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Chapter 1 

General introduction 

1.1 Genome engineering in chromosome level 

Genome engineering is a recently developed technology that enables the large-scale 

manipulation of a genome and the simultaneous modification of many genes. It is expected to 

be a potential tool not only for generating strains with desired traits but also for 

understanding genome functions. Several genome engineering technologies have been 

established in the budding yeast Saccharomyces cerevisiae for the manipulation of a 

chromosome or genome on a large scale. Genome engineering is strategy or technology that 

redesigns or modifies targeted genetic information or genome of interest. Chromosome 

engineering is subset of genome engineering. It enables us to introduce defined chromosomal 

rearrangements such as small deletion, insertion, duplication, inversion or translocation into 

genome of interest. Here is the example of technology or strategy that was utilized to 

reconstruct, redesign or synthesize genetic information on the chromosome. Yeast artificial 

chromosomes (YACs) have been developed as an artificial chromosome that has a capability 

to carry large DNA fragments (Burke et al., 1987). YACs were applied to the creation of 

genomic libraries of the entire genomes of higher organisms such as mammalian genome in 

addition to genome manipulation in S. cerevisiae. Bridge-induced translocation (BIT) allows 

us to generate the translocation event at desired chromosomal regions by transformation with 

a DNA cassette containing a selectable marker flanked by two homologous sequences 

corresponding to two different chromosome locations (Tosato et al., 2005). PCR-mediated 

chromosome splitting (PCS) method enables us to split a chromosome into two smaller 

chromosomes at any desired site using PCR followed by a single transformation
 
(Sugiyama et 

al., 2005). Application of PCS (Sugiyama et al., 2009) has provided valuable tools to 

manipulate and study the genome, including the chromosome shuffling method which allows 
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to swap selected chromosomal regions with the corresponding region of other strains 

(Sugiyama et al., 2006), PCR-mediated chromosome deletion (PCD) method,
 
which can be 

exploited for deleting chromosomal region at any desired site in a single transformation per 

deletion event (Sugiyama et al., 2008), and genome reorganization technology
 
which allows 

creating a huge variety of genome composition in yeast cells (Ueda et al., 2012). In genome 

reorganization technology, various chromosome regions were split to generate mini-

chromosomes by PCS method. After introduction by mini-chromosome loss, cells with a 

variety of genome composition were created. This technology was exploited for strain 

improvement such as creation of yeast strains with ethanol tolerant phenotype (Park et al., 

2012). Recently a technology to completely synthesize entire chromosome from oligo-

nucleotides have also been developed (Dymond et al., 2011, Annaluru et al., 2014). In this 

study, the newly synthesized chromosome was designed with following principles. First, the 

change should confer near wild-type phenotype and fitness. Second, the destabilizing 

elements such as tRNA genes or transposons should be removed.  Third, synthetic 

chromosome should incorporate genetic flexibility to facilitate future studies. Outcome of this 

work was the first artificial synthesis of the partial chromosome VI, a right arm of 

chromosome IX and entire chromosome III. Moreover, the entire synthesis of other 

chromosomes covering the whole genome of S.cerevisiae is in progress. This research group 

also developed a technology named Synthetic chromosome rearrangement and modification 

by LoxPsym-mediated Evolution technology (SCRaMble) (Dymond et al., 2011) to generate 

genome rearrangements including deletion and inversion in the synthetic chromosome. In 

SCRaMble technology, the insertion of loxP site after stop codons of each non-essential gene 

and at major genetic landmarks followed by the induction of expression of Cre recombinase 

allows the creation of cell with enormous genome diversity. Taken all together, those genome 

engineering techniques could be applied to the study on a large scale of genome 
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rearrangement and the subsequent investigation of the relationship between changed 

phenotype caused by altered genotype.  

 

1.2 Origin of segmental aneuploidy 

Segmental aneuploidy is recently noted type of chromosome rearrangements. It is the 

aberrant structure of chromosomes in which segments of chromosomes are gained or lost and 

is found to be involved in both growth defect and advantageous phenotypes on a broad range 

of organisms such as antifungal drug resistance in pathogenic yeasts, copper tolerance in 

natural yeasts living in area with high copper contents, morphological abnormality in maize, 

and human diseases exemplified by Down syndrome and tumors. (Bigner et al., 1988, 

Warburton, 1991, Crolla, 1998, Viersbach et al., 1998, Infante et al., 2003, Fuster et al., 2004, 

Selmecki et al., 2006, 2008, 2009, Makarevitch et al., 2008, Gresham et al., 2008, Lyle et al., 

2009, Lucas et al., 2010, Jung et al., 2011, Borneman et al., 2011, Dunn et al., 2012, Brion et 

al., 2013, Chang et al., 2013, Weischenfeldt et al., 2013, Chen et al., 2013, Akalin et al., 

2014). In the scope of this thesis, duplication of chromosomal segments was focused.  In 

yeast, segmental duplication of a large chromosomal region occurs spontaneously at a 

frequency of 10
-9

 to 10
-10 

per mitosis in the haploid genome (Koszul et al., 2004). The 

spontaneously segmental duplication was classified into four types (Dujon, 2006, 2010). The 

first type is intra-chromosomal duplication, in which internal chromosomal region is 

duplicated in tandem on the same chromosome arm (Koszul et al., 2004). The second type is 

inter-chromosomal duplication, in which chromosomal region is duplicated followed by 

moving to other chromosome, while original chromosome remains unaffected (Koszul et al., 

2004). The third type is supernumerary chromosome, in which chromosomal region is 

duplicated, fused with other duplicated region of another chromosome, generating 

structurally abnormal extra chromosomes (Koszul et al., 2004). The forth type is episomal 
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chromosomes, in which duplicated region is converted into a new chromosome with a 

circular structure (Libuda and Winston, 2006).   

Segmental duplication is generated as the consequence of DNA breakage. Mechanism 

of segmental duplication is classified into 2 large groups (Koszul and Fischer, 2009). The first 

groups are called conservative mechanisms, including inherited segmental mechanism, 

unequal crossing-over amplification (Smith, 1976, Ohta, 1976), Break-fusion-bridge (BFB) 

amplification (Murnane, 2006) and non-homologous end joining (NHEJ)-mediated formation 

of segmental duplication (Koszul et al., 2004). Inherited segmental mechanism occurs by a 

translocation of the large chromosome region from one chromosome to another, then 

segmental duplication appears in the offspring. Unequal crossing-over occurs between 

homologous sequences located either on the same sister chromatids, on the identical sister 

chromatids or on homologous chromosomes, and segmental duplications are subsequently 

generated.  BFB mechanism occurs by the fusion between two sister-chromatids due to the 

loss of telomere, forming dicentric chromosome. During chromosome segregation in 

anaphase, each centromere is pulled toward opposite poles, then one daughter cell will carry 

chromosome with deletion, another daughter cell will carry chromosome with duplication. 

Since those two chromosomes lack telomeres, the BFB cycles will repeat and continue until 

those chromosomes obtain telomere. 
 
After multiple rounds of this process occur, it leads to 

duplication of chromosomal regions. NHEJ-mediated segmental duplication happens when 

two sister chromatids or homologous chromosome experience DSB at different sites, then 

improper repair mechanism occurs by NHEJ and results in segmental duplication. Second 

groups are called as replication-dependent  mechanisms, including break induced replication 

(BIR) (Morrow et al., 1997, Payen et al., 2008) and microhomology/microsatellite-induced 

replication (MMIR) (Payen et al., 2008). BIR is a RAD52 (homologous recombination 

protein) dependent mechanism and requires long homology for strand invasion. DSB end 
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sometimes invades homologous sequence either at non-allelic position, on sister chromatid, at 

upstream site of the DNA break point or on a different chromosome, then lead to direct 

tandem segmental duplication or non-reciprocal translocation. MMIR is mediated by 

microhomology or low-complexity DNA sequences and occurs in a RAD52-independent 

manner. However, formation of segmental duplication by the BIR and MMIR mechanism is 

dependent on Pol32, subunit of DNA polymerase Polδ for DNA synthesis step. In this study, 

the term “segmental duplication” is used to refer to amplification of a particular chromosomal 

region and “segmental aneuploidy” is used to refer to a duplication in which the 

chromosomal region is present as an independent chromosome.   

 

1.3 Segmental aneuploidy and their consequences 

Segmental duplications are generally associated with detrimental effects in 

multicellular organisms. For example, in maize, segmental duplication causes morphological 

abnormalities (Makarevitch et al., 2008). While in humans, segmental duplication resulting 

from supernumerary chromosomes is associated with tumor development and many diseases 

such as human breast cancer  and cat eye syndrome (Bigner et al., 1988, Warburton, 1991, 

Crolla, 1998, Viersbach et al., 1998, Fuster et al., 2004, Lucas et al., 2010, Chen et al., 2013, 

Akalin et al., 2014). Similarly, although Down syndrome in humans is usually due to trisomy 

for chromosome 21, it can also occur as a result from partial (segmental) aneuploidy of 

chromosome 21 (Lyle et al., 2009). There are at least two possibilities that might explain the 

reason why aneuploidy lead to the detrimental effect. The first possibility is that the increase 

in dosage of a specific gene that is involved in the critical pathway of cell survival hampers 

the growth (Torres et al., 2007). The second possibility is that the presence in extra protein 

that is translated by duplicated genes located on an additional chromosome causes the 
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imbalances in protein homeostasis and lead to the defects in cell proliferation (Oromendia et 

al, 2012). 

In yeast, partial chromosomal duplications may offer an evolutionary advantage 

through enabling adaptation to particular stresses in the environment (Infante et al., 2003, 

Gresham et al., 2008, Brion et al., 2013, Chang et al., 2013). For example, segmental 

aneuploids are occasionally found in industrial yeast strains such as those used for 

fermentation of wine and beer (Borneman et al., 2011, Dunn et al., 2012). Segmental 

duplication of chromosome VII and VIII that confer copper resistance have been found in 

natural yeast living around areas with high copper contents (Chang et al., 2013). Laboratory 

yeast strains were found to have segmental duplication of a specific region of chromosome II 

containing high affinity sulfate transporter (SUL1) after cultivation in sulfate limited 

condition (Gresham et al., 2008). In Candida albicans, a pathogenic yeast, fluconazole 

resistance is the result of duplication of the left arm of chromosome V that contains ERG11 

encoding a target of fluconazole and TAC1 encoding a transcription regulator of the ABC 

transporter (Selmecki et al., 2006, 2008, 2009). These various examples illustrate the impact 

of segmental duplication on phenotype in unicellular and multicellular organisms. 

 

1.4 The influences of chromosome segmental duplication on gene expression 

It has been reported that gene expression are correlated proportionally to gene copy 

number on a duplicated region in yeast and mammals (Torres et al., 2007, Pavelka et al., 

2010b). However, in Drosophila and plants, there is compensation of gene dosage changes at 

the transcription level that normalizes the expression level of genes on an additional 

chromosome to euploid level (Makarevitch and Harris, 2010, Zhang et al., 2010). 

Nevertheless phenotypic alterations are occasionally conferred by increased dosages of a 

single gene or the consequences of the combination of two or more genes on the duplicated 
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region (Selmecki et al., 2006, 2008, 2009, Gresham et al., 2008, Pavelka et al., 2010b, Chen 

et al., 2012, Chang et al., 2013). For example, in case of a dosage change of a single gene on 

duplicated region, segmental gain of a regions of chromosome II that contain high affinity 

sulfate transporter (SUL1) were found in evolved S. cerevisiae strain under sulfate limited 

condition (Gresham et al., 2008), aneuploidy of chromosome XIII confers 4-NQO drug  

resistance due to increased dosages of ATR1 gene on duplicated region (Pavelka et al., 

2010b). In case of the effect of multiple genes, aneuploidy of chromosome XV confers 

radicicol resistance because of the synergistic effect of STI1 and PDG5 and possibly other 

genes that are located in chromosome XV (Chen et al., 2012). Amplification of 

isochromosome 5 also confers fluconazole resistance in C. albicans as a result of increased 

dosages of ERG11 and TAC1 (Selmecki et al., 2006, 2008, 2009).  Natural yeast strains that 

tolerate copper have segmental duplication of chromosome VII and VIII. This copper 

resistance was conferred by duplication of both of CUP1 on chromosome VIII and CUP2 

gene on chromosome VII (Chang et al., 2013). Moreover, there are two effects that may 

occur by aneuploidy. First is cis-effect that is the effect by which dosage and expression of 

gene located on duplicated chromosome are changed (Pavelka et al., 2010b). Second is trans-

effect that is the effect by which expression of genes on other chromosomes are changed.  

This change might result in phenotypic change if genes on the duplicated region are 

regulatory gene(s) for other multiple genes in its network (Rancati et al., 2008).  

 

1.5 Detection of segmental aneuploidy 

As emphasized in the previous section, segmental aneuploid play an important role in 

phenotypic alterations of various organisms. Many researchers have attempted to discover 

karyotypic variations that are the cause of specific phenotypic changes. To date, several 

technologies have been developed to analyze numeral and structural variation in the genome. 



12 

 

Here, the mainly used approaches that enable us to identify segmental aneuploidy are 

described.  Those include electrophoresis-based karyotyping, fluorescent in situ hybridization 

(FISH) or based microarray approaches, and next-generation sequencing (NGS) technology. 

An electrophoresis-based technology for detecting the alteration of chromosome number and 

chromosome rearrangement is Pulse field gel electrophoresis (PFGE) coupled with Southern 

blot analysis (Infante et al., 2003, Koszul et al., 2004, Chang et al., 2013).  Gross 

chromosome rearrangement and the changes of approximate chromosome size (100 bp to 10 

Mb) could be detected, but the data on exact sequences could not be obtained by this method. 

Fluorescent in situ hybridization (FISH) is an approach that enables identification of the 

presence and localization of specific DNA on chromosome. It was usually exploited to detect 

chromosome rearrangement (at resolution of approximately 5 Mb for analysis of metaphase 

chromosome) in multicellular organisms (Liu et al., 1998, Kolialexi et al., 2006). 

Hybridization-based microarray approaches, including array comparative genomic 

hybridization (array CGH) and SNP microarrays are exploited for the detection of copy 

number variation (CNV) (Gresham et al., 2008, Dunn et al., 2012, Brion et al., 2013). SNP 

microarrays could also be used to detect single nucleotide polymorphism. However, 

hybridization-based microarray approaches could not specify the location of duplication or 

structure of chromosome rearrangement. Next-generation sequencing (NSG) technology has 

been developed in the past few years (Alkan et al., 2011). NGS technology allows us to 

identify the exact sequences, type, break point and copy number of structural variations. By 

using these approaches, especially microarray and DNA sequencing technologies, segmental 

duplication in genome of various organisms are being discovered rapidly. The characteristics 

of karyotype by CGH and/or whole genome sequencing were often analysed from strains 

grown in natural environments (Infante et al., 2003, Dunn et al., 2012, Chang et al., 2013) or 

laboratory evolved strains (Dunham et al., 2002). The strains harbouring segmental 
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aneuploidy and other mutations were frequently identified in those studies. To understand the 

biological roles of segmental aneuploidy clearly, cell that harbours only the segmental 

aneuploidy of interested region but no other mutation are required.  Therefore, methodology 

to generate segmental aneuploidy at any genomic locus is needed. 

 

1.6 Methodologies to construct whole chromosome duplication  

In yeast, there are several techniques to generate duplication of whole chromosome, 

including treatment with antibiotics that cause chromosome segregation errors (Chen et al., 

2012); a chromosome transfer strategy based on drug selection (Torres et al., 2007); 

disruption of genes involved in chromosome segregation fidelity (Rancati et al., 2008); 

induced nondisjunction of specific chromosomes using a conditional centromere (Anders et 

al., 2009); and meiotic progenies from polyploidy
 
(Pavelka et al., 2010b).  However, it should 

be again noted that all of these techniques are to cause duplication of the whole chromosome 

but not segmental duplication of chromosome. Methodologies to construct precise segmental 

aneuploidy are much more restricted. It has been reported that growth defect of mutants 

harboring single-gene deletion subsequently generated spontaneous large segmental 

duplications with random sizes to suppress the defect (Koszul et al., 2004). To date, however, 

methodology to construct an extra-chromosome with segmental duplication at a desired 

chromosomal region has never been developed.  

 

1.7 Objective (of this study) 

Since the available methods are unsuitable for constructing segmental duplications of 

specific chromosomal regions, I initiated the present study to develop a methodology with 

properties mentioned in previous sections. Here, I describe the development of a simple new 

technology, which I termed PCR-mediated chromosome duplication (PCDup) that can be 
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used in budding yeast to duplicate any desired chromosomal region as an independent 

chromosome.  

In Chapter 1, I have already summarized the origin of segmental aneuploidy, the 

effect of segmental aneuploidy in different organisms, the influences of chromosome 

duplication on gene expression, method for identification and construction of chromosome 

rearrangement and genome engineering in chromosome level. In Chapter 2, I have 

demonstrated the principle and the performance of PCDup. The size limitation of segmental 

duplication constructed by PCDup technology was also determined.  In Chapter 3, I have 

applied PCDup technology to construct the series of approximately 100-200 kb segmental 

duplications that covered the whole genome of S. cerevisiae. Interestingly, some 

chromosomal regions could not be duplicated; the implications of these interesting 

observations are considered later. Subsequently, the phenotypic alterations of those segmental 

aneuploid strains were investigated under environmental stresses. Moreover, the correlation 

between the presence of duplicated chromosome and observed phenotype were also verified. 

In Chapter 4, I discussed the importance of development and the utility of this novel genome 

engineering technology for generating an additional chromosome consisting of a defined 

genomic region. Finally, I emphasized that this new technology will not only be valuable for 

deciphering genome function, but also for breeding yeast strains with desirable stress 

resistance characteristics.   
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Chapter 2 

Development of PCR-mediated chromosome duplication technology 

2.1 Introduction 

The development and application of high-throughput genome analysis methods, such 

as comparative genomic hybridization and next-generation sequencing (Alkan et al., 2011), 

have made it relatively easy to identify and analyze most types of novel genetic change not 

only at the chromosomal but also at the sub-chromosomal level. However, not all 

chromosomal changes are amenable to analysis by these new approaches. Although high-

throughput genome analysis can detect chromosome copy number variation including 

segmental aneuploidy, it cannot distinguish among types of segmental duplication, such as 

tandem duplications,   duplications inserted into an independent chromosome or generation of 

independent chromosome. As described in Chapter I, segmental duplication involving large 

chromosomal regions has great impact on phenotypic alterations in unicellular and 

multicellular organisms (Bigner et al., 1988, Warburton, 1991, Crolla, 1998, Viersbach et al., 

1998, Dunham et al., 2002, Infante et al., 2003, Fuster et al., 2004, Selmecki et al., 2006, 

2008, 2009, Makarevitch et al., 2008, Gresham et al., 2008, Lyle et al., 2009, Lucas et al., 

2010, Borneman et al., 2011, Brion et al., 2013, Chang et al., 2013, Weischenfeldt et al., 

2013, Chen et al., 2013, Akalin et al., 2014). 

To date, very few organisms have been exploited for segmental aneuploidy research, 

although such studies have been performed in S. cerevisiae (Jung et al., 2011), Drosophila 

(Zhang et al., 2010), maize (Makarevitch et al., 2008) and mouse (Tybulewicz and Fisher, 

2006). In contrast to multicellular organisms, a wide range of genetic tools is available to 

manipulate the S. cerevisiae genome and, therefore, S. cerevisiae may be the best available 

model organism for studying segmental aneuploidies. Several methods can be used to 
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duplicate whole chromosomes in yeast as described in Chapter I. However, methods for 

studying segmental aneuploids are much more restricted. Most of the information obtained 

from yeast regarding the relationship of segmental aneuploidy and the phenotype is derived 

from high-throughput analysis of karyotypic changes in natural populations (Infante et al., 

2003, Dunn et al., 2012, Chang et al., 2013) or laboratory-generated strains (Dunham et al., 

2002). In these populations and strains, it is unclear whether the observed phenotypic changes 

are a direct consequence of segmental aneuploidy and, additionally, it is difficult to delimit 

the region potentially responsible for any phenotypic changes. Since the methods for 

constructing segmental duplications of specific chromosomal regions in a targeted manner 

are lacking, my study was initiated to develop a methodology satisfying this demand. In this 

Chapter, I demonstrated the performance of the new technology by constructing segmental 

duplications of various lengths of several chromosomal regions and by testing the efficiency 

of the construction of segmental aneuploidy. 

