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Abstract

This thesis presents a receiver of the global navigation satellite system (GNSS) for triple-band

signal, which the author studied at the Graduate School of Engineering, Osaka University.

Chapter 1

Chapter 1 introduces the study. It explains the basic GNSS concept, motivation and main goal of

the study, and organization of the thesis.

Chapter 2

Chapter 2 describes a radio frequency (RF) characteristic of a metal-oxide semiconductor field-

effect transistor (MOSFET) device. Before designing circuit blocks, the gate-region resistive features

that affect input impedance are analyzed, and a high-accuracy gate-electrode resistance model is

proposed. The gate-electrode resistance, including vertical resistive elements from the gate surface

to the channel, is considered. By careful separation of this gate-electrode resistance and the non-

quasi-static (NQS) effect, the small-signal gate/source admittance can be analyzed. The proposed

model can effectively explain the small-signal gate/source resistance even for a small number of gate

fingers.

Chapter 3

Chapter 3 explains the operation principle of the designed triple-band receiver system. It has only

a RF path and separates each signal. Using fixed local oscillation (LO) signals, the triple-band signal

can be simultaneously received. The signals mixed in the RF path are separated by an image rejection

technique and independently obtained at each band port by the proposed receiver architecture. For
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these operations, the conventional Weaver architecture is practically modified. For improvement of

the image rejection ratio (IMRR), a digital compensation technique is also proposed. The behavior-

level and circuit simulation results reveal the receiver system capability.

Chapter 4

Chapter 4 describes the circuit blocks that compose the receiver system. A low-noise amplifier

(LNA), active and passive mixers, a poly-phase filter, and an IQ generator are described. These

blocks were verified through a post-layout circuit simulation. The receiver system was designed in

a 130-nm CMOS process with a 1.2-V power supply. The simulation results reveal the capability of

the designed receiver circuits.

Chapter 5

Chapter 5 describes the measurement process and results. The measurements were obtained in

three steps. Bare chips were firstly measured with a wafer probing system. A manual tuner was

used to measure RF features in this step. From those results, the expected value of the external

inductor for the input stage was calculated. With this value, the second process was performed. For

the attachment of external components, bare chip were packaged in 24-pin QFN and a module board

was designed. Using this module board, the analog features were measured and analyzed. Then,

the demodulation output signals were measured with A/D converters (ADCs). In the final step, the

improved IMRR of output signals was observed using a digital compensation method with ADCs

output signals.

Chapter 6

Finally, Chapter 6 presents the conclusions of this study.
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Chapter 1

Introduction

This chapter explains the necessity of the system receiving global positioning system (GPS) triple-

band signal. Firstly, the global navigation satellite system (GNSS) is explained. The calculation

principle of local positioning information from the satellite signal is briefly mentioned and the types

of GNSS are described. The reason why the GPS system is selected as the target is explained. Some

GPS RF front-end integrated circuits have been designed with the CMOS process. In this chapter,

the merits of the CMOS process and conventional receiver structure are also explained. Finally, the

purpose of this study and structure of this thesis are mentioned.

1.1 Overview of GNSS

GNSS has been steadily gaining attention since its initial development. It is the general name of

the system that calculates the target’s position and time using satellite signals. In particular, it is

a navigation system that is available anywhere on earth regardless of the time, place, and weather

conditions. Owing to the affordability, availability, and improvement of position measurement capa-

bilities, applications are increasingly being used for geodetics and surveying in scientific areas where

high-accuracy positioning is required, such as in ocean remote sensing systems [1], mobile devices,

and navigational vehicle systems.
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Figure 1.1: Method of (a) a point positioning and (b) relative positioning.

1.1.1 Calculation Principle of the Target’s Location

There are generally three methods of calculating the target’s location: point, relative, and differ-

ential positioning (DGPS in the GPS system) [2,3].

A. Point Positioning Method

In the point positioning method, the calculation is performed by code tracking through binary

pseudo-random number (PRN) codes. After comparing the synchronization of signals gener-

ated in the receiver and received from the satellite, the propagation time of the signal from

the satellite is estimated. Because of analysis of signal synchronizations, a receiver requires

the measurement results of a minimum of four satellites. In Fig. 1.1(a), the point positioning

method is illustrated. The position coordinates of each satellite are expressed as (xi, yi, zi)

(i is 1 to 4 indicating each satellite). The user’s coordinate is given by (x, y, z). Then, the

distance from each satellite to the user can be calculated as

Di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 + c∆δ. (1.1)

From this equation, if the simultaneous positioning information of more than four satellites

can be obtained, the user’s local position can be calculated [4,5]. Here,c is a light velocity in

a vacuum condition.∆δ(= δi − δ) is the time error between the satellite and user.δi is the

time variation of the satellite, andδ is the time variation of the user from the standard time.
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B. Relative Positioning Method

In the case of relative positioning, the location is decided from the carrier phase tracking

method. The phase difference between the received signal from the satellite and synchroniza-

tion signal generated in the receiver is estimated. It is used to obtain the relative local position

in the survey and supports more high-accuracy positioning information than a point position-

ing method. As illustrated in Fig. 1.1(b), after pre-installing receivers at known points or the

target’s location, the distance to the baseline is obtained through simultaneous measurements

at a pre-installed point (User B in Fig. 1.1(b)) and the target’s location (User A in the same

figure). The relative positioning method uses the following Eq. (1.2) to calculate the phases of

carrier (Φi, i is 1 to 2 indicating each satellite) [4,5].

Φi = f · δi +
ρi
λ

− f · δ +Ni, (1.2)

wheref , δi, δ, λ, ρi, andNi denote the reference frequency of the satellite, time variation

at satellites and receiver, wave length of the carrier signal, geometric distance between the

satellite and receiver, and an unknown factor. Through repeated measurements, the moving

position (User A in Fig. 1.1(b)) is estimated and the unknown factors are obtained. Observation

equations about User A and User B in Fig. 1.1(b) can be obtained according to the satellite

positions. Then, from this position information of User A and User B, the displacement amount

can be calculated as in Eq. (1.3).

xA = xB +∆x,

yA = yB +∆y,

zA = zB +∆z. (1.3)

This method can support high-accuracy positioning information. However, owing to the pre-

installed reference place, it is difficult to employ this method in any location. It is time-

intensive to calculate the reference place positioning information. It typically takes more than

1 hour [5]; therefore, this method is used for the observation of terrain, such as altitude.
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Table 1.1: Comparison of survey methods using the DGPS.

C. Differential Positioning Method

A recent positioning information calculation, the differential positioning method, is achieved

by combining the two methods mentioned above. In the GPS system, this method is called dif-

ferential GPS (DGPS) [4, 5]. Through a pre-installed receiver, the signal compensation infor-

mation is pre-calculated. Then, when the positioning information is calculated at any moving

point, the compensation information is used to obtain high-accuracy positioning. Generally, a

point positioning method is used for calculation of compensation information, and the relative

positioning is used as a measurement method. At this time, according to the compensation

time with the calibration data, the DGPS is used in real-time as a post-processing technique.

In real survey cases using DGPS, the techniques for observing the scene using GNSS signals

are classified into the five methods illustrated in Table 1.1.

1.1.2 GNSS Species

The first satellite launched above the Earth’s orbit was Sputnik-1 of the Soviet Union in October

1957. In November of that year, after the success of the Sputnik-2 launch, the means for the space

age had opened. However, these satellites were small and propagated only simple electric waves.

Prompted by these events, the US began to build full-fledged satellite systems.
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A. Global Positioning System (GPS) [6]

In the late 1950s and early 1960s, the US military began the construction of survey and navi-

gation systems using satellites. From that point, the predecessor of the GPS system, Navistar

GPS, was initiated from a multi-step project. At first, the position of an object was grasped by

using aircraft instead of satellites. Then, the measurement of the time and position was intro-

duced by observing the Doppler shift of signals transmitted from satellites, an approach that

can calculate more accurate positioning information. The first satellite to operate the GNSS

function, Block-I, was launched in February 1978. Until the end of the second step of this

project, the nine additional Block-I satellites were launched. During these periods, the satellite

system’s total structure and verification were performed. By the end of 1985, the second gen-

eration satellite, Block-II, was developed. The initial satellites (Block-I) had not worked since

2003 on account of their life span. However, new satellites, such as Block-IIA and Block-IIR,

were launched and operated. Today, for the GPS system, satellites operate a total of 28 and

three signal bands have been used as L1, L2, and L5.

B. Global Navigation Satellite System (GLONASS) [7]

In the GPS system, the use of signals implies the possibility of restriction by the US, which can

control the satellite positioning systems. To prevent this, some countries have been developing

their own satellite positioning systems. Russia, for example, developed a satellite navigation

system called Global Navigation Satellite System (GLONASS) in 1976. That country then

launched satellites in 1982 and more actively developed them. In 1995, it constructed a satellite

group for universal utilization. However, with the collapse of the Soviet Union and worsening

of the financial situation there, the maintenance of the satellite was impossible. From the

2000s, the development of a satellite navigation systems with active involvement of the Russian

government began anew, and a new version of the GLONASS-M satellite was launched in

2003. In 2008, 16 satellite groups for calculating global navigation on the whole earth was re-

equipped. However, the cost of the GLONASS receiver based on frequency-division multiple-

access (FDMA) was more expensive than that of the GPS receiver based on code-division

multiple-access (CDMA). Unable to overcome this disadvantage, it did not succeed in the

private market. Finally, a third generation satellite named GLONASS-K1 launched in 2011

began to transmit the L3OC signal based on CDMA. Russia currently intends to launch the
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new satellite that can transmit L2 and L5 signals for a target GPS until 2020.

C. Galileo [8,9]

Another system is Galileo of the EU and European Space Agency. Since 1999, a common team

for developing the satellite navigation systems was composed in the EU. That team combined

the projects of each country in Europe. Galileo was also initiated to prevent a monopoly by

the US. In that project, GIOVE-A in 2005 and GIOVE-E in 2008 were launched. In terms of

features, they are sub-projects of GNSS-1 and GNSS-2, respectively. GNSS-1 is intended to

compensate the GPS and GLONASS. GNSS-2 is intended for an independent global satellite

navigation system. However, owing to the worsening of the EU financial realm and rocket

launcher problems, the system’s composition and operation are not yet functional.

D. COMPASS [10]

In Asia, China and Japan have developed satellite navigation systems. In China, the COM-

PASS project was undertaken. It includes a plan to launch 5 geostationary satellites and more

than 30 orbit satellites for pan-global communication until 2015. The local navigation system

has been operating since 2001. However, it is difficult to know the exact structural require-

ments because only a partial configuration of the system and signal has been released.

E. Quazi-Zenith Satellite System (JRANS-QZSS) [11]

In Japan, the Japanese regional advanced navigation system - the Quasi-Zenith Satellite Sys-

tem (JRANS-QZSS) - provides high-accuracy positioning information by 100% coverage of

the full domestic area to reinforce the positioning information in combination with the im-

proved GPS system. The MICHIBIKI satellite was launched in 2010. JRANS is composed of

three orbit satellites (QZSS), three long elliptical orbit satellites (HEO), and one geostationary

satellite. In particular, more effective visual information is provided by the QZSS satellite,

which is equipped with time synchronization and remote maintenance functions.

F. Indian Regional Navigation Satellite System (IRNSS) [12]

Otherwise, there is the Indian Regional Navigation Satellite system (IRNSS), which is devel-

oped by the Indian Space Research Organization (ISRO). It is composed of three geostationary

satellites and four orbit satellites to provide India with local information.
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Table 1.2: Features of GPS, GLONASS, and Galileo systems.

A comparison of GPS, GLONASS, and Galileo is presented in Table 1.2 [3].

The GNSS frequency allocations used for global regions are illustrated in Fig. 1.2 [13]. Among

these GNSS, the systems that are widely used and open the configuration and signal requirements to

the public are GPS and GLONASS. However, recent studies of GLONASS are starting to compensate

the GPS signals and improve the accuracy of the positioning information through the co-processing.

In other words, the GPS system is still being used in the world and its application ability is seen

as the most excellent. Furthermore, the US government is aware of competitors and suspended the

selective availability (SA) to promote the GPS satellite navigation system with international stan-

dards. It allowed significant improvement of the performance of the GPS in May 2000. In addition,

it expanded to the private sector the L5 band signal, which has been used for special purposes, such

as civil aviation. It has taken great effort toward the modernization of GPS. For this reason, the GPS

system is highlighted in this study.
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Figure 1.2: GNSS frequency allocations.

1.2 The GPS Receiver

1.2.1 CMOS Integration Circuit in the Receiver

In the receiver design, one of the recent issues is low power consumption [14]. To integrate multi-

functions in one device as a smart phone, the effects of the battery on operation time are becoming

important. In addition, the signal sensitivity by the system integration is required. A compound

semiconductor or superconductor has been developed and studied to minimize noise effects gener-

ated from device physics [15]. In a compound semiconductor, it is hard to integrate into a single

chip and operate in low power consumption. Thus, the device designed from the CMOS process is

spotlighted because of its high integration rate, low power consumption, and low cost for fabrication.

In the CMOS process, it is difficult to design the circuit for operating in a high frequency because

of limitations of the low unity-current-gain cut-off frequency (ft). To overcome these problems,

some systems have been designed with a mixed process. For example, one system block diagram

exists [16]. During the designing of the system, the digital stage, which has a slight noise effect, was

designed in the CMOS process. The normal RF-stage was designed in SiGe BiCMOS. The power

amplifier, which requires high-frequency large-output-swing operation, was designed in GaAs, as il-

lustrated in Fig. 1.3. Recently, developing of a scaling process technique,ft has advanced; therefore,

the CMOS process has the benefit of integrating circuits for communication systems.

For development of the process, other parts can be designed with the CMOS process, as well

as the digital part. Therefore, the fully integrated circuit has been widely studied to decrease loss of

interconnection between the blocks. Because it still has a larger noise characteristic and long delay of
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Figure 1.3: Process types for RF system.

the signal amplifier than the compound semiconductor, the integrated circuit with the CMOS process

requires close attention. In particular, in the low operation voltage currently being studied, there are

several physical problems, such as a high threshold voltage compared to the supply voltage. The

characteristics of the process are summarized in Table 1.3.

Table 1.3: Advantages and disadvantages of various process.



10 Chapter 1 Introduction

Figure 1.4: Structure of (a) direct-conversion receiver and (b) double-conversion receiver.

1.2.2 General Structure of the Receiver

In general, the receiver structures fall into two divisions as direct-conversion receiver and double-

conversion receiver according to the stage of frequency transformation. In the case of the direct-

conversion receiver, the frequency of the received signal is converted to the IF frequency through the

single local oscillator (LO) signal, as illustrated in Fig. 1.4(a).

It has the advantages of a simple system structure and low power consumption. However, there

are some critical problems due to its simple structure as a self-mixing leakage of RF and LO signals,

as well as its feed through of RF signals and DC offset. Because of the interference signal generated

on account of the poor reverse isolation of the low-noise amplifier (LNA) and the poor port-to-port

isolation of the mixer, the DC offset is generated at the IF-stage [17]. To solve these problems, the

high-cost filter is needed as a high-performance surface-acoustic-wave (SAW) filter located at the

front of the LNA [17]. On the other hand, the double-conversion structure converts the frequency
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of received signals to the IF frequency through multiple stages, which can transfer the frequency as

illustrated in Fig. 1.4(b). Usually, the signal located among the stages of each frequency transfor-

mation can be filtered to match the desired condition. Here, Eq. (1.4) is used to obtain the factor Q,

which represents signal selectivity.

Q =
ω0

BW
. (1.4)

The higher the Q-factor, the more the signal loss is decreased [18]. Normally, the high Q-factor can

be obtained at low-frequency; however, it is difficult to obtain a high Q-factor in a high frequency. To

overcome this problem, some schemes adapt filters in several stages; however, this structure increases

the size and cost.

1.2.3 GPS Receiver for Multi-band Signals

In the current GPS environment, there are three species of signal frequency bands that can be used

in a custom field. However, in the GPS receiver, which has been used until now in custom fields,

there are very few multi-band GPS systems [19–24]. Some reported receivers for multi-band signals

are only composed with a simple single receiver in parallel [23, 25], as illustrated in Fig. 1.5. In

this structure, the system size is large and requires high power consumption. These cannot support

the simultaneous reception with the same RF signal delays, which is important for some scientific

applications [1].

In recent studies, some researches have addressed a dual-band receiver that has good signal isola-

tion [21]. However, these approaches are not fitting to the development of compact low-power and

low-cost devices.

1.3 Research Purpose and Thesis Structure

1.3.1 Research Purpose

Use of multi-band signals has the advantage of fast detection in the DGPS, as mentioned above.

It uses the real-time kinematic (RTK) for the survey method. To realize it with high-accuracy po-

sitioning, the operation of receiving multi-band signals should be simultaneous to reduce the time

delay difference between the different band signals. For these goals, this research focuses on the
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Figure 1.5: Conventional GPS structure for multi-band signals.

Figure 1.6: Inductive-source-degeneration stage of LNA with the gate-source admittance.

GPS receiver, which can receive the triple-band signal through a single receiver. The proposed archi-

tecture is not composed of three individual receivers, but only a single receiver requiring an antenna.

