepts by analysing the manoeuvring 

procedure followed by the captain in case of real large ship to ensure safety. One is that 

the goal of berthing manoeuvre is supposed to be at some interval distance from pier 

instead of approaching the pier board to board. The second one is planning a manoeuvre 

that allows a well-to-do operation in case of any critical situation. 

In this thesis, to ensure Kose and Hashizume’s two proposed concepts, the berthing 

goal is assumed to be at a distance 1.5 times of ship length from the actual pier. 

Moreover, the berthing is considered as successful if the ship stops (surge velocity≤0.05 

m/s) within an area of 1.5L around the berthing goal point. During the berthing 
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manoeuvre, the ship also approaches the pier along with an imaginary line that makes 

an angle 30º with the pier. Another one is that, to cope with any unexpected situation, 

rudder angle is restricted within ±10°, ±15°, ±20° or ±25° depending on its initial 

position on virtual window for course changing. In case of wind disturbances, the PID 

controller during straight running is also restricted to take rudder angle within ±5°, 

which is later on modified as ±10º. Figure 3.1 shows the details of the coordinate system 

used in this thesis together with other valuable information. 

 

 

Figure 3.1. Coordinate system and other assumptions during berthing 

 

3.1.1 Virtual Window Concept for Course Changing  

 

Maintaining consistency in the course changing trajectories while training neural 

network, would be a key factor to increase the robustness of the controller. In this thesis, 

nonlinear programming (NLP) method is utilised to do so. Lavenberg-Marquardt 

algorithm is used during the optimisation and the steepest descent method is chosen to 

update the Hessian matrix. Details of this algorithm can be found in More’s (33) paper. 

The NLP method used in this thesis is to get the optimal steering that satisfies the 

constraints given in the form of termination conditions during course changing. For 

such optimisation, the function named ‘fmincon’ from MATLAB optimisation toolbox 

is used. The objective function is set as time that ensures minimum time steering and the 

optimal variable as rudder angle. The constraint conditions used in NLP method are 

shown in Table 3.1. 
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Table 3.1. Constraints used in the optimal course changing 

Objective 

function 
Course changing time 

Optimal 

variable 
Rudder angle,  -order 

Initial 

Conditions 

Ship velocity Half Ahead 

Heading angle   

Position (x, y) 

Others v=0; r=0; 0  

Equality 

constraints 

Heading Angle 240° 

Position On the imaginary line 

Ship velocity Free 

Non equality 

constraints 

Rudder 

restriction 
  10°/ 15°/ 20°/ 25° 

 

Considering the mentioned constraints, repeated optimisation technique is adopted 

where in each optimisation the ship’s initial heading angle is changed by certain amount 

keeping the same termination conditions. Figure 3.2 demonstrates the technique used 

for ship’s different initial headings and one particular final heading, which is 240º with 

no sway and angular velocity. Here, the final heading 240º means making an angle 30º 

with the pier i.e. the ship will align with the imaginary line after course changing. The 

final plot of such consecutive trajectories would be the same as shown in Figure 3.3(a), 

i.e., each trajectory ends with a different endpoint. However, by following the 

reshuffling process as shown in Figure 3.3(b), it is possible to align the trajectories for a 

particular endpoint that will coincide with the imaginary line. The reshuffling process 

results a new set of starting points, each belongs to a particular ship heading and it is 

possible to draw a curve through such points. Such curvature is named as ‘virtual 

window’. Therefore, the virtual window denotes a safety window that ensures a ship 

with any particular heading passing through its desired position to reach the imaginary 

line well ahead to go for further deceleration and make successful berthing. In this 

thesis, such virtual windows is constructed for four different rudder angles used as 

constraints during the optimisation technique.  
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Yes

  

Stop 

Reach desired times of 

optimisation?

Save final course changing time and rudder angle time series 

as an initial guess for next optimisation. 

Change initial heading angle by 5º keeping termination 

conditions same. 

Apply the modified time series for rudder angle in MMG to 

get ship’s response. 

Satisfy termination 

conditions?

Read initial guess for total course changing time and rudder 

angle time history to satisfy termination conditions. 

(In this thesis, optimisation starts for very small course 

changing angle say 5º where guessed rudder angle time history 

is to set to all zero)

Rudder angle time history is modified to meet the termination 

conditions in shortest time. 

Start 

Figure 3.2. Repeated optimisation technique 

Yes 

No 
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Figure 3.3. Idea of Virtual Window 

 

After getting the points on virtual window, simulations are done for the optimal 

course changing considering the points as starting positions with their corresponding 

initial headings. Figure 3.4 and 3.5 show few of such optimal course changing results.  

 

 
Figure 3.4. Optimal rudder for initial heading 150°, starting from virtual window for rudder 

constraint ±15° 
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Figure 3.5. Optimal rudder for initial heading 360°, starting from virtual window for rudder 

constraint ±25° 

 

3.1.2 Track Keeping Using PID Controller  

 

After making a proper course change using the calculated rudder command for 

minimum time manoeuvre, the ship is expected to go straight if there would no wind 

disturbances. However, in real cases such disturbances exist. Therefore, after merging to 

the imaginary line while reducing the speed gradually, slight wind may cause drastic 

course changes if no action is taken to compensate such disturbances immediately. 

Moreover, the level of noise under wind disturbances is high enough for the ANN 

controller to distinguish it from actual ship motion. Considering the difficulties in 

maintaining the course in low speed under environmental disturbances, in this thesis, as 

a feedback controller, PID is used instead of ANN that is mentioned in the Equation 3.1. 

The first term of such expression represents the P controller that provides the necessary 

correction for maintaining the particular ship heading, second term belongs to the D 

controller to minimise the yaw rate and the third term is the I controller for ship heading 

that compensates the ship’s deviation from the pre-set imaginary line. The third term 

mentioned in the following equation is the perpendicular distance of ship’s CG (centre 

of gravity) to the pre-set imaginary line. Therefore, it is calculated from the ship’s 

instantaneous position. This ship position is again calculated by integrating the sine or 

cosine component of the ship heading multiplied by its velocity. 
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(3.1)

 

where, ψd is desired heading, ψ is current heading,   is yaw rate, d1 is a deviation 

from the imaginary line, C1~C3 are coefficients.  

Usually, there are two methods available for deciding the coefficients mentioned in 

Equation 3.1. One of them is step response method and the other is steady response 

method. The selection of proper method will depend on the system to control. On the 

other hand, the values of the coefficients fully depend on the response of the system to 

control. In this thesis, instead of above such mentioned method, a sample set of 

coefficients is guessed depending on experience and then those are tuned to meet 

desired system response. The main objective of such tuning is to ensure an earlier 

response of the controller in case of any deviation takes places. As the controller has 

three coefficients, thus two coefficients are kept fixed (initial values are guessed as 

mentioned before) while the remaining one is tuned for the desired response. The same 

strategy continues until the best suitable three coefficients are got. Therefore, in one 

word, it would be a trial and error process. The following figures show a demonstration 

of the ship’s response depending on the used (the best set to cope with wind 

disturbances from different directions) and any arbitrary chosen coefficient values. The 

black trajectories in the figures show how the ship deviates from its actual path under 

wind disturbances due to not taking any rudder action. 
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Figure 3.6. Trajectory for best-chosen coefficients 

 

 
Figure 3.6(cont..). Trajectory for arbitrary chosen coefficient 

 

Maintaining a proper telegraphic order is also important to stop the ship within an 

available distance. This will provide some inherent consistency while using the teaching 

data for training ANN for propeller revolution output. Endo and Hasegawa (34) 

surveyed the contents of deceleration manoeuvring during the real navigation cases and 

found that the ship usually approaches the berthing goal by dropping the ship velocity 

gradually as a standard deceleration manoeuvring. In order to find out the ship response, 

Yoshimura and Nomoto (35) reduced the coupled equations of motions into a simple 

mathematical model of ship response that is given as Equation 3.2. 
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(3.2)

 

 Now, if the ship travels in a straight path without operating its rudder and no 

transverse flows with respect to ship exits, then Equation 3.2 can be written as Equation 

3.3. 

݉
ሻݐሺݑ݀
ݐ݀

൅ ܺ௨௨ݑሺݐሻଶ ൌ ݇௡௡݊ሺݐሻଶ (3.3)

 

Let’s consider the propeller revolution is changed by Δn (very small value) from its 

initial value n0 that causes a change Δu to the initial ship velocity U0. Now, by 

substituting u as (u0+ Δu) and n as (n0+ Δn) in Equation (3.3) and considering the Taylor 

expansion by elimination higher order terms results the simplified 1st order semi-linear 

approximation for resistance force and thrust force terms. The derivation is given as 

follows: 

	

݉
݀ሺݑ௢ ൅ ∆uሻ

ݐ݀
൅ ܺ௨௨ሺݑ௢ ൅ ∆uሻଶ ൌ ݇௡௡ሺ݊௢ ൅ ∆nሻଶ 

(3.4)
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ሻଶ ൌ ݇௡௡݊௢ଶሺ1 ൅
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݊௢
ሻଶ 

݉
௢ݑ݀
ݐ݀

൅ ݉
݀ሺ∆uሻ
ݐ݀

൅ ܺ௨௨ݑ௢ଶሺ1 ൅ 2
∆u
௢ݑ

൅ ⋯ሻ ൌ ݇௡௡݊௢ଶሺ1 ൅ 2
∆n
݊௢

൅ ⋯ሻ 

݉
݀ሺ∆uሻ
ݐ݀

൅ ܺ௨௨ݑ௢ଶ ൅ ௢ܺ௨௨∆uݑ2 ൌ ݇௡௡݊௢ଶ ൅ 2݊௢݇௡௡∆n 

݉
݀ሺ∆uሻ
ݐ݀

൅ ௢ܺ௨௨∆uݑ2 ൌ 2݊௢݇௡௡∆n 

 

Now, let ܺ௨ ൌ ௢ܺ௨௨ and ݇௡ݑ2 ൌ 2݊௢݇௡௡. Then the above finding can be written 

as following: 

݉
ሻݐሺݑ݀
ݐ݀

൅ ܺ௨ݑሺݐሻ ൌ ݇௡݊ሺݐሻ (3.5) 
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௨ܶ
ሻݐሺݑ݀
ݐ݀

൅ ሻݐሺݑ ൌ  ሻ (3.7)ݐ௡݊ሺܭ

 

where, u(t) is ship velocity, n(t) is propeller revolution, Tu=m/Xu is the time constant and 

Kn=kn/Xu is gain. 

Finally, Equation 3.7 is the respective simplified equation for ship speed response. 

The reason of such simplification is understandable. Since the change in the ship 

velocity is almost proportional to the change in propeller revolution, it is meaningful to 

simplify the response equation by Taylor expansion and neglecting the higher order 

terms.  

The solution of the above speed response equation is given by:  

 

ሻݐሺݑ ൌ ଴݁ݑ
ି
௧
ೠ் ൅ ሻሺ1ݐ௡݊ሺܭ െ ݁

ି
௧
ೠ்ሻ (3.8) 

 

where, uo is initial ship speed during particular engine telegraph step change and 

 .ሻ is steady ship speed when propeller revolution keeping at goal step n(t)ݐ௡݊ሺܭ

The sequence of telegraph order considered in this thesis is the half ahead during 

course changing. Then, it is followed by slow ahead, dead slow ahead, engine idling and 

at last propeller reversing. In case of stopping manoeuvre, slow astern is used as 

telegraph order. Here, the step changing time is as much as time constant Tu of the ship 

speed response equation which is shown in Equation 3.7. Considering t=Tu in Equation 

3.8 results u(t) as 63.21% of speed drop from its initial speed U0. Thus, each telegraph 

order is considered as the ship’s speed drops by 63.21% from its initial value. Moreover, 

since the engine idling is followed by propeller reversing, the engine idling time is also 

adjusted such that the ship can reach as close as possible to the berthing point during 

propeller revering stage. The total available distance considered during deceleration and 

stopping manoeuvre is 15 times of ship length according to IMO standard. Table 3.2 

shows the propeller revolution used for the telegraph order in this thesis together with 

their corresponding steady velocity. 
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Table 3.2. Rps used for telegraph order and corresponding steady velocity 

Stages Rps 
Velocity 

(m/s) 

Half Ahead 14 0.495 

Slow Ahead 8 0.2829 

Dead Slow Ahead 4 0.1414 

Stop Engine 0 -- 

Slow Astern -8 -- 

 

3.2 Teaching Data Creation  

 

Following the above mentioned procedure i.e. by combining the course changing 

and track keeping trajectories, the whole set of teaching data for berthing manoeuvre is 

created. Since optimal steering is considered for course changing, each ship with its 

particular initial heading can have only one particular starting point on virtual window 

to satisfy the given constraints. In this thesis, virtual window considering four different 

rudder angles (used as constraints) is used to create the teaching data. For left hand side 

approach, total 24 starting points (6 for each rudder angle constraint) are considered in 

the teaching data for initial heading 90°, 120°, 150°, 180°, 210° and 

230°/225°/220°/215° (for rudder constraints ±10º, ±15º, ±20º and ±25º respectively). On 

the other hand, for right hand side approach, total 32 starting points (8 for each rudder 

angle constraint) are considered for initial heading -270° or 90°, 60°, 30°, 0° or 360°, 

330°, 300°, 270° and 250°/255°/260°/265° (for rudder constraints ±10º, ±15º, ±20º and 

±25º respectively). Maximum rudder angle taken in the teaching data is fully dependent 

on ship’s initial position on virtual window. In order to include the wind effect in 
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teaching data, each successful ship berthing trajectory is consider under three different 

wind velocities which are 0.2m/s, 0.6m/s and 1.0 m/s for model ship. Each wind 

velocity is again considered for four different wind directions that are 45°, 135°, 225° 

and 315°. Therefore, instead of using the wind information directly to the neurons, the 

influence of wind is considered in way of somewhat deviated ship trajectories and at the 

same time using PID controller to correct them during low speed running. The resulting 

set of teaching data considering the wind effect is given in Figure 3.7. Here it is noted 

that, the effects of wind during course changing are not severe as the ship’s speed is 

comparatively higher than that of wind. 

 

Figure 3.7. Teaching data including wind influence 

 

3.3 Training of ANN Controller  

 

The above mentioned teaching data are divided into two considering the left hand 

side (LHS) and the right hand side (RHS) approach to ensure similar pattern of course 

changing trajectories (port or starboard). Then, two multi-layered feed-forward neural 

networks are constructed for rudder and propeller revolution outputs, respectively 

instead of centralised controller for each case. The effectiveness of using such separate 

controllers had already been proved by Im and Hasegawa (15). 
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3.3.1 Training, Transfer and Performance Function 

 

In order to train the network, famous back propagation technique that is gradient 

descent algorithm is used where the network weights move along the negative of the 

gradient of the performance function. In this thesis, MATLAB Neural Network Toolbox 

is used where varieties of training functions with different basic algorithms are available 

to train the net. Among them training function based on Lavenberg-Marquardt algorithm 

is chosen. This algorithm is designed to approach second-order training speed without 

having to compute the Hessian matrix like in quasi-Newton method. When the 

performance function has the form of a sum of squares, then the Lavenberg-Marquardt 

algorithm uses the following approximation to the Hessian matrix in order to follow 

Newton-like update. 

 

eJIJJxx T
mm

T
mkk

1
1 ][ 
    (3.9) 

 

where, Jm is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases, e is a vector of network errors and μ is a scalar value.  

If μ becomes zero, the algorithm is same as Newton’s method and when large, it 

results gradient descent with a small step size. Thus, μ is decreased after each successful 

step when the performance function is also reduced and vice versa. In this way, the 

performance function will always be reduced at each iteration of the algorithm. 

In case of transfer function, log-sigmoid is found suitable which is given as 

Equation 3.10. 

 

xe
xf 
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1

1
)(  (3.10) 

 

In addition, the performance of the trained network is judged depending on calculated 

mean squared error value (MSE). If the normalized teaching data are considered in the 

following form: 
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},..{},........,{},,{ 2211 nn qpqpqp  (3.11) 

 

where, p is input of network and q is target output. Consequently, MSE can be calculated 

as follows: 
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where, O is output of network. 

 

3.3.2 Construction of Networks 

 

In order to construct a well-trained net, appropriate inputs for that net, number of 

hidden layers and the corresponding number of neurons in each hidden layer are needed 

to be investigated. In this thesis, in order to determine the suitable inputs, different 

parameters are tested depending on previous researchers’ preference and found the 

followings as suitable one. 

For rudder output, input parameters for the net are u: surge velocity, v: sway 

velocity, r: yaw rate,  : heading angle, (x, y) : ship position, : actual rudder angle, 

d1:distance to imaginary line and d2: distance to berthing point. 

For propeller revolution, input parameters are u: surge velocity,  : heading angle, 

(x, y) : ship position, d1: distance to imaginary line and d2: distance to berthing point. 

Since there does not exist any particular rule to select the hidden layers and 

neurons for the network, in this thesis such numbers are determined by trial and error 

and observing the minimum MSE value after each training period. In previous research 

studies very limited set of teaching data were used to train which resulted a very simple 

neural network construction with single hidden layer. However, in this thesis, to learn 

the complex pattern of teaching data, two hidden layers are found suitable enough with 

appropriate neurons to ensure the minimum MSE value. Different combinations of 

neurons for the two hidden layers are investigated and the particular combination that 

gives less MSE value is chosen. Table 3.3 shows the necessary information regarding 
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the network formation during training nets. 

 

Table 3.3. Number of neurons in each layer 

 

Nets 

 

No of 

hidden 

layers 

No. of Neurons 

Transfer function 

Input Hidden Output 

Rudder 

angle 

LHS 

approach 
2 9 10,6 1 

logsig, logsig, 

purelin 
RHS 

approach 
2 9 12,8 1 

Propeller 

revolution 

LHS 

approach 
2 6 12,5 1 

logsig, logsig, 

purelin 
RHS 

approach 
2 6 12,8 1 

 

Epoch, time and performance value after training are given in Table 3.4. 

 

Table 3.4. Other information after training 

Net 

Epoch (no of iterations) 
Time taken for learning 

(sec) 
Performance value 

Rudder 

angle 

Propeller 

revolution 

Rudder 

angle 

Propeller 

revolution 

Rudder 

angle 

Propeller 

revolution 

LHS approach 233 164 487 310 0.00145 0.00210 

RHS approach 177 211 170 217 

 

0.00162 

 

0.00258 
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The resulting multi-layered ANNs are demonstrated in Figure 3.8. Here, the outputs 

from the hidden layers are given by: 

 

  )( , noonn bIWsigA  (3.13) 

  )( , mnnmm bIWsigA  (3.14) 

 
Finally, the respective outputs for rudder angle and propeller revolution is given by 
 

     )( , lmmll bAWpurelinO   (3.15) 

 

where, o is number of input parameters, n is number of neurons in 1st hidden layer, m is 

number of neurons in 2nd hidden layer, l is number of output and sig is log sigmoid 

function. 

  

Figure 3.8. Construction of ANNs 
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Once the PID controller is activated, the rest of task regarding the rudder controller is 

solely determined by the PID controller itself. On the other hand, the network for 

propeller revolution will be used throughout the whole berthing process. Therefore, it 

would be a combined effort of ANN and PID controller while considering wind 

disturbances. Figure 3.9 shows the control strategy during the whole berthing process. 

 

 

Figure 3.9. Control Strategy 

 

The plant, to be controlled for berthing is the same as for controlling the motion of 

the ship. Therefore, after proper training, the controllers are used in the plant as shown 

in Figure 3.10, where they take the required inputs from the outputs of the plant and 

decide the inputs for desired action. 

 

 
Figure 3.10. Plant to be controlled 

  

SHIP

Environmental disturbances
(Only wind is considered)

Wind force
(Fujiwara wind 
model is used)

Runge-kutta Gill solver 

Motion equation
(Predicted by 
MMG model)

Actuators

Forces due to 
control action

Rudder and propeller 
revolutioon

(Decided by controller)

Plant in 
simulation

State variables 
and rudder info.

Plant input Plant outputController



32 
 

Chapter 4 : SIMULATION RESULTS 

 

To judge the effectiveness of trained ANN with PID controller, several types of 

simulations are carried out. Initially, the teaching and non-teaching data are tested for 

the ship starting from its expected point on virtual window. Here, the teaching data 

denotes the ship’s identical initial position and heading that are used to train the 

networks under wind disturbances. On the other hand, in case of non-teaching data, 

other points on virtual window are tested for their corresponding heading. To judge the 

capabilities of the controller to cope with wind disturbances, different gusts from 

different directions are also tested for both teaching and non-teaching data. Robustness 

of the controller in terms of position flexibility is tested by considering the ship starting 

from unexpected point on virtual window rather than expected one that belongs to its 

current heading or any arbitrary point within the constructed virtual window zone. Such 

simulation results are discussed in the following subsections.  

 

4.1 Ship Starting from Desired Point on Virtual Window 

 

In this thesis, the starting points on virtual window are created for every 5° of 

heading interval. However, the teaching data include the points at 30° heading interval 

to prevent overfeeding. Therefore, numbers of points on virtual window are untreated in 

the teaching data that are necessary to be tested by the trained controller. On the other 

hand, the teaching data include the trajectories considering wind disturbances up to 1.0 

m/s from four different directions. Thus, the other wind directions as well as maximum 

sustainable wind velocity also need to be investigated for the controller.  

Initially, the simulations are done for both LHS and RHS approaches considering 

the ship starting from its desired point used as teaching data. During the simulation, the 

wind disturbances are considered up to 1.0 m/s and from different directions. Figure 4.1 

and 4.2 illustrate the effectiveness of ANN-PID controller when tested for the same 

teaching data provided. In such figures, two types of trajectories are plotted. One is for 

ANN-PID controller in wind and other one is for optimal steering without PID in the 

wind. It clearly shows that the PID controller succeeds to prevent the ship’s deviation in 
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low speed. On the other hand, the red trajectory results due to not using any controller 

while straight running and the ship simply deviates from its desired path under wind 

disturbances. Although in case of course changing, such deviation is not noticeable due 

to relatively high ship speed. Wind information is shown in the first row-second column 

of each figure that is experienced by the ship during the berthing. In both cases, the 

controller successful stops the ship within the desired zone as shown as a blue square 

box in these figures. The desired zone covers an area of 1.5 times of ship length around 

the berthing goal point (0, 0).   

ANN in real berthing cases is expected to face completely different situation than 

used to train it. However, due to its interpolation ability, the controller is expected to 

take necessary actions regardless of any situation. To judge such ability, simulations are 

also done for different points on virtual window and wind information other than used 

as teaching data. Figure 4.3 and 4.4 illustrate such results.  

