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Preface
This dissertation presents my research on techniques of canonical Au-

toregressive and Autoregressive Moving Average modeling from multi-

variate data. The dissertation is the result of the research during the

Ph.D. course at the Department of Information and Communication

Technology, Graduate School of Engineering, Osaka University. The

dissertation is organized as follows.

Chapter 1 describes the background, the motivation, the purpose of

this research, and the outline of this dissertation. The key objective

of this dissertation is to construct methodologies for finding the struc-

ture of the dependencies among the multiple processes in the objective

system.

Such techniques allow us to infer the unknown data generating mech-

anism or to model the target data with an efficient manner. For the

purpose, we focus on the Autoregressive and then on more complex Au-

toregressive Moving Average models. These two models form the basis

of the dissertation, which we further extend in the upcoming chapters.

Chapter 2 is devoted for the Continuous time Structural Vector Au-

toregressive (CSVAR) modeling approach. We also provide its theoret-

ical and numerical justifications.

In Chapter 3, we describe a Continuous time Structural Autoregres-

sive Moving Average (CSARMA) modeling approach which is essential

for the analysis of more complex systems. The validity of the proposed

method is verified through numerical simulations and also on an appli-

cation to the real-world system.

Chapter 4 describes an application of the developed CSARMAmethod

to the nuclear reactor stability analysis through the investigation of the

anomaly unstable event during the operation of Kernkraftwerk Boiling

Nuclear Reactor.
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Chapter 5 concludes this dissertation.



iii

Acknowledgment
I worked on this dissertation under the supervision of Prof. Takashi

Washio. I would first like to thank him for sharing his knowledge,

pushing me to work hard and constantly try to improve my work.

I would also like to thank my other co-authors for their help in

letting me more productive that I would have been able to on my own:

Dr. Yoshinobu Kawahara and Dr. Shohei Shimizu in Osaka University,

Dr. Hakim Ferroukhi and Dr. Abdelhamid Dockhane in Paul Scherrer

Institut, and Dr. Yuriy N. Pepyolyshev in Joint Institute of Nuclear

Research.

I’d like to express my deep gratitude to to Joint Institute of Nuclear

Research in Dubna and to Kernkraftwerk in Leibstadt for sharing their

data on nuclear reactors.

I would like to acknowledge Prof. Kazunori Komatani, Prof. Noboru

Babaguchi, Prof. Kyou Inoue, Prof. Kenichi Kitayama, Prof. Seiichi

Sampei and Prof. Tetsuya Takine from Graduate School of Engineering

at Osaka University.

I also had several supports from all of laboratory members. In partic-

ular, I would like to thank Ms. Hiroko Okada for her clerical assistance.



iv

Contents

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Relationship of three main chapters . . . . . . . . . . . . . . . . . . 7

Chapter 2 CSVAR modeling approach 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Preliminary discussion and analysis . . . . . . . . . . . . . . . . . . 10

2.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Canonicality of VAR models . . . . . . . . . . . . . . . . . . 13

2.3 Proposed principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Performance on artificial data . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Illustrative example of CSVAR application . . . . . . . . . . 20

2.4.2 Accuracy of the proposed method . . . . . . . . . . . . . . . 23

2.4.3 Comparison of CSVAR with AR-LiNGAM . . . . . . . . . . 27

2.4.4 Performance evaluation by using real world data . . . . . . . 29

2.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 The proof of Lemma 2. . . . . . . . . . . . . . . . . . . . . . 35

2.7.2 The proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . 36

2.7.3 The proof of Lemma 3. . . . . . . . . . . . . . . . . . . . . . 37

2.7.4 The proof of Theorem 1. . . . . . . . . . . . . . . . . . . . . 37

2.7.5 The proof of Theorem 2. . . . . . . . . . . . . . . . . . . . . 39

Chapter 3 CSARMA modeling approach 41



v

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 SARMA modeling . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 CARMA modeling and finite difference method . . . . . . . 46

3.3 Preliminary discussion and analysis . . . . . . . . . . . . . . . . . . 47

3.3.1 Relationships of ARMA models . . . . . . . . . . . . . . . . 47

3.3.2 Assumptions for modeling and their characterization . . . . 51

3.4 Proposed principle and algorithm . . . . . . . . . . . . . . . . . . . 53

3.4.1 Relationship of SARMA and DARMAmodels with their CARMA

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Derivation of the CARMA model from the SARMA model . 55

3.4.3 Derivation of the SARMA model from the DARMA model . 56

3.4.4 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Performance evaluation by using artificial data . . . . . . . . . . . . 59

3.5.1 Illustrative example of CSARMA application . . . . . . . . . 59

3.5.2 Accuracy of the proposed method . . . . . . . . . . . . . . . 61

3.5.3 Comparison of the proposed method with ARMA-LiNGAM 67

3.6 Performance evaluation using real world data . . . . . . . . . . . . 69

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9.1 The proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . 77

3.9.2 The proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . 77

3.9.3 The proof of Lemma 10. . . . . . . . . . . . . . . . . . . . . 78

3.9.4 The proof of Theorem 3. . . . . . . . . . . . . . . . . . . . . 79

3.9.5 The proof of Theorem 4. . . . . . . . . . . . . . . . . . . . . 83

Chapter 4 Analysis of BWR instability mechanisms applying a CSARMA

approach 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 KKL plant instability event . . . . . . . . . . . . . . . . . . . . . . 89



vi

4.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Time series analysis . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Application of CSARMA for causality analysis of KKL plant insta-

bility event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Benchmarking against STP method . . . . . . . . . . . . . . . . . . 99

4.4.1 Signal transmission path analysis . . . . . . . . . . . . . . . 99

4.4.2 Application to KKL plant instability event . . . . . . . . . . 101

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 5 Conclusion 107

References 109



vii

List of Figures

2.1 The scheme of the CSVAR algorithm. . . . . . . . . . . . . . . . . . 20

2.2 Coupled oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Accuracy over different dimensions d, when p=2 and N=1000. . . . 25

2.4 Accuracy over different AR orders p, when d=5 and N=1000. . . . 25

2.5 Accuracy over different steps N , when d=5 and p=2. . . . . . . . . 26

2.6 Accuracy over different Δt, when d=5, p=2 and N=1000. . . . . . . 26

2.7 Accuracies of SVAR model estimations by CSVAR and AR-LiNGAM

for different processes under d=5, N=1000 and p=2. . . . . . . . . 28

2.8 The outline of IBR-2 impulse fast neutron reactor. . . . . . . . . . . 30

3.1 The scheme of CSARMA modeling algorithm. . . . . . . . . . . . . 58

3.2 Procedure of our experiment. . . . . . . . . . . . . . . . . . . . . . 63

3.3 Accuracy over different dimensions d, when N = 1000, p = 2 and

q = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Accuracy over different AR orders p, when d = 5, N = 1000 and q = 1. 65

3.5 Accuracy over different MA orders q, when d = 5, N = 1000 and

p = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Accuracy over different steps N , when d = 5, p = 2 and q = 1. . . . 66

3.7 Accuracies of SARMA model estimations by CSARMA and ARMA-

LiNGAM for different processes under d = 5, N = 1000, p = 2 and

q = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Time evolution of main process parameters during KKL plant insta-

bility event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 PSI evaluation of decay ratio and resonance frequency during insta-

bility event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Spectral analysis of selected measured neutron and process signals. 93



viii

4.4 Comparison of spectral- and coherence analysis for neutron flux and

steam flow between KKL plant instability event and stability test

with close to unstable core. . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 CSARMA results for self-effects - diagonal matrix elements. . . . . 97

4.6 CSARMA results for casual structure - off-diagonal elements, where

the blue bars show the elements of the first row, the red bars - the

elements of the second row, and the green bars - the elements of the

third row of CARMA models matrices. . . . . . . . . . . . . . . . . 98

4.7 Application of STP to KKL plant instability event period 1. . . . . 101

4.8 Application of STP to KKL plant instability event period 4. . . . . 102



ix

List of Tables
2.1 The parameter matrices of the original and estimated DVAR, SVAR
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Chapter 1

Introduction

1.1 Background

Many real world systems are well approximated by continuous time multivariate

linear Markov processes. They are mostly observed in form of multivariate time

series data sampled at discrete time steps for their digital processing, and we use

discrete time parametric model approximations to analyze the systems through the

observed data. Discrete time Multivariate or Vector AR (DVAR)1 and Autore-

gressive and Moving Average (DARMA) models are used for such analyses when

the objective system is stable2, controllable3 and observable4 (Brockwell & Davis,

1991). DVAR modeling is more popular, because the parameter estimation pro-

cedure for it is much easier than for the multivariate ARMA model (Kizilkaya &

Kayran, 2006). However, when an objective continuous time linear Markov system

is not exactly described by an AR process, the DVAR model with finite order is

just an approximation of the discrete time multivariate linear Markov system in

many cases, while the DARMA model is a general exact notion of it. Therefore,

if our objective system behind a given data set is well approximated by a multi-

1In the past studies, the notion of a vector autoregressive model (VAR) is usually used as a

discrete time model. In our study, to separate the vector autoregressive processes for discrete and

continuous time domains, we will use the term of a discrete time vector autoregressive (DVAR)

model instead.
2The system is stable if all nearby initial conditions converge to the equilibrium point.
3The system is controllable if its current state can be transfered to any given state by applying

an appropriate input series over a finite time period.
4The system is observable if, for any possible sequence of state and control vectors, the current

state can be determined in finite time using only the outputs.
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variate linear Markov process, we usually should use DARMA modeling to identify

the structure and the parameters of the system. Accordingly, the DARMA mod-

eling has been widely used in many fields, e.g., biology (Perrott & Cohen, 1996),

medicine (Gannabathula, 1988), finance (Shittu & Yaya, 2009), economy (Chen et

al., 2010), physics (Kuroda et al., 1985; Tran, 1992, 2003), engineering (Zhao et al.,

2007) and energy (Zhang & Xu, 2010).

However, the DVAR/DARMA models have some drawback to identify the sys-

tem dynamics, i.e., the lack of canonicality of their model representation. A canon-

ical model is a unique system representation which is physically or mathematically

admissible. Both the DVAR and the DARMA models are not canonical, because

an objective system can be represented by infinitely many DVAR/DARMA models

as explained in the later chapters. This comes from the fact that they cannot repre-

sent the system dynamics in time scales shorter than their discretized time interval.

This limitation induces difficulty in identifying the structure and the parameters

of the objective system dynamics. In this study, our goal is to accurately derive a

canonical representation of an objective system behind a given time series dataset

under a generic assumption which does not virtually limit its applicability when the

system is well approximated by a continuous time, multivariate and linear Markov

process.

Many studies have been conducted to derive Structural AR/ARMA (SVAR/SARMA)

models in discrete time domain (Hyvarinen et al., 2008; Gottschalk, 2001; Pfaff &

Kronberg, 2008; Kilian, 2011; Kawahara et al., 2011; Mainassara & Francq, 2009).

The term structural denotes that the model represents the directions of dependen-

cies between variables, i.e., which variable depends on which variable, in addition to

the quantitative dynamics of an objective system. The structurality and the canon-

icality of the models are closely related. Under the axiomatic believe that the direc-

tions of the dependencies between variables in a physical system should be unique,

only a unique SVAR/SARMA model is admissible. Therefore, the SVAR/SARMA

models are canonical.

However, the SVAR/SARMA models have not been empirically derived from ob-

served time series without introducing some strong assumptions by using the stan-

dard DVAR/DARMA modeling methods, because the DVAR/DARMA models lack



3

their canonicality. Therefore, some extra information related to the depenency be-

tween the variables have to be introduced to the modeling. Most past studies have

been concentrated on the structural vector autoregressive (SVAR) models, which

are a subclass of the SARMA models because of the aforementioned advantage

of the AR modeling on the parameter estimation. In these studies, identification

of the SVAR model requires some strong assumptions on their system structure

and/or variables. For example, a study introduced assumptions of acyclic depen-

dency among variables and non-Gaussian external noises (Hyvarinen et al., 2008).

Other methods also require some specific assumptions, such as orthogonality and

non-linear restrictions on parameter matrices of the external noises, and recursive

ordering of system parameters (Gottschalk, 2001; Pfaff & Kronberg, 2008; Kilian,

2011). We should note that most of these approaches have not been extended to

more generic multivariate ARMA modeling. Only few studies investigated SARMA

modeling, but they also require some strong assumptions for model identification,

such as the acyclicity of an objective system and non-Gaussianity of its external

noises (Kawahara et al., 2011) and system representation by a small number of

parameters and partial independence of the noises (Mainassara & Francq, 2009).

However, the introduction of these assumptions focusing on some special systems

largely limits the applicability of SVAR and SARMA modeling.

On the other hand, the CVAR/CARMA model, which consists of differential

equations in continuous time domain, is known to be canonical. In contrast to

aforementioned DVAR/DARMA model, the CVAR/CARMA model is an exact

representation of the continuous AR/ARMA processes of the objective system,

i.e., it reflects all system dynamics. This characteristic does not admit its multi-

ple representations of the system as explained in the latter chapters. Therefore,

the CVAR/CARMA model is a uniquely admissible representation, and thus it is

canonical.

In this dissertation, we aim to develop a technique that do not require any

strong assumptions to derive the canonical models, i.e., the SVAR/SARMA and

the CVAR/CARMA models. We first derive new mathematical constraints on

the SVAR/SARMA model from the canonicality of the CVAR/CARMA model

under the assumption that the objective system is well approximated by a con-
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tinuous multivariate and linear Markov process. Subsequently, we propose novel

methods to derive the SVAR/SARMA and the CVAR/CARMA models from the

estimated DVAR/DARMA models based on the mathematical constraints. The

use of the canonicality of CVAR/CARMA model in continuous time domain for

the SVAR/SARMA modeling in discrete time domain has not been studied yet,

and this is our novel idea originated in this dissertation work. We name these new

methods as Continuous and Structural Vector Autoregressive modeling (CSVAR)

for the VAR model and Continuous and Structural Autoregressive Moving Average

modeling (CSARMA) for the ARMA model, respectively.

We further apply these techniques to a real world problem. Both the CSVAR

and CSARMA methods are expected to be strong instruments for the analysis

of the dynamics dependency between variables in complex engineering systems.

In this dissertation, we concentrate on an application to Boiling Water Reactors

(BWRs). Since the early stage of the technology development for BWRs, it has

been recognized that unstable power oscillations could occur due to neutron and

thermal-hydraulic coupling in the core dynamics. Hence, the reactors have been

designed with a large stability margin and operated conservatively so as not to

encounter instability. However, instability events can still occur at the BWR op-

eration. One of such events was observed at the stability test during start-up of

Kernkraftwek Leibstadt (KKL) Cycle 24 (Ferroukhi, 2008). The COSMOS on-line

stability monitoring system (Blomstrand et al., 1993) indicated the steam flow’s

fluctuations with unexpectedly high level amplitudes. Consequently, the reactor

was stopped by the emergency system. That lessened the efficiency of the reactor

operation. The event was unexpected, since the core was operated at low power

and low steam flow conditions.

To prevent reappearance of such an event for the reactor’s safety management,

it is important to know the operation conditions that may affect its stability. Sta-

bility analysis methods traditionally used are categorized into non-parametric and

parametric methods. The non-parametric methods mainly provide information on

reactor stability based on the analysis of power spectral densities and spectral co-

herence of the reactor signal fluctuations. The parametric analysis methods are

used to evaluate the stability of the reactor operation by estimating stability mea-
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sures such as decay ratio (DR) and natural frequency (FR) of the reactor power,

or the Jacobian of the objective system. However, all these methods do not give

us clear knowledge on interactions among individual reactor processes causing the

reactor instability.

For understanding the mechanism of the reactor during an instability event, we

need to have a mathematical model and its corresponding parameters that precisely

reflect the reactor processes. Since the reactor noise generation processes can be

often approximated by a linear Markov system and they are observed as a time

series sampled at discrete time steps, we often apply Discrete time Autoregressive

Moving Average (DARMA) modeling to obtain the model and the parameters in

the framework of the parametric analysis. However, since a multivariate DARMA

model is not canonical, i.e., it does not uniquely represent the objective reactor

processes, it makes difficult to understand the dynamics of the objective system

and its individual processes.

In this dissertation, we expect that an application of a novel CSARMA approach

(Demeshko et al., 2013, 2014) to the analysis of the instability event at the nuclear

plant Kernkraft Leibstadt (KKL) will allow us to investigate the dependency among

the processes in the system and give us more insights on the physical mechanisms

of the system.

Based on these considerations, we aim to achieve the following main research

objectives of the dissertation.

(1) Upon generic assumptions on the objective continuous time, multivariate and

linear Markov system, we theoretically discover the constraints on the SVAR

model by applying the canonicality of the CVAR model. By using these

mathematical constraints, we establish a new modeling approach to derive

the CVAR model and the SVAR model from the DVAR model estimated by

using time series data observed from the system.

(2) We further extend the discovered mathematical constraints on the SVAR

model to the SARMA model derived from the canonicality of the CARMA

model. By using the new mathematical constraints, we propose a new mod-

eling approach to derive the multivariate CARMA model and the SARMA
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model from the multivariate DARMA model estimated by using time series

data observed from the system.