Through the single receiver, each band signal can be individually received at separate ports. To avoid

the RF signal delay difference, the fixed LO signal is considered through a proper frequency arrange-

ment. This helps the simultaneous detection of each band signal. Through this GPS receiver, the

high-accuracy positioning information (through using multi-band signals) and reduction of power

consumption and cost (through reducing chip size) are expected. Through the whole integration of

the RF front-end, the power loss between the composed blocks can be reduced.
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With these objectives, understanding device features is necessary. Input impedance matching can

be realized by careful consideration of device’s impedances. The designed receiver system includes a

part of interconnecting chips and external components for the impedance matching. The separation of

desired and undesired signals is an important factor that determines system capability because of the

low power level of the GPS system’s input signal. It is a main point of this work. Figure 1.6 shows the

input impedance of the inductive-source-degeneration stage of the LNA.Lg andCgs are considered

in the conventional model. However,Rgs in the figure is more effective for input impedance as the

device becomes smaller and the operation frequency increases. It is mainly handled to match the

input impedance; therefore, the gate-resistance is important to the design of LNA for the triple-band

signal.

1.3.2 Thesis Structure

The structure of this thesis is illustrated in Fig. 1.7.
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Chapter 2 describes the structural characteristic of the MOSFET device and analyzes the high-

accuracy gate-electrode resistance model. The signal detecting method with an image rejection tech-

nique is mentioned in Chapter 3. The theoretical background, which can make separate triple-band

signal with a minimum RF path, is explained. In Chapter 4, the circuit level implementation of the

receiver system is described including the device features explained in Chapter 2 and the system

architecture mentioned in Chapter 3. For this work, element circuits, a proper signal line for signal

balance, and layout features are considered. Experimental results of the designed chip are shown in

Chapter 5. Finally, the conclusions are discussed in Chapter 6.



1.3 References 15

References

[1] T. Ebinuma and A. Yasuda,“Airborne GPS reflectometry from low altitude aircraft,”SICE

Journal of Control, Measurement, and System Integration, vol. 3, no. 6, pp. 429–434,

Nov. 2010.

[2] A. Leick, GPS Satellite Surveying, 3rd ed., New York:John Wiley and Sons, 2003.

[3] W. Hofmann, Bernhard, Lichtenegger, Herbert, Wasle, and Elmar,GNSS - Global Navigation

Satellite Systems, Springer Wien NewYork, 2008.

[4] G. Nawrocki,NAVSTAR GPS User Equipment: Introduction, NATO, 1991.

[5] T. B. James,Fundamentals of Global Positioning System Receivers: A Software Approach, 2nd

ed., John Wiley and Sons, 2005.

[6] G. Scott and G. Demoz,GNSS Applications and Methods, Artech House, 2009.

[7] O. Phillip, Commerce in Space: Infrastructures, Technologies, and Applications, IGI

Global, 2008.

[8] O. Phillip, Space Technologies for the Benefit of Human Society and Earth, Springer, 2009.

[9] N. Jari, L. S. Elena, S. Stephan, and H. Heikki,GALILEO Positioning Technology,

Springer, 2015.

[10] G. S. Rao,Global Navigation Satellite Systems with Essentials of Satellite Communications,

Tata McGraw-Hill, 2010.

[11] S. G. Mohinder, P. A. Angus, and G. B. Chris,Global Navigation Satellite Systems, Inertial

Navigation, and Integration, 3rd ed., John Wiley and Sons, 2013.

[12] L. Ajey, Asian Space Race: Rhetoric or Reality?, Springer, 2013.

[13] K. M. Anil and A. Varsha,Satellite Technology: Principles and Applications, John Wiley and

Sons, 2007.



16 Chapter 1 Introduction

[14] A. P. Chandrakasan and R. W. Brodersen,“Minimizing power consumption in digital CMOS

circuits,” Proc. IEEE, vol. 83, no. 4, pp. 498–523, Apr. 1995.

[15] A. Rofougaran, J. Y. C. Chang, M. Rofougaran, and A. A. Abidi,“A 1 GHz CMOS RF front-

end IC for a direct-conversion wireless receiver,”IEEE J. Solid-State Circuits, vol. 31, no. 7,

pp. 880–889, July 1996.

[16] H. S. Bennett, R. Brederlow, J. C. Costa, P. E. Cottrell, W. M. Huang, A. A. Immorlica,

J. E. Mueller, M. Racanelli, H. Shichijo, C. E. Weitzel, and B. Zhao,“Device and technology

evolution for Si-based RF integrated circuits,”IEEE Trans. Electron Devices, vol. 52, no. 7,

pp. 1235–1258, July 2005.

[17] B. Razavi,RF Microelectronics, Prentice Hall PTR, 1998.

[18] J. Hong and M. J. Lancaster,Microstrip Filter for RF/Microwave Application, John Wiley and

Sons, 2001.

[19] J. Ko, J. Kim, S. Cho, and K. Lee,“A 19 mW 2.6 mm2 L1/L2 dual band CMOS GPS receiver,”

IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1414–1424, July 2005.

[20] Y. Utsurogi, M. Haruoka, T. Matsuoka, and K. Taniguchi,“CMOS front-end circuits of dual-

band GPS receiver,”IEICE Trans. Electron., vol. E88-C, no. 6, pp. 1275–1279, June 2005.

[21] J. Wu, P. Jiang, D. Chen, and J. Zhou,“A dual-band GNSS RF front end with a pseudo-

differential LNA,” IEEE Trans. Circuits Syst. II, vol. 58, no. 3, pp. 134–138, Mar. 2011.

[22] D. Chen, W. Pan, P. Jiang, J. Jin, T. Mo, and J. Zhou,“Reconfigurable dual-channel multiband

RF receiver for GPS/Galileo/BD-2 systems,”IEEE Trans. Microw. Theory Tech., vol. 60, no. 11,

pp. 3491–3501, Nov. 2012.

[23] T. Elesseily, T. Ali, and K. Sharaf,“A crystal-tolerant fully integrated CMOS low-IF dual-band

GPS receiver,”Analog Integrated Circuits and Signal Processing, vol. 63, no. 2, pp. 143–159,

May 2010.



1.3 References 17
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Chapter 2

Modeling of Effective Gate Resistance

In this chapter, the gate-electrode resistance of MOSFET and effect of non-quasi-static (NQS)

for RF operation are analyzed. The gate-electrode resistance is more precisely analyzed through

consideration of the vertical current paths located between the silicide and poly-silicon layers. These

elements located there are not effective at long-channel devices, however more significant in short-

channel devices. So, in practical RF CMOS circuit design, it occupies the important part. This

analysis is undergone by careful separation of the above gate-electrode resistance and NQS effect.

To verify it, the extraction method for de-embedded MOS parameters from a 130-nm CMOS process

is used. Through these values, the Elmore constant (κ) of NQS gate-source resistance is calculated

and compared with semi-empirical model.

2.1 Introduction

CMOS technology realizing a low-power, large-scale integration, and low cost for manufacture

are recently matching demands for miniaturization, low-power operation, and low cost in wireless

communication system [1–4].

Scaling CMOS devices also are overwhelming the device performance, such as unity-current-

gain-cut-off frequencyft, against bipolar junction transistors and compound semiconductor devices,

which were popular in RF circuits [5]. So, RF system on chip (SoC) integration from digital domain

to RF analog domain can be realized. Although complexity of such a RF SoC increases, its short

development time is always forced. In such a situation, precise simulations of analog/RF circuits are
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important, and more accurate MOS device model and analysis of parasitic elements are needed for

their implementations [6–8]. One of important issues in the MOSFET model in RF region is about the

effective gate resistance. It influences the input impedance, maximum oscillation frequencyfmax,

and noise performance [9–11]. Especially, these features are affected in the design of multi-band and

wide-band CMOS low-noise amplifiers (LNAs) [12–15]. The RF input resistance in common-source

MOSFET has two factors [8, 16–18]. The first is related to the physical gate-electrode. The second

originates from the channel itself in the intrinsic MOSFET region and its coupling with the gate-

source capacitanceCgs, which causes a relaxation-time dependent phenomenon of channel charge

response for a time-varying input signal, so called non-quasi-static (NQS) effect [19, 20]. As semi-

empirical model, the NQS gate-source resistanceRgsi of the MOSFET operating in saturation region

is approximately given by

Rgsi ≈
1

κ gm
, (2.1)

wheregm is the transconductance, and the Elmore constantκ is five for long-channel and is reported

to be as small as one for short-channel devices [17]. Because the above two resistance factors have a

different gate size dependence [18], their separate analysis is important in scalable MOSFET model

and is also useful in RF circuit design [8]. Therefore, the accurate resistance model of extrinsic gate-

electrode is required in advanced short-channel devices as well as the accurate prediction ofκ. The

accurate value ofκ can be useful in some analytical design approaches of LNA [15,21].

In this chapter, high-accuracy gate-electrode resistance model is mentioned. The model includes

the vertical current paths between the silicide and poly-silicon layers in MOSFET. Through the sepa-

ration between the gate-electrode resistance and NQS effect, the small-signal gate-source admittance

is analyzed. Some parameters extracted in a 130-nm CMOS process such asκ are derived, verified

and discussed.

2.2 Analysis of Gate-electrode Resistance

The gate of conventional MOSFET model is composed of gate insulator, poly-silicon, silicide

and metal. Figure 2.1(a) illustrates top-view and cross section of n-channel MOSFET with a gate

lengthL and gate widthW in the silicided poly-silicon gate technology. When feeding the signal

to gate, it propagates in horizontal direction of the silicide on the gate-electrode surface, and then in



2.2 Analysis of Gate-electrode Resistance 21

Figure 2.1: (a) Top-view and cross-section of MOSFET (both-side gate connection) and (b) equiva-
lent circuit of gate unit element.

vertical direction of poly-silicon and gate insulator to effect channel. Gate resistance of MOSFET is

composed with gate contact resistance between the metal and silicide, resistance of the silicide itself,

the interface resistance between the silicide and poly-silicon, and the vertical resistance of the poly-

silicon itself [22]. The interface resistance is important in the vertical signal propagation [11], and

its typical values are about 25Ωµm2 (TiSi2) [11] and about 2∼3Ωµm2 (NiSi) [23]. In long channel

MOSFET, vertical elements of the gate-electrode are less effective than gate contact and silicide

resistance. However, as gate length decreases, the influence of vertical elements is becoming more

important. As gate width decreases, the horizontal resistance decreases, while the vertical resistance

increases inversely proportional to the gate width.

Each part of gate-electrode resistance can be expressed with lumped elements for the signal path

length in a horizontal gate width directiondz using a transmission line model as illustrated in

Fig. 2.1(b), which is similar to that in silicided diffusion region [24]. Here,Rcg is unit gate con-
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tact resistance between the silicide and poly-silicon,ρsili is the sheet resistivity of the silicide,ρint

is an interface resistivity between the silicide and poly-silicon,ρvp is the vertical resistivity of poly-

silicon layer per unit dimension.Cox is unit capacitance of the gate insulator. For simplification in

mathematical expression, letRsili = ρsili/L, Rint = ρint/L, Rvp = ρvp/L. WhenCgc is defined as

the capacitance between the gate and channel, it can be considered asCgc/W ∝ CoxL.

Considering the steady state at the angular frequencyω in Fig. 2.1(b), the total admittance of

vertical current path elements for unit signal propagation length on the gate-electrode surface,Yvp,

is given by

Yvp =
jωCgc/W

1 + jωCgc

(
Rint +Rvp

)
/W

. (2.2)

From the manipulation described in Appendix A, the gate-electrode resistance seen from the gate

contact position for unit gate finger with lengthWf is expressed as

Rg,ele =
k

3
ρsili

Wf

L
+

ρint + ρvp
LWf

, (2.3)

wherek is 1 and1/4 for a single-side and a both-side gate connections, respectively.

Additionally, considering the gate contact between the silicide and metal as well as the gate exten-

sion to the channel area in a similar way based on the previous work [7], the gate-electrode resistance

for the number of gate fingerNf is expressed as

Rge =
k

3
ρsili

Wf +Wext/
√
k

LNf
+

ρint + ρvp
LNfWf

+
Rcg

NcgNf
, (2.4)

whereWext is the distance between the channel area edge and gate contact, andNcg is the number

of gate contacts per finger [7]. Capacitive coupling of the gate extension to the substrate is also

considered in the above equation by using a factor1/3. Compared to the previous works [7, 8],

Eq. (2.4) has the second term inversely proportional to the channel areaLNfWf , which originates

from the vertical resistance elements. As the channel area decreases, this influence increases.

2.3 Parameter Extraction for NQS Resistances

In low-frequency operation, carriers in the channel can respond immediately to the applied ter-

minal voltages, which corresponds to charging and discharging of the gate-source capacitanceCgs.
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Figure 2.2: (a) Small-signal equivalent circuit including external parasitic elements and (b) its intrin-
sic part.

This is considered as quasi-static operation. On the other hand, as the operation frequency gets much

higher, the channel resistance influences response time of the carriers, which is NQS operation. Al-

though the transconductance, drain conductance and large-signal operation are influenced by the

NQS effect, the influence of the small-signal gate-source admittanceygs is crucial in the multi-band

and wide-band LNA designs. This work focuses on the small-signal gate-source admittance.

To estimate the NQS effect, the careful parameter extraction for MOSFET model is required.

Figure 2.2(a) shows the small-signal equivalent circuit which includes external parasitic elements. In

this work, the body is connected to the source, resulting in no body effect.Rgsi andRgdi in Fig. 2.2(b)

give NQS effect.Rge is a gate-electrode resistance,Rde andRse are series resistances of drain and
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source, andCgse andCgde are overlap capacitances between the gate and source/drain.Cdse is the

external capacitance between the drain and source (body in this case). Extraction method separates

extrinsic and intrinsic parameters from two-port parameters of the MOSFET. In the first step, the

external resistances (Rge, Rde, andRse) and the external capacitances (Cgde, Cgse, andCdse) are

de-embedded from the two-port parameters of the MOSFET, using the de-embedding technique [8].

The estimation techniques of the external resistances and capacitances are described later. In the

second step, the equivalent circuit including only intrinsic parameters can be obtained.

To estimate the external parameters, the cold biasing (VGS = VDS = 0 V) is utilized. It is assumed

that the intrinsic parameters except for drain-source conductancegds are not presented in cold bias.

External parameters are nearly independent ofVGS . Thus theZ-parameters of the MOSFET in the

cold biasing can be obtained as follows:

Z11 = Rge +Rse −
gdsC

2
gde

A(ω)
− j ·

g2ds
(
Cgse + Cgde

)
/ω + ωB

(
Cgde + Cdse

)
A(ω)

, (2.5)

Z12 = Z21 = Rse +
gds

(
Cgse + Cgde

)
Cgde

A(ω)
− j ·

ωBCgde

A(ω)
, (2.6)

Z22 = Rde +Rse +
gds

(
Cgse + Cgde

)2
A(ω)

− j ·
ωB

(
Cgde + Cgse

)
A(ω)

, (2.7)

A(ω) = ω2
(
CgdeCdse + CgseCgde + CgseCdse

)2
+ g2ds

(
Cgse + Cgde

)2
,

B = CgdeCdse + CgseCgde + CgseCdse.

In the cold bias condition,gds is negligibly small. Assuming it, real parts of theZ-parameters in

high frequency can be approximated as

ℜ[Z11] = Rge +Rse, (2.8)

ℜ[Z12] = ℜ[Z21] = Rse, (2.9)

ℜ[Z22] = Rde +Rse. (2.10)

From these equations,Rge, Rde, andRse can be estimated. In addition, Using Eqs. (2.5)-(2.10) with



2.4 Verification of Gate-electrode Model and NQS Effect 25

the same assumption of smallgds, imaginary parts of theZ-parameters can be approximated as.

ℑ[Z11] = −
Cgde + Cdse

ωB
, (2.11)

ℑ[Z12] = ℑ[Z21] = −
Cgde

ωB
, (2.12)

ℑ[Z22] = −
Cgde + Cgse

ωB
. (2.13)

From these equations,Cgse, Cgde, andCdse can be estimated.

The intrinsicY -parameter matrix[Yint] can be obtained from the embeddedZ-parameter[Zem]

matrix of the MOSFET model shown in Fig. 2.2 by using the following equations.

[Zext] =

[
Rge +Rse Rse

Rse Rde +Rse

]
, (2.14)

[Yext] = jω

[
Cgse + Cgde −Cgde

−Cgde Cgde + Cdse

]
, (2.15)

[Yint] =
[
Zem − Zext

]−1 −
[
Yext

]
. (2.16)

Based on the equivalent circuit shown in Fig. 2.2(b), the parameters of MOSFET’s intrinsic parts

can be calculated from relations of real and imaginary parts of Eq. (2.16) as following equations.

Cgsi =
ℑ[Y11,int] + ℑ[Y12,int]

ω
, (2.17)

Cgdi = −ℑ[Y12,int]
ω

, (2.18)

Rgsi = ℜ
[ 1

Y11,int + Y12,int

]
, (2.19)

Rgdi = −ℜ
[ 1

Y12,int

]
, (2.20)

gm = ℜ
[
Y21,int

]
ω=0

, (2.21)

gds = ℜ
[
Y22,int

]
ω=0

. (2.22)

2.4 Verification of Gate-electrode Model and NQS Effect

In this work, instead of on-chip high-frequencyS-parameter measurement, simulated small-signal

S-parameters are used with a RF MOSFET model (BSIM4 with GATEMOD=3 [25]), which can
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Figure 2.3: Extracted and calculated values of gate-electrode resistanceRge versus the number of
gate fignersNf (L = 140 nm,Wf = 3 µm, both-side gate connection).

reproduce RF and DC characteristics well with many parameters for a commercial 130-nm CMOS

process. This can realize cost-effective verification of device models. As narrow gate width under

3 µm has an effect of the interface resistance on the gate resistance, NMOS devices with single fin-

ger width of 3µm and both-side gate connection are used in this work. The embeddedZ-parameter

[Zem] matrix can be obtained from the simulatedS-parameters of the device for the maximum fre-

quency of 50 GHz.