 

 

Figure 4.1. Controller tested for teaching data, average wind velocity 0.6 m/s, wind direction 

135º, initial ship heading 180º from virtual window for rudder constraint ±25º 
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Figure 4.2. Controller tested for teaching data, average wind velocity 1.0 m/s, wind direction 

45º, initial ship heading -270º from virtual window for rudder constraint ±10º 

 

   

Figure 4.3. Controller tested for non-teaching data, average wind velocity 1.0 m/s, wind 

direction 135º, initial ship heading 100º from virtual window for rudder constraint ±15º 
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Figure 4.4. Controller tested for non-teaching data, average wind velocity 1.0 m/s, wind 

direction 180º, initial ship heading 320º from virtual window for rudder constraint ±15º 

 

Considering Figure 4.3, the result looks similar to teaching data provided. However, 

in Figure 4.4, the second row-second column clearly shows how the ANN adjusts the 

propeller revolution by elongating the idling time depending on situation demands. Here, 

the second row-first column shows the rudder angle which is adjusted by ANN during 

course changing and PID controller during straight running.    

In most of previous research studies, consideration of maximum wind velocity was 
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ANN-PID controller able to ensure successful berthing for wind over 1.0 m/s, although 

the teaching data contain information up to 1.0 m/s. To judge such capability, average 

wind velocities of 1.3 and 1.5 m/s are tested under different directions. Figures 4.5 and 

4.6 demonstrate such illustration where the ANN adjusts the propeller revolution by 
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ANN-PID control the rudder command to ensure safe berthing. 
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Figure 4.5. Controller tested for wind over 1.0m/s, average wind velocity 1.5 m/s, wind 

direction 45º, initial ship heading 250º from virtual window for rudder constraint ±10º 

 

 

Figure 4.6. Controller tested for wind over 1.0m/s, average wind velocity 1.3 m/s, wind 

direction 0º, initial ship heading 140º from virtual window for rudder constraint ±15º 
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Although the above figures show successful berthing results using ANN-PID 

controller, due to the difficulties in accurate prediction of wind disturbances, further 

research studies are done where three separate types of investigations are carried out. 

These are given as follows: 

a) The effectiveness of ANN-PID controller is tested for any particular ship’s initial 

state and increasing the wind velocity gradually keeping the direction same in every 

case.  

b) Different gusts for same average wind velocity and direction are tested for ship’s 

same initial state. 

c) Eight different wind directions are tested for a particular average wind velocity 

and ship’s initial state. 

The following subsections will explain about such investigation results. 

 

4.1.1 Verification for Different Wind Velocities 

 

To verify the effectiveness of the controller for different wind velocities, ship with 

any particular initial heading starting from its point on virtual window is tested for 

gradually increasing wind velocities. Many successful results are found during such 

investigation. However, some rare cases are also found where the ANN provides proper 

propeller revolution order but due to the inappropriate rudder angle taken by the PID 

controller during straight running, ship cannot reach to the pier successfully. Figure 4.7 

shows one of such examples where the ANN-PID controller is capable enough to guide 

the ship safely to the berthing zone up to 1.0 m/s but for 1.3 or 1.5 m/s, it fails as shown 

in row three and four. 

To deal with such rare situation that may arise in real cases, an increase in rudder 

restricting is proposed to use for the PID controller during straight running which is 

±10º instead of ±5º as shown in Equation 4.1. This will increase the rudder effectiveness 

under high wind condition and thus the ship is capable to maintain its track. 

 

1321 **)(* dCCC dorder       (4.1)
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Figure 4.8 demonstrates its effectiveness where successful berthing is ensured for 

the third and fourth cases of Figure 4.7 for average wind velocity 1.3 and 1.5 m/s. 

Therefore, for further investigation, the ANN controller followed by the modified PID 

controller is used during straight running to judge the workability of ANN-PID 

controller. 

 

 
Figure 4.7. Controller under different wind velocities, wind direction 0º, initial ship heading 

140º from virtual window for rudder constraint ±15º 
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Figure 4.8. Controller with modified PID, wind direction 0º, initial ship heading 140º from 

virtual window for rudder constraint ±15º 
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Different gust realisations for same average wind velocity are also investigated to 

judge the controller’s effectiveness. Such investigation also provides the importance to 
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average velocity. Figure 4.9 and 4.10 illustrate such results for ANN-PID controller. In 

such figures, first and fourth row of second column shows the different gust realisations 
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Here, Figure 4.9 shows almost similar trajectories for different gusts, but the PID 

controller’s output as well as adjustment for propeller revolution by ANN is completely 

different. On the other hand, noticeable differences in trajectories are found in Figure 

4.10. However, in both cases, the ANN-PID controller can ensure successful berthing by 

taking the proper rudder angle and propeller revolution depending on situation 

demands.  
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Figure 4.9. Controller under different gusts, average wind velocity 1.5 m/s, wind direction 0º, 

initial ship heading 250º from virtual window for rudder constraint ±10º 

 

 

Figure 4.10. Controller under different gusts, average wind velocity 1.3 m/s, wind direction180º, 

initial ship heading -270º from virtual window for rudder constraint ±10º 
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4.1.3 Verification for Different Wind Directions 

 

Wind can blow from any possible direction, thus the effectiveness of ANN-PID 

controller needs to be investigated for different wind velocities together with different 

directions. In this thesis, to do that, ship with different initial headings and starting 

points is tested for any particular wind velocity from different directions. The following 

figure shows one of such results under wind from different directions while keeping the 

average velocity and ship’s initial state similar. During such investigation, maximum 

average wind velocity of 1.5 m/s is considered for eight different directions at 45º 

interval.  

 

 

Figure 4.11. Controller under different wind directions, average wind velocity 1.5 m/s, initial 

ship heading 180º from virtual window for rudder constraint ±25º 
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Figure 4.11(cont..). Controller under different wind directions, average wind velocity 1.5 m/s, 

initial ship heading 180º from virtual window for rudder constraint ±25º 

 

The red trajectories in Figure 4.11 clearly show the effect of wind from different 

directions. Due to not using any controller during low speed running, the ship deviates 

from its desired path in different ways depending on the directions of the wind. 

However, while using the proposed PID controller with ANN, each case ensures 

successful berthing.   

 

4.1.4 ANN-PID Controller in Severe Wind near Pier  
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necessary in some limited cases, depending on strong wind blowing near pier over 1.0 

m/s average velocity. Since the final position to stop the ship in case of berthing is very 

crucial, such criterion was investigated depending on the ship position before stating 

reversing and proposed as follows: 

If the ship position before reversing propeller becomes less than 0.9 times of ship 

length from the berthing goal point, then reversing with half astern is better than using 

slow astern. Thus, in such cases, the ANN results for slow astern are substituted by half 

astern value. 

Considering such modification, Figure 4.12 demonstrates the simulation result for 

half astern and compared with previous result. 

 

 

Figure 4.12. Comparison between half astern and slow astern, average wind velocity 1.3 m/s, 

wind direction 0º, initial ship heading 140º from virtual window for rudder constraint ±15º      
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difficult to make a successful berth under wind over 1.0 m/s. In this thesis, such cases 

are investigated with revised restricted rudder for PID controller where ±10º instead of 

±5º is used and found satisfactory results as shown in Figure 4.8. Considering the 

revised rudder for PID controller, cases with severe wind near pier are also investigated 

where half astern may become necessary if the PID controller with ±5º is used during 

straight running as shown in Figure 4.12. The following figures demonstrate some 

results in case of severe wind near pier while modified PID controller is used during 

straight running with slow astern. 

Figure 4.13 and 4.14 clearly slow while using the modified PID controller, there is 

no need of half astern although severe winds are observed near pier. This is because the 

modified PID controller is sufficient to take an adequate rudder angle to prevent much 

deviation. At the same time, ANN adjusts the propeller revolution according to demand 

to make successful berthing. As a conclusion, ANN controller with modified PID may 

treat as an alternative solution to avoid any possible higher reversing astern for berthing. 

 

 
Figure 4.13. Slow astern with modified PID, average wind velocity 1.3 m/s, wind direction 0º, 

initial ship heading 140º from virtual window for rudder constraint ±15º      
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Figure 4.14. Slow astern with modified PID, average wind velocity 1.5 m/s, wind direction 315º, 

initial ship heading 360º from virtual window for rudder constraint ±20º 
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Figure 4.15. Comparison between ANN-PID and PID, average wind velocity 1.5 m/s, wind 

direction 0º, initial ship heading 140º from virtual window for rudder constraint ±15º 

 

 

Figure 4.16. Comparison between ANN-PID and PID, average wind velocity 1.3 m/s, wind 

direction 90º, initial ship heading 360º from virtual window for rudder constraint ±25º 
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4.2 Ship Starting from Arbitrary Point  

 

Although the simulations mentioned in the previous subsections are done by 

assuming the ship successfully passes through its desired starting point, in real situation 

considering the existing disturbances, it is extremely difficult to do so. Therefore, to 

judge the controller’s suitability in real ship operation, the networks are tested for 

staring point flexibility. This also means to judge the interpolation ability of trained 

ANN. Figure 4.17 illustrates one of such results.  

In Figure 4.17, considering the first row, the red and blue lines indicate the 

surrounded teaching data and the ANN is tested for an arbitrary point in the middle of 

virtual window for rudder constraints ±10º and ±15º as shown in black line with the 

initial ship heading 160º. It is also mentioned that the teaching data contains information 

regarding the ship heading 150º and 180º as the nearest value of the tested heading. The 

average wind velocity is set at 1.3 m/s from 45º. Here, it is clearly noticeable that the 

course changing pattern for the tested point is similar to its surrounded teaching data 

and the rudder angle shown in the second row-first column is a combination of 10º and 

15º for course changing which is expected one. 

 

 
Figure 4.17. Controller’s interpolation ability, initial heading 160º from an arbitrary point 
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not matching with the desired one for that starting point. Second is for the ship starting 

from the middle of virtual window for two different rudder constraints and the third is 

for the ship starting from any position within the constructed virtual window area with 

any possible initial heading. The following subsections describe about these in details. 

 

4.2.1 Ship Starting from Undesired Point on Virtual Window  

 

In this category, a ship staring form undesired virtual window point is tested to 

judge the robustness of the controller. In other words, a ship with its initial heading 

other than expected is simulated from different virtual window points. Figure 4.18 and 

4.19 illustrate the results for LHS approach, when the ship with initial heading 180º and 

200º respectively is started from each other’s corresponding point in a virtual window. 

Considering Figure 4.19, due to starting form unexpected point, although the ANN 

controller takes necessary action, there exists a certain gap between the ship and 

imaginary line after course changing. Then, followed by the PID controller, necessary 

corrections are taken. At last, the ship manages to merge with the imaginary line and the 

ANN controller controls its speed to stop it within the assumed successfully berthing 

zone. During the simulation, an average wind of 1.5 m/s from 135º is considered and the 

combined ANN-PID controller has found to work effectively. On the other hand, 

considering Figure 4.19 under the same wind disturbances, although starting from an 

unexpected point, ANN manages to act properly. Thus, the course changing trajectory 

looks the best possible one. Here, the PID controller just needs to keep the course for 

low speed running in wind disturbances. Moreover, the ANN controller for propeller 

revolution tries to make idling and revering sequentially for some times to allow the 

ship to move more forward as its speed reduces faster than expected. 
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Figure 4.18. Initial heading 180º and starts from point belongs to heading 200º on virtual 

window for rudder constraint ±10º 

 

 
Figure 4.19. Initial heading 200º and starts from point belongs to heading 180º on virtual 

window for rudder constraint ±10º 
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take a port turn. Later on, it starts its expected starboard turn but gradually. Therefore, 

the ship follows a long way and there exists a large gap between the ship and imaginary 

line after course changing. This is a quiet unusual phenomenon and may sometimes 

occur due to starting from unexpected point. However, the PID controller works 

effectively to minimise such existing gap and at last, the ship successfully stops within 

the expected zone. For the other two cases, the ANN controller takes proper decision 

and after a slight port turn, the ship starts its expected starboard turn. Therefore, it takes 

a shorter path to travel as well as less time to complete the berthing process. The wind 

disturbances considered in all three cases are the same, which is average wind velocity 

of 1.5 m/s from 315º wind direction. 

 

 
Figure 4.20. Ship with different initial headings and same initial point (LHS) 
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each other’s corresponding point. The wind is considered as 1.5 m/s from 225º. In both 
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Figure 4.21. Initial heading 280º and starts from point belongs to heading 300º on virtual 

window for rudder constraint ±20º 

 

 
Figure 4.22. Initial heading 300º and starts from point belongs to heading 280º on virtual 

window for rudder constraint ±20º 
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desired for heading 360º on virtual window for rudder constraint ±25º. The wind 

disturbances considered here is an average of 1.5 m/s from 180º. In such situation, the 

ANN controller for propeller revolution allows some boosting like action to accelerate 

the ship little bit. This also allows increasing the rudder effectiveness in low speed 

running. Although the overall trajectories are not same, in each case the combined 

controller ensures successful berthing.  

 

 

Figure 4.23. Ship with different initial headings and same initial point (RHS) 

 

4.2.2 Ship Starting from Mid of Virtual Window for Two Different Rudder 
Constraints  

 

The ship having different initial headings and starting from middle of virtual 
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operation during course changing and the ship successfully stops within its desired zone. 
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in the mentioned figures. 
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Figure 4.24. Initial heading 100º and starts from mid of virtual window  

for rudder constraints ±10º and ±15º 

 

 

Figure 4.25. Initial heading 200º and starts from mid of virtual window 

 for rudder constraints ±15º and ±20º 

 

On the other hand, Figure. 4.26 and 4.27 illustrate the results for RHS approach. 
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Figure 4.26 shows the result for the ship starting with heading 450º or 90º from mid of 

window for rudder constraints ±20º and ±25º under wind disturbances of 1.0 m/s from 

0º. Here, the ANN controller for rudder executes the port rudder right from the 

beginning of coursing changing. Then, followed by the PID controller, the existing gap 

between ship and imaginary is minimised. Finally, the ship stops successfully as proper 

propeller revolution is maintained by ANN controller during the whole berthing process. 

Considering Figure 4.27, ship starting with heading 270º from mid of virtual window 

for rudder constraints ±10º and ±15º is simulated under wind disturbances of 1.5 m/s 

from 225º. Here, the ANN-PID controller again proves its effectiveness by successfully 

guiding the ship up to near the pier. 

 

 

Figure 4.26. Initial heading 90º and starts from mid of virtual window 

 for rudder constraints ±20º and ±25º 
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Figure 4.27. Initial heading 270º and starts from mid of virtual window 

 for rudder constraints ±10º and ±15º 
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under wind disturbances of 1.5 m/s from 315º looks usual and the ship merges gradually 

to the imaginary line as the error is minimised by the PID controller during low speed 

running. 

  

Figure 4.28. Controller for arbitrary starting point, ship starts with heading 150º 

 

 

Figure 4.29. Controller for arbitrary starting point, ship starts with heading 220º 
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Figure 4.30. Controller for arbitrary starting point, ship starts with heading 280º 

 

 
Figure 4.31. Controller for arbitrary starting point, ship starts with heading 360º 
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Figure 4.30 and 4.31. Considering Figure 4.30, ship starting with heading 280º is 

simulated under wind disturbances of 1.5 m/s from 180º. Here, an arbitrary position 

near virtual window for rudder constraint ±10º is chosen as a starting point from where 

the controller guides the ship successfully up to the desired boundary zone. Figure 4.31 

also ensures successful berthing result for the ship starting with heading 360º under 

wind disturbances of 1.5 m/s from 135º. 

Figure 4.32 illustrates the simulation results for ship starting with initial heading 

280º, but from three different arbitrary points. In all three cases, the controller takes 

different decisions based on surrounding situation and succeeded to guide the ship up to 

the expected safety zone. The wind disturbances considered in all three cases are the 

same, which is average wind velocity of 1.5 m/s from 180º wind direction. 

 

 
Figure 4.32. Ship with the same initial heading and different initial points 
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In order to judge the effectiveness of the controller, several simulations are done as 

mentioned in the previous subsections. However, to analyse the reliability of the 

controller, Monte Carlo simulations are also performed. To generate the random 

numbers, uniformly distributed pseudorandom numbers are chosen. Such random 

numbers are generated for ship’s staring point, heading, average wind velocity and wind 

direction. Then, around 970 cases are investigated which covers all virtual window 

areas.  

As a success index, three parameters are considered. These parameters are 

sufficient to know the success of the controller in each run. The indexes are: 

Non-dimensioned distance from the target goal point after stopping, heading error from 

target value 240º and final surge velocity from target value 0.05 m/s. Analysis of such 

success indexes is mentioned in the following subsections.  

 

4.3.1 Non-dimensionalised Distance from Final Goal Point 

 

In this thesis, the ship is assumed to be stopped if the surge velocity becomes less 

than 0.05 m/s. After the termination of each simulation case, error in ship position, i.e. 

Δx and Δy are calculated based on target goal point (0, 0). Here, the success of each ship 

berthing counts if the ship stops within the desired successful zone, which is 1.5L area 

around the goal point. After that, tugs will assist to align it with pier.  

The distance as a success index is calculated using Equation 4.2 and 

non-dimensionalised using Equation 4.3. 

 
2 2d x y    (4.2)

'
ship

d
d

L


  (4.3)

 

Then, considering the randomly chosen ship positions, headings and wind disturbances, 

the results are tabulated for the frequency of each particular interval of 

non-dimensionalised distance. The corresponding frequency table is given below: 
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Table 4.1. Frequency table for 'd  

shipL

d
d


 '  frequency percentage 

0-0.1 38 3.91% 

0.1-0.19 288 29.66% 

0.2-0.29 190 19.57% 

0.3-0.39 85 8.75% 

0.4-0.49 62 6.39% 

0.5-0.59 98 10.09% 

0.6-0.69 44 4.53% 

0.7-0.79 13 1.34% 

0.8-0.89 11 1.13% 

0.9-0.99 13 1.34% 

1-1.19 10 1.03% 

1.2-1.29 6 0.62% 

1.3-1.39 6 0.62% 

1.4-1.49 3 0.31% 

1.5-1.59 4 0.41% 

1.6-1.69 5 0.51% 

1.7-1.79 1 0.10% 

1.8-1.89 4 0.41% 

1.9-1.99 0 0.00% 

2-2.49 4 0.41% 

2.5-2.99 3 0.31% 

3-3.49 0 0.00% 

3.5-3.59 0 0.00% 

success= 91.45% 

 

The histogram and median value plot for the above frequency table are shown in 

Figure 4.33. The above frequency table and histogram plot clearly show that the 

maximum frequency occurs at 0.1L ~ 0.19L interval that is 29.66% of total sample cases. 

Then, the frequency gradually decreases with the increment of non-dimensionalised 

distance value.  Beyond 1.12L, the percentage gets less than 1.0. Here, the total 

success rate is 91.45%. 



61 
 

 

Figure 4.33. Histogram and median value plot for 'd  

 

Regarding the unsuccessful cases, these occur for a limited number of starting 

points and ship headings. In such cases, the neural network confuses and rotates the ship 

repeatedly instead of guiding it to the imaginary line. However, it is believed that, by 

including those initial conditions into the teaching data and training the nets again, the 

existing percentage of error that is 8.55% for unsuccessful berthing cases could be 

reduced to a lesser value. 

 

4.3.2 Heading Error  

 

After course changing, the expected heading to be kept by the PID controller 

during low speed running is 240º. However, due to the hydrodynamic properties that are 

acting on the ship during reversing, the ship with single rudder-single propeller has the 

natural tendency to turn toward its starboard side. Moreover, in nearly zero speed the 

effectiveness of rudder also drastically deteriorates. Thus, the wind disturbances also 

have its large effect. As a result, although the controller successfully attains the target 

heading during the low speed running, due to reversing, the final heading tends to 

diverge toward the starboard side. This means, the expected frequency distribution 

curve should have the tendency to shift towards some positive value. Here, the error in 

final heading is calculated from the target heading using Equation 4.4. 
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( ) 240final     (4.4)

 

Then, considering the randomly chosen ship positions, headings and wind 

disturbances, the results are tabulated for the frequency of each particular interval of 

heading error given as Table 4.2. 

 

Table 4.2. Frequency table for   

 (deg) frequency percentage 

-70~-60.1 1 5.46% 

-60~-50.1 5 0.51% 

-50~-40.1 6 0.62% 

-40~-30.1 5 0.51% 

-30~-20.1 21 2.16% 

-20~-10.1 45 4.63% 

-10~-0.1 64 6.59% 

0~9.9 91 9.37% 

10~19.9 190 19.57% 

20~29.9 279 28.73% 

30~39.9 121 12.46% 

40~49.9 42 4.33% 

50~59.9 23 2.37% 

60~60.9 14 1.44% 

 

The histogram and the median value plot for the above frequency table are shown 

in Figure 4.34. The above frequency table and histogram plot clearly show that the 

maximum frequency occurs at 20º ~ 20.9º interval, which is 28.73% of total sample 

cases. This will actually make the final ship heading parallel to the pier. Beyond that 

maximum frequency, in both positive and negative directions, the frequency gradually 

reduces. Moreover, the histogram plot also shows that the frequency distribution of 

heading error shifts little bit forward, i.e. towards the starboard side due to the 

mentioned reason. 
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Figure 4.34. Histogram and median value plot for   

 

Since the tugs are expected to assist the ship later to align it with pier, the heading 

error within the shown limit is allowable for further tug assistance if the vessel is clearly 

stopped. Thus, analysis of final surge velocity is very important to ensure the success of 

berthing. 

 

4.3.3 Surge Velocity Error 

 

One of the criteria for considering the berthing as successful in this thesis is the 

final surge velocity ≤ 0.05 m/s. Thus, for each of the sample cases, the final surge 

velocity error is calculated to know its frequency distribution using Equation 4.5.  

 

0.05finalsurge surge    (4.5)

 

Then, considering the randomly chosen ship positions, headings and wind 

disturbances, the results are tabulated for the frequency of each particular interval of 

heading error value given as Table 4.3. 
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Table 4.3. Frequency table for surge  

surge  frequency percentage 

≈0 844 86.92% 

0-0.09 59 6.08% 

0.1-0.19 23 2.37% 

0.2-0.29 45 4.63% 

0.3-0.39 0 0.00% 

 

The histogram and the median value plot for the above frequency table are shown 

in Figure 4.35. The above frequency table and histogram plot clearly show that the 

maximum frequency occurs when the error is almost zero. Such case occurs in 86.92% 

of total sample cases. This clearly shows the controller is effective enough to stop the 

ship within the desired zone. Beyond that maximum frequency, it gradually decreases to 

a smaller value. 