(3) We apply the developed modeling methods to the data produced from the

real world problem, i.e., the instability event at the Kernkraftwerk Leibstadt

nuclear plant. We obtain new insights on the dependency between variables

of nuclear reactor’s physical processes by applying the CSARMA approach.

In the rest of this dissertation, all of the CARMA, the SARMA and the ARMA

models are multivariate unless we explicitly state their univariateness.

1.2 Summary of contributions

We briefly summarize the contributions of each chapter:

• Chapter 2: The main theoretical contribution of this chapter is the deriva-

tion of the mathematical constraints from the canonicality of the CVAR model

to make a DVAR model structural. We could derive such constraints through

the time discretization of the CVAR model.

The second contribution of our study is the establishment of a novel modeling

approach called Continuous time Structural Vector Autoregressive (CSVAR)

modeling that is based on the derived constraints. It allows us to derive the

CVAR and the SVAR models from a given DVAR model.

• Chapter 3: The main theoretical contribution of this chapter is the extension

of the mathematical constraints on the SVAR model to those of the SARMA

model by applying the time discretization of the CARMA model.

Based on these constraints, we achieved our second contribution, i.e., we

extend the CSVAR modeling to the modeling approach that allows us to

derive the CARMA and the SARMA models from a given DARMA model.

This technique is named a Continuous time Structural Autoregressive Moving-

Average (CSARMA) modeling approach.
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• Chapter 4: We apply the developed CSARMA modeling approach for the

nuclear reactor stability analysis. We investigate anomalous instability of

Boiling Water Reactor (BWR) of Kernkraftwerk nuclear station, that was

observed during event Cycle 24. The main result of our analysis provides

the clear and valid dependencies between variables of the system, and give us

more insights on the system dynamics in comparison with Signal Transmission

Path analysis which is a representative conventional analysis technique.

1.3 Relationship of three main chapters

We explain the relations between the ideas introduced in three main chapters of

the dissertation.

Chapter 2: CSVAR modeling approach

In this chapter, we derive mathematical constraints on the SVAR model by

using the discrete time approximation of the CVAR model. By applying these

constraints, we clarified the mathematical relations between the CVAR, the SVAR

and the DVAR models of the system and developed the CSVAR modeling approach.

Chapter 2 provides the mathematical constraints and the modeling approach to be

extended in Chapter 3.

Chapter 3: CSARMA modeling approach

Based on the idea presented in Chapter 2, we extended the mathematical con-

straints discovered in Chapter 2 to include the moving-average part of the ARMA

model. The constraints derive new mathematical relations between the CARMA,

the SARMA and the DARMA models. These relations enable us to establish the

CSARMA modeling approach. This approach developed in Chapter 3 is applied to

demonstrate its practicality in a real world problem in Chapter 4.

Chapter 4: Analysis of BWR instability mechanisms applying a CSARMA

approach

In this chapter, we present practical applicability of the CSARMA method, de-

veloped in Chapter 3, to a real world problem, i.e., an instability analysis of a nu-

clear power plant. Furthermore, we provide new insights, derived by the CSARMA

method, on the instability mechanism of the plant.
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Chapter 2

CSVAR modeling approach

2.1 Introduction

Usually real world systems are observed in a way of time series data sampled at

discrete time steps for the digital processing. In case when such an objective system

is well represented by continuous time, multivariate, linear Markov, stable and

controllable system, a discrete time vector autoregressive (DVAR) model is often

used to analyze it (Brockwell & Davis, 1991). However, according to previous

studies (Stamer et al., 1996; Gottschalk, 2001), the DVAR model is not canonical,

i.e., it does not have a bijective correspondence with the objective system for which

it is derived. This induces difficulty in identifying the structure and the parameters

of the objective system dynamics.

As a remedy to this limitation of the DVAR modeling, a structural vector AR

(SVAR) model (Moneta, Entner, Hoyer, & Coad, 2010) has been studied. The

SVAR model has a bijective correspondence with a unique system. It is used for

the modeling when an objective continuous time linear Markov system is exactly

described by an AR process. Moreover the SVAR model provides information on the

propagation of influences among variables in the system, even if the DVAR is only

an approximation of the objective dynamic system. However, in the past studies,

some strong assumptions were required on the system structure and/or variables for

the identification of the SVAR model. These assumptions were acyclic dependency

among variables and non-Gaussianity of external noises (Hyvarinen et al., 2008),

orthogonality and non-linear restrictions on parameter matrices of the external

noises (Gottschalk, 2001; Pfaff & Kronberg, 2008; Kilian, 2011), and recursive

ordering of system parameters (Gottschalk, 2001; Kilian, 2011). They largely limit
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the applicability of the SVAR modeling in the system structure analysis.

Based on these considerations, we aim to achieve the following four research

objectives in this chapter.

(2.1) Show under a generic assumption, that the DVAR model of a continuous time,

multivariate, linear Markov system is canonical.

(2.2) Clarify mathematical relations among a continuous time vector AR (CVAR)

model, a SVAR model and a DVAR model of the system.

(2.3) Present a new approach named Continuous time Structural Vector Autore-

gressive (CSVAR) modeling for the CVAR and the SVAR models based on

the DVAR model obtained from observed time series data.

(2.4) Demonstrate using numerical experiments on artificial and real world time

series the applicability and the accuracy of the proposed approach.

Based on the above arguments this chapter is organized as follows. Section 2.2

explains past studies related with our work and clarifies technical issues to be ad-

dressed in this chapter. In Section 2.3, we established a new principle to reconstruct

the CVAR and SVAR models from the DVAR model estimated from observed time

series. In Section 2.4, we show a performance of our proposed approach by numeri-

cal experiments using artificial and real world data and its comparison with a past

representative SVAR modeling approach. Section 2.6 concludes this part.

2.2 Preliminary discussion and analysis

2.2.1 Related work

A DVAR model Eq.(2.1) of order p is a general representation of a stable, control-

lable, multivariate, liner Markov system with a given d-dimensional variable vector

Y (t) observed with a discrete time step Δt.

Y (t) =

p∑
j=1

ΦjY (t− jΔt) + U(t), (2.1)



11

where Φj are d × d coefficient matrices. U(t) is a d-dimensional unobserved noise

vector that is i.i.d. in a discrete time domain (Brockwell & Davis, 1991). This model

has ambiguity to represent infinitely many systems, since Eq.(2.1) is equivalent to

Y (t) =

p∑
j=1

ΦjY (t− jΔt) +QW (t), (2.2)

where Q is a d × d regular matrix and W (t) = Q−1U(t). Thus, depending on the

choices of Q, Y (t) has infinitely many impulse responses for W (t) (Moneta et al.,

2010). In other words, for a given observed time series, Y (t), the infinite number

of systems that could generate Y (t) are represented by a unique DVAR model

with parameters Φj, j = 1, . . . , p. Therefore, the DVAR model has no bijective

correspondence to the objective system, i.e., it is not canonical. Thus, we need

to know a unique combination of Q and W (t) which corresponds to the objective

system dynamics in a bijective manner to identify the system uniquely. Having

such Q and W (t), we multiply Q−1 from the left-hand-side of Eq.(2.2) as

Q−1Y (t) =

p∑
j=1

Q−1ΦjY (t− jΔt) +W (t).

By adding Y (t) to both hand sides and moving Q−1Y (t) to the right-hand-side, we

obtain the following formula.

Y (t) = (I −Q−1)Y (t) +

p∑
j=1

Q−1ΦjY (t− jΔt) +W (t).

This is further rewritten as

Y (t) =

p∑
j=0

ΨjY (t− jΔt) +W (t), (2.3)

where Ψ0 = I −Q−1, Ψj = Q−1Φj. This equation includes fast effects in its repre-

sentation by a matrix Ψ0 representing a feedback of Y (t) on itself. If there are no

such effects in the objective system, then Ψ0 should be a zero matrix, otherwise Ψ0

is non-zero and Q �= I. By deriving a unique matrix Ψ0, we define the unique com-

bination of Q andW (t) in Eq.(2.3), which provides a unique model with parameters

Ψj, j = 0, . . . , p that bijectively represents the unique objective system. Therefore,
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this model is canonical. In the past studies, Eq.(2.3) is called a Structural Vector

Autoregressive (SVAR) model (Moneta et al., 2010; Kawahara et al., 2011).

The SVAR model is provided by the derivation of the unique Ψ0. As shown in

Eq. (2.3), matrices Ψ0 and Ψj directly depend on Q. However, matrix Q is not

reproduced from the DVAR model, because it is integrated in Φj as Φj = QΨj.

Accordingly, we need some extra information to provide Q. However, even if we

introduce an orthonormality constraint QQT = Et(U(t)U(t)T ) to make noises in

W (t) mutually uncorrelated, the representation of the DVAR model given by this

approach is not unique, because there are many choices for Q which satisfy that

constraint, e.g., QO satisfying QO(QO)T = QOOTQT = QQT , where O is any

orthonormal matrix (Moneta et al., 2011).

There are many studies on this issue for identifying the SVAR model. Most of

these studies require strong assumptions on the objective system. For example,

a study (Gottschalk, 2001) introduced a constraint named exclusion restriction

together with the orthonormality of the external noises. It requires some domain

knowledge of the objective system to obtain the order of the noises in U(t) and

hence their corresponding variables in Y (t). The order of the noises is further used

for Cholesky decomposition that uniquely derives a strictly lower triangular Q. A

study (Kilian, 2011) introduced another constraint named a sign restriction. It

also requires some domain knowledge on the signs of some elements of Q with the

aforementioned orthonormality of the noise vector to select the matrix Q. Such Q

is searched by testing the sign restriction after randomly generating orthonormal

matrices with QR decompositions. A study (Hyvarinen et al., 2008) introduced less

domain specific assumptions on the system. It proposed a novel method named

AR-LiNGAM by assuming acyclic dependency among variables in Y (t) and non-

Gaussianity of external noises in W (t) in addition to mutual independence and

temporal uncorrelation of W (t). The ordering information of the noises in W (t)

and their corresponding variables in Y (t) were further provided by the application

of independent component analysis (ICA) to least-square residual noises of the

DVAR modeling.

However, in many real-world applications, the aforementioned assumptions on

the objective system significantly limit the applicability of these approaches, since
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such firm domain knowledge is not readily available. In this regard, we require a

more generic approach to the SVAR modeling without using strong assumptions.

To address this issue, we propose a novel modeling approach that uses only a very

general assumption which subsumes stability and controllability of the objective

system.

2.2.2 Canonicality of VAR models

In (Pearl, 2000), Pearl stated that each noise in a canonical model has its own

unique variable to directly and instantly change within a negligibly short time

period required by attaining the equilibrium. Similar characterization and analysis

of the canonical models can be seen in the literatures (Fisher, 1970; Iwasaki &

Simon, 1994; Lacerda et al., 2008; Mooij et al., 2013). W (t) in the SVAR model

Eq.(2.3) holds the characteristics of the noise vector in the canonical model, because

each noise in W (t) has its unique variable in Y (t) to directly and instantly change.

The term of Ψ0 represents fast effects in Y (t) which occur within the sampling time

interval Δt. The other AR terms represent components generated by the system

dynamics within a finite time interval, if the system is stable. Accordingly, the

SVAR model is canonical under a given combination of regular matrix Q and W (t)

that correspond to the objective system.

Comparing the DVAR and the SVAR models, we obtain the following relations

among their matrices and vectors (Kawahara et al., 2011; Hyvarinen et al., 2008).

Φj = (I −Ψ0)
−1Ψj, (2.4a)

Ψj = (I −Ψ0)Φj, (2.4b)

U(t) = (I −Ψ0)
−1W (t), (2.5a)

W (t) = (I −Ψ0)U(t). (2.5b)

We see that given a combination of Φj(j = 1, . . . , p), there are various combinations

of Ψj(j = 0, . . . , p), which induce the combination of Φj(j = 1, . . . , p) through

Eq.(2.4a). Thus, there exist multiple SVAR models, which induce the DVAR model.

On the other hand, given a combination of Ψ0, Ψj (j = 1, . . . , p), Q is uniquely



14

provided by Q = (I − Ψ0)
−1, and a unique combination of Φj(j = 1, . . . , p) is also

provided through Eq.(2.4a). Thus, a given SVAR model induces only a unique

combination of the DVAR model and the regular matrix Q. In other words, the

correspondence from the SVAR model to the DVAR model is surjective. This is

because the DVAR model is not canonical.

On the other hand, when a stable, controllable, multivariate, linear Markov

system in a continuous time domain is approximated by an AR process, it is rep-

resented by a Continuous Time Vector AR (CVAR) model in Eq.(2.6) consisting

of continuous time stochastic differential equations with noise terms (Stamer et al.,

1996).

Y (p)(t) =

p−1∑
m=0

SmY
(m)(t) +W (t), (2.6)

where Y (t) andW (t) are a d-dimensional observed variable vector and a d-dimensional

external noise vector that is i.i.d. in a continuous time domain, respectively. Y (m)(t)

is the m-th time differential of Y (t)(= Y (0)(t)), and Sm(m = 0, . . . , p− 1) is a d× d

AR matrix (Stamer et al., 1996). Since this is a continuous time model, it includes

the fast effects in Y (t) which occur within a period smaller than Δt. In this model,

each noise in W (t) directly and instantly changes the highest time differential of

its corresponding unique variable in Y (t), and the change propagates to the other

lower order time differentials. In this regard, W (t) satisfies the character of the

noise vector in a canonical model. Additionally, W (t) in Eq.(2.6) is a unique noise

vector, because application of E(t) = P−1W (t) with a d × d regular matrix P

transforms Eq.(2.6) as

Y (p)(t) = (I − P−1)Y (p)(t) +

p−1∑
m=0

P−1SmY
(m)(t) + E(t).

Because any instantaneous process to change the highest order differentials Y (p)

by itself is not admissible in a complete process dynamics, P �= I is not admitted.

Thus, W (t) is unique. This is because of the fact that the CVAR model is an exact

representation of the continuous AR processes in the objective system and thus

includes all process dynamics. Accordingly, the CVAR model Eq.(2.6) is canonical,

and the SVAR model Eq.(2.3) and the CVAR model Eq.(2.6) bijectively correspond
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to the system dynamics. Since they represent the same stable, multivariate linear

Markov system, which is controllable in both continuous and discrete time domains,

the SVAR and the CVAR models have a bijective correspondence.

2.3 Proposed principle

In this section, we concentrate on objectives (2.1), (2.2) and (2.3) stated in Sec-

tion 2.1. Firstly, we introduce an assumption that is necessary to derive mathemat-

ical relations between CVAR, SVAR and DVAR models and to provide theoretical

bases for SVAR and CVAR modeling from given time series data. Then we show

a bijective correspondence between all three models. Finally, we propose a new

canonical modeling approach of the objective continuous time, multivariate, linear

Markov system.

The proposed modeling principles and algorithm require the following assump-

tion.

Assumption 1. Given the CVAR model in Eq.(2.6) representing the objective sys-

tem and a positive real constant Δt > 0 which is a sampling interval of time series

data for the modeling,
∑p

m=0 SmΔtp−m is a regular matrix, where Sp = −I according

to Eq.(2.6).

As shown in the following lemma, given an objective, continuous time, multivariate,

linear Markov system, this assumption always holds, if the system is stable and

controllable.

Lemma 1. Given the CVAR model in Eq.(2.6) representing the objective system

with a positive real constant Δt > 0,
∑p

m=0 SmΔtp−m is a regular matrix where

Sp = −I, if the system is controllable and stable.

Proof. The proof is presented in Appendix 2.7.1. �
Assumption 1 does not apply any essential limitation to the canonical modeling of

the system as long as we use the DVAR modeling, because the stability and the

controllability of the objective system are required for the estimation of its valid

DVAR model by using time series data observed from the system (Brockwell &

Davis, 1991).
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To obtain the relations among the three models, first we concentrate on the

canonical SVAR and CVAR models. As we discussed in previous section, they

have a bijective correspondence. However, the variables of the CVAR model are

in continuous time domain, while those of the SVAR model are in discrete time

domain. Accordingly, we find their mathematical relations by applying a time

discretization approximation to the CVAR model. One of the most representative

approximation schemes for the time discretization is the backward higher order

finite difference, which is a natural extension of Euler formula for them-th derivative

(Levy & Lessman, 1992). We introduce the following assumption to apply the time

discretization approximation.

Assumption 2. The approximation error by introducing the following backward

higher order finite difference is sufficiently small for the time discretization of the

CVAR model.

Y (m)(t) � 1

Δtm

m∑
j=0

(−1)j m!

(m− j)!j!
Y (t− jΔt). (2.7)

This finite difference scheme is consistent, e.g., the finite difference equations de-

rived by Eq. (2.7) converge to their original differential equation when Δt → 0.

The approximation error is O(Y (m+1)(t)Δt), which converges to zero for Δt → 0.

Moreover, the convergence of the finite difference equations’ solutions provided

by Eq. (2.7) to that of the original time differential equation is ensured by Lax-

Richtmyer theorem, since the objective system is linear and stable (Lax & Richt-

myer, 1956; Strikwerda, 1989).

Lemma 2. The finite difference approximation of the CVAR model using Eq.(2.7)

is unbiased under Assumption 1.