The external gate-electrode resistanceRge is extracted by using Eqs. (2.5)−(2.10), and is com-

pared with calculated ones by using Eq. (2.4). The results are illustrated in Fig. 2.3. The second term

of Eq. (2.4) originates from the vertical current paths. To confirm the influence of the vertical current

path in Fig. 2.1,Rge with and without the second term (solid and dotted lines in Fig. 2.3, respec-

tively) was calculated. The value ofRint+Rvpoly is determined by curve fitting as 12.5Ωµm2 which

is reasonable value considering the reported typical values [11, 23]. From this figure, consideration

of the vertical current path becomes significant for small gate finger numbers. It is more effective for

short-channel devices.

Based on the extracted external parameters, NQS gate-source resistanceRgsi and transconduc-

tancegm are extracted by using Eqs. (2.19) and (2.21). In this parameter extraction, to neglect
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Figure 2.4: Extracted values of NQS gate-source resistanceRgsi of NMOS devices with gate length
L = 140, 500, 1000, 2000 and5000 nm at gate-source overdrive voltages (a)VGS − VTH = 0.4 V
and (b)VGS −VTH = 0.8 V (gate width is 120µm (3µm× 40 fingers), both-side gate connection).

high-order NQS effect [26] and delays in transconductance and drain conductance [8], the maximum

frequency is set to 6.5 GHz. Figure 2.4 shows the dependence ofRgsi on drain-source voltageVDS

at the gate-source overdrive voltagesVGS − VTH = 0.4 V and 0.8 V for various gate lengths. In
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Figure 2.5: Gate length dependence of extracted elmore constantsκ.

saturation region (VDS > VGS − VTH ), Rgsi has littleVDS dependence.

Figure 2.5 shows Elmore constantκ obtained from extractedRgsi andgm with Eq. (2.1) as a func-

tion of gate length. As mentioned above,κ is around 5 forL > 1 µm. ForL < 1 µm, it decreases to

about 3, which may originate from velocity saturation [27]. The small-signal local channel conduc-

tance in the velocity saturation region is smaller than that in the non-velocity-saturation source-side

region. However, the value ofκ around one, as reported in previous works [8,17], could not be con-

firmed even for minimum gate length (L = 140 nm) in this work. Theκ for short-channel devices

may have a dependence on channel-length modulation, drain-induced barrier lowering, and so on,

which show significant and complicated dependence on device structure.

2.5 Conclusion

In this chapter, the gate-electrode resistance of MOSFET and NQS effect are analyzed using a

130-nm CMOS process. The vertical current paths between the silicide and poly-silicon are consid-

ered in MOSFET. The vertical current paths are not effective in the devices with large channel area,

but become more significant as the channel area decreases. The gate-electrode resistance including

vertical current paths can reproduce well the practical RF characteristics. With the scaling of CMOS
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technology, this effect is not considered till now in RF CMOS circuit designs, however it has sig-

nificant effect in the design of multi-band and wide-band CMOS LNAs. By careful separation of

the above gate-electrode resistance and the NQS effect, the intrinsic small-signal parameters were

extracted. The high-accuracy analysis considering physical characteristic with the vertical elements

is verified. Elmore constant of the NQS gate-source resistance (κ) about five was confirmed for

the long-channel devices, while it decreases down to about three for the short-channel devices. The

value ofκ around one, reported in previous works, could not be confirmed even for minimum gate

length in this work. The NQS effect in short-channel devices may have significant and complicated

dependence on device structure. For further studies, the analyses on various processes with various

device structures are more required for RF CMOS circuit designs.
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Chapter 3

Triple-band Signal Receiver Architecture

In this chapter, the theory of signal separation on a path at the same time is mentioned. Based

on the theory, new architecture which can receive simultaneously multi-band signals with a RF path

is explained. The image rejection technique for it is explained. Parameter mismatch deteriorate

the performance of the receiver. Compensation technique which can overcome this deterioration is

described.

3.1 Introduction

Recently, the global positioning system (GPS), which was originally developed for military pur-

poses, has been widely used to obtain the location information in applications such as a car navigation

system. The widespread use of civilian GPS signals in consumer applications has been promoted by

a single GPS receiver chip fabricated on a CMOS process due to its significantly reduced size, cost,

and power consumption [1]. It is also becoming attractive to scientific applications, such as ocean

remote sensing [2], which higher positioning accuracy is required. One way of achieving this is to

use multiple civilian GPS signals at different frequencies, and such an approach can also offer ad-

vantages for robust GPS services such as those used in aviation. GPS with multi-band signals has

come closer to reality with the launch of a satellite transmitting in the L5 band, to compliment the L1

and L2 civilian bands that are already in use [3]. Thus, the GPS receivers that can detect all signals

of three bands simultaneously are now in demand.

One of key issues in designing a triple-band GPS receiver is how to implement a highly integrated
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RF front-end that can operate at low power consumption. To date, few multi-band receivers have been

reported [4–10]. Although dual-band receivers with good signal isolation have been developed that

use a band-selection architecture [6] or a simple parallel arrangement of several receivers [9], these

approaches cannot realize miniaturized low-power and low-cost devices. Simultaneous reception

with the same RF signal delay, which is important for some scientific applications, is also not possible

[2]. To realize compact low-power triple-band GPS receiver with simultaneous reception, signal

separation for the triple-band signal on the single RF signal path is a key technique.

In this chapter, the image rejection technique as the principle of removing unwanted band signal

and image rejection ratio (IMRR) for estimation of proposed architecture’s capability are explained.

The proposed method of independently and simultaneously detecting each band signal by using that

technique, and verification through behavior-level and circuit simulations are shown. Finally, the

theory of digital compensation technique is mentioned to improve IMRR.

3.2 Image Rejection Technique

In RF receiver, frequency translation is a base of signal receiving. Generally, received signals are

demodulated through A/D converter (ADC) after frequency translation to base-band. This process

is operated through RF mixer. The operation is carried out through the multiplication of RF and

LO signals. During this operation, the image part of RF signal at opposite side against LO signal

degrades receiving capability. The simple method to reject image signal is a use of external band-pass

filter like the SAW filter. In integrated circuit, high-Q-values of filter, supporting enough selectable

capability, is hard to be used.

There is another method to reject image signal. By using symmetric structures, the effect of image

signals can be rejected. In this study, phase-converting method to apply the image reject technique

has been used for signal selecting. So the general image reject technique through phase-converting

method is explained, and how to adapt this method for signal selecting is described.

3.2.1 Conventional Architecture of Image Rejection Technique

Image rejection method is one of methods rejecting unwanted image signal through phase convert-

ing as much as 90◦. In typical, the image rejection method is realized by using system structure as
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Hartley and Weaver architectures. For analysis of image rejection method by equations, description

about 90◦ phase shifter of signal is needed [11].

Illustrated in Fig. 3.1(a), the phase shifter of 90◦ has a role convertingsin(ωt) to − cos(ωt) and

cos(ωt) to sin(ωt). This figure shows the signal in time domain. The 90◦ phase shifter means

time delay in time domain as a quarter of signal period. This operation in frequency domain can

be expressed in Fig. 3.1(b). The function which is multiplied bysin(ωt) signal is presented as

H(ω) = −j sgn(ω), wheresgn(ω) is sign function. 90◦ phase shifter can be realized by several

methods like a RC-CR network [11]. In this study, poly phase filter is used.

The conventional Hartley and Weaver structures are shown in Fig. 3.2. In Hartley structure, the

single-stage mixer is used to translate phases. Then, phase of one of these signals is converted by 90◦

phase shifter. Then, the signals from both signal paths are added together for rejection of unwanted

image signal. In Weaver structure, the two-stage mixers are used to translate phases. In both of cases,

Figure 3.1: 90◦ phase shifting in (a) time and (b) frequency domains [11].
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for mixer’s operation, the quadrature phases of the local oscillator assin(ωLOt) andcos(ωLOt) are

used.

The graphical processing which rejects image signal is illustrated in Fig. 3.3. The basic concept

of the phase converting differently for desired and image signals is that the signals of mixer’s output

are located at positive and negative frequencies on the basis of LO signal’s frequency. Suppose the

RF input signal including image signal isRF (t) = cos(ωRF t) + cos(ωIM t), whereωRF = 2πfRF ,

ωIM = 2πfIM . fRF is the desired part’s frequency of RF signal, andfIM is the unwanted part

(image part)’s. To verify principle of image rejection method, this signal does not include amplitude

factor. Then, the output signals of mixers can be expressed as having opposite phases for each other

like Eqs. (3.1) and (3.2). In this time,ωLO locates in the middle ofωRF andωIM (The mixer converts

the image signal to the same IF frequency as the desired signal by frequency mirror effect between

the RF and LO signals.).

AH = −AH,RF sin((ωRF − ωLO1)t) +AH,IM sin((ωLO1 − ωIM )t), (3.1)

BH = BH,RF cos((ωRF − ωLO)t) +BH,IM cos((ωLO − ωIM )t). (3.2)

Figure 3.2: (a) Hartley and (b) Weaver image rejection structures [11].
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Figure 3.3: Graphical signal flow of (a) Hartley and (b) Weaver image rejection structures [11].

In Hartley structure, one phase of the two mixer output signals is converted through phase shifter as

much as 90◦. Then, the pointCH ’s signal in Fig. 3.2(a) can be obtained as follows:

CH = CH,RF cos((ωRF − ωLO)t)− CH,IM cos((ωLO − ωIM )t). (3.3)

As shown in Eqs. (3.2) and (3.3), these two signals have the same phase on desired signal and an

opposite phase on unwanted signal. With the assumption of no amplitude error between these two

signals (BH,RF = CH,RF , BH,IM = CH,IM ), the unwanted image signal can be rejected through

summation. In Weaver structure, there is a different way to obtain signals which have opposite

phases for each other. As illustrated in Fig. 3.2(b), phases are converted one more time by second-

stage mixers. Equations (3.4) and (3.5) show these output signals of second-stage mixers asCW and

DW in Fig. 3.2(b). Finally, unwanted signal by using these two signals can be removed.
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CW = −CW,RF cos((ωRF − ωLO1 − ωLO2)t) + CW,IM cos((ωLO1 − ωLO2 − ωIM )t),(3.4)

DW = DW,RF cos((ωRF − ωLO1 − ωLO2)t) + CW,IM cos((ωLO1 − ωLO2 − ωIM )t). (3.5)

In image rejection technique using phase conversion of signals, the errors of amplitude and phase

of comparing signals are mostly important. Normally, the IMRR is used to evaluate these errors.

IMRR is defined as the power ratio between the desired signal and unwanted image signal as follow.

IMRR =
Image Signal Power

Desired Signal Power
. (3.6)

This is calculated by difference of amplitude and phase of compared two signals as:

IMRR =
1 + 2A cos δ +A2

1− 2A cos δ +A2
, (3.7)

whereA is the amplitude difference andδ is the phase difference.

Figure 3.4: IMRR with (a) ampitude, (b) phase, and (c) amplitude and phase imbalances.
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Figure 3.4 shows the IMRR versus amplitude and phase imbalances between two signals. As these

results, IMRR is around 42 dB with the phase imbalance of 1◦, and around 25 dB with the amplitude

imbalance of 1 dB. In practical case, the imbalances of amplitude and phase occur at the same time.

The IMRR results versus amplitude and phase imbalances are illustrated in Fig. 3.4(c). From this

result, the imbalances of amplitude and phase are under 1 dB and under 2 to 3◦ to obtain IMRR over

40 dB.

3.2.2 Concept of Triple-band Receiver

Based on the image rejection method mentioned above, a band signal can be separated from other

band signals of RF path in the same way. In short, two independent port are equipped for subtraction

and summation at IF-stage in Fig. 3.2. Then, the desired and image signals can be obtained at

each port. Like this method, the dual-band signals can be received independently at each port using

conventional Weaver and Hartley structures [12,13].

The proposed receiver takes the Weaver structure which converts RF frequency to IF frequency

by two-stage mixers as illustrated in Fig. 3.5. The phases of signals are converted two times through

these mixers as well. There are also second-stage poly-phase filters (PPFs) between the first- and

second-stage mixers. The signals’ phases are converted more times than conventional Weaver struc-

ture, because of 90◦ phase shifting function of these PPFs, which is similar to PPF in Hartley struc-

ture. For proper phase translations of signals, the summation and subtraction are used to provide

input signals of second-stage mixer and PPFs. This method will be mentioned later in more detail.

3.3 Signal Processing in Triple-band Receiver

The proposed triple-band receiver architecture is based on Weaver image rejection method. The

architecture is basically modified from that of a dual-band GPS receiver developed in a previous study

[12, 13]. For explanation about operation principle of proposed triple-band signal receiver, the flow

block diagram of the signal processing of that is shown in Fig. 3.5. The system converts frequency

of signals to IF-stage through first- and second-stage mixers. In this time, the mixer works with

quadrature LO signals (I and Q phase signals), and through this operation, the signals have a different

phase for each other. In the same time, the PPF which is located between the first- and second-
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Figure 3.5: Signal processing of the proposed triple-band receiver.

stage mixers translates the signal phase one more time. During these signal processing, the proper

summation and subtraction of signals are used to remove undesired image signals. Through these

processes, the triple-band signal on different each port can be received independently. Undesired

signals are image signals with respect to the desired signal. In simple words, the Weaver image

rejection method separates the L1 band signal from the L2 and L5 band signals, which are image

signals with respect to the L1 band signal. Then, the second PPFs translate the phase of the L2 and

L5 band signals to create one signal as an image signal with respect to the other signal. Through

these steps, each band signal can be received independently at each port.

For the image rejection method, the concept of complex signal processing and the Hilbert trans-

form (denoted as“H” in the figure) were used to give concise expressions [14, 15]. The RF input

signal can be expressed as

sRF (t) = ℜ[a(t) exp(jωt)], (3.8)

wherea(t) is a complex base-band signal andω is the angular frequency of the RF signal. The

frequency and phase of this RF signal are converted along with the quadrature LO signals asfLO1(=

ωLO1/2π) in the first-stage mixer as follows:

sRF (t) e
−jωLO1t =

1

2
[a(t)ej(ω−ωLO1)t + a∗(t)e−j(ω+ωLO1)t]. (3.9)

The first term in the brackets on the right hand side is the desired down-converted component. The
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first PPF generates the Hilbert transforms of the real and imaginary components of their input signals

to change their phases [15]. The resulting outputs consisting of four differential pairs are intertwined

to cancel the undesired band signals, which is implemented by using proper resistive adders. Through

resistive adders, the PPF’s output signals are re-combinated through following calculating step as

shown in Fig. 3.5.

sIF1,I(t) = I1 + I2 +Q1 +Q2, (3.10)

sIF1,Q(t) = I1− I2 +Q1−Q2, (3.11)

these signals can be expressed using Hilbert transform as follows:

sIF1,I(t) = ℜ[sRF (t)e
−jωLO1t] + ℑ[sRF (t)e

−jωLO1t]

+H[ℜ[sRF (t)e
−jωLO1t]] +H[ℑ[sRF (t)e

−jωLO1t]], (3.12)

sIF1,Q(t) = ℜ[sRF (t)e
−jωLO1t] + ℑ[sRF (t)e

−jωLO1t]

−H[ℜ[sRF (t)e
−jωLO1t]]−H[ℑ[sRF (t)e

−jωLO1t]]. (3.13)

As the transfer function of the Hilbert transform is−j sgn(ω), wheresgn(ω) is the sign function,

these intertwined signals can be expressed as:

sIF1,I(t) = ℜ[a(t)ej(ω−ωLO1)t]uωLO1−ω

+ℑ[a(t)ej(ω−ωLO1)t]uω−ωLO1 + ℜ[a(t)ej(ω+ωLO1)t], (3.14)

sIF1,Q(t) = −ℑ[a(t)ej(ω−ωLO1)t]uωLO1−ω

+ℜ[a(t)ej(ω−ωLO1)t]uω−ωLO1 + ℑ[a(t)ej(ω+ωLO1)t], (3.15)

whereuω = (1 + ω/
∣∣ω∣∣)/2. Note that the frequency components ofω − ωLO1 in sIF1,I(t) and

sIF1,Q(t) have opposite polarity and both have opposite polarity forω > ωLO1 andω < ωLO1.

These features are useful for the signal separation between the L1 and the other (L2 and L5) band

signals.
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The obtained signals that had their frequency and phase translated through the above process are

converted again in the second-stage mixer. Here the quadrature LO signals of the LO frequency

fLO2(= ωLO2/2π) are used to convert the phase and frequency. To separate L1 from the other

signals, the outputs of the second mixers are properly added and subtracted to extract the L1 band

signal and to generate the combinations of the L2 and L5 band signals with different polarity, as

follows:

sIF2,L1(t) = −ℑ[sIF1,I(t)e
−jωLO2t] + ℜ[sIF1,Q(t)e

−jωLO2t]

= ℜ[a(t)ej(ω−ωLO1−ωLO2)t]uω−ωLO1

−ℑ[a(t)ej(ω−ωLO1−ωLO2)t]uωLO1−ω, (3.16)

sIF2,L2/5,I(t) = ℜ[sIF1,I(t)e
−jωLO2t]−ℑ[sIF1,Q(t)e

−jωLO2t]

= ℑ[a(t)ej(ω−ωLO1+ωLO2)t]uω−ωLO1

+ℜ[a(t)ej(ω−ωLO1+ωLO2)t]uωLO1−ω

+ℜ[a(t)ej(ω+ωLO1−ωLO2)t], (3.17)

sIF2,L2/5,Q(t) = ℑ[sIF1,I(t)e
−jωLO2t] + ℜ[sIF1,Q(t)e

−jωLO2t]

= ℜ[a(t)ej(ω−ωLO1+ωLO2)t]uω−ωLO1

−ℑ[a(t)ej(ω−ωLO1+ωLO2)t]uωLO1−ω

+ℑ[a(t)ej(ω+ωLO1−ωLO2)t]. (3.18)

Note that the frequency components ofω − ωLO1 + ωLO2 in sIF2,L2/5,I(t) andsIF2,L2/5,Q(t) have

opposite polarity. As described in the next step, an appropriate combination of these frequency

components and their Hilbert transforms can exhibit different polarities forω > ωLO1 − ωLO2 and

ω < ωLO1 − ωLO2. These features are useful for the separation of the L2 and L5 band signals.