 

 
Figure 4.35. Histogram and median value plot for surge  

 

Finally, considering the frequency distribution of the success indexes for randomly 

chosen samples, i.e. using the Monte Carlo simulations, a clear idea is established about 

the success rate of the proposed controller under wind disturbances. Regarding the 

number of unsuccessful cases for the randomly chosen sample, as mentioned earlier, can 

be decreased by adding those situations in the teaching data and train the network again. 

Such concern will be considered in the future work of this thesis.  



65 
 

Chapter 5 : EXPERIMENTS FOR AUTOMATIC SHIP BERTHING 

 

5.1 Free Running Experiment System 

 

To validate any research studies on autonomous navigation, it is very important to 

do the model ship experiment first. Doing such experiments in a basin, often raises 

questions about the limitation of basin size to fully testing the ship’s performances. 

Therefore, researchers are very keen to do such navigational tests in open spaces like a 

pond or river that allows the model ship to face the real environmental disturbances. Im 

and Seo (36) describe elaborately about the free running experiment system. Such 

unique system usually consists of several sensors that provide ship’s navigational 

information i.e. ship’s speed, positions, turning rate etc. Osaka University (OU) has the 

privilege of having such free running experiment system. Figure 5.1, shows the total 

configuration of the system that OU has. 

 

 

Figure 5.1. Free running experiment system 

 

Here, the whole system consists of three basic and important sensors. One of them 

is global positioning system (GPS). During the experiment, two real time kinematic 

(RTK) GPSs are used. One of them is kept fixed on the top of a nearby building and the 

other one is mounted on model ship. As a result, the model is considered to move with 
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respect to the fixed RTK GPS. By this way, the fixed RTK GPS provides necessary 

corrections to get accurate ship position and velocity as compared to using the single 

GPS unit.  

The second important sensor is a gyroscope. It is installed at the centre of gravity 

(CG) of the ship. The gyroscope is used to measure any type of angular movement. 

Therefore, this device is responsible for calculating rolling, pitching and yawing motion 

of the ship during the experiment. 

Third and the last sensor in OU’s free running experiment system is anemometer. 

This will calculate the relative wind force as well as wind direction during the 

experiment. 

Having these sensors on board, any types of experiments can be carried out for 

suitable ship model. In order to maintain particular propeller revolution, pulse width 

modulation (PWM) mechanism is used for the servo motor. On the other hand, stepping 

motor is used to maintain precise movement of the rudder. Two 12V batteries are used 

in series to feed 24V to both servo motor and stepping motor driver. Other devices like 

on board computer, the gyroscope is provided with 12V by using two batteries in 

parallel. For GPS on board, 12V is provided through a transformer, which converts the 

supply voltage to a lower desired value. One personal laptop is also used where all data 

are kept as backup during each experiment. 

 

5.2 Implementing ANNs in Free Running Experiment Code 

 

After getting satisfactory results from Monte Carlo simulations, the trained ANNs 

for rudder and propeller revolution are implemented in the free running experiment 

system. In this thesis, the ANNs used for automatic ship berthing are based on 

supervised learning. Therefore, after training for minimum MSE value, the weight and 

the bias matrices of the networks become pre-determined i.e. they will not change 

during the experiment. Since the networks are created in MATLAB R2009a and the 

existing free running experiment code is written in C, the desired matrices for the 

networks need to be read through the C language code. Moreover, virtual window file 

also needs to be transferred during the berthing experiment to decide the ship’s initial 
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position depending on its heading. The following sub-sections describe elaborately 

about how the ANNs are implemented in free running experiment system to execute the 

automatic ship berthing experiment based on virtual window concept. 

 

5.2.1 Pre-processing of Sensors’ Outcome for Network’s Inputs 

 

Pre-processing is very important while training net in order to remove the scale 

effects. Therefore, it is often useful to scale the inputs and targets so that they always 

fall within a specified range. In this thesis, all inputs and targets are scaled within [-1 1] 

and the following expression is used for the mentioned purpose. 

 

 max min min max min min( )*(x x ) / ( ) yy y y x x      (5.1)

 

where, ymax =1, ymin =-1, xmax is the maximum possible value of any particular input for 

the network, xmin is the minimum possible value of that particular input for the network, 

x is the current value of that particular input for which the conversion is needed and y is 

the desired converted value of x within [-1 1]. 

To feed the necessary inputs for pre-processing, GPS provides ship position 

together with surge and sway velocity. Gyroscope gives the ship heading angle as well 

as yaw rate. The actual rudder angle is determined by counting pulses sent to the 

stepping motor for desired angle of rotation. Other parameters like d1 and d2 are 

calculated geometrically depending on the ship position. All such inputs generated by 

the sensors here represent the value of ‘x’ in the above expression. Finally, after getting 

xmax and xmin for each input from the teaching data, ‘y’ is calculated for each ‘x’ to feed 

to the networks. For any value of ‘x’ greater than xmax will give y=1 and for less than 

xmin will give y=-1. 

 

5.2.2 Reading Virtual Window File and Coordinate Adjustment 

 

Automatic ship berthing experiment using virtual window concept is a completely 

new era. To initialise the ship position on virtual window, ship’s different headings 
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together with their corresponding points on virtual window for four different rudder 

constraints are read by the program code. OU’s free running experiment system has the 

privilege to run the model either in manual mode or in auto mode. During manual mode, 

the rudder angle and the propeller revolution are controlled using radio controller. This 

mode is usually used to drive the model up to some suitable zone to start the auto mode. 

When the auto mode is activated, gyroscope detects the ship’s current heading and 

according to that heading, the initial position of the model is sorted out from a given 

virtual window file. Since the window is created for different rudder constraints, the 

user needs to select the constraint prior to the experiment depending on interest. The 

following figure shows one sample data of the virtual window file that is read during the 

berthing experiment. 

 

 
Figure 5.2. Virtual window file 

 

Here, it is noticeable that different points to start the model are given at an interval 

of 5º of ship heading. However, while activating the auto mode, the current heading 

angle is detected by gyroscope and the desired starting point needs to be found out for 

that initial heading. Since the ANN has good interpolation ability, each starting point 

during the experiment is considered here for a particular range of the ship’s initial 

heading rather than sticking to one particular value. The range of ship heading for each 

particular starting point is considered as 5º.  

Regarding the coordinate adjustment while actuating the auto mode, as mentioned 

above, a point on the user selected virtual window is sorted out depending on the ship’s 

instantaneous heading. At the same time, GPS also gives a particular ship position. 

Usually, these two coordinate systems do not coincide with each other. As a result, 

if 97.5 102.5    
if 102.5 107.5    
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relative position with respect to the fixed point on virtual window needs to be calculated 

on real time to feed the inputs for networks. Equation 5.2 shows the simple calculations 

done in each time step for such transformation.  

 

(at_VW_point) ( _VW_file)

(at_VW_point) ( _VW_file)

diff GPS vw from

diff GPS vw from

GPS diff

GPS diff

x x x

y y y

x x x

y y y

 

 

 

 

 (5.2)

 

In order to fit the virtual window for different rudder constraints within the 

available experiment field, the coordinate also needs to be rotated somewhat for both 

left hand side and right hand side approach. Figure 5.3 shows the arrangement of the 

coordinate system during berthing experiment. For LHS approach, the imaginary line is 

set at an angle of 15º from the line perpendicular to the pier. On the other hand, for RHS 

approach the line is set as perpendicular to the pier.   

 

 

 
Figure 5.3. Coordinate rotation during berthing experiment 
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5.2.3 Reading Weight and Bias Matrices for Calculations 

 

It is mentioned earlier that the compilers for the networks are different while being 

trained and used. Therefore, taking the advantages of supervised learning, the weight 

and bias matrices are transferred in the form of ASCII values and later on read by the 

free running system code. In order to perform the desired calculations, proper interlink 

connections are built among the pre-processed inputs, hidden layers’ neurons and 

pre-processed output. Later on, the pre-processed output is transferred to its actual value 

before execution by using Equation 5.3. 

 

min max min max min minx ( )*( ) / ( ) xy y x x y y      (5.3)

 

Here, the maximum and minimum value of rudder angle during course changing 

i.e. for the rudder angle output, xmax=25º and xmin=-25º. On the other hand, propeller 

revolution varies from half ahead to slow astern. Thus, for the propeller revolution 

output, xmax=14 and xmin=-8. 

While transferring from one layer to another, the same transfer functions are 

recreated as used during training net. Since two separate networks are used in this thesis, 

calculations are done simultaneously on each time for desired rudder and propeller 

revolution outputs, respectively. 

 

5.3 Initial Conditions during Experiment 

 

A ship may start its approach for berth with different initial speeds. It may also 

experience different combinations of sway velocities and yaw rates. However, while 

using the NLP method for creating teaching data, the surge velocity was considered as 

half ahead without any sway velocity and yaw rate. It means that the ship was assumed 

to go straight before starting its approach. In real cases, due to the presence of 

environmental disturbances, it is very difficult to attain so. Moreover, while performing 

the berthing experiment, there was no arrangement to start the ship from the opposite 

side of the pier in order to enter the virtual window in a straight course. Therefore, the 
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model was planned to accelerate first from the pier and then turn to enter the virtual 

window. As a result, every time while switching to auto mode to enable the ANN 

controllers, the ship experiences some initial sway velocity as well as yaw rate. 

Although prior to switching the auto mode the counter rudder is taken to minimise those 

values, in every run small values of sway velocity and yaw rate always remain. 

Therefore, it would be a quiet interesting matter to observe how the ANNs behave to 

such new situation by utilising their robustness. Another important concern is that the 

points on the virtual window in this thesis do not have any physical existence. As a 

result, the only option left for the user is to guess the position of the ship by eyes and 

execute the auto mode when it approaches close to its desired point. Therefore, a good 

guess provides enough distance for the ship to stop and vice versa. That is why, during 

the experiment, the whole coordinate is made flexible and positions are calculated 

relative to each starting point. Figure 5.4 illustrates three possible situations, where case 

2 would be the perfect guess to execute the auto mode and its corresponding goal point 

is about 4.5 m from the pier. Considering case 1, due to starting up from a shorter 

distance than expected, the final goal point falls over the pier and for case 3, an 

extended distance to start up the ship allows enough space to stop and this time ship will 

stop at a distance more than 4.5 m from actual pier. Thus, case 2 and 3 would be the 

preferable target for executing the automatic ship berthing experiment with reasonable 

space. 

 
Figure 5.4. Floated goal points with different staring points 
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5.4 Experiment Results for Points on Virtual Window 

 

In this thesis, the teaching data are categorised into two, depending on the left hand 

side (LHS) and right hand side (RHS) approach of a ship and the networks are trained 

based on their approaching pattern. Therefore, two different types of experiments are 

carried out. One is for LHS approach and another is for RHS approach. Initially, the 

experiments are carried out by assuming the ship starting from its desired point on 

virtual window. Conducting the experiments several times, some similarities have been 

found while observing the behaviour of the controller for berthing manoeuvre. 

Depending on that, the experiment results are gathered into some groups where the 

controller behaves in a similar way or the resulting trajectories look like similar. Here, 

each figure demonstrating the experiment result includes the resulting trajectory in its 

first row and the corresponding controller’s action in the second row. On the other hand, 

the corresponding details of each figure include the time history of all necessary 

particulars where the fifth and sixth rows show the relative wind information during the 

experiment. Although relative wind information is given in the figures, while explaining 

the figures in the text, the actual wind direction is mentioned for the ease of 

understanding. 

Another important concern is that during the berthing experiment, the program was 

set to make the rudder neutral, i.e. rudder angle zero during reversing. Therefore, the 

following results might show some frequent rudder angle change during idling and 

reversing stages that is inconvenient to use in real ship operation. However, such 

frequent operation can be eliminated by letting the PID controller to take its action 

without interfering it. By doing so, although the PID controller is expected to take the 

rudder during reversing, it will not affect the final resulting trajectory. This is because 

the rudder has no effect during reversing. 

 

5.4.1 Ship Approaching from Left Hand Side (LHS) 

 

Several experiments are conducted for the ship approaching from LHS. The 

success of each experiment largely depends on the presence of wind disturbances during 
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course changing and especially during low speed running along with the imaginary line. 

However, the ANN-PID controller is expected to work effectively up to the wind that 

blows on an average of 1.5 m/s, which is 15m/s for full scale (same Froude number). 

While conducting the berthing experiments, the controller has found to behave in some 

particular ways based on the initial conditions and existing wind disturbances. Therefore, 

the experiment results in this thesis, are gathered in some groups rather than showing in 

a scattered way. In any particular group, the included experiment results do not 

guarantee a 100% successful ship berthing. However, similarities in the controller’s 

behaviour are clearly visible.  

Group 1: Regarding this group, while switching to auto mode, the ANN decides to 

take the starboard rudder first to ensure the ship’s approach from left hand side. This is a 

usual case for the left hand side approach and ANN’s action remains same irrespective 

of the combination of initial sway velocity or yaw rate. Here, in most cases within 

reasonable wind, the ship manages to merge with the imaginary line well ahead and 

proceeds along with the line without much deviation. The resulting trajectories belong 

to this group look like similar as used in teaching data for LHS approach. Figure 5.5 to 

5.7 illustrate such demonstration.  

 

 
Figure 5.5. Group 1, initial heading 99.3º from virtual window for rudder constraint ±15º 
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Figure 5.5(cont..). Corresponding details 

 

Among those figures, Figure 5.5 can be considered as a representative illustration 

belongs to this group. During that experiment, while switching to auto mode, the ANN 

took the starboard rudder right from the beginning and continued until the ship heading 

became parallel to the imaginary line. Later on, it executed the counter rudder to 

minimise the resulting sway velocity and yaw rate i.e. to ensure straight like course. 

Finally, the PID controller was activated to provide necessary corrections while track 

keeping along the imaginary line. During such low speed running, the wind was under 

considerable limit with its almost following direction. Therefore, the ship stopped 

within the assumed berthing zone and the final surge velocity was 0.004 m/s. Here, the 

ANN also performed the engine idling and reversing sequentially while controlling ship 

speed near goal point. Such phenomenon was also observed in simulations for berthing 

under wind disturbances. 

Considering Figure 5.6, the ANN also took the starboard rudder first for the 

combination of initial sway velocity and yaw rate. However, it maintained a constant 

rudder angle during the whole course changing which is unlike as Figure 5.5. During 

the experiment, the auto mode was activated little bit later than the expected. Therefore, 

the final goal point fell over the pier as explained in Figure 5.4, case 1 and the user was 

forced to stop the experiment to save the model from being collided with the actual pier. 
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Although there was not enough space to allow the ship to stop completely, by observing 

the ANN’s action while controlling the propeller revolution, it was clearly seen that the 

reversing was just started to reduce the velocity. Therefore, it is believed that the 

existing surge velocity, which is 0.11 m/s in this case would have been drastically 

reduced if there were enough space to continue the experiment.  

 

 

Figure 5.6. Group 1, initial heading 110.9º from virtual window for rudder constraint ±10º 

 
Figure 5.6(cont..). Corresponding details 
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Figure 5.7. Group 1, initial heading 97.7º from virtual window for rudder constraint ±10º 

 

Figure 5.7(cont..). Corresponding details 
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Group 2: Depending on the combination of initial sway velocity and yaw rate 

while switching to auto mode, sometimes the ANN first decides to minimise them by 

taking the counter rudder. Doing so often distracts the ship from its safest place to 

approach. Therefore, the controller realises such situation and continues with port 

rudder until the ship makes a complete port turn. At the same time, ANN also tries to 

adjust the ship position to a safer place. Then, it decides to take the desired starboard 

rudder to finally starting the approach. During the whole course changing process, ANN 

for propeller revolution maintains half ahead speed until the ship merges to the 

imaginary line. This kind of behaviour of ANN has found in several experiments and 

therefore gathered in this group. The resulting trajectories belong to this group are 

different from those used to train the net. However, this time the credibility simply goes 

to the well trained ANN for taking such decision to complete the whole berthing process. 

Figure 5.8 to 5.10 illustrate such demonstration.  

 

 
Figure 5.8. Group 2, initial heading 124.2º from virtual window for rudder constraint ±10º 
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Figure 5.8(cont..). Corresponding details 
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Figure 5.9. Group 2, initial heading 121.8º from virtual window for rudder constraint ±15º 

 
Figure 5.9(cont..). Corresponding details 
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Figure 5.10. Group 2, initial heading 104.8º from virtual window for rudder constraint ±20º 

 

Figure 5.10(cont..). Corresponding details 

 

Group 3: Although in group 2, ANN tries to oppose the existing sway velocity and 

yaw rate while switching to auto mode, sometimes ANN may want to go with such 

existing values by taking the expected starboard rudder first like in group 1. By doing so, 

if such sway velocity or yaw rate reaches some peak value depending on the ship 

position, then ANN finally decides to take the port rudder to oppose them. But this time, 

unlike as group 2, ANN prevents the complete turn of ship by taking the starboard 

rudder again as the ship is believed to be still in suitable positing to start its approaching 

to merge with the imaginary line. Therefore, all trajectories belong to this group is due 

-20 -10 0 10 20 30

0

5

10

15

Y/L position [-]
X

/L
 p

o
si

tio
n

 [-
]

0 100 200 300 400 500
-30

-20

-10

0

10

20

30

t [sec]

ru
d

d
e

r 
[d

e
g

]

 ANN-PD result for command rudder angle 

0 100 200 300 400 500
-10

-5

0

5

10

15

20

t [sec]

n
 [r

p
s]

 ANN result for rps 

0 50 100 150 200 250 300 350 400 450
0

0.2
0.4

u[
m

/s
]

0 50 100 150 200 250 300 350 400 450
-0.5

0
0.5

v[
m

/s
]

0 50 100 150 200 250 300 350 400 450
0

200
400

P
si

[d
eg

]

0 50 100 150 200 250 300 350 400 450
-5
0
5

r
[d

eg
/s

]

0 50 100 150 200 250 300 350
0
2
4

V
w

[m
/s

]

0 50 100 150 200 250 300 350
-200

0
200

t [sec]

P
si

w

[d
eg

]

ANN-PID n 



81 
 

to subsequent starboard to port or port to starboard rudder taken by ANN according to 

situation demands. Figure 5.11 to 5.13 illustrate such demonstration. 

Considering Figure 5.11, ANN behaved in a similar way as explained above. On 

the other hand, in Figure 5.12 and 5.13, ANN took the port rudder first. However, in 

each case, ANN prevented the complete turn by taking the starboard rudder. After that, 

ANN also adjusted the rudder to go for a short straight like path and then began to 

merge with the imaginary line as shown in Figure 5.11 and 5.12. 

 

 

Figure 5.11. Group 3, initial heading 88.8º from virtual window for rudder constraint ±20º 

 

Figure 5.11(cont..). Corresponding details 
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In Figure 5.11, although the actual wind direction altered in wide range, during low 

speed running some consistency was noticed within the fluctuating wind ranging from 

0º to -50º. Such wind actually delayed the emergence of the ship after course changing. 

At last, a sudden change of wind from -100º to -120º after 350 sec caused a faster 

velocity drop. Therefore, just after the reversing started, the final velocity became a 

negative value and the ship started to drift. 

 

 

Figure 5.12. Group 3, initial heading 122.3º from virtual window for rudder constraint ±20º 

 
Figure 5.12(cont..). Corresponding details 
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In Figure 5.12, the wind velocity was low enough as compared to Figure 5.11 and 

its direction was found consistent during straight running with an average of -75º. 

Therefore, in such case, the reversing played a vital role to stop the ship near pier. On 

the other hand, in Figure 5.13, the wind direction looked like similar as in Figure 5.12, 

but it contained several gusts up to 4 m/s. Therefore, the velocity dropped faster than 

expected like in Figure 5.11 and the ANN preferred to continue with the idling stage for 

longer time to allow the ship come closer to the goal point. However, while entering to 

the berthing zone, the ship was started to drift due to the existing wind. 

 

 

Figure 5.13. Group 3, initial heading 148.7º from virtual window for rudder constraint ±25º 

 
Figure 5.13(cont..). Corresponding details 
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5.4.2 Ship Approaching from Right Hand Side (RHS) 

 

Several experiments are done for the ship approaching from RHS. Since the 

networks are different from those used in LHS approach, the controller’s behaviour is 

also investigated for different unknown situations. Unfortunately, due to the presence of 

heavy wind during the experiment time, the success rate was not high enough as found 

in LHS approach. Even so, such experiment results can be categorised into several 

groups depending on the controller’s behaviour. Therefore, the trajectories belong to 

each group have some similarities, although the success for automatic berthing may 

vary. 

Group 1: Considering this group, while switching to auto mode, ANN may take 

starboard rudder first to oppose the existing sway velocity and yaw rate or it may go 

with the existing one by taking the port rudder. While taking the port rudder, if sway 

velocity and yaw rate reach their maximum value as decided by ANN, it takes the 

starboard rudder to minimise these values. After that, ANN actuates the desired port 

rudder to start its final approach to merge with the imaginary line. The important 

concern belongs to this group is that after course changing, ANN in most cases manages 

to merge the ship with imaginary line without much deviation. As a result, under 

considerable wind, the ship moves almost along with it. Figure 5.14 to 5.16 illustrate 

such demonstration for successful berthing. 

Considering Figure 5.14 and 5.15, ANN took its maximum allowed starboard 

rudder first for a very short time and then it was followed by the desired port rudder for 

course changing. After merging to the imaginary, in both cases ship preceded almost 

along with it. In figure 5.14, during straight running, most of time the wind blew with 

an average velocity of 0.5 m/s. However, sudden gusts appeared after 200 sec with an 

average direction of 170º. On the other hand, in Figure 5.15, the gusts were present right 

from the beginning of the course changing with an average of 1.5 m/s. Therefore, even 

using the PID controller, sudden course alteration occurred in both cases during 

propeller idling and reversing i.e. when the rudder action was not effective enough. The 

final surge velocities in these cases were -0.006 m/s and 0.05 m/s, respectively.   
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Figure 5.14. Group 1, initial heading 49.9º or 409.9º from virtual window for 

 rudder constraint ±10º 

 

Figure 5.14(cont..). Corresponding details 
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Figure 5.15. Group 1, initial heading 44.1º or 404.1º from virtual window for 

 rudder constraint ±10º 

 
Figure 5.15(cont..). Corresponding details 
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reading also provided confusion while calculating propeller revolution by ANN. 

Therefore, the fluctuations in propeller revolution were due to GPS signal problem. 

