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High-temperature reliability of ultrasonic bonded  

metal ribbon wirings for power electronic devices 

 

Abstract 

 
Metal string wire bonding technology has been widely used in Si semiconductor electronic devices 

for many decades because of their excellent formability and rapid process. However, the emerging post-Si 

wide-bandgap semiconductors like SiC or GaN target operated at higher temperatures over 200 °C have 

been arising, and thus the thermal stability of wiring has become one of critical issues in power 

electronics packaging. At such a high temperature, the wirings may severely degrade due to grain 

coarsening, heel cracking resulting in final failure. This thesis describes the potentials of joint reliability 

for new wiring structures such as Al ribbon and Cu/Al clad ribbon. 

At first, a large rectangular 4N Al ribbon (1500 × 200 μm
2
) was applied in wiring structure instead of 

typical string wires (d ≤ 400 μm) to secure the high temperature degradation. Use of the ribbons is 

expected to improve the high temperature degradation as the large area bonding. The ribbon bonding by 

ultrasonic consolidation was performed at ambient temperature without any heating. High ultrasonic 

power/frequency, high bonding pressure, and long bonding time are required to get successful ribbon 

bonding. Therefore, the optimization of ultrasonic ribbon bonding process was preceded to obtain the 

steady bond interfaces. The suitable bonding parameters were determined by evaluation of the tensile 

strength. Ultrasonic ribbon bonding mechanisms are investigated. 

Next, a Cu/Al clad ribbon was adopted to achieve better thermal/electrical performance together with 

easy manufacturing. The use of Cu ribbon instead of Al is expected to improve the mechanical 

degradation at high temperature, though Cu ribbons have inherent difficulties in the ultrasonic bonding 

process because of the high acoustic impedance and the high hardness. The thermo-mechanical stability 

of Al have compared to Cu/Al clad ribbons in a practical interconnect bonding structure under harsh 

environmental tests such as thermal exposure to 200 °C and thermal shock cycling at -40/250 °C. By the 

optimizing the ultrasonic ribbon bonding parameters, Cu/Al clad ribbons showed higher stability than Al 

ribbons. Hence, the thermal and mechanical stability of the ribbon wiring structure consist of a Cu/Al clad 

ribbon is superior to those of Al.  

Finally, the mechanism of a failure of Cu/Al clad ribbon was investigated with respective to heel 

crack propagation. The microstructural evolution was analyzed to understand the mechanical degradation 

due to grain coarsening. Dynamic recrystallization (DRX) occurred during the high-temperature 

deformation both of Cu and of Al, for which the mechanism involves both discontinuous dynamic 

recrystallization (DDRX, i.e., nucleation and grain growth) and continuous dynamic recrystallization 

(CDRX, i.e., transformation of sub-grains into grains). Sub-grains were formed within the recrystallized 

grains during harsh tests. Subsequently, dynamic grain coarsening was observed in CDRX with 

increasing harsh test periods. Heel cracks were frequently formed at boundaries between the bonded zone 

and non-bonded zone even in the ultrasonic ribbon bonding process. During the harsh tests, the heel 

cracks propagated deep into the Al layer along recrystallized grain boundaries.  

In the thesis, the results confirmed that ribbon bonding technology would contribute to establish a 

long-term interconnection reliability for high-temperature power electronics packaging. 
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1.1 Background 

1.1.1 Next-generation wide-bandgap power electronic devices 

Nowadays, next-generation wide-bandgap (WBG) semiconductors such as silicon carbide (SiC) and 

gallium nitride (GaN) have been selected as the chip materials for high-power electronic devices to 

replace conventional silicon (Si). Some of the intrinsic material properties of WBG semiconductors are 

listed in Table 1.1.  

The WBG power electronic devices applied to schottky barrier diode (SBD), insulated gate bipolar 

transistor (IGBT), and metal oxide semiconductor field effect transistor (MOSFET) can be operated in the 

conditions of higher temperatures, higher current flows, and higher breakdown voltages [1–3]. The 

application of WBG power devices can also reduce substantial power losses compared to Si power 

devices. 

 

Table 1.1 Physical semiconductor properties for power electronic devices [4–6] 

Material Eg (eV) ni (cm
-3
) ɛr 

μn 

(cm
2
/V s) 

Ec 

(MV/cm) 

υsat 

(10
7
cm/s) 

λ  

(W/cm K) 

Si 1.1 1.5 × 10
 -10

 11.8 1350 0.3 1.0 1.5 

SiC 3.26 8.2 × 10
 -9

 10 720 2.0 2.0 4.5 

GaN 3.39 1.9 × 10
 -10

 9.5 900 3.3 2.5 1.3 

Diamond 5.45 1.6 × 10
 -27

 5.5 1900 5.6 2.7 20 

 

1.1.2 Problem definition and research trend 

Applying the WBG semiconductor devices may cause high-temperature joint failures due to 

increasing the junction temperature (Tj). Hence, innovative packaging solutions such as new interconnect 

materials and structures are needed to secure the joint stability at high operating temperature.  
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The typical operating temperature and component life requirements for high power electronics 

applications have been published by Chin et al. and Buttay et al. [7, 8]. For Si power electronic modules, 

the maximal junction temperature (Tjmax) is lower than 175 °C and the temperature variation becomes 200 

degree, as shown in Fig. 1.1. Since packaging component of WBG semiconductors can undergo Tjmax 

higher than 200 °C and thermal cycles with ΔT > 250 degree, reliability problems become one of the 

serious issues. At such a high temperature, the thin string metal wirings easily show severe mechanical 

degradation due to grain coarsening and heel cracks formation resulting in final device failure. Thus, 

some new wiring structure with a stable function even was subjected to harsh thermal environment. 

 

 

 

Fig. 1.1 Half-bridge power switches constructed with two IGBTs and two diodes on an AlN-based 

substrate and an integrated base-plate cooler. The simulated hottest temperature field in the half bridge 

switch module during the mission profile for a specific thermal resistance of 5 K mm
2
 W

-1
 between the 

substrate and the cooler and a heat exchange coefficient of 15,000 Wm
-2

 k
-1

 applied at the inner wall of 

the cooler [9]. 

 

4N Al wire bonding made by ultrasonic bonding, carrying electrical current between a chip and a 

substrate, is a typical interconnection technology used in power electronics packages. The increasing 

power density causes high temperature and stress on devices resulting in early failure [10]. Connection 

damage stems from both chip self-heating and Joule self-heating caused by high current density crossing 

T
jmax

 = 175 °C  
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the wire (typically 10 A per 250 μm Al wire diameter [11]). Furthermore, cracks initiate during the 

bonding process, and propagate during the device operation [12]. The two most frequent failure modes 

are interfacial cracking (lift-off) and heel cracking (high operating temperatures/currents). The former one 

is mainly due to the bad bonding condition and coefficient of thermal expansion (CTE) mismatch 

between silicon and Al wire (αSi = 2.6 ppm K
-1

, αAl = 23.8 ppm K
-1

 [13]). Under high-temperature 

operation, accumulated stresses occur at the interface, leading to the degradation [14]. The later one is 

mainly due to Al grain coarsening under heat transfer through wirings. Fig. 1.2 shows the two failure 

modes of wire involving fatigue at the heel area. 

 

 

Fig. 1.2 Lift-off and heel crack mechanism of a wire bonding [15]. 
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1.2 Ultrasonic wire bonding 

Wire bonding using ultrasonic energy with pressure is one of solid-state joining processes. The 

ultrasonic energy with pressure induces friction between the mating surfaces to achieve tight metal joints. 

Ultrasonic bonding has inherent advantages derived from its solid-state bonding characteristics, and has 

been in use as a versatile joining method in automotive, train, aerospace, power plant, and green and 

renewable energy industries for several decades to produce the similar or dissimilar materials joints, 

where the materials are metal sheets [16, 17], thin foils [18], semiconductors [19], ceramics [20], plastics 

[21], and glasses [22], as shown in Fig. 1.3. 

 

 

Fig. 1.3 Applications of power electronic devices module using ultrasonic wire bonding technology  

 

1.3 Typical wire bonding technology 

Metal wire bonding technology using based on heat, pressure, and ultrasonic energy has been 

generally applied in electronics packaging [23–28]. The process of connecting chips to substrates or lead 

Source: TOYOTA 

Source: DENSO 

Ultrasonic wire bonding application  
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frames can be accomplished by metal wirings. The wire bonding techniques consist of ball bonding and 

wedge bonding. Those bonding methods are used by varying of thermo-sonic, thermo-compression, and 

ultrasonic. A ball bonding method has higher possession for microelectronic semiconductor packages 

manufacturing compared to wedge bonding method [29, 30]. 

 

1.3.1 Ball bonding 

In this technique, a wire is passed through a hollow capillary, and an electronic-flame-off (EFO) 

system is used to melt a small portion of the wire extending beneath the capillary [31]. The surface 

tension of the molten metal at a ball, as the wire material solidifies. The ball is pressed to a bonding pad 

on a die with sufficient force to cause plastic deformation and atomic interdiffusion between the wire and 

the pad metallization. The plastic deformation and atomic interdiffusion ensure the intimate contact 

between the two metal surfaces and form the first bond (ball bond). The capillary is then raised and 

repositioned over the second bond site on the substrate; a precisely shaped wire connection called a wire 

loop is thus created as the wiring direction. Deforming the wire against the bonding pad makes the second 

bond (wedge bond or stitch bond), having a crescent or fishtail shape made by the imprint of the 

capillary’s outer geometry. Then the wire clamp is closed, and the capillary ascends once again, breaking 

the wire just above the wedge, an exact wire length is left for EFO to form a new ball to begin the next 

bonding. Ball bonding is generally used in thermo-compression or thermos-sonic bonding process. This 

technique requires a high temperature ranging from 100 to 500 °C depending on bonding process. Heat is 

generated during the manufacturing process either by a heated capillary feeding the wire or by a heated 

pedestal on which the assembly is placed or by both depending on the bonding purpose and materials. 

Relatively small Au wire (diameter < 75 μm) is mostly used in this technique because of its easy 

deformation under pressure at elevated temperature, its resistance to oxide formation, and its ball 

formability during a flame-off or electronic discharge cutting process. The ball bonding is generally used 

in the application where a pad pitch is greater than 100 μm.  
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Prior to bonding, the wire are pre-heated by the bonder heat-stage to make a ball at the wire tip, which 

aids the welding process. The prior ball bonding process is illustrated in Fig. 1.4. The ball formation at 

the wire tip is melted by the spark that is produced from an electrode. The ball is rapidly solidifies and the 

free air ball (FAB) consists of large grains after melting, as shown in Fig. 1.5. A wire clamp is open to 

bonding on a bond pad and then bond is formed by ultrasonic vibration. The ball bonding process has an 

advantage of rapid bonding process but heating procedure in the ball formation causes of damage wire 

metals and package devices, it can be not applied to thick wire bonding above several hundreds of μm. To 

solve this problem, recently a wedge shape tool without heating procedure has attracted much attention. 

This will be discussed in detail at the following chapters.  

Capillary bonding tool is made from ceramic, tungsten or ruby materials. The most common material 

for capillaries is high density fine grain alumina ceramic because of its excellent wear resistance, high 

oxidation resistance and easy cleaning. A polish finish produces a shiny bond, being used when there is 

good bondability, whereas a matte finish produces a textured stitch bond, being used for poor bondability. 

The capillaries are typically 1.585 mm in diameter and 11.1 mm long. They have a large entry hole at the 

top and then the hole tapers down to a small hole diameter typically between 38-50 μm, depending upon 

the wire diameter used and the application. At the exit of the small hole, there is normally an inside 

chamfer (IC) or inside radius (IR). The IC is designed to seat the ball in the tool and to provide good 

downward force. A 120° chamfer is designed for poor bondable surfaces by providing more downward 

force. The disadvantage is that it puts more drag on the wire. A 90° chamfer is designed for bondable 

surfaces giving equal downward and holding forces. There is relatively little drag. The double inside 

chamfer capillary was introduced to combine the qualities of the 90° and 120° tools. Recently, 70° 

chamfer is also used for special small ball, fine pitch applications. 
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Fig. 1.4 Schematic of the ball wire bonding process (a) from left to right, formation of the end of a wire 

into a free air ball (FAB), the ball descends to the bond pad, ball impacts the bond pad and ultrasonic 

vibrations scrub the ball in a shearing action against the pad while simultaneously applying a downward 

force to deform the ball (b) capillary ascending to start formation of the loop followed start of 2nd bond 

formation (c) 2nd bond formation and start of tail formation by tensile deformation od the wire, tail bond 

termination formation of FAB and beginning of new cycle [31]. 

 

 

Fig. 1.5 Schematic showing the evolution of solidification process in the Cu FAB [32]. 
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1.3.2 Wedge bonding 

Wedge bonding is named based on the shape of its bonding tool [33–39]. In this technique, the wire is 

fed at an angle usually 30-60° from the horizontal bonding surface through a hole in the back of a 

bonding wedge. Normally, forward bonding is preferred, i.e. the first bond is made onto a die and the 

second is made onto a substrate. By descending the wedge onto an IC bond pad, the wire is pinned onto 

the pad surface and an ultrasonic or thermo-sonic bonding is performed. Next, the wedge rises and 

executes a motion to create a desired wire loop shape. At the second bond location, the wedge descends, 

making a second bond. During the loop formation, the movement of the axis of the bonding wedge feed 

hole must be aligned with the center line of the first bond, so that the wire can be fed freely through the 

hole in the wedge. 