Proof. The proof is presented in Appendix 2.7.2. �

Therefore, we obtain the following lemma.
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Lemma 3. Under Assumptions 1 and 2, a discrete time approximation of the

CVAR model is represented as follows.

Y (t) = −
(

p∑
m=0

SmΔt−m
)−1 p∑

j=1

(−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−mY (t− jΔt)

−
(

p∑
m=0

SmΔt−m
)−1

W (t), (2.8)

and

Y (t) =

(
I +

p∑
m=0

SmΔt−m
)
Y (t)

+

p∑
j=1

(−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−mY (t− jΔt) +W (t), (2.9)

where Sp = −I.
Proof. The proof is presented in Appendix 3.9.3. �

Since the SVAR and the CVARmodels bijectively correspond to each other, Eq.(2.9)

corresponds to the SVAR model in Eq.(2.3). Therefore, by comparing Eq.(2.3) and

Eq.(2.9), we obtain the following representation of coefficient matrices of the SVAR

in Eq.(2.3) by coefficient matrices of the CVAR model in Eq.(2.6).

Ψ0 = I +

p∑
m=0

SmΔt−m, (2.10)

Ψj = (−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−m, (2.11)

where Sp = −I. Thus, from a given CVAR model, we uniquely derive a SVAR

using Eq.(2.10) and (2.11).

Furthermore, we derive the coefficient matrices of the CVAR model, Sm, from

the given SVAR model by the following theorem.

Theorem 1. Under Assumptions 1 and 2, the coefficient matrices of the CVAR

model in Eq.(2.6) are represented by coefficient matrices of the SVAR model in
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Eq.(2.3) as follows.

S0 = Δt−pI −
p−1∑
m=1

{
(−1)m

p−1∑
j=m

j!

(j −m)!m!
Ψj + (−1)p+m−1Δt−p

p!

(p−m)!m!
I

}

+(−1)pΔt−pΨ−1p (I −Ψ0), (2.12)

Sm = (−1)mΔtm
p−1∑
j=m

j!

(j −m)!m!
Ψj + (−1)m+p−1Δtm−p

p!

(p−m)!m!
I, (2.13)

where 1 ≤ m ≤ p− 1 and Sp = −I.
Proof. The proof is presented in Appendix 2.7.4. �
Equations (2.10)-(2.13) indicate a bijective correspondence between the CVAR

model and its SVAR model.

We further deduce the SVAR from the DVAR model. As was shown in subsec-

tion 2.2.2, we need to know Q or Ψ0 for this deduction. From Theorem 1, we derive

the following Theorem 2, which provides I −Ψ0 from the DVAR matrices only.

Theorem 2. Under Assumptions 1 and 2, the matrix I −Ψ0 is represented by the

DVAR parameter matrix as follows.

I −Ψ0 = (−1)p+1Δt−pΦ−1p . (2.14)

Proof. The proof is presented in Appendix 3.9.5. �

Thus, Theorem 2 and Eq.(2.4b), (2.5b) indicate a bijective correspondence between

the SVAR model and its DVAR model.

From these two theorems, we immediately provide the following corollary on the

canonicality of the DVAR model.

Corollary 1. A DVAR model representing a stable, controllable, continuous time,

multivariate, linear Markov system is canonical, and has a bijective correspondence

with SVAR and CVAR models of the system.

Here, we summarize all assumptions required by our proposed method. In our

study we assume that the objective system has the characteristics of
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(1) linear, (2) continuous, (3) Markov, (4) stable, (5) controllable, and

(6) that the approximation error of the backward higher order finite difference

for the time discretization of the CVAR model is sufficiently small.

Under these assumptions, the consequences provided above enable us to obtain the

SVAR model from the given DVAR model and to derive the CVAR model from

the SVAR model. These assumptions hold in the most of scientific and engineering

systems in practice and are used in the conventional DVAR modeling. This is one

of the main reasons for the wide application of the DVAR modeling. Therefore,

our consequences are considered to have a wide applicability similarly to the con-

ventional DVAR modeling. This is a significant advantage of our framework in

comparison with the past SVAR modeling methods having strongly limited appli-

cability as explained in subsection 2.2.1.

Based on these considerations, we developed a novel approach, which we call

Continuous and Structural Vector AutoRegressive (CSVAR) modeling (Demeshko

et al., 2013). The algorithm of the CSVAR modeling approach is shown on Fig. 2.1.

It allows us to derive both canonical models, CVAR and SVAR, once we properly

derive the DVAR model from a given time series data set observed from a continu-

ous time, multivariate, linear Markov system. In this algorithm, we firstly estimate

a DVAR model by applying some traditionally used methods such as the Maximum

Likelihood method which computes a likelihood function using a Kalman filter al-

gorithm and applies a quasi-Newton algorithm to search for the maximum of the

log-likelihood function (Shea, 1987). Then, we obtain a SVAR model, Eq.(2.3),

by deriving its parameter matrices from the matrices of the DVAR model through

Eq.(2.4b) and Theorem 2. The derived SVAR model represents the physical dy-

namics of the system in canonical manner, and the parameter matrices Ψj give us

the information on the fundamental processes in the system. Finally, by using the

relations between the SVAR and the CVAR models presented in Theorem 1, we

estimate parameters of the CVAR model of the system (Demeshko et al., 2013).
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Figure 2.1: The scheme of the CSVAR algorithm.

2.4 Performance on artificial data

In this section, we address objective (2.4) stated in Section 2.1. We demonstrate

the performance of the proposed CSVAR modeling through numerical experiments

using artificial and real world data. First, we present an illustration of the CSVAR

modeling application to a simple physical system. Then we evaluate the accuracies

of the canonical SVAR and CVAR models derived from the artificial data by using

our modeling method in comparison with their original models that were used to

generate the data. Additionally, we confirm the applicability and the accuracy of

our CSVAR approach in comparison with a past representative SVAR modeling

method. Finally, we evaluate the practicality of CSVAR approach through its

application to a real world experimental data.

2.4.1 Illustrative example of CSVAR application

We illustrate the effectiveness of the CSVAR modeling approach through its appli-

cation to a simple coupled oscillator shown in Fig. 2.2. The dynamics of the system
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Figure 2.2: Coupled oscillators.

is represented by the following two differential equations.

ẍ1 =
−2κx1

M
− c

M
v1, (2.15)

ẍ2 =
−2κx2

M
− c

M
v2. (2.16)

The mass of each object is M , and the spring constant of each spring is κ where

their right most and left most ends are fixed at the two walls. Two state variables

x1 and x2 represent the deviations of the mass positions from their equilibrium,

and v1 = ẋ1 and v2 = ẋ2 are their velocities. We also assume some damping forces

acting on the masses caused by air friction with coefficient c.

This system is exactly represented by a controllable canonical form of the state

space model in continuous time domain shown in Eq. (2.17). This model explicitly

indicates kinematics, air friction and observation errors. It consists of the linear dif-

ferential system equations having external process noises and observation equations

of the state variables (Hinrichsen & Pritchard, 2005).

dX

dt
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1
−2κ
M

κ
M

− c
M

0
κ
M

−2κ
M

0 − c
M

⎤
⎥⎥⎥⎥⎥⎦X +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎥⎦W and

Y =

[
1 0 0 0

0 1 0 0

]T
X,

where X = [x1, x2, v1, v2]
T , W = [w1, w2]

T , and w1 and w1 are the external process
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noises of x1 and x2. The controllable canonical form of the state space model has a

direct bijective correspondence to the CVAR model (Hinrichsen & Pritchard, 2005;

Brockwell & Davis, 1991). Thus, for the coupled oscillator we have the following

CVAR(2) model.

Y (2)(t) =

[ −2κ
M

κ
M

κ
M

−2κ
M

]
Y (0)(t) +

[
− c

M
0

0 − c
M

]
Y (1)(t) +W (t). (2.17)

We gave the values of the spring constant κ=0.1 N/m, the mass M=1 kg, the

air resistance coefficient for the mass c = 0.5Ns/m, the period of oscillation T =

2π
√

M
κ
= 19.9 s. By using Eq.(2.10), (2.11) and the relation of Eq.(2.4a), we further

transformed this CVAR model to its corresponding SVAR and DVAR models under

a time granularity Δt = 1 s. To ensure the conditions required for the DVAR

modeling, we confirmed the stability and the controllability of the obtained DVAR

model. By using the derived DVAR model parameters and Eq.(2.1), we further

generated a time series Y (t) of 1000 data points. The external bivariate noises U(t)

were generated by using an i.i.d. N(0, σ2) distribution where σ is randomly chosen

from [0.3,0.7] to maintain the identifiability of the DVAR model.

Finally, we applied the CSVAR algorithm shown in Fig. 2.1 to this sampled

time series and estimated the DVAR, SVAR and CVAR models, using provided

correct models order, p=2. Table 2.1 shows the comparison between the original

models derived from the CVAR model under the discretization with Δt = 1 s and

the estimated models. We see that the SVAR and CVAR models estimated by

the CSVAR approach and their original models match well. We also note that the

original DVAR model matches well with the DVAR model estimated by Maximum-

Likelihood method. The last corresponds to Corollary 1, showing that the objective

system is represented by a unique DVAR model when it is linear Markov, stable

and controllable system in continuous time domain. Accordingly, we see that in

this example the CSVAR modeling appropriately reconstructs the original SVAR

and CVAR models of the system from a given time series. These models provide

the correct canonical relations between the variables in the original system.
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Table 2.1: The parameter matrices of the original and estimated DVAR, SVAR

and CVAR models, where Z and Ẑ represent original and estimated matrices,

respectively, for Z = Φ,Ψ, and S.

DVAR model SVAR model CVAR model

Φ1

1.476 0.087

0.087 1.476
Ψ0

−0.700 0.100

0.100 −0.700
S0

−0.200 0.100

0.100 −0.200

Φ̂1

1.469 0.088

0.089 1.474
Ψ̂0

−0.709 0.105

0.103 −0.701
Ŝ0

−0.207 0.101

0.102 −0.203

Φ2

−0.590 −0.035
−0.035 −0.590

Ψ1

2.50 0

0 2.50
S1

−0.5 0

0 −0.5

Φ̂2

−0.587 −0.036
−0.037 −0.590

Ψ̂1

2.502 −0.004
−0.001 2.498

Ŝ1

−0.502 0.004

0.001 −0.498

Ψ2

−0.67 0

0 −0.67

Ψ̂2

−1.00 0

0 −1.00

2.4.2 Accuracy of the proposed method

We demonstrate the accuracy of the SVAR and the CVAR models derived by the

CSVAR modeling. For this purpose we perform a set of computer simulations.

The procedure of the numerical experiments is similar to the one described in the

illustrative example, and it is as follows.

(1) We artificially generate parameter matrices of the CVAR model, Sm(j =

0, . . . , p − 1), each element of which is generated by a uniformly distributed

random value in the interval (-1.5,1.5).

(2) Then we generate a CVAR time series data Y (t) by using Eq.(2.8) under a

time granularity δt = 0.1Δt to approximately simulate a continuous process.

We also generate a multivariate i.i.d. Gaussian time series W(t). The mean

value of each element in W(t) is set to be zero, and its standard deviation is
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randomly chosen from [0.3, 0.7] to maintain the identifiability of the CVAR

model. We check if this CVAR model satisfy our Assumption 1. If not, we

repeat the process from (1) to (2).

(3) We transformed this CVAR model to its corresponding SVAR and DVAR

models by using Eq.(2.10), (2.11) and Eq.(2.4a), respectively, under a time

granularity Δt. Then, we check the conditions of the stability and control-

lability of the transformed DVAR model similarly to the illustrative example

in Section 4.1. If they are not held, we repeat the process from (1) to (3), till

we obtain parameters for the stable and controllable model.

(4) We estimate the AR matrices, Φj(j = 1, . . . , p), as Φ̂j(j = 1, . . . , p) from

the generated multivariate time series Y (t) by a representative DVAR mod-

eling algorithm. Here, we use the Maximum Likelihood method to derive AR

parameter matrices (Shea, 1987).

(5) We estimate the SVAR matrices, Ψj(j = 0, . . . , p), as Ψ̂j(j = 0, . . . , p) by

Eq.(2.4b) and Eq.(2.14). Subsequently, we estimate the CVAR matrices,

Sm(j = 0, . . . , p− 1), as Ŝm(j = 0, . . . , p− 1) by Eq.(2.12) and Eq.(2.13).

(6) We evaluate the accuracy of the estimated matrices over the original matrices,

using the following cosine measure that represents an element-wise accuracy

averaged over all matrices in a model.

AX =
1

p

p∑
k=1

∑
ij x̂k,ijxk,ij√∑

ij x̂
2
k,ij

√∑
ij x

2
k,ij

, (2.18)

where xk,ij is the i,j-element of an original matrixXk which is the AR matrix of

the k-th order, and x̂k,ij is the i,j-element of an original matrix X̂k which is an

estimation ofXk. The summation
∑

ij is taken over all elements inXk and X̂k,

respectively. Thus, Eq. (2.18) represents an element-wise accuracy averaged

over all AR matrices in a model. We apply it to evaluate the accuracy of

Xk = Φj, Ψj or Sm where k = j or m.

We chose a default parameter setting of the dimension of Y (t), d = 5, the

number of time steps of the data used for modeling of Y (t), N = 1000, the order
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Figure 2.3: Accuracy over different dimensions d, when p=2 and N=1000.

Figure 2.4: Accuracy over different AR orders p, when d=5 and N=1000.

of the CVAR model, p = 2, and time granularity Δt = 1 s, for data generation.

Then, we assessed the estimation accuracy over various values of each parameter

while setting the other parameters to their default values. For every parameter

setting, we repeated 20 experiments and evaluated their 20 accuracies AX for each

experiment.
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Figure 2.5: Accuracy over different steps N , when d=5 and p=2.

Figure 2.6: Accuracy over different Δt, when d=5, p=2 and N=1000.

Figures 2.3, 2.4, 2.5 and 2.6 show the comparisons of the estimation accuracy

over the various values of every parameter. In Fig. 2.3, the lines show the accuracies

of AR matrix estimations averaged over the 20 experiments for the DVAR, the

SVAR and the CVAR models, respectively, under multiple dimensions of Y (t),

d = 3, 5 and 7, where the error bars represent the standard deviations. We observe

the high accuracies of the SVAR and the CVAR matrices, AΨ and AS, evaluated



27

by the proposed CSVAR approach as well as the ones of the DVAR matrices, AΦ,

obtained from the data set for all dimensions of the observation vectors. However,

for the larger dimension d the accuracy slightly degrades. This was expected, since

the number of parameters to be estimated in the AR matrices is O(d2) and many

parameters under a large d make the estimation of the DVAR model statistically

unstable for the same length of the given time series data. In Fig. 2.4, we see the

results for different AR orders, p = 1, 2 and 3. Here, we also note that all three

estimated models have high accuracies in all cases. However, similarly to the cases

of the large d, the model estimation of the higher orders p shows some degraded

accuracies, since the model becomes more complex with more parameters to be

estimated. Figure 2.5 shows the results for the data sets with the different number

of steps, N = 300, 1000, 3000 and 10000. Here, we observe limited accuracy in the

small sample case, N = 300. This is easily explained by the statistical instability.

Under the larger N , the accuracies of all three models estimations significantly high.

Finally, in Fig. 2.6, we see the results for different time granularity Δt = 0.1, 1

and 10. We see that overall results do not depend on parameter Δt as far as the

conditions of Assumption 1, the stability and the controllability of the DVAR model

hold.

In short summary, our proposed CSVAR modeling accurately captures the sys-

tem dynamics and the dependency structure among its variables in forms of the

SVAR and the CVAR models.

2.4.3 Comparison of CSVAR with AR-LiNGAM

In this subsection, we compare our proposed CSVAR modeling with a past represen-

tative method for deriving the SVAR model and evaluate its applicability to various

conditions. As was shown in Section 2.2.1, most of the SVAR modeling approaches

(Gottschalk, 2001; Pfaff & Kronberg, 2008; Kilian, 2011) require some strong prior

knowledge which makes them incomparable with the CSVAR approach. However,

AR-LiNGAM method (Hyvarinen et al., 2008) requires weaker assumptions on the

system such as acyclic Ψ0 and non-Gaussian noises. Therefore, we concentrate on

the comparisons with AR-LiNGAM. The AR-LiNGAM approach derives the ex-
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Figure 2.7: Accuracies of SVAR model estimations by CSVAR and AR-LiNGAM

for different processes under d=5, N=1000 and p=2.

ternal noise time series, U(t), by the maximum-likelihood estimation of the DVAR

model, then it obtains ordering information of variables in Y(t) by applying Inde-

pendent Component Analysis (ICA). This ordering information together with the

orthonormality of the noises further provides matrix Ψ0 of the SVAR model.