 

 

Figure 5.16. Group 1, initial heading 67.1º or 427.1º from virtual window for  

rudder constraint ±10º 

 

Figure 5.16(b). Corresponding details 
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following two figures demonstrate such trajectories. Here, although the ship failed to 

berth successfully, illustrating the result also demonstrates what may happen if the 

proposed ANN-PID controller is used in the wind that blows beyond the permitted limit. 

 

 

Figure 5.17. Group 1, unsuccessful berthing, initial heading 37.2º or 397.2º from virtual window 

for rudder constraint ±10º 

 

Figure 5.17(cont..). Corresponding details 
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maintain the course. Later on, after 200 sec during reversing, the wind attained its 

maximum peak velocity as 3.2 m/s and changed its direction to an average of 180º. Due 

to such crucial change, the ship finally failed to make successful berthing. In Figure 

5.18, similar types of phenomenon happened when the high gusts altered its direction 

from an average of -100º to 160º after 180 sec. Therefore, not only the wind velocity, 

but also its direction played the role for the success of the controller. 

 

Figure 5.18. Group 1, unsuccessful berthing, initial heading 57.1º or 417.1º from virtual window 

for rudder constraint ±10º 

 

Figure 5.18(con.). Corresponding details 
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Group 2: Due to the presence of high wind disturbances during course changing or 

due to improper decision taken by ANN itself, sometimes the ship may fail to merge 

with the imaginary line in large extent. As a result, the ship deviates from its desired 

course right from the beginning of the imaginary line. After that, the PID controller 

takes the counter rudder to compensate such deviation and it succeeds in some extent. 

This means, neither of such trajectories represents the successful berthing result. 

However, the trajectories can be gathered into this group by observing the similarities in 

controlling behaviour or the pattern of resulting trajectories. Figures 5.19 to 5.20 

illustrate such demonstration. 

In Figure 5.19, several gusts with an average from -125º continuously blew 

throughout the whole berthing operation. Therefore, the resulting trajectory was shifted 

a little bit towards upper-right direction. On the other hand, considering Figure 5.20, 

some initial fluctuations in GPS signal as well as the gusts with an average direction of 

100º caused the total course changing trajectory to shift a little bit towards upper-left 

direction. In both cases, the wind direction remained consistent during the low speed 

running. Therefore, the PID controller tried to minimise the deviation by taking the 

starboard rudder and succeeded in some extent. Although in such cases, the ship failed 

to reach the safety zone, the corresponding surge velocities were 0.01 m/s and -0.03 m/s 

i.e. they were successfully stopped by the controller. 

 
Figure 5.19. Group 2, unsuccessful berthing, initial heading 55.4º or 415.4º from virtual window 

for rudder constraint ±10º 
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Figure 5.19(cont..). Corresponding details 

 

 

Figure 5.20. Group 2, unsuccessful berthing, initial heading 28.4º or 388.4º from virtual window 

for rudder constraint ±25º 
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Figure 5.20(cont..). Corresponding details 
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Figure 5.21. Group 3, initial heading 46.9º or 406.9º from virtual window 

 for rudder constraint ±10º 

 

Figure 5.21(cont..). Corresponding details 
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gradually from an average of -100º to 150º. As a result, the course changing trajectory 

was shifted little bit towards the left side of imaginary line than expected. This is unlike 

as in Figure 5.21. After that, the PID controller tried to make necessary corrections. 

Here, during step deceleration, the wind direction was mostly inconsistent and there 

were sudden gusts during propeller idling and reserving stage. Therefore, the ship just 

passed over the successful zone due to having improper velocity drop. 

 

 
Figure 5.22. Group 3, unsuccessful berthing, initial heading 4.0º or 364.0º from virtual window 

for rudder constraint ±15º 

 

Figure 5.22(cont..). Corresponding details 
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Group 4: Sometimes wind disturbances or improper controller’s action causes a 

gradual shift of course changing trajectories, but this time ANN manages to attain the 

final desired heading that is almost parallel to the imaginary. In such cases, PID 

controller prefers to maintain the same heading and the ship proceeds almost parallel to 

the imaginary line instead of merging with it. Figure 5.23 illustrates such demonstration. 

 

 

Figure 5.23. Group 4, initial heading 41.3º or 401.3º from virtual window 

 for rudder constraint ±20º 

 

Figure 5.23(cont..). Corresponding details 
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In Figure 5.23, it is noticeable that the PID controller took consecutive starboard 

and port rudder to maintain the ship heading which was almost parallel to the imaginary 

line. Later on, high gusts from an average direction of 180º during propeller idling and 

reversing altered the course and the ship was stopped with a final velocity of 0.01 m/s.   

In some cases, the controller performed in a similar way as mentioned in Figure 

5.23. However, due to having some following wind, the reversing with slow astern was 

not sufficient to stop it. Therefore, the ship moved a little bit forward than the defined 

successful zone. Figure 5.24 demonstrates such illustration. 

In Figure 5.24, the wind was under reasonable limit during course changing. Then, 

depending on the existing sway velocity and yaw rate, ANN took the starboard rudder 

first followed by the desired port rudder. Such action provided some shift in turning 

trajectory, despite the ANN almost successfully attained the desired final heading. Later 

on, several small gusts in the following direction accelerated the ship after 200 sec. 

Therefore, even considering reversing by ANN, the velocity drop was not as expected. 

As a result, the ship exceeded the successful zone and at last considered stopped with a 

final velocity of 0.01 m/s. 

 

 
Figure 5.24. Group 4, unsuccessful berthing, initial heading 4.7º or 364.7º from virtual window 

for rudder constraint ±20º 
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Figure 5.24(cont..). Corresponding details 
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experiment results. 

Considering Figure 5.25, while activating the autonomous control, the initial 

heading was altered by -5º. As a result, although the actual initial heading was 50.6º, it 

was assumed to start from a point desired for 45º and the controller took decision 

relative to that point. During the experiment, the wind was within reasonable limit and 

the ship was stopped successfully within the successful berthing zone. 

 

 

Figure 5.25. Initial heading 50.6º or 410.6º from point desired for 45º on virtual window  

for rudder constraint ±10º  

 

Figure 5.25(cont..). Corresponding details 
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In Figure 5.26, the ship’s initial heading was altered by +20º while sorting out the 

starting point from virtual window file. Therefore, it was assumed to start from a point 

desired for 60º although it had its initial heading 39.9º or 40º. On the other hand, Figure 

5.27 demonstrates the result for ship with initial heading of 32.8º. However, it started 

from a point desired for 20º. In both cases, although the small gap exists after course 

changing by ANN controller, later on it was minimised by activating the PID controller 

and overall the combined effort ensured successful berthing. Here, the resulting 

trajectories in Figure 5.25, 5.26 and 5.27 belong to group 1 for RHS approach. 

 

 
Figure 5.26. Initial heading 39.9º or 399.9º from point desired for 60º on virtual window 

 for rudder constraint ±20º  

 
Figure 5.26(cont..). Corresponding details 
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Figure 5.27. Initial heading 32.8º or 392.8º from point desired for 20º on virtual window 

 for rudder constraint ±20º  

 

Figure 5.27(cont..). Corresponding details 
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controller may not provide smooth operation as expected, which may lead to some error 

in ship’s positing as well as in heading after course changing. Since it is followed by the 

PID controller, it is possible to correct such errors in the remaining track keeping stages 

and the combined controller is sufficient to make sure successful berthing operation 

even with existing error after course changing. However, the success of berthing largely 

depends of the existing wind disturbances too. As seen in Figure 5.29, the PID 

controller succeeded in bringing the ship back to the track. Later on, strong wind after 

260 sec altered the ship’s course completely during idling and reversing stages. 

 

 
Figure 5.28. Initial heading 57.9º or 417.9º from point desired for 75º on virtual window 

 for rudder constraint ±15º  

 

Figure 5.28(cont..). Corresponding details 
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Figure 5.29. Initial heading 31.4º or 391.4º from point desired for 45º on virtual window 

 for rudder constraint ±15º 

 

Figure 5.29(cont..). Corresponding details 
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to sort out the midpoint against its initial heading.  

Considering Figure 5.30, the ship started from a point desired for heading 110º on 

middle of virtual window for rudder constraints ±10º and ±15º. Here, it represents the 

result for the trajectory that looks like similar to those used as teaching data. Therefore, 

this result belongs to group 1 as mentioned in section 5.4.1 for LHS approach. The final 

surge velocity was 0.02 m/s at the end of this experiment.  

 

 
Figure 5.30. Initial heading 110.8º from mid of virtual window 

 for rudder constraints ±10º and ±15º 

 
Figure 5.30(cont..). Corresponding details 
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Figure 5.31. Initial heading 128.1º from mid of virtual window  

for rudder constraints ±10º and ±15º 

 
Figure 5.31(cont..). Corresponding details 
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the imaginary line. Thus, these two results belong to group 2 for LHS approach. Here, 

although the actions of the ANN controller during course changing were almost similar, 

the responses of the ship were different. This may probably due to existing current and 

wind disturbances. Unfortunately, due to some error in power system no wind data were 

logged in during these experiments to prove the above statement. 

 

Figure 5.32. Initial heading 128.9º from mid of virtual window  

for rudder constraints ±10º and ±15º 

 

Figure 5.32(cont..). Corresponding details 
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proving some bang-bang control like action until the PID controller was activated. Here, 

due to having sudden wind, the ship just stopped before entering the successful berthing 

zone and started to drift literally. Unfortunately, for this experiment the wind data are 

not available due to power problem. Figure 5.34 illustrates another result for the 

controller that initiated with starboard rudder first, but later on, it suddenly activated 

port rudder for some time. Such action resulted a larger course changing pattern than 

expected and the activated PID controller provided necessary corrections for such large 

existing gap between the ship and the imaginary line to ensure a successful berthing 

operation. These two types of behaviours of the controller were not observed in 

previous experiments. 

 

Figure 5.33. Initial heading 116.5º from mid of virtual window 

 for rudder constraints ±20º and ±25º 

 

Figure 5.33(cont..). Corresponding details 
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Figure 5.34. Initial heading 108.7º from mid of virtual window 

 for rudder constraints ±20º and ±25º 

 

Figure 5.34(cont..). Corresponding details 
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Figure 5.35. Initial heading 19.9º or 379.9º from mid of virtual window 

 for rudder constraints ±10º and ±15º 

 

Figure 5.35(cont..). Corresponding details 
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Figure 5.36. Initial heading 26.5º or 386.5º from mid of virtual window 

 for rudder constraints ±10º and ±15º 

 

Figure 5.36(cont..). Corresponding details 

 

On the other hand, Figure 5.38, 5.39 and 5.40 illustrate the trajectories of different 

types that contain larger error in ship position as well as in heading after course 

changing. This may due to starting from closest point, i.e. mid of ±20º and ±25º or 

having less option to go for large angle of heading change from such closest point of 

approach. In spite of that, the PID controller did its best and in all cases ship stopped 

-15 -10 -5 0 5 10 15 20 25 30 35

0

5

10

15

Y/L position [-]

X
/L

 p
o

si
tio

n
 [-

]

0 100 200 300 400
-30

-20

-10

0

10

20

30

t [sec]

ru
d

de
r 

[d
e

g
]

 ANN-PD result for command rudder angle 

0 100 200 300 400
-10

-5

0

5

10

15

20

t [sec]
n

 [r
p

s]

 ANN result for rps 

0 50 100 150 200 250 300 350
0

0.2
0.4

u[
m

/s
]

0 50 100 150 200 250 300 350
-0.5

0

0.5

v[
m

/s
]

0 50 100 150 200 250 300 350
200

300

400

P
si

[d
eg

]

0 50 100 150 200 250 300 350
-5

0

5

r
[d

eg
/s

]

0 50 100 150 200 250 300 350
0

2

4

V
w

[m
/s

]

0 50 100 150 200 250 300 350
-200

0

200

t [sec]

P
si

w

[d
eg

]

ANN-PID n



110 
 

successfully within its desired zone. Among the resulting trajectories, the first two may 

be considered for group 3 due to their ‘S’ like pattern. On the other hand, Figure 5.40 

may belong to group 4 as the ship moved parallel to the imaginary line instead of 

merging with it.    

 

Figure 5.37. Initial heading 37.0º or 397.0º from mid of virtual window 

 for rudder constraints ±20º and ±25º 

 

Figure 5.37(cont..). Corresponding details 
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Figure 5.38. Initial heading 18.3º or 378.3º from mid of virtual window 

 for rudder constraints ±20º and ±25º 

 

Figure 5.38(cont..). Corresponding details 
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Figure 5.39. Initial heading 42.7º or 402.7º from mid of virtual window 

 for rudder constraints ±20º and ±25º 

 

Figure 5.39(cont..). Corresponding details 
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Figure 5.40. Initial heading 3.4º or 363.4º from mid of virtual window 

 for rudder constraints ±20º and ±25º 

 
Figure 5.40(cont..). Corresponding details 
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ensure successful berthing operation. Here, the resulting trajectory belongs to group 1 

for RHS approach. 

 

Figure 5.41. Initial heading 37.2º or 397.2º from undesired mid of virtual window 

 for rudder constraints ±20º and ±25º 

 
Figure 5.41(cont..). Corresponding details 
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Therefore, during those experiments, the ship positions were calculated relative to the 

sorted out initial point and the program assumed the final goal based on its initial 

position. However, in a real case for berthing, the ship operator needs to operate the ship 

for a fixed target port. As a result, later on, the strategy was changed for a fixed-point 

approach rather than floating one. To do such experiments, there is no need of any file 

containing the points on virtual window. Like in the real case, the user only needs to 

navigate the ship to its possible approaching position and switch on to the auto mode. 

Then, the program will detect the ship position relative to the fixed goal point and the 

controller will take necessary action to execute the berthing operation. Such 

experiments are done in several cases where the auto mode is activated considering the 

ship within constructed virtual window area. Figure 5.42 to 5.45 illustrate such 

experiment results for RHS approach. 

Considering Figure 5.42, the ship with its initial heading 38.9º was started from a 

point far beyond expected. However, the controller managed quite well to guide the ship 

up to the fixed goal point and the final surge velocity was less than 0.08 m/s. On 

contradictory in Figure 5.43, the ship started with almost similar heading and from a 

nearby point. The controllers also succeeded to guide it up to the desired zone. However, 

the final surge velocity was much higher than expected due to the late start of reversing.      

 

Figure 5.42. Initial heading 38.9º or 398.9º starts from (11.47m, 52.24m) 
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Figure 5.42(cont..). Corresponding details 

 

 

Figure 5.43. Initial heading 38.1º or 398.1º starts from (11.06m, 51.80m) 
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Figure 5.43(cont..). Corresponding details 

 

Figure 5.44 shows the result for ship started with heading 25.2º. Here, the 

controller executed constant port rudder from the beginning. Therefore, the course 

changing trajectory looks quite smooth with some error in ship heading. This was 

corrected later on by the activated PID controller. Some fluctuations in GPS reading 

during reversing stage remained which made it difficult to guess the final surge velocity 

after completing the experiment. 

 

 
Figure 5.44. Initial heading 25.2º or 385.2º starts from (11.58m, 56.55m) 
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Figure 5.44(cont..). Corresponding details 

 

In Figure 5.45, the ship with its initial heading 60.9º started from an arbitrary point 

was tested for berthing purpose. Here, the controller initiated with expected port rudder 

and followed by some bang- bang like control to go some part in a straight course. Then, 

the ship started its approach towards imaginary line. Due to such action, the ANN 

controller not only succeeded to merge with the imaginary line well ahead, but also the 

heading error after course changing was quite reasonable. The final surge velocity after 

completion of this experiment was less than 0.05 m/s. 

 
Figure 5.45. Initial heading 60.9º or 420.9º starts from (5.706m, 57.80663m) 
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Figure 5.45(cont..). Corresponding details 

 

Figure 5.46 to 5.48 illustrate the results while using the networks for LHS 

approach. Figure 5.46 shows the results for ship with its initial heading 133.3º started 

from an arbitrary point within the constructed virtual window area. Here, the trajectory 

looks similar to those used to train the network and thus belongs to group 1 for LHS 

approach. However, the controller initiated with a slight kick in port rudder.  

 

 
Figure 5.46. Initial heading 133.3º starts from (48.831m, 36.778m) 
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Figure 5.46(cont..). Corresponding details 

 

In figure 5.47, the situation was a little bit different since the ship was planned to 

start from a point away from the created window. The initial heading was also beyond 

the range used in teaching data. The purpose of this experiment was to judge the 

effectiveness of controllers beyond the trained zone i.e. the extrapolation ability. In spite 

of such situation, ANN managed to merge the ship with imaginary line by taking the 

maximum allowed starboard rudder i.e. 25º and counter rudder as -25º. For some part, it 

also behaved like bang-bang control considering rudder ±15º in action. During the low 

speed running, the wind direction was inconsistent and the velocity was low enough to 

affect the ship’s motion. As a result, after its emergence, the PID controller overtook the 

ANN and kept the course without that much of difficulty. The final surge velocity was 

0.01 m/s but due to sudden high wind near the pier, the ship was literally drifted as 

shown in the trajectory. 
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Figure 5.47. Initial heading 73.7º starts from (44.73m, 46.21m) 

 

Figure 5.47(cont..). Corresponding details 

 

On the contradictory, Figure 5.48 shows a completely different result. During the 

experiment, the controller took the port rudder first and continued with it until the ship 

made a complete port turn. Therefore, the result belongs to group 2 for LHS approach. 

The final surge velocity during the experiment was nearly zero. 
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Figure 5.48. Initial heading 99.25º starts from (43.627m, 38.545m) 

 
Figure 5.48(cont..). Corresponding details 
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Chapter 6 : ANALYSIS OF NETWORK’S BEHAVIOR 

 

In this thesis, the experiment results for automatic berthing are summarised 

depending on the controller’s behaviour. However, to explain why the controller 

behaves in different ways, especially for rudder output, the network is investigated for 

different combinations of initial conditions to get the corresponding responses. Usually, 

the behaviour of the trained ANN controller is largely dependent on the quality and 

amount of teaching data provided. Moreover, it will also depend on the response of a 

ship. In this thesis, as inspired by aircraft landing, the ship is objected to make a course 

change first. Then, it is allowed to go straight following a reference line and decreases 

its speed. To execute the same berthing for different ports, the available waterways need 

to be analysed. Then, by setting the reference line at some convenient angle, similar 

type of teaching data can be created using the proposed technique for different ship. For 

the port that requires a narrow and complex manoeuvre, the berthing plan may need to 

modify. However, the optimisation can be utilised for any type of course changing and 

creation of consistent teaching data. Therefore, the analysed results of network’s 

behaviour mentioned here are not universal. Depending on the berthing plan, the nature 

of teaching data will change and so do the network’s behaviour. Nevertheless, this type 

of analysis is very important to understand the range of applicability of the ANN 

controller while facing any unknown and unexpected situation. Similar approach for 

analysing the network’s behaviour can demonstrate the inherent knowledge of trained 

ANN in any case. By this way, the user can have a fair idea of the network’s behaviour 

well before execution. The following subsections include such analysis results. Similar 

types of analysis can also be done for ANN trained with a different set of teaching data. 

 

6.1 Network for Left Hand Side (LHS) Approach of Ship 

 

There are necessary nine inputs of the network to calculate the desired rudder angle 

and among them d1 and d2 are position dependent. Thus, several combinations of inputs 

are possible to observe the network’s response. However, the surge velocity, sway 

velocity and yaw rate are believed to be sensitive enough to analyse the behaviour of 
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network properly. In this thesis, the ship is expected to start from its desired or nearby 

point within the constructed virtual window zone. Moreover, such windows also cover 

varieties of ship’s initial heading to start with it. Therefore, in most cases, similar type 

of response is expected due to the interpolation ability of the neural network for the ship 

started from its desired starting point. Thus, assuming the ship starts from its expected 

point, the only option left for the ANN to take the counter rudder at an initial stage 

would be the existing initial sway velocity and yaw rate. The initial surge velocity may 

also affect the ANN’s decision. Since the ship speeds up using the half-ahead propeller 

revolution, it is believed that the actual surge velocity during the initial stage would be 

close to the value used as teaching data.   

During the analysis, the initial ship heading is considered as 90º with its 

corresponding position on virtual window for rudder constraint ±10º. The surge velocity 

is set to half ahead and the actual rudder angle is set to zero. Considering these four 

parameters as fixed, different sway velocities and yaw rates are tested for the network’s 

response.  

Initially, both the initial sway velocity and yaw rate are set to zero. This is the same 

condition as used during training net and the network takes expected starboard rudder. 

During the experiment for LHS approach, the ship is initially commanded to take a 

starboard turn to enter the window. Thus, while switching to auto mode, the initial sway 

velocity is likely to have a negative value. Such situation is analysed by considering a 

gradual increase of the negative value of sway velocity and setting the yaw rate as zero. 

By doing so, the network has found to take as a usual starboard rudder for small value 

of sway velocity. It means the network takes the positive rudder i.e. starboard rudder to 

neutralise the existing negative sway velocity. However, with the increment of sway 

velocity, such starboard value gradually increases, attains its peak and then starts to 

decrease. Therefore, after a particular value of sway velocity, the network begins to 

oppose it by taking the port rudder. Further, the output for the port rudder starts to 

increase with the increment of sway velocity. Figure 6.1 shows such illustration. 
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Figure 6.1.	ߜ௖௢௠ by ANN for different sway velocities (LHS)     

 

On the other hand, due to the same reason, the initial yaw rate is likely to have 

positive value. Such situation is also analysed in a similar way, i.e. by considering a 

gradual increase of the yaw rate and setting the sway velocity at zero. Then, for any 

smaller value, ANN has found to oppose the existing yaw rate by taking the port rudder. 

It means, the controller decides to take negative rudder i.e. port rudder to neutralise the 

existing positive yaw rate. Such port rudder taken by ANN gradually increases with the 

increment of yaw rate, attains its peak and then starts to decrease. Therefore, after one 

particular value, ANN starts to take starboard rudder. That is, instead of opposing, ANN 

prefers to go with it. This kind of behaviour is just the opposite of varying sway velocity 

with no yaw rate. Figure 6.2 shows such illustration.   

 

 

Figure 6.2. ߜ௖௢௠ by ANN for different yaw  rates (LHS) 
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parameters have some initial values. To observe such situation, three particular values of 

sway velocities are selected that are most likely to have as an initial condition during the 

experiment and vary the yaw rate within considerable region for each sway velocity. 

The corresponding responses of ANN are shown in Figure 6.3 to 6.5. 