To convert the center frequencies of the L1, L2, and L5 band signals to the same IF frequency

fIF2(= ωIF2/2π), along the signal path from the first to the second mixer, the LO1 and LO2 fre-

quencies (fLO1 andfLO2) are set as follows:

ωLO1 =
ωL1 + ωL2

2
, (3.19)

ωLO2 = ωLO1 −
ωL2 + ωL5

2
, (3.20)



3.3 Signal Processing in Triple-band Receiver 45

wherefLi(= ωLi/2π) is the center frequency of the Li band (i=1, 2, and 5). In this case,ωIF2 =

(ωL2 − ωL5)/2. SincefL1 = 1575.42 MHz,fL2 = 1227.6 MHz, andfL5 = 1176.45 MHz,fLO1

= 1401.51 MHz,fLO2 = 199.485 MHz, andfIF2 = 25.575 MHz. In the first down-conversion and

the first PPFs, the L1 and L2 band signals are converted to± 173 MHz images of each other with

opposite polarity, as seen in the first and second terms of Eqs. (3.14) and (3.15). On the other

hand, the L5 band signal is converted to 225.06 MHz in this stage. With regard to the second

down-conversion with the following appropriate signal additions, Eq. (3.16) indicates thatsIF2,L1(t)

contains the L1 band signal atfIF2. Similarly, Eqs. (3.17) and (3.18) reveal that the second terms in

sIF2,L2/5,I(t) andsIF2,L2/5,Q(t) contain the L2 and L5 band signals at±fIF2.

To separate each of the L2 and L5 band signals after the second mixing and the following signal

additions, thesIF2,L2/5,I(t), sIF2,L2/5,Q(t), and their Hilbert transform generated in the second PPF

are properly manipulated as follows:

sIF2,L2(t) = −sIF2,L2/5,Q(t) +H[sIF2,L2/5,I(t)]

= 2ℑ[a(t)ej(ω−ωLO1+ωLO2)t]uωLO1−ωuω−ωLO1+ωLO2

−2ℜ[a(t)ej(ω−ωLO1+ωLO2)t]uω−ωLO1 , (3.21)

sIF2,L5(t) = sIF2,L2/5,I(t)−H[sIF2,L2/5,Q(t)]

= 2ℜ[a(t)ej(ω−ωLO1+ωLO2)t]uωLO1−ωLO2−ω

+2ℜ[a(t)ej(ω+ωLO1−ωLO2)t], (3.22)

whereωLO1 > ωLO2 is utilized to simplify the expressions such thatuω−ωLO1uω−ωLO1+ωLO2 =

uω−ωLO1 . Equations (3.21) and (3.22) reveal thatsIF2,L2(t) andsIF2,L5(t) contain the L2 and L5

band signals atfIF2. The last term insIF2,L1(t), sIF2,L2(t) andsIF2,L5(t), which corresponds to

the higher frequency component, can be filtered out in the following stage (It will be mentioned in

Chapter 5.).

Figure 3.6 shows the graphical signal spectrum of signal processing which are expressed by above

equations. This figure shows the signals from second-stage mixer outputs to final signal after second-

stage PPF. Each point of alphabet is the same point of Fig. 3.5. The signals of points“a” to “d” of

the left first dotted line in Fig. 3.6 include L1, L2, and L5 in the same position. However, these
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Figure 3.6: Graphical signal processing flow at the locations indicated in Fig. 3.5.

signals have different phases for each other. There is the phase difference of 90◦ between the L1 and

L2/5 and 180◦ between the L2 and L5. So, these signals are distinguished for each signal. In this

stage, L1 band signal is obtained by subtraction of points“b” and“c”. At the point of second-PPF

input, there is not L1 band signal. For proper summation and subtraction, the L1 band signal can be

rejected. Then, from these signals (A to D), L2 and L5 band signals can be separated. As illustrated

in Fig. 3.6, L2 and L5 band signals are obtained by (B−C) and (A−D).

3.4 Simulation of Proposed Receiver Architecture

To verify the proposed receiver architecture for triple-band signal, the simulations are carried out.

Firstly, the signal flow was verified using behavior-level numerical simulations under MATLAB.

Then, through ideal functional blocks in Keysight ADS simulator, system operation on frequency
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translation and signal demodulation were carried out using circuit simulations. The Hilbert transform

mentioned in the last section is realized through second-stage PPF with ideal RC component. Based

on it, the PPF with real components is designed in next chapter.

The proposed architecture was simulated to show the possibility of receiving the wanted signal at

each port. For simple calculation, each signal was set as the L1 band signal was 1600 MHz, the L2

band signal was 1200 MHz and the L5 band signal was 1100 MHz. The first and second LO signals

were 1400 MHz, and 250 MHz, respectively. Figure 3.7 shows the MATLAB simulation results. In

calculation results, each band signal can be obtained at each port. The baseband frequencies for each

band signal are the same as 50 MHz.

Continuously, the RF front-end composed with ideal elements was verified by Keysight ADS

simulator. In case of circuit simulation, the L1 band signal of 1575.42 MHz, the L2 band sig-

nal of 1227.6 MHz and the L5 band signal of 1176.45 MHz were used. The first LO signal was

1401.51 MHz, the second LO signal was 199.485 MHz as the same specifications of real GPS sig-

nal. The RF input powers were−75 dBm. The gains of LNA and active mixer were 25 dB and

10 dB.

To distinguish each band signal easily, the BPSK-modulated RF input signals with different se-

quences per each band are used. As results in Fig. 3.8, each band signal is independently received at

separated ports. To verify image reject, the analog output’s amplitudes are illustrated in Fig. 3.9. In

Figure 3.7: Behavior-level numerical simulation results of frequency translation with only (a) L1
band signal, (b) L2 band signal, and (c) L5 band signal.
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Figure 3.8: Circuit simulation results of RF front-end using modulation signals.

Fig. 3.9(a), the result for signal of L1 band is shown. At that time, there are no signals at L2 and L5

band ports. On the other hand, in Figs. 3.9(b) and (c), the signals are shown at only L2 and L5 band

port. As shown in results, IMRRs for each band signal are shown around 50 dB. This simulation

used ideal elements, so there are no parameter mismatch. However in result, the value of IMRR is

not an ideal (In ideal case, the IMRR has an infinite value.). It is due to second-stage PPF features

used to frequency extension. The detail on it will be described in Chapter 4.

Differently from the dual-band reception, the simultaneous triple-band reception requires two fre-

quency conversions. The most important point of the proposed architecture is use of the same LO1
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and LO2 signals for each of triple-band signal to realize the same RF signal delay which is important

in some scientific applications (e.g. [2]), as described in Chapter 1. However, simultaneous genera-

tion of the LO1 and LO2 signals using one PLL synthesizer in some literatures [4, 5] is impossible.

As the simple solution, the LO1 and LO2 signals can be generated using the first PLL with reference

frequencyf0 (= 10.23 MHz) and division ratio 137 and the second PLL with referencef0/2 and

division ratio 39, respectively. In addition, the expected sampling frequency in A/D conversion of

sIF2,Li(t) (i= 1, 2, 5) in Fig. 3.5 is5f0 (= 51.15 MHz). When the external reference frequency is

set to5f0, the LO1, LO2, and the A/D conversion clock signals can be realized using the first and

the second PLLs and some frequency dividers. Compared to the literature [8], which uses two PLLs

with the same circuit, the proposed architecture requires the first PLL operating at higher frequency

and the second PLL operating at lower frequency. The power consumption of the second PLL can be

much smaller than that in the first PLL. Thus the first PLL is expected to dominate power consump-

tion for LO generations. To reduce occupation area, the second PLL can use the high-frequency LC

VCO with frequency divider instead of low-frequency LC VCO. It means there is trade-off between

the occupation area and power consumption in the second PLL, as shown in the literature [16]. By

optimizing design of the second PLL, the drawbacks of the proposed architecture in occupation area

and power consumption is expected to relax.

3.5 Theory of Digital Compensation Technique

The image rejection simulation results used ideal elements, so there are not parameter mismatches.

However in practical case, they exists and degrade IMRR. As seen in Fig. 3.5, the L1 band signal is

received through the first PPF, while the L2 and L5 band signals are received through the first and

second PPFs. From the different signal path, the IMRR of L2 and L5 band signals is worse than L1

band’s. To improve the IMRR, compensation technique was considered. Normally, the compensation

can be applied with an analog or digital technique [17, 18]. When the analog scheme is used, there

are so many considering points like circuitry complexity. Above all, to avoid large area occupation

and high power consumption, the digital compensation of the IMRR is investigated in this study. In

this technique, the relation of the signals at A and D and those at B and C in Fig. 3.5 are implemented

digitally by using four ADCs.
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Figure 3.9: Circuit simulation results of image rejection with input signal of (a) L1 band, (b) L2
band, and (c) L5 band.

The block diagram of the digital compensation is conceptually shown in Fig. 3.10. For digital

compensation technique, it is important to detect amplitude and phase errors. Phase errors are more

significant than amplitude errors since GPS receivers usually use low-resolution ADCs. This sug-

gests that the amplitude errors of the L2 and L5 band signals in the second PPF can experience
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Figure 3.10: Block diagram of the phase and amplitude compensation.

quantization errors from the ADC.

For detecting of digital signal’s phase error, there are some limitations. The effective number of

ADC bit determines detectable signal variation. On the other hand, the sampling rate limits detectable

phase difference between two signals. These two factors have trade-off relation. In other words, for

low sampling rate, high effective number of bits are available for enough detecting capability.

For case of detecting some degree’s phase error, proper relation between the sampling rate and

effective number of ADC bit are expected. To explain this, ADC output of 25 MHz CW signal is

illustrated in Fig. 3.11. Opened squares in this figure show the reference signal’s ADC output with

200 MHz sampling rate. In Figs. 3.11(b) and (c), the dotted line shows a quadrature signal with 90◦

against the reference signal and the solid line shows a quadrature signal with 15◦ phase error. In these

figures, the opened triangles and opened circles present the sampling point at 200 MHz sampling rate.

When difference of these two signal amplitudes is less than ADC’s resolution, there is no influence

after ADC. (In custom GPS system, the bit of ADC is normally 1 or 2-bit, so this assumption is

reasonable.) Figure 3.11(b) shows the sampling points made for 2-bit ADC, so its resolution is

VFS/4. In Fig. 3.11(c), the ADC is 3-bit, so its resolution isVFS/8. As shown in square box in

figures, when the phase error occurred at points“a” to “c”. In Fig. 3.11(b), the ADC output change

is less than the resolution, so it cannot be detected. However in Fig. 3.11(c), ADC output change at

point “a” due to phase error can be detected. Such detection error of phase change can be relaxed

using integration of ADC output for a period. As shown in these figures, effective number of ADC
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Figure 3.11: (a) CW signal of in-phase reference signal, (b) quadrature signal with 2-bit ADC, and
(c) quadrature signal with 3-bit ADC (The solid line and dashed line corresponds to the signals with
and without 15◦ phase error, respectively. Each mark is sampling point.).

bit and sampling rate determine detecting capability. This relationship can be expressed by

Detectable Phase Error≈ 2π/M

2n
, (3.23)

whereM is the ratio of the ADC sampling rate to the target frequency, andn is the effective number

of bits of the ADC for the input level.

With these detecting conditions, in-phase and quadrature signals with error terms of Fig. 3.10 can

be expressed as follows:

I(t) = m(t) cos(ωIF2 t), (3.24)

Q(t) = ae m(t) sin(ωIF2 t+ θe), (3.25)
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whereae is the amplitude error,θe is the phase error between theI(t) andQ(t) signals.

To obtain the phase error between theI(t) andQ(t) signals, a multiplier with a gain of 2 (6 dB) is

used for the initial condition ofae = 1, and its output is integrated in a single period to pass a low-

frequency error component related to the compensation factors (sin θe, cos θe, andae in Eq. (3.26)).

From the calculation using the feed-back loop in Fig. 3.10, a compensated signal can be obtained as

follows:

Qcomp(t) =
Q(t)

ae cos θe
− I(t) tan θe = m(t) sin(ωIF2 t). (3.26)

Through above process, the quadrature signal with phase error can be compensated, and the IMRR

against in-phase signal can be improved.

3.6 Conclusion

The architecture which can receive triple-band GPS signal (L1, L2, and L5 bands) is proposed.

Proposed architecture can receive signals through only one RF path by using the phase-converting

image reject method to separate signals. The Weaver structure is used, but PPF is adapted to trans-

late the signals’ phases as like the Hartley structure. Consequently, through four phase translations

of mixers and PPFs, each band signal can be selected and separated from the other signals. To

verify phases translation, the behavior-level numerical and circuit simulations of the MATLAB and

Keysight ADS are used. Digital compensation technique improves the received signal separation

capability through error correction between the in-phase and quadrature signals. Through this tech-

nique, the effects of parameter mismatch can be reduced.





3.6 References 55

References

[1] T. Kadoyama, N. Suzuki, N. Sasho, H. Iizuka, I. Nagase, H. Usukubo, and M. Katakura,

“Comparison of ionospheric total electron content from the navy navigation satellite system

and the GPS,”IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 562–568, Apr. 2004.

[2] T. Ebinuma and A. Yasuda,“Airborne GPS reflectometry from low altitude aircraft,”SICE

Journal of Control, Measurement, and System Integration, vol. 3, no. 6, pp. 429–434,

Nov. 2010.

[3] G. Scott and G. Demoz,GNSS Applications and Methods, Artech House, 2009.

[4] J. Ko, J. Kim, S. Cho, and K. Lee,“A 19 mW 2.6 mm2 L1/L2 dual band CMOS GPS receiver,”

IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1414–1424, July 2005.

[5] Y. Utsurogi, M. Haruoka, T. Matsuoka, and K. Taniguchi,“CMOS front-end circuits of dual-

band GPS receiver,”IEICE Trans. Electron., vol. E88-C, no. 6, pp. 1275–1279, June 2005.
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Chapter 4

RF Front-end Circuit Design for
Triple-band Receiver

In this chapter, the circuit blocks in the RF front-end architecture are described. The design issues

and methods are explained. In addition, the simulation results from the verification of these blocks

are shown. With these circuit blocks, the issues to be considered for the layout of the proposed RF

front-end circuits are also explained.

4.1 Introduction

In this chapter, the designs of the circuit blocks composing the proposed system are described.

The key issue of the proposed system is to receive the triple-band signal through a single RF path.

Basically, to compose this topology, a single antenna and single low-noise amplifier (LNA) are nec-

essary. For signal frequency translation, doubly-balanced mixers are used. Two types of mixers,

active and passive, are used to reduce the power consumption without influencing the system’s total

noise figure (NF). To generate the quadrature LO signals for operation of the balanced mixers, the

balun and poly-phase filter (PPF) are used. The passive adder with a large value resistance and PPF

are used to remove undesired image signals using the phase relation of the triple-band signal. The

balancing of the output signals of these circuit blocks is important because the image rejection ratio

(IMRR) of the system is limited by the amplitude and phase mismatch of these output signals. To re-

duce these errors, all blocks are designed with symmetry structure. These points are also considered

in the layout.
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Figure 4.1: RF front-end architecture for triple-band signal.

4.2 RF Front-end Architecture

Figure 4.1 shows the designed RF front-end architecture. As mentioned in the previous chapter,

this structure receives the triple-band signal through a RF path. To operate it, it is composed of an

LNA, two species of mixers (active and passive), and phase translators. These mixers have a doubly-

balanced structure; accordingly, to operate it, an IQ signal generator is designed. To remove the

undesired image signals and retain the desired signal from the output of the PPF, the addition and

subtraction operations implemented with the resistive adder are used. The designed circuits are laid

out in a 130-nm CMOS process with a 1.2-V power supply. The post-layout simulations are carried

out using Cadence Spectre. Table 4.1 shows the target specifications of the RF front-end.

4.3 CMOS LNA Stage for Triple-band

4.3.1 LNA Stage Outline

The design of the LNA for the GPS triple-band signal range (L1, L2, and L5) will be discussed.

As mentioned above, the LNA is located at the first-stage of the proposed system. Thus, its gain

and noise characteristic are most effective for the system characteristics among whole blocks. In a
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Table 4.1: Specification of designed RF front-end.

general case of a cascaded system shown in Fig. 4.2, the total NF (NFtotal) can be calculated as

NFtotal = NF1 +
NF2 − 1

G1
+

NF3 − 1

G1G2
+ · · · NFN − 1

G1G2 · · ·GN−1
, (4.1)

whereNFi andGi are a noise figure and an available power gain ofi-th-stage block, respectively.

The NF and gain of components closest to the input of the whole system are the most important

factors. In this study, the LNA with a less than 1.5 dB NF during the 500 MHz operation frequency

range (1.1∼ 1.6 GHz) is designed. In this case, the LNA is located between the antenna and mixer,

as shown in Fig. 4.1. This means that the signal power delivery is also important. In this work, the

LNA is designed to maintain the input impedance matching condition ofS11 under−10 dB during

the operation frequency ranges. In addition, the mixer input of the next-stage should be considered.