We compared the CSVAR and the AR-LiNGAM approaches by generating four

sets of artificial data, (a) non-Gaussian and acyclic case, (b) Gaussian and acyclic

case, (c) non-Gaussian case without the acyclicity assumption, and (d) Gaussian

case without the acyclicity assumption. To generate non-Gaussian noise, we inde-

pendently draw the noise values in W (t) from Gaussian distributions and subse-

quently pass them through a power non-linearity (raising the absolute value to an

exponent in the interval [0.5, 0.8] or [1.2, 2.0], but keeping the original sign) to make

them non-Gaussian (Shimizu et al., 2011). To generate Gaussian noise, we use the

identical process with that of the previous subsection. To generate the acyclic case,

we produce SVAR parameter matrices, where matrix Ψ0 is strictly lower-triangular

for the necessary condition of acyclicity. Then, we check regularity of the matrix Φp

for Eq.(2.12) to ensure the existence of a CVAR model corresponding to the gener-

ated SVAR. If the CVAR model exists, we continue the model generation process

in the same way described in the previous subsection. To generate the case without

the acyclicity assumption, we do not limit Ψ0 to a strictly lower-triangular matrix.

Thereafter, we apply both our proposed CSVAR and the AR-LiNGAM to the

generated data sets. Both approaches give us SVAR model parameter matrices
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ΨCS
j (j = 0, . . . , p) and ΨLiNGAM

j (j = 0, . . . , p). To evaluate the accuracies of

the estimated matrices, we compare them with the original ones by Eq.(2.18). In

Fig. 2.7(a), we see the box plots of the accuracies of both, CSVAR and the AR-

LiNGAM approaches, where a bold line is the median, lower and higher edges of

a box are the 25th and 75th percentiles, and the length of a whisker represents

the lowest datum within 1.5 IQR (interquartile range) of the lower quartile and the

highest datum within 1.5 IQR of the upper quartile. Through these comparisons, we

see that both modeling approaches show a very good performance in non-Gaussian

and acyclic case. In Fig. 2.7(b), (c) and (d), we see that the accuracies of the AR-

LiNGAM are substantially lower than those of our CSVAR method, in the cases

when the assumptions of non-Gaussianity and acyclicity are not met. Accordingly,

the applicability of the AR-LiNGAM approach is limited to the non-Gaussian and

acyclic cases, while our proposed CSVAR modeling is widely applicable to the con-

tinuous time linear Markov system as far as the system is stable and controllable.

2.4.4 Performance evaluation by using real world data

In this section, we present the application of the CSVAR approach to a real world

experimental data to evaluate its practicality. In our study, we used reactor noise

time series measured in an impulse fast neutron research reactor named IBR-2 at

Joint Institute of Nuclear Research in Dubna, Russia (Pepyolyshev, 1988). This

reactor has a unique structure. It uses rotating main and additional neutron re-

flectors driven by motors for power pulse initiation. They reflect the generated

neutrons back to the core, when they approach to the reactor core. This increases

the number of neutrons and activates the fission chain process in the reactor core.

That occurs in a very short period and produces power pulses, since both reflectors

rotate very fast. Also, according to specifications of the reactor design, the effect

of the neutron reflection of the main neutron reflector is almost four times bigger

than that of additional neutron reflector.

We analyzed the time series of the peak values of the power pulses, Q, axial

deviations of the main neutron reflector, XQ, and that of the additional neutron

reflector, XA, measured during the stable reactor operation. The axial deviations of
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Figure 2.8: The outline of IBR-2 impulse fast neutron reactor.

the reflectors are their angular deviation from the vertical central line of the reactor

core. This time series contains 8192 time step measurements. Every variable of the

data set has been normalized to give a zero mean and a unit standard deviation.

Sampling frequency of the time series data is equal to the frequency of the pulse

operation of IBR-2, which is 5 Hz (Pepyolyshev, 1988).

It is known that the relations between the heat removal from the core and the

negative feedback effect of core temperature to power generation is approximately

represented by the second order delay process. Also the sinusoid impact of pe-

riodically rotating reflectors is approximated by the second order delay process.

Accordingly, the dynamics of this reactor can be approximated by DVAR(2). After

the DVAR(2) estimation by the Maximum Likelihood method, we further calcu-

lated its SVAR and CVAR parameters using the CSVAR approach. The results are

presented in Eq.(2.19)-(2.25).

Equation (2.19) shows the parameter matrix Ψ0 of the SVAR model that rep-
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resents the fast effects among variables, i.e., the effects which propagate within

less than a sampling period. We see the significant values of the (1, 2) and(1, 3)

elements of the matrix, which correspond to the influence of the main neutron re-

flector’s axial deviation, XQ, on the peak values of the power pulses, Q, and to the

influence of XA on Q, respectively. Also, the ratio of these two numbers is close

to four, which coincides with the ratio of both reflectors’ efficiency on the neutron

reflection. Further, we see that the other elements of Ψ0 are relatively small, which

means that there is no impact from the power output to deviations of both neutron

reflectors, and no influence between the reflectors. This result corresponds to the

system dynamics of IBR-2 reactor, where both reflectors initiate the power pulse

and the rotation of the reflectors is independently driven by motors, i.e., it doesn’t

depend on the reactor power.

Ψ0 =

Q XQ XA⎡
⎢⎢⎣

1.09 11.79 2.72

0.60 −0.86 0.10

−0.53 0.53 −1.11

⎤
⎥⎥⎦

Q

XQ

XA

.
(2.19)

Equation (2.20) shows the matrix Ψ1 of the SVAR model which represents the

delayed effects among the variables. We see, that Ψ1 has the structure similar to

Ψ0. This implies that the impacts of the two neutron reflectors are also significant

in the first order delay effect. This result is also consistent with the aforementioned

physical background of the IBR-2 reactor.

Ψ1 =

Q XQ XA⎡
⎢⎢⎣

3.11 90.65 18.91

0.58 1.93 −4.49
2.80 −1.51 −1.78

⎤
⎥⎥⎦

Q

XQ

XA

.
(2.20)

We note, that Ψ2 in Eq.(2.21) is diagonal. That well corresponds to Eq.(2.11), from

which we have Ψp = (1)pΔt−pSp and Sp = I. Therefore, matrix Ψ2 reflects the fact

that we assume the objective system to be a continuous time, linear Markov system
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represented by a CVAR process in our CSVAR modeling.

Ψ2 =

Q XQ XA⎡
⎢⎢⎣
−25.00 0.00 0.00

0.00 −25.00 0.00

0.00 0.00 −25.00

⎤
⎥⎥⎦

Q

XQ

XA

.
(2.21)

If we look at the DVAR parameter matrices Φ1 and Φ2 that represent the delayed

effects between the variables, we see that they are not consistent with the dynamics

of IBR-2 reactor. Matrix Φ1 presented in Eq.(2.22) does not show very significant

magnitudes of the (1, 2) and (1, 3) elements in comparison with the other elements.

In addition, their values are negative, while the impacts of the neutron reflectors to

the power should be positive. The matrix Φ2 in Eq.(2.23) does not show very clear

structure, either. Such inconsistency occurs, since the fast and the delayed effects

are not decomposed in the DVAR model.

Φ1 =

Q XQ XA⎡
⎢⎢⎣
−0.021 −1.689 −0.492
−0.007 −0.118 0.066

−0.059 −0.158 −0.031

⎤
⎥⎥⎦

Q

XQ

XA

.
(2.22)

Φ2 =

Q XQ XA⎡
⎢⎢⎣

0.476 −0.654 −0.203
0.021 0.481 −0.062
0.055 −0.138 0.496

⎤
⎥⎥⎦

Q

XQ

XA

.
(2.23)

The proposed CSVAR approach also provides the CVAR model of the nuclear

reactor system. This model is canonical and gives us the information on relations

among the reactor’s processes in continuous time domain. The structure of the

CVAR parameter matrices presented in Eq.(2.24) and Eq.(2.25),

S0 =

Q XQ XA⎡
⎢⎢⎣

24.27 161.46 46.64

−2.21 26.60 0.57

−3.06 4.50 21.93

⎤
⎥⎥⎦

Q

XQ

XA

.
(2.24)
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S1 =

Q XQ XA⎡
⎢⎢⎣

9.38 −18.13 −3.78
−0.12 9.61 0.90

−0.56 0.30 10.36

⎤
⎥⎥⎦

Q

XQ

XA

.
(2.25)

is similar to that of the SVAR matrices. Both, S0 and S1, have significant values

in (1, 2) and (1, 3) elements, whose ratio is closed to four. However, these elements

are negative in S1, because of the negative feedback of the peak power. This effect

occurs as follows. Once the neutron population is increased in the core by the

reactor, the core temperature is increased through the activation of the nuclear

fission chain reaction. The increase of the temperature reduces the efficiency of

the individual nuclear fission reaction, and this suppresses the power generation.

These feedback processes are reflected by the negative signs of the main reflectors’

impacts in S1.

In short summary, the application of our CSVAR modeling gives us information

on the dependency structure of nuclear reactor processes. Particularly, it presents

the fast influences which propagate in the system during a sampling period. The

last became possible through the mathematical reconstruction of the SVAR and

the CVAR models out of the DVAR model.

2.5 Discussions

The CSVAR modeling approach presented in this study belongs to the framework

of canonical modeling of multivariate, linear Markov systems. There are few studies

on the canonical and/or causal modeling of the dynamic Markov systems from given

time series data in the statistical causal inference (Moneta et al., 2010; Hyvarinen

et al., 2008; Gottschalk, 2001; Pfaff & Kronberg, 2008; Kilian, 2011). The advan-

tage of the CSVAR approach is that CSVAR is based on very generic assumption

and does not require any specific domain knowledge. In this sense, the CSVAR

approach is more comparable with the study (Voortman, Dash, & Druzdzel, 2010),

which proposed a method to learn causal structures of the continuous time Markov

systems in the framework of the statistical causal inference. Though its basic frame-
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work and objective is different from our proposed method, it shares some similar

features with ours such that its model consists of higher order time difference vari-

ables and requires faithfulness of the objective system ensured by excluding its

equilibrium states. The latter feature seems to be associated with the requirement

of the controllability in our approach, since some parts of the system can stay at

the equilibrium unless the system is fully controllable by the random noises.

This methodology is applicable in many fields, e.g., reactor noise analysis, eco-

nomics, bioinformatics and so on. The canonical models derived by CSVAR ap-

proach can be used to analyze the observed system, even when background knowl-

edge is limited and its inside processes are unknown. The CVAR and the SVAR

models provided by this approach bijectively correspond to the objective system

dynamics and give us the important information on the system’s structural change.

Hence, our CSVAR approach enables us to empirically derive scientific models and

their associated laws in the system. Such models can be used to monitor and di-

agnose anomalies of an objective system through time series measurements. For

example, in the case of the IBR-2 reactor presented in Section 2.4.4, if we observe

some anomalous changes at (1, 2) and (1, 3) elements of the CVAR and the SVAR

matrices, we can infer that defects of the neutron reflectors and/or the neutron

generation process are occurring.

2.6 Conclusion

In this chapter, we achieved its all four objectives. First, we showed that the

DVAR model is canonical upon an assumption on the objective continuous time,

multivariate, linear Markov system. Second, we discovered mathematical relations

between the CVAR and the SVAR models and the DVAR model of the system.

Third, by applying our proposed CSVAR modeling, we accurately derived a canon-

ical representation of an objective system behind a given time series data set under

a generic assumption which does not limit its applicability when the system is well

approximated by a continuous time, multivariate, linear Markov system. Finally, we

demonstrated the applicability and the accuracy of the CSVAR modeling through

some numerical experiments using both artificial and real world data, where it



35

showed a good performance.

We conclude that the CSVAR modeling provides a highly generic methodology

to empirically derive a unique model which reflects some elementary rules governing

the objective system. Furthermore, the models derived by our approach can help

us to improve or discover new knowledge on the system.

However, unless the objective system is described by AR processes, the CVAR

and SVAR models derived by CSVAR approach only approximately describe a con-

tinuous time linear Markov system. To overcome this issue, in the next chapter, we

will develop more advanced modeling approach to derive the CARMA and SARMA

models that are exact canonical representations of the system.

2.7 Appendix

2.7.1 The proof of Lemma 2.

Proof. Because of the controllability of the system, the CVAR model of Eq.(2.6)

has its controllable canonical form of a state space model (Brockwell & Davis, 1991;

Stamer et al., 1996) as follows.

dXc(t)/dt = AcXc(t) + BcW (t), (2.26)

Y (t) = CT
c Xc(t),

whereXc(t) is a dp-dimensional state variable vectorXc(t) = [x
(0)
c (t)T . . . x

(p−1)
c (t)T ]T ,

which is a concatenation of the m-th time derivative of a d-dimensional state vari-

able vector xc(t)(= x
(0)
c (t)), m = 0, . . . , p − 1. The dp × dp matrix Ac, dp × d

matrices Bc and Cc are given as follows.

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I

S0 S1 S2 . . . Sp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bc = [ 0 0 . . . 0 I ]T and Cc = [ I 0 . . . 0 ]T ,
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where Sm,m = 0, . . . , p − 1 are given in Eq. (2.6). When the system is stable, all

eigenvalues of the system matrix in the state space model, i.e., the solutions z of

det|∑p
m=0 Smz

−m| = 0, have negative real parts (Brockwell & Davis, 1991; Stamer

et al., 1996). This implies that det|∑p
m=0 SmΔt−m| �= 0, since Δt > 0. Thus,∑p

m=0 SmΔt−m is a regular matrix. �

2.7.2 The proof of Lemma 2

Proof. If the mean of W (2)(t) over time, Et[W
(2)(t)], is nonzero, W (t) does not

have the zero mean, and is not stable. This is contradictory to Assumption 1. Thus,

Et[W
(2)(t)] = 0. Take the second time derivatives of Eq.(2.26) as

X(3)
c (t) = AcX

(2)
c (t)/dt+BcW (t)(2)(t),

Y (2)(t) = CT
c X

(2)
c (t).

X
(2)
c (t) is analytically solved as follows.

X(2)
c (t) = exp(Act)X

(2)
c (0) +

∫ t

0

exp(Acτ)BcW
(2)(τ)dτ.

Because this system is stable,

Et[Y
(2)(t)] = CT

c Et[X
(2)
c (t)] = CT

c Et

[∫ t

0

exp(Acτ)BcW
(2)(τ)dτ

]

= CT
c

∫ t

0

exp(Acτ)BcEt[W
(2)(τ)]dτ = 0.

Similarly, Et[Y
(m+1)(t)] = 0 for all m = 1, . . . , p.

The application of the backward higher order finite difference, Eq.(2.7), to each

time derivative term in the CVAR model, Eq.(2.6), has the following approximation

error Err(t), since its application to F (m)(t) has the error of O(F (m+1)(t)Δt).

Err(t) =

p∑
m=1

αmY
(m+1)(t)Δt+

q∑
m=1

βmW
(m+1)(t)Δt,

where αm and βm are nonzero constants. Accordingly, the following holds.

Et[Err(t)] =

p∑
m=1

αmEt[Y
(m+1)(t)]Δt+

q∑
m=1

βmEt[W
(m+1)(t)]Δt = 0.

Thus, the approximation error is unbiased. �
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2.7.3 The proof of Lemma 3.

Proof. By substituting Eq.(2.26) into Eq.(2.6), we obtain the following.

1

Δtp

p∑
j=0

(−1)j p!

(p− j)!j!
Y (t− jΔt) =

p−1∑
m=0

Sm
1

Δtm

m∑
j=0

(−1)j m!

(m− j)!j!
Y (t− jΔt) +W (t). (2.27)

The terms of Y (t−jΔt) are summarized with Sp = −I and rewritten by permuting

the summations on m and j.

p∑
m=0

SmΔt−m
m∑
j=0

(−1)j m!

(m− j)!j!
Y (t− jΔt) =

p∑
j=0

(−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−mY (t− jΔt).

By substituting these relationships into Eq.(2.27), we obtain the following.

−
p∑

m=0

SmΔt−mY (t) =

p∑
j=1

(−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−mY (t− jΔt),

where Sp = −I and R0 = I. By Assumption 1 and Lemma 1,
∑p

m=0 SmΔt−m is a

regular matrix. Then, by multiplying both sides of the equation by−(∑p
m=0 SmΔt−m)−1,

we obtain Eq.(2.18). �

2.7.4 The proof of Theorem 1.

Proof. Eq.2.11 becomes as follows in case of j = p − 1 with Sp = −I defined in

Assumption 1.

Ψp−1 = (−1)p−1Δt−p+1Sp−1 − (−1)p−1Δt-p
p!

(p-1)!1!
I.

Therefore,

Sp−1Δt−p+1 = (−1)p−1Ψp−1 +Δt−ppI. (2.28)

Let’s assume that Eq.2.13 is an expression for general case 1 ≤ m ≤ p − 1, we

rewrite it as follows.

SmΔt-m = (−1)m
p−1∑
j=m

j!

(j-m)!m!
Ψj + (−1)m+p−1Δt-p

p!

(p-m)!m!
I. (2.29)
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Note that Eq.2.29 subsumes Eq.2.28. If we write Eq.2.11 for the case j = p, we get

Ψp = (−1)p−1Δt−pI. (2.30)

Then we rewrite Eq.2.29 as follows.

SmΔt-m = (−1)m
p∑

j=m

j!

(j-m)!m!
Ψj. (2.31)

We rewrite Eq.2.11 for the case j = k − 1 by substituting Eq.2.31 as follows.

Ψk−1 = (−1)k−1Sk−1Δt-(k-1) + (−1)k−1
p∑

m=k

m!