 

Figure 6.3. ANN’s response for varying yaw rate, sway fixed at -0.03 m/s (LHS) 

 

 

Figure 6.4. ANN’s response for varying yaw rate, sway fixed at -0.067 m/s (LHS) 
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Figure 6.5. ANN’s response for varying yaw rate, sway fixed at -0.09 m/s (LHS) 
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Figure 6.6. Comparison of ANN’s response (LHS) 

 

In case of surge velocity, ANN always takes the starboard rudder for the ship starts 

with a little bit slower velocity than the half ahead. However, the calculated rudder 

gradually increases with the decrement of initial surge velocity. Figure 6.7 illustrates 

such demonstration. 

 

 
Figure 6.7. Comparison of ANN’s response (LHS) 
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24 starting points for the ship heading 90°, 120°, 150°, 180°, 210° and 

230°/225°/220°/215°. Therefore, the number of teaching data for RHS approach is 

larger than that of LHS. Moreover, the ship’s behaviour for port and starboard turning 

are also not symmetric due to the hydrodynamic properties of the ship. As a result, the 

networks are not expected to behave in a similar way. 

During the analysis, the initial ship heading is considered as 425º or 65º with its 

corresponding position in virtual window for rudder constraints ±10º. The surge velocity 

is also set to half ahead and the actual rudder angle is set to zero. Considering these four 

parameters as fixed, different sway velocities and yaw rates are tested for the network’s 

response like as for LHS approach. 

Initially, both sway velocity, yaw rate are set to zero, and the ANN takes expected 

port rudder to start its approach for RHS. However, this time during the experiment, the 

ship is initially commanded to take a port turn to enter the window. Thus, while 

switching to auto mode, the initial sway velocity is likely to have positive value. Such 

situation is analysed by considering a gradual increase of the positive sway velocity and 

setting the yaw rate as zero. Then, with a slight increment of sway velocity, the ANN 

has found to take its maximum port rudder.  It means, the network takes the negative 

rudder i.e. port rudder to neutralise the existing positive sway velocity. For RHS 

approach, this maximum value remains almost constant with the increment of sway 

velocity. Therefore, the network never opposes the existing sway velocity if there is no 

yaw rate. This type of behaviour is very smooth and not the same as found in LHS 

approach. This might be due to having a larger amount of teaching data for better 

learning while training net. Figure 6.8 shows such illustration. 

On the other hand, due to the mentioned reason, the initial yaw rate is likely to 

have negative value. Such situation is also analysed in a similar way, i.e. by considering 

a gradual increase of the negative value of the yaw rate and setting the sway velocity at 

zero. Then, for any smaller value, ANN has found to oppose the existing yaw rate by 

taking the starboard rudder. It means, the controller decides to take positive rudder i.e. 

starboard rudder to neutralise the existing negative yaw rate. After a particular value of 

yaw rate, the starboard rudder taken by ANN gets almost constant that does not change 

much for further increment of yaw rate. Figure 6.9 shows such illustration.   
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Figure 6.8. ߜ௖௢௠ by ANN for different sway velocities (RHS) 

 

 
Figure 6.9. ߜ௖௢௠ by ANN for different yaw rates (RHS) 
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values of yaw rate as an initial condition, ANN always takes the starboard rudder. 

On the other hand, with the increment of sway velocity as found in Figure 6.11 and 

6.12, the graph is gradually pulled down due to the effect of sway velocity. It means 

more part of it goes to port side. Such figures show that the effect of having high sway 

velocity is dominant for small yaw rate. However, later on with the increment in yaw 

rate, the curve turns toward the positive value and ANN starts to take starboard rudder. 

Each time with the increment of sway velocity, the graph is also little bit shifted towards 

the left. As a result, the value of yaw rate for which ANN alters its behaviour gradually 

increases. This can be ensured by observing the comparison Figure 6.13, where all four 

curves for different sway velocities are superimposed. Finally, the analysis of the 

network for RHS approach can be concluded in a similar way as for LHS approach. 

Thus, if a ship has a low initial sway velocity while entering to the window, then in 

most cases the ANN will take the starboard rudder to oppose the expected turn except 

for low existing yaw rate.   

 

 

Figure 6.10. ANN’s response for varying yaw rate, sway fixed at 0.03 m/s (RHS) 
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Figure 6.11. ANN’s response for varying yaw rate, sway fixed at 0.067 m/s (RHS) 

 

 

 

Figure 6.12. ANN’s response for varying yaw rate, sway fixed at 0.09 m/s (RHS) 

 

 
Figure 6.13. Comparison of ANN’s response (RHS) 
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Regarding the ANN’s response for varying surge velocity, ANN always takes 

expected port rudder irrespective of any initial surge velocity. However, the port rudder 

taken by ANN gradually increases with the decrement of surge velocity. Figure 6.14 

illustrates such demonstration. 

 

 
Figure 6.14. Comparison of ANN’s response (LHS) 

 

Here, the analysis of the network’s behaviour mainly demonstrates how the 

network behaves depending on existing initial sway velocity and yaw rate. Therefore, 

no matter how such initial sway velocity or yaw rate results from. In this thesis, it 

results due to the execution of turning motion before switching to auto mode. Usually, 

in real ship cases or in different experiment sites, it is extremely difficult to maintain a 

straight course in the presence of environmental disturbances. Therefore, some amount 

of sway velocity or yaw rate exists in such cases too. Thus, the network will behave in a 

similar way in other experiment sites depending on the existing initial conditions.  
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Chapter 7 : AUTOMATIC TUG ASSISTANCE 

 

After the ship successfully stops within the surrounded area of berthing goal point 

as shown in Figure 3.1, the final step is to align it with actual pier. Usually in the 

harbour area, a big ship with single rudder-single propeller often requires a set of 

adequate thrust devices or tugs assistance with exactly taken into account the surge, 

sway and yaw rate to execute such crabbing motion. The number of tugs involves in 

such operation depends on the size of the ship as well as existing wind disturbances. 

The effect of wind varies with its relative direction and the speed of the ship. Although 

it might appear logical that the effect of wind on a tanker stopped in the water would 

cause the bow to swing towards the wind, it is difficult to predict the effect of wind on 

other ships like partially loaded container ship. To understand the behaviour of a 

stopped ship under wind disturbances, it is necessary to have an idea about the centre of 

lateral resistance and the point of influence of wind. A brief description of these can be 

found in master’s guide to berthing (37) and also given as follows:  

The centre of lateral resistance: The point of influence of underwater forces 

acting on hull to resist the wind-induced motion is known as the centre of lateral 

resistance (CLR). Therefore, CLR is the point on the underwater hull at which the 

total hydrodynamic force can be considered to act. In case of ship with motion, it is 

usual to consider the pivot point (P) rather than CLR when discussing the effects of 

wind. On the other hand, a stopped ship does not have a pivot point. Therefore, in 

such cases CLR should always be used. 

The point of influence of wind: This is the point (W) on above-water structure 

of ship upon which the total wind force can be considered to act. This point is not 

fixed like ship’s centre of gravity (CG). Moreover, the point of influence of wind 

moves depending on the profile of the ship exposed to the wind. Thus, W will be 

close to the mid-length when a ship’s beam is facing to the wind. On the other hand, 

it may move slightly forward or aft depending on the superstructure position of the 

ship. 

In order to consider the effect of wind while executing the crabbing motion, W must be 

viewed in relation to CLR. A ship under wind disturbances, always wants to settle into 
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an equilibrium position where the pivot point and the point of influence of wind are in 

alignment. If a stopped ship faces the wind on its beam, W will be close to the 

mid-length of the ship. Similarly, the CLR will also at its mid-length. The difference 

between the two points produces a small moment, and the ship will turn towards the 

wind with its head facing to it. As the ship continues to turn, W also starts to move until 

it is close to the CLR. Therefore, the couple reduces gradually to zero and the ship 

settles on its heading. Figure 7.1 illustrates such phenomenon. 

 

  
Figure 7.1. Wind effect on a stopped ship 

 

In this thesis, while starting the crabbing motion, the ship might have some 

forward speed. Therefore, the ship Esso Osaka with its pivot (P) forward of midship will 

experience a large lever with the point W at midship. The resultant force will cause the 

ship’s head to turn to the wind as shown in Figure 7.2. 

 

 
Figure 7.2. Wind effect with forward motion 

 

Therefore, allocation of side thrusts under gust wind disturbances is very difficult. 

Bui et al (38) solved such thrust allocation problem by using the redistributed pseudo 

inverse approach to determine the thrust and direction of each individual tugboat. The 
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main goal of that approach was to minimise the power supplied to the tugboat. However, 

this thesis deals with the side thrusts that act perpendicular to the ship hull and for 

simplicity the pulsating nature of thrust output is ignored. At first, to develop a 

controller for side thrusts, ANN has been tried in a similar way as explained by Tran and 

Im (22) under no wind condition. However, considering wind that is mostly 

unpredictable, there is no other easy way to maintain consistency in teaching data that is 

very important to ensure the effectiveness of the trained ANN controller. As a result, 

simple but effective PD controller has been chosen over ANN in such cases under wind 

disturbances. Moreover, to control the forward motion, especially in wind, longitudinal 

trust is also involved. The methodologies considered while designing the PD controllers 

are heading angle correction in terms of minimising the difference between the 

X-coordinate value of fore and aft peak of ship, surge and sway velocity control, ship 

position control and reverse thrust when almost reaching the destination i.e. making the 

sway velocity minimum as possible. The following expressions describe the PD 

controllers used for automatic thrust generation in lateral and longitudinal direction. 

 

if Ψ <2700 and dis_fore>dis_rev 

1 2

1 2 3

*(X 1.5 ) *sway

*(X 1.5 ) *sway *diff

fore fore fore

aft fore fore

T C X C

T C X C C

   

    
 (7.1)

if Ψ >2700 and dis_aft>dis_rev 

1 2 3

1 2

*(X 1.5 ) *sway *diff

*(X 1.5 ) *sway

fore aft aft

aft aft aft

T C X C C

T C x C

    

   
 (7.2)

if Ψ <2700 and dis_fore<dis_rev 

1 2

1 2 3

*( 1.5 ) *sway

*( 1.5 ) *sway *diff

fore fore

aft fore

T C X C

T C X C C

   

    
 (7.3)

if Ψ >2700 and dis_aft<dis_rev 

1 2 3

1 2

*( 1.5 ) *sway *diff

*( 1.5 ) *sway

fore aft

aft aft

T C X C C

T C X C

    

   
 (7.4)

Longitudinal thrust  

4 5 6* *Ypos *distancelongT C surge C C    (7.5)
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where, Ψ is ship heading, Xfore and Xaft are x-coordinate of ship’s fore and aft peak 

respectively, diff is abs(Xfore-Xaft), distance is the perpendicular distance of ship’s CG 

from the actual pier, dis_fore and dis_aft are perpendicular distance of ship’s fore and 

aft peak respectively from the actual pier, dis_rev is the perpendicular distance from the 

actual pier to start reverse thrust, Ypos is the y-coordinate of ship’s CG in the earth fixed 

coordinate, C1~C6 are the coefficients.  

Considering Equation 7.1 and 7.2 for providing side thrusts, first part belongs to a 

constant value irrespective of ship position to withstand the wind force up to 1.5 m/s. 

The second part is for controlling the sway velocity and the third part activates if a 

correction for ship heading is needed. On the other hand, if the ship reaches the zone to 

provide reverse side thrusts as given by Equation 7.3 and 7.4, the first part is no longer 

constant rather increases the thrust value gradually with the decrement of the distance 

value to minimise the sway velocity upon reaching the pier. Other parts remain same. 

Here, the value of dis_rev depends on the steady sway velocity while approaching to the 

pier using side thrusters in presence of wind disturbances form different direction. 

Considering longitudinal thrust given in Equation 7.5, the first part is for controlling 

forward velocity. The second part is for controlling ship position in longitudinal 

direction and the third part is for controlling thrust value with respect to ship’s distance 

from actual pier. Then, by combining the proposed controller for side thrusters with the 

existing ANN-PID controller, simulations are done in the different unknown situation. 

 

7.1 Simulations for Berthing Manoeuvre Including Thrusters 

 

The effectiveness of ANN-PID controller to stop the ship around the berthing goal 

point has already been verified for several known and unknown situations. Depending 

on the controller’s action and presence of wind disturbances, a ship may have different 

termination points as well as different surge, sway velocities and yaw rates. Therefore, 

the compatibility of the newly developed PD controller for side thrusters needs to be 

tested for the exiting ANN-PID controller. In this thesis, the side thrusters are activated 

if surge velocity is less than 0.05 m/s or as the ship approaches the berthing goal point 

(0, 0). The following figures demonstrate the total automatic berthing process, including 
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the thrusters to align the ship with actual pier. Considering these figures, the ship having 

different initial heading is tested for different arbitrary point within constructed virtual 

under maximum allowable wind disturbances that is 1.5 m/s. 

 Figure 7.3 to 7.5 show the result for ship starting with initial heading 180º from 

three different starting points. Wind disturbances are also considered from three 

different directions. Therefore, while staring the side thrusters, the termination state of 

the ship is different in each case. As seen in Figure 7.3, wind from 315º results a slight 

clockwise turn during the idling and reversing stages. At last, the surge velocity goes 

down to 0.05 m/s, the thrusters are activated to guide the ship up to the actual pier and 

align with it. Finally, the berthing operation ends with surge velocity -0.02m/s, sway 

velocity -0.016 and final ship heading 266º.  

 

 

Figure 7.3. Berthing with thrusters, initial heading 180.0º starts from (43m, 44m) 

 

0 5 10 15 20

-2

0

2

4

6

8

10

12

14

Y/L position [-]

X
/L

 p
os

iti
on

 [-
]

0 100 200 300 400

-20

0

20

R
ud

de
r 

[d
eg

]

0 100 200 300 400
-10

0

10

20

n 
[r

ps
]

-2 -1 0 1 2

-2

-1

0

1

2

0 100 200 300 400
-0.1

0

0.1

T
fo

re
 [N

]

0 100 200 300 400
-0.1

0

0.1

T
af

t [N
]

0 100 200 300 400
-0.2

0

0.2

t [sec]

T
lo

ng
 [N

]



139 
 

 
Figure 7.3(cont..). Corresponding details 

 

On the other hand, Figure 7.4 is tested for wind from 135º that is just opposite as 

mentioned in Figure 7.3. Therefore, the ship tends to make sight anticlockwise turn 

during its idling stage. This also brings the ship close to the berthing goal point with a 

relatively high velocity as compared to Figure 7.3. From that state, the thrusters are 

activated. Here, the reverse thruster in longitudinal direction plays an important role in 

reducing the surge velocity. Finally, the berthing ends with surge velocity -0.026 m/s, 

sway velocity almost 0m/s and ship heading 270º.    

 

 
Figure 7.4. Berthing with thrusters, initial heading 180.0º starts from (47m, 40m) 
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Figure 7.4(cont..). Corresponding details 

 

Figure 7.5 shows the result of the following wind. Due to the wind, although the 

ANN controller executes reversing well before, the velocity drop was insufficient. 

Therefore, soon after the ship crosses the (0, 0) point, the thrusters are activated. Here, 

the maximum reverse thrust in longitudinal direction becomes necessary for some short 

duration to reduce the ship’s speed within the controllable range. At the same time, the 

literal thrusters also provide the necessary amount of thrusts to align the ship with pier. 

Finally, the simulation ends with surge velocity -0.04 m/s, sway velocity -0.028 m/s and 

the ship heading ends with 285.5º. 

 

 
Figure 7.5. Berthing with thrusters, initial heading 180.0º starts from (35m, 47m) 
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Figure 7.5(cont..). Corresponding details 

 

Figure 7.6 and 7.7 show the results for ship starting with initial heading 220º from 

two different starting points. Considering Figure 7.6, the controllers for thrusters 

successfully manage to maintain the ship heading against the wind during execution of 

the crabbing motion. However, the ship takes a long time to reach the pier as sway 

velocity is relatively low due to the opposite wind direction and there is barely needed 

for any longitudinal thruster for position alignment. Here, the ship’s final surge velocity 

is almost zero with sway velocity 0.005m/s and heading 269º. 

 
Figure 7.6. Berthing with thrusters, initial heading 220.0º starts from (34m, 49m) 
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Figure 7.6(cont..). Corresponding details 

 

In Figure 7.7, the following wind is considered again. However, this time an 

average wind of 1.0 m/s is taken into count. A difference in the final ship state before 

activating the thrusters’ controllers is clearly visible as compared to Figure 7.5 with 

higher wind velocity. The simulation result shows that the ship is close to the goal point 

when the thrusts are activated. Therefore, with the activation of reverse longitudinal 

thrust together with the lateral thrusts, the ship successfully reaches the pier. Here, the 

final surge velocity is almost zero. However, the sway velocity is -0.01 m/s and heading 

272.4º. 

 
Figure 7.7. Berthing with thrusters, initial heading 220.0º starts from (38m, 46m) 
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Figure 7.7(cont..). Corresponding details 

 

Figure 7.8 and 7.9 show the result for ship started with heading 270º from two 

different initial positions. Here, the controllers are tested for two opposite wind 

directions. Figure 7.8 shows the result for wind from 90º. This brings the ship little bit 

closes to the pier while activating the thrusters. Therefore, the reverse thrust is needed to 

adjust the longitudinal position of the ship. Finally, the simulation ends with surge 

velocity almost zero, sway velocity -0.01m/s and heading angle 273º.   

 

 

Figure 7.8. Berthing with thrusters, initial heading 270.0º starts from (24m, 56m) 
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Figure 7.8(cont..). Corresponding details 

 

On the other hand, in Figure 7.9 the wind from 270º stops the ship just after 

entering the assumed berthing zone. Therefore, the forward longitudinal thrust is needed 

to move the ship further and at the same time lateral thrusts to align it with pier. Here, 

the final surge velocity is -0.022 m/s. However, the sway velocity is almost zero with 

heading 275º.  

 

 

Figure 7.9. Berthing with thrusters, initial heading 270.0º starts from (25m, 48m) 
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Figure 7.9(cont..). Corresponding details 

 

Figure 7.10 and 7.11 show the result for ship starting with heading 360º from two 

different initial points. Here, the controller is tested in the wind from 0º and 225º, 

respectively. Figure 7.10 shows the result where the downward wind tends to generate a 

lever in a clockwise direction during the crabbing motion. To oppose it, the controller 

adjusts the lateral thrusts acting on the fore and aft part of the ship to provide a counter 

lever as well as to continue with the crabbing motion. The longitudinal thruster also 

plays a vital role for the position alignment of the ship. Finally, the simulation ends with 

surge velocity -0.055 m/s, sway velocity -0.011 m/s and heading angle 276.5º. 

 

 
Figure 7.10. Berthing with thrusters, initial heading 360.0º starts from (8m, 54m) 
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Figure 7.10(cont..). Corresponding details 

 

Figure 7.11 shows the result for wind almost opposing to the straight running along 

the imaginary line. Therefore, during reversing the surge velocity drops to 0.05 m/s 

before crossing the berthing goal point. Then, the thrusters are activated to guide it up to 

the actual pier with almost zero longitudinal thrust value. Finally, the ship stops with 

almost zero surge and sway velocity and heading 277.6º.   

   

 

Figure 7.11. Berthing with thrusters, initial heading 360.0º starts from (11m, 57m) 
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Figure 7.11(cont..). Corresponding details 

 

7.2 Simulations with Experiment End Conditions 

 

The PD controlled thrusters are also tested for different experiment end conditions. 

First row of Figure 7.12 shows the experiment result that belongs to group 2 for LHS 

approach. Here, the ship deviates due to sudden gust wind and stops just before entering 

the berthing zone. Then, by considering the final state of that experiment as initial 

conditions for the controller, the simulation is done as shown in the second row of 

Figure 7.12.   

 
Figure 7.12. Simulation with experiment end conditions, initial heading 360.6º for thrusters  
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Here, the simulation is done for the ship’s initial heading 360.6º (found as final 

heading after the experiment). Other initial conditions are also kept same as found in 

experiment end conditions. Maximum allowable wind is considered from an average 

direction as found in that experiment. Since the ship stops outside the desired berthing 

zone, the controller needs to maintain the crabbing motion for a long lateral distance. 

Moreover, it also needs to correct the large heading error. However, the simulation 

shows satisfactory result and it ends with almost zero surge and sway velocity with final 

heading 280º.    

First row of Figure 7.13 shows the experiment result where the ship comes closer 

to the pier with final heading 250.8º. From that state, the simulation for the thrusts is 

investigated under maximum wind velocity and average wind direction as found in the 

experiment. Such simulation result is shown in the second row of Figure 7.13. Finally, 

the ship stops with almost zero surge and sway velocity with final heading 274º.   

 

 

Figure 7.13. Simulation with experiment end conditions, initial heading 250.8º for thrusters 
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Figure 7.14. Simulations start with different experiment end conditions 
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Chapter 8 : WAYPOINT CONTROLLER  

 

In this thesis, the ship with particular heading is expected to start its berthing 

approach from a desired point on virtual window. Several simulations and experiment 

results also show that the controller works effectively while starting from an unexpected 

point. However, starting from its nearby desired point is always preferable to guarantee 

the successful berthing. To do this, it is necessary to follow a planned path for every 

ship to approach the set point on virtual window. This planned path may include both 

course changing and path keeping. Therefore, proper timing of the rudder angle change 

as well as to take the counter rudder to overshoot the existing sway velocity and yaw 

rate is always a crucial matter for the ship operators. To assist the ship operators 

regarding this matter, a number of proposals exits based on PID controller (39) or 

optimum regulator. However, in this chapter, a Fuzzy reasoned waypoint controller is 

discussed. The control laws used here is similar to collision avoidance rules mentioned 

by Hasegawa (24, 25, and 26). However, instead of collision risk, the nearness is 

reasoned by the fuzzy controller.     

 

8.1 Navigation Path Planning 

 

Navigation path planning is done based on the given set points called waypoints 

(WP) to be passed. These points are usually selected at the turning points. Then, the 

path is planned normally directing to the next point (WP) to be passed. However, near 

the turning point, the fuzzy reasoning system will decide to choose the appropriate 

course defined by the next two WPs as following equation: 

 

1 2 1( )*I CDH       (8.1)

 

where, ߰ூ is order of course change, ߰ଵ is course of the shortest path to the next WP, 

߰ଶ is course of the shortest path to the second next WP and CDH is the reference 

degree to the second next WP ( 0 1CDH  ), calculated by fuzzy. 
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Figure 8.1 shows the course changing command near a course changing point 

(WP). 