The doubly-balanced type mixers are used in this work, which require differential input signals. It is

important in adequate signal phase translation in the mixers, which influences total IMRR. To reduce

the phase and amplitude mismatches of these signals, the single-ended cascade LNA and active balun

are used for the LNA stage.

4.3.2 LNA Stage Design Issues

In the first step of designing the LNA stage, the single-ended LNA is designed. The scheme of

the inductive-source-degeneration structure to minimize NF and satisfy input impedance matching is

used [2–5]. A single-gain-stage of the LNA can save power and keep high linearity. The cascode-



60 Chapter 4 RF Front-end Circuit Design for Triple-band Receiver

Figure 4.2: Block diagram of cascaded system.

Figure 4.3: Schematic of LNA stage.

stage plays the role of reducing the Miller effect and enhancing reverse isolation between the input

and output ports.

Figure 4.3 the designed LNA stage. The single-ended LNA is shown in the left red box; the

active balun for the differential output is shown on the right. In this design, the wide-band operation

frequency range and low NF as well as the input impedance matching are highlighted.

In the case of inductive-source-degeneration LNA, the circuit noise is affected by the following

factors:

1. Gate thermal noise due to resistance of gate and parasitic resistance of the gate inductor.

2. Channel thermal noise.

3. Induced gate noise.
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The NF of a block expressed with the above noise factors is given by [2]

NF = 1 +
RLg +Rg

Rs
+

γ

α
· χ ·Rs · gm ·

(
ω0

ωT

)2

, (4.2)

whereRLg is the parasitic resistance of gate inductance(Lg), Rs is a source impedance (usually 50

Ω), andRg is the gate parasitic resistance.α is the ratio of the device transconductance to zero-

bias drain conductance,γ is the drain noise current factor,δ is the induced gate noise current factor,

c is the correlation coefficient between these noise currents, andκ is the Elmore constant [2, 12].

fT (= ωT /2π) is the unity-current-gain cut-off frequency of the device, andf0(= ω0/2π) is the

operating frequency. The factorχ is defined as [6,7]

χ = 1− 2|c|α

√
δα2

κγ
+

δα2

κγ
(1 +Q2

in). (4.3)

Qin is the input Q-factor of the series LC resonator at the input. In Eq. (4.2), the last term is the

most dominant one, which is generated on account of the channel thermal noise [2]. Therefore, the

equation can be simplified as

NF ≃ 1 +
γ

α
· χ ·Rs · gm ·

(
ω0

ωT

)2

. (4.4)

The magnitude of the input reflection coefficient|S11| is given by

∣∣S11

∣∣ = ∣∣∣∣∣ jQin

(
ω
ω0

− ω0
ω

)
2 + jQin

(
ω
ω0

− ω0
ω

)∣∣∣∣∣. (4.5)

From Eqs. (4.3), (4.4), and (4.5), the NF and input reflection coefficient can be expressed as a

function ofQin. To defineQin, Fig. 4.4 shows the small-signal model of the LNA input-stage. Here,

gm is a transconductance of M1 of Fig. 4.3,ro is an output impedance of M1, andRLoad is a load

impedance.

For input impedance matching, based on the small-signal model, input impedance (Zin) can be

calculated as

Zin = jω(Lg + Ls) +
1

jωCgs
+ gm

Ls

Cgs
. (4.6)

The capacitance between the gate to drain (Cgd) is sufficiently small to be ignored.RLg can be

ignored as well, becauseLg is used as an external inductor with a high-Q-factor. The MOSFET of the
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Figure 4.4: Small-signal model of LNA input-stage.

LNA input-stage is composed of 64 multi-fingers, as shown in Fig. 4.8. As described in Chapter 2,

the effect ofRg is sufficiently low to increase the number of fingers. At the input series resonant

frequency given by the following equation, the imaginary term of Eq. (4.6) can be ignored.

ω0 =
1√

(Ls + Lg)Cgs

. (4.7)

Therefore, the input impedance can be expressed as

Zin = gm
Ls

Cgs
. (4.8)

The equivalent series LC resonator at the input consists of a gate inductor (Lg), source degen-

eration inductor (Ls), capacitance between the gate and source (Cgs), and the effective resistance

(Reff ). Here, the effective resistance is originated from the source degeneration inductor and can be

expressed as

Reff = ωTLs. (4.9)

whereωT is the cut-off angular frequency (=gm/Cgs). From these values,Qin is obtained as

Qin =
1

ω0CgsRLs

=
1

ω0CgsωTLs
. (4.10)

With the matching condition, from Eqs. (4.9) and (4.10), the input Q-factor can be calculated as

Qin =
1

ω0CgsRs
. (4.11)
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As shown in Eq. (4.11),Qin is dependent on the MOSFET gate size at the matching condition. To

determine theQin value, Eqs. (4.4) and (4.5) can be used.

4.3.3 LNA Design

4.3.3.1 Single-ended LNA

The LNA is designed through the following steps.

Step 1. SpecifyQin from input reflection coefficient
∣∣S11

∣∣ during the desired frequency ranges.

(Eq. (4.5))

Step 2. Determine the MOSFET gate width. (Eq. (4.11))

Step 3. Determinegm to satisfy the desired NF fromQin. (Eq. (4.4))

Step 4. DetermineLg andLs values to satisfy the matching condition. (Eq. (4.6))

Step 5. Determine the load inductor and capacitance from the operation frequency.

Before the design process, the target specifications and basic process parameters will be described.

These values are shown in Table 4.2 and Table 4.3. The target frequency range is located at 1.1∼
1.6 GHz. The GPS signal bands are L1, L2, and L5, which are located at 1.57542 GHz, 1.2276 GHz,

and 1.17645 GHz. The GPS input signal power level (from the satellite to antenna) is approximately

−95 dBm. The active antenna, which is at the front of the LNA, has an approximate 20 dB gain.

The input signal power level at the LNA is approximately−75 dBm. It is a relatively small signal

level. The system NF typically requires less than 7.5 dB. To satisfy this value, the LNA NF should

be under 1.5 dB to give some margin to the next block. To reduce the influence of the following

blocks on total NF, the power gain of LNA is over 20 dB. When the following blocks have NF over

10 dB, this LNA gain can keep the degradation of total NF under 1 dB. The designed LNA block has

power consumption under 2.5 mW (the drain current is approximately 2 mA). The input reflection

coefficients are maintained under−10 dB in the wide frequency bands.
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Table 4.2: Specification of designed LNA.

Table 4.3: Process parameters.

To design the LNA for the wide frequency range, the gate width must be chosen to satisfy the input

reflection coefficient (
∣∣S11

∣∣). To specifyQin in Eq. (4.5), these process parameters (Table 4.3) are

used. Concurrently, the NF should be considered. As shown in Eqs. (4.3) and (4.4), the NF is related
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Figure 4.5: Calculated (a) input coeffienct and (b) NF of LNA.

to Qin. In this step, with consideration of the gate width to satisfy the desired
∣∣S11

∣∣, the NF should

be calculated versusQin according to various drain currents. Step 1 to Step 3 in the above design

process should be carried out repeatedly to satisfy specifications of
∣∣S11

∣∣ and NF.

The input reflection coefficient (
∣∣S11

∣∣) versus the gate width is illustrated in Fig. 4.5(a). The input

reflection coefficient of−10 dB during the target frequency range (1.17∼ 1.6 GHz) can be obtained
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when the gate width is more than 386µm. Figure 4.5(b) shows the NF versusQin, which satisfies∣∣S11

∣∣. WhenQin is approximately 3 with a 2 mA drain current, the NF of less than 1 dB can be

obtained. Through the above design steps, the capacitance between the gate and source (Cgs) is

calculated as 450 fF (The gate width is 384µm). The values ofgm andωT can be obtained as 47 mS

and 16.7 GHz from the following MOSFET basic equations.

Cgs =
2

3
CoxWL, (4.12)

gm =
√

2βId, (4.13)

ωT =
gm
Cgs

=
Rs

Ls
. (4.14)

The values ofLs andLg are obtained from the resonant condition (Eq. (4.7)) and input impedance

matching condition (Eq. (4.8)). Here, it is assumed that the input impedance is matched with the

source impedance as 50Ω. With this condition, these values can be obtained as 3 nH and 11.1 nH

from Eqs. (4.7) and (4.14).

About the bias condition, the drain current and device size determined at the previous step provide

the over-drive voltage (Vod) as 67 mV in this case. Through the following load resonant condition, the

load inductor (LLoad) can be chosen. The output capacitance (Cout) is also considered including the

input capacitance of the balun described later. It is noted that gate width of cascode-stage MOSFET

(M2) is reduced by biasing its gate atVDD, which can reduce parasitic capacitance of its drain

terminal. Consequently, the load inductor (LLoad) has a value of 17.6 nH with the output capacitance

value of about 810 fF.

ω0 =
1√

LLoadCout
. (4.15)

4.3.3.2 Resistive Balun

The passive balanced-unbalanced circuit (balun) is very useful in RF and mm-wave regions. How-

ever, in the case of SoCs, the cost should be considered. Conventionally, the passive balun is com-

posed with micro strip-lines ofλ/4 (λ is a wave length.). Thus, the strip-line length depends on the

operation frequency. In this work where the target frequency range is near 1.5 GHz, the passive

balun is difficult to implement in the integrated circuit. In some cases, an external balun and lumped

components for impedance matching are used. However, in that case, the signal loss is significant
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Figure 4.6: Small-signal model of balun.

and the phase and amplitude balances are not good. Therefore, in this study, a simple active balun

is used. For less burden to the whole system balance, the most simple single MOSFET is used with

two resistors at the source and drain sides. This structure has the advantage of easy control of signal

unbalance as described later. Accordingly, the reduction of phase and amplitude errors between the

two differential output signals can be achieved.

The circuit block of the balun designed in this paper is illustrated in the right red box in Fig. 4.3.

Figure 4.6 shows the small-signal equivalent circuit for the balun. The voltage gains,Av,out1 and

Av,out2, can be presented as

Av,out1 =
vout1
vin

= − R1

R2 +
1

gm3

, (4.16)

Av,out2 =
vout2
vin

=
R2

R2 +
1

gm3

, (4.17)

wheregm3 is a transconductance of MOSFET M3 in Fig. 4.3. The negative sign in Eq. (4.16) means

a phase converting as 180◦. The amplitude balance between thevout1 and vout2 can be simply

handled with a ratio ofR1 with R2. Thus, the transconductance of M3, which determines the power

consumption, can be more flexibly designed. In practical case of this balun, parasitic capacitances

of M3 cause amplitude and phase errors of the differential output. These errors can be reduced by

slightly changingR1/R2 to ignore their influence on receiver’s IMRR.
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Figure 4.7: Schematic of LNA stage.

4.3.4 LNA Stage Circuit Simulation

The LNA stage in the previous section is designed and verified on Cadence circuit simulation

tools. During these steps, a 130-nm CMOS process is used and a 1.2-V supply voltage is commonly

employed. To satisfy the above design conditions, the gate inductor (Lg in Fig. 4.3) is required as a

huge value inductance. If this inductor is on the chip, it requires a large area. Therefore, in this study,

the external inductor (lumped element) is used asLg. As an off-chip inductor, the Murata inductor

(LQW18AN9N5D00) is used. For verification with a practical external inductor in a simulation,

theS-parameters of the inductor supplied from the Murata company are used. Using the external

inductor can control the LNA input impedance matching condition. Figure 4.7 shows the schematic

of the designed LNA stage.

For accurate circuit simulation, physical layout data are important. Figure 4.8 shows the the phys-

ical layout of the first-stage device of the LNA. It is comprised of 6µm × 64 fingers. As mentioned

in Chapter 2, multi-fingers can reduce the gate-electrode resistance. There is an equivalent capacitor
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Figure 4.8: LNA input device layout.

for the electric-static-discharge (ESD) protection circuit as well, as shown in Fig. 4.7. The ESD

protection circuit is modeled as a double-diode-based circuit. The input bias of the LNA is provided

via a resistor (RL,Bias). To prevent the effect of the bias-feeding resistor on the input impedance,

the value of the resistor is approximately 60 kΩ. It is sufficiently large to ignore. In the small-signal

model, it can be ignored, as shown in Fig. 4.4.

For verification of the designed LNA’s features, the input reflection coefficient (
∣∣S11

∣∣) and NF

are simulated through the circuit simulator (Cadence Spectre). The simulation is performed in post-

layout format, including a metal line, ESD protection circuit, and the Murata inductor. For process

variation, the normal condition (variation type: Typical NMOS, Typical PMOS (TT), temperature:

17◦C) is used. The other conditions, such as SS, FF, and other temperatures, are adapted in the whole

system simulation.

Figure 4.9 shows the input reflection coefficient (
∣∣S11

∣∣) and NF. As shown in Fig. 4.9(a), the de-

signed LNA has
∣∣S11

∣∣ less than−10 dB in the desired frequency range. The NF is approximately

1 dB in the target frequency ranges (1.17∼ 1.6 GHz). These results mean that the input impedance

can be accepted for the triple-band signal. Figure 4.10 shows the amplitude and phase of the differ-

ential output signals of the designed LNA. Two output signals of the designed LNA stage have an
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Figure 4.9: (a) Input reflection coefficient (
∣∣S11

∣∣) and (b) NF of LNA.

amplitude error of approximately 0.1 dB in the whole frequency range, and a phase error of 0.4∼
0.7◦ for each one at L1, L2, and L5 band frequencies.

These two signals are fed into the balanced mixer’s input. These imbalances of amplitude and

phase significantly affect the IQ signals of the mixer’s output signals. In short, the imbalanced

level of the first-stage output signals is greatly influenced toward the rear-stage. As a result, the
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Figure 4.10: (a) Phase and (b) power of LNA’s differential outputs.

amplitude and phase errors of these signals greatly affect the whole system IMRR. In this study,

the designed balun can generate differential signals with sufficiently small imbalances. From these

circuit simulation results, the usability of the designed LNA with an active balun can be confirmed

for the triple-band frequency range. The sufficiently low NF and balance of different output signals

also satisfy requirements of GPS applications.



72 Chapter 4 RF Front-end Circuit Design for Triple-band Receiver

4.4 Mixers

4.4.1 Outline of CMOS Doubly-Balanced Mixers

In this study, two types of mixers are used. One is a Gilbert-cell differential mixer [8,9] for image

rejection, high conversion gain and a low NF. The other is a CMOS passive mixer for low power

consumption. In the active mixer case, it is located at the next-stage of the LNA as the second-stage

of the whole system. Generally, the second-stage NF is not as important as that of the first-stage, as

mentioned in previous section. Indeed, the passive mixer as the third-stage has a small effect on the

total receiver NF as well. When designing the mixer, the 1 dB compression point (P1dB) and third-

order intercept point (IIP3) are considered for linearity. The P1dB point means the input power that

causes the gain to decrease by approximately 1 dB from the expected small-signal gain. Normally,

the mixer input should be below this point to avoid the gain compression and non-linear gain. The

IIP3 means the point of which the third-order inter-modulation distortion signal is expected to be the

same as the fundamental one for two-tone signal. It also presents the indicator of linearity. However,

the balance of signals is more important in this design [10,11]. To realize this function, these blocks

are designed with a focus on the signal amplitude and phase errors. The whole structure, including

devices and the metal line, are laid out symmetrically for signal feeding balance.

4.4.2 Doubly-Balanced Active Mixer

For the second-stage, the doubly-balanced active mixer based on the Gilbert-cell topology is de-

signed. Figure 4.11 shows the designed mixer. Using a doubly-balanced topology, the feed through

RF to IF and LO to IF ports can be reduced. Its topology is expected to have high P1dB, IIP3, and

impedance. The active mixer can achieve the high conversion gain and drive with low LO signal

power compared with the passive mixer. In the target, a single pair of mixers has resistive loads to

cover the frequency range of triple-band signal. The active mixer is designed with the parameters

shown in Table 4.4.

In the active mixer, all transistors operate in the saturation region to achieve switching-mode mix-

ing [11]. As shown in Fig. 4.11, all biases except the current tail are constructed by resistive voltage

dividing. The linearity of the mixer is considered more than in the LNA stage. The degeneration

resistorRsource in Fig. 4.11 increases the input voltage range which can obtain the linear gain. To
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Figure 4.11: Schematic of doubly-balanced active mixer.

Table 4.4: Design parameters for active mixer.

verify this, the transfer characteristic versus various DC inputs is presented in Fig. 4.12. The slope of

the transfer characteristic in this figure means the voltage gain. AsRsource increases, the input range

to obtain stable small-signal gain expands. In other words, the linearity is in a trade-off relation with

the conversion gain. In some cases, the reactive degeneration with inductor or capacitor is used to re-

duce gain degradation and NF. However, in that case, a large chip area is required. In this design, the

resistive degeneration is used. The loss is compensated at the interconnecting buffer block between
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Figure 4.12: DC transfer characteristic of mixer’s core device (Vin is the voltage of Port 1 and Port 2
in Fig. 4.11.Vout is the voltage of Port IFP and Port IFN in Fig. 4.11.).

the next-stages.

The conversion gain can be expressed as

CG ≃ 2

π

RM,L

Rsource + 1/gm
, (4.18)

wheregm is transconductance of M1 and M2. For sufficient conversion gain, a smallRsource is

needed. In this design,Rsource is used as a value of 10Ω.