Wedge bonding can be used for both Al wire and Cu wire, and Au wire. The wedge bonding is 

performed by an ultrasonic energy with tool pressure at ambient temperature. One of the advantages of 

the wedge bonding is that it can form to very small dimensions compare to large ball bonding, down to 

the pitch size of 50 μm. However, the factors based on machine rotational movements make the overall 

speed of the process less than thermo-sonic ball bonding. Al ultrasonic bonding is the most common 

wedge bonding process because of low cost and the low working temperature. The main advantage for Au 

wire wedge bonding is the possibility to avoid the need of hermetic packaging after bonding due to the 

inert properties. In addition, a wedge bond will give a smaller footprint than a ball bond, which specially 

benefits the microwave devices with small pads that require an Au wire junction. 

Low angle ~30° wire feed style gives best placement control and tail consistency under the bond foot. 

High angle ~60° is only used from the requirement for high package walls or other tall devices in the 

bonding vicinity. In the case of high angle wire feed, process reproducibility of wirings is less consistent 

due to the steep feed angle and the action of clamps. This gives the system a limitation on its access for 

pads close to high walled packages. Foot profile of the wedge can be either flat or concave. Most of the 

automatic Al wire applications use concave foot to reduce wire positioning errors. The flat foot is mainly 
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used for Au wire, or for Al wire, to obtain extremely short bonds. For Al wire, the wedge is usually made 

of tungsten carbide (WC) or ceramic. The ceramic wedges are relatively new and provide improved 

quality and tool life, although the price is high. For Au wire, the material used is WC as the Au leaches 

out the Co binder in the WC wedge. The life of W will be greatly shorter.  

The parameters of the wedge greatly affect the wire bond characteristics. For the first bond, pull 

strength is affected by back radius, bond location is influenced by hole size, tail length is controlled by 

hole shape and surface quality. The main wedge parameters that affect looping are hole size and shape, as 

well as feed angle. For the second bond, pull strength is defined mainly by front radius and bond length, 

and tail consistency is affected by back radius. 

 

1.3.3 Wire materials 

Au and Ag are the commonly used as thin wire materials of microelectronic packaging, whereas Al 

and Cu are used in thick wire materials of power electronic devices. 

Au and Ag wires are usually processed by thermo-compression bonding and by thermo-sonic bonding. 

In producing such the bonding wires, surface finish and surface cleanliness are two of the critical issues to 

ensure the formation of a strong bond and to prevent clogging of bonding capillaries. Pure Au and Ag can 

usually be drawn to achieve an adequate breaking strength (ultimate tensile strength of wires) and proper 

elongation.  

Pure Al is typically too soft to be drawn into a fine wire. Therefore, Al is often alloyed with 1 mass% 

Si or 1 mass% Mg to provide enough strength. At room temperature, 1 mass% Si exceeds the solubility of 

Si in Al by a factor of 50, which leads to Si precipitation. The number and the size of Si precipitates are 

dependent on cooling rate from bonding temperature. A slower cooling rate results more precipitation and 

large inhomogeneous Si nodules, while a faster cooling rate does not allow sufficient time for Si 

precipitation resulting in the formation of uniformly dispersed nodules. Si grain size can affect wire 

ductility. In contrast, the second phase formation can become a potential nucleation site for fatigue cracks. 
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Al alloyed with 1 mass% Mg can be drawn into a fine wire that exhibits a breaking strength similar to that 

of Al-1%Si. The Al-1%Mg alloy wire forms sound bonds and is superior to Al-1%Si with good 

resistances both to fatigue failure and to degradation of ultimate strength after exposure to elevated 

temperatures. These advantages of Al-1%Mg wire occur because the equilibrium solid solubility of Mg in 

Al is about 2 mass% by weight, and thus at 0.5-1%Mg there is no tendency significant second-phase 

formation as is the case for Al-1%Si. 

Recently, Cu wire bonding has received considerable attention because of their cheapness and their 

excellent stiffness to resist sweeping during plastic encapsulation. The major problem for this system is 

the bondability. Cu wire bonding is difficult to manufacturing the wirings because Cu is harder than Al. 

Therefore a harder metallization or wire coating is required. In addition, the Cu ball bonding must be 

performed in an inert atmosphere as the oxidation readily. 

 

1.3.4 Metallurgical system at wire bond interface 

In wire bonding process, different pad metallization are used, depending on the production 

requirements. Different metallurgical systems can lead to different reliability behaviors. In the present 

thesis, the metallurgical systems of Au-Al, Cu-Al, and Al-Ni were investigated. 

 

A. Au-Al system  

The Au-Al joining system is the most commonly used in wire bonding process [40−45]. However, this 

bonding system can easily lead to the formation of Au-Al intermetallic compounds with associated 

Kirkendall voids. These formations can be accelerated with temperature in service. Five intermetallic 

compounds can be formed between Au and Al in the reaction, which are all colored: Au8Al3 (tan), Au4Al 

(tan), Au2Al (metallic gray), AuAl (white), and AuAl2 (deep purple). AuAl2 can be initially formed during 

bonding process even at room temperature and is transformed to other Au-Al compounds depending on 

temperature, time and bonding configurations. The Au-Al interface consists of two regions, labeled A 
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(without Au-Al IMCs) and B (with IMCs), as shows in Figs. 1.6a. Region A presents as an approximately 

4 nm thick uniform layer between the metals (Figs. 1.6b), whose main constituents are aluminum and 

oxygen (bottom table of Figs. 1.6), consistent with the preservation of the amorphous alumina film, that 

limits interdiffusion and retards the formation of IMCs [40]. When annealed at 175 °C for 5 h, IMC layers 

form between the Au ball and the Al pad, as shows in Figs. 1.7a. STEM-EDX of the interface found that 

near the Al pad an aluminum-rich alloy IMC-1 exists; near the Au ball is found a gold-rich alloy IMC-3; 

and the latively thick mid-layer IMC-2 is also present (bottom table of Figs. 1.7). In addition, there was a 

region of relatively light contrast, between IMC-2 and IMC-3, confirmed as alumina. 

 

 

Region O K at.% Al K at.% Au L at.% 

1 5 94 1 

2 53 45 2 

3 2 9 89 

 

Fig. 1.6 (a) Bright field TEM image of the Au–Al interface in the as-bonded state. (b) Details of an A 

region shows a uniform layer of amorphous alumina remained after ultrasonic bonding, demonstrating 

lower power thermos-sonic treatment could not completely disrupt the oxide overlayer [40]. 
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Region O K at.% Al K at.% Au L at.% 

1 5 94 1 

2 9 63 28 

3 12 27 61 

4 13 24 63 

5 12 18 80 

6 5 8 87 

7 41 40 19 

8 2 89 9 

 

Fig. 1.7 (a) TEM image of Au/Al bond annealed at 175 °C for 100 h having only Au4Al and Au8Al3 

between Au and SiO2; (b) SAED from a grain indicated by a line in (a) confirms the Au8Al3 structure in a 

[210] zone axis; (c) SAED from a grain indicated by a line in (a) confirms the Au4Al structure in a [111] 

zone axis [45]. 

 

B. Cu-Al system 

Cu wire can be bonded to both Au and Al electrodes. Au-Cu system has been discussed before by 

many researchers [46–49]. For the Cu-Al system, there exist five intermetallic compounds favoring the 

Cu-rich side. Thus, there are various intermetallic failures similar to those of the Au-Al system. However, 

intermetallic growth in a Cu-Al bond is slower than in an Au-Al bond. The intermetallic growth in Cu-Al 

bond does not result in Kirkendall voiding lowers the shear strength at 150-200 °C due to the growth of 
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the brittle CuAl2 phase, as shown in Fig. 1.8. In a temperature range 300-500 °C, bond strength 

significantly decreases with the increase of the total intermetallic thickness. The rate of Cu-Al 

intermetallic formation depends on the ambient temperatures. Cu oxide of Cu-Al bond system inhibits the 

growth of some voids at the interfaces [46]. However, the presence of Cl contamination and water can 

cause corrosion of an Al metallization containing Cu-Al intermetallics. 

 

 

Region O K at.% Al K at.% Au L at.% 

11 7 93 0 

12 5 59 36 

13 6 57 37 

14 5 27 68 

15 7 0 93 

 

Fig. 1.8 (a) A typical TEM image of the Cu–Al interface after annealing at 175 °C for 49 h; (b) EDX line 

scanning results along the line in (a) [46]. 

 

C. Al-Ni system  

Al-Ni bonds are less prone to Kirkendall void formation and galvanic corrosion, thus more reliable than 

Al-Ag or Al-Au bonds under various environments [50, 51]. This system has been used in rapid 

production power devices and high-temperature applications such as aircraft turbine blades for over 

fifteen years. In most cases, Ni is deposited with electroless boride or with sulfamate solutions, which 

results in reliable bonds. However, phosphide electroless nickel solutions that co-deposit more than 6 or 8 

mass% of phosphorous can result in both reliability and bondability problems. The main difficulty 
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encountered when bonding to nickel plating is bondability rather than reliability due to Ni surface 

oxidation. Thus, packages should be bonded as soon as possible after Ni-plating, protected in an inert 

atmosphere, or chemically cleaned before bonding. Controlling bonding machine schedules, such as 

impacting stress at tool wire plating with ultrasonic energy, can improve bondability of slightly oxidized 

nickel surfaces. Various surface preparation techniques (such as sandblasting) are sometimes applied 

before or after Ni plating to increase bondability. Fig. 1.9 shows the SEM image of the bond cross-section 

interface. There is a large deformation in the wire, especially at the heel of the bond, and the cross-section 

deformation ratio (the ratio of the wire highness difference after bonding with the original wire diameter 

before bonding) is even up to 20–50%, so the oxide layer of Al2O3 inhibited diffusion [51] on the surface 

of the Al wire is broken thus exposing the pure metals locally at the interface, and at the same time, the 

contaminants on surface of the metallization is removed by the ultrasonic vibration. The element Ni 

diffuses into the Al wire through the Au layer, because there is a small step of Ni scanning line on the 

right of the gold layer (on the right of dash line). Therefore, the element Ni diffuses steadily into the Al 

wire, as shown in the right corner of Fig. 1.9. 

 

 

Fig. 1.9 The distribution of elements at the interface of the bond crosssection by EDAX line scan: (a) the 

cross-section of the bond; (b) the image of EDAX line scan (with ultrasonic power 120 mW, bonding 

pressure 30 gf and the bonding time 20 ms) [50]. 
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1.4 Advanced ribbon bonding technology 

Advanced ribbon bonding technology is attracting much attention for interconnections of next-

generation power devices. Such ribbon bonding is expected to the applications to hybrid electric/electric 

vehicles and power plant electronics. Increasing demands for transmitting high current in the high power 

electronics industries requires alternative interconnect solutions. Ultimate reliability and extreme 

robustness together with improved productivity are also always considered to be the main objectives. For 

fulfilling high electrical load requirements in today’s power devices, a single ribbon bond can replace a 

set of several wire bonds in interconnecting applications. In addition to current-carrying capability of 

ribbons, which can be adjusted by altering either its width or thickness, the contact area underneath the 

bond may perform an important role on high power devices. Multiple wires terminating on the same pad 

sometimes lead to a non-continuous contact area in which high current can flow to semiconductor. This 

may result in inhomogeneous heat dissipation and electric field strength (breakdown voltage). High power 

semiconductors can be expected to tolerate greater currents by a large continuous ribbon bond area rather 

than by multiple wire bonds. The amount of wires fitting on a pad is limited by the geometry of bonding 

tools (wedge or capillary) and by the deformation of wires. If a single ribbon can be used instead of 

multiple wires, the geometry of the bond tool does not matter as long as the distance to the next pad, or 

pitch, is large enough. The effect of deformation can be virtually ignored when ribbon is used since 

ribbon width increases than wire width. In absolute figures this depends on the ribbon dimensions and the 

relationship between width and thickness. As an example of bonding area related wiring deformation, a 

bonding area of typical string wire is deformed about 3 times than the wire diameter, a wedge bonding 

area is deformed about 1.4 times than the wire diameter, and a ribbon bonding area is deformed about 1.1 

times the ribbon width if the width is at least 3 times the thickness, as shown in the Fig. 1.10. The lower 

vertical deformation required to bond the ribbon and in the greater proportion of material displacement 

occurring in the cross groove and the front and back of the bond foot. As described above, the ribbon 

bonding provides many advantages such as high electrical performance, high mechanical strength, and 
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saving stacked space on board compared with typical string wire bonding because the ribbon has larger 

cross-section and bond area compared to wire.  

 

 

Fig. 1.10 Shows the replacement of thick wire bonds by ribbon bonding [52]. 

 

 

1.4.1 Typical wire bonding and novel ribbon bonding methods  

The ribbon bonding process is developed from typical wire bonding process, which is the most 

popular and dominant interconnecting technology for micro and power electronics due to the fact that it 

offers a versatile, flexible, and robust connection method with proven performance and reliability. The 

wire bonding is one of solid state bonding processes. The metallic reaction between wire and substrate 

occurs due to ultrasonic energy and heat source. The wire bonding technologies can divide three bonding 

processes such as ultrasonic bonding, thermo-sonic bonding, and thermos-compression bonding [53]. The 

comparisons of these three technologies of wire bonding are indicated in Table 1.2. 