 

2.2 Materials and Methods 

2.2.1 Yeast strains and plasmids  

Saccharomyces cerevisiae strain BY4742 [MATα his3∆1 leu2∆0 lys2∆0 ura3∆0] was 

used as the parental strain for the construction of segmental aneuploidy.  The plasmids used 

in this chapter are listed in Table 1. Yeast strains were grown at 30 °C in YPAD medium 

containing 5% (wt vol
-1

) Difco
TM

 YPD broth (1% (wt vol
-1

) yeast extract, 2% (wt vol
-1

) 

Bacto-peptone and 2% (wt vol
-1

) dextrose) supplemented with 0.04% (wt vol
-1

) adenine 

(Wako), or selective medium (Amberg et al, 2005) containing 0.67% (wt vol
-1

) yeast nitrogen 

base without amino acids (Difco) and 2% (wt vol
-1

) glucose (Wako). If necessary, selective 

media were supplemented with appropriate amino acids (0.02 mg ml
-1

 l-typtophan, 0.02 mg 

ml
-1

 l-lysine, 0.03 mg ml
-1

 l-leucine, 0.02 mg ml
-1

 l-histidine, 0.02 mg ml
-1

 uracil and/or 0.02 



17 

 

mg ml
-1

 adenine). Escherichia coli strains were grown at 37 °C in LB medium (2% (wt vol
-1

) 

LB broth; Sigma) with or without 75 µg ml
-1

 ampicillin (Wako). For solid media, 2% (wt  

vol
-1

) agar (Wako) was added. 

Table 1. Plasmids used in this study.  
 

Plasmid Description Duplicating module Remarks 

p3008 The loxP-CgLEU2-loxP  module 

containing plasmid constructed by 

modifying pUG6 

A fragment containing the 5’-

(C4A2)6-3’ telomere seed sequence 

and the CgLEU2 cassette 

Sugiyama et al., 

(2005) 

p3009 The loxP-CgHIS3-loxP  module 

containing plasmid constructed by 

modifying pUG6 

A fragment containing the 5’-

(C4A2)6-3’ telomere seed sequence 

and the CgHIS3 cassette 

Sugiyama et al., 

(2005) 

p3122 The loxP-CgLEU2-CEN4-loxP  

module containing plasmid constructed 

by modifying pUG6 

A fragment containing the 5’-

(C4A2)6-3’ telomere seed sequence 

Sugiyama et al., 

(2008) 

p3276 URA3  containing plasmid constructed 

by modifying pUG6 

A fragment containing the 5’-

(C4A2)6-3’ telomere seed sequence 

and the URA3 cassette 

Sugiyama et al., 

(2008) 

p3279 The loxP-CgHIS3-H4ARS-loxP  

module containing plasmid constructed 

by modifying pUG6 

A fragment containing 5’-(C4A2)6-

3’ telomere seed sequence, 

CgHIS3 and the H4ARS cassette 

NBRP, YGRC, 

Japan 

YCp50 URA3 centromeric plasmid whose 

length is 7.8 kb 

- Rose et al., 

(1987) 

 

2.2.2 Yeast genomic DNA and plasmid DNA extraction 

Yeast cells were inoculated into YPAD medium and cultivated at 30°C overnight. 

Cells were collected and resuspended in DNA lysis buffer (containing 2% (wt vol
-1

) TritonX-

100, 1% (wt vol
-1

) SDS, 100 mM NaCl, 10 mM Tris-HCl (pH 8.0), 1 mM Na2EDTA), and 

glass beads were then added.  Phenol chloroform was added and the solution was mixed 

vigorously at 4°C for 30 min. Next, TE buffer (10 mM Tris-HCl, 1 mM EDTA (pH 8.0)) was 

added and the solution was subjected to centrifugation. The aqueous phase was recovered, 

and DNA was precipitated with ethanol. The DNA pellets were air-dried and dissolved in TE 

buffer. The DNA concentration was measured using NanoDrop spectrophotometer. 
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 Plasmid DNA was isolated from E. coli strains according to the alkaline lysis method 

(Sambrook et al., 1989).  E.coli strains were cultured in LB plate supplemented with 75 µg 

ml
-1

 of ampicillin at 37°C overnight. The following day, cells were picked up and suspended 

in 100 µl of cold solution I (50 mM glucose, 10 mM EDTA (pH8.0), 20 mM Tris-HCl 

(pH8.0)). Then cells were lysed with 200 µl of freshly prepared solution II (0.2 N NaOH, 1% 

(wt vol
-1

) sodium dodecyl sulfate (SDS)) and allowed to stand on ice for 5 min. Cell lysate 

was neutralized and precipitated by adding 150 µl of cold solution III (60 ml of 5 M sodium 

acetate, 11.5 ml of glacial acetic acid in 100 ml of total solution). Eppendorf tube was 

inverted gently and allowed to stand on ice for 20 min. Phenol:chloroform treatment and 

ethanol precipitation were performed. DNA pellets were air-dried and dissolved in 50 µl of 

TE buffer (pH8.0) containing RNaseA (Sigma).  

 

2.2.3 PCR procedure for preparation of DNA duplicating modules 

The primers used in this study are listed in Table 2. The Saccharomyces Genome 

Database (http://www.yeastgenome.org) was used to select the target region for duplication 

and to design primers. The two DNA modules required for PCDup were prepared by two 

rounds of PCR. In the first round of PCR, loxP-cas and CA primers were used to amplify a 

DNA fragment from plasmid template (Table 1).  

 

Two DNA cassettes were amplified from the plasmids: one contained the telomere 

seed sequences, selectable marker and CEN4 (fragment 1); the other contained the telomere 

seed sequences and a second selectable marker (fragment 2). In parallel, two DNA fragments 

(400 bp; fragments 3 and 4) with nucleotide sequences corresponding to the left and right 

ends of the target region were amplified from genomic DNA of strain BY4742. One pair of 

primers designated Cx-y-L-f and Cx-y-L-r and a second pair designated Cx-y-R-f and Cx-y-
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R-r was used to amplify DNA fragments at the left and right ends of the target region, 

respectively (Table 2; x represents the chromosome number, y represents the size of 

duplicated chromosomal region, L represents the left end of target region, R represents the 

right end of target region, f represents a forward primer, and r represents a reverse primer). 

The Cx-y-L-f and Cx-y-L-r primers contained 20 bp sequences that respectively 

corresponded to the 5’ and 3’ ends of the fragment at the left end of the target region; the Cx-

y-R-f and Cx-y-R-r primers likewise contained 20 bp sequences corresponding to the 5’ and 3’ 

ends of the fragment at the right end. In addition, the Cx-y-L-r and Cx-y-R-f primers also 

contained 30 bp annealing sequences complementary to the DNA fragment amplified from 

the plasmid to further amplify the duplicating module in the next step of PCR. After the first 

round of PCR, the 4 PCR products (fragments 1-4) were gel-purified using a Wizard SV Gel 

and PCR Clean-up System (Promega).  

Next, overlap extension PCR was performed to amplify two duplicating DNA 

module: one target fragment (fragment 3 or 4) was combined with a marker cassette 

(fragment 1 or 2) by overlap extension PCR using primers Cx-y-L-r and CA, or primers Cx-

y-R-f and CA. After amplification, the two PCR products were ethanol-precipitated.  

The first round of PCR was performed using 1.0 U Ex Taq DNA Polymerase (Takara), 

approximately 50 ng of DNA template and 0.1 µM of each primer in a final volume of 50 µl. 

The following PCR cycle was used: the amplification of plasmid DNA (fragment 1 or 2); 

94°C for 5 min; 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 3 min; 

and 72°C for 7 min. The amplification of genomic DNA (fragment 3 or 4); 94°C for 5 min; 

30 cycles of 94°C for 30 seconds, for 30 seconds, and 72°C for 30 seconds; and 72°C for 7 

min. The overlap extension PCR was performed using a final volume of 100 µl containing an 

equal amount of PCR product from the plasmid and genomic DNA, 2.0 U Ex Taq DNA 

Polymerase (Takara) and 1 µM of each primer. The following cycling profile was performed:  
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94°C for 5 min; 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 7 min; 

and 72°C for 7 min. All PCR amplifications were carried out on a Gene Amp PCR System 

9700 (Applied Biosystems).  

Table 2. Primers used for estimation of the maximum length of segmental chromosome 

duplication 

Chromosomal region Primer name Nucleotide sequence (5'-3') 

- CA CCCCAACCCCAACCCCAACCCCAACCCCAACCCCAAAGGCCACTAGTGGATCTGAT 

- loxP-cas GGCCGCCAGCTGAAGCTTCG 

Chr. I C1-50k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAGCGTTGGTGAAAGGCACT 

37,504 -87,735 C1-50k-L-r GGTGCATAGTGTTTTAATGC 

  C1-50k-R-f AGAACGACCCCAGAATGTAC 

  C1-50k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAGCAATGGGGACGATGATT 

Chr. II C2-150k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCTAAGCATCGACCTTAGAG 

360,775-505,293 C2-150k-L-r CAGACAAATCGCCATAGTCG 

  C2-150k-R-f CTGACCAAGAAAGAGCACGC 

  C2-150k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGTGGAACTTGCATATCGTT 

Chr. IV C4-250k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAACCCACAAAACGAGATGGA 

148,203-401,638 C4-250k-L-r TCCTTGTAGCGCTGATACGA 

  C4-250k-R-f TCTTTTCATTATTGCTAGTA 

  C4-250k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAGTTCATGATGCGGG 

Chr. IV C4-300k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATTCGATTTCCACTGCTTAT 

97,475-401,638 C4-300k-L-r CCTCGCATAAATTGGGAAAT 

  C4-300k-R-f TCTTTTCATTATTGCTAGTA 

  C4-300k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAGTTCATGATGCGGG 

Chr. IV C4-350k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAAACAACATTTGTCCAAAA 

50,000 - 401,638 C4-350k-L-r TTCTGCAAACCAAAGAAAGA 

  C4-350k-R-f TCTTTTCATTATTGCTAGTA 

  C4-350k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAGTTCATGATGCGGG 

Chr. IV C4-400k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTGCTCTTCTTGTTAACCCC 

198,996-600,688 C4-400k-L-r GGCCGCAATTGACGACACAC 

  C4-400k-R-f TCGAGGACAAAAAGGCATAT 

  C4-400k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGAATAAAATAGGTCAGGT 

Chr. VIII C8-50k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTCCTAGATGGTGGGATCCA 

294,748- 346,028 C8-50k-L-r GGCCAAACGGTCAAGATCAA 

  C8-50k-R-f GACTGGTTTTAATGGTATTG 

  C8-50k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGACCTCTTATAAAGATTCAA 

Chr. VIII C8-100k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTTGCGCAACTGTTGCCGTG 

247,693-346,028 C8-100k-L-r TTAACTTTGGGGACCATTGA 

  C8-100k-R-f GACTGGTTTTAATGGTATTG 

  C8-100k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGACCTCTTATAAAGATTCAA 

Chr. VIII C8-150k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGCGTGTCGCGTTCCTCGAA 

192,203-346,028 C8-150k-L-r TGGTATCTACCTGAAGTCTT 

  C8-150k-R-f GACTGGTTTTAATGGTATTG 

  C8-150k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGACCTCTTATAAAGATTCAA 
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Chromosomal region Primer name Nucleotide sequence (5'-3') 

Chr. VIII C8-200k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTCGTAGAAATGACTCCAAG 

145,656-346,028 C8-200k-L-r GAACGACCGAACATACAGTA 

  C8-200k-R-f GACTGGTTTTAATGGTATTG 

  C8-200k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGACCTCTTATAAAGATTCAA 

Chr. X C10-100k-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACAGACAAGGTCATATCGCG 

225,115-326,063 C10-100k-L-r CTCTCATGGAGGGTGTAATT 

  C10-100k-R-f TTCCATTGACCACCGTCTAC 

  C10-100k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCGAACTCTGTTTCATCAGG 

 

2.2.4 Yeast transformation  

Yeast cells were transformed according to the method of Gietz and Schiestl (Gietz 

and Schiestl, 2005). Yeast cells were cultured in YPAD at 30°C overnight. Cultures were 

inoculated in fresh YPAD media. After incubateing at 30°C for 3-4 hours until the O.D.600 

reached at 0.8-1.0, cells were collected and washed with sterile water. Cell pellets were 

suspended with 0.1 M lithium acetate and centrifuged. The following reagents were added 

into cell pellets in order listed; 240 µl of 50% polyethylene glycol8000 (Wako), 36 µl of 1 M 

lithium acetate, 25 µl of 2 mg ml
-1

 salmon carrier DNA (Wako) (heat in boiling water for 5 

min and chilled on ice for 5 min before using) and PCR product, then vortexed vigorously. 

After incubating at 37°C for 30 min followed by heat shock at 42°C for 20-25 min, cells were 

centrifuged and resuspended in sterile water. About 100 µl of cell suspension were spread on 

an appropriate selective media plate. For a selection of yeast transformants, cells were 

cultured on SC medium without leucine, or without leucine and histidine, or without leucine 

and uracil at 30°C for 4 days.  

 

2.2.5 Karyotype analysis by PFGE and Southern blot analysis 

Chromosome DNA plugs were prepared according to the method of Sheehan and 

Weiss
 
(Sheehan and Weiss, 1990). Chromosomes were separated on 1% (wt vol

-1
) pulsed-

field gel electrophoresis gels in 0.5× TBE (Tris-borate-EDTA) buffer at 14°C using the 
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CHEF DRIII
®

 System (Bio-Rad Laboratories), with a 60-second pulse for 15 hours, followed 

by a 90-second pulse for 9 hours, at 6 V cm
-1

. The chromosomes were visualized and 

photographed under a UV transilluminator (UVP Bio Do-It Imaging System). Separated 

chromosomes were transferred onto a Hybond-N+ membrane using capillary blotting, and 

then cross-linked to the membrane by exposure to UV light (120 mJ cm
-2

) using a UV cross-

linker (Spectrolinker™ UV CROSSLINKER XL-1500) to fix DNA onto membrane. The 

membrane was hybridized with specific probes that were amplified by primers listed in Table 

3. Probe labeling, hybridization, and hybridization signal detection were carried out using an 

ECL direct
TM

 nucleic acid labeling and detection system (Amersham Biosciences). The film 

was exposed to membrane for 45 min and then developed in an X-ray film processor 

(FPM100; Fuji Film).   

Table 3. Primers used to amplify probes for estimation of the maximum length of 

segmental chromosome duplication 

Chromosomal region Primer name Nucleotide sequence (5'-3') 

Chr. I C1-50k-R-f AGAACGACCCCAGAATGTAC 

87,336-87,735 C1-50k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAGCAATGGGGACGATGATT 

Chr. II C2-150k-R-f CTGACCAAGAAAGAGCACGC 

504,894-505,293 C2-150k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGTGGAACTTGCATATCGTT 

Chr. VIII Chr.8-probe3-f CAAGTCCGTGCTGTCAAGGA 

325,648-326,147 Chr.8-probe3-r CAATAACGGCCAATGGCTTG 

Chr. IV C4-250k-R-f TCTTTTCATTATTGCTAGTA 

401,239-401,638 C4-250k-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAGTTCATGATGCGGG 

Chr. X C10-check-f CTGATGAATGGACAATGCAT 

247,685-248,184 C10-check-r GCTCGATGATGAGCCTCTTA 

 

2.2.6 Mitotic stability of segmentally duplicated chromosomes  

Yeast cells were cultured in 5 ml of YPAD medium at 30°C overnight and the optical 

density was then measured at 660 nm (OD660). Cell cultures were transferred into 5 ml of 

fresh YPDA media at an initial OD660 of 0.1. After incubation at 30°C for 24 hours, cell 

culture was measured at OD660 and the culture was diluted to a concentration of 1× 10
3
 cells 
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ml
-1

. About 100-200 cells were spread on each of three YPAD plates and incubated at 30°C 

for 24 hours, before being replicated onto YPAD and selective media plates. After incubation 

at 30°C for 24 hours, colony numbers on the plates were counted and % mitotic stability was 

calculated by the following equation: 

% Mitotic stability =  
                                     

                                
       % 

 

2.2.7 Estimation of DNA copy number  

Genomic DNA of the wild-type BY4742 and segmental aneuploid strains was 

extracted and treated with restriction enzyme HincII (Takara). The master-mix solution to 

digest genomic DNA with HincII restriction enzyme contained genomic DNA, 10× buffer 

and HincII; the solution was incubated at 37 °C for at least 1 hour and subsequently subjected 

to gel electrophoresis. Southern blot analysis was performed using probe A and probe C or 

probe B and probe C. Probe A, probe B and probe C were amplified by the primers C8-

check-f and C8-check-r, C10-check-f and C10-check-r, and C15-check-f and C15-check-r, 

respectively (Table 3). Probe labeling, hybridization and hybridization signal detection were 

performed according to an ECL direct
TM

 nucleic acid labeling and detection system 

(Amersham Biosciences). The intensity of the hybridization signal was determined by Scion 

image Beta 4.02 for Windows (Scion Corporation, Frederick, MD, USA) and the copy 

number was calculated by comparing the signal intensity ratio of the hybridizing band for the 

segmental aneuploid against that for the parental strain. The experiments were repeated in 

triplicate. 
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2.3 Results 

2.3.1 PCR-mediated chromosome duplication (PCDup) technology 

General scheme of PCDup method is illustrated in Figure 1.  The details of 

preparation of two types of duplicating DNA modules are presented in the Methods section.  

In general, natural chromosomes are stable and segregate into daughter cells owing to the 

presence of three essential elements: a telomere at both ends of the chromosome, a single 

centromere, and an autonomously replicating sequence (ARS).  Chromosomes newly created 

by PCDup must also have these three elements to assure its stable segregation.  Therefore, I 

prepared a duplicating DNA module containing telomere seed sequences and an additional 

centromere as duplicating DNA module 1 and another duplicating DNA module containing 

telomere seed sequences as duplicating module 2 (Fig. 1).  Since an ARSs are normally 

distributed about every 40 kb region throughout a natural chromosome (Beach et al., 1980), it 

is, in general, not necessary to add additional ARS sequences in the duplicating module.  

However, if the target region does not contain an ARS, it is necessary to prepare a duplicating 

module with additional ARS sequences.  If the target region is the terminal region of a 

chromosome, only one duplicating module is needed to generate the segmentally duplicated 

chromosome.  

The duplicating DNA modules were introduced into a yeast cell by conventional 

transformation.  The selected chromosome region was duplicated through integration of the 

two introduced DNA modules into each of two targeted sites on the same chromosome 

simultaneously by homologous recombination.  Transformants are obtained by growth on 

selective medium.  Then, the karyotype of transformants was analyzed by using pulsed-field 

gel electrophoresis (PFGE) and subsequent Southern blot analysis to confirm that targeted 

chromosomal region was indeed duplicated.   
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Figure 1.  Procedure for construction of a segmentally duplicated chromosome by the PCDup 

method.  Two target DNA fragments with nucleotide sequences corresponding to the left and right 

ends of the target region (400 bp) were amplified by PCR using genomic DNA as a template and the 

primers Cx-y-L-f and Cx-y-L-r or Cx-y-R-f and Cx-y-R-r (where x represents chromosome number, y 

represents size of duplicated chromosome region, L represents left end of sequence of the target 

region, R represents right end of sequence of the target region, f represents forward primer, and r 

represents reverse primer). The primer sequences of Cx-y-L-f, Cx-y-L-r, Cx-y-R-f and Cx-y-R-r 

varied with the target chromosomal region and are listed in Table 2. A fragment containing CEN4 and 

selective marker 1 cassette and a fragment containing the selective marker 2 cassette were amplified 

from the plasmid template using loxP-cas and a CA primer (Tables 1 and 4). Next, one target 

fragment was combined with the CEN4 and selective marker 1 cassette, and the other target fragment 

was combined with the selective marker 2 cassette by overlap extension PCR to form two duplicating 

modules, designated “duplicating DNA module 1” and “duplicating DNA module 2”. The amplified 

modules were introduced into yeast cells by conventional transformation. The two introduced 

modules are designed to integrate at the two target sites of the same chromosome by homologous 

recombination, resulting in duplication of the selected chromosomal region.  