(m-(k-1))!(k-1)!
(−1)m

p∑
j=m

j!

(j-m)!m!
Ψj.

By changing the order of the double summation in the last term,

(−1)k−1Sk−1Δt-(k-1) = Ψk−1− (−1)k−1
p∑

j=k

Ψj

j∑
m=k

(−1)m m!

(m-(k-1))!(k-1)!

j!

(j-m)!m!
I,

is obtained. Then, we further obtain the following expression.

(−1)k−1Sk−1Δt-(k-1) = Ψk−1−
p∑

j=k

Ψj
j!

(k-1)!(j-k + 1)!

(
j−k+1∑
u=0

(−1)u (j-k + 1)!

(u)!(j-u-k + 1)!
I − I

)
,

where m = u + k − 1. The summation over u is zero based on binomial theorem,

and further rewriting k−1 in the formula by m−1, we know that Eq.2.31 holds for

m−1. By induction, Eq.2.31 holds for 1 ≤ m ≤ p−1. Furthermore, by substituting

Eq.2.30 into Eq.2.31, we obtain Eq.2.29 and thus Eq.2.13 for 1 ≤ m ≤ p − 1. To

obtain Eq.2.12, we substitute Sp = −I into Eq.2.10.

I −Ψ0 = −S0 −
p-1∑
m=1

SmΔt−m +Δt−pI.

By substituting Eq.2.30 into this equation, we obtain next formula.

I −Ψ0 = (−1)p−1ΔtpΨp

(
Δt−pI −

p-1∑
m=1

SmΔt−m − S0

)
. (2.32)

From Eq.2.30, Ψp is regular. Then, we reformulate Eq.2.32 as follows,

Δt−pI −
p-1∑
m=1

SmΔt−m − S0 = (−1)p−1Δt−pΨ−1p (I −Ψ0) .
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Thus,

S0 = −
p-1∑
m=1

SmΔt−m +Δt−pI + (−1)pΔt−pΨ−1p (I −Ψ0) .

Substituting Eq.2.29 inside the second term of this formula, we obtain Eq.2.12.

�

2.7.5 The proof of Theorem 2.

Proof. By substituting Eq.2.29 into
∑p−1

m=1 SmΔt−m, we obtain the following rela-

tion.

p-1∑
m=1

SmΔt−m =

p-1∑
m=1

(−1)m
p−1∑
j=m

j!

(j-m)!m!
Ψj +Δt−p

p-1∑
m=1

(−1)p+m−1 p!

(p-m)!m!
I.

(2.33)

To derive Ψ0, we rewrite Eq.2.10 by substituting Sp = −I in Assumption 1 as

follows:

Ψ0 = I −Δt−pI +
p-1∑
m=1

SmΔt−m + S0. (2.34)

By substituting Eq.2.12 and Eq.2.33 into this equation, we obtain the following.

Ψ0 = I −Δt−pI +
p-1∑
m=1

(−1)m
p−1∑
j=m

j!

(j-m)!m!
Ψj +Δt-p

p-1∑
m=1

(−1)p+m−1 p!

(p-m)!m!
I

+Δt−pI −
p−1∑
m=1

{
(−1)m

p−1∑
j=m

j!

(j-m)!m!
Ψj + (−1)p+m−1Δt-p

p!

(p-m)!m!
I

}

+(−1)pΔt-pΨ-1
p (I−Ψ0) = I + (−1)pΔt-pΨ-1

p (I−Ψ0). (2.35)

From Eq.2.4a, we see that Φp = (I − Ψ0)
−1Ψp, where I − Ψ0 is always regular

by Assumption 1 and Eq.2.10. Since Ψp is regular by Eq.2.30, Φp is also regular.

Thus, we write as Φ−1p = Ψ−1p (I − Ψ0). By substituting it into Eq.2.35, we derive

the following expression.

Ψ0 = I + (−1)pΔt−pΦ−1p , (2.36)

and thus we obtain Eq.2.14. �
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Chapter 3

CSARMA modeling approach

3.1 Introduction

As mentioned in previous chapter, many real world systems observed in the discrete

time domain are often analyzed by the DVAR model (Brockwell & Davis, 1991).

However, in many cases, the DVAR models with finite orders are approximations

of discrete time, multivariate, linear Markov systems, while the multivariate dis-

crete time Autoregressive Moving-Average (DARMA) models are their exact no-

tions. Therefore, if the objective system that has produced a given data set is well

approximated by a multivariate linear Markov process, we should identify its struc-

ture and parameters using DARMA modeling. Accordingly, the DARMA modeling

has been widely used in many analyses, e.g., biology (Perrott & Cohen, 1996),

medicine (Gannabathula, 1988), finance (Shittu & Yaya, 2009), economy (Chen et

al., 2010), physics (Tran, 2003), engineering (Zhao et al., 2007) and energy (Zhang

& Xu, 2010). However, the DARMA model is not canonical, and does not have a

bijective correspondence with the system dynamics (Gottschalk, 2001; Moneta et

al., 2010; Kawahara et al., 2011). This limitation makes it difficult to identify the

structure and parameters of the objective system.

As a remedy to this difficulty, a structural ARMA (SARMA) model has been

studied. It is known to have a bijective correspondence with the dynamics of a

multivariate linear Markov system in a discrete time domain (Gottschalk, 2001;

Moneta et al., 2010; Kawahara et al., 2011). Since the estimation of the DVAR

model is much easier than of the DARMA model, most studies in this area have

concentrated on the SVAR models, which belong to a subclass of the SARMA mod-

els. Only a small number of studies have investigated SARMA modeling, but they
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require some strong assumptions for model identification, such as acyclicity of an

objective system and non-Gaussianity of its external noise (Kawahara et al., 2011),

and system representation by a small number of parameters and partial indepen-

dence of the noise (Mainassara & Francq, 2009). However, by introducing these

assumptions and focusing on some special systems, we have significantly limited

the applicability of the SARMA models.

On the other hand, linear differential equations provide a standard representa-

tion of a generic real world system, which can be well approximated by a continu-

ous time, multivariate, linear Markov process. A CARMA model consists of such

higher order differential equations, and is known to bijectively correspond to the

system dynamics (Brockwell & Davis, 1991; Stamer et al., 1996). Some past stud-

ies characterized the relationship between the CARMA and the DARMA processes

under an equivalence measure that the latter generates the time series distribution

identical with the former’s (Priestley, 1981; Soderstrom, 1991; Brockwell & Pe-

ter, 1995; Brockwell & Brockwell, 1999). Particularly, the time series distribution

generated by a given stable CARMA(p,q) (q < p) process is known to be also gen-

erated by a DARMA(p,p− 1) process (Priestley, 1981). Based on this equivalence,

many researchers studied methods to estimate a CARMA model under time series

data observed from a continuous time linear Markov process in a discrete time do-

main (Soderstrom, 1991; Larsson et al., 2006; Mahata & Fu, 2007; Tomasson, 2011;

Chambers & Thornton, 2012). However, any closed-form expression to relate the

CARMA(p,q) and the DARMA(p,p−1) models have not been presented under this

equivalence measure. Moreover, the uniqueness of the CARMA(p,q) process gen-

erating the given time series data sampled at the discrete time steps and thus the

uniqueness of the CARMA(p,q) model corresponding to the DARMA(p,p−1) model

of the time series data have not been generally clarified yet in these studies. This

situation does not necessarily satisfy the needs of scientific and engineering fields

including the aforementioned analyses. The identification and the understanding

of the objective system are difficult under the ambiguity of the CARMA model for

the data given in the discrete time domain. In addition, scientists and engineers

cannot sufficiently use their background knowledge across the continuous and dis-

crete time domains without knowing some explicit and simple expression relating
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the CARMA and the DARMA models. Particularly, this is required in many cases

that they want to understand the systems based on the system structures appearing

in the CARMA and the SARMA models.

To address these issues, we target the following four objectives in this chapter.

(3.1) Using some generic assumptions of an objective system and introducing some

generic approximations to its modeling, we show that the DARMA model of

the system has a bijective correspondence with the system dynamics.

(3.2) Under the assumptions and the approximations in (3.3), we clarify the mathe-

matical bijective relationships in closed-form expressions between the CARMA

model, the SARMA model and the DARMA model of the system.

(3.3) We further propose a new modeling approach to derive the CARMA and the

SARMA models from the DARMA model that has been estimated using time

series data observed from the system and given orders (p,q) of the system.

(3.4) We demonstrate the performance of our proposed approach through some

numerical experiments using both artificial and real world data.

Our analysis shows that the DARMA model having its correct system orders (p,q)

bijectively corresponds to the dynamics of the stable, continuous time, multivariate,

linear Markov system under its controllability and observability across continuous

and discrete time domains, and the first order finite difference approximation. We

also show that the approximation ensures the statistically unbiased estimator with

its consistency under an appropriately small sampling interval. The stability, the

controllability and the observability of the system with some fine sampling steps are

also required by the DARMA modeling of the continuous time, multivariate, linear

Markov system (Brockwell & Davis, 1991; Soderstrom, 1991). Accordingly, the

CARMA and the SARMA models can be reconstructed from the DARMA model

without imposing strong additional limitations.

This chapter is structured as follows. Section 3.2 discusses some past studies

related to our work, and clarifies some technical issues that must be addressed.

A discussion on the relations of the ARMA models, assumptions required for our
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modeling, and their characterizations are provided in Section 3.3. Our theoreti-

cal analyses and proposed approach that address the objectives (3.1), (3.2) and

(3.3) are described in Section 3.4. A basic performance evaluation of our proposed

approach, its comparison with an existing SARMA modeling technique, and a prac-

tical demonstration using a real world application are shown in Sections 3.5 and

3.6 for the objective (3.4).

3.2 Related work

Similar to the section 2.2.1, here, we first explain the SARMA model and the limita-

tion of its past modeling approaches. Then, we further explain the CARMA model

together with the finite difference approximation to transform it into a discrete time

domain.

3.2.1 SARMA modeling

Given a stable, multivariate, liner Markov system that is controllable and observ-

able in a discrete time domain, take Y (t) to be a d-dimensional variable vector

observed from the system at a time, t. Then, we can represent the system using the

DARMA(p,q) model with a discrete time interval, Δt (Brockwell & Davis, 1991),

Y (t) =

p∑
j=1

ΦjY (t− jΔt) + U(t) +

q∑
j=1

ΘjU(t− jΔt). (3.1)

U(t) is a d-dimensional stable noise vector having a zero mean and a full rank

covariance, and is unobserved and i.i.d. in a discrete time domain. Φj, j = 1, . . . , p

and Θj, j = 1, . . . , q (q < p) are the respective d × d AR and MA coefficient

matrices. This model contains some ambiguity so that it can represent infinitely

many systems, since Eq.(3.1) is equivalent to

Y (t) =

p∑
j=1

ΦjY (t− jΔt) +QV (t) +

q∑
j=1

ΘjQV (t− jΔt),

where Q is a d× d regular matrix and V (t) = Q−1U(t). This formula can be easily

used to show that Y (t) has infinitely various impulse responses for V (t), depending
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on the choice of Q (Gottschalk, 2001; Moneta et al., 2010; Kawahara et al., 2011).

In other words, for a given observed time series, Y (t), the infinite number of systems

that could generate Y (t) are represented by a unique DARMA model. Thus, we

need to know a unique combination of Q and V (t) that bijectively corresponds to

the objective system dynamics, so that we can identify it. This formula can be

rewritten

Y (t) =

p∑
j=0

ΨjY (t− jΔt) + V (t) +

q∑
j=1

ΩjV (t− jΔt), (3.2)

where Ψ0 = I − Q−1, Ψj = Q−1Φj, and Ωj = Q−1ΘjQ (Kawahara et al., 2011).

Using a unique combination of Q and V (t), Eq.(3.2) is called a structural ARMA

(SARMA) model (Gottschalk, 2001; Moneta et al., 2010; Kawahara et al., 2011).

This formula shows that the matrix Q is reflected in a direct dependency struc-

ture Ψ0 among the observed variables in Y (t), and is also reflected in higher order

terms in both the AR and MA parts. However, Q is not reproduced from the

DARMA model, because it is integrated in Φj and Θj in indecomposable forms as

Φj = QΨj and Θj = QΩjQ
−1. Accordingly, we need to provide Q using extra infor-

mation to uniquely derive the SARMA model from the DARMA model. A natural

idea to choose Q is to make the noise in V (t) mutually uncorrelated by introducing

a constraint QQT = Et(U(t)U(t)T ). However, this choice of Q is not unique. For

example, for any orthonormal matrix O, we have QO(QO)T = QOOTQT = QQT .

Then, if Q is a solution, so is QO (Moneta et al., 2011).

As previously discussed, many past studies on the identification of structural

models are limited to structural vector autoregressive (SVAR) models that omit

the last MA term in Eq.(3.2) (Gottschalk, 2001; Kilian, 2011; Hyvarinen et al.,

2008; Lacerda et al., 2008). However, a more generic SARMA model has not been

extensively researched. (Mainassara & Francq, 2009) assumed the partial inde-

pendence of the external noises, and used the coefficient matrices of the SARMA

model represented by a small number of parameters based on our domain knowl-

edge. (Kawahara et al., 2011) proposed an approach for SARMA modeling using

such assumptions as the acyclicity of the direct dependency among the variables in

Y (t), and the non-Gaussianity of external noises in V (t), in addition to the typical

assumption that all noises in V (t) are mutually and temporally independent.
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Most of the assumptions and the constraints used by these past approaches

require much domain knowledge of the objective system. This requirement signifi-

cantly limits the applicability of these approaches, because such domain knowledge

is not readily available in many real-world applications.

3.2.2 CARMA modeling and finite difference method

Given a stable, multivariate, linear Markov system that is controllable and observ-

able in a continuous time domain, it can be represented by the following continuous

time ARMA (CARMA) model, consisting of continuous time higher order differ-

ential equations with noise terms (Brockwell & Davis, 1991; Stamer et al., 1996;

Chambers & Thornton, 2012).

Y (p)(t) =

p−1∑
m=0

SmY
(m)(t) +W (0)(t) +

q∑
m=1

RmW
(m)(t), (3.3)

whereW (t) is a d-dimensional stable noise vector having a zero mean and a full rank

covariance, and is unobserved and i.i.d. in a continuous time domain1. Y (m)(t) and

W (m)(t) are the m-th time derivatives of Y (t) (= Y (0)(t)) and W (t) (= W (0)(t)).

Sm, m = 0, . . . , p − 1 and Rm, m = 1, . . . , q (q < p) are d × d AR and MA

coefficient matrices. This CARMA model is known to have a bijective relation with

a controllable canonical form of a linear state space model which is also bijective

with the system dynamics (Brockwell & Davis, 1991; Stamer et al., 1996). In other

words, a CARMA model bijectively corresponds to the system dynamics. Hence,

estimation of the CARMA model from a time series given in a discrete time domain

and derivation of the CARMA model from a given DARMA model will be powerful

techniques to analyze the dynamics underlying the data.

As mentioned in Section 3.1, the time series distribution generated by a sta-

ble CARMA(p,q) (q < p) process is also generated by a DARMA(p,p − 1) pro-

cess (Priestley, 1981). But, the uniqueness of the CARMA(p,q) model correspond-

1W (t) is equal to σdE(t)/dt in the standard representation of the CARMA model, where E(t)

and σ are a normalized external noise vector and its scaling factor, respectively. We use W (t) for

its consistency with the noise vectors in the DARMA model as shown in (Chambers & Thornton,

2012).
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ing to a given DARMA(p,p−1) model of the continuous time system have not been

clarified under this equivalence measure2, and any closed-form expression to relate

the two models have not been presented. As an efficient remedy to this limitation,

we consider to use finite difference approximation to explicitly relate the CARMA

model with the DARMA model.

Here, we apply backward Euler formula upto the m-th derivative shown in

Eq. 2.7, which is known to be consistent (Levy & Lessman, 1992; LeVeque, 2007).

Therefore, the CARMA model of a stable, continuous time, linear Markov system

having its given orders (p,q) can be directly transformed to a DARMA model with

its convergent error using a consistent finite difference scheme.

However, to our best knowledge, the generic relationships between the CARMA,

the SARMA and the DARMA models have not been extensively investigated based

on this approximation.

3.3 Preliminary discussion and analysis

In this section, we first discuss the relationships between the CARMA, the SARMA

and the DARMA models. Second, we state our assumptions, and characterize

them for our CARMA and SARMA modeling. These provide bases for our detailed

analysis and proposal in Section 3.4.

3.3.1 Relationships of ARMA models

A stable, multivariate linear Markov system, which is controllable and observable

in both continuous and discrete time domains, can be represented by the SARMA

model, Eq.(3.2), and the CARMA model, Eq.(3.3). These are known to bijectively

correspond to the system dynamics, respectively, as explained in Section 3.2. Ac-

cordingly, the SARMA and the CARMA models have a bijective correspondence.