Ultrasonic bonding is performed by a combination of ultrasonic power and bonding force at room 

temperature. The pressure of ultrasonic bonding is lower and bonding time is shorter than that of the 

thermo-compression bonding. The ultrasonic bonding is primarily used for thick metallic wires on 
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metallic pads, and has been the dominant technique for large-diameter ribbon in power electronics device 

applications. Thermo-sonic bonding is performed using a heat, bonding force, and ultrasonic power to 

bond wire on a substrate. Heat is applied by placing the package on a heated stage. Some bonders also 

have heated tool, which can improve the wire bonding performance. Force is applied by pressing the 

bonding tool into the wire to force it in contact with the substrate surface. Ultrasonic energy is applied by 

vibrating the bonding tool while it is contact with the wire. Thermo-sonic process is typically used for 

thin wire bonding. Thermo-compression is performed using heat and bonding force to deform the wire 

and make bonds. The main process parameters are temperature, bonding force, and bonding time. The 

diffusion reactions progress exponentially with temperature based on a diffusion welding theory [13]. In 

general, thermo-compression requires high temperature (normally above 300°C), and long bonding time 

to make bonds. That high temperature can damage some sensitive devices. In addition, the process is very 

sensitive to bonding surface contaminants. That is why the technology is seldom used now.  

 

Table 1.2 Comparisons of wire bonding technologies 

 Ultrasonic  Thermo-sonic  Thermo-compression  

Ultrasonic power  High Low  N/A  

Bonding force  Low  Low  High  

Temperature Low (room temperature) Middle (120~220°C) High (300~500°C) 

Bonding time  Short  Short  Long  

Contamination  Middle  Middle  Strongly affected  

Application Thick wire or ribbon Thin or thick wire Thin wire 
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On the wire bond interface, related motion occurs due to the progressive tool vibration with 

dispersing oxidation layer at the adjacent bond surfaces. Fig. 1.11 shows the metal ribbon bonding 

procedure with ultrasonic bonding. First step, the bonding system sets a bond position and bonded on 

substrates using friction energy with dispersing oxidation layer. And then, the bonding system is move to 

manufacturing the second bonds. The second bonding mechanism is same of the first bonding. Finally, 

the manufacturing of ultrasonic ribbon bonding is completed by ribbon cut.      

 

 

Fig. 1.11 Metal ribbon bonding procedure. 
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1.4.2 Effect of tool types with wedge and flat-form 

In general, triangular shaped wedge tool is used in thick wire bonding. During the thick wire bonding 

process, cracks are frequently occurred by stress concentration at top or bottom edge of wire heel, which 

is called the “heel crack”. Initiated heel cracks are propagated by high current/temperature service 

towards the central wire, and propagated heel cracks lead to degradation of joint stability, as shown in Fig. 

1.12. 

 

 

Fig. 1.12 (a) Initiation of Al wire heel crack using triangular bonding tool due to stress concentration by 

wire deformation and (b) their heel crack propagation during service [54].  

 

Rectangular cross-sectional shaped ribbons are bonded using flat-form bonding tool to prevent a heel 

crack initiation. The occurrence of heel cracks can be fairly restrained using the flat-form tool to relieving 

stress concentration. The heel cracks is frequently initiated at bottom of ribbon loop edge during ribbon 

bonding process but is not occurred at top of ribbon loop edge. Fig. 1.13 shows the stress comparisons 

depending on the bonding tool shapes with wedge and flat-form. Higher stress is concentrated at the 

triangular wedge tool tips by high deformation during string wire bonding, whereas, stress mitigation is 

expected using the flat-form bonding tool for ribbon bonding.  
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Fig. 1.13 Stress comparisons depending on the bonding tools: (a) wedge bonding tool, and (b) flat-form 

bonding tool.  
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1.5 Mechanical and thermal stability evaluations 

A state of wire bonds can be evaluated with visual method and mechanical testing, depending on the 

requirements and the situation that may arise from previous experiences with a particular package or 

mechanical techniques. Visual method uses optical microscope, scanning electron microscope, and other 

analytical instruments to find the undesired bonds. Mechanical testing is employed for the evaluation of 

bond strength. 

Destructive pull test, i.e. tensile strength test, is the major method to evaluate the bond strength by 

hooking and pulling the bonded wire until failure occurs [55–59]. The purpose of this test is to examine 

the bond strength and to certify the proper setup of the bonding parameters. The results are important 

evidences for evaluating bonding quality and reliability, as well as understanding bond failure 

mechanisms including flexure failures, interfacial de-adhesion, cratering, and shear fatigue at bonded 

interfaces during thermal cycling. Pull strength is strongly dependent upon the geometrical configuration 

of the pull testing. For absolute values of tensile strength, the pull test should be normalized. Based on the 

illustration of Fig 1.14, the force in each wire with the pull force at hook (F) is represented by 

 

𝐹1 =  
𝐹 cos(𝜃2 − 𝜙)

sin(𝜃1 + 𝜃2)
                    (1) 

 

𝐹2 =  
𝐹 cos(𝜃1 + 𝜙)

sin(𝜃1 + 𝜃2)
                    (2) 

 

where ϕ is the pull angle, which is positive when the pull direction is deviated from the bond 1. F1 is the 

component of force acting along the wire at the bond 1, F2 along the wire at the bond 2. Equation (1) and 

equation (2) are the wire forces of the two bonds, which can be easily achieved, based on the hook 
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attachment position, and the hook heights from the two bonds. If both the bonds are at the same level and 

the hook is applied at the center, the forces can be represented as  

 

𝐹1 = 𝐹2 =
𝐹

2sin 𝜃
                    (3) 

 

when the both angles are 30°, the pull force is equal to the break load. The failure during pull test may 

occur at one of the four positions in the wire bond structure: 

 

A. Wire break at transition first bond 

B. Wire break at transition second bond 

C. Lift-off first bond 

D. Lift-off second bond 

 

when properly pulled, the bond should fail at A or B. If failures occur at C or D, then the bonding 

parameters, metallization, bonding machine, bonding tool, hook, has to be reviewed. 

 

 

Fig. 1.14 Schematic diagram of pull strength evaluation [57]. 
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Pull tests are suitable for mechanical strength evaluation of metal wirings but it is difficult to 

determining the strength of ball bonds. The reason is that the ball bonds have a large interfacial bonded 

area in the order of 6-10 times cross-section area of the wire, and the pull test often causes the bonded 

wire to break at a weak point for instance at the transition above the ball. Thus, little information about 

the ball bond strength is obtained unless its bonded area is less than 10% of its interfacial area. Therefore, 

to determine the ball bond strength, a shear test is necessary. Also, the shear test is helpful to discover 

cratering problems not normally uncovered by pull testing. This test is performed using a shear tool to 

push off ball bond with a sufficient force. However, cares must be taken to prevent incorrect and 

misleading data. The factors to influence the test include:  

 

A. The improper vertical positioning of the tool, which should approach from 2.5 to 5 μm above the 

substrate. Otherwise the tool could drag on the substrate.  

B. Cleanliness of shear tool. 

C. Test speed may affect the shear strength. 

D. Void-free intermetallic compounds formed in bond interfaces can lead to exceptionally high shear 

test values. 

 

The shear test is also used mostly for ball bonds but it is not particularly useful for evaluating wedge 

bonds made from small-diameter wire. The reason is that pull test is very sensitive to the weakening of 

the bond heel, which increases with wire deformation, whereas shear test is completely independent of the 

condition of the heel and sensitive to the actual amount of bonded area.  

Thermal environmental tests such as heat storage and thermal cycling have to perform to evaluate 

bond strength for electronics operating conditions. The purpose of those tests is to determine the electrical 

performance of wire bond interconnects to exposure to the temperatures alternatively changed. The 

degradation mechanisms by the test include flexure failure of the wire at the heel, bond pad-substrate 

shear failure, wire-substrate shear failure. Susceptibility to these failure mechanisms may be actuated by 
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excessive neck down at the heel or excessive embrittlement of the wire during bonding, or poor bond 

shear strength resulting from surface roughness and the presence of contaminants. 
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1.6 Objective and outline of the thesis 

The next generation WBG semiconductors electronics instead of the conventional Si are expected to 

reduce an energy loss with high-temperature operation. In the interconnection technology between 

semiconductor chips and substrates or lead frames, string metal wire having a diameter of 400 μm have 

been commonly used. However, it cannot withstand the high breakdown voltage of more than 1 kV, and is 

easily destroyed at wire junction in the high-temperature operating environment, especially at 200 °C.  

In Chapter 1, the goal of this thesis is for establishing "proposal of a new metal wiring technology 

with ultrasonic bonding process optimization" based on the survey of research trends and issues. Using 

ribbons replacing typical wires, it can be expected to improve the joint reliability under high-current/high-

temperature because ribbons have a large cross sectional area. One ribbon (width 1500 × thickness 200 

μm
2
) has almost the same allowable current value compared to 3 string wires (400 μm), where area of the 

bond interfaces of a ribbon is much bigger than a string wire. However, a standard of ultrasonic ribbon 

bonding technology is not yet established in assessing reliability and their property at the present.  

In Chapter 2, the optimization of the ultrasonic ribbon bonding process was performed to secure a 

steady bond interface and an applicability of practical power devices. Having a high formability 4N Al 

was selected as wirings material and their optimum ribbon bonding condition was established by 

verifying of each bonding parameter. In particular, a reaction mechanism in ultrasonic bonding was 

investigated. 

For 4N Al ribbons, a grain coarsening easily occur at high operating temperatures exceeding 200 °C, 

which leads to wiring heel cracks. The prevention of mechanical degradation by heel crack propagations 

is necessary in order to secure the interconnections stability. Here, we propose a new structure ribbons 

using cladding or coating processes. In Chapter 3, Cu/Al clad ribbons for power electronics wiring was 

proposed to achieve high thermal/electrical performance together with easy manufacturing. The thermo-

mechanical stability of Cu/Al clad ribbons was compared to Al ribbons by harsh environmental tests such 

as thermal exposure to 200 °C and thermal shock cycling at -40/250 °C. After the optimizing the 
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ultrasonic ribbon bonding parameters, Cu/Al clad ribbons always showed higher stability than Al ribbons 

independent because Cu-Al intermetallic compounds (IMCs) at the clad interfaces prevents heel crack 

propagation.  

In Chapter 4, a major failure mechanism by heel crack propagations was investigated under 

accelerated high temperature tests such as thermal-exposed at 200 °C and thermal-shocked at -40/250 °C. 

The thermal and mechanical stability of ribbon wiring structures consist of a Cu/Al clad ribbon is superior 

to those of Al. However, the heel crack of a Cu/Al clad ribbon propagated due to grain coarsening within 

an Al layer. The heel crack was formed by grain coarsening due to continuous dynamic recrystallization 

(CDRX). Hence, the grain coarsening by CDRX is the main mechanism of heel crack propagation that 

degradation of the joint reliability. 

In Chapter 5, the present thesis summarizes the ultrasonic ribbon bonding technology, which can 

ensure long-term high-temperature reliability for WBG semiconductor interconnections. 
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2.1 Introduction 

Interconnections in high power electronic devices generally require a wide capacity of electric current 

while both the device miniaturization and bond joint stabilities become the issues for next generation 

wide band-gap (WBG) semiconductors like silicon carbide (SiC) and gallium nitride (GaN) [1–4]. Both 

Cu and Al have been used as wiring materials in power devices. The materials characteristics of Cu and 

Al are compared in Table 2.1 [5, 6]. The higher electrical and thermal conductivities of Cu are certainly 

advantageous to be applied for power device wiring. However, bare Cu wire is easily oxidized, and thus 

Cu ribbon may need special care like inert gas, or protective coatings for bonding [7]. The hardness and 

modulus of Cu higher than those of Al are drawback in bonding process leading to higher risk of chip 

fracture [7]. In the present study, we hence adopted Al ribbon to achieve sufficient joint reliability by 

ultrasonic bonding.  

 
Table 2.1 Comparison of ribbon material characteristics at the ambient temperature 

Material property Al Cu 

Electrical resistivity ( nΩ·m ) 27 17 

Thermal conductivity ( W/m·K ) 210 401 

Vickers hardness ( MPa ) 167 369 

Young’s modulus ( GPa ) 68 110 

 

In the WBG power module under a high current operating condition, high temperature above 200 
o
C 

can be reached at the wire joints. This high temperature causes an interface fracture and wire heel crack 

[8, 9]. In order to avoid these mechanical failures, heavy ribbon wiring is emerging in the field to replace 

the thick wires that are popularly used in integrated semiconductor device packaging. A transition from 

string metal wire interconnects to ribbon interconnects provides several advantages. The electrical 

advantages are higher current capacity and lower impedance. The mechanical advantages are higher bond 
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joint strength and stacked bonding capacity. Particularly, the wide cross-section areas of metal ribbon 

wires increase the maximum current through the wire, without increasing the total package size [10–12]. 

However, the bonding method of ribbon wires has not yet been established, particularly for bonding 

process stability in power devices. 