 

2.3.2 Performance of PCDup 

To test the performance of the PCDup method, I first tried to duplicate three 

chromosomal regions that were selected randomly (Table 4); a 50 kb region of chromosome 
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I, a 145 kb region of chromosome II and a 100 kb region of chromosome X. A DNA 

duplicating module containing the target sequences, CEN4 and CgLEU2 cassettes, and 

telomere seed sequences, and another duplicating module containing the target sequences, 

URA3 cassette, and telomere seed sequences were prepared as described in the Methods 

section. These two modules were then introduced into the parental strain BY4742. Candidate 

transformants that harbored segmental duplication were selected by growth on SC-Ura-Leu 

medium. The numbers of transformants obtained for each chromosomal region are shown in 

Table 4. To analyze the karyotype of candidate transformants, PFGE was performed, 

followed by Southern hybridization using probes comprising nucleotide sequences 

corresponding to the target region (Table 3). Hybridization signals for segmental aneuploids 

were detected at positions corresponding to the intact chromosome and segmentally 

duplicated chromosome, whereas a hybridization signal for the parental strain was detected 

only at the position corresponding to the intact chromosome. Our analyses showed that 

desired duplication was achieved for each of the three regions with a proportion  from 10% to 

30% (Table 4) based upon the number of transformants having desired karyotype per number 

of transformants analyzed. Therefore, these initial observations confirmed that the PCDup 

method could duplicate arbitrarily selected chromosomal regions.  

 

Table 4.  Characteristics of segmental aneuploids of chromosomes I, II, IV, VIII and X  

Duplicated region
a
 

Duplication 

length (kb) 

Plasmid 

template
b
 

Transformants 

(n) 

Proportion of 

desired 

karyotype
c
 

% 

Mitotic 

stability 

Chr. I 37,504 -87,735 50 p3122, p3276 55 30.00% (3/10) 100% 

Chr. II 360,775-505,293 145 p3122, p3276 11 10.00% (1/10) 100% 

Chr. IV 148,203-401,638 250 p3009, p3122 31 7.69% (1/13) 99% 

Chr. IV 97,475-401,638 300 p3009, p3122 44 6.25% (1/16) 100% 

Chr. IV 50,000-401,638 350 p3009, p3122 39 0.00% (0/39) ND
d
 

Chr. IV 198,996-600,688 400 p3009, p3122 11 0.00%  (0/11) ND
d
 

Chr. VIII 294,748- 346,028 50 p3122, p3276 18 21.43% (2/14) 100% 
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Duplicated region
a
 

Duplication 

length (kb) 

Plasmid 

template
b
 

Transformants 

(n) 

Proportion of 

desired 

karyotype
c
 

% 

Mitotic 

stability 

Chr. VIII 247,693-346,028 100 p3122, p3276 34 10.00% (1/10) 100% 

Chr. VIII 192,203-346,028 150 p3122, p3276 32 10.00% (1/10) 100% 

Chr. VIII 145,656-346,028 200 p3122, p3276 6 33.33% (2/6) 100% 

Chr. X 225,115-326,063 100 p3122, p3276 18 20.00% (2/10) 100% 

  YCp50 (7.8 kb) NC
d
 NC

d
 85% 

*a: Chr. N x-y : Chr. N represents chromosome number, x represents first nucleotide number of chromosomal 

region and y represents last nucleotide number of chromosomal region.   

 b: p3009 was used to amplify the CgHIS3 cassette, p3122 was used to amplify the CEN4-CgLEU2 cassette, 

p3276 was used to amplify the URA3 cassette, p3279 was used to amplify the CgHIS3-H4ARS cassette and  

YCp50 was a URA3 centromeric plasmid whose length was 7.8 kb.  

 c: Proportion of desired karyotype in analyzed transformants (number of segmental aneuploids / number of 

candidate transformants that were analyzed for karyotype).  

 d: ND means no data. NC means not detected.  

 

2.3.3 Size of the duplicated region 

To determine the upper size limit of duplicated regions by PCDup, I attempted to  

construct a series of segmentally duplicated chromosomes of increasing size (50 kb, 100 kb, 

150 kb and 200 kb of chromosome VIII, and 250 kb, 300 kb, 350 kb and 400 kb of 

chromosome IV) (Table 4). The results showed that 50-kb, 100-kb, 150-kb, 200-kb and 300-

kb chromosomal regions could be duplicated while 350-kb and 400-kb chromosomal regions 

could not. Thus, I concluded that approximately 300 kb was the maximum size of region that 

PCDup was able to duplicate routinely (Fig. 2 and Table 4). The possible reasons for this size 

limitation are discussed later.  
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Figure 2.  Determination of the maximum size of segmentally duplicated chromosomes by the 

PCDup method.  Segmentally duplicated regions of varying lengths were designed for chromosome 

VIII (a) and chromosome IV (b). The probe was prepared by PCR amplification of a 400 bp internal 

sequence of the target region (red circle represents CEN4). (c) PFGE and Southern blot analysis of the 

karyotypes of the 50 kb, 100 kb, 150 kb and 200 kb Chr. VIII segmental aneuploid strains, and the 

250 kb and 300 kb Chr. IV segmental aneuploid strains.  

 

2.3.4 Stability of newly generated chromosomes  

To investigate whether the segmental duplicated chromosomes were stable during 

cultivation, the mitotic stability of the strains was evaluated in comparison with that of 

YCp50, a yeast centromere plasmid. The result showed that YCp50 had 85% mitotic stability, 

whereas strains carrying a segmentally duplicated chromosome maintained almost 100% 

mitotic stability. These findings suggested that the segmentally duplicated chromosomes 

derived by PCDup and ranging from 50 kb to 300 kb can be stably maintained (Table 4). 
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2.3.5 Estimation of the copy number of segmentally duplicated chromosome  

Each segmental aneuploid constructed by PCDup was thought to contain one 

additional copy of the target region as illustrated in Figure 1. However, the exact copy 

number had not been confirmed. To determine copy numbers of the segmentally duplicated 

chromosome, the 50-kb segmentally duplicated chromosome VIII (coordinates: 294,748–

346,028) and the 100-kb segmentally duplicated chromosome X (coordinates: 225,115–

326,063) was examined (Fig. 3). The genomic DNA of both the parental strain and the 

segmental aneuploid strain was digested with the restriction enzyme HincII and separated by 

gel electrophoresis. Southern blot analysis was then performed with the pair of probes A and 

C for 50-kb Chr.VIII, or the pair of probes B and C for the 100-kb Chr.X. The copy number 

of the 50-kb segmentally duplicated chromosome VIII was estimated by comparing the signal 

intensity ratio of Chr.VIII to Chr.XV in the segmental aneuploid against that of Chr.VIII to 

Chr.XV in the parental strain. The relative signal intensity of the 50-kb segmentally 

duplicated chromosome VIII was 2.84±1.15, whereas that of the parental strain was 

1.45±0.50. Thus, the actual copy number of the segmentally duplicated chromosome was 

estimated to be 1.94±0.13.  Similarly, the copy number of the 100-kb segmentally duplicated 

chromosome X was estimated comparing by the signal intensity ratio of Chr.X to Chr.XV in 

the segmental aneuploid against that of Chr.X to Chr.XV in the parental strain. The actual 

copy number of the 100-kb segmentally duplicated chromosome X was estimated to be 

1.71±0.64. Thus, these results showed that the copy number of both the 50-kb Chr.VIII and 

the 100-kb Chr.X segmentally duplicated chromosomes was approximately two (Fig. 3). 

These observations suggested that one segmentally duplicated chromosome was constructed 

by using the PCDup method.  
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Figure 3. Estimation of the copy number of segmentally duplicated chromosomes. (a) Illustration of 

probe-hybridized location on the HincII-digested fragment of chromsome VIII (restriction site: 

324,584–326,928), chromosome X (restriction site: 246,431–250,093) and chromosome XV 

(restriction site: 1,016,365–1,017,328). Probe A corresponded to the 500-bp fragment of Chr.VIII 

between coordinates 325,648–326,147, Probe B corresponded to the 500-bp fragment of Chr.X 

between coordinates 247,685–248,184, and probe C corresponded to the 500-bp fragment of Chr.XV 

between coordinates 1,016,810–1,017,309 (red box represents probe A, light blue box represents 

probe B, and dark blue box represents probe C). (b)  Genomic DNA of the segmental aneuploid strain 

(50-kb Chr.VIII, [coordinates: 294,748–346,028] and 100-kb Chr.X [coordinates: 225,115–326,063]) 

and parental strain BY4742 was digested with restriction enzyme HincII and subsequently subjected 

to Southern blot analysis using probe A and probe C, or probe B and probe C for determining the 

chromosomal copy number of the 50-kb Chr.VIII or 100-kb Chr.X segmental aneuploid strain, 

respectively. The signal intensity ratio was measured relative to Chr.XV. (c) The copy number of the 

segmental aneuploid was estimated using the signal intensity ratio of the segmental aneuploid divided 

by that of the parental strain.  
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2.4 Discussion 

Two possible models might explain how segmentally duplicated chromosomes are 

generated by PCDup. In the first model (Fig. 4a) is as follows; the duplicating modules 

recombine with each of their target sites. The regions outside the target area are lost due to 

the lack of a centromere or telomere. Then, duplicated chromosome is generated. Moreover, 

the results indicated that was an upper limit to the size of the chromosome region that could 

be duplicated. This effect may be related to the fact that larger linear chromosomes have a 

lower frequency of chromosome nondisjunction (Hieter, 1985). Therefore, in the first model 

(Fig. 4a), chromosome nondisjunction would be expected to occur more frequently for 

smaller derived chromosomes. The upper size limitation of chromosome duplication here of 

approximately 300 kb might be determined by the low likelihood of nondisjunction of these 

newly generated chromosomes. 

The second possible mechanism (Fig. 4b) is based on the Break Induced Replication 

(BIR) model (Morrow et al., 1997, Lydeard et al., 2007). The distance between two 

homologous sites is one of the parameters of the recombination execution checkpoint (REC) 

that regulates the choice of homologous recombination pathway during double strand break 

(DSB) repair (gene conversion, single-strand annealing or BIR). The signaling for the 

initiation of new DNA synthesis between DSB ends is lost when the distance between two 

homologous sites increases. If the distance increases more than 5 kb, the mode of gap repair 

shifts from gene conversion to BIR (Jain et al., 2009). The frequency of BIR depends on the 

length of template. When the distance is large, complete BIR synthesis is likely limited by the 

requirement in chromatin remodeling for migration of the D-loop and initiation of lagging 

stand synthesis (Donnianni and Symington, 2013). Morrow et al., claimed that they could 

observe duplication events generated by the “break copy” mechanism of up to 365 kb 

(Morrow et al., 1997). Therefore, another explanation for the upper size limit of segmentally 



32 

 

duplicated chromosome here is a possible defect in completion of DNA synthesis due to the 

increased distance between homologous sites (Fig. 4b) (Donnianni and Symington, 2013).  

 

 

Figure 4. Possible mechanisms for generation of segmentally duplicated chromosomes.  (a) In 

model I, each of the two duplicating modules is assumed to recombine with two target regions on the 

same sister chromatid. The target region is then generated as a new chromosome. Sequences outside 

the target region are lost during mitotic cell division due to the lack of centromere or telomere. If 

chromosome nondisjunction happens, either the daughter cell or mother cell is expected to have both 

the targeted natural chromosome and the newly generated segmentally duplicated chromosome, while 

the remaining cell loses its chromosome. (b) Model II is based on the BIR mechanism. In this model, 

the duplicating module is expected to invade the target chromosome and initiate DNA synthesis from 

the homologous site of one duplicating module to the homologous site of the other duplicating 

module. This action generates the segmentally duplicated chromosome.   

 

In conclusion, PCDup technology that was developed in this study could be a 

promising approach for allowing the duplication of any selected chromosomal region and 

might be provide a great benefit on the study in segmental aneuploidy in eukaryotic genome. 
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2.5 Summary 

An interesting question is whether, and if so how, segmental aneuploidy is related to 

phenotypic alterations. However, methodologies to address this issue are limited. This 

prompted us to design a new technology to overcome this problem. In this chapter, I reported 

the development of PCDup, a technology that is capable of generating an extra chromosome 

with segmental duplication of any selected region by means of a PCR, followed by a single 

transformation. It should be noted that a simple method like PCDup for chromosomal 

segmental duplication at specific region has not previously been reported for any kind of 

organism. I first succeed in constructing several types of segmental aneuploid strains of 

randomly selected chromosomal regions. The results confirmed that the selected 

chromosomal regions could duplicate arbitrarily by PCDup technology. Next, I also 

determined the upper size limit of duplicated regions by PCDup technology. The various 

regions ranging from 50 to 300 kb in different chromosomes were duplicated. Moreover, 

those newly generated chromosomes were also stable during several rounds of mitosis. These 

results demonstrated that PCDup technology allows us to create a newly additional 

chromosome with segmental duplication of any chromosomal region up to 300 kb efficiently. 

Therefore, PCDup technology might be exploited as a simple genome modification at large 

scale to contribute both to basic physiological studies and industrial applications.  
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Chapter 3 

Genome-wide construction of segmental aneuploidy by PCDup and the investigation of 

phenotypes of segmental aneuploidy under stresses 

3.1 Introduction 

Yeast is a valuable organism with enormous industrial benefits to human life and is 

also a model organism representing a unicellular eukaryote. The study in chromosome 

rearrangements in yeast model is one of most suitable strategies to elucidate the molecular 

mechanisms involved in chromosome rearrangements and the consequences of chromosome 

rearrangements. One of prominent chromosomal rearrangement that has been found to be 

related with notable influences on the physiology of eukaryotic cells is segmental aneuploidy. 

Although segmental aneuploidy usually confers a detrimental effect on a cells (Bigner et al., 

1988, Warburton, 1991, Crolla, 1998, Viersbach et al., 1998, Fuster et al., 2004, Makarevitch 

et al., 2008, Lyle et al., 2009, Lucas et al., 2010, Weischenfeldt et al., 2013, Chen et al., 2013, 

Akalin et al., 2014), segmental aneuploidy could be an adaptive mechanism of the cell that 

enables survival and confers a growth advantage in stressful environments (Dunham et al., 

2002, Infante et al., 2003, Selmecki et al., 2006, 2008, 2009, Gresham et al., 2008, Borneman 

et al., 2011, Brion et al., 2013, Chang et al., 2013). This raises the interesting question of 

whether how segmental aneuploidy has the impact on adverse and beneficial effects on cells. 

As I described in the previous chapter, PCR-mediated chromosome duplication technology 

(PCDup) have been developed as a novel approach to generate segmental aneuploidy at any 

desired chromosomal region. Therefore, it should be possible to apply this technology to 

study the association of segmental aneuploidy and phenotypic alteration in yeast genome.  

In this chapter, a series of approximately 100-200 kb segmental duplication covering 

the genome of S.cerevisiae were constructed by PCDup technology. Then, I investigated the 
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effects of stressful environments, including thermal stress, high contents of ethanol 

concentration, strong acidic or alkaline pH, osmotic stress and nonfermentable carbon 

sources on segmental aneuploid strains.  Moreover, the correlation between segmental 

aneuploidy and the observed phenotypes were also verified. The results suggested that 

PCDup technology might be a promising approach to facilitate the elucidation of the 

relationship between the presence of duplicated region and stress response phenotype.  

 

3.2 Materials and Methods 

3.2.1 Yeast strains, plasmids and DNA preparation. 

Saccharomyces cerevisiae strain BY4742 [MATα his3∆1 leu2∆0 lys2∆0 ura3∆0] was 

used as the parental strain for the construction of segmental aneuploidy of chromosomes I to 

XVI and a source of genomic DNA. The plasmids used in this chapter are listed in Table 1. 

Yeast strains were grown at 30°C in YPAD medium or selective medium (Amberg et al., 

2005). E. coli strains were grown at 37°C in LB medium. The preparation of media, plasmid 

DNA extraction and Isolation of yeast genomic DNA have been described in Chapter 2.  

 

3.2.2 Preparation of DNA duplicating modules  

The DNA duplicating modules were prepared by two rounds of PCR. In the first 

round of PCR, loxP-cas and CA primers were used to amplify marker cassettes (fragment 1 

and 2) from plasmid template (Table 1). In parallel, two DNA fragments (400 bp; fragments 3 

and 4) with nucleotide sequences corresponding to the left and right ends of the target region 

were amplified from genomic DNA of strain BY4742. The primers that were used to amplify 

genomic DNA fragments in this chapter are listed in Tables 5 and 6 (x represents the 
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chromosome number, y represents the chromosomal region, s represents sub-region, L 

represents the left end of target region, R represents the right end of target region, f represents 

a forward primer, and r represents a reverse primer). After that, the PCR products (fragments 

1-4) were gel-purified using a Wizard SV Gel and PCR Clean-up System (Promega). Next, 

overlap extension PCR was conducted to amplify two duplicating DNA module: one target 

fragment (fragment 3 or 4) was combined with a marker cassette (fragment 1 or 2). After 

amplification, the two PCR products were ethanol-precipitated. The preparation of PCR 

mixture and PCR cycling profile has been described in previous chapter.  

 

Table 5. Primers used for construction of segmental chromosome duplications of 

chromosomes I to XVI  

Region name Primer name Nucleotide sequences (5'-3') 

C1-1 
C1-1-R-f GGCACTAGTTCCCTTCTTAC 

C1-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAGGGAGAGAAAGGCATTGG 

C1-2 
C1-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAATGAGAAGTCGTGTCGTC 

C1-2-L-r CCTTTAGTAGCTGTTGGGCT 

C2-1 
C2-1-R-f TTACATGCGACACCAAGCAG 

C2-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTCCTCCGAGGCAGGCCCTC 

C2-2 

C2-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGAATGCAATTCGATACTCG 

C2-2-L-r CAATCCAGTGATACCCGTGG 

C2-2-R-f TATAAACGCGCTTGCGATCG 

C2-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGGAGTTTTGAGTTCATCTG 

C2-3 

C2-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCACAGCATTTGATCTTGGTC 

C2-3-L-r CGTGCAAGCAAAAGCATTTG 

C2-3-R-f TCTCTGAGGGTTATCAAATG 

C2-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGTGTGATGTGGACTGTTGC 

C2-4 
C2-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTAACCCTTTGATGTCCGAC 

C2-4-L-r CTTTTCTTCCCTCCAAGATC 

C3-1 
C3-1-R-f CTGAGAGAATCCTCCTACGG 

C3-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATATCACGTTGTGAGCAGCC 

C3-2 
C3-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGGATCGGGATATGGCTTTG 

C3-2-L-r CGTGATACCGGGGGTTGAAG 

C4-1 
C4-1-R-f AGGGCATCCATCCAACCATC 

C4-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCTTTGGAGGAGATATTTG 

C4-2 

C4-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTGCTCTTCTTGTTAACCCC 

C4-2-L-r GGCCGCAATTGACGACACAC 

C4-2-R-f TCTTTTCATTATTGCTAGTA 

C4-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAGTTCATGATGCGGG 
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Region name Primer name Nucleotide sequences (5'-3') 

C4-3 

C4-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCACTTAACAAGAAGATTAG 

C4-3-L-r CATACTTGAACCACCTGAAA 

C4-3-R-f TCGAGGACAAAAAGGCATAT 

C4-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGAATAAAATAGGTCAGGT 

C4-4 

C4-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGGATTTTAATCTGTTGGAG 

C4-4-L-r CCAACCAATATTACTGCTTT 

C4-4-R-f CCGACCGAGTATTACTCAGT 

C4-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGTCATCCATATTGCAAAC 

C4-5 

C4-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAAAAGTTGCCTGTCCAAA 

C4-5-L-r GAAGGCAAGGCTTACAGGCT 

C4-5-R-f TTACGGTGGTTGCAAAGGGA 

C4-5-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGAAGACTTCAATAAGTT 

C4-6 
C4-6-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTTGACTTGACATACACTAA 

C4-6-L-r AGGTTAGGACAGGGTACCAT 

C4-6 
C4-6-R-f ATGAAATCGATCATAGCGAT 

C4-6-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCATCGTTTTCATCATAGGT 

C4-7 

C4-7-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTTTCAATCTTGTCTCTTGC 

C4-7-L-r GGAGAAACGCATCTAAGAAA 

C4-7-R-f AAGGGGACTTTCAGGTGCAT 

C4-7-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCTCATCGTGTGGCTTAACG 

C4-8 
C4-8-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGAAGATTTTAAACTCACCT 

C4-8-L-r CGGCCTTATTATGATCCCGA 

C5-1 
C5-1-R-f CCCAATCATCTTAAGACAGC 

C5-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGTAGACTCTTTAACACTCG 

C5-2 

C5-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCGAACGAGTACATTATTGC 

C5-2-L-r TGTATTCTACAGTTTGCTCC 

C5-2-R-f AATAGAAGTGGAGCCTGTGG 

C5-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTATCATGCTGTACCCGCAAG 

C5-3 
C5-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGGTAAGGCGTTGTGTTCCT 

C5-3-L-r CATCTGCATCCACCAATGAA 

C6-1 
C6-1-R-f ACGGTGCGCTCCAACGGATG 

C6-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCCTTCCGATTCTGAAGGTG 

C6-2 
C6-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCACAAGAAGTAATTACAGG 

C6-2-L-r TGCAGAGAGTGCCGTAATCC 

C7-1 
C7-1-R-f CGGTTGTATGATATAGATCC 

C7-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCCCAATCGAGCAAATAAG 

C7-2 

C7-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCCGAACGTGTACCCGTAAA 

C7-2-L-r CGCACCATTACAGGGTCAAA 

C7-2-R-f AGGTTCTCTTCGCATAGTCG 

C7-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCCAGAAGTTGGCATCTTTG 

C7-3 

C7-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGTGGGTCTTGCTGAAAAGA 

C7-3-L-r GCTTCAGAAAAGAGCCATAG 

C7-3-R-f CCTACTTGGCGGTGAATTTC 

C7-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGATAAGCCCAATACACGACA 

C7-4 

C7-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAGAAACTTCTCCAGAGGAG 

C7-4-L-r CCGCCAAGAAGAGACGTAAA 

C7-4-R-f TAATTACTTCGGTCGTGGCC 

C7-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTTTACTTAGTATGTCGGG 

C7-5 
C7-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAATTTGTGGGATGATGACG 

C7-5-L-r CAAGTCAGATAGCTTTGAGT 

C8-1 
C8-1-R-f CGTCGGTTATGCTTGCCTAT 

C8-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGGAGGAGAAACGCATAAG 
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Region name Primer name Nucleotide sequences (5'-3') 

C8-2 

C8-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTCGTACATTGACTCAAACC 

C8-2-L-r AGATTATGCACCTATCGGCG 

C8-2-R-f AATCACCAGAAGCAGCAGCA 

C8-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCAGCAAGGTTGCCTTTAA 

C8-3 
C8-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTAAAGCAGTTAGAACGTCG 

C8-3-L-r GACACGGTATGTGGATACTC 

C9-1 
C9-1-R-f TTGTTGTTACCTCTCGTGTC 

C9-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGATCTAGAGTTAGTCAGG 

C9-2 
C9-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGACAGTCCAGTACAGTTCA 

C9-2-L-r GTGGTTCAAATATCCGTACG 

C10-1 
C10-1-R-f GCATAATCGGCCCTCACAGA 

C10-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGTAGTGAGGACAGGCTTAA 

C10-2 

C10-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTGCTCGATCTTCTATCCTC 

C10-2-L-r ACCCCAATAAAGGAAACGAA 

C10-2-R-f GATTAGCCTACGAGCCATCA 

C10-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCACGGTTGTCATCAAAAAAG 

C10-3 

C10-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAAACATAGATAAGCGAGCC 

C10-3-L-r TTACGTCTGTTGAAGACGCC 

C10-3-R-f GTAGAGGTCGATCACCTTCT 

C10-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTGAGGTGACTGTGTTAAAC 

C10-4 
C10-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGCACTAGCATTTGAAGACC 

C10-4-L-r CATCAGTGCCAAGTTACACC 

C11-1 
C11-1-R-f CAACCATTTCTCAAAGTGCT 

C11-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCATTGGCAATATGTACCAGA 

C11-2 

C11-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGACTCTAAAACGGCATTTG 

C11-2-L-r AAAGGGTTAAAGCAATCTCG 

C11-2-R-f TGGCTTTGAAGAGAAGTCCT 

C11-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTATCGCTAAACAGTTCTTCC 

C11-3 
C11-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAACAGAAAGGTATTCCTT 

C11-3-L-r CAGCATCAGAAGACCACAAA 

C12-1 
C12-1-R-f ATGGATAGGTTTCGAGGGCA 

C12-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGGTAACGTCAACAGTGGTA 

C12-2 

C12-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAATCCAAGAAGGAACCTGCG 

C12-2-L-r CATAACGGTGCAAATACGTA 

C12-2-R-f CCTGCTCTTATATCCGTTAT 

C12-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGGCACCTATCGTCATTGTC 

C12-3 

C12-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCTTCCCTATGATAAACTTC 

C12-3-L-r TTCCCTTATAGCAGCAAGGG 

C-12-3-R-f CCTAACGACGATGATAATAC 

C12-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCTTGGAGACGTGTTCAGAA 

C12-4 

C12-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATGTCTCCTCTTCACCAAAG 

C12-4-L-r TCCTCAACAACCTCTAATTC 

C12-4-R-f GGAAAACGAAGAGCAGCAGC 

C12-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTATTATCCAGATGAAGGA 

C12-5 
C12-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGATAAGCTAAGCCATTTTC 

C12-5-L-r AGAAGACAACCCGTGGCTTG 

C13-1 
C13-1-R-f GCCTCTATAGGCTTTTCGGA 

C13-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGTAGCACCTACTTCTCATC 

C13-2 

C13-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAGCATTTTGTTATTGGCG 

C13-2-L-r CCAGTATGTTCCCTTGACAA 

C13-2-R-f CCAGGAAACGTTCATTCAAT 

C13-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGCAAGTTGGCTGAATGTG 
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Region name Primer name Nucleotide sequences (5'-3') 

C13-3 

C13-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGACGACAGCCTGAATAATT 

C13-3-L-r CTCTGATTTCAATGTCGTCT 

C13-3-R-f TCAGAGGTCTGGAACATGTC 

C13-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACGGGAAGTACTAAGGTTGG 

C13-4 

C13-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGTCTAAAGTCATCCACATG 

C13-4-L-r AACAGTACTGGGATAGAAGG 

C13-4-R-f GGGCAAAGGGACAAAATGAA 

C13-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCATGGTTACCGTTACTGGC 

C13-5 
C13-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAACTTACTTTCCTCTCTGC 

C13-5-L-r AGAATTTCGAAGGAAAGGGG 

C14-1 
C14-1-R-f TCCTCTTCCATCGATATCAG 

C14-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACAAGTATTGCACGAGACGT 

C14-2 

C14-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGCACTGGAAATGCTTTTGG 

C14-2-L-r AGTGCTCTACTGTCCGAGTC 

C14-2-R-f GAGTCAACATTATAGGGCTG 

C14-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACGAAACTGTCGGGTTATCA 

C14-3 

C14-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAATGCCATAATGTGGGGAC 

C14-3-L-r TGCGGTTCTTAAAACTGTCG 

C14-3-R-f AATACTATGGAGACCTTGGC 

C14-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATACGATAGAAGTACTGGGC  

C14-4 
C14-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTAGAATGTGGGTCAGGTGG 

C14-4-L-r GCATAGCCCTCTTTCGCCTC 

C15-1 
C15-1-R-f CACCAGGTATTTGCCAATGG 

C15-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCACTTTGCGTAACGCCAAA 

C15-2 

C15-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAAATGGAATCGTTGCTGGG 

C15-2-L-r CGGTTAAGTCGTCTAACGTC 

C15-2-R-f GTGAGGGATGTCAGTTACTC 

C15-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGTCTGAAGCCAATTGAGTG 

C15-3 

C15-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTTACTTAGTCCTTTGGTC 

C15-3-L-r GCTTTTCCAATAAAGACGCA 

C15-3-R-f GAAGGGATTGATCTCCGCTT 

C15-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAGGATCAAAATCTGGATG 

C15-4 

C15-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCGTTATTGAGTGAACCGTC 

C15-4-L-r CAGATGGTGCAGCCAATAGA 

C15-4-R-f GATGTCCTCTGCAAGGATCT 

C15-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCACTAGTGGTGCCACACTA 

C15-5 
C15-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAATTCACAATTTGTCGAT 

C15-5-L-r TACAGGTCAATGAAAATGCG 

C16-1 
C16-1-R-f CACCAAAGGCAAAGAAACTG 

C16-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATGCCCTTGAACTATGGACC 

C16-2 

C16-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGAACAGGTGAGTCAGAAGA 

C16-2-L-r GTGGATCTTGTGGTTGTCCG 

C16-2-R-f CATGGATGCTAATCCACTGT 

C16-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTAGACATGGTTGAAAATG 

C16-3 

C16-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTCTTGACTGCTGCTTCTTG 

C16-3-L-r GTAAAGCCATGTTTGATACC 

C16-3-R-f TAGCCAGAACTTAAGTCAGG 

C16-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTTGGTACCCCAAATTATTC 

C16-4 

C16-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACGGGTTTCTAGACAGCGAA 

C16-4-L-r TGCGGCAAATTTTTCTGTGC 

C16-4-R-f CATCGATTCTAGTCAAGAAG 

C16-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATCAGCCGTTTCACTCAGGT 
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Region name Primer name Nucleotide sequences (5'-3') 

C16-5 
C16-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAAATTAGACTTGGTACTGG 

C16-5-L-r CATCCCGACTGATGGTGTAG 

 

Table 6. Primers used for construction of segmental chromosome duplications of sub-

regions of unduplicated regions 

Region name Primer name Nucleotide sequences (5'-3') 

C4-2-S1 

C4-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTGCTCTTCTTGTTAACCCC 

C4-2-L-r GGCCGCAATTGACGACACAC 

4-2-s1-R-f AGGAACGCTGATCTTGATCT 

4-2-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACTCTTGTATCCCACACAGG 

C4-2-S2 

4-2-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGAAGTCTTTGCATCCGTGG 

4-2-s2-L-r ACCATCGGAGGGACTTTGA 

4-2-s2-R-f TTCGTTCCTCAGCGGTGTGT 

4-2-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAGCTGCCAACTACCGTCAG 

C4-2-S3 

4-2-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGATTTTGTAGTGCTACGGA 

4-2-s3-L-r AAAGGCTCTACACTCCCAGC 

4-2-s3-R-f CTACACGGAAGTCAATCTCAC 

4-2-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCGGGTGCAGTCGTGTGCAG 

C4-2-S4 

4-2-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGGCTCTGAACTAGAAACCG 

4-2-s4-L-r TTCTTGTCTCTGAGAATCGG 

C4-2-R-f TCTTTTCATTATTGCTAGTA 

C4-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAGTTCATGATGCGGG 

C4-4-S1 

C4-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGGATTTTAATCTGTTGGAG 

C4-4-L-r CCAACCAATATTACTGCTTT 

4-4-s1-R-f CAGAAGACTGAAAGACTGCA 

4-4-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGAATCTTCTCGTCACGGAAG 

C4-4-S2 

4-4-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCCGTGACGAGAAGATTCGG 

4-4-s2-L-r AACACTTCACTTTCAAGGCC 

4-4-s2-R-f GTTGTAGTAATCTCGCGACC 

4-4-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACCAATGGATCGAACGTGAG 

C4-4-S3 

4-4-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGGGAAGTTGCACTAAACGT 

4-4-s3-L-r CAGATGGAACCAACCTAACC 

4-4-s3-R-f GAACTGTCTGACTGCCGAAG 

4-4-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCTTGTCACAATTTGCAGA 

C4-4-S4 

4-4-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAACTCGAAGGGTCACTGCC 

4-4-s4-L-r CAATACCTACCATTAGCGAC 

C4-4-R-f CCGACCGAGTATTACTCAGT 

C4-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGTCATCCATATTGCAAAC 

C4-5-S1 

C4-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAAAAGTTGCCTGTCCAAA 

C4-5-L-r GAAGGCAAGGCTTACAGGCT 

4-5-s1-R-f AGACTATTTTCATTGTTAAT 

4-5-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATTCAATACTTTCACGTGTA 

C4-5-S2 

4-5-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAACATTGTGCGCTCATCTAT 

4-5-s2-L-r TGATCTAGCAATAATATCAA 

4-5-s2-R-f AACCAGTGTCCTCGTTAATT 

4-5-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCTAATTTAAGAGATCAGAT 

C4-5-S3 
 

4-5-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTAGCCAAAAAGATCAATGT 

4-5-s3-L-r CTAACATGTGACAATGAATG 

4-5-s3-R-f CACAGGAATTTCAAGGTAGT 

4-5-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGATACTGATCTCCATATAC 
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Region name Primer name Nucleotide sequences (5'-3') 

C4-5-S4 

4-5-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTACTCATCTTGATTAGTAT 

4-5-s4-L-r ATCCTATCGTTTCAACTAGA 

C4-5-R-f TTACGGTGGTTGCAAAGGGA 

C4-5-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGAAGACTTCAATAAGTT 

C4-7-S1 

C4-7-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTTTCAATCTTGTCTCTTGC 

C4-7-L-r GGAGAAACGCATCTAAGAAA 

4-7-s1-R-f CGGTGAATGGAATGCTGACA 

4-7-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGTTGAGCCACTTCCACTTG 

C4-7-S2 

4-7-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAATGGACCATCGTGGCGAT 

4-7-s2-L-r GGCTCTATTCTGGCATTTCC 

4-7-s2-R-f CTGTGTACGAGATTGTGACA 

4-7-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAATGCAAGAGTTGCCAGCG 

C4-7-S3 

4-7-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTCTCACATGCTTTTTCTG 

4-7-s3-L-r CCGAGTGGTTAGCTGCAACT 

4-7-s3-R-f CTGCGACCGCTTTATTTGAC 

4-7-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAATAACGAGATGTACAGGC 

C4-7-S4 

4-7-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTATCCTTGCTTGGAAGCAG 

4-7-s4-L-r ACCGACACCTCCTGCGATAG 

C4-7-R-f AAGGGGACTTTCAGGTGCAT 

C4-7-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCTCATCGTGTGGCTTAACG 

C6-1-S1 
SC6-1-R-f ACGGCACCCTTTGTCAAGAG 

SC6-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGGGGTGGATATCAACCTAC 

C6-1-S2 

SC6-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTGTAGTTGCCTTCTTCACC 

SC6-2-L-r CAAAGTCATGGGCTTCCCAG 

C6-1-R-f ACGGTGCGCTCCAACGGATG 

C6-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCCTTCCGATTCTGAAGGTG 

C7-4-S1 

C7-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAGAAACTTCTCCAGAGGAG 

C7-4-L-r CCGCCAAGAAGAGACGTAAA 

7-4-s1-R-f GCGTAATTCACGGCGATAAC 

7-4-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTGATTCATGGGCCTCACGC 

C7-4-S2 

7-4-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAGTGATGTCGGAAACATCG 

7-4-s2-L-r TTGTCTCACATCTGCATCTG 

7-4-s2-R-f GCGTTTACCAATACTGGAATC 

7-4-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGCGCTCCTTTGTAGTGCCG 

C7-4-S3 

7-4-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTTACTGCGCAAGTGGCTCG 

7-4-s3-L-r ATTGAACCTGACAGAAGCTG 

7-4-s3-R-f TGTGCCGGCAGAATGTCGCG 

7-4-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTGTACCTATCAGGCCGCTG 

C7-4-S4 

7-4-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGGCTCATTGGACACAACCT 

7-4-s4-L-r ACCTTAAACGGCTGAACAGG 

C7-4-R-f TAATTACTTCGGTCGTGGCC 

C7-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTTTACTTAGTATGTCGGG 

C8-2-S1 

C8-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTCGTACATTGACTCAAACC 

C8-2-L-r AGATTATGCACCTATCGGCG 

8-2-s1-R-f TATCACAAAAGCCCTCCATC 

8-2-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACCGGCAATATGTCCTGCTTC 

C8-2-S2 

8-2-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGATCCGAGTTTGAAACATCC 

8-2-s2-L-r ACTGAATAGAAAGCGCTCT 

8-2-s2-R-f TAAGTGATCACGTGGTCAGA 

8-2-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAGGAACTTCCTTTAGCTGG 

C8-2-S3 

8-2-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAAAGTAGGAACAGTGCCCG 

8-2-s3-L-r GCCCTATTGAAGGTGAAGCC 

8-2-s3-R-f CCCTTCCACCATCATTAC 

8-2-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGAAATTCGATGTTCAGGAG 
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C8-2-S4 

8-2-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGGGTTCAGGAAAATTGCGG 

8-2-s4-L-r CCTTTCACCAACGTACTCGA 

C8-2-R-f AATCACCAGAAGCAGCAGCA 

C8-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCAGCAAGGTTGCCTTTAA 

C11-2-S1 

C11-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGACTCTAAAACGGCATTTG 

C11-2-L-r AAAGGGTTAAAGCAATCTCG 

SC11-1-R-f CCCACATTGGTGTTCAAATG 

SC11-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGCTCGTACCATAGACCTGG 

C11-2-S2 

SC11-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAACGTCTCTGTTCGG 

SC11-2-L-r GCAAAGTTACAGAACCGGTG 

SC11-2-R-f GGGCATTGTTCAACATAGGG 

SC11-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTTAACAGCTGAGCTGAACG 

C11-2-S3 

SC11-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATTTGAAACCGAGTTTGCGG 

SC11-3-L-r GTTGATTACTGTCGATTCTG 

SC11-3-R-f TGTCAAACTGCCAAGACGAC 

SC11-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACTTCCTTGTCCAGTATGGC 

C11-2-S4 

SC11-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCTCCAGGATTTTTTTGGCA 

SC11-4-L-r ACTTTAGGCAAGGTTGTTGC 

C11-2-R-f TGGCTTTGAAGAGAAGTCCT 

C11-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTATCGCTAAACAGTTCTTCC 

C14-2-S1 

C14-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGCACTGGAAATGCTTTTGG 

C14-2-L-r AGTGCTCTACTGTCCGAGTC 

SC14-1-R-f GGATGATCTGCCGATTTAGG 

SC14-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCTCCTGGAGCTCTTCTAAT 

C14-2-S2 

SC14-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGATTACGCGTCACAGCTAC 

SC14-2-L-r ACCCTCAAGTCCTCCCTTGA 

SC14-2-R-f TCTTCGAGGGGAAAATGTCG 

SC14-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAGTTTGAGCCAGCACGATG 

C14-2-S3 

SC14-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGGATAAATATTCTTCGAGGGG 

SC14-3-L-r AGCACGATGGCAGGCCCTTA 

SC14-3-R-f AGAAGATCTCGTTCATGACTGC 

SC14-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTGTCGCCTTAATAGTCAGC 

C14-2-S4 

SC14-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCGTCTTGCCGTATCTACAT 

SC14-4-L-r GACCCAGATAGTGATGCTGA 

C14-2-R-f GAGTCAACATTATAGGGCTG 

C14-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACGAAACTGTCGGGTTATCA 

C4-2-S3+S4 

4-2-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGATTTTGTAGTGCTACGGA 

4-2-s3-L-r AAAGGCTCTACACTCCCAGC 

C4-2-R-f TCTTTTCATTATTGCTAGTA 

C4-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAGTTCATGATGCGGG 

C4-4-S2+S3 

4-4-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCCGTGACGAGAAGATTCGG 

4-4-s2-L-r AACACTTCACTTTCAAGGCC 

4-4-s3-R-f GAACTGTCTGACTGCCGAAG 

4-4-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCTTGTCACAATTTGCAGA 

C4-7-S3+S4 

4-7-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTCTCACATGCTTTTTCTG 

4-7-s3-L-r CCGAGTGGTTAGCTGCAACT 

C4-7-R-f AAGGGGACTTTCAGGTGCAT 

C4-7-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCTCATCGTGTGGCTTAACG 

C8-2-S3+S4 

8-2-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAAAGTAGGAACAGTGCCCG 

8-2-s3-L-r GCCCTATTGAAGGTGAAGCC 

C8-2-R-f AATCACCAGAAGCAGCAGCA 

C8-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCAGCAAGGTTGCCTTTAA 
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C11-2-S1+S2 

C11-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGACTCTAAAACGGCATTTG 

C11-2-L-r AAAGGGTTAAAGCAATCTCG 

SC11-2-R-f GGGCATTGTTCAACATAGGG 

SC11-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTTAACAGCTGAGCTGAACG 

C14-2-S3+S4 

SC14-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGGATAAATATTCTTCGAGGGG 

SC14-3-L-r AGCACGATGGCAGGCCCTTA 

C14-2-R-f GAGTCAACATTATAGGGCTG 

C14-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACGAAACTGTCGGGTTATCA 

 

3.2.3 Yeast transformation, analysis of karyotype and mitotic stability of chromosome  

Yeast cells were transformed according to the method of Gietz and Schiestl (Gietz 

and Schiestl, 2005). For a selection of yeast transformants, cells were cultured in SC medium 

without leucine, or without leucine and histidine, or without leucine and uracil at 30°C for 4 

days.  