4.4.2.1 Active Mixer Design

To determine the MOSFET device features in the active mixer, the conversion gain versus the

transconductance (gm) is calculated through Eq. (4.18). The gain of the mixer is proportionally

increased to the load impedance (RM,L). To calculate the proper values ofgm andRM,L, their

relation is illustrated in Fig. 4.13. The conversion gain is shown as a power gain. With larger values

of gm andRM,L, the conversion gain increases. In the design, to obtain a 10 dB conversion gain,gm

andRM,L are used at approximately 30 mS and 700Ω. The value ofRM,L is set to be greater than

that of1/gm to reduce the device current. The initial current is set to 1 mA.

Under the above specifications, the expected NF can be calculated at the mixer stage. The cascade

NF can be calculated as Eq. (4.1). The LNA as the previous-stage of the mixer is expected to have a
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Figure 4.13: Conversion gain against transconductance (Rsource = 10 Ω).

gain of approximately 20 dB and a NF of 1.5 dB. In the whole system, a NF less than 7 dB is needed.

Thus, the NF of the mixer can be calculated as

NFMixer < GLNANFsystem −GLNANFLNA + 1, (4.19)

whereNFMixer is a single-side band NF of mixer,GLNA is a gain of LNA,NFsystem is a total NF

of system,NFLNA is a NF of LNA. From that equation, the mixer NF is expected to be less than

15.7 dB.

With above considerations, the device gate width can be calculated with the minimum gate length

of 120 nm. As a normal equation of MOSFET at the saturation region, the device width is calculated

as 130µm. From these conditions, the mixer NF can be verified. If switching MOSFETs ideally

work, the NF can be calculated as [13]

NFMixer = 2 +
4γ

gmRs
+

π2

2g2mRsRM,L
, (4.20)

whereRs is the source impedance of the RF port andγ is the drain noise current factor [2, 12]. For

simple calculation,Rs is ideally set as 50Ω. With the input impedance matching, the mixer NF is

predicted at approximately 8.5 dB. The NF for the impedance mismatch conditions is checked with

the simulation results with device process parameters. The verification of the design is performed
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Figure 4.14: Mixer’s conversion gain against LO power at triple-band signal.

through a post-layout simulation including metal line. In the layout, as with the LNA, primarily

considering the output signal balances, the devices are located as close as possible to each other to

minimize the metal line loss. For a pair of long differential metal lines, symmetric structure is used

to reduce imbalances of signal loss and phase change.

4.4.2.2 Active Mixer Circuit Simulation

Figure 4.14 shows the conversion gain versus various the LO powers. The input power of the

mixer is approximately−67 dBm. The conversion gain is approximately 9 dB with 5 dBm LO

power, as shown in Fig. 4.14. This conversion gain begins to saturate to 9 dB for LO power over

5 dBm (50 mVpp swing in this case), indicating switching mode mixing. Thus, all mixer features are

then verified with 5 dBm LO power.

In Fig. 4.15, the output signal amplitude and phase versus the input power levels are illustrated.

Figure 4.15(a) shows the amplitude of the mixer output signals. The amplitude errors of I, Q,Ī, and

Q̄ are under 1 dB. The predicted mixer input power level in a practical case is about−50 dBm. At

that point, the amplitude error is shown as 0.5 dB. Figure 4.15(b) shows the phase error of the output

signals. The error of the phase for each signal is less than about 0.5◦. From the simulation result,
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Figure 4.15: (a) Power and (b) phase imbalances of mixer’s output signals against input signal (LO
power: 5 dBm).

the time delay is approximately 3∼ 5 ps for L1, L2, and L5 bands of the signal. In the GPS system,

normally a 1 ms time error occurs with the 1 m positioning error. Thus, the mixer delay occurs under

the 5 nm positioning error. This error is sufficiently small compared with the positioning accuracy.

(5 mm even in the static method as described in Chapter 1).

Figure 4.16 shows the P1dB and IIP3 to verify the mixer linearity. As shown in this figure, the
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Figure 4.16: (a) P1dB and (b) IIP3 against mixer’s input signal level (LO power: 5 dBm).

P1dB and the IIP3 are about−8.5 dBm and about−16 dBm, respectively. The input power level of

the mixer is approximately−50 dBm. That signal is located far from these P1dB and IIP3 points.

Thus, the designed mixer can obtain sufficient linearity at the least desired power level. The designed

mixer has 1.44 mA for the current with a 1.2-V power supply. With the LO power of 5 dBm, the

port-to-port isolations are over 50 dB between any ports.
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4.4.3 Doubly-Balanced Passive Mixer

The balanced CMOS passive mixer is used as the second-stage mixer. The passive mixer has a

conversion loss; however, it has low NF, low power consumption, and high linearity compared with

the active mixer. A doubly-balanced topology can have the high isolation between the RF and LO

ports compared with a normal single passive mixer. The typical passive mixer structure is the ring-

type mixer. The schematic of the designed mixer is illustrated in Fig. 4.17. As shown in the figure,

differential LO inputs are inserted into the MOSFET gate. The input and output signals are obtained

at the source and drain [14]. As shown in the schematic, there is little voltage between the drain and

source due to linear-region operation with small current.

4.4.3.1 Passive Mixer Design

This mixer is basically operated by channel resistance modulation by large LO signals. In the

operation region, it is switched between the depletion and inversion regions according to gate volt-

ages. Without enough large LO signals, the conversion loss becomes larger and linearity is de-

graded [15,16].

The designed passive mixer consists of four transistors, as shown in Fig. 4.17. M2 and M3 operate

with a positive LO signal LOP, and M1 and M4 operate with a negative LO signal LON. MOSFET

switching operation according to these complementary LO signals determines which RF signal (RFP

or RF N) can pass to either output port. When the passive mixer idealy works, the conversion gain

is given by

CG =
2

π
. (4.21)

In the passive circuit, the loss corresponds to the NF. From Eq. (4.21), the conversion gain of the

mixer can be calculated as−3.9 dB and the NF is 3.9 dB in the best case.

The practicel conversion gain is limited by drain-source resistanceRds of the turn-on device and

parallel parasitic capacitance (Cgs andCds) of the turn-off device [17, 18]. From the MOSFET

equation in the linear region,Rds can be expressed as

Rds =
L

µCoxW (Vgs − Vth − Vds)
. (4.22)

As shown in the equation,Rds is decreased as W andVgs increase. However, a large width leads to

high parasitic capacitance, and this degrades the operation characteristic at a high frequency. Instead
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Figure 4.17: Schematic of doubly-balanced passive mixer.

of increasing the device width, a large LO signal is useful, which enhancesVgs in turn-on MOSFET

to reduceRds. In this design, the LO signal power is limited by the quadrature LO generating balun.

Considering this limitation, the DC bias is also used at each node in the passive mixer, as shown in

Fig. 4.17.

4.4.3.2 Passive Mixer Circuit Simulation

The features of the designed mixer are verified through the simulation. As with the previous block

cases, it is performed as a post-layout simulation including layout parasitic effects. Figure 4.18

shows the conversion gain versus the LO signal power. The conversion gain is under−5 dB. Thus,
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Figure 4.18: Conversion gain of passive mixer against LO power.

the second mixer NF is under 5 dB as well.

P1dB and IIP3 are used to verify the linearity as shown in Fig. 4.19. The P1dB point and the IIP3

point are 5 dBm and 8 dBm. When considering the input power level, these linearity factors are

sufficiently large; therefore, they cannot influence system characteristics.

Figure 4.20 shows the amplitude and phase of the mixer outputs against input signal power. The

input power of the second mixer from the previous-stage is about−55∼ −50 dBm. At that input

power, the output power is about−60∼ −55 dBm. To show the amplitude balances of the signals,

the output IQ signals (I, Q,̄I, Q̄) are presented. When the LO signal power is less than 5 dBm,

the amplitude error is approximately 0.2 dB. However, when the LO signal power is increased over

5 dBm, the errors occur at about 1 dB in the worst case. In this work, the LO signal power is chosen

as 5 dBm. In the case of the phase, when the input power is greater than−10 dBm, the phase error

occurs at about 1∼ 2◦. However, at the target input power level (approximately−55 dBm), the phase

imbalance is about 0.2∼ 0.3◦. As this affects the amplitude and phase imbalance to the IMRR, these

errors can be reasonable.
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Figure 4.19: (a) P1dB and (b) IIP3 against passive mixer’s input signal level (LO power: 0 dBm).

4.5 PPF

4.5.1 Outline of PPF and IQ Generator

In this study, to separate the triple-band signal, phase translation of signals is used. The numbers

of the target signals separated is not two, but three. Compared with the conventional dual-band struc-

tures, a proper phase translation that rejects more undesired signals is required. The PPF following
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Figure 4.20: (a) Amplitude and (b) phase of passive mixer’s outputs against input signal level (LO
power: 0 dBm).

mixers, and the adder, which adds and subtracts PPF output signals to remove undesired signals, are

used. To achieve these advancements with a good signal balance, the frequency translator, circuits

are designed as balanced structures.

For operation of these circuits, the IQ signal generator is required to generate the two differential

signals with a different phase for each other as much as 90◦. Using an external signal source has many
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factors causing errors, such as the difference of signal feeding wirings, impedance mismatching at

the input port (a general signal source has a 50Ω internal impedance), etc. Thus, it is hard to generate

IQ signals without errors of amplitude and phase. In this study, the balun (balanced and unbalanced)

and PPF for internal IQ signal generation on chip are therefore designed.

4.5.2 Single and Two-stage PPFs for IQ Generator

In this work, one of the most important points is two times of image signal rejection through

phase translation with a Weaver structure. To achieve this, RC PPFs are designed as a phase trans-

lator. A basic PPF was developed for generation quadrature signals by Gingell [19] in the 1970s.

However, with the early PPFs, there were many problems, such as process variation and component

mismatching. An advanced RF CMOS process realized the practical implementation of PPF [20]. In

Fig. 4.21, the single-stage PPF is shown. It is composed of individual elements of four resistors and

four capacitors. With differential input, it generates four outputs which have 90◦ phase difference

to each other. In practical case, multi-stage cascaded connection of PPFs is used to cover required

frequency range even with process variation [11,21]. However, due to the passive components of the

PPF, a 3 dB amplitude loss occurs per stage. The resistive components generate thermal noise and

it degrades the system NF. In this study, considering impedance matching with the previous-stage

output impedance and the next-stage input impedance to maximize the power delivery, resistance

and capacitance values are controlled.

For the input-stage structure, the phase and amplitude balances are focused. In Fig. 4.21, these

two type of PPF are illustrated. Figure 4.21 shows a balanced input signal type and a single input

signal type. The balanced input signal type PPF outputs as follows.

VO1 − VO3 =
1

1 + jωR1C1
· (VIN P − VIN N ),

VO2 − VO4 =
jωR1C1

1 + jωR1C1
· (VIN P − VIN N ),

(4.23)

whereω is an angular operation frequency.

The single input type PPF shown in Fig. 4.21(b) outputs as

VO1 − VO3 = (VIN P − VIN N ),

VO2 − VO4 =
1− jωR1C1

1 + jωR1C1
· (VIN P − VIN N ).

(4.24)
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Figure 4.21: A single-stage PPF of (a) balanced and (b) single input type.

As shown in Eqs. (4.23), if the value ofR1C1 is far from1/ω, the amplitude error increases; but,

the I and Q phases differ by as much as 90◦. On the other hand, the PPF in Fig. 4.21(b) has little

amplitude error even for the value ofωR1C1 far from unity, but it can cause phase error according

to ωR1C1. Thus, depending on the importance of amplitude and phase balances, the poly-phase

input-stage type can be chosen.

The change of frequency features according to input-stage types is verified by circuitry simula-

tions. Figure 4.22(a) shows the amplitude imbalances according to the input-stage types. As shown

in Eqs. (4.23) and (4.24), the the single input type has amplitude error less than that of the balanced

input type. However, as shown in Fig. 4.22(b), the balanced input type has less phase imbalance

than the single input type. The allowed phase and amplitude imbalances are under 0.05◦ and under

0.03 dB in the target frequency range in this work. Among these errors, the amplitude error has more

influence than the phase error. Furthermore, the phase error can be compensated through a compen-

sation technique mentioned in Chapter 3. Thus, in this study, the single input type, which can reduce

the amplitude imbalance, is used as the input-stage type.

The two-stage PPF shown in Fig. 4.23 has a wider frequency characteristic than the single-stage

PPF. Among the PPFs used in the proposed architecture, the part used at the IQ generator for the LO1

signal is the most sensitive because the operation frequency is 1.4 GHz. Thus, the operation feature
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Figure 4.22: The output imbalance simulation results of a single-stage PPF for (a) amplitude and (B)
phase according to input-stage type.

is verified at this frequency, as shown in Fig. 4.24. The parameter values with a center frequency of

the PPF at the operation frequency are calculated as follows:R1 andR2 are 130 and 96Ω, C1 and

C2 are 1 pF.

Figure 4.25 shows the IMRR of the first mixer output with the IQ generator composed with the
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Figure 4.23: The two-stage PPF schematic based on single input type.

Figure 4.24: First mixer with IQ generator composed two-stage PPF and balun.

two-stage PPF and balun. The dotted line denotes the results with the single-stage PPF; the solid line

represents the results with the two-stage PPF. Although the maximum IMRR with the single-stage

PPF is higher than that with the two-stage PPF, the frequency operation range of the two-stage PPF

is wider than that of the single-stage PPF.
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Figure 4.25: IMRR of first mixer with IQ generator composed two-stage PPF and balun.

Amplitude and phase balances are verified as well. Figure 4.26 shows the amplitude and phase

errors of the PPF output. The component values are re-calculated with the post-layout circuit simula-

tion including layout features. From the results, the amplitude errors are under 0.1 dB and the phase

errors are under 0.01◦ at the target frequency. The values of resistors and capacitors in Fig. 4.23 are

modified a little by considering parasitic elements based on metal line.

4.5.3 Influence of PPFs Load on IMRR

Differently from the PPF used in the IQ generator, the first PPF, which is located between the first

and second mixers, must be carefully handled with some points. It is connected to the resistive adders

for signal phase translation to realize image rejection. The process mismatch causes the output signal

balance degrading IMRR. To avoid the load impedance effect, the adder’s resistance is much larger

than that of the PPF. In the design, the adder resistance is over 1 kΩ. There still remains the mismatch

of the adder’s large resistance.

For simplification, the single-stage PPF shown in Fig. 4.27(a) is considered with the mismatch in

the resistive adders (∆Ro,p, ∆Ro,n). Using the equivalent circuit in Fig. 4.27(b) to obtainVk (k= 1,
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Figure 4.26: (a) Amplitude and (b) phase balance of two-stage PPF’s output signals.

2, 3, 4),Vout,p/Vin is calculated as

Vout,p

Vin
=

1 + ωCR

1 + jωCR

(1 + j)(Zppf +Ro,p) + ∆Ro,p

2(Zppf +Ro,p) + ∆Ro,p

≈ 1 + j

2

1 + ωCR

1 + jωCR

(
1− j

2

∆Ro,p

Zppf +Ro,p

)
. (4.25)
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Figure 4.27: (a) Simple PPF with resistive adder and (b) equivalent circuit to calculateVk (k = 1, 2,
3, 4).

As Vout,n can be calculated similarly,Vout/Vin is expressed as follows.

Vout

Vin
≈ 1 + j

2

1 + ωCR

1 + jωCR

[
1− j

2

(
∆Ro,p

Zppf +Ro,p
+

∆Ro,n

Zppf +Ro,n

)]
. (4.26)

The factor1+ωCR represents image rejection, and it is not influenced by a mismatch in the resistive

adders.

The components for the first PPF are used as follows.R1 andR2 are 160Ω and 217Ω, C1 and

C2 are 9.5 pF for the operation frequency from 170∼ 230 MHz. In the second PPF,R1 andR2 are

210Ω and 260Ω, C1 andC2 are 12.5 pF for the operation frequency from 20∼ 30 MHz. Both cases

have an amplitude error of less than 0.1 dB and phase errors of 0.01◦. The circuit simulation results,

including load effect, will be shown for the system IMRR in the next chapter.

4.6 Passive Components Consideration and Layout

4.6.1 On-chip Passive Components

Some characteristics of on-chip passive components influence performance of circuits using them.

In this subsection, some considerations for them are explained.

A. Inductor
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Figure 4.28: (a) Cross-section of used process and (b) layout structure of used inductor.

The inductor occupies the large area and it is very sensitive to parasitics of metal lines. In the

design step, the inductor model with connecting metal is used. The 130-nm CMOS process used

in this work has three thin metals, two thick metals, and three RF-use thick metals, as illustrated in

Fig. 4.28(a). Figure 4.28(b) shows layout example of an inductor. As shown in the figure, it has the

structure of a dual-layer parallel stacked spiral. The core part of the inductor is composed of top two

metal layers (M7 and M8) to reduce parasitic resistance. Accordingly, a higher quality factor (the

Q-factor) can be achieved.

The Q-factor can be calculated as

Q-factor=
Energystored

Average PowerDissipated
=

ωL

Rs,L
, (4.27)

whereL is a pure inductance andRs,L is the series resistance of the inductor. It means the energy

loss relative to the amount of energy stored in some elements. As a higher Q-factor, the energy loss

decreases.

Figure 4.29 represents the Q-factor and inductance values of the inductor used in the design,

including metal line parasitics. These values are calculated through circuit simulation. Figure 4.29(a)

shows the Q-factor ofLs andLLoad in Fig. 4.3. This Q-factor ofLs are approximately 11∼ 13, and
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Figure 4.29: (a) Q-factor and (b) inductance including layout condition of used inductor.

LLoad are about 17 in the target frequency ranges. The inductance values ofLs are approximately the

same as 1.45 nH and ofLLoad are 17.4∼ 18.2 nH at L1, L2, and L5 band frequencies. The inductor

values are almost constant to satisfy the input impedance matching condition in the target frequency

range. The Q-factor of theLLoad is adequate value for triple-band application in this study without

using additional series resistor [4].