Ultrasonic wire bonding method is popularly used in the device packaging, applying acoustic energy 

to wire bonding interface under the pressure by a tool tip [13]. During the bonding process, temperature 

elevation is undesirable to avoid the degradation of facing metal parts between wire and substrate, 

particularly for Al wires of which mechanical strength may be affected by grain growth at high-

temperature. It is thus important to optimize the bonding parameters like normal force and acoustic power 

[14, 15]. 

In this study, we perform precise pull-tests to evaluate the mechanical reliability of Al ribbon bonds 

on electroless nickel immersion gold (ENIG) finished Cu substrate, and optimize the process parameters 

at ambient temperature. It is found that the ultrasonic sound bonding can be achieved without heating, 

showing no lift-off fracture due to heel cracking. Bond area and their propagation were examined by 

relative motions after shear-test to understand of bonding mechanism at the boned interface between Al 

ribbon and Cu substrate. We would suggest the optimized bonding parameters of heavy Al ribbon 

bonding, and investigated the mechanism of ultrasonic ribbon bonding. 

 

2.2 Materials and experimental methods 

Heavy ribbon bonding process that uses a flat form metal wire rather than thin metal string is a kind 

of wedge bonding process, and typically employs a bonding machine equipped with rectangular shaped 

tool head (Fig. 2.1a). In our case, TPT HB-30 semiautomatic ribbon bonder is used to maintain a certain 

bonding shape (Fig. 2.1c) as well as automated alignment and positioning. The machine can arrange in 

thermo-compression, thermo-sonic, and pure ultrasonic bonding processes of heavy metal ribbons like 

1500 × 200 μm
2
 cross-section of Al or Cu wires. Gaiser LW-DWG111214 ribbon bonding tool is used 
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bonding system. The central cubic is arranged by central position of tool. A ribbon bonding process is 

used by the ultrasonic sound and normal bonding force. The first bonding step is combined by transducer 

oscillation with bonding tool pressure at ambient temperature during removal the oxide layer on the Al 

ribbon surface. Subsequently, the bonding system is lifted up from the first bonded point with 49.5
o
 of the 

ribbon angle, and then the ribbon is cut off by ribbon cutter after second bonding process. The second 

bonding process is same of the first bonding process. 

 

 

Fig. 2.1 Heavy ribbon bonding method; (a) TPT HB-30 semiautomatic ribbon bonder, (b) schematic 

illustration of applied bonding sources, (c) our standard design of ribbon wiring loop on ENIG finished 

Cu substrate, and (d) FE-SEM observation image of a cross-sectioned sample. 

 

ENIG finished Cu substrates for our tests are electroless plated by Au (0.1 μm) /Ni (3 μm), which is a 

low cost chemical plating without introduction of electricity. Basically the principle of the electroless 

plating is that the chemical reactions are reduced on the activated solid solution’s surface [16–18]. 

(a) 

(b) 

(c) 

(d) 
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Focusing on ultrasonic bonding phenomena, we examined the variation of bonding parameters: 

ultrasonic power, bonding time, and normal bonding force. Twelve bonding samples were made by 

combination of each parameter. The ultrasonic power was varied from 0 to 20 W. The normal bonding 

forces were used from six levels of 0, 200, 400, 600, 800, and 1000 cN. The bonding times were 1, 1.2, 

1.4, 1.6, 1.8, and 2.0 s, while the ultrasonic frequency was held constant at 60 kHz. Since the ribbon 

bonding area is bigger than that of thin string metal wire, such high ultrasonic power, long bonding time, 

and strong normal bonding force would be required for successful bonding.  

 

2.3 Results 

2.3.1 Mechanical evaluation by pull testing 

Pull-test is popularly accepted for mechanical strength evaluation of wire bonding, and is generally 

useful to identify a source of reliability problems triggered by mechanical failures. Our ribbon bonding 

samples are also tested by pull-tests (Dage 4000-PXY) to evaluate the rupture force and the features of 

wire bonding process. It is noticed that pull-tests for ribbon bonding have not been standardized yet. 

Therefore, we have maintained the same shape of bonded wire loop shown in Figs. 3.1c and d, aiming to 

establish standard test conditions of ribbon wire pull-test. 

Our results of ribbon bonding strength are plotted in Fig. 2.2 for various bonding conditions of 

ultrasonic power and processing time. Several samples are tested in each bonding conditions, and the 

error bars show the standard deviations. Fig. 2.2 obviously displays that higher power of ultrasonic results 

in higher rupture force, while the process times longer than 1.6 s exhibit no improvement in the strength. 

 

2.3.2 Ribbon bonding parameters optimized by lift-off failure 

Each pull-test ends in two failure modes, i.e. ribbon fracture and “lift-off” as shown in Fig. 2.3. The 

former mode means suitable condition of bonding process; almost fracture positions occurred near by the 

first bond. After first bonding process, the first loop angle has been increase and reduces again for the 
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second bonding. At this time, around the first loop has been weakened by repetitive load. The possibility 

of lift-off failures was summarized in Table 2.2. No lift-off failure occurs when 20 W is applied over 1.8 

s. Without ultrasonic power, there was observed few or no fretting and bonding on the substrate, and all 

twelve bonds lifted off as separated interfaces between ribbon and substrate (Fig. 2.4). The complete 

bonding is only achieved over 20 W and 1.8 s conditions, and the resulting maximal rupture force reveals 

28 N (Fig. 2.2). At this time, steady ribbon joint can be obtained by high ultrasonic energy over 35 J, as 

shown in Fig. 2.5. On the other hands, lift-off failure always occurs under the 18 W of ultrasonic power, 

and the rupture force remains less than 25 N. This means the Al ribbon used in the present study fractures 

at this tension, when our bonding loop geometry is adopted. Optimizations of Al ribbon bonding process 

have been achieved by evaluating mechanical rupture force by pull-test. The lift-off phenomenon at the 

reacted bond interfaces mainly depends on the acoustic energy of the ultrasound. The maximal 

mechanical rupture force about 28 N between Al ribbon and ENIG finished Cu substrate can be obtained 

by 1.8 s processing of 20 W ultrasonic powers. 

 

Fig. 2.2 Rupture force values of evaluating the pull test in different bonding conditions. 
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Fig. 2.3 Two failure modes of pull-test; (a) lift-off phenomenon, and (b) ribbon fracture phenomenon. 

 

 

 

 

Fig. 2.4 Lift-off phenomenon occurred by lack of bonding conditions; less than ultrasonic power = 20 W 

and bonding time = 1.8 s. 
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Table 2.2 Lift-off occurrence rate after pull-test 

Ultrasonic 

power 
( W ) 

Bonding time ( s ) 

1.0 1.2 1.4 1.6 1.8 2.0 

Lift-off occurrence rate ( % ) 

15 100 100 100 100 100 100 

16 100 100 100 100 100 100 

17 100 100 100 90 100 90 

18 100 90 100 80 90 80 

19 90 80 90 40 30 20 

20 80 60 40 10 0 0 
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Fig. 2.5 A function of ultrasonic energy depending on lift-off occurrence. 
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2.3.3 Failure mode evaluation at the second bond joint by shear-test 

The bondability of ribbon bonding was further investigated by verifying of normal bonding force 

from 0 N to 1000 cN. The fixed conditions of bonding parameter were ultrasonic power and bonding time 

in 20 W and 1.8 s, which is based on our optimized results by pull-test. As shown in Fig. 2.6, the highest 

shear force was indicated by 62 % relative motions at 800 cN. The maximum shear strength of 38 N 

obtained for Al ribbons are about three times higher than that of 300 μm round-shaped wire [19]. This 

large difference in shear strength comes from the smaller bonding area of thick wire than that of our 

ribbon wires. Without normal bonding force, there was observed 20 % relative motions between ribbon 

and substrate. It is almost same rate of the 200 cN normal bonding force. Increasing the maximum shear 

force has been increased the relative motion rate. However, the highest normal bonding force has not 

adopted the highest shear force. This means the highest normal bonding force is disturbed the oscillation 

of bonding tool. This will be discussed in detail at the following section. 

 

Fig. 2.6 Maximum shear force values in different normal bonding force conditions involved in the 

relative motions. 
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2.4 Discussion 

2.4.1 Ribbon bonding mechanism by relative motions 

Ultrasonic ribbon bonding method at the ambient temperature is required higher bonding parameters 

compared to thin string wire bonding. At a low ultrasonic power, microslip does not reach nearby the 

gross sliding area (Fig. 2.7a). This situation is observed for bonding performed under the condition of 16 

W ultrasonic powers. Ultrasonic vibration activates a stable bond interface due to increased friction 

energy [20–22]. The mechanical strength of the ribbon joint was enhanced by relative motions. The 

relative motions are enhanced by increasing the friction energy following ultrasonic direction. As shown 

in Fig. 2.7, the model was developed based on classical microslip theory to explain the ultrasonic bonding 

phenomena observed in the evolution of reacted bonding area on the substrate (Fig. 2.7a). Microslip 

propagates to the outside of relative motion area (Fig. 2.7b). With increased ultrasonic power, bonding 

time and normal bonding force, the transition to gross sliding occurs by increasing the bonded area (Fig. 

2.7c). The results of gross sliding indicated that the ribbon bonding mechanism is similar to the thin string 

wire bonding mechanism between Al wire and Au substrate [23]. However, the ribbon bonding process is 

different to thin string wire bonding process. Because the reacted bonding areas is bigger than wire ball 

bonding, and boned shape is rectangular morphology.  

 

Fig. 2.7 Schematic illustrations of (a) microslip initiation in rectangular contact, (b) propagation of 

microslip from the initial microslip, and (c) rectangular contact area undergoing relative motion on the 

gross sliding. 
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2.4.2 Effects of microslip and gross sliding 

In case of thin string wire bonding, the microslip fretting was indicated from outline of gross sliding 

areas [24]. With an increasing the normal bonding force, a transition from microslip into gross sliding will 

occur, as predicted by Mindlin’s classical microslip theory for perfectly elastic spherical contacts [23]. 

The bond area shape of thin string wires is spherical regardless to the ball/wedge bonding methods. 

However, the typical contact area of a ribbon bond is rectangular shape. The microslip propagations of 

ribbon bonding are different to those of the wedge and balls as well. In thin string wire bonding, the 

microslip is initially propagated from the perimeter of the circular bonding tool [25]. On the contrary, the 

bonded ribbon area spreads from the center of the relative motion area (Fig. 2.8). In this study, we defined 

that the contact coordination of longitudinal and transverse axes influences the bond reaction based on the 

ultrasonic vibration directions (Fig. 2.7); longitudinal movement of the tool tip is larger than transverse 

one, and this relative movement easily propagates the microslip following longitudinal direction because 

of the rectangular tool morphology. The growth of relative motion leads to gross sliding between Al 

ribbon and Au metallization to achieve the bonding. As shown in Fig. 2.9, the size of relative motions 

were almost the same under the fixed normal bonding force independent to the varied ultrasonic power. 

The normal bonding force exhibited a decisive effect on the microslip essential to bonding stability.  
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Fig. 2.8 Relative motions made with ultrasonic power = 20 W and bonding time = 1.8 s at various normal 

bonding forces. Sheared ribbon bonds made at (a) 0, (b) 400, (c) 600, and (d) 800 cN. 
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Fig. 2.9 (a) Flat-form ribbon tool morphology and relative motions made with normal bonding force = 

1000 cN and bonding time = 1.8 s at various ultrasonic powers. Sheared ribbon bonds made at (b) 16, (c) 

18, and (d) 20 W. 
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2.4.3 Splash effects 

The ultrasonic bonding system consists of ultrasonic energy and normal bonding force. While 

applying the ultrasonic energy during bonding, shear forces add to the already applied normal bonding 

force. Such shear stress can transmit through bond pad metallization to the brittle, easily fractured the 

dielectrics, leading to pad peeling and bond failure [26–29]. Higher hardness wire material can smear off 

the soft pad material during bonding following the ultrasonic direction, which is commonly called “splash 

effect” [30]. The splash effect occurred at the bond interface, that phenomenon is disturbed to obtain high 

bonding strength. The pure Al ribbons have been selected for heavy ribbon bonding application. Because 

the hardness of pure Al is lower than metallization materials. Minimizing the splash effect at the 

metallization can be expected to higher bond ability. As shown in Fig. 2.10, the Au atoms were 

concentrated by splash effect at the relative motion edge. As the present results (Fig. 2.6), the highest 

shear force was measured the normal bonding force condition of 800 cN and then decreased after 800 cN. 

The maximum splash effect damage on substrate occurs at the relative motions edge. Based on the result, 

the migration of Au atoms occurred at the edge of bonded interface due to high normal bonding force 

following the ultrasonic longitudinal direction. Therefore, determining the normal bonding force and 

evaluating the splash effect are important for heavy ribbon bonding. 
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Fig. 2.10 EDS mapping results of splash effect at the relative motions edge by ultrasonic power = 20 W, 

bonding time = 1.8 s; (a) normal bonding force = 800 cN, and (b) normal bonding force = 1000 cN. 
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2.5 Conclusions 

Pure Al ribbon bonding was examined on a typical ENIG finished Cu substrate to maximize the 

advantages of ribbon interconnections suitable for advanced power module packaging. The bonding 

parameters, namely ultrasonic power, bonding time and normal bonding force are higher than those of 

thin string wire bonding. The ribbon bonding requires thus the higher energy to achieve a sufficient 

mechanical strength to avoid lift-offs under pull-tests. The findings in our study on the ultrasonic ribbon 

bonding are summarized as follows. 