To analyse karyotype of transformants by PFGE, chromosome DNA plugs were 

prepared according to the method of Sheehan and Weiss
 
(Sheehan and Weiss, 1990). 

Chromosomes were separated on 1% (wt vol
-1

) pulsed-field gel electrophoresis gels in 0.5× 

TBE buffer at 14°C using the CHEF DRIII
®

 System (Bio-Rad Laboratories), with a 60-

second pulse for 15 hours, followed by a 90-second pulse for 9 hours, at 6 V cm
-1

. For 

Southern blot analysis, the specific probes were amplified by primers listed in Table 7 and 8. 

The procedure for determination of mitotic stability has been described in Chapter 2. 

 

Table 7. Primers used to amplify probes for detection of segmental chromosome 

duplications of chromosomes I to XVI 

Region name Primer name Nucleotide sequences (5'-3') 

C1-1 
C1-1-p-f TTTTCCGGACCCAAACAACC 

C1-1-p-r TCTGTGGAGACCAATCGAGG 

C1-2 
C1-2-p-f GCCAGTGTAACTCCTCACTG 

C1-2-p-f AGAACCAGGCCTTCCACTTT 
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C2-1 
C2-1-R-f TTACATGCGACACCAAGCAG 

C2-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTCCTCCGAGGCAGGCCCTC 

C2-2 
C2-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGAATGCAATTCGATACTCG 

C2-2-L-r CAATCCAGTGATACCCGTGG 

C2-3 
C2-3-R-f TCTCTGAGGGTTATCAAATG 

C2-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGTGTGATGTGGACTGTTGC 

C2-4 
C2-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTAACCCTTTGATGTCCGAC 

C2-4-L-r CTTTTCTTCCCTCCAAGATC 

C3-1 
C3-1-p-f GCAAGACTCTGGTCTCTTCT 

C3-1-p-r ACACCTGAGTGGGTCATCAC 

C3-2 
C3-2-p-f CTCTTAGCGGACCGTTTTGG 

C3-2-p-r ATCTCTCCGCAGGGGTAAGC 

C4-1 
C4-1-R-f AGGGCATCCATCCAACCATC 

C4-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCTTTGGAGGAGATATTTG 

C4-2 
C4-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTGCTCTTCTTGTTAACCCC 

C4-2-L-r GGCCGCAATTGACGACACAC 

C4-3 
C4-3-R-f TCGAGGACAAAAAGGCATAT 

C4-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGAATAAAATAGGTCAGGT 

C4-4 
C4-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGGATTTTAATCTGTTGGAG 

C4-4-L-r CCAACCAATATTACTGCTTT 

C4-5 
C4-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAAAAGTTGCCTGTCCAAA 

C4-5-L-r GAAGGCAAGGCTTACAGGCT 

C4-6 
C4-6-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTTGACTTGACATACACTAA 

C4-6-L-r AGGTTAGGACAGGGTACCAT 

C4-7 
C4-7-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTTTCAATCTTGTCTCTTGC 

C4-7-L-r GGAGAAACGCATCTAAGAAA 

C4-8 
C4-8-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGAAGATTTTAAACTCACCT 

C4-8-L-r CGGCCTTATTATGATCCCGA 

C5-1 
C5-1P-f ATAAAGCAGCTGAACTTTCC 

C5-1P-r CATTTTCGTTGTGGGCACAC 

C5-2 
C5-2P-f CATATATCAGAGTCACAGCT 

C5-2P-r CCACCACCCAAAAGAGTGTC 

C5-3 
C5-3P-f TGAAGTGTGGAATCTGTCTC 

C5-3P-r TGGAGGAGATGATGAAGCAA 

C6-1 
C6-1-p-f CCACTCGTTGCCGGAGGCAC 

C6-1-p-r GAACCCTGGCGACTTTTGGA 

C6-2 
C6-2-p-f ACGAGCCCTTGACTGAGCAG 

C6-2-p-r AAGACCGCCTCCAGCAGTTG 

C7-1 
C7-1-R-f CGGTTGTATGATATAGATCC 

C7-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCCCAATCGAGCAAATAAG 

C7-2 
C7-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCCGAACGTGTACCCGTAAA 

C7-2-L-r CGCACCATTACAGGGTCAAA 

C7-3 
C7-3-R-f CCTACTTGGCGGTGAATTTC 

C7-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGATAAGCCCAATACACGACA 

C7-4 
C7-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAGAAACTTCTCCAGAGGAG 

C7-4-L-r CCGCCAAGAAGAGACGTAAA 

C7-5 
C7-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCAATTTGTGGGATGATGACG 

C7-5-L-r CAAGTCAGATAGCTTTGAGT 

C8-1 
C8-1 probe-f TGGATGGTGCATTCTTAGAG 

C8-1 probe-r TGGGTAAGGAAATGAGAGCA 

C8-2 
C8-2 probe-f CACAATCACCGAGCGTCTTT 

C8-2 probe-r ATATGTGACCAATGCGGGAT 
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C8-3 
C8-3 probe-f CCTACAGAGCGTGAAATGCA 

C8-3 probe-r CGACTCATCGAAGGTTCATA 

C9-1 
C9-1 probe-f GGTGTTGTAAACCCCTCAAG 

C9-1 probe-r ATAACCTTGCCGTCAATGTC 

C9-2 
C9-2 probe-f TCAGCAGATTCGATGGATGC 

C9-2 probe-r GACGAATTCATCAAGACGCA 

C10-1 
C10-1 probe-r GTAAAATCGATGAGTGGGGA 

C10-1 probe-f CAGCACAACGCTCTAACATA 

C10-2 
C10-2 probe-r TGACTGACGAATCGTTAGGC 

C10-2 probe-f CTTGCGATTTCTTCGTATGC 

C10-3 
C10-3 probe-f GGGAAACTGCATGTAGTTGT 

C10-3 probe-r ATACCCGGAAGACAGAATCG 

C10-4 
C10-4 probe-f GTCGTTCGGCGAAACCTTAT 

C10-4 probe-r CAACAGTCGTAGCTAACGAG 

C11-1 
C11-1P-f AGATACAGCCTGTTGACCAA 

C11-1P-r ACCAAACGCGTTTGGCAATA 

C11-2 
C11-2P-f GACGAGAATAACCAAGGGCA 

C11-2P-r GGAGTTGCTTTGTTTTGTTC 

C11-3 
C11-3P-f GGCTACAAGAAACTTCGTGC 

C11-3P-r TCGACATGTGTCCTCCATGT 

C12-1 
C12-1-R-f ATGGATAGGTTTCGAGGGCA 

C12-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGGTAACGTCAACAGTGGTA 

C12-2 
C12-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAATCCAAGAAGGAACCTGCG 

C12-2-L-r CATAACGGTGCAAATACGTA 

C12-3 

C-12-3-R-f CCTAACGACGATGATAATAC 

C12-3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTCTTGGAGACGTGTTCAGAA 

C12-4 
C12-4-R-f GGAAAACGAAGAGCAGCAGC 

C12-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTATTATCCAGATGAAGGA 

C12-5 
C12-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGATAAGCTAAGCCATTTTC 

C12-5-L-r AGAAGACAACCCGTGGCTTG 

C13-1 
C13-1-R-f GCCTCTATAGGCTTTTCGGA 

C13-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGTAGCACCTACTTCTCATC 

C13-2 
C13-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAGCATTTTGTTATTGGCG 

C13-2-L-r CCAGTATGTTCCCTTGACAA 

C13-3 
C13-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGACGACAGCCTGAATAATT 

C13-3-L-r CTCTGATTTCAATGTCGTCT 

C13-4 
C13-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGTCTAAAGTCATCCACATG 

C13-4-L-r AACAGTACTGGGATAGAAGG 

C13-5 
C13-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAACTTACTTTCCTCTCTGC 

C13-5-L-r AGAATTTCGAAGGAAAGGGG 

C14-1 
C14-p1-f AACAATGGCACTCATGCAGC 

C14-p1-r CAGCGCTTCCACGGCATACC 

C14-2 
C14-p2-f GACACGTAATCGGAGTTTGC 

C14-p2-r GCAGTAGGTAAAACGTCACT 

C14-3 
C14-p3-f TGGTAACTCTGTTGAAGACG 

C14-p3-r GCCGAAGAACAAGAGAAAGC 

C14-4 
C14-p4-f CAAAGTAGCAAGGTAATCGG 

C14-p4-r ACGATATCATCGGTTCGCTG 

C15-1 
C15-1-R-f CACCAGGTATTTGCCAATGG 

C15-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCACTTTGCGTAACGCCAAA 

C15-2 
C15-2-R-f GTGAGGGATGTCAGTTACTC 

C15-2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGTCTGAAGCCAATTGAGTG 
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C15-3 
C15-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTTACTTAGTCCTTTGGTC 

C15-3-L-r GCTTTTCCAATAAAGACGCA 

C15-4 
C15-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCGTTATTGAGTGAACCGTC 

C15-4-L-r CAGATGGTGCAGCCAATAGA 

C15-5 
C15-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCAATTCACAATTTGTCGAT 

C15-5-L-r TACAGGTCAATGAAAATGCG 

C16-1 
C16-1-R-f CACCAAAGGCAAAGAAACTG 

C16-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATGCCCTTGAACTATGGACC 

C16-2 
C16-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGAACAGGTGAGTCAGAAGA 

C16-2-L-r GTGGATCTTGTGGTTGTCCG 

C16-3 
C16-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTCTTGACTGCTGCTTCTTG 

C16-3-L-r GTAAAGCCATGTTTGATACC 

C16-4 
C16-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACGGGTTTCTAGACAGCGAA 

C16-4-L-r TGCGGCAAATTTTTCTGTGC 

C16-5 
C16-5-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAAATTAGACTTGGTACTGG 

C16-5-L-r CATCCCGACTGATGGTGTAG 

 

Table 8. Primers used to amplify probes for detection of segmental chromosome 

duplication of sub-regions 

Region name Primer name Nucleotide sequences (5'-3') 

C4-2-S1 
4-2-s1-R-f AGGAACGCTGATCTTGATCT 

4-2-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACTCTTGTATCCCACACAGG 

C4-2-S2 
4-2-s2-R-f TTCGTTCCTCAGCGGTGTGT 

4-2-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAGCTGCCAACTACCGTCAG 

C4-2-S3 
4-2-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGATTTTGTAGTGCTACGGA 

4-2-s3-L-r AAAGGCTCTACACTCCCAGC 

C4-2-S4 
4-2-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGGCTCTGAACTAGAAACCG 

4-2-s4-L-r TTCTTGTCTCTGAGAATCGG 

C4-4-S1 
C4-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGGATTTTAATCTGTTGGAG 

C4-4-L-r CCAACCAATATTACTGCTTT 

C4-4-S2 
4-4-s2-R-f GTTGTAGTAATCTCGCGACC 

4-4-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACCAATGGATCGAACGTGAG 

C4-4-S3 
4-4-s3-R-f GAACTGTCTGACTGCCGAAG 

4-4-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGCTTGTCACAATTTGCAGA 

C4-4-S4 
C4-4-R-f CCGACCGAGTATTACTCAGT 

C4-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGAGTCATCCATATTGCAAAC 

C4-5-S1 
4-5-s1-R-f AGACTATTTTCATTGTTAAT 

4-5-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATTCAATACTTTCACGTGTA 

C4-5-S2 
4-5-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAACATTGTGCGCTCATCTAT 

4-5-s2-L-r TGATCTAGCAATAATATCAA 

C4-5-S3 
4-5-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTTAGCCAAAAAGATCAATGT 

4-5-s3-L-r CTAACATGTGACAATGAATG 

C4-5-S4 
4-5-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTACTCATCTTGATTAGTAT 

4-5-s4-L-r ATCCTATCGTTTCAACTAGA 

C4-7-S1 
C4-7-S1 CGGTGAATGGAATGCTGACA 

4-7-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGTTGAGCCACTTCCACTTG 
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C4-7-S2 
4-7-s2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAATGGACCATCGTGGCGAT 

4-7-s2-L-r GGCTCTATTCTGGCATTTCC 

C4-7-S3 
4-7-s3-R-f CTGCGACCGCTTTATTTGAC 

4-7-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAATAACGAGATGTACAGGC 

C4-7-S4 
4-7-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGTATCCTTGCTTGGAAGCAG 

4-7-s4-L-r ACCGACACCTCCTGCGATAG 

C6-1-S1 
SC6-1-p-f GGAAGATGGATGCCCTTGTT 

SC6-1-p-r ACTTCCAGACAACACAGGGG 

C6-1-S2 
SC6-2-p-f ACTTCCAGACAACACAGGGG 

SC6-2-p-r GAGCAGCTCTTCTGTTTCTC 

C7-4-S1 
C7-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAGAAACTTCTCCAGAGGAG 

C7-4-L-r CCGCCAAGAAGAGACGTAAA 

C7-4-S2 
7-4-s2-R-f GCGTTTACCAATACTGGAATC 

7-4-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCGCGCTCCTTTGTAGTGCCG 

C7-4-S3 
7-4-s3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCTTACTGCGCAAGTGGCTCG 

7-4-s3-L-r ATTGAACCTGACAGAAGCTG 

C7-4-S4 
C7-4-R-f TAATTACTTCGGTCGTGGCC 

C7-4-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGCTTTACTTAGTATGTCGGG 

C8-2-S1 
8-2-s1-R-f TATCACAAAAGCCCTCCATC 

8-2-s1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCACCGGCAATATGTCCTGCTTC 

C8-2-S2 
8-2-s2-R-f TAAGTGATCACGTGGTCAGA 

8-2-s2-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTAGGAACTTCCTTTAGCTGG 

C8-2-S3 
8-2-s3-R-f CCCTTCCACCATCATTAC 

8-2-s3-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCGGAAATTCGATGTTCAGGAG 

C8-2-S4 
8-2-s4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAGGGTTCAGGAAAATTGCGG 

8-2-s4-L-r CCTTTCACCAACGTACTCGA 

C11-2-S1 
SC11-1-R-f CCCACATTGGTGTTCAAATG 

SC11-1-R-r CTGCAGCGTACGAAGCTTCAGCTGGCGGCCTGCTCGTACCATAGACCTGG 

C11-2-S2 
SC11-2-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCAAAGTAACGTCTCTGTTCGG 

SC11-2-L-r GCAAAGTTACAGAACCGGTG 

C11-2-S3 
SC11-3-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCATTTGAAACCGAGTTTGCGG 

SC11-3-L-r GTTGATTACTGTCGATTCTG 

C11-2-S4 
SC11-4-L-f CTGCAGCGTACGAAGCTTCAGCTGGCGGCCCCTCCAGGATTTTTTTGGCA 

SC11-4-L-r ACTTTAGGCAAGGTTGTTGC 

C14-2-S1 
SC14-1-p-f GAATACTGGCCTCTGCCTCA 

SC14-1-p-r AGCGCTGGATACAGAAACGT 

C14-2-S2 
SC14-2-p-f CGGAAGTGGTATCCGAACCA 

SC14-2-p-r CAGATCGGTAAAGGAGACGG 

C14-2-S3 
SC14-3-p-f GACTCCCAATGCGATAAACC 

SC14-3-p-r GGAGATAACCCAGCGGTCTT 

C14-2-S4 
SC14-4-p-f GTTGTGACGAAGTGTGTAGG 

SC14-4-p-r AGGAAGTCCCTGCGAGATCA 

 

 

3.2.4 Phenotypic analysis under stress conditions 

Yeast cells were cultured in appropriate selective media overnight at 30°C. Next day, 

aliquots of the cell cultures were transferred into fresh selective media and incubated at 30°C 
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until cell numbers reached the log phase. The cells were then harvested, re-suspended in 

sterile water, diluted to a concentration of 0.25 x 10
6
 cells µl

-1
 and further serially diluted by 

1:10. After that, 4 µl aliquots of each cell dilution were spotted onto different plates: YPAD 

medium supplemented with 4% (wt vol
-1

), 5% (wt vol
-1

) and 6% (wt vol
-1

) lactic acid (pH 2.8, 

pH 2.7 and pH 2.6, respectively), 4% (vol vol
-1

), 6% (vol vol
-1

) and 8% (vol vol
-1

) ethanol, 

0.41% (wt vol
-1

), 0.44% (wt vol
-1

) and 0.47% (wt vol
-1

) sulfuric acid (pH 2.4, pH 2.3 and pH 

2.2, respectively), 36 mM formic acid (pH 4.0), 80 mM acetic acid (pH 4.2), 1.2 M NaCl, pH 

9 (adjusted by NaOH) and YPA (1% (wt vol
-1

) yeast extract, 2% (wt vol
-1

) bacto peptone and 

0.04% (wt vol
-1

) adenine) with 3% (vol vol
-1

) glycerol (YPEG). The plates were incubated at 

30°C. For the temperature stress experiment, cells were incubated on YPAD medium at 13°C, 

30°C and 41°C. All plates were incubated for 3-4 days and photographed. Three replicates 

were carried out for each experiment.  

 

3.2.5 Elimination of the segmentally duplicated chromosome  

Yeast strains were cultured in YPAD medium at 39°C for 24 hours and then 

transferred into fresh medium at an initial OD660 of 0.1 followed by culture at 30°C for 24 

hours. Approximately 100-200 cells from each cell culture were spread on ten plates of 

YPAD medium. After incubation at 30°C for 48 hours, the cells were replica plated onto 

YPAD and appropriate selective media to observe chromosome loss. Colonies that failed to 

grow on selective media lacking leucine and/or histidine were expected to be those with loss 

of the segmentally duplicated chromosome during mitotic growth. After confirmation of loss 

of the segmentally duplicated chromosome by PFGE, serial dilution spot assays were 

performed to investigate the phenotypes of the segmental aneuploids and the derived strains 

with the loss of the segmentally duplicated chromosome.  
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3.3 Results 

3.3.1 Genome-wide construction of segmental duplications by PCDup  

Following the confirmation of the reliability of the method and the limitation on the 

size of the duplicated segment, I attempted to construct a complete library of approximately 

200 kb fragments that covered the whole S. cerevisiae genome. On the basis of nucleotide 

sequence information in the Saccharomyces Genome Database (SGD) 

(http://www.yeastgenome.org), I designed primers to amplify DNA duplicating modules used 

for duplication of approximately 200 kb chromosomal regions of each chromosome in a 

systematic manner (Fig. 5). I designated strains with a segmental duplication of a 

chromosome region as ScDup(Cx-y): Sc represents S. cerevisiae; Dup represents duplication; 

and (Cx-y) indicates the chromosome number (Cx) and region (-y). I modified the duplication 

procedure for the three smallest chromosomes as follows; a 100-kb region and a 130-kb 

region for chromosome I (230 kb), a 158-kb region and a 159-kb region for chromosome III 

(317 kb) and a 100-kb region and a 171-kb region for chromosome VI (271 kb). The 

chromosomal region containing the ribosomal DNA cluster (ca. 1500 kb) on chromosome 

XII was not included in this study. The nucleotide positions of each duplicated region and 

other details are presented in Table 9.  
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Figure 5.  Systematic segmental duplication of chromosomes I to XVI. (a) Schematic illustration 

of a complete set of 62 segmental aneuploid strains covering the whole genome of S. cerevisiae. Each 

chromosome was divided into approximately 200 kb regions and were attempted to duplicate these 

using the PCDup method.  

Analyses of the duplicated regions revealed that 53 out of 62 designated regions were 

duplicated with desired karyotype with a proportion of 3% to 100% of analyzed 

transformants (Table 9 and Supplementary Fig. 1). The proportion of desired karyotype in 

analyzed transformants from 31 terminal regions (54% ± 0.24 s.d.) was higher than those 

from 22 internal chromosomal regions (19% ± 0.23 s.d.). This difference likely reflected the 

fact that only one homologous recombination event was required for duplication of the 

terminal regions. All data of the karyotypes of the segmental aneuploids that was confirmed 

using PFGE and Southern blots are shown in Figure 6. All of the karyotypic analysis showed 

the presence of the expected karyotype. Interestingly, remaining 9 designated regions could 

not be duplicated, i.e., C4-2, C4-4, C4-5, C4-7, C6-1, C7-4, C8-2, C11-2 and C14-2 (Table 9). 