 

 

Figure 8.1. Course command near a course changing point 

 

 

Figure 8.2. Bearing relation between ship and waypoint 

 

In this thesis, to judge the nearness of the waypoint, TCPA (time to closest point of 

approach) and DCPA (distance of the closest point of approach) are used for fuzzy 

reasoning. Figure 8.2 shows the bearing relationship between the ship and waypoint. 

According to the figure, the distance between the ship and nearest waypoint is 

calculated as follows: 

 

2 2(( ) ( )D Xo Xt Yo Yt     (8.2)

 

Then, the following calculations are done to get the bearing angle of waypoint from the 

ship. 
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( )
tan 2

( )

Yt Yo
a

Xt Xo
 



 (8.3)

     (8.4)

 

where,  is ship heading, θ is encountering angle of way point from vertical axis 

and α is bearing angle of waypoint from the ship. Here, if the value of  , θ or α 

becomes negative, then 2π is added to make to them positive.  

Finally, DCPA and TCPA are calculated using the following two equations. 

 

sinDCPA D   (8.5)

cos

ship

D
TCPA

U


  (8.6)

 

Another important point to be considered is the scale effect. There should be some 

difference on the nearness between a large ship and a small one. Therefore, the 

following equations are used for non-dimensionalised TCPA and DCPA. The nearness is 

then reasoned from DCPA and TCPA instead of DCPA and TCPA. 

 

 
DCPA

DCPA
L

   (8.5)

shipU
TCPA TCPA

L
   (8.6)

 

Membership function of ܶܣܲܥᇱ, ܣܲܥܦᇱ and CDH are given in Figure 8.3 and the 

control rules to reason CDH is shown in Table 8.1. Here, the rules are considered 

similar to collision avoidance, i.e. “if DCPA is very short and TCPA is also very short, 

then CDH is very big”. It means, if the ship is very far from second next waypoint, then 

the command course will consider only for the next waypoint. However, with the 

increase of nearness the command course will modify by considering both next and 

second next waypoint.  
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Figure 8.3. Membership functions for course changing algorithm 

 

Table 8.1. Control rules for course changing algorithm 

 TCPA’ 

SA SM ME ML LA 

DCPA’ 

SA LA ML ME SM SA 

SM ML ME SM SA SA 

ME ME SM SA SA SA 

ML SM SA SA SA SA 

LA SA SA SA SA SA 

 

After deciding the appropriate course by fuzzy reasoning, the course is corrected 

using a PD controller. Equation 8.7 shows the PD controller used here to correct the 

heading. 
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  0 0

0 0

( )

25 , 25

25 , 25

order p I d

order order

order order

K K

if

   

 

 

  

   
   



 (8.2)

 

where, ߰ூ  is desired heading calculated by fuzzy reasoning, ψ  is ship’s current 

heading, ሶ߰  is the yaw rate, KP is proportional gain and KD is differential gain. 

 

8.2 Simulation Results 

 

Using the waypoint controller, simulations are done for different sets of waypoints. 

These are illustrated in the following figures. Here it is noted that, the waypoint 

controller considers next and second next waypoints one at a time. Therefore, one extra 

waypoint is always needed to go up to the desired set goal point.   

Figure 8.4 shows the result for the set of waypoints that is placed at an angle -45º. 

Initially, considering the nearness of the waypoints, fuzzy reasoned desired course does 

not change much. Therefore, the command rudder is also zero. Soon after that, desired 

heading starts to change gradually and the PD controller decides to take rudder. The 

maximum nearness is judged by fuzzy after 80 sec and the PD takes its maximum 

allowable rudder. Then, fuzzy reasons the desired heading for the next pair of waypoint. 

Since this pair is set on the same line, the ship finally merges with that line. The 

simulation is done under average gust wind of 1.5 m/s from 45º. 
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Figure 8.4. Waypoints set at -45º, controller under wind of 1.5m/s from 45º 

 

Figure 8.4(cont..). Corresponding details 

 

Figure 8.5 shows the result for the set of waypoints that is placed at an angle on 60º. 

Since the first waypoint has the same coordinate as mentioned in Figure 8.4, initially the 

reasoned desired heading remains similar to initial heading. Then, similar to Figure 8.4, 

depending on the nearness the desired heading is modified and the PD controller 

corrects the existing error under wind disturbances from 270º. Finally, the ship aligns 

with the line passes through the next pair of waypoints. 
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Figure 8.5. Waypoints set at 60º, controller under wind of 1.5m/s from 270º 

 

Figure 8.5(cont..). Corresponding details 

 

Figure 8.6 shows the result for the set of waypoints that is placed to execute both 
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Figure 8.6. Waypoints set to starboard and port turn, controller under wind of 1.5m/s from 135º 

 

Figure 8.6(cont..). Corresponding details 
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justify the effectiveness of waypoint controller. Figure 8.7 and 8.8 show such results. 

 

 

Figure 8.7. Waypoint controller, initial heading 120º for set point 

 on virtual window (-14.15m, 44.82m) 

 

Figure 8.7(cont..). Corresponding details 
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waypoints are set in a line to make the ship heading parallel to it. After passing the 

second waypoint, the ship will adjust its course and try to pass nearby of set goal point. 

The last two waypoints are again set in one line to make the final heading parallel to it. 

Although the figure shows the ship successfully attains the nearby goal point, there 

remains some error in the heading. Such error can be fixed by adjusting the position of 

last two waypoints. The simulation is done for wind 1.5 m/s from 225º. 

Figure 8.8 shows the result for another set of waypoints. The simulation is done for 

initial heading 130º under wind of 1.5 m/s from 315º. In the following wind, the PD 

controller compensates the heading error from the beginning. Then, it changes the 

course gradually depending of desired course as determined by fuzzy reasoning. Here 

the ship appears very close to the target point. However the error in ship heading 

remains.  

 

 

Figure 8.8. Waypoint controller, initial heading 130º for set point 

 on virtual window (-15.81m, 53.8m) 
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Figure 8.8(cont..). Corresponding details 

 

The ANN-PID controller proposed in this thesis, is already verified for its 

robustness. Therefore, even some error remains in heading as well as position after the 

guidance by the waypoint controller, the ANN-PID controller is expected to deal with it. 

Therefore, such compatibility is then tested for automatic ship berthing experiment.   
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velocity 0.05m/s and heading 252.8º.  

 

 
Figure 8.9. Target (54.52m, 13.22m) with heading 50º, Achieved (54.45m, 11.29m) with 

heading 47.2º  

 
Figure 8.9(cont..). Corresponding details 
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and the experiment ended with surge velocity 0.035m/s and heading 277.5º.   

 

 
Figure 8.10. Target (54.52m, 13.22m) with heading 50º, achieved (54.45m, 12.31m) with 

heading 46.1º  

 

Figure 8.10(cont..). Corresponding details 

 

Figure 8.11 shows the result for a new set waypoint tested for initial heading 69.2º. 

Due to having an improper heading angle, the ship was able to follow the waypoints at 

the beginning. However, later on it manages to pass nearby the set goal point. The error 

in the ship heading and the position was quite reasonable. From that state, the ANN-PID 

controller started to guide the ship up to the desired berthing zone. The final surge 
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velocity was 0.018m/s and the heading was 218.8º.   

    

 

Figure 8.11. Target goal (56.15m, 10.97m) with heading 50º, achieved (55.93m, 9.47m) with 

heading 56.65º  

 
Figure 8.11(cont..). Corresponding details 

 

Figure 8.12 shows the set of waypoints for a target point on virtual window that is 

desired for heading 50º on ±20º. During the experiment, the ship stared with its initial 

heading 58.5º. Therefore, similar to Figure 8.8, the controller took large distance and 

time to minimise the heading error. Finally, the ship reached close to the target pint with 

reasonable heading. From that state, the ANN-PID controller guided the ship for 
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automatic berthing and stopped it within the assumed successful zone. The final surge 

velocity was -0.02 m/s and heading was 296.8º.  

 

 

Figure 8.12. Target point on virtual window (45.89m, 10.16m) with heading 50º, achieved 

(45.83m, 10.13m) with heading 51.61º  

 

Figure 8.12(cont..). Corresponding details 

 

Figure 8.13 shows another set of waypoints for heading 50º on virtual window for 

rudder constraint ±15º. Ship started with heading 58.5º was then tested for the auto 

guidance using the waypoint controller. Here, due to the large gap between the current 

and desired heading, the controller took some time to adjust the course following the 
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waypoint. At last, it reached close to the set goal with reasonable heading. After that, 

similar to other figures the ANN-PID was used for automatic ship berthing. In this 

experiment, the final surge velocity was 0.035m/s and heading was 277º.  

 

 

Figure 8.13. Target point on virtual window (47.52m, 7.91m) with heading 50º, achieved 

(47.74m, 8.24m) with heading 51.01º  

 
Figure 8.13(cont..). Corresponding details 

 

Finally, the mentioned simulation and experiment results establish a clear idea 

about the compatibility of the waypoint controller and ANN-PID controller for total 

berthing process. 
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Chapter 9 : CONCLUSIONS & FUTURE WORKS 
 

9.1 Conclusions 

 

This thesis starts with an intention to bring automatic berthing in real ship 

operation. To do that, creating consistent teaching data for better learning of ANN 

controller is considered as a prime concern. Using nonlinear programming (NLP) 

method, the problem is solved and a set of consistent teaching data is ensured that 

contains not only variations in ship heading and starting point but also in operating 

rudder angle. Then, instead of centralised controller, two separate ANNs are trained for 

rudder and propeller revolution outputs. Further on, simulations and experiments are 

conducted for the Esso Osaka model ship. The behaviour of the network for rudder is 

analysed and automatic side thrusters are discussed for final alignment of the ship with 

the actual pier. Waypoint controller for guiding the ship up to the desired starting point 

is also considered. The major concluding remarks for each chapter are summarised as 

follows: 

In Chapter 2, to predict the hydrodynamic behaviour of the subject ship, a modified 

version of MMG model is used. To validate the model for speed prediction, speed tests 

are performed for different propeller revolution and compared with the simulation 

results. Although the experiment results tend to diverge with the increment of propeller 

revolution, such divergence is well within acceptable limit until half ahead i.e. propeller 

rps 14. Turning tests are also performed to validate the model for course changing 

prediction. The tests are performed and compared with the simulation results for four 

different rudder angles, considering both port and starboard turn. These four specific 

rudder angles are selected as constraints for the construction of virtual window. Each of 

such comparison includes not only the turning trajectory, but also non-dimensionalised 

surge velocity and yaw rate distribution. At last, satisfactory results are ensured based 

on such comparisons. 

In Chapter 3, a new way of creating teaching data using nonlinear programming 

(NLP) method is proposed to ensure consistency. Then, by using the technique of 

repeated optimisation, a concept named ‘virtual window’ is introduced. The concept of 
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virtual window enables the teaching data to include not only variations in the ship’s 

initial heading angle and position but also in operating rudder angle. In order to consider 

wind disturbances during berthing, gust wind instead of uniform wind takes into 

account. During low speed running along the reference line after course changing, PID 

controller with rudder restriction ±10º is proposed to cope with the existing wind 

disturbances. Then, to learn the complex input-output relationship, two separate double 

hidden layered feed-forward nets are used instead of centralised one for rudder and 

propeller revolution outputs, respectively with minimum MSE value. In this thesis, the 

trained network for rudder after course changing is supposed to be followed by a 

feedback PID controller for track keeping. Thus, in terms of rudder command, it would 

be a combined effort of ANN-PID controller. On the other hand, proper speed control 

throughout the whole berthing process is only decided by the separately trained ANN 

for propeller revolution. 

In Chapter 4, the proposed ANN-PID controller is verified to prove its combined 

effectiveness for both teaching and non-teaching data. The controller is tested in 

completely different situations than used in the training session, where the wind from 

eight different directions with maximum velocity (1.5 m/s for model and 15 m/s for full 

scale) is considered. Different gusts for same average velocity are investigated to verify 

the controller’s workability and found satisfactory. In case of severe wind near pier, the 

ANN-PID controller is again proved by investigating different initial heading angles 

and positions. To judge the robustness of controller, ship starting from undesired point is 

tested under different wind disturbances. Here, the starting point is considered as any 

undesired point on virtual window, middle of virtual window for two different rudder 

constraints or any arbitrarily chosen point within the constructed virtual window zone. 

In each case, the ANN-PID controller behaves intelligently. However, some errors 

remain in the desired ship heading and positing after course changing that are corrected 

later on by the activated PID controller during low speed running. Therefore, the overall 

combined effort ensures successful berthing. At last, Monte Carlo simulations are 

performed to analyse the stability of the closed loop system and success rate while using 

the proposed controller. Three success indexes are chosen as: non-dimensionalised 

distance from target goal point, heading error and surge velocity for further analysis. 
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After getting the satisfactory percentage of success, automatic ship berthing experiment 

is planned and executed as a next step of this thesis. 

Chapter 5 includes the experiment result for both LHS and RHS approaches. 

Initially, the experiments are done by considering the ship started from its desired points 

on virtual window. While performing the experiments for the left hand side approach, 

the ANN has found to behave in some particular ways depending on different initial 

conditions or wind disturbances. Therefore, the results are gathered in some groups 

depending on the similarities of network’s behaviour or the resulting trajectory pattern. 

This thesis includes three different groups of experiment results based on current 

available experiment data for LHS approach. The experiments for the right hand side 

approach are also conducted with separately trained neural networks. Considering the 

results, the controller has also found to behave in some particular ways, but different 

from that of LHS approach. Due to having a windy experiment day, the controller is 

also tested for its behaviour under the wind beyond the permitted limit. This thesis 

includes four of such groups where the results belong to each do not guarantee a 

successful berthing. However, similarities in resulting trajectories are clearly visible. 

Later on, the experiments are also carried for ship starting from undesired point on 

virtual window, middle of virtual window for any two rudder constraints and at last 

from any arbitrary point. Although the experiments are done for unexpected staring 

points, the controller behaves almost in a similar way as for virtual window points. 

Most of the experiment results are found successful within the considerable wind 

disturbance that is 1.5 m/s. However, sudden gusts during step deceleration also alter 

the original course of the ship. 

In Chapter 6, the network’s response for rudder angle output is analysed for 

different initial conditions. The analysis shows that the response of the network for RHS 

approach is smoother than that of LHS approach. This is probably due to having more 

varieties of teaching data in RHS approach and thus better learning of the network. The 

initial surge velocity has found to play no role to alter the ANN’s initial behaviour in 

both LHS and RHS approaches. Therefore, even the initial velocity deceases while 

switching to auto mode, ANN always takes the expected rudder for its corresponding 

approach. Although, the angle taken by ANN increases with decrease in surge velocity. 
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For LHS approach, there is always a range of yaw rate for which ANN takes the port 

rudder for any existing sway velocity. This range of yaw rate gradually shifts towards 

the right with the increment of sway velocity. For RHS approach, the network for rudder 

output does not have any pulsating responses like in LHS approach. Therefore, for small 

initial sway velocity, ANN always takes the starboard rudder to oppose the possible 

initial yaw rate. With the increment of sway velocity, the effect of having sway velocity 

dominates and it pulls the curve towards downside. This makes the ANN to take the 

expected port rudder for small value of initial yaw rate. However, with the increment of 

such initial sway velocity, the curve continues to be pulled down and shifted towards the 

left hand side. 

In Chapter 7, since the existing ANN-PID controller is designed to stop the ship at 

some safe distance, the newly developed PD controlled thrusters are discussed under 

wind disturbances to couple with the existing controller to finally aligning the ship with 

pier. In order to ensure proper control of the crabbing motion, two sides and one 

longitudinal thruster are proposed for Esso Osaka, single rudder-single propeller ship. 

Then, the simulations are done to test the compatibility of these two controllers for 

ship’s different initial headings and arbitrary starting points. Maximum allowable wind 

from eight different directions is considered to judge its effectiveness. Several 

experiment results are tested with their end conditions to judge the capability of the 

developed controller to finally aligning the ship with actual pier. Although most cases 

ensure successful berthing, the following wind possesses some difficulties in heading 

error correction.  

In Chapter 8, a waypoint controller based on fuzzy reasoning is discussed to guide 

the ship from its current state to a set point on virtual window. Initially, different set of 

waypoints is tested. Then, the experiments are carried out for some pre-set waypoints 

and different initial headings. The results show that the ship approaches the goal point 

with reasonable accuracy and then the ANN-PID controller is activated to guide it up to 

the pier under existing wind disturbances. 
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9.2 Future Works 

 

The proposed ANN-PID controller is tested for Monte Carlo simulations and found 

91.45% success for arbitrarily chosen samples. During such investigation, some cases 

are found when the controller confuses to guide the ship and thus starts to rotate it 

repeatedly. This is due to some bugs that remain during training the network. However, 

it is possible reduce the percentage of unsuccessful cases by including those initial 

headings and stating positions into the teaching data and train the network again. This 

would be done as a future work of this thesis. 

The PD controlled side thrusters are tested in simulations only. Therefore, using air 

fans attached on board, experiments for the developed PD controller would be possible 

in future to validate it with the exiting ANN-PID controller as a final approach to berth. 

 

 

 

 

 

  



171 
 

BIBLIOGRAPHY 

 

1. Yamato, H. et al. September, 1990. Automatic Berthing by Neural Controller. 

Proc. Of Ninth Ship Control Systems Symposium, vol. 3, pp.3.183-201.  

2. Fujii, T. and Ura, T. 1991. Neural-Network-Based Adaptive Control Systems for 

AUVs. Journal of Engineering Applications of Artificial Intelligence, vol. 4, 

pp.309-318.  

3. Cui, X. et al. 1992. Application of Neural Networks to Temperature Control in 

Thermal Power Plants. Journal of Engineering Applications of Artificial 

Intelligence, vol. 5, pp.527-538.  

4. Lee, T. H. et al. 1994. A Neural Network based Model Reference PID-like 

Controller for Process Control. Journal of Engineering Applications of Artificial 

Intelligence, vol. 7, pp.677-684.  

5. Zeng, G. M. et al. 2003. A Neural network Predictive Control System for paper 

Mill wastewater Treatment. Journal of Engineering Applications of Artificial 

Intelligence, vol. 16, pp.121-129.  

6. Zhau et al. 2009. Neural Network Model-based Automotive Engine Air/Fuel 

Ratio Control and Robustness Evaluation. Journal of Engineering Applications 

of Artificial Intelligence, vol. 22, pp.171-180.  

7. Aoyama, A. et al. 1995. A Fuzzy Neural-Network Approach for nonlinear 

Process Control. Journal of Engineering Applications of Artificial Intelligence, 

vol. 5, pp.486-498.  

8. Di, L. et al. 2001. Neural-Network-based Self-Organized Fuzzy Logic Control 

for Arc Welding. Journal of Engineering Applications of Artificial Intelligence, 

vol. 14, pp.115-124.  

9. Ponce, A.N. et al. 2004. Neural Networks for Self-tuning Control Systems. 

Journal of Acta Polytechnica Hungarica, vol. 44, pp.49-52 

10. Zilkova, J. et al. (2006). Nonlinear System Control Using Neural Networks. 

Journal of Acta Polytechnica Hungarica, vol. 3, pp.85-94.  

11. Zhang, S. and Ren, G. September, 2006. Design of Robust Fuzzy Controller for 

Ship Course-Tracking based on RBF Network and Backstepping Approach. 



172 
 

Journal of Marine Science and Application, vol. 5, No. 3, pp.05-10.  

12. Liu, C. et al. September, 2014. Trajectory Tracking of Underactuated Surface 

Vessels based on Neural Network and Hierarchical Sliding Mode. Journal of 

marine Science and Technology. DOI: 10.1007/s00773-014-0285-y 

13. Yang, Y. et al. October, 2014. Robust Adaptive NN-Based Output Feedback 

Control for a Dynamic Positioning Ship Using DSC Approach. Science China, 

Information Sciences, vol. 57, pp.102803:1-102803:13.  

14. Hasegawa, K. and Kitera, K. September, 1993. Automatic Berthing Control 

System using Network and Knowledge-base. Journal of Kansai Society of Naval 

Architects of Japan, vol. 220, p.135-143. (in Japanese) 

15. Im, N.K. and Hasegawa, K. September, 2001. A Study on Automatic Ship 

Berthing Using Parallel Neural Controller. Journal of Kansai Society of Naval 

Architects of Japan, vol. 236, pp. 65-70. 

16. Im, N.K. and Hasegawa, K. March, 2002. A Study on Automatic Ship Berthing 

Using Parallel Neural Controller (2nd Report). Journal of Kansai Society of 

Naval Architects of Japan, vol. 237, pp.127-132. 

17. Im, N.K. et al. November, 2007. An Application of ANN to Automatic Ship 

Berthing using Selective Controller. Journal on Marine Navigation and safety of 

Sea Transportation, vol. 1, pp.101-105. 

18. Nguyen, P.H. et al. October, 2007. Automatic Berthing Control of Ship using 

Adaptive Neural Network. International Symposium on Electrical & Electronics 

Engineering. HCM City, Vietnam. 

19. Ohtsu, K. et al. 2007. Minimum Time Ship Manoeuvring Method Using Neural 

Network and Nonlinear Model predictive Compensator. Journal of Control 

Engineering Practice, vol. 15, issue 6, pp.757-765. 

20. Xu, G. and Hasegawa, K. 2012. Automatic Berthing Using Artificial Neural 

Network on Teaching data Generated by Optimal Steering. Conference at The 

Japan Society of Naval Architects and Ocean Engineers, vol.14. pp.295-298.  

21. Kose, K. et al. December, 1986. On a Computer Aided Manoeuvring System in 

Harbours. Journal of Society of Naval Architects of Japan, vol. 160, pp.103-110. 

(in Japanese) 



173 
 

22. Nakata, M. and Hasegawa, K. 2003. A Study on Automatic Berthing Using 

Artificial Neural Network- Verification of Model Ship Berthing Experiments. 

Journal of Kansai Society of Naval Architects of Japan, vol. 240, pp. 145-150. 

23. Tran, V.L. and Im, N.K. 2012. A Study on Automatic Berthing with Assistance 

of Auxiliary Devices. Journal of Naval Architecture and Ocean Engineering, vol. 

4, pp.199-210. Korea. 

24. Hasegawa, K. et al. December, 1986. Ship Auto-Navigation Fuzzy Expert 

System (SAFES), Journal of Society of Naval Architects of Japan, pp.445-452. 

25. Hasegawa, K. September, 1990. Automatic Navigator-Included Simulation for 

Narrow and Congested Waterways. Proc. of Ninth Ship Control Systems 

Symposium, vol.2, pp.110-134. 