The reliability of ribbon bonding can be evaluated by lift-off possibility under pull-tests. In our case, 

the lift-off phenomenon was observed for the powers lower than 20 W or bonding time shorter than 1.8 s. 

The highest rupture force between Al ribbon and ENIG finished Cu substrate was about 28 N, obtained 

for 1.8 s processing of 20 W ultrasonic power. 

The microslip fretting is initiated on the transversal line at the center of the longitudinal movement of 

the tool tip, and then propagated to the longitudinal direction.  The normal force essentially determines 

the size of microslip area, and hence the resulting bond strength. 

When the normal bonding force exceeds 800 cN, the concentration of Au atoms was observed at the 

edge of the longitudinal relative motion. This splash effect has a critical influence on the bond reliability. 

Although the splash effect is necessary in order to remove the oxide layer on the Al ribbon surface, the Au 

layer must remain to maintain the Au-Al reaction. Adjusted to optimize the splash effect, the normal 

bonding force is the key to achieve an excellent stability of ultrasonic bonding between Al ribbons and 

ENIG finished Cu substrate. 
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3.1 Introduction 

Ultrasonic wire bonding is a key technique to interconnect between the chip and a substrate or a lead 

frame in power electronics. String wires are typically used in the power electronic industries but have 

limitations with regard to higher current-carrying capacity in packaged power modules [1, 2]. To 

overcome the limitations caused by the use of typical string wires, the direct bonding of novel rectangular 

ribbons is attracting much attention as an interconnection technology, because the cross-sectional area of 

ribbons is wider than that of typical string wires. The novel rectangular ribbons provide several 

advantages such as high current density, low impedance, and high bond joint strength. Particularly, use of 

a wide cross-sectional ribbon can help achieve the maximum current density through the wirings without 

increasing the total package size [3].  

In general, Al is used in ribbon interconnections because of its excellent formability in wiring process. 

However, heel cracks are frequently formed from high bonding pressure and ultrasonic energy around the 

Al ribbon loops (top and bottom regions) because Al is a soft material. Subsequently, the heel cracks are 

propagated along the Al grain boundaries during high-temperature operation [4–6]. To prevent heel crack 

propagation, a Cu layer is cladded on the Al layer by a cold rolling process. Cu has many advantages such 

as higher electrical/thermal conductivities than Al. However, higher bonding parameters such as 

ultrasonic power, normal bonding force, bonding time, and ultrasonic frequency are required for 

successful Cu/Al clad ribbon wiring because Cu has higher acoustic impedance and hardness than Al.  

The service temperature of power electronics is higher than that of micro-electronics due to the high 

current flow. At the same time, joint failures occur easily due to cracking and intermetallic compound 

(IMC) growth between ribbon and chip/substrate under high service temperature. Voids and cracks are 

formed on IMC interfaces because of an increasing diffusion rate. Subsequently, mechanical strength 

degradation occurs depending on the growth of crack length and IMC thickness [7–9]. In the present work, 

various IMCs were formed on bond and clad interfaces, and ribbon heel cracks were present within the Al 

layers during thermally harsh tests. Those heel crack tips occurred at the edge of ribbon bond heel and 
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propagated reaching to the Cu-Al IMC layers within the clad interface. Consequently, the mechanical 

strength of Cu/Al clad ribbon wirings decreased with increasing heel crack length and Cu-Al IMCs 

thickness. Thus, we investigated the correlation of microstructural evolution and mechanical stability with 

regard to heel crack propagation and Cu-Al IMC formation during harsh tests after determining a suitable 

ultrasonic ribbon bonding process.  

 

3.2 Materials and experimental methods 

Al and Cu/Al clad ribbons (width 1500 μm × height 200 μm) were bonded on electroless nickel 

immersion gold (ENIG) finished Cu substrates with suitable ultrasonic bonding parameters at ambient 

temperature, as illustrated in Fig. 3.1a. The wiring loop design of the Al ribbon is the same as that of the 

Cu/Al clad ribbon, and both structures have a similar contact area between ribbon and substrate. The 

wiring length between the first and second bonds is 8 mm, and the height of the wiring loop is 5 mm. Fig. 

3.1b shows a comparison of the Al and Cu/Al clad ribbons. High-purity Al (99.99 mass%) and Cu (99.99 

mass%) metals were used in the ribbon materials. The ENIG-finished Cu substrate was coated on a Cu 

plate with Au (0.1 μm)/Ni (3 μm) by electroplating. The role of plated Au is to reduce surface oxidation, 

and plated Ni is a diffusion barrier layer between the Al ribbon or layer and the Cu plate [10, 11]. Figs. 

3.1c and d show the cross-sectional images of the Al and Cu/Al ribbon wirings at the first bond zone. The 

Cu/Al clad ribbon was manufactured by a cold rolling process. Subsequently, an annealing process was 

performed at 100 °C to relieve the residual stress at the Cu/Al clad interface. The area ratio of the Cu 

layer within the Cu/Al clad ribbon is twice as large as that of the Al layer, as shown in Fig. 3.1e.  

 



Chapter 3 

A comparison of the high-temperature stability of Al and Cu/Al clad ribbon wirings 

 

58 

 

 

Fig. 3.1 Schematic images: (a) illustration of wiring sample design, (b) a comparison of the Al ribbon and 

the Cu/Al clad ribbon, cross-sectional images of (c) the Al ribbon and (d) the Cu/Al clad ribbon at the first 

bonded zone, and (e) size comparison of the Al and Cu/Al clad ribbons. 

 

Ultrasonic ribbon bonding was conducted with TPT HB-30 (Al ribbon bonding) and Orthodyne 3600 

plus (Cu/Al clad ribbon bonding) wedge/ribbon semiautomatic bonders to maintain a steady ribbon 

wiring formation. A flat-form bonding tool was used in the bonders to avoid the occurrence of heel cracks 

at the top of the ribbon heels. The ultrasonic bonding of Al and Cu/Al clad ribbons was optimized by 

varying the ultrasonic power, normal bonding force, and bonding time, focusing on the highest pull 

strength. The optimized ribbon bonding samples were subjected in harsh tests such as thermal exposure at 

200 °C and thermal shock cycling at -40/250 °C. Subsequently, the ribbon pull testing was performed 

under each harsh test condition (as bonded, after 1000/2000 h, and after 1000/2000 cycles) to evaluate the 

mechanical stability of the ribbon wirings. A Dage 4000 series pull/shear tester was used for ribbon pull 

testing. The fracture mode and IMC formation were observed using field emission-scanning electron 

microscopy (FE-SEM), and their quantitative elements were analyzed using an electron probe micro 
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analyzer (EPMA) and energy dispersive spectroscopy (EDS). The average grain size of Al was also 

measured using electron backscatter diffraction (EBSD). 

 

3.3 Results and discussion 

3.3.1 Optimization of ultrasonic ribbon bonding 

The acoustic impedance (Z) in dissimilar metal joints during ultrasonic bonding is proportionally 

related to the ultrasound velocity (V) and density (ρ) of the material [12]: 

 

Z = V ∙ ρ          (1) 

 

As shown in Table 3.1, denser materials such as Cu, Ni, and Au have high acoustic impedances, whereas 

Al has relatively low acoustic impedance. This characteristic explains why high bonding parameters are 

essential for Cu/Al clad ribbon bonding. Furthermore, the ultrasound reflection of a Cu/Al clad ribbon is 

larger than that of an Al ribbon because a Cu/Al clad ribbon consists of a Cu layer and an Al layer. The 

ultrasound wave is reflected or transmitted at the interface of different materials during ultrasonic bonding 

[13]. Steady ribbon joints are made by transmitted ultrasound energy. The effects of ultrasound waves 

between different interfaces can be calculated by using the reflection and transmission equations: 

 

R = 
(𝑍2−𝑍1)2

(𝑍2+𝑍1)2
          (2) 

 

T = 1 – R          (3) 
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where R is the reflection coefficient at dissimilar interfaces, Z1 and Z2 are acoustic impedances of adjacent 

materials (first and second materials from transducer), and T is the transmission coefficient. Fig. 3.2 

shows the ultrasound waves with regard to reflection and transmission of the Al ribbon and the Cu/Al clad 

ribbon bonding. Assuming an ultrasound transmission of T total = 100 % from the transducer, T final of the 

Al ribbon bonding can be determined to be 53 % (R = 47 %) between the Al ribbon and substrate, which 

is higher than the value of T final of the Cu/Al clad ribbon (23 %), as illustrated in Fig 3.2a. The T final 

value of Cu/Al clad ribbon bonding is 30 % even in T total = 100 % because ultrasound reflection (R1 = 

43 %) occurred at the Cu/Al clad interfaces as a result of the difference in acoustic impedances between 

the Cu and Al layers, as illustrated in Fig. 3.2b. Higher value of ultrasound energy is necessary for Cu/Al 

ribbon bonding compared to Al ribbon bonding. Therefore, it is necessary to optimize the bonding process 

with regard to ultrasound reflection and transmission of acoustic impendence to achieve successful 

manufacturing of ribbon wirings.  

Wide cross-sectional ribbon bonding has to require higher bonding parameters such as ultrasonic 

power, bonding force, bonding time, and ultrasonic frequency than typical string wire bonding because 

which has 3 times wider cross-sectional area than that of 300 μm typical string wire. Particularly, Cu/Al 

clad ribbon bonding requires higher bonding parameters to successful manufacture their ribbon wirings 

than the Al ribbon bonding because Cu has higher acoustic impedance and hardness as compared to Al. 

Our suitable bonding parameters of the Al and Cu/Al clad ribbon wirings depending on the highest pull 

strength presented in Table 3.2. 
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Table 3.1 Material property of used metals 

Materials 
Acoustic impedance 

(N∙s∙m
−3

) 

Density 

(g∙cm
−3

) 

Ultrasound velocity 
(m/s) 

Vickers hardness 
(MPa) 

Al 17.4 2.7 6420 167 

Cu 44.6 8.9 5010 369 

Au 63.8 19.7 3240 216 

Ni 49.5 8.8 5600 638 

 

 

Fig. 3.2 Ultrasound wave transfer with regard to interface reflection and transmission; comparison of (a) 

Al ribbon and (b) Cu/Al clad ribbon bonding. 
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Table 3.2 Suitable bonding parameters of the Al and Cu/Al clad ribbon wirings 

Bonding parameters Al ribbon Cu/Al clad ribbon 

Ultrasonic power (W) 20 150 

Bonding time (s) 2.0 0.5 

Normal bonding force (N) 18.5 34.3 

Ultrasonic frequency (kHz) 60 76 

 

3.3.2 Mechanical strength and heel crack propagation 

The mechanical stabilities of ribbon wirings are usually evaluated by pull testing [14–16]. In the 

present work, the mechanical strengths of the Al ribbon and Cu/Al ribbon wirings were compared under 

each harsh test period. In both cases, no lift-off phenomenon was observed at ribbon joints, indicating 

successful bonding. The initial rupture forces of the Al ribbon and Cu/Al ribbon manufactured under 

optimal bonding conditions are 27.4 N and 38.0 N, respectively. Independent of the test conditions, the 

rupture force of the Cu/Al clad ribbon wirings was always higher than that of the Al ribbon wirings. The 

pull fractures of the Al and Cu/Al clad ribbons occurred around the first ribbon bond heel. Figs. 3.3 and 

3.4 compare the pull strength and heel crack propagation around the ribbon heel under each harsh test 

condition. During a thermal exposure test at 200 °C, as shown in Fig. 3.3, the rupture force of the Al 

ribbon decreases gradually until the first 1000 h and saturates from 1000 to 2000 h because the crack 

propagates along the Al/substrate interface. In contrast, the rupture force of the Cu/Al clad ribbon does 

not change significantly over the first 1000 h, but then decreases from 1000 h to 2000 h. During thermal 

shock test at -40/250 °C, as shown in Fig. 3.4, the rupture force of the Al ribbon decreased steadily from 0 

to 1000 cycles and saturated to 2000 cycles. Whereas the rupture force of the Cu/Al clad ribbon strongly 

decreased from 0 to 1000 cycles and saturated towards 2000 cycles because the heel crack reached the 

Cu-Al IMCs and propagated along the IMC layers. The peak temperature of the heat cycling is higher 
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than that of the temperature storage and is caused by Al grain coarsening leading to severe heel crack 

propagation.   
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Fig. 3.3 (a) Pull strength degradation of the Al and Cu/Al clad ribbon wirings after thermal exposure 

testing at 200 °C and (b) FE-SEM images showing the tendency of heel crack propagation.   
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Fig. 3.4 (a) Pull strength degradation of the Al and Cu/Al clad ribbon wirings after thermal shock testing 

at -40/250 °C and (b) FE-SEM images showing the tendency of heel crack propagation.   

 

0 500 1000 1500 2000
0

10

20

30

40

50

 Al ribbon

 Cu/Al clad ribbon

 

 

R
u

p
tu

re
 f
o

rc
e

 (
N

)

Number of cycles

(a) 

(b) 

20 μm  

20 μm  20 μm  

20 μm  

Al 

Substrate 

Cu 

Al 

Al 

Substrate 

Cu 

Al 

Substrate 

Substrate 

Heel crack propagation  

Heel crack propagation  

Al ribbon Cu/Al clad ribbon 

1
0
0
0
 c

y
c
le

s
 

2
0
0
0
 c

y
c
le

s
 

Heel crack propagated 
along Cu-Al IMC layer 

Heel crack reached 
Cu-Al IMC layer 



Chapter 3 

A comparison of the high-temperature stability of Al and Cu/Al clad ribbon wirings 

 

66 

 

The Al microstructure evolution during harsh tests was analyzed by electron backscatter diffraction 

(EBSD), as shown in Figs. 3.5 and 3.6. The average grain size of Al increased with longer test periods. 