The possible reason of these results was further analysed in the next section.  
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Table 9.  Characteristics of a complete collection of overlapping segmental aneuploids of chromosomes I to XVI  

Region Strain name Duplicated region
a
 Plasmid template

b
 

Duplication 

length (kb) 

Number 

of genes 

Transformants 

(n) 

Proportion of desired 

karyotype
c
 

% Mitotic 

stability 

C1-1 ScDup(C1-1) Chr. I 1-100,705 p3122 100 65 7 71% (5/7) 98% 

C1-2 ScDup(C1-2) Chr. I 99,603-230,218 p3008 130 85 16 50% (8/16) 99% 

C2-1 ScDup(C2-1) Chr. II 1-202,750 p3122 200 137 70 67% (6/9) 98.57% 

C2-2 ScDup(C2-2) Chr. II 201,029-401,862 p3008, p3009 200 128 6 17% (1/6) 100% 

C2-3 ScDup(C2-3) Chr. II 400,204-600,988 p3009, p3122 200 124 25 5% (1/22) 99.79% 

C2-4 ScDup(C2-4) Chr. II 599,536-813,184 p3122 213 142 29 100% (9/9) 100% 

C3-1 ScDup(C3-1) Chr. III 1-158,020 p3008 158 139 4 75% (3/4) 99% 

C3-2 ScDup(C3-2) Chr. III 157,543-316,620 p3122 159 110 5 20% (1/5) 100% 

C4-1 ScDup(C4-1) Chr. IV 1-200,732 p3122 200 119 56 78% (7/9) 97.70% 

C4-2
#
 ScDup(C4-2) Chr. IV 198,996-401,638 p3009, p3122 200 128 219 0% (0/219) ND 

C4-3 ScDup(C4-3) Chr. IV 399,987-600,688 p3008, p3009 200 140 5 20% (1/5) 100% 

C4-4
#
 ScDup(C4-4) Chr. IV 599,793-795,723 p3009, p3122 200 114 134 0% (0/134) ND 

C4-5
#
 ScDup(C4-5) Chr. IV 795,193-1,000,877 p3009, p3122 200 133 22 0% (0/22) ND 
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Region Strain name Duplicated region
a
 Plasmid template

b
 

Duplication 

length (kb) 

Number 

of genes 

Transformants 

(n) 

Proportion of desired 

karyotype
c
 

% Mitotic 

stability 

C4-6 ScDup(C4-6) Chr. IV 999,134-1,199,697 p3009, p3122 200 121 13 8% (1/13) 99.56% 

C4-7
#
 ScDup(C4-7) Chr. IV 1,198,183-1,402,247 p3009, p3122 200 134 27 0%(0/27) ND 

C4-8 ScDup(C4-8) Chr. IV 1,400,770-1,531,933 p3122 130 89 41 89% (8/9) 100% 

C5-1 ScDup(C5-1) Chr. V 1-199,519 p3008 200 146 17 80% (8/10) 100% 

C5-2 ScDup(C5-2) Chr. V 197,812-400,060 p3009, p3122 200 143 5 20% (1/5) 99.77% 

C5-3 ScDup(C5-3) Chr. V 398,496-576,874 p3122 177 127 5 20% (1/5) 100% 

C6-1
#
 ScDup(C6-1) Chr. VI 1-98,498 p3122 100 57 24 0% (0/24) ND 

C6-2 ScDup(C6-2) Chr. VI 98,213-270,161 p3008 171 128 8 50% (4/8) 100% 

C7-1 ScDup(C7-1) Chr. VII 1-201,147 p3122 200 125 14 57% (8/14) 100% 

C7-2 ScDup(C7-2) Chr. VII 199,564-398,642 p3009, p3122 200 128 3 67% (2/3) 97.45% 

C7-3 ScDup(C7-3) Chr. VII 397,621-599,626 p3008, p3009 200 154 15 7% (1/15) 100% 

C7-4
#
 ScDup(C7-4) Chr. VII 598,443-801,057 p3009, p3122 200 133 156 0% (0/156) ND 

C7-5 ScDup(C7-5) Chr. VII 799,553-1,090,940 p3122 290 181 10 60% (6/10) 100% 
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Region Strain name Duplicated region
a
 Plasmid template

b
 

Duplication 

length (kb) 

Number 

of genes 

Transformants 

(n) 

Proportion of desired 

karyotype
c
 

% Mitotic 

stability 

C8-1 ScDup(C8-1) Chr. VIII 1-202,241 p3008 200 146 22 44% (4/9) 100% 

C8-2
#
 ScDup(C8-2) Chr. VIII 203,559-401,907 p3009, p3122 200 140 72 0% (0/72) ND 

C8-3 ScDup(C8-3) Chr. VIII 400,443-562,643 p3122 160 99 27 44% (4/9) 100% 

C9-1 ScDup(C9-1) Chr. IX 1-203,042 p3122 200 116 31 78% (7/9) 99.68% 

C9-2 ScDup(C9-2) Chr. IX 201,284-439,888 p3008 240 175 11 56% (5/9) 100% 

C10-1 ScDup(C10-1) Chr. X 1-195,892 p3122 200 131 7 29% (2/7) 100% 

C10-2 ScDup(C10-2) Chr. X 195,298-403,454 p3009, p3122 200 130 18 11% (2/18) 100% 

C10-3 ScDup(C10-3) Chr. X 401,881-599,357 p3008, p3009 200 142 6 17% (1/6) 100% 

C10-4 ScDup(C10-4) Chr.X 597,731-745,751 p3122 150 87 12 67% (8/12) 100% 

C11-1 ScDup(C11-1) Chr. XI 1-201,168 p3009, p3122 200 116 6 50% (3/6) 100% 

C11-2
#
 ScDup(C11-2) Chr. XI 199,892-399,750 p3009, p3122 200 133 202 0% (0/100) ND 

C11-3 ScDup(C11-3) Chr. XI 397,819-666,816 p3008 267 153 58 90% (9/10) 100% 

C12-1 ScDup(C12-1) Chr. XII 1-251,980 p3008 250 146 20 10% (2/20) 99.89% 

C12-2 ScDup(C12-2) Chr. XII 250,272-450,039 p3009, p3122 200 117 9 11% (1/9) 100% 
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Region Strain name Duplicated region
a
 Plasmid template

b
 

Duplication 

length (kb) 

Number 

of genes 

Transformants 

(n) 

Proportion of desired 

karyotype
c
 

% Mitotic 

stability 

C12-3 ScDup(C12-3) Chr. XII 490,862-692,029 p3009, p3122 200 140 11 9% (1/11) 100% 

C12-4 ScDup(C12-4) Chr. XII 690,555-885,764 p3009, p3122 200 139 34 10% (1/10) 99.03% 

C12-5 ScDup(C12-5) Chr. XII 884,258-1,078,177 p3122 200 115 73 70% (7/10) 100% 

C13-1 ScDup(C13-1) Chr. XIII 1-204,690 p3122 200 130 5 20% (1/5) 100% 

C13-2 ScDup(C13-2) Chr. XIII 203,398-402,207 p3008, p3009 200 141 1 100% (1/1) 99.04% 

C13-3 ScDup(C13-3) Chr. XIII 400,538-600,143 p3009, p3122 200 133 33 3% (1/29) 82.02% 

C13-4 ScDup(C13-4) Chr. XIII 598,338-798,915 p3009, p3122 200 120 11 9% (1/11) 100% 

C13-5 ScDup(C13-5) Chr. XIII 797,512-924,441 p3122 120 83 29 60% (6/10) 98.91% 

C14-1 ScDup(C14-1) Chr. XIV 1-200,971 p3122 200 122 21 43% (9/21) 96.67% 

C14-2
#
 ScDup(C14-2) Chr. XIV 199,575-403,514 p3009, p3122 200 132 152 0% (0/152) ND 

C14-3 ScDup(C14-3) Chr. XIV 401,690-598,530 p3009, p3122 200 130 29 3% (1/29) 99.08% 

C14-4 ScDup(C14-4) Chr. XIV 597,394-784,333 p3008 184 118 7 14% (1/7) 100% 

C15-1 ScDup(C15-1) Chr. XV 1-201,315 p3122 200 125 20 56% (5/9) 99.87% 
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Region Strain name Duplicated region
a
 Plasmid template

b
 

Duplication 

length (kb) 

Number 

of genes 

Transformants 

(n) 

Proportion of desired 

karyotype
c
 

% Mitotic 

stability 

C15-2 ScDup(C15-2) Chr. XV 199,377-401,104 p3008, p3009 200 135 17 6% (1/17) 100% 

C15-3 ScDup(C15-3) Chr. XV 399,345-603,357 p3009,  p3122 200 128 16 6% (1/16) 99% 

C15-4 ScDup(C15-4) Chr. XV 601,731-801,721 p3009, p3122 200 134 9 11% (1/9) 84.76% 

C15-5 ScDup(C15-5) Chr. XV 799,959-1,091,289 p3122 290 176 67 56% (5/9) 99.45% 

C16-1 ScDup(C16-1) Chr. XVI 1-198,780 p3122 200 124 39 44% (4/9) 99.71% 

C16-2 ScDup(C16-2) Chr. XVI 198,090-399,110 p3009, p3122 200 116 6 17% (1/6) 100% 

C16-3 ScDup(C16-3) Chr. XVI 397,495-597,301 p3008, p3009 200 124 8 13% (1/8) 100% 

C16-4 ScDup(C16-4) Chr. XVI 595,746-799,875 p3009, p3122 200 136 6 17% (1/6) 99.76% 

C16-5 ScDup(C16-5) Chr. XVI 798,248-948,066 p3122 148 112 46 26% (5/19) 100% 

YCp50 (7.8 kb) -   85% 

*a: Chr. N x-y : Chr. N represents chromosome number, x represents first nucleotide number of chromosomal region and y represents last nucleotide number of chromosomal region. 

b: p3009 was used to amplify the CgHIS3 cassette, p3122 was used to amplify the CEN4-CgLEU2 cassette, p3008 was used to amplify the CgLEU2 cassette and YCp50 was a URA3 

centromeric plasmid whose length was 7.8 kb. 

c: Proportion of desired karyotype in analyzed transformants (number of segmental aneuploids / number of candidate transformants that were analyzed for karyotype) 

# means region that could not be duplicated. 

ND. means not determined   
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Figure 6. Karyotypic analysis of segmental aneuploids for chromosomes I to XVI.  

 PFGE analysis was performed followed by Southern blot analysis using a probe consisting of nucleotide sequences that corresponded to the target region.  

.  
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3.3.2 Unidentified genes or gene-pairs prevent chromosome duplication 

 Interestingly, nine of the 62 designated regions of approximately 200 kb could not be 

duplicated, namely, C4-2, C4-4, C4-5, C4-7, C6-1, C7-4, C8-2, C11-2 and C14-2. To explore 

this phenomenon, I tried to duplicate these regions after dividing each into 50 kb sub-regions. 

For C4-5 and C7-4, all 50 kb sub-regions could be duplicated, suggesting that interaction of 

multiple genes on different 50 kb regions might not allow duplication of the intact 200 kb 

regions. However, for the remaining seven regions, it was not possible to duplicate one of the 

four 50 kb sub-regions although the other sub-regions were duplicated. These 50 kb 

unduplicated regions are including C4-2-S4, C4-4-S2, C4-7-S4, C6-1-S2, C8-2-S3, C11-2-S2, 

and C14-2-S4 (Table 10). With the exception of C6-1-S2, the 50 kb unduplicated regions did 

not contain an ARS. It is possible that the duplicating modules did not recombine with its 

target region but freely replicated in the cell because the duplicating modules in this 

experiment were prepared by incorporating H4ARS with CgHIS3 and telomere seed 

sequences. Therefore, I investigated whether a duplicating module with an additional H4ARS 

could recombine with the target site; I attempted to generate C7-4-S4 duplicates that contain 

an ARS using duplicating modules with H4ARS as control experiment. I found that C7-4-S4 

could be duplicated even when using duplicating modules with H4ARS. Next, I attempted to 

construct strains with duplication of a 100 kb sub-region, consisted of the 50 kb duplicatable 

region harboring the resident ARS and the adjacent 50 kb unduplicatable region without an 

ARS. These 100 kb sub-regions, designated C4-2-(S3+S4), C4-4-(S2+S3), C4-7(S3+S4), C8-

2-(S3+S4), C11-2-(S1+S2) and C14-2-(S3+S4), could not be duplicated, suggesting that the 

50 kb unduplicatable sub-region prevented duplication of the 100 kb sub-region (Table 10). 

These results could be explained if the 50 kb unduplicatable region contained a gene or gene-

pairs that induce cell lethality when they are duplicated.  



61 

 

Table 10.  Characteristics of duplication of sub-regions in unduplicated regions  

 

Region 
Sub-

region 
Strain name Chromosome location

a
 

Plasmid 

template
b
 

Duplication 

length (kb) 

Number 

of genes 

Transformants 

(n) 

Proportion of desired 

karyotype
c
  

C4-2 S1 ScDup(C4-2-S1) Chr. IV 198,996-252,217 p3009, p3122 50 31 41 21% (3/14) 

C4-2 S2 ScDup(C4-2-S2) Chr. IV 250,614-301,020 p3009, p3122 50 33 50 14% (2/14) 

C4-2 S3 ScDup(C4-2-S3) Chr. IV 300,644-352,049  p3009, p3122 50 34 42 7% (1/14) 

C4-2 S4 ScDup(C4-2-S4) Chr. IV 350,404-401,638  p3122, p3279 50 30 1280 0%  (0/52) 

C4-2 S3+S4 ScDup(C4-2-(S3+S4)) Chr. IV 300,644-401,638  p3009, p3122 100 64 4 0% (0/4) 

C4-4 S1 ScDup(C4-4-S1) Chr. IV 599,793-652,548 p3009, p3122 50 34 58 2% (1/58) 

C4-4 S2 ScDup(C4-4-S2) Chr. IV 652,530-700,502  p3122, p3279 50 30 1067 0%  (0/42) 

C4-4 S3 ScDup(C4-4-S3) Chr. IV 699,320-751,746 p3009, p3122 50 25 65 7%  (1/14) 

C4-4 S4 ScDup(C4-4-S4) Chr. IV 750,633-795,723 p3009, p3122 50 25 22 18%  (4/22) 

C4-4 S2+S3 ScDup(C4-4-(S2+S3)) Chr. IV 652,530-751,746 p3009, p3122 100 55 17 0% (0/17) 

C4-5 S1 ScDup(C4-5-S1) Chr. IV 795,193-845,861 p3009, p3122 50 31 82 27% (4/15) 

C4-5 S2 ScDup(C4-5-S2) Chr. IV 844,952- 900,006  p3009, p3122 50 34 91 3% (1/30) 

C4-5 S3 ScDup(C4-5-S3) Chr. IV 898,551-951,323 p3009, p3122 50 33 56 13% (2/15) 

C4-5 S4 ScDup(C4-5-S4) Chr. IV 949,563-1,000,877 p3122, p3279 50 36 123 1% (1/104) 
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Region 
Sub-

region 
Strain name Chromosome location

a
 

Plasmid 

template
b
 

Duplication 

length (kb) 

Number 

of genes 

Transformants 

(n) 

Proportion of desired 

karyotype
c
  

C4-7 S1 ScDup(C4-7-S1) Chr. IV 1,198,183-1,250,760 p3009, p3122 50 38 15 8% (1/13) 

C4-7 S2 ScDup(C4-7-S2) Chr. IV 1,249,137-1,299,139 p3009, p3122 50 32 12 16% (2/12) 

C4-7 S3 ScDup(C4-7-S3) Chr. IV 1,297,392-1,350,890 p3009, p3122 50 31 39 14% (2/14) 

C4-7 S4 ScDup(C4-7-S4) Chr. IV 1,349,318-1,402,247  p3122, p3279 50 33 822 0% (0/42) 

C4-7 S3+S4 ScDup(C4-7-(S3+S4)) Chr. IV 1,297,392-1,402,247  p3009, p3122 100 64 27 0% (0/27) 

C6-1 S1 ScDup(C6-1-S1) Chr. VI 1-48,730  p3122 50 30 8 63% (5/8) 

C6-1 S2 ScDup(C6-1-S2) Chr. VI 47,761-98,498 p3009, p3122 50 27 24 0% (0/24) 

C7-4 S1 ScDup(C7-4-S1) Chr. VII 598,443-651,547 p3122, p3279 50 34 901 2% (1/56) 

C7-4 S2 ScDup(C7-4-S2) Chr. VII 650,314-701,698 p3009, p3122 50 25 39 7%  (1/14) 

C7-4 S3 ScDup(C7-4-S3) Chr. VII 701,628-754,816 p3009, p3122 50 39 15 7% (1/15) 

C7-4 S4 ScDup(C7-4-S4) Chr. VII 753,704-801,057 p3009, p3122 50 35 65 21% (3/14) 

C7-4 S4 ScDup(C7-4-S4_2) Chr. VII 753,704-801,057 p3122, p3279 50 35 200 4% (1/28) 

C8-2 S1 ScDup(C8-2-S1) Chr. VIII 203,559-250,652  p3009, p3122 50 46 84 7%  (1/14) 

C8-2 S2 ScDup(C8-2-S2) Chr. VIII 250,081-302,950  p3009, p3122 50 27 82 7% (1/14) 

C8-2 S3 ScDup(C8-2-S3) Chr. VIII 301,788-350,205 p3122, p3279 50 21 1500 0% (0/41) 
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Region 
Sub-

region 
Strain name Chromosome location

a
 

Plasmid 

template
b
 

Duplication 

length (kb) 

Number 

of genes 

Transformants 

(n) 

Proportion of desired 

karyotype
c
  

C8-2 S4 ScDup(C8-2-S4) Chr. VIII 348,556-401,907 p3009, p3122 50 46 109 7% (1/14) 

C8-2 S3+S4 ScDup(C8-2-(S3+S4)) Chr. VIII 301,788-401,907 p3009, p3122 100 67 23 0%  (0/23) 

C11-2 S1 ScDup(C11-2-S1) Chr. XI 199,892-246,288 p3009, p3122 50 31 7 14%  (1/7) 

C11-2 S2 ScDup(C11-2-S2) Chr. XI 245,144-300,075 p3122, p3279 50 35 961 0% (0/28) 

C11-2 S3 ScDup(C11-2-S3) Chr. XI 298,583-350,129 p3009, p3122 50 35 36 21% (3/14) 

C11-2 S4 ScDup(C11-2-S4) Chr. XI 348,413-399,750 p3009, p3122 50 32 3 33%  (1/3) 

C11-2 S1+S2 ScDup(C11-2-(S1+S2)) Chr. XI 199,892-300,075 p3009, p3122 100 66 81 0% (0/28) 

C14-2 S1 ScDup(C14-2-S1) Chr. XIV 199,575-251,006 p3009, p3122 50 31 2 100% (2/2) 

C14-2 S2 ScDup(C14-2-S2) Chr. XIV 250,863-302,108  p3009, p3122 50 33 8 13% (1/8) 

C14-2 S3 ScDup(C14-2-S3) Chr. XIV 301,698-349,197 p3009, p3122 50 31 19 5% (1/19) 

C14-2 S4 ScDup(C14-2-S4) Chr. XIV 349,012-403,514 p3122, p3279 50 37 154 0% (0/75) 

C14-2 S3+S4 ScDup(C14-2-(S3+S4)) Chr. XIV 301,698-403,514 p3009, p3122 100 68 17 0% (0/17) 

*a: Chr. N x-y : Chr. N represents chromosome number, x represents first nucleotide number of chromosomal region and y represents last  nucleotide number of chromosomal region.   

b: p3009 was used to amplify the CgHIS3 cassette, p3122 was used to amplify the CEN4-CgLEU2 cassette, p3279 was used to amplify the CgHIS3-H4ARS cassette 

c: Proportion of desired karyotype in analyzed transformants (number of segmental aneuploids / number of candidate transformants that were analyzed for karyotype).
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3.3.3 Effect of stress on growth of segmental aneuploids  