2Many studies investigated the embedding problem of an arbitrary given DARMA model. It is

to assess the existence of a CARMA model generating time series sharing an identical distribution

with that generated by the DARMA model (Brockwell & Peter, 1995; Brockwell & Brockwell,

1999). Our issue here is not this problem, since we always limit the DARMA model to the one

having some corresponding CARMA model.
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To further assess this relationship, we represent the DARMA model, Eq.(3.1), and

the CARMA model, Eq.(3.3), in the controllable canonical forms of their state

space models (Brockwell & Davis, 1991). The DARMA model is represented as

Xd(t) = AdXd(t−Δt) + BdU(t), (3.4)

Y (t) = CT
d Xd(t),

whereXd(t) is a dp-dimensional state variable vectorXd(t) = [xd(t−(p−1)Δt)T . . . xd(t)
T ]T ,

which is a concatenation of the (j − 1)-th time delay of a d-dimensional state vari-

able vector xd(t), j = 1, . . . , p. The dp× dp matrix Ad, dp× d matrices Bd and Cd

are given as follows.

Ad =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I

Φp Φp−1 Φp−3 . . . Φ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bd = [ 0 . . . 0 I ]T and Cd = [ 0 . . . 0 Θq . . . Θ1 I ]T ,

where Φj, j = 1, . . . , p and Θj, j = 1, . . . , q (q < p) are given in Eq. (3.1). Similarly,

the CARMA model is represented as

dXc(t)/dt = AcXc(t) + BcW (t), (3.5)

Y (t) = CT
c Xc(t),

whereXc(t) is a dp-dimensional state variable vectorXc(t) = [x
(0)
c (t)T . . . x

(p−1)
c (t)T ]T ,

which is a concatenation of the m-th time derivative of a d-dimensional state vari-

able vector xc(t)(= x
(0)
c (t)), m = 0, . . . , p − 1. The dp × dp matrix Ac, dp × d

matrices Bc and Cc are given as follows.

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I

S0 S1 S2 . . . Sp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Bc = [ 0 0 . . . 0 I ]T and Cc = [ I R1 R2 . . . Rq 0 . . . 0 ]T ,

where Sm,m = 0, . . . , p − 1 and Rm,m = 1, . . . , q (q < p) are given in Eq. (3.3).

Assuming that the change of W (t) for Δt is negligible, we analytically obtain the

following discrete time state space model of the system from Eq.(3.5) (Brockwell &

Davis, 1991).

Xc(t) = exp(AΔt)Xc(t−Δt) + A−1c (exp(AcΔt)− I)BcW (t), (3.6)

Y (t) = CT
c Xc(t),

where exp(AΔt) = I + AΔt + A2Δt2/2 + · · · = ∑∞
k=0 A

kΔtk/k!. We provide the

following lemma using these state space representations.

Lemma 4. If the change of W (t) over the period Δt is negligible, there exists a d×d

regular matrix P to relate U(t) in Eq.(3.1) and W (t) in Eq.(3.3) as U(t) = PW (t).

Proof. Because the CARMA and the DARMA models represent an identical sys-

tem, the two discrete time state space models, Eq.(3.4) and Eq.(3.6), also represent

the identical system under the negligibly slow change of W (t) over Δt. From the

stability of the system, all eigenvalues of Ac have finite negative real parts. Hence,

exp(AcΔt) and its corresponding Ad are regular. This implies the existence of a

dp× dp regular matrix T to transform Eq.(3.6) to Eq.(3.4) as

Xd(t) = TXc(t), Ad = T exp(AcΔt)T−1, Cd = CcT
−1, and

BdU(t) = TA−1c (exp(AcΔt)− I)BcW (t).

By the definitions of Bc and Bd, the last formula shows

TA−1c (exp(AcΔt)− I) =

⎡
⎢⎢⎢⎢⎢⎣
∗ · · · ∗ 0
...

. . . ∗ ...

∗ · · · ∗ 0

∗ · · · ∗ P

⎤
⎥⎥⎥⎥⎥⎦ ,

where ∗ and 0 are arbitrary d× d blocks and d× d zero blocks, respectively. P is a

d × d matrix to relate U(t) and W (t) as U(t) = PW (t). Because of the regularity

of Ac and T , TA−1c (exp(AcΔt)− I) is also regular under Δt > 0. This implies the
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diagonal block P is a regular matrix, since all elements upper than P are zeros in

TA−1c (exp(AcΔt)− I). �

Lemma 4 indicates that P is defined by the coefficient matrices of the CARMA

and the DARMA models but not the statistical features of U(t) and W (t). As we

will see in Section 3.4, such a regular matrix P uniquly exists under the first order

finite difference approximation. Here, we take P as the matrix Q to match V (t) in

Eq.(3.2) to W (t) in Eq.(3.3) and to make the SARMA model represent the system

identical with the CARMA model. In the rest of this chapter, we represent Q and

V (t) in the SARMA model by P and W (t), respectively.

As discussed in Section 3.2.1, the matrices Φj and Θj in the DARMA model,

Eq.(3.1), are derived from the matrices Ψj and Ωj in the SARMA model, Eq.(3.2),

using P such that Φj = PΨj and Θj = PΩjP
−1. Also, P has the unique re-

lation P = (I − Ψ0)
−1 with Ψ0. Therefore, these matrices have the following

relations (Kawahara et al., 2011).

Φj = (I −Ψ0)
−1Ψj, (3.7a)

Ψj = (I −Ψ0)Φj, (3.7b)

Θj = (I −Ψ0)
−1Ωj(I −Ψ0), (3.8a)

Ωj = (I −Ψ0)Θj(I −Ψ0)
−1, (3.8b)

U(t) = (I −Ψ0)
−1W (t), (3.9a)

W (t) = (I −Ψ0)U(t). (3.9b)

These formulae characterize the relationship between the DARMA model and the

SARMA model as follows.

Lemma 5. There exist infinitely many SARMA models that deduce a given DARMA

model. However, there is a unique combination of a DARMA model and a regular

matrix P that a given SARMA model deduces.

Proof. A given combination of Φj, j = 1, . . . , p and Θj, j = 1, . . . , q, can be deduced

using various combinations of Ψj, j = 1, . . . , p, Ωj, j = 1, . . . , q and a regular matrix

P = (I − Ψ0)
−1 through Eq.(3.7a) and (3.8a). Thus, there exist infinitely many
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SARMA models that deduce the given DARMA model. On the other hand, given a

combination of Ψ0, Ψj, j = 1, . . . , p and Ωj, j = 1, . . . , q, P is uniquely provided by

P = (I−Ψ0)
−1, and a unique combination of Φj, j = 1, . . . , p and Θj, j = 1, . . . , q is

provided through Eq.(3.7a) and (3.8a). Thus, a unique combination of the DARMA

model and the regular matrix P is deduced from a given SARMA model. �

As we mentioned earlier, the SARMA and the CARMA models of an objective

system have a bijective relation. In contrast, Lemma 5 indicates that the corre-

spondence between the SARMA and the DARMA models is surjective. However,

in Section 3.4, we will show that their correspondence is also bijective under the

first order finite difference approximation and the aforementioned selection of P .

3.3.2 Assumptions for modeling and their characterization

In this subsection, we explicitly state our assumptions and provide their charac-

terization required by our modeling principles and algorithm. The following is an

explicit restatement of our assumption used in the previous sections.

Assumption 3. Our objective system is a stable, continuous time, multivariate,

linear Markov system that is controllable and observable in both continuous and

discrete time domains. It has stable external noise components that have a zero

mean and a full rank covariance and that is i.i.d. over time.

Under this assumption, we obtain important properties of the CARMA model and

the sampling interval Δt as shown in the following two lemmas.

Lemma 6. Given the CARMA model, Eq.(3.3), with a positive real constant Δt >

0, that represents the objective system under Assumtion 3,
∑p

m=0 SmΔt−m is a

regular matrix where Sp = −I.
Proof. The same as for Lemma 1. �

Lemma 7. Given the CARMA model, Eq.(3.3), with a positive real constant Δt >

0, that represents the objective system under Assumtion 3,
∑q

m=0 RmΔt−m is a

regular matrix where R0 = I.

Proof. The proof is presented in Appendix 3.9.1. �
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Under Assumption 3, the use of Eq.(2.7) for the first order finite difference

approximation ensures the unbiased estimator of the CARMA modeling by the

following lemma.

Lemma 8. The finite difference approximation of the CARMA model using Eq.(2.7)

is unbiased under Assumption 3.

Proof. Is the same as for Lemma 2. �

Our proposed approach further requires the following second assumption.

Assumption 4. Let λj, λRj, λIj be an eigenvalue of the matrix Ac in Eq.(3.5), its

real part, and its imaginary part, respectively, for j = 1, . . . , d. Then, define the

following maximum values,

|λ|max = max
j=1,...,d

√
λ2
Rj + λ2

Ij and |λI |max = max
j=1,...,d

|λIj|.

In addition, let ω be the angle frequency of the highest frequency component in

W (t). Then, we assume that the sampling interval Δt > 0 satisfies the following

three conditions.

(a) Δt < 1/|λ|max, (b) Δt < π/|λI |max and (c) Δt < π/ω.

The condition (a) Δt < 1/|λ|max is to ensure the sufficient consistency of our

CARMA and the SARMA modeling by the following lemma.

Lemma 9. If we apply the finite difference approximation of Euler formula to the

controllable canonical form of a given continuous time state space model, Eq.(3.5),

the approximation errors of the coefficients in the first and the second terms of its

l.h.s. are respectively bounded by

exp(|λ|maxΔt)− 1− |λ|maxΔt and
exp(|λ|maxΔt)− 1− |λ|maxΔt

|λ|max

.

Proof. The proof is presented in Appendix 3.9.2. �
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The error bound of the coefficients relative to exp(|λ|maxΔt) in the first term is

26.4%, if Δt � 1/|λ|max following the first constraint. That relative to (exp(|λ|maxΔt)−
1)/|λ|max in the second term is 41.8%. If we choose smaller Δt, the error bounds

rapidly converge to zero. For instance, the error bounds are only 1.8% and 9.7%,

respectively, when Δt � 0.2/|λ|max which is the five times finer sampling interval.

The application of Eq.(2.7) to the CARMA model is equivalent to applying Euler

formula to the controllable canonical form of its state space model, since Eq.(2.7) is

just a stack of Euler formula upto the higher order derivatives. Therefore, Lemma 9

ensures the consistency of the estimator approximated by Eq.(2.7). The conditions

(b) and (c) in Assumption 4 are from the well-known Nyquist theorem (Soderstrom,

1991; Mahata & Fu, 2007). The condition (c) has already been used in Lemma 4.

Though we do not usually know the exact eigenvalues of Ac and the component

frequency in W (t) before the modeling, the conditions in Assumption 4 are useful

to choose an appropriate Δt based on our background knowledge of the objective

system in many practical problems.

Because Assumption 33 and Assumption 4 (b), (c) enables the DARMAmodeling

that is unbiased and consistent under a large data set (Brockwell & Davis, 1991),

our approach also provides the CARMA and the SARMA modeling that is unbiased

and consistent under the large data set and a small sampling interval meeting with

Assumption 4 (a).

3.4 Proposed principle and algorithm

Sections 3.4.1, 3.4.2 and 3.4.3 address the objectives (3.1) and (3.2).We clarify

the generic mathematical relationships between the matrices of the CARMA, the

SARMA and the ARMA models, under Assumptions 3 and 4. The relationships

provide a theoretical basis for their modeling. A new modeling approach for contin-

uous time, multivariate, linear Markov systems is proposed in Section 3.4.4, which

satisfies the objective (3.3).

3More strictly speaking, ARMA modeling requires stability of its objective system, and the

state space model of minimum dimension corresponding to the ARMA model is necessarily con-

trollable and observable (Brockwell & Davis, 1991).
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3.4.1 Relationship of SARMA and DARMA models with

their CARMA model

We apply the backward higher order finite difference, Eq.(2.7), to every time deriva-

tive terms, Y (m)(t) and W (m)(t), in the CARMA model, Eq.(3.3), under Assump-

tions 3 and 4. Then, we obtain the following Lemma 10.

Lemma 10. Under Assumptions 2, 3 and 4, a discrete time approximation of a

CARMA model is represented as follows, where Sp = −I and R0 = I.

Y (t) = −
(

p∑
m=0

SmΔt−m
)−1 p∑

j=1

(−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−mY (t− jΔt)

−
(

p∑
m=0

SmΔt−m
)−1( q∑

m=0

RmΔt−m
)
W (t) (3.10)

−
(

p∑
m=0

SmΔt−m
)−1 q∑

j=1

(−1)j
q∑

m=j

m!

(m− j)!j!
RmΔt−mW (t− jΔt),

and

Y (t) =

⎡
⎣I +

(
q∑

m=0

RmΔt−m
)−1 p∑

m=0

SmΔt−m

⎤
⎦Y (t)

+

(
q∑

m=0

RmΔt−m
)−1 p∑

j=1

(−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−mY (t− jΔt)

+W (t) (3.11)

+

(
q∑

m=0

RmΔt−m
)−1 q∑

j=1

(−1)j
q∑

m=j

m!

(m− j)!j!
RmΔt−mW (t− jΔt).

Proof. The proof is presented in 3.9.3. �

We can see that Eq.(3.11) corresponds to the formula of the SARMA model in

Eq.(3.2). The p + q + 1 coefficient matrices in the SARMA model are uniquely

constrained by the p + q matrices, Sm, m = 0, . . . , p − 1 and Rm, m = 1, . . . , q, in

the original CARMA model, Eq.(3.3). By comparing Eq.(3.2) and Eq.(3.11), we

obtain the following representation of the coefficient matrices of a SARMA model
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by the coefficient matrices of a CARMA model.

Ψ0 = I +

(
q∑

m=0

RmΔt−m
)−1 p∑

m=0

SmΔt−m, (3.12)

Ψj = (−1)j
(

q∑
m=0

RmΔt−m
)−1 p∑

m=j

m!

(m− j)!j!
SmΔt−m, (3.13)

Ωj = (−1)j
(

q∑
m=0

RmΔt−m
)−1 q∑

m=j

m!

(m− j)!j!
RmΔt−m, (3.14)

where Sp = −I and R0 = I. For a given CARMA model, we can uniquely obtain a

SARMA model by these equations. Moreover, Eq.(3.10) represents the formula of

the DARMA model, Eq.(3.1), and the coefficient matrices of the DARMA model

include some information of Sm and Rm from the original CARMA model.

3.4.2 Derivation of the CARMA model from the SARMA

model

In the opposite way to Eq.(3.12), (3.13) and (3.14), we can now present the math-

ematical relationship that reproduces the CARMA model from its SARMA model

under the selection of P to share the external noise term W (t) between these two

models as discussed in Section 3.3.1. The subsequent sections show that this con-

straint uniquely determines Ψ0 of the SARMA model.

Theorem 3. Under Assumptions 2, 3 and 4, the coefficient matrices of the CARMA

model in Eq.(3.3) are represented by the coefficient matrices of the SARMA model

in Eq.(3.2) as follows, where Sp = −I and R0 = I.

S0 = Δt−pI −
p−1∑
m=1

⎧⎨
⎩(−1)m

(
I −

q∑
k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

)−1 p−1∑
j=m

j!

(j −m)!m!
Ψj

+(−1)p+m−1Δt−p
p!

(p−m)!m!
I

}
+ (−1)pΔt−pΨ−1p (I −Ψ0). (3.15)
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Sm =

(−1)mΔtm−p

⎧⎨
⎩Δtp

(
I −

q∑
k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

)−1 p−1∑
j=m

j!

(j −m)!m!
Ψj

+(−1)p−1 p!

(p−m)!m!
I

}
, (3.16)

where 1 ≤ m ≤ p− 1.

Rm =

(−1)mΔtm

(
I −

q∑
k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

)−1 q∑
j=m

j!

(j −m)!m!
Ωj, (3.17)

where 1 ≤ m ≤ q.

Proof. The proof is presented in 3.9.4. �

Eq.(3.12)–(3.17) indicate a bijective relationship between the CARMA and the

SARMA models as discussed in Section 3.3.1.

3.4.3 Derivation of the SARMA model from the DARMA

model

Next, we show the bijective correspondence of the DARMA model with system

dynamics under Assumptions 3 and 4. In the meantime, we provide a mathematical

relationship that constructs the SARMA model from its DARMA model.

Using Theorem 3, we can derive the following, which constructs Ψ0 from the

DARMA matrices.

Theorem 4. Under Assumptions 2, 3 and 4, the matrix Ψ0 is uniquely represented

by DARMA matrices as follows.

Ψ0 = I + (−1)p+1Δt−pΦ−1p

(
q∑

j=1

Θj

j∑
k=1

(−1)k j!

(j − k)!k!
− I

)
. (3.18)

Proof. The proof is presented in 3.9.5. �

Because I−Ψ0 is always regular by Lemma 6, 7 and Eq.(3.12), a unique SARMA

model is identified from the DARMA model through Eq.(3.7b), (3.8b) and (3.9b)
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under a given Ψ0. This fact, Theorem 4 and Lemma 5 indicate a bijective cor-

respondence between the SARMA model and its DARMA model. In conjunction

with Theorem 3, we can now immediately provide the following corollary, which

establishes a novel approach to the CARMA and the SARMA modeling.

Corollary 2. A DARMA model bijectively represents a stable, continuous time,

multivariate, linear Markov system that is controllable and observable across con-

tinuous and discrete time domains under the finite difference approximation and

its appropriately fine sampling interval, and has bijective correspondence with its

SARMA and the CARMA models.