26. Hasegawa, K. October, 1993. Knowledge-Based Automatic Navigation System 

for Harbour Manoeuvring. Proc. of tenth Ship Control system Symposium, vol.2, 

pp.67-90. 

27. Ahmed, Y.A. 2012. Automatic Ship Berthing using Artificial Neural Network 

based on Virtual Window Concept in wind Condition. Master Thesis paper, 

Osaka University. 

28. The Specialist Committee on Esso Osaka. 2002. Final Report and 

Recommendations to the 23rd ITTC. Proceedings of the 23rd ITTC, Vol. 2, 

pp.573-609. 

29. Ueda, N. and Ueno, M. A. March, 1982. A comparative Study on Experimental 

Results for Manoeuvring Hydrodynamic Coefficients (in Japanese). Bachelor 

Thesis paper, Osaka University.   

30. Fujiwara, T. et al. 1998. Estimation of wind forces and moment acting on ships. 

Journal of the Society of Naval Architecture of Japan , vol. 183, pp.77-90. 

31. Davenport, A.G. 1967. The Dependence Wind Loads on Meteorological 

Parameters. Proc. Of Conference on Wind Effects on Buildings and Structures. 

32. Okazaki, T. and Ohtsu, K. 2008. A Study on Ship Berthing Support System. 

IEEE International Conference on System, Man and Cybernetics, pp.1522-1527. 

33. More, J. June,1977. The Lavenberg-Marquardt Algorithm: Implementation and 

Theory. Conference on Numerical Analysis, Dundee, UK. 

34. Endo, M. and Hasegawa, K. August, 2003. Passage Planning System for Small 



174 
 

Inland Vessels Based on Standard Paradigms and Manoeuvres of Experts. 

MARSIM’03, vol._, pp.RB-19-1-RB-19-9.   

35. Yoshimura, Y. and Nomoto, K. November, 1978. Modeling of Manoeuvreing 

behaviour of Ships with a propeller Idling, Boosting and Reversing. Journal of 

the Society of Naval Architects of Japan, vol. 144, pp.57-69.  

36. Im, N.K. and Seo, J.H. March, 2010. Ship Manoeuvring Performance 

Experiments using a Free Running Model Ship. Journal on Marine Navigation 

and Safety of Sea Transportation, vol. 4, pp.29-33. 

37. A Master’s Guide to Berthing, Berthing in Wind. Source:  

http://www.shipinspection.eu/index.php/the-mariner-s-handbook/a-master-s-guid

e-to-berthing/item/462-berthing-in-wind 

38. Bui, V. P. et al. October, 2010. Modelling and Control Allocation for Ship 

Berthing System Design. International Conference on Control, Automation and 

Systems, pp.195-200. 

39. Tzeng, C.Y. et al. October, 2006. Autopilot Design for Track-keeping and 

Berthing of a Small Boat. IEEE International Conference on System, Man and 

Cybernetics, pp.669-674. 

  



175 
 

LIST OF TABLES 
 

Table 2.1. Principal particulars of model and full-scale ship ..................................... 8 

Table 3.1. Constraints used in the optimal course changing ................................... 17 

Table 3.2. Rps used for telegraph order and corresponding steady velocity ........... 25 

Table 3.3. Number of neurons in each layer ............................................................. 29 

Table 3.4. Other information after training .............................................................. 29 

Table 4.1. Frequency table for 'd  .......................................................................... 60 

Table 4.2. Frequency table for   ............................................................................ 62 

Table 4.3. Frequency table for surge  ..................................................................... 64 

Table 8.1. Control rules for course changing algorithm ......................................... 153 

  



176 
 

LIST OF FIGURES 
 

Figure 2.1. Esso Osaka 3-m model .............................................................................. 9 

Figure 2.2. Speed test ................................................................................................ 12 

Figure 2.3. Turning circle comparison for ±10° ......................................................... 12 

Figure 2.4. Turning circle comparison for ±15° ......................................................... 13 

Figure 2.5. Turning circle comparison for ±20° ......................................................... 13 

Figure 2.6. Turning circle comparison for ±25° ......................................................... 14 

Figure 3.1. Coordinate system and other assumptions during berthing ................. 16 

Figure 3.2. Repeated optimisation technique ........................................................... 18 

Figure 3.3. Idea of Virtual Window ........................................................................... 19 

Figure 3.4. Optimal rudder for initial heading 150°, starting from virtual window 

for rudder constraint ±15° .................................................................................. 19 

Figure 3.5. Optimal rudder for initial heading 360°, starting from virtual window 

for rudder constraint ±25° .................................................................................. 20 

Figure 3.6. Trajectory for best-chosen coefficients .................................................... 22 

Figure 3.7. Teaching data including wind influence ................................................. 26 

Figure 3.8. Construction of ANNs ............................................................................. 30 

Figure 3.9. Control Strategy ...................................................................................... 31 

Figure 3.10. Plant to be controlled ............................................................................ 31 

Figure 4.1. Controller tested for teaching data, average wind velocity 0.6 m/s, wind 

direction 135º, initial ship heading 180º from virtual window for rudder 

constraint ±25º .................................................................................................... 33 

Figure 4.2. Controller tested for teaching data, average wind velocity 1.0 m/s, wind 

direction 45º, initial ship heading -270º from virtual window for rudder 

constraint ±10º .................................................................................................... 34 

Figure 4.3. Controller tested for non-teaching data, average wind velocity 1.0 m/s, 

wind direction 135º, initial ship heading 100º from virtual window for rudder 

constraint ±15º .................................................................................................... 34 

Figure 4.4. Controller tested for non-teaching data, average wind velocity 1.0 m/s, 

wind direction 180º, initial ship heading 320º from virtual window for rudder 

constraint ±15º .................................................................................................... 35 

Figure 4.5. Controller tested for wind over 1.0m/s, average wind velocity 1.5 m/s, 

wind direction 45º, initial ship heading 250º from virtual window for rudder 

constraint ±10º .................................................................................................... 36 

Figure 4.6. Controller tested for wind over 1.0m/s, average wind velocity 1.3 m/s, 



177 
 

wind direction 0º, initial ship heading 140º from virtual window for rudder 

constraint ±15º .................................................................................................... 36 

Figure 4.7. Controller under different wind velocities, wind direction 0º, initial ship 

heading 140º from virtual window for rudder constraint ±15º .......................... 38 

Figure 4.8. Controller with modified PID, wind direction 0º, initial ship heading 

140º from virtual window for rudder constraint ±15º ........................................ 39 

Figure 4.9. Controller under different gusts, average wind velocity 1.5 m/s, wind 

direction 0º, initial ship heading 250º from virtual window for rudder constraint 

±10º ...................................................................................................................... 40 

Figure 4.10. Controller under different gusts, average wind velocity 1.3 m/s, wind 

direction180º, initial ship heading -270º from virtual window for rudder 

constraint ±10º .................................................................................................... 40 

Figure 4.11. Controller under different wind directions, average wind velocity 1.5 

m/s, initial ship heading 180º from virtual window for rudder constraint ±25º

 ............................................................................................................................. 41 

Figure 4.12. Comparison between half astern and slow astern, average wind 

velocity 1.3 m/s, wind direction 0º, initial ship heading 140º from virtual 

window for rudder constraint ±15º ..................................................................... 43 

Figure 4.13. Slow astern with modified PID, average wind velocity 1.3 m/s, wind 

direction 0º, initial ship heading 140º from virtual window for rudder constraint 

±15º ...................................................................................................................... 44 

Figure 4.14. Slow astern with modified PID, average wind velocity 1.5 m/s, wind 

direction 315º, initial ship heading 360º from virtual window for rudder 

constraint ±20º .................................................................................................... 45 

Figure 4.15. Comparison between ANN-PID and PID, average wind velocity 1.5 m/s, 

wind direction 0º, initial ship heading 140º from virtual window for rudder 

constraint ±15º .................................................................................................... 46 

Figure 4.16. Comparison between ANN-PID and PID, average wind velocity 1.3 m/s, 

wind direction 90º, initial ship heading 360º from virtual window for rudder 

constraint ±25º .................................................................................................... 46 

Figure 4.17. Controller’s interpolation ability, initial heading 160º from an arbitrary 

point ..................................................................................................................... 47 

Figure 4.18. Initial heading 180º and starts from point belongs to heading 200º on 

virtual window for rudder constraint ±10º ......................................................... 49 

Figure 4.19. Initial heading 200º and starts from point belongs to heading 180º on 

virtual window for rudder constraint ±10º ......................................................... 49 



178 
 

Figure 4.20. Ship with different initial headings and same initial point (LHS) ..... 50 

Figure 4.21. Initial heading 280º and starts from point belongs to heading 300º on 

virtual window for rudder constraint ±20º ......................................................... 51 

Figure 4.22. Initial heading 300º and starts from point belongs to heading 280º on 

virtual window for rudder constraint ±20º ......................................................... 51 

Figure 4.23. Ship with different initial headings and same initial point (RHS) ..... 52 

Figure 4.24. Initial heading 100º and starts from mid of virtual window ............... 53 

Figure 4.25. Initial heading 200º and starts from mid of virtual window ............... 53 

Figure 4.26. Initial heading 90º and starts from mid of virtual window ................. 54 

Figure 4.27. Initial heading 270º and starts from mid of virtual window ............... 55 

Figure 4.28. Controller for arbitrary starting point, ship starts with heading 150º

 ............................................................................................................................. 56 

Figure 4.29. Controller for arbitrary starting point, ship starts with heading 220º

 ............................................................................................................................. 56 

Figure 4.30. Controller for arbitrary starting point, ship starts with heading 280º

 ............................................................................................................................. 57 

Figure 4.31. Controller for arbitrary starting point, ship starts with heading 360º

 ............................................................................................................................. 57 

Figure 4.32. Ship with the same initial heading and different initial points .......... 58 

Figure 4.33. Histogram and median value plot for 'd  ........................................... 61 

Figure 4.34. Histogram and median value plot for   ......................................... 63 

Figure 4.35. Histogram and median value plot for surge  .................................... 64 

Figure 5.1. Free running experiment system ........................................................... 65 

Figure 5.2. Virtual window file .................................................................................. 68 

Figure 5.3. Coordinate rotation during berthing experiment .................................. 69 

Figure 5.4. Floated goal points with different staring points .................................. 71 

Figure 5.5. Group 1, initial heading 99.3º from virtual window for rudder constraint 

±15º ...................................................................................................................... 73 

Figure 5.6. Group 1, initial heading 110.9º from virtual window for rudder 

constraint ±10º .................................................................................................... 75 

Figure 5.7. Group 1, initial heading 97.7º from virtual window for rudder constraint 

±10º ...................................................................................................................... 76 

Figure 5.8. Group 2, initial heading 124.2º from virtual window for rudder 

constraint ±10º .................................................................................................... 77 

Figure 5.9. Group 2, initial heading 121.8º from virtual window for rudder 

constraint ±15º .................................................................................................... 79 



179 
 

Figure 5.10. Group 2, initial heading 104.8º from virtual window for rudder 

constraint ±20º .................................................................................................... 80 

Figure 5.11. Group 3, initial heading 88.8º from virtual window for rudder 

constraint ±20º .................................................................................................... 81 

Figure 5.12. Group 3, initial heading 122.3º from virtual window for rudder 

constraint ±20º .................................................................................................... 82 

Figure 5.13. Group 3, initial heading 148.7º from virtual window for rudder 

constraint ±25º .................................................................................................... 83 

Figure 5.14. Group 1, initial heading 49.9º or 409.9º from virtual window for rudder 

constraint ±10º .................................................................................................... 85 

Figure 5.15. Group 1, initial heading 44.1º or 404.1º from virtual window for rudder 

constraint ±10º .................................................................................................... 86 

Figure 5.16. Group 1, initial heading 67.1º or 427.1º from virtual window for rudder 

constraint ±10º .................................................................................................... 87 

Figure 5.17. Group 1, unsuccessful berthing, initial heading 37.2º or 397.2º from 

virtual window for rudder constraint ±10º ......................................................... 88 

Figure 5.18. Group 1, unsuccessful berthing, initial heading 57.1º or 417.1º from 

virtual window using rudder constraint ±10º .................................................... 89 

Figure 5.19. Group 2, unsuccessful berthing, initial heading 55.4º or 415.4º from 

virtual window for rudder constraint ±10º ......................................................... 90 

Figure 5.20. Group 2, unsuccessful berthing, initial heading 28.4º or 388.4º from 

virtual window for rudder constraint ±25º ......................................................... 91 

Figure 5.21. Group 3, initial heading 46.9º or 406.9º from virtual window ............. 93 

Figure 5.22. Group 3, unsuccessful berthing, initial heading 4.0º or 364.0º from 

virtual window for rudder constraint ±15º ......................................................... 94 

Figure 5.23. Group 4, initial heading 41.3º or 401.3º from virtual window ............. 95 

Figure 5.24. Group 4, unsuccessful berthing, initial heading 4.7º or 364.7º from 

virtual window for rudder constraint ±20º ......................................................... 96 

Figure 5.25. Initial heading 50.6º or 410.6º from point desired for 45º on virtual 

window for rudder constraint ±10º ..................................................................... 98 

Figure 5.26. Initial heading 39.9º or 399.9º from point desired for 60º on virtual 

window for rudder constraint ±20º ..................................................................... 99 

Figure 5.27. Initial heading 32.8º or 392.8º from point desired for 20º on virtual 

window for rudder constraint ±20º ................................................................... 100 

Figure 5.28. Initial heading 57.9º or 417.9º from point desired for 75º on virtual 

window for rudder constraint ±15º ................................................................... 101 



180 
 

Figure 5.29. Initial heading 31.4º or 391.4º from point desired for 45º on virtual window for 

rudder constraint ±15º ....................................................................................... 102 

Figure 5.30. Initial heading 110.8º from mid of virtual window ............................ 103 

Figure 5.31. Initial heading 128.1º from mid of virtual window ............................ 104 

Figure 5.32. Initial heading 128.9º from mid of virtual window ............................ 105 

Figure 5.33. Initial heading 116.5º from mid of virtual window ............................ 106 

Figure 5.34. Initial heading 108.7º from mid of virtual window ............................ 107 

Figure 5.35. Initial heading 19.9º or 379.9º from mid of virtual window............... 108 

Figure 5.36. Initial heading 26.5º or 386.5º from mid of virtual window............... 109 

Figure 5.37. Initial heading 37.0º or 397.0º from mid of virtual window............... 110 

Figure 5.38. Initial heading 18.3º or 378.3º from mid of virtual window............... 111 

Figure 5.39. Initial heading 42.7º or 402.7º from mid of virtual window............... 112 

Figure 5.40. Initial heading 3.4º or 363.4º from mid of virtual window................. 113 

Figure 5.41. Initial heading 37.2º or 397.2º from undesired mid of virtual window 

for rudder constraints ±20º and ±25º ................................................................ 114 

Figure 5.42. Initial heading 38.9º or 398.9º starts from (11.47m, 52.24m) ............ 115 

Figure 5.43. Initial heading 38.1º or 398.1º starts from (11.06m, 51.80m) ............ 116 

Figure 5.44. Initial heading 25.2º or 385.2º starts from (11.58m, 56.55m) ............ 117 

Figure 5.45. Initial heading 60.9º or 420.9º starts from (5.706m, 57.80663m) ...... 118 

Figure 5.46. Initial heading 133.3º starts from (48.831m, 36.778m) ..................... 119 

Figure 5.47. Initial heading 73.7º starts from (44.73m, 46.21m) ........................... 121 

Figure 5.48. Initial heading 99.25º starts from (43.627m, 38.545m) ..................... 122 

Figure 6.1.	δcom by ANN for different sway velocities (LHS) ............................... 125 

Figure 6.2. δcom by ANN for different yaw  rates (LHS) .................................... 125 

Figure 6.3. ANN’s response for varying yaw rate, sway fixed at -0.03 m/s (LHS) 126 

Figure 6.4. ANN’s response for varying yaw rate, sway fixed at -0.067 m/s (LHS)

 ........................................................................................................................... 126 

Figure 6.5. ANN’s response for varying yaw rate, sway fixed at -0.09 m/s (LHS) 127 

Figure 6.6. Comparison of ANN’s response (LHS) .................................................. 128 

Figure 6.7. Comparison of ANN’s response (LHS) .................................................. 128 

Figure 6.8. δcom by ANN for different sway velocities (RHS) .............................. 130 

Figure 6.9. δcom by ANN for different yaw rates (RHS) ...................................... 130 

Figure 6.10. ANN’s response for varying yaw rate, sway fixed at 0.03 m/s (RHS) 131 

Figure 6.11. ANN’s response for varying yaw rate, sway fixed at 0.067 m/s (RHS)

 ........................................................................................................................... 132 

Figure 6.12. ANN’s response for varying yaw rate, sway fixed at 0.09 m/s (RHS) 132 



181 
 

Figure 6.13. Comparison of ANN’s response (RHS) ................................................ 132 

Figure 6.14. Comparison of ANN’s response (LHS) ................................................ 133 

Figure 7.1. Wind effect on a stopped ship ............................................................... 135 

Figure 7.2. Wind effect with forward motion .......................................................... 135 

Figure 7.3. Berthing with thrusters, initial heading 180.0º starts from (43m, 44m)

 ........................................................................................................................... 138 

Figure 7.4. Berthing with thrusters, initial heading 180.0º starts from (47m, 40m)

 ........................................................................................................................... 139 

Figure 7.5. Berthing with thrusters, initial heading 180.0º starts from (35m, 47m)

 ........................................................................................................................... 140 

Figure 7.6. Berthing with thrusters, initial heading 220.0º starts from (34m, 49m)

 ........................................................................................................................... 141 

Figure 7.7. Berthing with thrusters, initial heading 220.0º starts from (38m, 46m)

 ........................................................................................................................... 142 

Figure 7.8. Berthing with thrusters, initial heading 270.0º starts from (24m, 56m)

 ........................................................................................................................... 143 

Figure 7.9. Berthing with thrusters, initial heading 270.0º starts from (25m, 48m)

 ........................................................................................................................... 144 

Figure 7.10. Berthing with thrusters, initial heading 360.0º starts from (8m, 54m)

 ........................................................................................................................... 145 

Figure 7.11. Berthing with thrusters, initial heading 360.0º starts from (11m, 57m)

 ........................................................................................................................... 146 

Figure 7.12. Simulation with experiment end conditions, initial heading 360.6º for 

thrusters ............................................................................................................ 147 

Figure 7.13. Simulation with experiment end conditions, initial heading 250.8º for 

thrusters ............................................................................................................ 148 

Figure 7.14. Simulations start with different experiment end conditions ............ 149 

Figure 8.1. Course command near a course changing point .................................. 151 

Figure 8.2. Bearing relation between ship and waypoint ...................................... 151 

Figure 8.3. Membership functions for course changing algorithm ........................ 153 

Figure 8.4. Waypoints set at -45º, controller under wind of 1.5m/s from 45º ........ 155 

Figure 8.5. Waypoints set at 60º, controller under wind of 1.5m/s from 270º ........ 156 

Figure 8.6. Waypoints set to starboard and port turn, controller under wind of 

1.5m/s from 135º ................................................................................................ 157 

Figure 8.7. Waypoint controller, initial heading 120º for set point ........................ 158 

Figure 8.8. Waypoint controller, initial heading 130º for set point ........................ 159 



182 
 

Figure 8.9. Target (54.52m, 13.22m) with heading 50º, Achieved (54.45m, 11.29m) 

with heading 47.2º ............................................................................................. 161 

Figure 8.10. Target (54.52m, 13.22m) with heading 50º, achieved (54.45m, 12.31m) 

with heading 46.1º ............................................................................................. 162 

Figure 8.11. Target goal (56.15m, 10.97m) with heading 50º, achieved (55.93m, 

9.47m) with heading 56.65º .............................................................................. 163 

Figure 8.12. Target point on virtual window (45.89m, 10.16m) with heading 50º, 

achieved (45.83m, 10.13m) with heading 51.61º .............................................. 164 

Figure 8.13. Target point on virtual window (47.52m, 7.91m) with heading 50º, 

achieved (47.74m, 8.24m) with heading 51.01º ................................................ 165 

 

  



183 
 

ACKNOWLEDGEMETS 
 

I would like to express my sincere gratitude to my supervisor Prof. Kazuhiko 

Hasegawa for accepting me as a graduate student in the Department of Naval 

Architecture and Ocean Engineering, Osaka University. This research would not be 

possible without his valuable advice, patient guidance, enthusiastic encouragement and 

useful critiques.  

I also gratefully acknowledge Prof. Naomi Katou and Associate Prof. Naoya 

Umeda for kindly agreeing to be the members of the reviewing committee for this 

thesis. 

It is also a great pleasure to express my gratitude to Dr. Makino for his views and 

suggestions regarding this thesis and helping to meet with tug masters to know valuable 

parameters and way of operating tugs. I am thankful to Prof. Wakabayashi at Kobe 

University to allow me to ride on Fukaye Maru to observe its berthing operation. 

Special thanks to Dr. Amin Osman to make me understand about the basic things of 

manoeuvring and also Dr. Kyoung Gun Oh for helping me to know about the free 

running experiment. 

Throughout my entire stay in Hasegawa laboratory, I have met with many students 

studied in Master and Bachelor courses. Many of them helped me with the daily 

necessities and doing free running experiments. Without their help, the experiments 

would not be possible. I would like to thank all members of Hasegawa Laboratory, 

especially Mr. Zobair, Ms. Jyotsna, Mr. Usada, Mr. Kayaida, Mr. Sakai and Mr. 

Fujimoto for supporting me and make my stay happier.  

I am thankful to the Ministry of Education, Science and Culture (MEXT), 

Government of Japan for providing me the opportunity to study at Osaka University and 

get generous financial support throughout my study. 

There is a small Bangladeshi community at Osaka University who always helps 

and supports each other. I would like to thank all the members of this community for the 

pleasant moments that they share with my family. 

I really would like to share the accomplishment of this thesis with my lovely wife, 

Sofia Akter Noor, who supported me during my research with endless patience and 

sacrifices. 



184 
 

Finally, on a personal note, I would like to express my heartfelt thanks to my 

creator Allah for helping me to complete my PhD degree successfully. I know he will 

continue his blessings for my upcoming future. I am also grateful to our parents for their 

endurance, support and prayers. I would not be able to achieve anything in my life 

without them. 

  



185 
 

LIST OF PUBLICATIONS  

 

  Journal papers 

 

1. Ahmed, Y. A. and Hasegawa, K. November, 2013. Automatic Ship Berthing 

using Artificial Neural Network Trained by Consistent Teaching Data using 

Non-Linear Programming Method. Journal of Engineering Applications of 

Artificial Intelligence, vol. 26, issue 10, pp.2287-2304. 