The grain size of thermal-shocked samples is larger than that of thermal-exposed samples because the 

highest temperature influences the coarsening of the Al grain. The Al average grain sizes of Cu/Al clad 

ribbon were smaller than those of the Al ribbon during each thermal test. Relatively small Al grains of the 

Cu/Al clad ribbon with cold rolling process inhibit the heel crack propagation between grain boundaries. 

Therefore, higher joint stability can be obtained by the use of Cu/Al clad ribbons over Al ribbons in 

power device interconnections. 

 

 

Fig. 3.5 Microstructural evolution in Al ribbon wirings by grain coarsening at the bond interface near the 

ribbon heel. Inverse pole figure (IPF) maps analyzed by EBSD after (a) thermal exposure testing at 

200 °C and (b) thermal shock testing at -40/250 °C. 𝑑 denotes the average diameter of the Al grains. The 

legend of the IPF maps is shown at the bottom right corner. 
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Fig. 3.6 Microstructural evolution in Cu/Al clad ribbon wirings by grain coarsening at the bond interface 

near the ribbon heel. Inverse pole figure (IPF) maps analyzed by EBSD after (a) thermal exposure testing 

at 200 °C and (b) thermal shock testing at -40/250 °C. 𝑑 denotes the average diameter of the Al grains. 

The legend of the IPF maps is shown at the bottom right corner. 
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temperature diffusion [17–22]. As observed in Fig. 3.7c, γ1-Cu9Al4, ζ2-Cu4Al3, and θ-CuAl2 are formed 

between the Cu and Al layers, where the combined IMC thickness is 0.6 μm after the rolling process 

during annealing at 100 °C.  As observed in Fig. 3.7d, the ternary mixed phases of Al-Au-Ni at the 

bonded interface are formed by ultrasonic oscillation due to the friction energy during ultrasonic ribbon 

bonding [23–25].  

The heel crack is clearly observed within the Al layer and almost propagates to the Cu-Al IMCs after 

the thermal exposure test, as shown in Fig. 3.8a. The result of elemental analysis line from the Cu layer to 

substrate is represented in Fig. 3.8b. The combined thickness of the IMC phases of δ-Cu3Al2, η2-CuAl, 

and θ-CuAl2 is 2.5 μm after 2000 h, as observed in Fig. 3.8c. During the thermal exposure test at 200 °C, 

δ-Cu3Al2 and η2-CuAl were revealed with increasing Al at.% due to the faster diffusion rate of Al in Cu 

compared with that of Cu in Al. The thickness of the Al3Ni2 layer is 200 nm, and voids are specifically 

observed at the bonded interface after 2000 h, as shown in Fig. 3.8d. Interdiffusion between Al atoms and 

Ni atoms at the bonded interface occurred during high-temperature storage test [17, 26]. 

Severe heel crack propagation, which reaches the Cu-Al IMCs within the clad interface during 

thermal shock cycling, is observed in Fig. 3.9a. The result of elemental analysis line from the Cu layer to 

substrate is represented in Fig. 3.9b. An interfacial crack is also observed at the bonded interface. The 

combined thickness of the IMCs formed at the clad interface, namely γ1-Cu9Al4, η2-CuAl, and θ-CuAl2, is 

7.5 μm after 2000 cycles, as observed in Fig. 3.9c. The voids are also indicated between Cu-Al IMC 

layers. The thickness of the Cu-Al IMCs after thermal shock at -40/250 °C is greater than that of the 

thermally exposed samples at 200 °C due to the highest temperature used. At the bonded interface and 

after 2000 cycles, as observed in Fig. 3.9d, the Al3Ni layer is thicker (500 nm) than that of the thermally 

exposed sample because the high temperature influences the diffusion rate. 
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Region Thickness Cu at.% Al at.% Ni at.% Au at.% Phase 

A < 0.2 μm 66.8 33.1 - - γ1-Cu9Al4 

B < 0.1 μm 56.2 43.7 - - ζ2-Cu4Al3 

C < 0.3 μm 32.2 67.8 - - θ-CuAl2 

D < 0.06 μm - Unquantifiable 
Ternary 
mixed 

 

Fig. 3.7 IMC identification in the Cu/Al clad ribbon wiring in the as-bonded specimen: (a) FE-SEM 

image at the ribbon heel, (b) elemental analysis line from the Cu layer to the substrate, (c) at the clad 

interface, and (d) at the bond interface. Quantitative analysis results within the IMCs are shown at the 

bottom diagram. 
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Region Thickness Cu at.% Al at.% Ni at.% Au at.% Phase 

A ~ 1.1 μm 59.9 40.0 - - δ-Cu3Al2 

B ~ 0.8 μm 49.9 50.0 - - η2-CuAl 

C ~ 0.6 μm 32.9 67.0 - - θ-CuAl2 

D ~ 0.2 μm - 59.1 38.1 2.7 Al3Ni2 

 

Fig. 3.8 IMCs growth and identification in the Cu/Al clad ribbon wiring after 2000 h thermal storage: (a) 

FE-SEM image at the ribbon heel, (b) elemental analysis line from the Cu layer to substrate, (c) at the 

clad interface, and (d) at the bond interface. Quantitative analysis results within the IMCs are shown in 

the bottom diagram. 
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Region Thickness Cu at.% Al at.% Ni at.% Au at.% Phase 

A ~ 2.8 μm  66.8 33.1 - - γ1-Cu9Al4  

B ~ 0.7 μm  49.9 50.0 - - η2-CuAl  

C ~ 4.0 μm  32.0 67.9 - - θ-CuAl2  

D ~ 0.5 μm  - 68.8 28.0 3.0 Al3Ni 

 

Fig. 3.9 IMCs growth and identification in the Cu/Al clad ribbon wiring after 2000 thermal shock cycles: 

(a) FE-SEM image at the ribbon heel, (b) elemental analysis line from the Cu layer to substrate, (c) at the 

clad interface, and (d) at the bond interface. Quantitative analysis results within the IMCs are shown at 

the bottom diagram. 
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The weakest region observed by pull testing was the Cu-Al IMCs. All pull fractures of the Cu/Al clad 

ribbon occurred at the Cu-Al IMC layers within the clad interfaces regardless of the highest temperature 

and test duration, whereas pull fractures of the Al ribbon occurred at the ribbon loop. We focused on the 

fracture surface of Cu/Al clad ribbons. The pull fracture surfaces and the elemental mapping results of the 

as-bonded, thermally exposed, and thermally shocked specimens are shown in Fig. 3.10. The elemental 

quantity levels of Al and Cu were observed to be different depending on each specimen. The fracture 

surface of the as-bonded specimen was revealed to be an Al-rich phase. The Cu-rich phase was revealed 

with increased thickness of Cu-Al IMC during thermally harsh tests. The IMCs at the fracture surface 

were θ-CuAl2 (as-bonded), δ-Cu3Al2 (thermally exposed), and γ1-Cu9Al4 (thermally shocked), 

respectively. The IMC thickness of the thermally shocked specimen was greater than that of the thermally 

exposed specimen. This means that the mechanical strength degradation is influenced by severe Cu-Al 

IMC growth at highest temperature, because voids and cracks are formed at the Cu-Al IMCs by thermal 

diffusion. Consequently, the mechanical strength degradation of Cu/Al clad ribbon wirings is caused by 

increasing the IMC thickness at the clad interface because the IMCs are brittle. 
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Fig. 4.10 EPMA reveals different IMC phases on the fracture surface after pull test: (a) as-bonded, (b) 

thermal exposure test after 2000 h, and (c) thermal shock test after 2000 cycles.  
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3.4 Conclusions 

Microstructural evolution in Al and Cu/Al clad ribbons for high-temperature storage at 200 °C and 

thermal shock cycling at -40/250 °C was reported, and the mechanical stabilities in the two thermal tests 

were compared with respect to heel crack propagation by grain coarsening. The heel cracks were initiated 

between the edge of the bonded interface and the ribbon loop. Heel crack propagations occurred due to Al 

grain coarsening during high-temperature storage and cycling conditions, which lead to degradation of 

mechanical stability. The mechanical strength of Cu/Al clad ribbon wiring was higher than that of Al 

ribbon wiring regardless of the test conditions. The Cu-Al IMCs influenced the enhancement of 

mechanical stability because a certain IMC thickness interrupts heel crack propagation. All Al ribbon 

fractures occurred at the ribbon loop whereas Cu/Al clad ribbon fractures occurred at the Cu-Al IMCs 

regardless of the high temperature and test duration. The Cu-Al IMCs on the fracture surface were 

observed to be different depending on each specimen, the main compositions of which were indicated as 

θ-CuAl2 (as-bonded), δ-Cu3Al2 (thermally exposed), and γ1-Cu9Al4 (thermally shocked). In the present 

work, we concluded that the mechanical stability of the Cu/Al clad ribbons is superior to that of the Al 

ribbons with respect to the investigation of heel crack propagation by grain coarsening even in high-

temperature tests.  
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4.1 Introduction 

Novel ribbon bonding with ultrasonic oscillation has attracted considerable attention as an 

interconnection technology of next-generation wide-band-gap power electronics because of its capability 

to pass a large electrical current compared with conventional wire bonding [1–3]. Typical materials for 

ribbon bonding for power device interconnections are Al and Cu. High-purity Al ribbon has been already 

used in many applications because of its excellent formability in wiring. However, high-purity Al has 

several disadvantages such as rapid grain coarsening and relatively low current/heat conductivity during 

high-temperature operation. There is also a risk of heel crack propagation within Al ribbons [4, 5]. In 

contrast, Cu offers many advantages compared with Al such as higher electrical and thermal 

conductivities. However, bare Cu is not easily bonded by conventional ultrasonic bonding primarily 

because of its hardness. Thus, Cu ribbon wiring usually requires special care such as cladding with Al or 

the use of a soft material coating to achieve successful bonding. Cold rolling is employed to prepare 

Cu/Al clad ribbons.  

For Cu/Al clad ribbon bonding, a heel crack frequently occurs within an Al layer under a Cu layer 

even in the ribbon-bonding process. Heel crack propagation must be prevented to achieve mechanical 

stability; the heel crack propagation is caused by microstructural evolution and textural transition under 

severe thermal stress in high-temperature operations. The ultrasonic bonding process with high energy 

plays an important role in the formation of a deformed microstructure both in the Al layer and the 

substrate. In particular, ultrasonic bonding generates the intense deformation of bonding materials, which 

is called the ultrasonic softening effect [6, 7]. In addition, other plastic deformation occurs at a loop of a 

Cu/Al clad ribbon during the lift-up procedure. Under the operation condition of power devices, a 

substantial temperature rise occurs at the bonded interfaces and wiring loops [8]. Dynamic 

recrystallization (DRX, i.e., microstructural evolution) results from the severe temperature increase [9–

13], and the formation of microstructures leads to grain coarsening and heel cracking. The DRX 

mechanism can be described by discontinuous dynamic recrystallization (DDRX, i.e., involving 
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nucleation and grain growth) and continuous dynamic recrystallization (CDRX, i.e., the transformation of 

sub-grains into grains). The “discontinuous” phenomena involve discontinuous sub-grain growth, 

primary recrystallization, and abnormal grain growth, whereas the “continuous” phenomena by dynamic 

recovery involve sub-grain growth, continuous recrystallization, and normal grain growth [9–13]. 

Textural transitions should be analyzed to understand the material characteristics of “discontinuous” and 

“continuous” phenomena [14–16]. Consequently, the microstructural evolution and textural transitions of 

a Cu/Al clad ribbon may cause substantial mechanical degradation. Thus, the objective of the present 

work was to understand the recrystallization mechanism of Cu/Al ribbon under harsh operation conditions. 

The authors performed thermal acceleration tests under harsh conditions such as thermal exposure 

(200 °C) and thermal shock (-40/250 °C) on Cu/Al clad ribbon wiring. 

 

4.2 Experimental methods 

4.2.1 Materials and ultrasonic bonding process 

High-purity Cu (99.99 mass%) and Al (99.99 mass%) clad ribbons were prepared using the cold-

rolling process with a deformed reduction rate above 50 %. The Cu/Al clad ribbons were bonded on an 

ENIG-finished Cu substrate using a flat-form wedge bonding tool, as illustrated in Fig. 4.1a. First, the 

ribbon bond cross-sections indicated in Fig. 4.1b were analyzed by scanning electron microscope (SEM) 

and electron back scatter diffraction (EBSD). The volume fraction of Cu layers within the Cu/Al clad 

ribbon is 67 %, which is twice that of the Al layers, as shown in Fig. 4.1c. The ultrasonic bonding process 

of Cu/Al clad ribbons was optimized by varying of the ultrasonic power, normal bonding force, and 

bonding time (Table 4.1). Successful Cu/Al clad ribbon bonding requires a higher ultrasonic power and 

bonding force and a longer time than typical Al ribbon bonding because Cu is hard and has a higher 

acoustic impedance than Al. The Cu/Al clad ribbon bonding samples were prepared, as shown in Fig. 