Here, we summarize all assumptions required by our proposed method. Our

study in this chapter assumes that the objective system has the characteristics of

(1) linear, (2) continuous, (3) Markov, (4) stable, (5) controllable, (6) observable,

and

(7) that the approximation error of the backward higher order finite difference

for the time discretization of the CARMA model is sufficiently small.

Under these assumptions, the consequences provided above enable us to obtain the

SARMA model from the given DARMA model and to derive the CARMA model

from the SARMA model. Similarly to the DVAR modeling in the Chapter 2, these

assumptions hold in the most of scientific and engineering systems in practice and

are used in the conventional DARMA modeling. This is a main reason for the wide

application of the DARMA modeling. Therefore, our consequences for the ARMA

modeling are considered to have a wide applicability similarly to the conventional

DVAR modeling. This is a significant advantage of our framework in comparison

with the past SARMA modeling methods having strongly limited applicability as

explained in subsection 3.2.1.

3.4.4 Proposed algorithm

This subsection addresses our objective (3.3). Similar to the SVAR and CVAR

models derivations discussed in chapter 2, we can obtain the SARMA model from

a given DARMA model, and further derive the CARMA model from the SARMA
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Figure 3.1: The scheme of CSARMA modeling algorithm.

model under the assumptions on the type of the objective system, Assumptions 2,

3 and 4. We can use the following algorithm to obtain these two models after we

have derived the DARMA model from a given time series data set. We call the

new algorithm the continuous time structural autoregressive and moving average

(CSARMA) modeling algorithm. To estimate the DARMA model required for this

algorithm, we can apply traditional techniques such as the maximum likelihood

method which computes an exact likelihood function using the Kalman filter (Shea,

1987) and applies a quasi-Newton algorithm to search for the maximum of the log-

likelihood solution (Gill & Murray, 1972).

Input: A DARMA model of a system, as in Eq.(3.1).

Output: SARMA, CARMA models of the system, as in Eq.(3.2) and (3.3).

1. Obtain a matrix Ψ0 by substituting the DARMA matrices Φp and Θj, j =

1, . . . , q into Eq.(3.18) of Theorem 4. Estimate the SARMA matrices Ψj, j =

1, . . . , p and Ωj, j = 1, . . . , q by using Eq.(3.7b), (3.8b), the given matrices

Φj, j = 1, . . . , p, Θj, j = 1, . . . , q, and Ψ0.
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2. Obtain the CARMA matrices Sm,m = 0, . . . , p− 1 and Rm,m = 1, . . . , q by

using Eq.(3.15), (3.16) and (3.17) in Theorem 3, and Ψj, j = 0, . . . , p and

Ωj, j = 1, . . . , q estimated in the former step.

3.5 Performance evaluation by using artificial data

To address the objective (3.4), we have assessed the performance of our proposed

CSARMA method using numerical experiments with artificial data. The first pur-

pose of this section is to evaluate if the DARMA, the SARMA and the CARMA

models derived from our artificial data match the original. Since these models have

a bijective correspondence with the system dynamics, they should match the orig-

inal models. The second purpose of this section is to evaluate if our approach has

wider applicability and higher accuracy than a representative method that derives

the SARMA model.

3.5.1 Illustrative example of CSARMA application

For this example we use the same coupled oscillator system as depicted in Fig. 2.2

and described in Section 2.4.1. For the illustration of the CSARMA method ap-

plication we additionally introduce to this system the MA components by using a

photo camera to observe the two deviations x1 and x2 in our problem. The camera

has an exposure time Δt. This temporal ambiguity creates observation errors of x1

and x2, since the objects move over the exposure time. As the result, the camera

observes their average deviations during [t, t + Δt]. Accordingly, their errors from

the exact deviations is Δt
2
v1 for the object 1 and Δt

2
v2 for the object 2.

This system is exactly represented by a controllable canonical form of the state

space model in continuous time domain which explicitly indicates kinematics, air

friction and observation errors. It consists of the linear differential system equa-

tions having external process noises and observation equations of the state variables

(Hinrichsen & Pritchard, 2005). Each of the linear differential system equations
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represents an individual mechanism independently disturbed by the external noise.

dX

dt
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1
−2κ
M

κ
M

− c
M

0
κ
M

−2κ
M

0 − c
M

⎤
⎥⎥⎥⎥⎥⎦X +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎥⎦W and

Y =

[
1 0 Δt

2
0

0 1 0 Δt
2

]T
X,

where X = [x1, x2, v1, v2]
T and W = [w1, w2]

T . w1 and w1 are the external process

noises of x1 and x2. The controllable canonical form of the state space model has

direct one to one correspondence to the CARMA model (Hinrichsen & Pritchard,

2005; Brockwell & Davis, 1991), and in the case of the coupled oscillator, we have

the following CARMA (2,1) model.

Y (2)(t) =

[ −2κ
M

κ
M

κ
M

−2κ
M

]
Y (0)(t) +

[
− c

M
0

0 − c
M

]
Y (1)(t)

+W 0(t) +

[
Δt
2

0

0 Δt
2

]
W (1)(t). (3.19)

We gave the values of the spring constant κ=0.38 N/m, the mass M=1 kg, the

air resistance coefficient for the mass c = 0.5Ns/m and the exposure time Δt = 1 s,

the period of oscillation T = 2π
√

M
κ
= 10.2 s. Then we transformed this CARMA

model to its corresponding SARMA and DARMA models by using Eq.(3.12)-(3.14)

and relations in Eq.(3.7a) and (3.8a) under a time granularity δt = 0.1 s far smaller

than Δt to simulate an approximately continuous process. We confirmed that

the stability, the controllability and the observability of the DARMA model in this

discrete time domain with δt hold to ensure the conditions required for the DARMA

modeling. We further generated a time series Y (t) by using the derived DARMA

model parameters and Eq.(3.1). The length of the generated time series is 1000

data points. The external bivariate noises U(t) were generated by using an i.i.d.

N(0, σ2) distribution where σ is randomly chosen from [0.3,0.7] to maintain the

identifiability of the DARMA model. Since the sampling time of the system is Δt
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= 1 s, we further sampled the generated time series by choosing every 10th point

in it.

We applied the CSARMA algorithm shown in Fig. 3.5.2 to this sampled time

series and estimated the DARMA , SARMA and CARMA models. The correct

models orders, p=2 and q=1, are provided for the estimation. Table A.2 shows the

comparison between the original models derived from the CARMA model under the

discretization with Δt = 1 s and the estimated models. The table indicates that

the SARMA and CARMA models estimated by the CSARMA approach match

well with their original models. We also see that the original DARMA model

matches well with the DARMA model estimated by Maximum-Likelihood method.

The last corresponds to our conclusion in the previous section that the objective

system is represented by a unique DARMA model when it is linear Markov, stable,

controllable and observable system in continuous time domain. Accordingly, the

CSARMA modeling appropriately reconstructs the original SARMA and CARMA

models of the system from a given time series, and provides the correct canonical

relation between the variables in the original system.

3.5.2 Accuracy of the proposed method

First, we performed a set of computer simulations to evaluate the accuracy of

the DARMA, the SARMA and the CARMA models derived using our CSARMA

method. The procedure of the numerical experiments is shown in Fig. 3.2.

In Block (1), we artificially generated the matrices of a CARMA model, Sm, j =

0, . . . , p − 1, Rm, j = 1, . . . , q (q < p). The elements of the matrices were gener-

ated by a uniformly distributed random value in the interval (−1.5, 1.5). Then,

the stability, the controllability and the observability of the generated model were

checked in the continuous time domain for Assumption 3. The conditions of As-

sumption 4 are also checked for a sampling interval Δt = 1. We repeated the

generation of the matrices until we obtained a CARMA model satisfying all of
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Table 3.1: The parameter matrices of the original and estimated DARMA , SARMA

and CARMA models, where Z and Ẑ represent original and estimated matrices,

respectively, for Z = Φ,Θ,Ψ,Ω, S and R.

DARMA model SARMA model CARMA model

Φ1

1.138 0.191

0.191 1.138
Ψ0

−0.507 0.253

0.253 −0.507
S0

−0.760 0.380

0.380 −0.760

Φ̂1

1.137 0.193

0.194 1.139
Ψ̂0

−0.494 0.252

0.260 −0.512
Ŝ0

−0.763 0.384

0.388 −0.758

Φ2

−0.455 −0.076
−0.076 −0.455

Ψ1

1.67 0

0 1.67
S1

−0.5 0

0 −0.5

Φ̂2

−0.453 −0.076
−0.077 −0.453

Ψ̂1

1.65 0

0 1.68
Ŝ1

−0.51 0

0 −0.51

Θ1

−0.333 0

0 −0.333
Ψ2

−0.67 0

0 −0.67
R1

0.500 0

0 0.500

Θ̂1

−0.361 0

0 −0.316
Ψ̂2

−0.66 0

0 −0.67
R̂1

0.521 0

0 0.489

Ω1

−0.333 0

0 −0.333

Ω̂1

−0.342 0

0 −0.328

these conditions. In Block (2), we computed the matrices of the SARMA model,

Ψj, j = 0, . . . , p and Ωj, j = 1, . . . , q, from the CARMA model using Eq.(3.12),

(3.13), (3.14) and Δt = 1. In Block (3), we computed the matrices of the DARMA

model, Φj, j = 1, . . . , p and Θj, j = 1, . . . , q, from the matrices of the SARMA

model using Eq.(3.7a) and Eq.(3.8a). Then, we further checked the stability, the

controllability and the observability of the DARMA model in the discrete time do-

main, and retained the model only if all these conditions were met. By applying

the double check of the three conditions, we tested if the time discretization using

time granularity Δt = 1 preserved the conditions required for the ARMA model-
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Figure 3.2: Procedure of our experiment.

ing. If they were not preserved, we repeated the entire model generation process

from Block (1) to Block (3), until we obtained the CARMA, the SARMA and

the DARMA models satisfying the conditions. This generation procedure qualita-

tively ensures Assumption 4. We checked the three conditions using the state space

model explained in Section 3.3.1. The model is stable if all the eigenvalues of the

matricies Ac (and Ad) have negative real parts (lie inside the unit circle on a complex

number plain) (Brockwell & Davis, 1991; Stamer et al., 1996). We checked the con-

trollability and the observability conditions by confirming if [Bc AcBc . . . A
dp−1
c Bc]

([Bd AdBd . . . A
dp−1
d Bd]) and [Cc CcAc . . . CcA

dp−1
c ]T ([Cd CdAd . . . CdA

dp−1
d ]T ) are

row and column full rank, respectively (Brockwell & Davis, 1991).

In Block (4), we generated the multivariate DARMA time series data, Y(t), by

using the Φj, j = 1, . . . , p and Θj, j = 1, . . . , q provided in block (3), a multivariate

i.i.d. Gaussian time series U(t), and Eq.(3.1). The mean value of each element in

U(t) was set to zero, and its standard deviation was randomly chosen from [0.3, 0.7]
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to maintain the identifiability of the DARMA model.

In Block (5), we estimated the DARMA matrices, Φj, j = 1, . . . , p, Θj, j =

1, . . . , q as Φ̂j, j = 1, . . . , p and Θ̂j, j = 1, . . . , q from the generated multivariate time

series, using a representative multivariate DARMA modeling algorithm. We used

the maximum likelihood method (Shea, 1987; Gill & Murray, 1972) implemented in

a MATLAB tool named NAG (NAG, 2013) to derive the ARMA matrices. In Block

(6), we estimated the SARMA matrices, Ψj, j = 0, . . . , p and Ωj, j = 1, . . . , q as

Ψ̂j, j = 0, . . . , p and Ω̂j, j = 1, . . . , q, by following Step 1 in the CSARMA algorithm.

Subsequently, in Block (7) we estimated the CARMA matrices, Sm, j = 0, . . . , p−1

and Rm, j = 1, . . . , q as Ŝm, j = 0, . . . , p − 1 and R̂m, j = 1, . . . , q in Step 2 of

CSARMA.

In Block (8), we evaluated the accuracy of the estimated matrices compared to

the original matrices. Here, we used the cosine measure of a matrix estimation

accuracy presented in Eq.(2.18) to evaluate the accuracy of Xk = Φj, Θj, Ψj, Ωj,

Sm or Rm, where k = j or m.

We chose d = 5 as the default parameter setting for the dimension of Y (t),

N = 1000 as the number of time steps of Y (t), and p = 2 and q = 1 as the

orders of the CARMA model. Then, we assessed the estimation accuracy over

various values of each parameter, while setting the other parameters to their default

values. For every parameter setting, we repeated 20 experiments and evaluated the

20 accuracies, AX , for each experiment.

Figures 3.3, 3.4, 3.5 and 3.6 show comparisons of the estimation accuracy over

the various values of every parameter. In Fig. 3.3(a), each line shows the accuracies

of the AR matrix estimations from each model, averaged over the 20 experiments,

for multiple dimensions of Y(t), d = 3, 5 and 7. The error bars represent the

standard deviations. Figure 3.3(b) shows similar results for the MA matrices. We

observe that the accuracies of the DARMA matrices obtained using the traditional

maximum likelihood method (AΦ and AΘ), and the ones of the SARMA and the

CARMA matrices estimated using the CSARMA method (AΨ, AΩ, AS and AR),

are close to one in all cases. That is, the accuracies are high for all dimensions

of the observation vectors. In addition, the accuracy slightly degrades when the

dimension d is large. This is because the number of elements to be estimated in
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Figure 3.3: Accuracy over different dimensions d, when N = 1000, p = 2 and q = 1.

Figure 3.4: Accuracy over different AR orders p, when d = 5, N = 1000 and q = 1.

the AR and MA matrices is O(d2), which makes the estimation of the DARMA

model statistically unstable under the same length of the given time series data,

N = 1000.

Figure 3.4 shows the results for different AR orders, p = 0, 1, 2, 3, with the MA

order q = 1. Figure 3.5 shows the results for different MA orders, q = 0, 1, 2, 3,

with the AR order p = 4, where p is increased from its default value to maintain

q < p. The accuracies of all three estimated models are high in all cases. The

model estimation of the higher orders of p and q shows some degraded accuracies,

as the model becomes more complicated and more elements need to be estimated.

We also notice that the estimation of the MA matrices is less accurate than the
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Figure 3.5: Accuracy over different MA orders q, when d = 5, N = 1000 and p = 4.

Figure 3.6: Accuracy over different steps N , when d = 5, p = 2 and q = 1.

AR matrices. A cause of this accuracy degradation of the MA part is considered to

be less consistency of the second term associated with W (t) in Lemma 9. Its other

cause may be that, unlike the variables of the AR part, the noise in the MA part

is not observed. The noise and the MA matrices need to be estimated at the same

time, which add complications and statistical instabilities.

Figure 3.6 shows the results for N = 300, 1000, 3000, and 10000. The accuracies

of the three estimated ARMA matrices are high for all time steps. The accuracy

for N = 300 is not very high because of the statistical limitations of the maximum

likelihood estimation, but the accuracies grow under higher N .

In summary, our proposed CSARMA method accurately captures the system

dynamics and structure in the forms of the SARMA and the CARMA models.
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3.5.3 Comparison of the proposed method with ARMA-

LiNGAM

We have evaluated the applicability of CSARMA by comparing it to an existing

representative method for deriving the SARMA model. As explained in Section 3.2,

the most approaches are applicable to VAR processes but not ARMA processes, and

thus they cannot be compared with our approach. Two approaches are applicable

to the ARMA process (Kawahara et al., 2011; Mainassara & Francq, 2009), but

the method of the parameterized SARMA model (Mainassara & Francq, 2009) is

not naturally compared with our algorithm, as it requires a lot of prior knowledge

to represent the system structure by a small number of parameters. Thus, we

have compared our algorithm with the ARMA-LiNGAM method (Kawahara et

al., 2011). This approach requires assumptions of acyclicity and non-Gaussianity.

It first derives the time series of the external noises, U(t), by using a maximum

likelihood estimation of the DARMA model. It then applies the ICA to U(t) to

derive the ordering information of the variables in Y (t), together with the strictly

lower-triangular matrix Ψ0.

Similar to the Section 2.4.3, to compare the two approaches in case of ARMA

processes, we prepared four sets of artificial data, one for the non-Gaussian and

acyclic case, one for the Gaussian and acyclic case, one for the non-Gaussian

case without the acyclicity assumption and one for the Gaussian case without

the acyclicity assumption. The generation process was similar to one described

in Section 2.4.3. For the non-Gaussian case, we generated data by independently

drawing the noise values in W (t) from Gaussian distributions and subsequently

passing them through a power non-linearity (raising the absolute value to an ex-

ponent in the interval [0.5, 0.8] or [1.2, 2.0], but keeping the original sign) to make

them non-Gaussian (Shimizu et al., 2011). For the Gaussian case, we used the same

procedure as in Section 3.5.2. For the acyclic case, we first randomly generated the

SARMA matrices, where the matrix Ψ0 is strictly lower-triangular, which is the

necessary condition of acyclicity. Then, we checked the regularity of the matrix∑q
m=0 RmΔt−m in Lemma 7 and of matrix Ψp in Eq.(3.15) to ensure the existence

of a CARMAmodel corresponding to the generated SARMAmodel. If the CARMA
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Figure 3.7: Accuracies of SARMA model estimations by CSARMA and ARMA-

LiNGAM for different processes under d = 5, N = 1000, p = 2 and q = 1.

model existed, we continued the model generation process in the same way as de-

scribed in Section 3.5.2. For the processes without the acyclicity assumption, we

used the same generation algorithm shown in Section 3.5.2.