In this study, the external inductor (Murata LQW18AN9N5D00 [1]) is used to satisfy the LNA

input condition. As a reference, the Q-factor and inductance of the external inductor used in the

designed circuit are illustrated in Fig. 4.30. These Q-factors are 80∼ 105 and the inductances are
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Figure 4.30: (a) Q-factor and (b) inductance of Murata inductor for simulation of lumped elements.

9.5∼ 9.6 nH during the target frequency ranges.

B. Capacitor

The metal-insulator-metal (MIM) capacitor is used, as illustrated in Fig. 4.31(a). The MIM capac-

itor is composed of M6 to M7 layers with the thin metal (M5 layer) in the eight level metal process

shown in Fig. 4.28(a). Figure 4.31(b) shows the layout structure of that capacitor. The MIM structure

needs a large size, but it guarantees high-accuracy.

The variation of the Q-factor according to the width and length of the MIM capacitor should be
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Figure 4.31: (a) Structure and (b) layout component of MIM capacitor.

considered. In the same way as the previous inductor case, the loss is generated within the elements.

Although the number of vias for port P1 does not depend on the length and the width, that for the

port P2 is influenced by them, as shown in Fig. 4.32. Figure 4.33 shows the MIM capacitor Q-factor

and capacitance. Although capacitance values little change, the Q-factors have greater values with a

larger width. In short, the type shown in Fig. 4.32(a) has a smaller parasitic resistance than the type

shown in Fig. 4.32(b). From those results, the proper type of capacitor can be used in the design.

C. Resistor

A un-silicided poly-silicon resistor is used in this work. Sheet resistance of this resistor is 340Ω

per unit dimension, and it has a±15% tolerance. It has small sensitivity to temperature and voltage

variation. It has a high sheet resistance, which is useful for small occupied area and small parasitic

capacitance to the substrate.

D. Pad
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Figure 4.32: Differential length and width size ((a) 20µm × 45 µm and (b) 45µm × 20 µm) of
same value’s MIM capacitor.

The RF pad illustrated in Fig. 4.34 is used. By eliminating M2 to M7 layers, parasitic capacitance

is reduced. The parasitic resistances for input/output signals are reduced by ground shielding with

M1 metal, as shown in Fig. 4.34. The M1 ground metal is connected to the p-type substrate with a

lot of vias (parasitic resistance∼ mΩ) to stabilize the substrate bias.

4.6.2 Layout of RF Front-end Architecture

In Fig. 4.35, the designed layout is illustrated. A is an LNA core, and B and C are an inductor

of the source and load of LNA, respectively. D is a first mixer, E is a second mixer, and F and G

are first and second PPFs. H and I are IQ generators for LO1 and LO2, respectively. All blocks are

symetrically arranged.

For the signal line, the high frequency line and long signal line has a structure similar to a coplanar

waveguide (CPW) structure. Figure 4.36(a) shows a part of these signal lines. As shown, the signal
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Figure 4.33: (a) Q-factor and (b) capacitance of MIM capacitor.

line is covered with a ground line. This CPW structure can maintain the signal phase features and

protect them from the jitter signal of the ground path more than a single signal line. To maintain

the ground line as a reference voltage line, the large-size substrate lines are located at several parts

around the signal feeding.

Figure 4.37(a) shows the layout of inductor. To isolate the signal line from the ground plane, a
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Figure 4.34: Cross-section of pad with ground and substrate plane.

safety place is located outside the inductor. The guard line is used around the inductor. This part

helps with isolation from the substrate.

In Fig. 4.36(b), the LNA core MOSFET is shown. The signal feeding line into the gate is drawn

as a covering whole gate dimension. The both-side gate connection is used to reduce gate-electrode

resistance. Thus, when using various gate fingers, the signal feeding delay can be matched. Fig-

ure 4.37(b) shows the PPF. The capacitor occupies large area. The structure of the capacitor is

symmetrically configured. In the capacitor case, as mentioned earlier, the width is smaller than the

length for lower parasitic resistance.

4.7 Post-layout Circuit Simulation of RF Front-end Architecture

To verify the RF front-end architecture characteristic, it is assumed that a low-pass filter (LPF)

and an ADC after the second PPF output are used. The LPF has a 40 MHz cutoff frequency and the

ADC is assumed to be of Analog Devices AD9639 (4-channel, 12-bit). With this assumption, the

architecture is simulated with the Cadence Specter with process variation.

Figure 4.38 shows the voltage level at each block. For this simulation, the input power at the LNA

is −75 dBm through the active antenna of a 35 dB gain. The ADC requires an input voltage level

greater than 342µm, which becomes the second PPF’s minimum output voltage level. Based on the

simulation results, in the worst case (variation type: Slow NMOS, Slow PMOS (SS)), the minimum
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Figure 4.35: Designed layout of RF front-end architecture for triple-band signal.

condition is satisfied. Table 4.5 shows the NF and IMRR at each port with Monte-Carlo simulation

(1000 trials). In the simulation, the NF is approximately 7 dB, and the IMRR is 38∼ 42 dB.

4.8 Conclusion

The RF front-end architecture is comprised of the LNA, active and passive mixers, PPF, and IQ

generator. After layout of these blocks, the proposed architecture was verified through post-layout

circuit simulations. The required input voltage level of the ADC (AD9639, 4-channel, 12-bit, which
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Figure 4.36: Layout issue point as (a) signal line and (b) MOSFET array.

is detailed in Chapter 5) was confirmed even for the worst case of process variation. With 1,000

times of the Monte Carlo simulation, the NF and IMRR are verified as approximately 7 dB and 38

∼ 42 dB. From these simulation results, the proposed architecture could receive the triple-band GPS
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Figure 4.37: Layout issue point as (a) inductor (1.45 nH) and (b) PPF with capacitor array (C1 =
C2 = 1 pF in Fig. 4.23).

Table 4.5: NF and IMRR results with post-layout circuit simulation (Monte-Carlo, 1000 trials).

signal.
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Figure 4.38: Process variation simulation results of RF front-end output voltage level at each block.





4.8 References 103

References

[1] Murata Manufacturing CO.,LTD [Online]. Available: http://www.murata.co.jp/

[2] D. K. Shaeffer and T. H. Lee,“A 1.5-V, 1.5-GHz CMOS low noise amplifier,”IEEE J. Solid-

State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.

[3] D. K. Shaeffer and T. H. Lee,“Corrections to A 1.5-V, 1.5-GHz CMOS low noise amplifier,”

IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1397–1398, May 2005.

[4] Y. Utsurogi, M. Haruoka, T. Matsuoka, and K. Taniguchi,“CMOS front-end circuits of dual-

band GPS receiver,”IEICE Trans. Electron., vol. E88-C, no. 6, pp. 1275–1279, June 2005.

[5] T. Nguyen, C. Kim, G. Ihm, M. Yang, and S. Lee,“CMOS low-noise amplifier design optimiza-

tion techniques,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1433–1442, May 2004.

[6] P. Sivonen and A. Parssinen,“Analysis and optimization of packaged inductively degenerated

common-source low-noise amplifiers with ESD protection,”IEEE Trans. Microw. Theory Tech.,

vol. 53, no. 4, pp. 1304–1313, Apr. 2005.

[7] P. Leroux, J. Janssens, and M. Steyaert,“A 0.8dB NF ESD protected 9mW CMOS LNA oper-

ating at 1.23 GHz,”IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 760–765, June 2002.

[8] B. Razavi,RF Microelectronics, Prentice Hall PTR, 1998.

[9] P. J. Sullivan, B. A. Xavier, and W. H. Ku,“Low voltage performance of a microwave CMOS

gilbert cell mixer,”IEEE J. Solid-State Circuits, vol. 32, no. 7, pp. 1151–1155, July 1997.

[10] M. Haruoka, Y. Utsurogi, T. Matsuoka, and K. Taniguchi,“A dual-band image-reject mixer

for GPS with 64dB image rejection,”IEEE Topical Conference on Wireless Communication

Technology, Oct. 2003.

[11] M. Haruoka, Y. Utsurogi, T. Matsuoka, and K. Taniguchi,“A study on the LO phase error com-

pensation of GPS dual-band image-reject mixer,”Electronics and Communications in Japan,

Part 2, vol. 88, no. 12, pp. 26–33, Dec. 2005.



104 Chapter 4 RF Front-end Circuit Design for Triple-band Receiver

[12] T. H. Lee, The Design of CMOS Radio-Frequency Integrated circuits, 2nd ed., Cambridge

University Press, 2004.

[13] V. Vidojkovic, J. V. Tang, A. Leeuwenburgh, and A. Roermund,“Mixer topology selection for

a 1.8 - 2.5 GHz multi-standard front-end in 0.18µm CMOS,” IEEE International Symposium

on Circuits and Systems, pp. 25–28, May 2003.

[14] P. Gould, C. Jelley, and J. Lin,“A CMOS resistive ring mixer MMIC for GSM 900

and DCS1800 base-station applications,”IEEE International Microwave Symposium, vol. 1,

pp. 521–524, June 2000.

[15] P. J. Sullivan, B. A. Xavier, and W. H. Ku,“A common source input cross coupled quad CMOS

mixer,” Analog Integrated Circuits and Signal Processing, vol. 19, pp. 181–188, 1999.

[16] J. A. Garcia, J. C. Pedro, M. L. Fuente, N. B. Carvalho, A. Mediavilla, and A. Tazon,“Resistive

FET mixer conversion loss and IMD optimization by selective drain bias,”IEEE Trans. Microw.

Theory Tech., vol. 47, no. 12, pp. 2382–2392, Dec. 1999.

[17] T. Lee, H. Samavati, and H. R. Rategh,“5-GHz CMOS wireless LANs,”IEEE Trans. Microw.

Theory Tech., vol. 50, no. 1, pp. 268–280, Jan. 2002.

[18] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer,Analysis and Design of Analog Integrated

Circuits, 4th ed., New York Wiley, 2001.

[19] M. J. Gingell,“Single sideband modulation using sequence asymmetric polyphase networks,”

Electrical Communication Magazine, vol. 48, no. 1 and 2, pp. 21–25, 1973.

[20] J. Crols and M. Steyaert,“An analog integrated polyphase filter for a high performance low-IF

receiver,”Symposium on VLSI Circuits, pp. 87–88, June 1995.

[21] T. Kamata, T. Matsuoka, and K. Taniguchi,“Design of image rejection filter for wideband

TV tuner IC,” IEICE Trans. Electron. (Japanese Edition), vol. J93-C, no. 6, pp. 195–206,

June 2010.



105

Chapter 5

Experimental Results and Discussion of
Triple-band RF Front-end Chip

In this chapter, measurement of fabricated RF front-end IC-chip and the compensation process

are discussed. Specially, an improved receiving capability from an image-rejection-ratio (IMRR)

improving technique by the digital compensation technique mentioned in Chapter 3 is described.

5.1 Introduction

The chip was fabricated from a 130-nm CMOS process with eight level metal. The RF front-end

designed in this study was verified through both on-wafer and on-board measurements. Using a

wafer probing system, the pads of the device-under-test (DUT) were directly contacted with the high

frequency probe card. In the on-board case, the IC-chip with the 24-pin QFN package was mounted

on a printed circuit board. From the on-wafer measurement, the external inductor value for the

LNA input condition was estimated. The noise figure (NF) of the total RF front-end was measured

as well. During this step, the noise factor of external equipment that was attached to measure the

on-wafer IC-chip was compensated. A module board was fabricated with the promising external

lumped inductor and low-pass filter (LPF), and A/D converter (ADC) to confirm capability of triple-

band signal reception. Digital compensation to improve IMRR, which is mentioned in Chapter 3,

was also performed.
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5.2 Bare Chip Measurement

The chip-level measurement was carried out using a wafer probing system. Figure 5.1 shows the

fabricated IC-chip photograph. The IC-chip area of the core blocks, including pads and ESD pro-

tection circuits, occupied 2.4 mm2. Except for the IF output pads for low frequency (approximately

25 MHz), the pads for RF and LO signals were constructed with a ground-signal-ground structure

for minimization of interferences between the signal lines. The ports of A(+,−) to D(+,−) in Fig. 5.1

correspond with A to D in Fig. 3.5 in Chapter 3. The subtractors of these signals were implemented

by using a precise power splitter (Agilent 11667B, 50±2 Ω). The probe needle with the shunt ca-

pacitor was used for stable DC power supply and biases. In Fig. 5.2(a), the manufactured RF probe

needle is illustrated.

The on-wafer measurements have the advantage of high accuracy results without the package lead

line. The input signal of the chip - in other words, the input signal of the low-noise amplifier (LNA)

- was received throughLg, which was located in front of the LNA input stage. In this study, because

of the size and reasonable quality factor of the inductor, the external inductor was used. For the input

impedance matching condition of the chip, the impedance passive manual tuner was used instead

of the external inductor. In connecting as in Fig. 5.3, the input impedance condition could be set

by controlling the manual tuner. The insertion loss for the input matching circuit, cable, and probe

needle were also compensated [2].

5.2.1 Input Reflection Coefficient of the Bare Chip

Through measurement of the bare chip, the input reflection coefficient and NF were measured

as RF features. The case of the input reflection coefficient was checked using the vector network

analyzer HP 8722ES. For high accuracy measurement, the network analyzer was calibrated through

the probe needle’s contact with the coplanar line impedance sheet illustrated in Fig. 5.2(b). To avoid

instrumental errors originating from the bonding wires, the small-signal and noise characteristics

of the receiver chip with an ideal inductorLg (in Fig. 4.7 of Chapter 4) in series with the gate of

LNA input stage were estimated with the basis of the measured data [3]. The method is described in

Appendix B.
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Figure 5.1: Fabricated chip photo.

5.2.2 Noise Figure of the Bare Chip

The NF was measured using the NF meter HP 8970A, and the noise source HP 346C. Figure 5.3(b)

shows the equipment setup for measurement of the NF. A manual tuner and probe needle were used

for input impedance matching in the target frequency. The equivalent blocks of these measurement

equipments are illustrated in Fig. 5.4. The passive blocks (manual tuner, cable, and probe needle)

have noise. To evaluate the performance of the chip, the loss and noise from the signal source to the

surface of the chip’s pad had to be compensated.

As shown in Fig. 5.4, the noise source controlled by the NF meter generates a test signal into the

DUT. The NF meter calculates the DUT NF through analysis of the received noise. In this study, the
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Figure 5.2: (a) Probe card for high-frequency DUT measurement and (b) impedance standard sub-
strate for calibration.

effective NF was recalculated by converting the unwanted noise of the above passive blocks into the

noise source [4]. The detailed theoretical explanation is provided in the Appendixes B and C.
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Figure 5.3: Equipment set-up for NF measurement.

5.2.3 Measurement Results of the On-wafer IC-chip

In the measurement, the power consumption was approximately 7.2 mW with a 1.2-V supply

voltage, which was mainly for the LNA and mixer core blocks. Figure 5.5 shows the measurement

results of the input reflection coefficient based on the input reflection results with promising value

of Lg estimated 8.2 nH, and the NFs compensated the insertion loss for the input matching circuit,

cable, and probe needle with re-calculated noise source. The input reflection coefficient for the input

impedance matching condition was under−10 dB. The NF for the RF front-end chip was less than

7.1 dB over a wide frequency range covering the L1, L2, and L5 bands.
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Figure 5.4: Equivalent set-up of measurement equipments for NF.

Figure 5.5: Measurement results of on-wafer IC-chip: (a) input reflection coefficient and (b) NF.

5.3 Module Measurement

For the on-board measurement, the IC-chip was packaged in 24-pin QFN package. The parasitic

inductance of bonding wire (∼1 nH) for LNA input was small in this case.

The PCB module board was fabricated for attaching the promising external inductor calculated

from the previous measurement, as shown in Fig. 5.6. In addition to the chip packaged and the

external inductor for input impedance matching, the module has ADCs for observing the received

data on a specific time domain and anti-alias IF passive low-pass filters (pass-band loss:∼1 dB,

3 dB-bandwidth: 25 MHz). The subtractions of the second PPFs output signals for the ADC input
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Figure 5.6: Designed module PCB board.

signals are implemented by using precise external resistances (∼1 kΩ) on the module, which provide

much higher load resistances of the second PPFs (∼200Ω resistances are used) in addition to the

ADC input resistances (4.3 kΩ) and have little influence on the IMRR in this design, as described in

Chapter 4. The input reflection coefficient and NF were measured as shown in Fig. 5.7.

The analog outputs were simultaneously measured by inserting the modulation input signals. For

the easy check, 5 MHz and 2.5 MHz BPSK modulation signals for L2 and L5 band signals were

used, and a CW signal was used for the L1 band signal. The analog output signals were measured at

each band port. Figure 5.8 shows the inserted input signals and the measured output signals per each

port. Compared to the differently modulated signal at the same port, the IMRR could be calculated.

From the measurement results, the IMRR of L1, L2, and L5 band signals were 40 dB, 38 dB, and

39 dB, respectively. As predicted in the previous chapter, owing to the differences of receiving paths,

the IMRR of L2 and L5 band signals were degraded more than that of the L1 band signal.

Signal separation in the ADC output was also verified. As the AD9639 [1] used in this work has

four ADCs inside, the two ADC components embedded on the module (total eight ADCs) can afford

for evaluation of this digital compensation. As described later, the required bit number of the ADC

is four. To provide signal with adequate level to each of the ADC inputs, the differential probes
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Figure 5.7: Measurement results of RF front-end on module board: (a) input reflection coefficient
and (b) NF.