 The analyses in Chapter 2 showed that strains with segmental aneuploidies were 

mitotically stable under normal culture conditions. Documenting the characteristics that are 

affected by segmental aneuploidy without and with stressful environments may give us 

knowledge about some aspect of genome function. First, I compared the growth of the 53 

segmental aneuploid strains and the parental strain in liquid SC medium. The growth of all 

segmental aneuploid strains but ScDup(15-4) did not show significantly different from that 

of the parental strain when cultured at 30°C for 24 hours.  However, only ScDup(C15-4) 

showed slower growth compared to the parental strain (Fig. 7).   
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 Figure 7.  Growth profiles of segmental aneuploid strains in SC medium at 30°C for 24 hours.  The OD660 of 53 segmental 

aneuploid strains and the parental strain was measured every 2 hours.  Three independent replicate cultures were performed.  
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To investigate the consequences of segmental aneuploidy under different 

challenging conditions, the phenotypic examination of 53 segmental aneuploids under 

various stressful conditions were conducted by serial dilution assays involving lactic acid 

(4%, 5% and 6% wt vol
-1

), ethanol (6%, 8% and 10% vol vol
-1

), sulfuric acid (0.41%, 

0.44%, 0.47% wt vol
-1

); 80 mM acetic acid, 36 mM formic acid, or 3% glycerol as the 

carbon source; alkaline pH (pH 9); 1.2 M NaCl; high temperatures (39°C, 40°C and 41°C); 

and low temperature (13°C). The results revealed that all but two strains, ScDup(C7-1) and 

ScDup(C16-3), showed the same colony formation ability as the parental strain when 

incubated in YPAD at 30°C (without stress conditions) for 4 days (Fig. 9); these two strains 

displayed slightly slower growth than the parental strain when incubated for 1 day (Fig. 9g 

and 9p) although they showed normal growth when incubated for 4 days (Fig. 9). However, 

under stress conditions, the segmental aneuploids showed different degree of growth 

competence as compared with the parental strain under stress conditions (Fig. 9a-9p and 

Table 11). The numbers of strains classified as sensitive or resistant to each stress condition 

are shown in Figure 8 and all results for the spot assays from all 53 segmental aneuploidy 

strains under 18 stress conditions are presented in Figure 9 and Table 11. Taken together, 

our analyses indicated that all segmental aneuploid strains except for ScDup(C10-4) 

showed a different pattern of response to at least one tested stress compared to the parental 

strain. Although most of the segmental aneuploidy strains showed stress sensitivity, 

interestingly, only a few showed increased tolerance of thermal stress, high concentrations 

of ethanol, acidic conditions or osmotic stress (Table 11, Figs. 8 and 9). We found that 

segmental aneuploid strains such as ScDup(C2-3), ScDup(C3-1), ScDup(C3-2), ScDup(C5-
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3), SCDup(C7-5), ScDup(C12-3), ScDup(C15-2), ScDup(C15-3), ScDup(C16-2) and 

ScDup(C16-4) showed increased tolerance to multiple stresses.  Based on SGD database, 

we searched genes among those located on these duplicated regions that are required for 

those stress resistance and found that those chromosomal regions contained several specific 

genes that may be concerned with resistance against each stress.  We also noted that some 

genes might have conferred tolerance to more than one particular stress (See details in 

Discussion section). The duplication of specific chromosomal regions might be a 

mechanism to aid cell survival under stress conditions. 

 

Figure 8. Phenotypic assays of segmental aneuploid strains.  The numbers of segmental 

aneuploids that showed increased sensitivity or resistance to each stress condition.  Blue bar 

represents sensitive phenotype and red bar represents resistant phenotype. 
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Table 11. Stress sensitive and resistant phenotypes of segmental aneuploids for 

chromosomes I to XVI   

Strain name Sensitive phenotype
a
 Resistance phenotype

a
 

ScDup(C1-1) 4%L, A S pH 2.3, S pH 2.2 

ScDup(C1-2) 
S pH 2.3, S pH 2.2, 6%E, A , 39°C, 40°C, 

41°C 
- 

ScDup(C2-1) 
4%L, 5%L, S pH 2.3, S pH 2.2, 

- 
8%E, A 

ScDup(C2-2) 
4%L, 5%L, S pH 2.3, S pH 2.2, F 

8%E, G, N, A 
 

ScDup(C2-3) - F, N, A 

ScDup(C2-4) 
13 °C, 4%L, 5%L, S pH 2.4, - 

S pH 2.3, S pH 2.2, 8%E, F, A, 39°C 
 

ScDup(C3-1) - 
S pH 2.3, S pH 2.2, 6%E, 8%E, N 

39°C, 40°C 

ScDup(C3-2) - 
S pH 2.3, S pH 2.2, 6%E, 8%E, 39°C, 

40°C 

ScDup(C4-1) S pH 2.3, S pH 2.2, A 5%L 

ScDup(C4-2) - - 

ScDup(C4-3) 4%L, 39°C, 40°C, 41°C - 

ScDup(C4-4) - - 

ScDup(C4-5) - - 

ScDup(C4-6) 4%L, pH 9 - 

ScDup(C4-7) - - 

ScDup(C4-8) 
5%L, S pH 2.3, S pH 2.2, pH 9, 39°C, 40°C, 

41°C 
A 

ScDup(C5-1) F, 39°C, 40°C - 

ScDup(C5-2) S pH 2.3, 8%E, G, N, A, 39°C, 40°C - 

ScDup(C5-3) F, A 39°C, 40°C, 41 °C, 8%E 

ScDup(C6-1) - - 

ScDup(C6-2) 4%L, 5%L, A, pH 9 - 

ScDup(C7-1) 
13 °C, 4%L, 5%L, S pH 2.3, - 

F, N, A, 39°C, 40°C 
 

ScDup(C7-2) S pH 2.3, 6%E, A F 

ScDup(C7-3) 4%L, 5%L, A F 

ScDup(C7-4) - - 

ScDup(C7-5) F, A 6%E, 8%E, N, 39°C, 40°C, 41 °C 

ScDup(C8-1)  A - 

ScDup(C8-2) - - 

ScDup(C8-3)  5%L, F, A - 

ScDup(C9-1)  S pH 2.3, F, 39°C, 40°C - 
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Strain name Sensitive phenotype
a
 Resistance phenotype

a
 

ScDup(C9-2) 8%E, 39°C, 40°C 4%L, 5%L 

ScDup(C10-1) 
4%L, 5%L, S pH 2.4, S pH 2.3, - 

6%E, 8%E, A, 39°C 
 

ScDup(C10-2)  F, G, A 39°C, 40°C, 41°C 

ScDup(C10-3) 8%E, F, N, A, 39°C - 

ScDup(C10-4)  - - 

ScDup(C11-1) S pH 2.3, 6%E, 8%E, N, A - 

ScDup(C11-2) - - 

ScDup(C11-3) 
4%L, 5%L, S pH 2.4, S pH 2.3, - 

S pH 2.2, 6%E,8%E, A, 39°C, 40°C 
 

ScDup(C12-1) 13 °C, A, 39°C 4%L, 5%L 

ScDup(C12-2) 4%L, 5%L, S pH 2.3, G, A 39°C 

ScDup(C12-3) - 4%L, 5%L, 8%E, N, 39°C, 40°C 

ScDup(C12-4) S pH 2.3, 39°C - 

ScDup(C12-5) F, A, 39°C - 

ScDup(C13-1) S pH 2.3, 8%E, F N 

ScDup(C13-2) S pH 2.3, 6%E, 8%E, 39°C - 

ScDup(C13-3) S pH 2.3, 8%E, 39°C F 

ScDup(C13-4) 4%L, S pH 2.3, 6%E, 8%E, F, 39°C - 

ScDup(C13-5) 6%E, 8%E 5%L 

ScDup(C14-1) 
 4%L, 5%L, S pH 2.3, - 

S pH 2.2, 6%E,8%E, F, A, 39°C, 40°C, 41°C 
 

ScDup(C14-2) - - 

ScDup(C14-3) 
13 °C, 4%L, 5%L, 6%E, 8%E, - 

F, N, A 
 

ScDup(C14-4) 13 °C, A - 

ScDup(C15-1) S pH 2.3, A, 39°C - 

ScDup(C15-2) - 5%L, 8%E, 39°C, 40°C 

ScDup(C15-3) - 5%L, 39°C 

ScDup(C15-4) 4%L, A - 

ScDup(C15-5) 6%E 5%L 

ScDup(C16-1) 4%L, 5%L, A - 

ScDup(C16-2) 4%L, 5%L, A 8%E, F 

ScDup(C16-3) 
41 °C,4%L, 5%L, S pH 2.3, - 

6%E, 8%E, N, A 
 

ScDup(C16-4) - 5%L, S pH 2.3, 8%E, F, N 

ScDup(C16-5) 4%L, 5%L, A, 39°C, 40°C - 

a: 4%L; 4% (wt vol
-1

) lactic acid, 5%L; 5% (wt vol
-1

)  lactic acid, S pH 2.4; 0.41% (wt vol
-1

)  sulfuric acid pH 

2.4, S pH 2.3; 0.44% (wt vol
-1

)  sulfuric acid pH 2.3, S pH 2.2; 0.47% (wt vol
-1

)  sulfuric acid pH 2.2, 6%E; 

6% (vol vol
-1

) ethanol, 8%E; 8% (vol vol
-1

)ethanol, F; 36 mM formic acid, N; 1.2 M NaCl, G; YPEG, A; 80 

mM acetic acid
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Figure 9. Phenotypic assays of segmental aneuploid strains for chromosomes I to XVI.  Ten-fold 

serial dilutions of segmental aneuploid strains of chromosomes I to XVI (a-p, respectively) were 

spotted on plates and subjected to different stresses including 4% (wt vol
-1

) lactic acid, 5% (wt vol
-1

) 

lactic acid, 6% (wt vol
-1

) lactic acid, 6% (vol vol
-1

) ethanol, 8% (vol vol
-1

)  ethanol, 10% (vol vol
-1

) 

ethanol, 0.41% (wt vol
-1

) sulfuric acid (pH 2.4), 0.44% (wt vol
-1

) sulfuric acid (pH 2.3), 0.47% (wt 

vol
-1

) sulfuric acid (pH 2.2), 36 mM formic acid, 1.2 M NaCl, 80 mM acetic acid, YPEG, pH 9, at 

13°C, at 39°C,  at 40°C,  at 41°C. The plates were incubated for 3-4 days before being photographed. 

Red arrow represents stress resistant phenotype. Blue arrow represents stress sensitive phenotype.   

a)
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b) 

 

c) 
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d) 

 

e) 
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f) 

 

g) 
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h) 

 

i) 
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j) 

 

k) 
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l) 

 

m) 
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n) 

 

o)
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p)

 

 

3.3.4 Association of phenotypic changes with segmental aneuploidy 

 To verify whether these alterations in phenotype were indeed caused by segmental 

duplication of the respective chromosomal regions, I investigated whether an elimination of 

the additional chromosome caused a reversion to the parental phenotype (Figs. 10-12). I 

arbitrarily selected 11 segmental aneuploids, ScDup(C2-3), ScDup(C3-2), ScDup(C4-1), 

ScDup(C5-3), ScDup(C6-2), ScDup(C7-1), ScDup(C11-3), ScDup(C12-3), ScDup(C14-3), 

ScDup(C16-2), and ScDup(C16-4), and subjected them to stress assays after removal of the 

duplicated chromosome. A total of 60 assays were performed with these modified strains and, 

in 47 cases, removal of the duplicated chromosome resulted in reversion to the parental 

phenotype. In these segmental aneuploid strains, therefore, the phenotypic changes were 

caused by the presence of the duplicated region. However, in some assays involving 

ScDup(C3-2), ScDup(C4-1), ScDup(C11-3), ScDup(C16-2), and ScDup(16-4) (13 of the 60 

tests), it was clear that removal of the additional chromosome did not result in reversion to 
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the parental phenotype indicating that the phenotypes of these segmental aneuploid strains 

did not show a clear association with the presence of the duplicated region (Fig. 10).  Thus, in 

some cases, the phenotypes may not be due to the segmentally duplicated chromosome.    

 

Figure 10.  Relationship between segmental duplication of a particular region and phenotype.  

Effect of loss of the segmentally duplicated chromosome on phenotype. The correlation of phenotypic 

changes in aneuploids and the presence of a duplicated region is illustrated: red squares, orange 

squares, light blue and dark blue squares indicate correlation with strongly resistant phenotype, 

moderately resistant phenotype, slightly sensitive phenotype and strongly sensitive phenotype, 

respectively. Gray squares represents no correlation of observed phenotype and duplicated 

chromosome. Black square indicate stress conditions that were not tested as the segmental aneuploid 

did not show significant growth or other changes compared to the parental strain at the initial 

phenotypic examination step.  

  



80 

 

Figure 11. Analysis of the relationship between segmental duplication and phenotype using a 

chromosome loss strategy.  Segmental aneuploid strains were induced to lose their additional 

chromosome and were then examined phenotypically.  ΔCx-y indicates a derivative strains of 

SCDup(Cx-y) which has lost the duplicated chromosome. x represents chromosome number and y 

represents chromosome region.  “+” and  “-” means resistant phenotype and sensitive phenotype, 

respectively.
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Figure 12. PFGE analysis of segmental aneuploid strains and derivative strains that had lost the 

duplicated chromosome 

In the 53 segmental aneuploids constructed in this study, we noted that only 5 

duplicated regions, C3-1, C3-2, C5-3, C12-3 and C15-3, harbored genes based on published 

data of single-gene overexpression, which confer sensitivity or resistance to a tested stress 

(Mulet et al., 1999, Versele and Thevelein, 2001, Zhang et al., 2004, Yang et al., 2011, 
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Anderson et al., 2012, Maoz et al., 2015) (see Discussion section). Therefore, the phenotypic 

changes in these segmental aneuploids could be interpreted as being the result of increased 

expression of particular genes. Interestingly, however, although the strains harboring the 

other 48 duplicated regions displayed phenotypic changes to stress, the duplicated regions did 

not contain genes whose overexpression caused the respective change to the tested stress. 

This suggests that for these 48 regions, an increased dosage of multiple genes might be 

responsible for the phenotypic alterations.  

 

3.4 Discussion  

Interestingly, I found that only the C4-2-S4 region, of the seven 50 kb sub-regions that 

could not be duplicated, did not contain any gene that might cause cell lethality when it is 

duplicated. It suggested that the influence of two or multiple genes in the C4-2-S4 sub-region 

prevented duplication of the 200 kb region. In other 6 sub-regions, the observation suggested 

the presence of duplicated region containing genes that caused a decrease in cell viability. For 

example, the C6-1-S2 region carries TUB2 whose additional copies of TUB2 cause cell 

lethality (Katz et al., 1990). Likewise, the C4-4-S2, C4-7-S4, C8-2-S3, C11-2-S2 and C14-2-

S4 sub-regions harbor one to four genes that cause cell lethality (Liu et al., 1992, Sopko et al., 

2006), toxicity (Douglas et al., 2012), or abnormal cell-cycle progression (Stevenson et al., 

2001, Niu et al., 2008) when overexpressed (Table 12). Although these genes may be the 

cause of severe cell growth defects, there is other evidence that argues against this conclusion. 

In the reports showing adverse effects, these genes were overexpressed under the control of a 

strong inducible GAL1 promoter and/or expressed in multi-copies. However, in the segmental 

aneuploidy strains here, the genes are regulated by the endogenous promoter with two or 

three copies at most. Moreover, Makanae et al., catalogued the lowest number of copies of 

each S. cerevisiae gene that caused cell lethality when expressed under the native promoter 
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(Makanae et al., 2013). On the basis of their data, I inspected the genetic contents of the 

unduplicatable regions and found that none of the 50 kb sub-regions contained genes that 

cause a severe defect on cell growth when present as two or three copies (Table 13). 

Therefore, I conclude that combinatorial duplication of two or more genes in these sub-

regions might be responsible for cell lethality which prevents duplication of the regions.  

 

Table 12. Genes located in 50 kb unduplicated sub-regions whose overexpression is 

associated with cell lethality or abnormalities in cell cycle progression or the actin 

skeleton   

Chromosome 

region  
Subregion Gene 

Gene 
Systematic 

Name 

Chromosome 

location 
Phenotype 

Strain 

Background 
Reference 

C4-4 S2 BMH2 YDR099W 
Chr.IV 653,607-

654,428  

actin 
cytoskeleton 

morphology: 

abnormal  

Other Roth et al., (1999) 

C4-4 S2 PDS1 YDR113C 
Chr.IV 680,617-

680,496 
fitness defect S288C 

Douglas et al., 

(2012) 

C4-4 S2 PDS1 YDR113C 
Chr.IV 680,617-

680,496 

cell cycle 

progression: 

abnormal  

W303 
Stevenson et al., 
(2001) 

C4-4 S2 PDS1 YDR113C 
Chr.IV 681,617-

680,496 
inviable  S288C Sopko et al., (2006) 

C4-4 S2 KIN1 YDR122W 
Chr.IV 694,700 – 

697,894 
Toxic gene   

C4-4 S2 INO2 YDR123C 
Chr.IV 699,468-
698,554 

inviable  S288C Sopko et al., (2006) 

C4-7 S4 SPP41 YDR464W 
Chr.IV 1,388,872 
– 1,393,179 

fitness defect S288C 
Douglas et al., 
(2012) 

C4-7 S4 STP1 YDR463W 
ChrIV 1,386,816 
– 1,388,375 

fitness defect S288C 
Douglas et al., 
(2012) 

C4-7 S4 TLG1 YDR468C 

Chr.IV 

1,398,700-

1,398,026  

inviable  S288C Sopko et al., (2006) 

C4-7 S4 UGO1 YDR470C 

Chr.IV 

1,401,214-

1,399,706 

inviable  S288C Sopko et al., (2006) 

C6-1 S2 ACT1 YFL039C 
Chr.VI 54,696-
53,260 

cell cycle 

progression: 

abnormal  

S288C Niu et al., (2008) 

C6-1 S2 ACT1 YFL039C 
Chr.VI 54,696-
53,260 

cell cycle 

progression: 

abnormal  

W303 
Stevenson et al., 
(2001) 

C6-1 S2 ACT1 YFL039C 
Chr.VI 54,696-
53,260 

inviable  Other Liu et al., (1992) 
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Chromosome 

region  
Subregion Gene 

Gene 

Systematic 
Name 

Chromosome 

location 
Phenotype 

Strain 

Background 
Reference 

C6-1 S2 TUB2 YFL037W 
Chr.VI 56,336-
57,709 

fitness defect S288C 
Douglas et al., 
(2012) 

C6-1 S2 TUB2 YFL037W 
Chr.VI 56,336-
57,709 

inviable  Other Liu et al., (1992) 

C6-1 S2 TUB2 YFL037W 
Chr.VI 56,336-
57,709 

cell cycle 

progression: 

abnormal  

S288C Niu et al., (2008) 

C6-1 S2 HAC1 YFL031W 
Chr.VI 75,179-
76,147 

cell cycle 

progression: 

abnormal  

W303 
Stevenson et al., 
(2001) 

C6-1 S2 HAC1 YFL031W 
Chr.VI 75,179-
76,147 

actin 

cytoskeleton 
morphology: 

abnormal  

S288C Sopko et al., (2006) 

C6-1 S2 FRS2 YFL022C 
Chr.VI 95,010-
93,499 

cell cycle 

progression: 

abnormal  

S288C Niu et al., (2008) 

C8-2 S3 DMA1 YHR115C 
Chr.VIII 340,109 
– 341,359 

fitness defect S288C 
Douglas et al., 
(2012) 

C11-2 S2 HSL1 YKL101W 
Chr.XI 248,920-

253,476 
inviable  S288C Sopko et al., (2006) 

C11-2 S2 HSL1 YKL101W 
Chr.XI 248,920-

253,476 

cell cycle 

progression: 
abnormal  

S288C Sopko et al., (2006) 

C11-2 S2 YKL100C YKL100C 
Chr.XI 253,697 – 

255,460 
fitness defect S288C 

Douglas et al., 

(2012) 

C11-2 S2 MIF2 YKL089W 
Chr.XI 273,394 – 

275,043 
fitness defect S288C 

Douglas et al., 

(2012) 

C11-2 S2 RRP14 YKL082C 
Chr.XI 281,025 – 
282,329 

fitness defect S288C 
Douglas et al., 
(2012) 