2. Ahmed, Y. A. and Hasegawa, K. September, 2015. Consistently Trained 

Artificial Neural Network for Automatic Ship Berthing Control. Conference and 

Journal of Marine Navigation and Safety of Sea Transportation. 

 

Conference Proceedings 

 

1. Ahmed, Y. A, and Hasegawa, K. September, 2012. Automatic Ship Berthing 

using Artificial Neural Network Based on Virtual Window Concept in Wind 

Condition. Proc. of the 13th IFAC Symposium on Control in Transportation 

Systems, pp.359-364. Sofia, Bulgaria. 

2. Ahmed, Y. A. and Hasegawa, K. September, 2013. Implementation of 

Automatic Ship Berthing using Artificial Neural Network for Free Running 

Experiment. Proc. of the 9th IFAC Conference on Control Applications in 

Marine Systems, vol. 9, pp.25-30, Osaka, Japan.  

3. Ahmed, Y. A. and Hasegawa, K. August, 2014. Experiment Results for 

Automatic Ship berthing using Artificial Neural Network Based Controller. The 

19th World Congress of International Federation of Automatic Control, pp. 

2658-2663. Cape Town, South Africa. 

4. Ahmed, Y. A. and Hasegawa, K. December, 2014. Artificial Neural Network 

based Automatic Ship Berthing Combining PD Controller Side Thrusters. The 

13th International Conference on Control, Automation, Robotics and Vision, 

pp.1304-1309, Singapore. 

 



186 
 

Seminar 

 

1. Ahmed, Y. A. and Hasegawa, K. 2013. Automatic Ship Berthing Experiment 

using Artificial Neural Network Based on Virtual Window Concept. The 16th 

Academic Exchange Seminar between Osaka University and Shanghai Jiao Tong 

University. 

  



187 
 

Appendix A: MANOEUVRING MATHEMATICAL GROUP (MMG) 

MODEL 

 
A.1 Hydrodynamic Forces and Moment Acting on a Hull 
 

The hydrodynamic forces and moment acting on the hull during manoeuvring are 

usually expressed as a combination of linear and non-linear terms. The hydrodynamic 

forces and moment, considering advance and astern motions can be described by the 

following equations. 

 

( i ) Advance (u>0) 

ܺு ൌ
ߩ
2
ଶܷ݀ܮ ቀܺ௨௨ሺ0ሻሖ ൅ ఉܺఉߚଶሖ

ሖ ൅ ఉܺ௥ݎ́ߚሖ
ሖ ൅ ܺ௥௥ݎଶሖ

ሖ ൅ ఉܺఉఉఉߚସሖ
ሖ ቁ 

(A.1) 

 
		 ுܻ ൌ

ߩ
2
ଶሼܷ݀ܮ ఉܻߚሖ ൅ ௥ܻ́ݎሖ ൅ ఉܻఉߚ|ߚ|ሖ ൅ ௥ܻ௥ݎ|ݎ|ሖ ൅ ሺ ఉܻఉ௥ܾሖ ൅ ఉܻ௥௥́ݎሖ ሻݎߚሽሖ  

		ܰு ൌ
ߩ
2
ଶሼܷ݀ܮ ఉܰߚሖ ൅ ௥ܰ́ݎሖ ൅ ఉܰఉߚ|ߚ|ሖ ൅ ௥ܰ௥ݎ|ݎ|ሖ ൅ ሺ ఉܰఉ௥ܾሖ ൅ ఉܰ௥௥́ݎሖ ሻݎߚሽሖ  

 

( ii ) Astern (u<0) 

ܺு ൌ
ߩ
2
ଶሺܺ௩௥௦ᇱܷ݀ܮ ᇱݎᇱݒ ൅ ܺ௨௨௦ᇱ  ᇱሻݑ|ᇱݑ|

(A.2) 

 

ுܻ ൌ
ߩ
2
ଶሺܷ݀ܮ ௩ܻ௥

ᇱ ൅ ௥ܻ௦
ᇱ ᇱݎ ൅ ௥ܻ௥௦

ᇱ ᇱݎ|ᇱݎ| ൅ ఉܻ௥
ᇱ  ᇱሻݎ|ே௅ሻߚே௅cosሺߚ|

ܰு ൌ
ߩ
2
Lଶܷ݀ଶሺ ௩ܰ௥

ᇱ ൅ ௥ܰ௦
ᇱ ᇱݎ ൅ ௥ܰ௥௦

ᇱ ᇱݎ|ᇱݎ| ൅ ఉܰఉ௥௦
ᇱ ሺߚே௅ cosሺߚே௅ሻሻଶݎᇱ

൅ ఉܰ௥௥௦
ᇱ ே௅ߚ| cosሺߚே௅ሻݎᇱ  ᇱሻݎ|

 

Where, 

 

If  |ߚ| ൑ గ

ଶ
  

 

ே௅ߚ ൌ (A.3) ߚ
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If  |ߚ| ൐ గ

ଶ
 , 

ே௅ߚ ൌ ሺߨ െ ሻ (A.4)ߚሺ݊݅ݏሻ|ߚ|

 

Here, Y୴୰ᇱ  is calculated as follows: 

 

If  |ߚ| ൑   ௬ଵܥ

Y୴୰ᇱ ൌ |ߚ|ߚ௬ଵܥ ൅ (A.5) ߚ௬ଵܥ

 

If  |ߚ| ൐ |ߚ|		݀݊ܽ	௬ଵܥ ൑   ௬ଶܥ

 

Y୴୰ᇱ ൌ |ߚ|ߚ௬ଷܥ ൅ ߚ௬ସܥ ൅ ሻ (A.6)ߚሺ݊݃ݏ

If  |ߚ| ൐   	௬ଶܥ

 

Y୴୰ᇱ ൌ ߚ|௬଺ܥ െ ߚሺ|ߨሻߚሺ݊݃ݏ െ ሻߨሻߚሺ݊݃ݏ ൅ ߚ௬଻ሺܥ െ ሻ (A.7)ߨሻߚሺ݊݃ݏ

 

୴ܰ୰
ᇱ  is calculated as follows: 

 

If  |ߚ| ൑   ௡ଵܥ

N୴୰ᇱ ൌ |ߚ|ߚ௡ଵܥ ൅ (A.8) ߚ௡ଵܥ

 

If  |ߚ| ൐ |ߚ|		݀݊ܽ	௡ଵܥ ൑   ௡ଶܥ

 

N୴୰ᇱ ൌ |ߚ|ߚ௡ଷܥ ൅ ߚ௡ସܥ ൅ ሻ (A.9)ߚሺ݊݃ݏ

 

If  |ߚ| ൐   	௡ଶܥ

 

N୴୰ᇱ ൌ ߚ|௡଺ܥ െ ߚሺ|ߨሻߚሺ݊݃ݏ െ ሻߨሻߚሺ݊݃ݏ ൅ ߚ௡଻ሺܥ െ ሻ (A.10)ߨሻߚሺ݊݃ݏ

 

 

. 
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A.2 Propeller Thrust 
 

Propeller thrust can be described by longitudinal force of a propeller. The 

following expression is used to calculate propeller thrust. 

 

( i ) Advance (n>=0) 

ܺ௉ ൌ ௉ܦߩ
ସ݊ଶሺ1 െ  ்ܭሻݐ

௉ܻ ൌ 0 

௉ܰ ൌ 0 

(A.11) 

 

Where, 

K୘ሺJሻ ൌ CଵJ ൅ ଶJܥ ൅ CଷJଶ (A.12)

ܬ ൌ ௉ሻ (A.13)ܦ௉/ሺ݊ݑ

௉ݑ ൌ ሺ1ݑ െ ௉ሻ (A.14)ݓ

1 െ ௉ݓ ൌ ሺ1 െ ௉଴ሻݓ ൅ ᇱݒ|߬ ൅ ௉ݔ
ᇱ |ᇱݎ ൅ ௉ܥ

ᇱ ሺݒᇱ ൅ ௉ݔ
ᇱ ᇱሻଶ (A.15)ݎ

 

( ii ) Astern (n<0) 

ܺ௉ ൌ ௉ܺߩ
௉ܦ∗

ଶሺ݊ܦ௉ሻଶ 

௉ܻ ൌ
ߩ
2 ௉ܻ

 ௉ሻଶܦሺ݊݀ܮ∗

௉ܰ ൌ
ߩ
2 ௉ܰ

 ௉ሻଶܦଶ݀ሺ݊ܮ∗

(A.16)

 

X force is divided depending on the advance coefficient ܬௌ as follows: 

 

ௌܬ ൌ
ݑ
௉ܦ݊

 (A.17)

 

If   ܬௌ ൒ 0 

ܺ௉
∗ ൌ ସܥ ൅  ௌ (A.18)ܬହܥ
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If   ܬௌ௧ᇲ ൏ ௌܬ ൏ 0 

ܺ௉
∗ ൌ  ଺ (A.19)ܥ

 

If   ܬௌ ൏  ௌ௧ᇲܬ

ܺ௉
∗ ൌ ଼ܥ ൅  ௌ (A.20)ܬ଻ܥ

 

Y force and N moment are divided as follows: 

 

If   ܬ௦௬௡଴ ൏ ௌܬ ൏  ௦௬௡ܬ

 

௉ܻ
∗ ൌ ଵܣ ൅  ௌܬଶܣ

(A.21) 
௉ܰ
∗ ൌ ଵܤ ൅  ௌܬଶܤ

 

If   ܬௌ ൏  ௦௬௡ܬ

௉ܻ
∗ ൌ ଷܣ ൅  ௌܬସܣ

(A.22) 
௉ܰ
∗ ൌ ଷܤ ൅  ௌܬସܤ

 

If   ܬௌ ൐  ௦௬௡଴ܬ

௉ܻ
∗ ൌ  ହܣ

(A.23) 
௉ܰ
∗ ൌ  ହܤ

 

 

A.3 Rudder Force and Moment 
 

The hydrodynamic forces and moment generated by rudder angle can be expressed 

by using rudder normal force and rudder angle as follows: 

 

( i ) Advance (n>=0) 

ܺோ ൌ െ
ߩ
2
ଶሺ1ܷ݀ܮ െ ேܨோሻݐ sin (A.24) ߜ
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ோܻ ൌ െ
ߩ
2
ଶሺ1ܷ݀ܮ ൅ ܽுሻܨே cos  ߜ

ோܰ ൌ െሺ
ߩ
2
ோݔଶܷଶሻሺ݀ܮ ൅ ܽுݔுሻܨே cos  ߜ

                        

where, 

ேܨ ൌ
௥ܣ
݀ܮ

݂ܷோ
ଶߙ݊݅ݏோ (A.25)

݂ ൌ
ߣ6.13
ߣ ൅ 2.25

 (A.26)

ܷோ
ଶ ൌ ሺ1 െ ோሻଶሼ1ݓ ൅ ሻሽ (A.27)ݏሺ݃ܥ

݃ሺݏሻ ൌ
ሺ2ܭߟ െ ሺ2 െ ݏሻݏሻܭ

ሺ1 െ ሻଶݏ
 (A.28)

ߟ ൌ ௉/݄ோ (A.29)ܦ

ܭ ൌ 0.6ሺ1 െ ௉ሻ/ሺ1ݓ െ ோሻ (A.30)ݓ

ݏ ൌ 1.0 െ ሺ1 െ  A.31) ܲ݊/ߚݏ݋ோሻܷܿݓ

ோݓ ൌ ௉଴ (A.32)ݓ/௉ݓோ଴ݓ

ோߙ ൌ ߜ െ ோߚߛ
ᇱ  (A.33)

ோߚ
ᇱ ൌ ߚ െ ᇱ (A.34)ݎோݔ2

 

 

( ii ) Astern (n<0) 

ܺோ ൌ 0 

(A.35) ோܻ ൌ 0 

ோܰ ൌ 0 
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A.4 All Hydrodynamic Derivatives 
 

Hydrodynamic derivatives regarding hull, propeller and rudder for both 

forward and astern motion are given in Table A.1 

Table: A.1 Hydrodynamic derivatives 

࢞࢓ ᇱ 0.2709࢓
ᇱ ࢟࢓ 0.02 

ᇱ ᇱࢠࢠࡵ 0.2224   0.0172 

ᇱࢠࢠࡶ ᇱ࢛࢛ࢄ 0.00821  ሖ࢘ࢼࢄ 0.02639-  ሖࢼࢼࢼࢼࢄ 0.191559   0.2751225 

ሖ࢘࢘ࢄ ሖࢼࢼࢄ 0.012856  ᇱ࢙࢘࢜ࢄ 0.022823  ᇱ࢙࢛࢛ࢄ 0.495   -0.03189 

ሖࢼࢅ ሖ࢘ࢅ 0.3039  ሖࢼࢼࢅ 0.0908104  ሖ࢘ࢼࢼࢅ 0.5454883   0.214706 

ሖ࢘࢘ࢅ ሖ࢘࢘ࢼࢅ 0.000143-  ᇱ࢙࢘ࢅ 0.332125  ᇱ࢙࢘࢘ࢅ 0.0519   0.32 

ሖࢼࡺ ሖ࢘ࡺ 0.112252  ሖࢼࢼࡺ 0.063663-  ሖ࢘ࢼࢼࡺ 0.051978   -0.27805 

ሖ࢘࢘ࡺ  0.0027571 ሖ࢘࢘࢈ࡺ ࢙࢘ࡺ 0.02597- 
ᇱ ࢙࢘࢘ࡺ 0.0365- 

ᇱ  -0.016 

࢙࢘ࢼࢼࡺ
ᇱ ࢙࢘࢘ࢼࡺ 0.111- 

ᇱ  ૛ 0.404࢟࡯ ૚ 0.393࢟࡯ 0.0855- 

 ૟ -0.393࢟࡯ ૞ -0.609࢟࡯ ૝ 1.99࢟࡯ ૜ -0.632࢟࡯

 ૜ 0࢔࡯ ૛ 0.123࢔࡯ ૚ -0.0671࢔࡯ ૠ -0.404࢟࡯

 ૠ 0.0802࢔࡯ ૟ 0.1108࢔࡯ ૞ 0.166࢔࡯ ૝ -0.126࢔࡯

t 0.2 ࢝ࡼ૙ 0.4710 ࢞ࡼ
ᇱ  ૚ 0.32࡯ 0.5- 

 ૞ 0.28࡯ ૝ -0.146࡯ ૜ -0.2668࡯ ૛ -0.2466࡯

 ૡ -0.14 ࣎ 1.45࡯ ૠ 0.51࡯ ૟ -0.257࡯

 ૜ -4.93e-3࡭ ૛ 7.99e-3࡭ ૚ -7.9e-5࡭ 0.359- ࡼᇱ࡯

 ૛ -3.17e-3࡮ ૚ 3.5e-5࡮ ૞ -5.58e-4࡭ ૝ -5.87e-3࡭

 ᇲ -0.6࢚ࡿࡶ ૞ 2.25e-4࡮ ૝ 2.33e-3࡮ ૜ 1.96e-3࡮

 0.398 ࡴࢇ 0.2173 ࡾ࢚ ૙ -0.06࢔࢙࢟ࡶ 0.35- ࢔࢙࢟ࡶ

 1.599 ࣅ 1/59.1 ࢊࡸ/࢘࡭ 0.442- ࡴ࢞ 0.82- ࡾ࢞

 0.23 ࢊ࢈࢚࢙ࢽ 0.19 ࢚࢘࢕࢖ࢽ ૙ 0.1792ࡾ࢝ 0.1278 ࡾࢎ
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Appendix B: FUJIWARA WIND MODEL 

 

The coefficients mentioned in Equation 2.2 can be defined as follows: 

 

௑ܥ ൌ ܺ଴ ൅ ଵܺܿ߰ݏ݋ோௐ ൅ ܺଷܿ3߰ݏ݋ோௐ ൅ ܺହܿ5߰ݏ݋ோௐ 

(B.1) ܥ௒ ൌ ଵܻ߰݊݅ݏோௐ ൅ ଷܻ݊݅ݏ 3߰ோௐ ൅ ହܻ5߰݊݅ݏோௐ 

ேܥ ൌ ଵܰ߰݊݅ݏோௐ ൅ ଶܰ2߰݊݅ݏோௐ ൅ ଷܰ3߰݊݅ݏோௐ 

where, 

,݊݋݅ݐܿ݁ݎ݅݀	݀݊݅ݓ	݁ݒ݅ݐ݈ܴܽ݁ ߰ோௐ ൌ atan ൬
ܷௐோ

ௐܸோ
൰ 

(B.2) 

ܺ଴ ൌ ଴଴ݔ ൅ ଴ଵݔ
஻ோܪܤ
்ܣ

൅ ଴ଶݔ
ܥ
஼ܪ

൅ ଴ଷݔ
ை஽ܣ
ଶܮ

 (B.3) 

ଵܺ ൌ ଵ଴ݔ ൅ ଵଵݔ
௅ܣ
ܤܮ

൅ ଵଶݔ
஼ܪܮ
௅ܣ

൅ ଵଷݔ
஻ோܪܮ
௅ܣ

൅ ଵସݔ
ை஽ܣ
௅ܣ

൅ ଵହݔ
்ܣ
ܤܮ

൅ ሺ	ଵ଺ݔ
்ܣ
ଶܮ
ሻିଵ

൅ 	ሺ	ଵ଻ݔ
஼ܪ
ܮ
ሻିଵ 

(B.4) 

ܺଷ ൌ ଷ଴ݔ ൅ 	ଷଵሺݔ
஻ோܪܮ
௅ܣ

ሻିଵ ൅ ଷଶݔ
௅ܣ
்ܣ

൅ ଷଷݔ
஼ܪܮ
௅ܣ

൅ ଷସݔ
ை஽ܣ
௅ܣ

൅ ଷହݔ
ை஽ܣ
ଶܮ

൅ 	ଷ଺ݔ
ܥ
஼ܪ

൅ 	ଷ଻ݔ
஻ோܥ
ܮ

 

(B.5) 

ܺହ ൌ ହ଴ݔ ൅ ହଵሺݔ
ை஽ܣ
௅ܣ

ሻିଵ ൅ ହଶݔ
஻ோܥ
ܮ

൅ ହଷݔ
௅ܣ
ܤܮ

 (B.6) 

ଵܻ ൌ ଵ଴ݕ ൅ ଵଵݕ
஻ோܥ
ܮ

൅ ଵଶݕ
ܥ
ܮ
൅ ଵଷݕ ሺ

ை஽ܣ
௅ܣ

ሻିଵ ൅ ଵସݕ
ܥ
஼ܪ

൅ ଵହሺݕ
஻ோܪܤ
்ܣ

ሻିଵ (B.7) 

ଷܻ ൌ ଷ଴ݕ ൅ ଷଵݕ
௅ܣ
ܤܮ

൅ ଷଶݕ
஼ܪܮ
௅ܣ

൅ ଷଷݕ
஻ோܥ
ܮ

൅ ଷସሺݕ
஻ோܪ
ܤ
ሻିଵ ൅ ଷହݕ

ை஽ܣ
௅ܣ

൅ ଷ଺ݕ ሺ
஻ோܪܤ
்ܣ

ሻିଵ (B.8) 

ହܻ ൌ ହ଴ݕ ൅ ହଵݕ
௅ܣ
ܤܮ

൅ 	ହଶሺݕ
஻ோܪ
ܮ
ሻିଵ ൅ ହଷݕ

஻ோܥ
ܮ

൅ ହସݕ ሺ
்ܣ
ଶܤ
ሻିଵ ൅ ହହݕ

ܥ
ܮ
൅ ହ଺ݕ

஼ܪܮ
௅ܣ

 (B.9) 
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ଵܰ ൌ ݊ଵ଴ ൅ ݊ଵଵ
ܥ
ܮ
൅ ݊ଵଶ

஼ܪܮ
௅ܣ

൅ ݊ଵଷሺ
௅ܣ
்ܣ
ሻିଵ ൅ ݊ଵସ

ܥ
஼ܪ

൅ ݊ଵହ
௅ܣ
ܤܮ

൅ ݊ଵ଺	 	
்ܣ
ଶܮ

൅ ݊ଵ଻	ሺ	
்ܣ
ଶܤ
ሻିଵ ൅ ݊ଵ଼

஻ோܥ
ܮ

 

(B.10) 

ଶܰ ൌ ݊ଶ଴ ൅ ݊ଶଵ
஻ோܥ
ܮ

൅ ݊ଶଶ
ܥ
ܮ
൅ ݊ଶଷሺ

ை஽ܣ
௅ܣ

ሻିଵ ൅ ݊ଶସ
்ܣ
ଶܤ

൅ ݊ଶହሺ
஻ோܪ
ܮ
ሻିଵ

൅ ݊ଶ଺		ሺ	
஻ோܪܤ
்ܣ

ሻିଵ ൅ ݊ଶ଻
௅ܣ
ܤܮ

൅ ݊ଶ଼
௅ܣ
ଶܮ

 

(B.11) 

ଷܰ ൌ ݊ଷ଴ ൅ ݊ଷଵ
஻ோܥ
ܮ

൅ ݊ଷଶሺ
஻ோܪܤ
்ܣ

ሻିଵ ൅ ݊ଷଷ
௅ܣ
்ܣ

 (B.12) 

To calculate the above coefficients, necessary parameters are given in Table B.1. 

Table. B.1 Coefficient of independent variables 

m= 0 1 2 3 4 5 6 7 8 

CX 

X0m 

X1m 

X3m 

X5m 

-0.330 

-1.353 

0.830 

0.0372 

0.293 

1.70 

-0.413 

-0.0075 

0.0193 

2.87 

-0.0827 

-0.103 

0.682 

-0.463 

-0.563 

0.0921 

-0.570 

0.804 

-6.640 

-5.67 

-0.0123 

0.0401 

0.0202 

-0.132 

 

CY 

y0m 

y1m 

y3m 

0.684 

-0.40 

0.122 

0.717 

0.282 

-0.166 

-3.22 

0.307 

-0.0054 

0.0281 

0.0519 

-0.0481 

0.0661 

0.0526 

-0.0136 

0.298 

-0.0814 

0.0864 

 

0.0582 

-0.0297 

 

 

CN 

n0m 

n1m 

n3m 

0.299 

0.117 

0.0230 

1.71 

0.123 

0.0385 

0.183 

-0.323 

-0.0339 

-1.09 

0.0041 

0.0023 

-0.0442 

-0.166 

 

-0.289 

-0.0109 

 

4.24 

0.174 

 

-0.0646 

0.214 

 

0.0306 

-1.06 

 