(Tektronix P6247, attenuation 10:1) were used as IF amplifiers in this work. To measure the received

signal at each independent port, 10 MHz, 5 MHz, and 2.5 MHz BPSK modulation signals were used

for L1, L2, and L5 bands. Figure 5.9 shows the input modulation signals that were measured directly

on the signal generator and the measured output signals of the ADCs. The ADC sampling period is

5 ns. This figure implies that the data rates of the measured signals at the L1, L2, and L5 ports are

10 MHz, 5 MHz, and 2.5 MHz, respectively.

5.4 Discussion on the IMRR Digital Compensation

As mentioned in the Chapter 3, among the triple-band signal, L2 and L5 band signal IMRRs were

worse than that of the L1 band signal. Through previous measurement results, the L1 band signal

IMRR was more than 40 dB. However, the L2 and L5 band signal IMRRs were approximately 37∼
38 dB. These IMRRs were due to the signal received path. This is because the L1 band signal was

received through the first poly-phase filter (PPF), while the L2 and L5 band signals were received

through the first and second PPFs. In this study, for compensation, a digital method was used instead

of an analog method [5, 6] to avoid large area occupation and high power consumption. Figure 5.10

shows the end parts of the proposed architecture’s signal flow block.
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Figure 5.8: (a) Triple-band RF input signals and (b) analog outputs at each band port on board.

Figure 5.9: (a) Modulated RF input signals (observed at low-frequency output of the signal generator)
and (b) demodulation 2-bit binary output singals after ADC (LSB:∼439µV).
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Figure 5.10: End parts of proposed architecture’s signal flow block.

For this technique, the relation of the signals at A and D, and those at B and C, in Fig. 5.10 were

digitally implemented through the four ADCs. From the calculation, the required bit number of the

ADC was four.

The concept of an image-rejection technique has the same meaning of the cancellation of unwanted

band signals on the target band signal. For example, for detection of the L5 band signal, the output

signals are denoted A and D in Fig. 5.10. In those node signals, the L5 band signals have different

phases, and the L2 band signals have the same phase. Therefore, through a subtraction operation,

the L5 band signal without the L2 band signal could be received. If the L2 and L5 band signals

had amplitude and phase errors, the errors degraded the IMRR. Therefore, the goal of digital com-

pensation was the fit of amplitude and phase of the signals of these two nodes. To this end, utilizing

I(t)−H[Qcomp(t)] instead ofI(t)−H[Q(t)] could improve the IMRR. To improve the IMRR at the

L5 port,I(t) andQ(t) were assigned to the signals at A and C in Fig. 5.10, andH[Qcomp(t)] could

be obtained in the following digital signal processing. The Hilbert transform could be simply calcu-

lated with the delay by a quarter of a signal period in the over-sampled digital signal data. Based on

the above approximated formula, the approximated signal ofH[Qcomp(t)] could be calculated from

onlyH[Q(t)] (the signal at D in Fig. 5.10) after obtainingae andθe in Fig. 3.10. The L2 band signal
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could also be improved in the same way.

H[Qcomp(t)] =
H[Q(t)]

ae cos θe
− tan θe H[I(t)]

≈ H[Q(t)]

ae cos θe
+ tan θe H[H[Q(t)]]. (5.1)

To verify the digital compensation technique for the L5 port, the ADC outputs at A and D in

Fig. 5.10 were measured. The phase errorθe could be obtained from the ADC outputs at A and D in

Fig. 5.10 in the following overview.I(t) in Fig. 3.10 corresponded to the signal at A. Considering

interconnection modifications on the board, the inverse Hilbert transform (H−1[·] = −H[·]) of the

signal at D were used asQ(t) instead of that at C. As a result, theQcomp(t) andH[Qcomp(t)] signals

were approximately calculated only from the ADC output at D using Eq. (5.1).

The amplitude error could be compensated after this phase error compensation. By considering

the amplitude errors, the signals at A and D (sA(t) andsD(t)) are expressed as

sA(t) = mL2(t) cos(ωIF2t+ θ) +mL5(t) cos(ωIF2t), (5.2)

sD(t) = (1 + ε1) mL2(t) cos(ωIF2t+ θ)− (1 + ε2)mL5(t) cos(ωIF2t), (5.3)

whereθ means the phase difference between the L2 and L5 band signals, and|ε1|, |ε2| ≪ 1. Con-

sideringsA(t) − sD(t) based on the above expressions, the IMRR for L5 port without the digital

amplitude error compensation is given by|(2 + ε2)/ε1|2 ≈ 4/ε21. To compensate the amplitude

error, the following calculation with a small compensation parameterε′1 is used.

sA(t)− (1− ε′1)sD(t) ≈ (ε′1 − ε1) mL2(t) cos(ωIF2t+ θ) + (2 + ε2 − ε′1) mL5(t) cos(ωIF2t).(5.4)

In this case, the IMRR for the L5 port is given by|(2 + ε2 − ε′1)/(ε
′
1 − ε1)|2 ≈ 4/|ε′1 − ε1|2. By

settingε′1 = ε1, the IMRR can be well improved. The IMRR for the L2 port can be improved in the

same way using the signals at B and C in Fig. 5.10.

From the measurement results,ε1 andε2 were obtained as 0.0252 (−31.9 dB) and 0.0266 (−31.5 dB).

By settingε′1 = ε1 with these conditions, the IMRR between the L2 and L5 band signals became

approximately 49 dB. Figure 5.11 shows the measured result where the BPSK modulation signals of

5 MHz and 2.5 MHz modulation frequency were used for the L2 and L5 band signals. To ensure the

IMRR improvement, the obtained FFT data were processed through band-pass filtering and moving
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Figure 5.11: Signal spectrum at the L5 port with IMRR correction (dotted line) and without IMRR
correction (solid line). The obtained FFT data are processed through band-pass filtering (center
frequency: 25.595 MHz, pass-band width: 10 MHz, pass-band ripple: 0.01 dB) and 61-point moving
averaging. The resolution bandwidth is 50 kHz.

averaging. As a result, an improvement of approximately 12 dB of IMRR between the L2 and L5

band signals was observed by using the digital compensation technique described above. In this ex-

periment, at least a 4-bit ADC was required to detect a phase error of under 3◦ at the second PPF

outputs. Although a 4-bit ADC may have been somewhat heavy for GPS applications, the allowable

mismatches in the PPFs could be relaxed.

5.5 Conclusion

The proposed RF front-end through measurement was verified. For fabrication, a 130-nm CMOS

process was used. The circuits worked with a 1.2-V supply voltage. During operation, the power-

consumption of the main blocks including LNA and mixers is 7.2 mW. For input impedance matching
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of the chip, an external inductor of 8.2 nH (Murata LQW18AN8N2D00) was used. The bonding wire

of 24-pin QFN package at the LNA input had regrettably small parasitic inductance. The proposed

RF front-end had less than a−10 dB input reflection coefficient and 7 dB NF during the target

frequency range. Through the output signals of the analog and ADC, each band signal at each band

port was verified. At that time, the IMRR was more than 40 dB in the L1 band signal and 37∼ 38 dB

in the L2 and L5 band signals. For improving the degraded IMRR of the L2 and L5 band signals, the

digital compensation technique was used. In this way, the IMRR degraded on account of PPF which

is an essential block for construction of the proposed architecture could be improved.
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Chapter 6

Conclusion

RF front-end architecture has been studied for the global positioning system (GPS). GPS has

been used most widely among various global navigation satellite system (GNSS) applications. The

receiver studied in this work can simultaneously receive multi-band signals for high-accuracy po-

sitioning information, such as ocean remote sensing. Through the proposed method, a different

real-time kinematic global positioning system (RTK DGPS) can be realized with high-positioning-

accuracy. In this study, RF front-end architecture which can receive the triple-band GPS signal (L1,

L2, and L5) was designed and evaluated.

Chapter 1 introduced the study. It mentioned the basic concept of GNSS and explained the moti-

vation and main goal of this study. It additionally described the organization of the thesis.

In Chapter 2, the high-accuracy equivalent circuit of MOSFET operating in RF frequency was

described. In particular, the gate-electrode resistance including the vertical current paths was high-

lighted. This is important to achieve the input impedance matching condition in the design of a

low-noise amplifier (LNA) that covers the wide frequency range including triple-band signal. The

vertical current path elements, such as the interface resistance between the silicide and poly-silicon,

have large influence on the gate-electrode resistance in the small-dimension devices. Multi-finger

structure can reduce the gate-electrode resistance. In addition, it is revealed that the non-quasi-static

gate resistance has Elmore constant around 5 for long-channel devices and smaller values for gate

lengths under 1µm. Based on these knowledges, the effective gate resistance in the input stage of

the LNA could be accurately estimated.

In Chapter 3, the RF front-end architecture for a triple-band GPS signal was proposed. The archi-
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tecture has only a single RF path and uses an image rejection technique based on Weaver architecture.

Independent signal separation was realized by inserting the poly-phase filters (PPF) into the conven-

tional Weaver structure. The behavior-level and circuit simulation results verified the feasibility of

the proposed architecture. A digital compensation technique and its theoretical explanation were also

studied to improve the degraded image rejection ratio (IMRR) of the L2 and L5 band signals.

In Chapter 4, the circuit blocks composing the proposed RF front-end were described. A LNA,

active and passive mixers, PPFs, and a balun were used for these circuit blocks. The LNA has a fre-

quency characteristic that can receive the triple-band signal. A proper noise figure (NF) is required,

which limits the receiving sensitivity. Input device characteristics that determine the frequency fea-

tures, as mentioned in Chapter 2, were used in the design. All blocks were designed with a balanced

structure. In particular, the amplitude and phase balance of output signals were mainly considered

during the design. The receiving capability of whole blocks was verified through the IMRR, which

was calculated from imbalance ratios of output signals. Through circuit simulations, it was demon-

strated that the RF front-end can simultaneously receive the triple-band GPS signal. NF was 6.8∼
7.0 dB in target frequency range, and the IMRR was 38∼ 41 dB at each band port with 6.5 mW

power consumption of main blocks including LNA and mixers.

Chapter 5 described experimental results of the RF front-end integrated circuit fabricated with

a 130-nm CMOS process and a 1.2-V power supply. The measurements were carried out in three

steps. The RF features of the bare chip were first measured with a wafer probing system and a

manual tuner. Through this step, the promising value of the external inductor for the input stage was

obtained. As the second step, bare chips were packaged and the module board was fabricated with

the promising external inductor, low-pass filter, and analog-digital converter (ADC). The fabricated

RF front-end module had the input reflection coefficient less than−10 dB and 7 dB NF during the

target frequency range. Experimental results revealed that the fabricated RF front-end integrated

circuit could simultaneously receive the triple-band GPS signal through a single path. The received

signals were individually separated at each band port. The IMRR was more than 40 dB in the L1

band signal and 37∼ 38 dB in the L2 and L5 band signals. The power-consumption of the main

blocks including LNA and mixers was 7.2 mW. These show good agreement with simulation results

shown in Chapter 4. As a final step, the improved IMRR of the output signal was observed through

a digital compensation method from the ADC output signals. It was demonstrated that the degraded
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IMRR was improved by more than 10 dB.

The small-size low-power multi-band receivers with the simultaneous signal reception will be

more attractive in the future. This study has demonstrated the feasibility of simultaneous GPS triple-

band reception with a single RF path. The proposed receiver architecture is expected to become one

of promising techniques for them.
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Appendix A

Gate Impedance of MOSFET with
Vertical Current Path Elements

The lumped elements of MOSFET’s horizontal and vertical gate resistance can be composed as

Fig. 2.1(b) in Chapter 2. The steady state at the angular frequencyω in only the gate-electrode on the

channel (z = 0 ∼ Wf ) is considered now. Using Eq. (2.2) in Chapter 2, the admittance of vertical

current path terms for signal propagation lengthdz on the gate-electrode surface is expressed as

Yvpdz. The signal voltagev(z) and currenti(z) on the gate-electrode surface can be obtained by

solving the following differential equations

dv
(
z
)

dz
= −Rsili i(z), (A.1)

di
(
z
)

dz
= −Yvp v(z). (A.2)

Thus the voltagev(z) and currenti(z) can be expressed as

v(z) = V+ e−γz + V− eγz, (A.3)

i
(
z
)

=
Yvp
γ

(V+ e−γz − V− eγz), (A.4)

whereγ is given by

γ =
√

Rsili Yvp. (A.5)

The boundary conditions to obtainV+ andV− in case of a single-side gate connection (v(0) =

vgs, i(Wf ) = 0) give the gate-electrode impedance asZg = v(0)/i(0). Similarly, in case of a
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both-side gate connection (v(0) = v(Wf ) = vgs), the gate-electrode impedance can be obtained as

Zg = v(0)/(i(0) + (−i(Wf ))). As a result, the gate-electrode impedance is given by

Zg =

√
k γ

Yvp
coth

(√
k γ Wf

)
≈ 1

YvpWf
+

k

3
Rsili Wf

≈ 1

jωCgc
+

ρint + ρvp
LWf

+
k

3
Rsili Wf , (A.6)

wherek is 1 and1/4 for a single-side and a both-side gate connections, respectively. The approxi-

mation is valid for|
√
Rsili Yvp|Wf ≪ 1. The second and third terms of Eq. (A.6) contribute to the

gate-electrode resistance.
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Appendix B

NF Re-calculation with the External
Inductor

To estimate the NF value with the external inductor, the noise parameters are required. The NF for

source admittanceYS seen from the surface of the chip pad is given by

NF = NFmin +
Rn

Re[YS ]

∣∣∣∣YS − Yopt

∣∣∣∣2, (B.1)

where the noise parametersNFmin, Rn, andYopt are the minimum NF, noise resistance, and opti-

mum source admittance, respectively. These noise parameters can be obtained from the NF values

obtained for variousYS values by using the manual tuner. The source admittanceYS seen from

the surface of the chip pad can be obtained by using scattering parameters[S] of the passive 2-port

block from the signal source described in Appendix C. When the impedance of the noise source is

approximated toZ0, YS ≈ (1/Z0)(1− S22)/(1 + S22).

To re-calculate the NF value with the external input inductorLg,ext based on the noise parameters,

the following equation forYS is used:

YS with ext. ind.=
1

Z0 + jωLg,ext
, (B.2)

where the impedance of the signal source is set to the characteristic impedanceZ0.

To obtain[S], it is expressed as

[S] = [S1][S2], (B.3)
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where[S1] is the scattering matrix from output of noise source to cable output including manual

tuner and[S2] is from SMA connector to the tip of the probe needle. The[S1] can be obtained using

the conventional co-axial measurement. To obtain the scattering matrix[S2] values of passive 2-port

block, the variable impedance conditions of probe needle (open, short, and known impedance) and

the reciprocity (S12 = S21) are used.
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Appendix C

Excess Noise Ratio with Compensation of
Signal Loss

Figure C.1 shows a block diagram of the chip-level NF measurements with a wafer probing system,

which has a probe needle, cable, and a manual tuner for input impedance matching. To evaluate the

performance of the chip, while including the loss of the pad, the loss from the signal source to the

surface of the chip’s pad must be compensated. When measuring the NF, a reference point of the

controllable noise source with a known excess noise ratio (ENR) (port 1-1’ in Fig. C.1) must be

changed to the surface of the chip’s pad (port 2-2’ in Fig. C.1). This effectively changes the ENR

used in the NF measurement.

The available noise power of the controllable noise source during the off-state and on-state are

expressed askBToff∆f andkBTon∆f , respectively. Here,kB is the Boltzmann constant,∆f is the

bandwidth, andToff andTon are the equivalent absolute temperatures used to express the off-state

and on-state noises, respectively. Using the noise source resistanceRS , the corresponding noise

voltagesens,off andens,on are given by

|ens,off |2 = 4kBToffRS∆f, (C.1)

|ens,on|2 = 4kBTonRS∆f. (C.2)

The ENR value is defined as follows.

ENR =
|ens,on|2 − |ens,off |2

|ens,off |2
=

Ton − Toff

Toff
. (C.3)
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Figure C.1: On-wafer IC-chip NF measurement block diagram with the equivalent passive blocks.

Noise figureNF can be obtained by using the ENR as follows:

NF =
ENR

Y − 1
, (C.4)

where theY factor is defined as the ratio of the noise power measured at the output for the on-state

and off-state noise sources.

To calculate the effective value of the ENR with reference port 2-2’ in Fig. C.1 (ENReff ), the

passive 2-port block from the signal source to the surface of the chip’s pad is focused. The correlation

matrix of the noise waves at both ports in the passive 2-port block at absolute temperatureT is

expressed as

[CS ] = kBT ([E]− [S][S†]), (C.5)

where[E] is the unit matrix and[S] is the scattering matrix of this block [1,2]. Using this equation,

the correlation matrix of the input-referred noise voltageen and currentin can be obtained from[CS ]
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as follows:

[CA] =
1

∆f

[
|en|2 eni∗n
e∗nin |in|2

]
= [T ][CY ][T

†], (C.6)

[CY ] = ([E] + Z0[Y ])[CS ]([E] + Z0[Y
†]), (C.7)

where[Y ] is the admittance matrix of this block,Z0 is the characteristic impedance, and[T ] is the

transformation matrix from the admittance representation[CY ] to the chain representation[CA] [3].

By using elements of[CA] calculated by the above equations,ENReff can be expressed as follows.

ENReff =
|ens,on + en + inRS |2 − |ens,off + en + inRS |2

|ens,off + en + inRS |2

=
ENR

1 + |en + inRS |2/4RSkBToff∆f
. (C.8)

The value ofENReff can be calculated by using theENR, RS , and the elements of[CA]. By using

ENReff instead ofENR in Eq. (C.4), the NF with loss compensated from the signal source to the

surface of the chip’s pad can be obtained.
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