4.1d. 
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Fig. 4.1 Schematic images: (a) illustration of wiring sample design and (b) close-up view of bonded and 

non-bonded zones. (c) Cold-rolled Cu/Al clad ribbon and (d) wiring samples for harsh tests. 
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Table 4.1 Optimized ultrasonic bonding parameters 

Bonding parameters 
US power 

(W) 

Bonding force 

(N) 

Bonding Time 

(s) 

US frequency 

(kHz) 

Values 150 34.3 0.5 76 

 

4.2.2 Thermal exposure and thermal shock tests 

The Cu/Al clad ribbon samples were exposed to harsh environments such as thermal exposure up to 

2000 h and thermal shock up to 2000 cycles in air. The temperature profiles are presented in Fig. 4.2. 

Under the operation condition of power devices, the highest temperature above 200 °C occurred at the 

ribbon joints. When turning on/off the power devices, the temperature change at the ribbon joints is 

extreme because of the transient heat up/cool down. Thus, we performed thermal acceleration tests such 

as thermal exposure at 200 °C and thermal shock at -40/250 °C. 

 

Fig. 4.2 Temperature profiles of harsh environment; thermal exposure test at 200 °C, and thermal shock 

test at -40/250 °C. 
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5.2.3 EBSD analysis 

The microstructural evolution and textural transition of the Cu/Al clad ribbons were investigated by 

EBSD analysis. Each cross-section was polished using emery paper and 0.03 μm alumina paste. The 

samples were finally finished by ion milling to achieve flatness. High-quality electron backscatter 

diffraction pattern (EBSP) images were obtained using a 20 kV accelerating voltage, 40 mm working 

distance, and 75 nm beam spot size. Step sizes of 0.5 and 0.8 μm were used, and its shape was a 

hexagonal pixel. In general, many pixels within one grain should form five to ten grids to reduce errors in 

the measurement [17]. The step size and confidence index affect the results of the EBSD analysis after 

data processing [18, 19]. The present step size was small enough to obtain accurate data. In addition, the 

number of confidence index (CI) above 0.2 was obtained as ideal data with a reliable level of indexing 

rate above 90 %. 

The textural transition and corresponding crystallographic orientation can be obtained by pole figure 

(PF) and orientation distribution function (ODF) f(g) maps. The crystallographic textures were 

determined by the {111} pole figure, which is a typical plane for evaluating the deformed FCC structure 

[14, 16]. Subsequently, after correction of the combined PF data with respect to errors such as irradiation 

and defocusing, the ODF was calculated using the harmonic series expansion method (l max = 16, 

Gaussian smoothing = 15°); the crystallographic orientations are represented by Bunge Euler angles {φ1, 

ϕ, φ2}. The ODFs were represented using PFs by computing the orthotropic symmetry sample in rolling 

operations as the rolling direction (RD), transverse direction (TD), and normal direction (ND). The 

intensity lines in a texture were represented by a constant section of φ2 (∆φ2 = 15°) through the adjective 

Euler angle space (0° ≤ {φ1, ϕ, φ2} ≤ 90°). Combined information about the microstructural evolution 

and textural transition was obtained from the harsh tests, and the spatial distribution of several texture 

components was evaluated by an automated EBSD analysis.  

 

 



Chapter 4 

Heel crack propagation mechanism of cold-rolled Cu/Al clad ribbon bonding in harsh environment 

 

85 

 

4.3 Results 

4.3.1 Verification of EBSPs 

EBSD analysis provides many advantages to understand a given crystallographic state and its change. 

Verification of image quality (IQ) should be performed to obtain ideal data before performing a series of 

EBSD analysis. An IQ map can typically be used to observe many microstructure features such as 

different phases, grain boundaries, and surface topologies, as illustrated in Fig. 4.3. As observed in Figs. 

4.3c–f, the IMC layers were observed along the interface of the Cu/Al clad and the bonding interface of 

the Al/substrate. Both grains of Al and Cu coarsened during the harsh tests. In addition, heel cracks 

propagated within the Al layer as coarsening Al grains. For the thermal shock test, the average grain size 

of Al was larger than that for the thermal exposure test (Table 4.2).  
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Fig. 4.3 Image quality (IQ) maps. (a) The starting material after the cold-rolling process shows clear Al 

and Cu layers. (b) As-bonded specimen after ultrasonic bonding, thermal exposure test at 200 °C after 

(c)1000 h and (d) 2000 h, thermal shock test at -40/250 °C after (e) 1000 cycles and (f) 2000 cycles. 
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Table 4.2 Average grain size during harsh tests 

Specimens 
Starting 

material 

As-

bonded 

After 

1000 h 

After 

2000 h 

After 

1000 
cycles 

After 

2000 
cycles 

Average grain size (µm) 8.15 8.35 6.40 7.10 16.90 23.0 

Standard deviation 3.71 3.66 4.05 2.41 6.53 6.80 

 

4.3.2 Microstructural evolution 

The misorientation angle (θ) bands provide information about the microstructural evolution with 

respect to deformation and recrystallization during harsh tests [20]. Analysis of the nearest-neighbor pair 

misorientation angle (θ) distribution was performed for an Al layer within a Cu/Al clad ribbon. Fig. 4.4 

shows variations of the nearest-neighbor pair misorientation angle distributions. The green and blue lines 

signify low-angle grain boundaries (LAGBs) (2° ≤ θ ≤ 15°) and high-angle grain boundaries (HAGBs) 

(θ ≥ 15°), respectively. As observed in Figs. 4.4a and b, fine grain structures (tangled grain boundaries) 

within the Al layer are introduced by deformation during the cold-rolling and ultrasonic bonding 

processes. During the harsh tests, CDRX grains are formed by dynamic recovery, where boundaries are 

overlaid with LAGBs. In contrast, DDRX grains are formed by primary recrystallization, the formation of 

which indicates the presence of HAGB cells. The fraction of HAGBs decreased with increasing harsh test 

periods, as observed in Fig. 4.5. The reduction of the HAGB fraction indicates a DDRX decrease and 

CDRX increase. The CDRX and DDRX regions were divided based on their grain orientation spread 

(GOS) values to understand the microstructural evolution in detail. 
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Fig. 4.4 Band contrast (BC) maps overlaid with misorientation angle distribution maps showing the 

microstructural evolution of cold-rolled Cu/Al clad ribbons during harsh tests. (a) Starting material, (b) 

as-bonded specimen, thermal exposed at 200 °C after (c) 1000 h and (d) 2000 h, thermal shocked test at -

40/250 °C after (e) 1000 cycles and (f) 2000 cycles. The key for the misorientation angle is shown at the 

top right corner.   
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Starting material As-bonded After 1000 cycles After 2000 cycles 

θ ≥ 15
o
 53.2 % 53.3 % 53.2 % 48.8 % 

 

Fig. 4.5 Diagrams of frequency depending on the misorientation angle distribution each harsh test. The 

fraction of HAGBs is indicated at the bottom of each diagram: (a) thermal exposure test and (b) thermal 

shock test.   
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GOS represents the average deviation of crystalline orientations among all the scan points in one 

grain. This methodological approach leads to assigning a single GOS value to every grain [21–23]. A 

GOS value of 3° was observed to be the boundary determining deformed and recrystallized grains, i.e., 

CDRX (GOS ≥ 3°) and DDRX (GOS ≤ 3°), respectively. Dynamic recrystallized grains (involving the 

CDRX and DDRX grains) were grouped together within an Al layer in all the GOS maps, as observed in 

Fig. 4.6. The fraction of CDRX regions decreased after 1000 h and 1000 cycles and increased until 2000 

h and 2000 cycles, as observed in Fig. 4.7. This phenomenon appears to be caused by enhanced dynamic 

recovery within recrystallized grains. The dynamic recovery involves new sub-grain formation within 

recrystallized grains, which is formed by residual strain in high-dislocation-density regions. The 

dislocation density concerning average misorientation between neighboring scan points is calculated 

using the kernel average misorientation (KAM) method, which is similar to GOS but calculated within 

the kernel instead of within grains [24–26]. As described in the above references, high and low 

dislocation densities were appropriately distinguished by values of KAM ≥  1° and KAM ≤  1°, 

respectively. Compared with the GOS and KAM (Figs. 4.6 and 4.8), the high dislocation density was 

mostly observed at the sub-grain boundaries, which can be attributed to dynamic recovery. Subsequently, 

CDRX occurred by dynamic recovery within these sub-grains. Fig. 4.9 shows the fraction of dislocation 

density within an Al layer. During thermal shock testing, the fraction of dislocation density is higher than 

that of the thermal exposure test with increasing test period, which will be further discussed in section 

4.4.2.  
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Fig. 4.6 Grain orientation spread (GOS) maps showing the CDRX and DDRX regions of cold rolled 

Cu/Al clad ribbons during harsh tests: (a) starting material, (b) as-bonded specimen, thermal exposed at 

200 °C for (c) 1000 h and (d) 2000 h, thermal shocked at -40/250 °C for (e)1000 cycles and (f) 2000 

cycles. A GOS value of 3° was determined to be appropriate for distinguishing between CDRX and 

DDRX microstructures there are indicated GOS ≥ 3° (orange, and red) and GOS ≤ 3° (blue, green, and 

yellow) on the GOS map, respectively. The key for the value of GOS is shown at the top right corner. 
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Starting material As-bonded After 1000 h After 2000 h 

θ ≥ 3
o
 35.9 % 35.3 % 14.5 %  24.4 % 

 

 
Starting material As-bonded After 1000 cycles After 2000 cycles 

θ ≥ 3
o
 35.9 % 35.3 % 19.6 %  33.6 % 

 

Fig. 4.7 Diagrams of frequency depending on the GOS analysis of each harsh test. The fraction of the 

CDRX region is indicated at the bottom of each diagram: (a) thermal exposure test and (b) thermal shock 

test. 
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Fig. 4.8 Kernel average misorientation (KAM) maps showing the high and low dislocation densities of 

cold-rolled Cu/Al clad ribbons during the harsh tests: (a) starting material, (b) as-bonded specimen, 

thermally exposed at 200 °C for (c) 1000 h and (d) 2000 h, thermal shocked at -40/250 °C for (e) 1000 

cycles and (f) 2000 cycles. The high dislocation density was indicated by a KAM value above 1°, and 

below 1° is low dislocation density. The key for the value of KAM is shown at the top right corner. 
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Starting material As-bonded After 1000 h After 2000 h 

θ ≤ 1
o
 40.8 % 34.4 % 50.2 %  53.8 % 

 

 
Starting material As-bonded After 1000 cycles After 2000 cycles 

θ ≤ 1
o
 40.8 % 34.4 % 69.9 %  75.7 % 

 

Fig. 4.9 Diagrams of frequency depending on the KAM analysis in the harsh tests. The number fraction of 

dislocation density is indicated at the bottom of each diagram for the (a) thermal exposure test and (b) 

thermal shock test.   

 

0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 

 

N
u

m
b

e
r 

fr
a

c
ti

o
n

Kernel average misorientation [degrees]

 starting material

 As bonded

 After 1000 hours

 After 2000 hours

(a) 

Low dislocation density 

High dislocation density 

0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 

 

N
u

m
b

e
r 

fr
a

c
ti

o
n

Kernel average misorientation [degrees]

 starting material

 As bonded

 After 1000 cycles

 After 2000 cycles

(b) 

Low dislocation density 

High dislocation density 



Chapter 4 

Heel crack propagation mechanism of cold-rolled Cu/Al clad ribbon bonding in harsh environment 

 

95 

 

4.3.3 Transition of the texture 

The textural transitions are apparently different between the as-received sample and the ultrasonic 

bonded one in a harsh environment. Cube{001}〈100〉, G{011}〈100〉, B{011}〈211〉, C{112}〈111〉, D{44 

11}〈11 11 8〉, S{123}〈634〉, Y{111}〈112〉, and P{011}〈8 11 11〉 texture components were observed in the 

Al layer. B, C, D, and S texture components were formed by the rolling process in the bonded zone, 

which are typical deformation textures in the FCC structure. However, Y and P texture components were 

formed by the lift-up procedure in the non-bonded zone, which are plastic deformation textures such as 

torsion [27, 28], tension [29, 30], rolling [31–33], and deep drawing [34, 35]. 

Fig. 4.10 shows the band contrast overlaid with inverse pole figure maps during each harsh test. The 

textural transition was analyzed by PFs and ODFs based on the combination textures. Combined PFs and 

ODFs are shown in Figs. 4.11b–e and 4.12b–e as cold-rolled, as-bonded, thermal exposure, and thermal 

shock specimens, respectively. Figs. 4.11a and 4.12a show the most common textures and orientations of 

the FCC structure. As observed in Fig. 4.11, the transition tendency of combined PFs were revealed 

differently by each of the bonded (ultrasonic oscillation) and non-bonded (lift-up part) zones, respectively. 

B and S orientations predominated along the β-fiber in the bonded zone within the Al layer, as observed in 

Figs. 4.12b–e. In the non-bonded zone, Y and P orientations were predominated by lift-up forming 

procedure along the βD-fiber.  