C11-2 S2 DHR2 YKL078W 
Chr.XI 288,845-
291,052  

cell cycle 

progression: 

abnormal  

S288C Niu et al., (2008) 

C14-2 S4 TOM22 YNL131W 
Chr.XIV 

378,767-379,225 

cell cycle 

progression: 
abnormal  

W303 
Stevenson et al., 

(2001) 

C14-2 S4 SPC98 YNL126W 
Chr.XIV 

387,227-389,767 

cell cycle 

progression: 
abnormal  

W303 
Stevenson et al., 

(2001) 
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Table 13. Genes whose upper copy number limit is less than 3 (Makanae et al., 2013) 

Chromosome region Locus name Gene name Chromosome location 
Copy number 

limit 

C4-1 YDL192W ARF1 Chr.IV 116,321-116,866 1.0  

C4-7 YDR129C SAC6 Chr.IV 715,379-713,340 2.0  

C5-2 YER040W GLN3 Chr.V 229,795-231,987 1.5  

C6-2 YFL010C WWM1 Chr.VI 115,743-115,108 0.6  

C6-1 YFL037W TUB2 Chr.VI 56,336-57,709 2.7  

C6-1 YFL039C ACT1 Chr.VI 54,696-53,260 1.2  

C6-2 YFR028C CDC14 Chr.VI 210,068-208,413 0.9  

C7-2 YGL071W AFT1 Chr.VII 372,012-374,084 2.9  

C7-5 YGR159C NSR1 Chr.VII 807,656-806,412 1.7  

C9-1 YIL095W PRK1 Chr.IX 183,937-186,369 2.1  

C10-1 YJL164C TPK1 Chr.X 111,159-109,966 0.9  

C11-2 YKL042W SPC42 Chr.XI 358,475-359,566 1.8  

C11-1 YKL166C TPK3 Chr.XI 135,705-134,509 0.6  

C13-2 YML016C PPZ1 Chr.XIII 241,536-239,458 0.3  

C14-4 YNL016W PUB1 Chr.XIV 602,907-604,268 2.6  

C15-2 YOR008C SLG1 Chr.XV 342,414-341,278 2.6  

C16-2 YPL145C KES1 Chr.XVI 279,699-278,395 2.3  

C16-2 YPL154C PEP4 Chr.XVI 260,931-259,714 0.8  

C16-1 YPL203W TPK2 Chr.XVI 166,256-167,398 2.1  

C16-3 YPR008W HAA1 Chr.XVI 573,018-575,102 2.3  

C16-4 YPR080W TEF1 Chr.XVI 700,594-701,970 0.6  

C16-5 YPR173C VPS4 Chr.XVI 887,837-886,524 0.7  

 

It has been reported that detrimental effects are proportional to the number of extra 

genes present in aneuploid cells (Torres et al., 2008). Yeast is generally more tolerant to 

aneuploidy compared to multicellular organisms. Since all but one of the segmental 

aneuploid strains did not show any effect on growth when cultured in liquid SC medium at 

30°C for 24 hours, it appears that the additional copy of genes present in those regions did 

not influence proliferation. This conclusion is supported by the results of a previous study 

(Torres et al., 2007) in which the a delay in cell division of aneuploid for whole chromosome 
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is proportional to the number of genes located on the additional chromosome, although 

disomy for chromosome I (230 kb) does not cause a proliferation delay relative to the euploid 

genome. The sizes of segmentally duplicated chromosome constructed in this study are quite 

similar to or even less than (100 kb to 290 kb) that of chromosome I. Therefore, I suppose 

that the segmental aneuploid strains constructed in this study would not show severe growth 

defects under non-stressful conditions compared to the parental strain, as their gene dosage 

imbalance would be similar to or less than that of aneuploidy for chromosome I.  However, 

the growth delay in ScDup(C15-4) might have resulted from the presence of genes whose 

over-expression interferes with cell proliferation.  

It was reported that aneuploid strains of whole chromosome III (ca. 316 kb) acquired 

thermotolerance at 39°C (Yona et al., 2012).  I found in this study that segmental aneuploid 

strains harbouring each of two duplicated region (ca.158 kb and ca. 159 kb) from 

chromosome III also displayed thermotolerance to 39°C (Fig. 9).  This fact suggested that the 

increased dosages of genes in both sub-regions likely contributed to thermotolerance as in the 

case of aneuploid for whole chromosome III.  Yona et al. also reported that the evolved 

aneuploidy of whole chromosome V (ca. 577 kb) confers alkaline pH resistance (Yona et al., 

2012). However, in this study any segmental aneuploid of chromosome V did not show 

tolerance to high pH (Fig. 9). This observation suggested that the combination of increased 

dosages of gene-pair or multiple genes on a different region of chromosome V might be 

responsible for high pH resistance. Therefore, supposing that whole duplication of a 

particular chromosome gives phenotypic change, PCDup method could be exploited to 

identify a particular region that contributes to the specific phenotypes. 

It has been well known that phenotypic changes in aneuploid are conferred by 

increased copy numbers of either single gene or multiple genes (Selmecki et al., 2006, 2008, 
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2009, Gresham et al., 2008, Pavelka et al., 2010b, Chen et al., 2012, Chang et al., 2013). It 

seems to be that most of the phenotypic changes found here were caused by multiple-gene 

effects rather than by single genes (Fig. 9 and Table 14). This notion is based on the fact that 

only a few of the duplicated regions that conferred sensitivity or resistance to environmental 

stresses contained genes whose overexpression causes such phenotypic alteration. These 

latter exceptions were SAT4 (Mulet et al., 1999) on C3-1 region and RSA3 (Anderson et al., 

2012) on C12-3 region that confer high salt tolerance, SPT15 (Yang et al., 2011) on C5-3 and 

RSA3 (Anderson et al., 2012) on C12-3 region that confer ethanol resistance, and LRE1 

(Versele and Thevelein, 2001) on C3-1, HCM1 (Maoz et al., 2015) on C3-2  and LSP1 

(Zhang et al., 2004) on C15-3 that confer thermotolerance. Moreover, we noted that several 

segmental aneuploids revealed tolerance to multiple stresses (Table 11 and Figure 4) and by 

scrutinizing SGD database, we found that some of the duplicated regions contains more than 

one gene that play a role in resistance to those stresses.  For example, ScDup(C12-3) 

exhibited resistance to ethanol, high salt concentration, lactic acid and high temperature and 

we found that the duplicated region harbors several specific genes that are essential for 

tolerance to those stresses as genes whose deletion causes increased susceptibility to each 

stress. A set of genes that is required for ethanol resistance includes COQ9, LCB5, LIP2, 

MSS51, QRI5, SWI6, VPS34, VPS63, YKE2 and YLR194C.  A set of genes that is responsible 

for high salt stress tolerance includes CLB4, DCS1, ERF2, MAP1, RCK2, VPS34 and 

YLR194C. A set of genes that play a role for lactic acid resistance include BUR2, VPS34, 

VPS63 and YPT6. A set of genes that is required for thermotolerance includes ARV1, BUR2, 

CDD1, COA4, CPR6, CSC1, DCS1, EST1, GSY2, HCR1, LCB5, LIP2, ,MAP1, MDL1, 

MMR1, MSS51, PBA1, QRI5, RFX1, RPL37A, RPS28B, RSA3, SAM1, SEC22, SHH4, SWI6, 

TOP3, UPS1, UPS2, UTP13, VPS34, VPS63, YLR169W, YLR269C and YPT6.  Based upon 

this information, we recognized that several genes seem to be responsible for resistance to 
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more than one particular stress. For example, VPS34 is required for resistance to high salt, 

high lactic acid and high temperature, VPS63 is essential for tolerance against high ethanol, 

high lactic acid and high temperature, LCB5, LIP2, MSS51, QRI5 and SWI6 are responsible 

for ethanol resistance and thermotolerance. YLR194C is required for ethanol stress as well as 

high salt stress resistance. DCS1 and MAP1 are essential for high salt along with thermal 

stress tolerance. BUR2 and YPT6 are responsible for resistance to lactic acid and heat stress. 

These facts suggested that multiple stress resistance observed in those segmental aneuploids 

might be conferred by the combination of increased dosage of several numbers of individual 

genes that are required for each particular stress resistance and duplication of gene that is 

responsible for multiple stress tolerance. However, since increased low dosages (from one 

copy to two copies) of a single specific gene located in those duplicated regions is not 

reported to cause multiple phenotypic alterations observed in this study, we think that 

duplication of only single specific gene is unlikely to cause those observed phenotypic 

changes but rather suggest that the combined effect resulting from simultaneously increased 

dosage of multiple genes in duplicated region conferred those observed sensitivity and 

resistance. Upon these observations, it should be emphasized that generating segmental 

aneuploidy with desired region could be beneficial approach to study the consequence of 

change in dosage of multiple genes within contiguous region and to identify possible 

underlying genes involved in such phenotypic alterations.   
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Table 14. Genes located in duplicated chromosome regions whose overexpression cause 

sensitive or resistant phenotypes  

Chromosome 

region 

Observed 

phenotype in 

this study 

Gene Gene 

Systematic 

Name 

Chromosome 

location 

Phenotype in previous 

study 

References 

C3-1 resistance to 

1.2M NaCl 

SAT4 YCR008W ChrIII 128,470- 

130,281 

resistance to sodium 

chloride: increased 

Mulet et al., 

(1999) 

C3-1 tolerance to 

39°C and 

40°C 

LRE1 YCL051W ChrIII 35,865- 

37,616 

 

innate 

thermotolerance: 

increased 

Versele and 

Thevelein, 

(2001) 

C3-2 tolerance to 

39°C and 

40°C 

HCM1 YCR065W 
ChrIII 229,310-

231,004 

innate 

thermotolerance: 

increased 

Maoz et al., 

(2015) 

C5-3 resistance to 

8% (vol vol-1) 

ethanol 

SPT15 YER148W ChrV 465,303- 

466,025 

resistance to ethanol: 

increased 

Yang et al., 

(2011) 

C12-3 resistance to 

8% (vol vol-1) 

ethanol 

RSA3 YLR221C ChrXII 579,024 -

578,362 

resistance to ethanol: 

increased 

Anderson et 

al., (2012) 

C12-3 resistance to 

1.2M NaCl 

RSA3 YLR221C ChrXII 579,024 -

578,362 

osmotic stress 

resistance: increased 

Anderson et 

al., (2012) 

C15-3 tolerance to 

39°C 

LSP1 YPL004C ChrXVI 551,657 - 

550,632 

 

innate 

thermotolerance: 

increased 

Zhang et al., 

(2004) 

 

 In 11 arbitrarily selected strains, removal of the duplicated chromosome resulted in 

reversion to the parental phenotype in the majority of cases when subjected to a stress (47 out 

of 60 assays; Fig. 10). However, in a few cases, the phenotypes of the segmental aneuploid 

strains did not appear to be correlated with the duplicated chromosome.  I envisage two 

possible explanations for this observation. First, the duplicated chromosome in the derivative 

strain might have recombined with the intact chromosome at a homologous or ectopic site 

and generated a chromosome rearrangement, such as translocation, which would make any 

linkage between phenotypic change and the segmentally duplicated chromosome unclear. 

Second, unknown mutations might have occurred by chance in the segmental aneuploid; 

however, the possibility that a combined effect of the presence of a segmentally duplicated 

region and unknown mutations is responsible for the phenotype also cannot be excluded. In 
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conclusion, a discovery of interesting phenotypes here that are indeed affected by the 

presence of segmentally duplicated chromosome gives us the understanding of genome 

function to response to stress environment. 

 

3.5 Summary 

In this chapter, I have applied PCDup technology to construct a series of segmental 

aneuplid strains that harbor 100 kb to 200 kb segmental duplications covering the whole 

genome of S. cerevisiae. The results showed that 53 out of 62 designated regions were 

duplicated with a proportion of desired karyotype of 3% to 100%.  Nine remaining regions 

could not be duplicated possibly because genes or gene pairs located on those regions caused 

severe defects when they are presented in two copies or more. Moreover, to obtain insights 

into the function of the duplicated region, the phenotypes of segmental aneuploid strains 

under stresses were investigated. Interestingly, in some instances, segmental aneuploidy 

conferred tolerance to stresses such as high temperature, high ethanol content and strong 

acidic pH, while in others, stress sensitivity and in most severe case lethality presumably as a 

result of the simultaneous increases in dosages of multiple genes. The associations between 

the presence of segmentally duplicated chromosome and phenotypic alteration were also 

verified by whether removing the segmentally duplicated chromosome caused a reversion to 

the parental phenotype.  Removal of the duplicated chromosome resulted in reversion to the 

parental phenotype in the majority of cases.  From these observations, I suggested that 

PCDup technology will accelerate studies on the effects of changes in the gene dosage 

balance of multiple genes, enables improvements in desired industrial phenotypes in S. 

cerevisiae for breeding, and also provide insights into adaptive molecular mechanisms in the 

genome. 
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Chapter 4 

General discussion and conclusion 

Although genome rearrangement and alteration could be investigated by the 

laboratory evolution experiment coupled with whole-genome sequencing, this approach still 

has some limitations such as the shortage of natural variation in the laboratory, the long 

period of time in the experiment and the absence of appropriate control for the mutational 

process (Pál et al., 2014). In laboratory evolution experiments, it normally takes more than 

200 generations and leads to accumulation of 4-20 independent mutations per populations 

(Dettman et al., 2012, Pál et al., 2014). Segmental aneuploidy has been found to cause 

phenotypic alterations in various kinds of organisms. Most studies about segmental 

aneuploidy were analysed by CGH and/or whole genome sequencing of samples obtained 

from natural isolation (Infante et al., 2003, Dunn et al., 2012, Chang et al., 2013) or 

laboratory evolution experiment (Dunham et al., 2002). Data of those studies revealed that 

additional mutations as well as segmental aneuploidy also occurred. Therefore, it is difficult 

to conclude which mutation confers the phenotypic changes. Recent development of genome 

engineering strategies enabled us to facilitate the alteration of targeted genomic regions 

rapidly and provided insight into the study in genome rearrangement in which natural genetic 

variation is limited (Sugiyama et al., 2005, 2006, 2008, 2009, Dymond et al., 2011, Annaluru 

et al., 2014). Thus, the genome engineering to generate segmental aneuploidy of desired 

region of chromosome could be useful for understanding segmental aneuploidy and its 

consequences.  

In this study, I developed such novel genome engineering technology, PCDup in yeast, 

which harbors, in addition to one set of haploid genome, an extra chromosome consisting of a 

specific chromosomal region at the desired site through a single step of transformation.  

Using this technology, duplication of chromosomal regions up to 300 kb could be generated 
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efficiently. It should be noted that methodology like PCDup has never been developed in any 

kinds of organisms. In this study, I used this new technology to generate a set of 

approximately 200 bp overlapping duplicated regions that covered the 16 chromosomes of S. 

cerevisiae and investigated the phenotypic changes in those segmental aneuploid strains. A 

small number of regions in the genome could not be duplicated, possibly because they 

contained genes or gene pairs that cause cell lethality when they are duplicated. Interestingly, 

segmental duplication of some chromosomal region conferred resistant phenotypes or growth 

defects if the cells were grown under stresses as a result of the simultaneous increases in 

dosages of multiple genes. Therefore, I suggest that PCDup technology enables a simple 

genetic manipulation of the large scale of genome to contribute both to basic physiological 

studies and industrial applications. 

In industrial process, yeast strains are often exposed to several stresses such as high 

temperature, strong acidic pH or high ethanol concentration. Tolerance traits to those stresses 

are controlled by multiple genes (Steinmetz et al., 2002, van Voorst et al., 2006, Patnaik, 

2008, Mira et al., 2010, Swinnen et al., 2012). Therefore, overexpression or deletion of single 

specific gene cannot confer stress resistance. This fact requires the novel strategies to 

improve stress tolerance.  Segmental anuploidy causes increased gene dosage of multiple 

genes at the same time. Consequently, it leads to increase in dosage and thus expression of 

genes located on the duplicated region simultaneously and also may affect expression of 

target genes on other chromosome(s), if some of them are regulatory genes, to induce 

preferable traits to survive under stresses.  I noted that some segmental aneuploidies, such as 

ScDup(C2-3), ScDup(C3-2), ScDup(C5-3), ScDup(C12-3), ScDup(C16-2) and ScDup(16-4) 

as described in Chapter 3 enhanced simultaneous tolerance to several types of stress. If this 

simultaneous tolerance is proven to be caused by duplication of that particular region, I 
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believe PCDup could be exploited as a breeding tool to generate superior strains that have 

desirable industrial phenotypes. 

 It has been reported that segmental duplication may play an important role in the 

emergence of stress resistance in yeasts growing in unpleasant environments (Infante et al., 

2003, Gresham et al., 2008, Chang et al., 2013). Through integration of the information on 

spontaneous genome rearrangements in natural and laboratory populations of yeast with the 

precisely induced segmental duplication constructed by PCDup technology, we will be able 

to improve our understanding on the biological significance of segmental duplication as an 

adaptive mechanism in the evolution of the S. cerevisiae genome. When whole duplication of 

a particular chromosome gives phenotypic change, PCDup technology might be exploited to 

identify an exact region (and more specifically exact gene) that contributes to the specific 

phenotypes.  It should be emphasized that the collection of haploid yeast strains with the 

duplication of specific regions created in this study will be a valuable resource for studying 

the biological significance of the association of segmental aneuploidy with particular traits.  

These strains should help to accelerate research on gene dosage balance and the effects of 

simultaneously increased dosages of multiple genes on various cell physiologies.   

To enhance the efficiency of expected segmental aneuploid strain, the increasing 

efficiency in homologous recombination and efficiency of target chromosome modification 

by the induction of the DSB at target site using site-specific endonuclease might be a possible 

way to improve PCDup technology. It has been reported that overexpression of some genes, 

i.e., RAD51 and RAD54 increase recombination up to 500 fold (DiCarlo et al., 2013a). 

Recently, CRISPR-Cas9 system (DiCarlo et al., 2013b) have been developed and speeded up 

genome engineering in various fields. CRISPR-Cas9 system could generate the DSB at a 

specific site. Therefore, this system might promote genome modification through the 

activation of the DNA repair machinery. Moreover, CRISPR-Cas9 system might enable 
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PCDup technology to generate multiple regions of segmental duplication at once. However, 

the obstacle for generating multiple regions of segmental duplication is the limitation of 

numbers of selectable marker for selection of candidate strains (transformants).   

Furthermore, regarding the improvement of PCDup technology, the increases in size 

of segmental duplication should be addressed. According to the model I described in 

discussion section in Chapter 2 (Fig. 4), the size of segmental duplication is limited by the 

low frequency of chromosome nondisjunction of large chromosome (Hieter, 1985). Therefore, 

the induction of mutation of gene that are involved in chromosome nondisjunction might help 

to increase the proportion of segmental aneuploids with duplication of larger chromosomal 

region (more than 300 kb). By these improvements of PCDup technology, it could further 

promote the construction of segmental aneuploid strains with complex genomic diversity and 

subsequently broaden the knowledge about segmental aneuploidy and its consequences. 

Many genetic disorders and cancers in humans are associated with segmental 

duplication (Bigner et al., 1988, Warburton, 1991, Crolla, 1998, Viersbach et al., 1998, 

Fuster et al., 2004, Lyle et al., 2009, Lucas et al., 2010, Chen et al., 2013, Akalin et al., 

2014). However, the relationship between specific segmental duplication in human and its 

phenotypic consequence has not been clearly understood yet.  The development of a 

technology to generate specific segmental aneuploids in a model organism is a starting point 

to explore gene(s) or genomic regions that are responsible for pathogenesis and diseases in 

higher organisms including humans. As demonstrated in this study, segmental aneuploidy 

occasionally improves the tolerance of cells to stress. This observation suggests that 

aneuploidy or segmental aneuploidy in human might enable cancer cells to adapt to extreme 

conditions than normal cells (Pavelka et al., 2010a). Information about segmental aneuploidy 

obtained from the yeast model may give rise to basic understanding of the molecular 

mechanisms of segmental aneuploidy-derived human diseases and cancer.  
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In conclusion, PCDup method is a simple, efficient, rapid, and economic tool for 

generating segmental aneuploidy at any selected region of a chromosome in S. cerevisiae. It 

can be used as a technique not only for deciphering genome function but also breeding novel 

strains with desired properties for industrial purposes.   
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