In the bonded zone during the thermal exposure test, the main orientation transition was developed 

along the α-fiber (G-B) and the β-fiber (B-S-C/D) until 2000 h, as observed in Fig. 4.12d. In the non-

bonded zone, plastic deformed Y and P orientations were developed along the βD-fiber. During thermal 

shock test, in the bonded zone, B orientation was mainly developed along the β-fiber until 1000 cycles, as 

observed in Fig. 4.12e. Subsequently, the B orientation became weak upon increasing the number of 

cycles. In the non-bonded zone, after 1000 cycles, the P orientation was still maintained, and rotated cube 

orientation increased with increasing test period. However, the intensity of the rotated cube became 



Chapter 4 

Heel crack propagation mechanism of cold-rolled Cu/Al clad ribbon bonding in harsh environment 

 

96 

 

weaker than that of the P orientation. Subsequently, the intensity of the rotated cube became strong, and 

the P orientation does not exist anymore at 2000 cycles. 

 

 



Chapter 4 

Heel crack propagation mechanism of cold-rolled Cu/Al clad ribbon bonding in harsh environment 

 

97 

 

 

Fig. 4.10 Band contrast (BC) overlaid with inverse pole figure (IPF) maps, showing the evolution of the 

microstructure during harsh tests: (a) starting material, (b) as-bonded specimen after ultrasonic bonding, 

thermally exposed for (c) 1000 h and (d) 2000 h and thermally shocked for (e) 1000 cycles and (f) 2000 

cycles. The legend for the IPF maps and directions is shown at the top right corner.  
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Fig. 4.11 (a) Pole figures (PFs) plotted for {111}, showing ideal cube, Goss, brass, copper, Dillamore, and 

S components. Contour diagram of combined PFs between the bonded zone and non-bonded zone, which 

show the variation of combined textures as a function of the harsh tests. (b) Starting material specimen, 

(c) as-bonded specimen, (d) thermally exposed specimen at 200 °C, and (e) thermally shocked specimen 

at -40/250 °C.     
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Fig. 4.12 (a) Orientation distribution functions (ODFs) plotted for face-centered-cubic structure, showing 

ideal α-fiber, β-fiber, and plastic deformed βD-fiber. Contour diagram of ODFs between bonded zone and 

non-bonded zone, which show the variation of orientations as a function of the harsh tests: (b) starting 

material specimen, (c) as-bonded specimen, (d) thermally exposed specimen at 200 °C, and (e) thermally 

shocked specimen at -40/250 °C. The intensity lines in the texture are represented by a constant section of 

φ2 (∆φ2 = 15°) through the adjective Euler angle space (0° ≤ {φ1, ϕ, φ2} ≤ 90°). 
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4.4 Discussion 

4.4.1 Grain coarsening and heel crack growth 

The formation of heel crack and its growth is one of the main concerns in determining the reliability 

of wire/ribbon bonds. Thus, the heel crack growth of the cold-rolled Cu/Al clad ribbons in the current 

harsh test is discussed hereafter, especially in terms of Al grain coarsening.  

The heel cracks were formed at the boundary between the bonded and non-bonded zones. In the harsh 

tests, these heel cracks propagated along the coarsened grain boundaries deep into the Al layer. After 1000 

h of thermal exposure, the average grain size of the Al layer was smaller than those of the starting ribbons 

and the as-bonded specimens. Subsequently, the average grain size was coarsened by 0.7 µm until 2000 h 

as shown in Table 4.2, which clearly demonstrates the occurrence of CDRX. Any heel cracks observed in 

the specimens of the staring material, in the as-bonded, and in the 1000 h exposed one are shown in Figs. 

4.3a–c. During the thermal shock test, the average grain size of the Al layer continuously increased with 

increasing test period. CDRX discontinuously occurs in the recrystallized grains, which are transformed 

into new sub-grains by dynamic recovery. Finally, formed sub-grains are gradually coarsened by CDRX, 

for which the sub-grain growth rate was faster than grain boundary migration by DDRX. Sub-grain 

boundaries are formed as low-angle grain boundaries within the recrystallized grains, which are 

transformed into new high-angle grain boundaries. In thermal shock tests up to the highest temperature 

250 °C, grain coarsening was mainly induced by CDRX. Thus, heel cracks propagated by grain 

coarsening, which can be clearly observed in the boundary between the bonded and non-bonded zones, as 

observed in the specimens after heat-exposure of 2000 h after heat-cycles of 1000 cycles and 2000 cycles, 

as shown in Figs. 4.3d–f. 

 

4.4.2 Recrystallization mechanism  

The stacking fault energy is one of the important parameters to understand the mechanism of DRX. 

DDRX and CDRX usually correspond to low- and high-stacking-fault-energy metals, respectively. 
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Additionally, some recent works have provided a new verification of the DRX mechanism, for which a 

transition occurs from DDRX to CDRX for high-purity Al [36, 37]. Generally, DDRX can be regarded as 

the unique recrystallization mechanism for high-purity face-centered-cubic (FCC) metals [10, 11]. Grain 

boundary migration occurs by DDRX, for which the velocity is faster than that of sub-grain growth by 

CDRX. In particular, the reduction of the average grain size is likely accompanied by grain boundary 

migration, which indicates the local dislocation density almost decreases to zero. In contrast, CDRX 

occurs by dynamic recovery, which is formed in sub-grains and high-dislocation density regions [12, 13]. 

Sub-grain boundaries distribute as low-angle grain boundaries within the recrystallized grains, which 

transforms into new high-angle grain boundaries.  

Microstructural evolution of DRX is also affected by the forming post-process and high-temperature 

deformation [38–41]. During forming post-processes such as cold-rolling and ultrasonic bonding, CDRX 

(LAGBs) and DDRX (HAGBs) regions are formed together by dense and sparse dislocations, 

respectively. The CDRX region was raised by dynamic recovery, which led to sub-grain formation with 

an increasing harsh test period. The DDRX was partially formed after cold rolling and ultrasonic bonding 

and transformed into the CDRX. This phenomenon is analogously observed during thermal exposure and 

shock tests. However, severe CDRX transformation occurred by thermal shock test at the highest 

temperature. Under the most severe heat exposure at 200 °C and the most severe thermal shock up to 

250 °C, CDRX easily occurred by low stress flow and was partially restored by dynamic recovery with 

respect to the high dislocation density. Consequently, the restoration of the elastic strain occurred within 

recrystallized grains by CDRX, which microstructural evolution occurs through (1) the formation of 

LAGBs as an outcome of dynamic recovery within the sub-grain boundaries, (2) the revolution of sub-

grain boundaries into HAGBs, (3) dislocation of the recrystallized grain boundaries that consumes sub-

grain boundaries locally in subsequent grain coarsening, (4) heel crack that propagates along coarsened 

grain boundaries. This procedure of heel crack propagation results demonstrate significantly with regard 

to recrystallization mechanism and grain coarsening in harsh environment. 
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4.4.3 Texture transition within recrystallized grains 

Typical texture components in FCC metals such as Al and Cu, B, C, D, and S texture components 

correspond to deformed microstructure, and cube and G texture components correspond to a recrystallized 

microstructure [14–16]. The dominant texture components of the microstructure were different in each 

region of the bonded zone and the non-bonded zone within the Al layer. During the cold-rolling process, 

the cube texture component developed a B texture component by deformation as the volume was reduced 

by 50 %. During the ultrasonic bonding process, the deformed B texture component still existed within an 

Al layer, and a particular G texture component was partially formed in the recrystallized grains. The G 

texture component was generated by severe ultrasonic oscillation during the bonding process. As 

observed in Fig. 4.12c, the intensity of the B orientation decreases from 15.84 (cold rolled) to 14.62 (as-

bonded). For the as-bonded specimen, the intensity of the G orientation is 1.56. However, the P 

orientation during the lift-up procedure was dominated by plastic deformation in the non-bonded zone, 

the intensity of which was 11.94. Stable orientations were developed from Y to P orientations along the 

βD-fiber during plastic deformation [15, 42].  

During the thermal exposure test, the α-fiber (G-B orientation) and β-fiber (B-S-C/D orientation) 

strongly appeared in the bonded zone regardless of the test period. However, the βD-fiber (Y-P 

orientation) became predominant in the non-bonded zone even though the highest intensity value 

decreased from 3.83 at 1000 h to 2.69 at 2000 h. In particular, β-fiber additionally appeared after 2000 h; 

however, its intensity was lower than that of βD-fiber. The βD-fiber transformed to another orientation 

along the ϕ axis. Subsequently, the deformed βD-fiber transformed to the rotated cube orientation by 

increasing the CDRX region during thermal exposure at 200 °C. 

During the thermal shock test, in the bonded zone, the intensity of the B orientation decreased from 

7.28 at 1000 cycles to 1.36 at 2000 cycles. However, the cube orientation strongly appeared upon 

increasing the number of cycles, the intensity of which increased from 2.7 at 1000 cycles to 3.41 at 2000 

cycles, as observed in Fig. 4.12e. The deformed B texture component continuously transformed to the 
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cube texture component by CDRX. In the non-bonded zone, P and rotated cube texture components 

appeared together after 1000 cycles with intensity values of 2.56 and 1.37, respectively. However, the P 

texture component disappeared and rotated cube texture component appeared with the highest intensity of 

1.84 at 2000 cycles. During the thermal shock test, the plastically deformed P texture component 

transformed to the rotated cube texture component. The rotated cube orientation represents the shear 

texture component [43–45]. Consequently, different intensity values indicated each process (ultrasonic 

oscillation and lift-up) and harsh environment (thermal exposure and shock tests), of which applicable 

textures affect the mechanical stability of Cu/Al clad ribbon wiring. 
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4.5 Conclusions 

Cold-rolled Cu/Al clad ribbons were bonded on ENIG-finished Cu substrates using the ultrasonic 

bonding process. The microstructural evolution and textural transition were investigated on cold-rolled, 

ultrasonic-bonded, thermal-exposed, and thermal-shocked ribbons. The textural transition of the 

microstructure differed in each specimen. In the bonded zone after the thermal exposure test, the α-fiber 

and β-fiber textures were dominant, and B, C, D, and S texture components also appeared. However, the 

βD-fiber texture became dominant in the non-bonded zone, and the Y and P texture components appeared 

as a result of plastic deformation. After severe thermal shock, a cube appeared in the bonded zone, and a 

rotation cube appeared in the non-bonded zone. DDRX partially occurred both by cold rolling and by 

ultrasonic bonding. Sub-grains were formed by dynamic recovery within an Al layer, which transformed 

into new grains by CDRX. Grain coarsening occurred with an increasing rate of CDRX at the highest 

temperature. Based on the current results, grain coarsening by CDRX was observed to be the main 

mechanism of heel crack propagation. 
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In this thesis, high-temperature reliability of metal ribbon wirings with ultrasonic bonding was 

investigated for the application of high-power electronic devices. The Al and Cu/Al clad ribbons were 

selected to wiring materials. The optimized ultrasonic bonding parameters of Al and Cu/Al clad ribbons 

were established by verifying of the ultrasound transmission and reflection. The mechanical stabilities 

were compared by pull strengths depending on each harsh environmental test period. Based on the results 

of both ribbon wirings, the joint stability of Cu/Al clad ribbons is always higher than that of Al ribbons.  

 

Chapter 1 offers a literature survey that described the research trends and issues for ultrasonic wire 

bonding in power electronic devices. Using ribbons replacing typical wires, it can be expected to improve 

the joint reliability under high-current/high-temperature because ribbons have a large cross sectional area.  

This thesis described that the thermal and mechanical superiority of metal ribbon wirings.  

 

In Chapter 2, 4N Al ribbons were applied in a new wiring structure instead of typical string wires 

because the use of rectangular ribbons is expected to improve the high-temperature degradation as the 

large area bonding. However, high bonding parameters such as ultrasonic power/frequency and bonding 

pressure/time have to require to successful manufacturing of ribbon wiring. Therefore, the ultrasonic 

ribbon bonding parameters were optimized to obtain the excellent bondability by pull test at each bonding 

condition.  

 

In Chapter 3, a Cu/Al clad ribbon was additionally adopted in wiring material to achieve high 

thermal/electrical performance together with successful manufacturing. The thermo-mechanical stability of Al 

ribbons have compared to Cu/Al clad ribbons in a practical interconnect bonding structure under harsh 

environmental tests such as thermal exposure to 200 °C and thermal shock cycling at -40/250 °C. After the 

optimizing the ultrasonic ribbon bonding parameters, the mechanical strength of Cu/Al clad ribbons was 
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always higher than that of Al ribbons independent to the test conditions. Hence, the thermal and mechanical 

stability of ribbon wiring structures consist of Cu/Al clad ribbon is superior to those of Al. 

 

In Chapter 4, mechanical degradation mechanism of Cu/Al clad ribbons was investigated by analysis of 

microstructural evolution. Wiring failures were occurred by grain coarsening, leading to heel crack 

propagation, which is caused by CDRX. Heel cracks were formed at boundaries between the bonded zone and 

non-bonded zone even in the ultrasonic ribbon bonding process. During the harsh tests, the heel cracks 

propagated deep into the Al layer along recrystallized grain boundaries. 

 

In Chapter 5, this dissertation concluded that use of metal ribbon wirings can be expected to improve 

the thermal and mechanical interconnection stability. In particular, the mechanical stability of Cu/Al clad 

ribbon wirings was more superior compared to Al ribbons. These findings would contribute to secure a 

long-term interconnection reliability of high-power electronics packaging. 
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