We applied both our proposed algorithm and the ARMA-LiNGAM algorithm

to these sets and obtained different structural ARMA matrices, ΨCS
j , j = 0, . . . , p,

ΩCS
j , j = 1, . . . , q, ΨLiNGAM

j , j = 0, . . . , p, and ΩLiNGAM
j , j = 1, . . . , q. Then, we

compared the obtained matrices to the originally generated ones using Eq.(2.18),

similarly to Section 3.5.2. The results are shown in Fig. 3.7. Figure 3.7(a) shows the

box plots of the estimation accuracies of CSARMA and ARMA-LiNGAM for the
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non-Gaussian and acyclic processes. Both methods are very accurate for the non-

Gaussian and acyclic processes. However, when the assumptions of non-Gaussianity

and acyclicity are not met as shown in Fig. 3.7(b), (c) and (d), the accuracy of

the ARMA-LiNGAM method is substantially lower than the CSARMA approach.

As expected, the applicability of ARMA-LiNGAM is limited to the non-Gaussian

and acyclic processes. In contrast, our proposed CSARMA approach is widely

applicable to the continuous time, linear Markov system as far as the system is

stable, controllable, observable, and observed using an appropriately fine sampling

interval.

3.6 Performance evaluation using real world data

In this section, we evaluate the practicality of our CSARMA approach to achieve

the objective (3.4). We applied the CSARMA algorithm to real world experimental

data. We used a reactor noise time series, measured in an impulse fast neutron

research reactor called IBR-2 at the Joint Institute of Nuclear Research in Dubna,

Russia, which is depicted in Fig. 2.8 and described in Section 2.4.4 (Pepyolyshev,

1988).

The aim of this analysis is to identify the influences between the peak power and

the neutron reflections of the main and the additional reflectors over their sequential

operations, but not to identify the dynamics to generate an individual power peak.

Accordingly, our objective experimental data include time series of peak values of

the power pulses, Q, axial deviations of the main neutron reflector, XQ, and the

additional neutron reflector, XA, measured in parallel at every instant of the power

pulse during the stable reactor operation. The axial deviations of the reflectors

are their angular deviation from the vertical central line of the reactor core. The

sampling frequency of the time series data was necessarily equal to the frequency of

the pulse operation of IBR-2, which is 5Hz (Pepyolyshev, 1988), and thus Δt = 0.2

(sec). This is sufficiently fine sampling to capture the dynamics of the peak powers

over their sequence, because the peak power and its associated neutron reflection

change more slowly by breading, accumulation and leakage of the neutrons in the

reactor core. The time series data contained 2048 time steps. Each variable was
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normalized to give a zero mean and a unit standard deviation.

The dynamics of this reactor are known to be approximately represented by

CARMA(2,1). The process of the heat removal from the core and the negative

feedback process of core temperature to power generation are approximately repre-

sented by the second order delay process. In addition, the impacts of the reflectors

are represented by the first order delay processes of the external influences. Ac-

cordingly, we estimated the DARMA(2,1) from the reactor noise time series using

the maximum likelihood method, and then calculated its SARMA and CARMA

matrices using our CSARMA method.

Eq.(3.20) shows the AR and MA matrices of the DARMA model estimated from

the time series data. Though the DARMA model bijectively corresponds to the

system dynamics of the IBR-2 reactor as noted in Corollary 2 , these matrices do

not indicate clear structures reflecting the dynamics. For example, the impact of

the main neutron reflector to the peak power is known to be 4 times larger than that

of the additional reflector as mentioned earlier. However, the ratios of the (1, 2)

and (1, 3)-elements in Φ1 and Φ2 are far from 4, respectively. This is because the

DARMA model is not structural, and its coefficient matrices are not decomposed

into individual effects as explained in Section 3.2.1.
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Φ1 =

Q XQ XA⎡
⎢⎢⎣
−0.1265 −0.0905 0.0074

−0.0029 −0.0932 −0.0400
−0.0270 1.1384 0.2169

⎤
⎥⎥⎦

Q

XQ

XA

,

Φ2 =

Q XQ XA⎡
⎢⎢⎣

0.3283 −0.2414 −0.2597
−0.0092 −0.4051 0.0893

−0.0012 2.4921 −0.0659

⎤
⎥⎥⎦

Q

XQ

XA

,
(3.20)

Θ1 =

Q XQ XA⎡
⎢⎢⎣
−0.4884 −0.2947 −0.1317
0.0013 −0.5634 −0.0067
0.0955 0.9228 0.4303

⎤
⎥⎥⎦

Q

XQ

XA

.

Eq.(3.21) shows the AR and MA matrices of the SARMA model.

Ψ0 =

Q XQ XA⎡
⎢⎢⎣

49.7402 150.2176 65.0670

1.2771 15.7391 16.4848

11.1788 204.5666 80.6094

⎤
⎥⎥⎦

Q

XQ

XA

,

Ψ1 =

Q XQ XA⎡
⎢⎢⎣

4.8445 −55.6610 −8.4650
−0.2408 −17.2771 −2.9954
−0.1421 −70.5501 −9.1673

⎤
⎥⎥⎦

Q

XQ

XA

,
(3.21)

Ψ2 =

Q XQ XA⎡
⎢⎢⎣
−14.5413 −89.5345 3.5313

−0.2639 −34.8028 0.1018

−1.6924 −112.8261 −10.1184

⎤
⎥⎥⎦

Q

XQ

XA

,

Ω1 =

Q XQ XA⎡
⎢⎢⎣
−0.4183 3.5814 −0.1413
0.0106 0.3921 −0.0041
0.0677 4.5130 −0.5953

⎤
⎥⎥⎦

Q

XQ

XA

.
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The major effects between the variables are almost localized at (1, 2), (1, 3) and

(3, 2)-elements in every matrix. In particular, (1, 2) and (1, 3)-elements in Ψ0 in-

dicate the strong impacts of the two neutron reflectors to the peak power which

are caused by the neutron generation within the time interval Δt. The ratio of the

(1, 2)-element over the (1, 3)-element in Ψ0 is almost (2.3) reflecting their differ-

ent effects. However, this ratio is less than the designed impact ratio of the two

reflectors. As we will quantitatively discuss later, this is because of the impact

amplification of the additional reflector in the time interval Δt by neutron bread-

ing process. In addition, (1, 2)-elements in Ψ1 and Ψ2 are negative because of the

negative feedback of the peak power. Once the neutron population is increased in

the core by the neutron reflector, the core temperature is increased through the

activation of the nuclear fission chain reaction. Since the high temperature has an

effect to reduce the efficiency of the individual nuclear fission reaction, this sup-

presses the power generation. This negative feedback forms a second order time

delay dynamics generating oscillatory behaviors of the variables reflected by the

negative signs of the main reflectors’ impacts in Ψ1 and Ψ2. Further, we notice

that some dependency of the additional reflector’s motion to the main reflector at

(3, 2)-elements in all the matrices. Though the cause of this dependency is not

clear, the voltage deriving the motor of the additional reflector could be influenced

by the motor operation of the main reflector sharing an electricity power supply.

We observe little impact from the peak power to the reflectors’ motions in all the

matrices. This is consistent with the design of the IBR-2 reactor, where the rotation

of the reflectors driven by motors does not depend on the reactor’s power.
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Finally, Eq.(3.22) shows the AR and MA matrices of the CARMA model.

S0 =

Q XQ XA⎡
⎢⎢⎣

69.3777 257.7026 53.5547

0.0604 −27.8419 9.4582

10.8091 319.7046 34.6218

⎤
⎥⎥⎦

Q

XQ

XA

,

S1 =

Q XQ XA⎡
⎢⎢⎣

7.9950 5.5802 0.2084

0.0494 12.4589 0.4280

−0.1450 6.5110 9.7232

⎤
⎥⎥⎦

Q

XQ

XA

,
(3.22)

R1 =

Q XQ XA⎡
⎢⎢⎣

0.1540 −1.2698 0.1108

−0.0028 −0.0509 0.0005

−0.0284 −1.4496 0.2697

⎤
⎥⎥⎦

Q

XQ

XA

.

This CARMA model more clearly represents the processes working in the system

dynamics than the SARMA model. We see that the major effects between the vari-

ables are almost localized at (1, 2), (1, 3) and (3, 2)-elements in S0 and S1 similarly

to the SARMA model. The (1, 2) and the (1, 3)-elements in S0 represent the im-

pacts of the main and the additional reflector’s motions to the acceleration of the

peak power, respectively. Their ratio is almost 4.8 which is roughly consistent with

the designed impact ratio of these two reflectors. We also observe some dependency

of the additional reflector’s motion to the main reflector’s at the (3, 2)-element in S0

and S1. This was also seen in the SARMA model. The other elements in these ma-

trices are negligibly small. All these consequences are consistent with the dynamics

of the IBR-2 reactor.

By using the closed-form expression, Eq.(3.12), relating Ψ0 of the SARMA model

with the matrices of the CARMA model, we can quantitatively analyze the differ-

ence of the impact ratios between the two reflectors across the two models. The

expression for the CARMA(2, 1) and the SARMA (2, 1) models is written as

Ψ0 = (I +Δt−1R1)
−1(S0 +Δt−1S1 −Δt−2I) + I. (3.23)

The two factors of the first term in the r.h.s. are represented as follows by substi-
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tuting Eq.(3.22).

(I +Δt−1R1)
−1 =

⎡
⎢⎢⎣

0.5817 3.5814 −0.1413
0.0106 1.3921 −0.0041
0.0677 4.5130 0.4047

⎤
⎥⎥⎦ , (3.24)

S0 +Δt−1S1 −Δt−2I =

⎡
⎢⎢⎣

84.3529 285.6034 54.5968

0.3073 9.4525 11.5980

10.0843 352.2594 58.2379

⎤
⎥⎥⎦ . (3.25)

These matrices indicate that the (1, 2)-element of Ψ0 in Eq.(3.21) mainly comes

from the product of (1, 1)-element in Eq.(3.24) and the (1, 2)-element in Eq.(3.25),

where the former reflects the process between Q and its intrinsic disturbance, and

the latter is the direct influence of XQ to Q. Thus, the main reflector directly im-

pacts the peak power. In contrast, (1, 3)-element of Ψ0 in Eq.(3.21) mainly consists

of the product of (1, 1)-element in Eq.(3.24) and the (1, 3)-element in Eq.(3.25) and

the product of (1, 2)-element in Eq.(3.24) and the (2, 3)-element in Eq.(3.25). The

first product represents the direct influence of XA to Q similarly to the case of the

main reflector, while the second product shows that XA influences Q through some

process associated with XQ. This reflects the mechanisms of neutron breading in

the reactor. The angle deviations of the two reflectors are independent in principle.

However, the neutron population is exponentially increased during the finite time

interval Δt by the impacts of the neutron reflectors through the nuclear chain reac-

tion process. In particular, the breading becomes highly active, when the impact of

the additional reflector is added to that of the main reflector. This process amplify

the effect of the additional reflector under the strong effect of the main reflector in

Δt. The second product reflects this process, and this is the reason that the impact

ratio between the two reflectors in the SARMA model is smaller than that in the

CARMA model.

In summary, the application of our CSARMA approach gives us rich information

about the physical structure governing the variables. In particular, it provides

explicit information on the relation between the fundamental system mechanisms

represented by time differential equations and the structural dynamics appearing

in the time series sampled at discrete time steps. This is possible through the
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mathematical construction of the SARMA and the CARMA models out of the

DARMA model using the closed-form expressions.

3.7 Discussion

Many techniques have been used to study the SARMA modeling of multivariate,

linear Markov systems, as we reviewed in Section 3.2. However, very few studies

in statistical causal inference have investigated the structural and/or causal mod-

eling of dynamic Markov systems from given time series data. Research combining

AR/ARMA modeling with the LiNGAM approach spans both fields (Hyvarinen et

al., 2008; Kawahara et al., 2011). In (Voortman et al., 2010), the authors proposed

a method to learn the causal structures of continuous time Markov systems in the

framework of statistical causal inference. Though its basic framework and objec-

tive is different from our proposed method, it shares some similar features. For

example, its model consists of higher order time difference variables and requires

faithfulness of the objective system, ensured by excluding its equilibrium states.

This feature seems to be associated with the requirement of the controllability and

the observability in our approach. That is, some parts of the system can stay

at the equilibrium, or their change can be unidentified, if the system is not fully

controllable by the external random noises and not fully observable through the

sampled time series data. Associated with these requirements, some past studies

argued that the structural dependency among variables in an equilibrium model of

a system is asymptotically deduced from the continuous time model of the system

dynamics (Fisher, 1970; Iwasaki & Simon, 1994; Pearl, 2000; Lacerda et al., 2008;

Mooij et al., 2013). Though the strict relation between this argument and the above

requirements is unclear, these seem keys to connect the structures in the static and

the dynamic modes of a system.

The CARMA and the SARMA models provided by this approach consist of lin-

ear time differential and difference equations of variables observed from an objective

system, and are ensured to bijectively correspond to the objective system dynam-

ics. Hence, our CSARMA approach enables us to empirically uncover scientific

models and their associated laws in the system. In engineering oriented fields, our
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CSARMA approach can be used to monitor and diagnose anomalous changes of an

objective system through time series measurements. For example, in the case of the

IBR-2 reactor presented in Section 3.6, the integrity of the pulse power operation

in the reactor can be monitored by periodic applications of our approach. If we

observe some anomalous changes at (1, 2) and (1, 3) elements of the CARMA and

the SARMA matrices, we know about the onset of some defects of the neutron

reflectors and/or the neutron generation process.

3.8 Conclusion

In this chapter, we have succeeded in achieving its four objectives. First, we showed

that a DARMA model of a continuous time, multivariate, linear Markov system

has a bijective correspondence with system dynamics under the finite difference ap-

proximation, if the system is stable, controllable, observable and observed using an

appropriately fine sampling interval. Second, we clarified the closed-form expres-

sions bijectively relating the CARMA, the SARMA and the DARMA models of the

system under the finite difference approximation. Third, we proposed a new mod-

eling approach to derive the CARMA and the SARMA models from the DARMA

model, which is estimated using time series data observed from a system. Finally,

we demonstrated the practical performance of our proposed approach through some

numerical experiments using both artificial and real world data.

An issue remained is to apply a more accurate finite difference schemes than the

backward scheme, Eq.(2.7). For example, the central higher order finite difference

has its approximation error O(Δt2) that makes our models more consistent than

the error O(Δt) of Eq.(2.7) (Levy & Lessman, 1992; LeVeque, 2007). The deriva-

tion of the closed-form expression using this central scheme to bijectively relate the

three ARMA models is our future work. In addition, more rigorous relationships

of the ARMA models should be assessed by using the state space representations

of the ARMA process across the continuous and the discrete time domains. Par-

ticularly, the existence of the bijective relationships between the CARMA(p, q) and

the DARMA(p, p− 1) models is an important issue to be explored in the future.

Nonetheless, the developed CSARMA modeling approach is a strong instrument
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for the analysis of the real world systems. In the next chapter we show its appli-

cation for the analysis of the complex physical system, such as a Boiling Nuclear

Rector.

3.9 Appendix

3.9.1 The proof of Lemma 7

Proof. Because of the controllability of the system, the CARMA model of Eq.(3.3)

has the controllable canonical form of its state space model, Eq.(3.5). As the system

is also observable, we can rewrite the controllable canonical form into its observable

canonical form,

dX ′
c(t)/dt = AT

c X
′
c(t) + CcW (t),

Y (t) = BT
c X

′
c(t).

The state variable vector X ′
c(t) in the observable canonical form and Xc(t) in the

controllable canonical form have the relation X ′
c(t) = TXc(t), where T is a regular

matrix. Thus, Bc and Cc have the relation Cc = TBc. Because Bc is full column

rank by its definition, so is Cc.

Now, take a d-dimensional vector W
(m)
i (t) = [0 . . . 0 w

(m)
i (t) 0 . . . 0]T , with

i-th element w
(m)
i (t) = Δt−mexp(t/Δt), and zeros elsewhere. Then, we define a dp-

dimensional vector Ei(t) = [W
(0)
i (t)T . . .W

(p−1)
i (t)T ]T . Since the vectors Ei(t), i =

1, . . . , d are mutually independent for any d and p by the definition of W
(m)
i (t), the

dp× d matrix [E1(t) . . . Ed(t)] is full column rank. As both Cc and [E1(t) . . . Ed(t)]

are full column rank, using the definition of Cc, the d×d matrix CT
c [E1(t) . . . Ed(t)]

=
∑q

m=0 RmΔt−m exp(t/Δt) is full rank, i.e., regular, for any t. This implies that∑q
m=0 RmΔt−m where t = 0 is also regular. �

3.9.2 The proof of Lemma 9

Proof. By applying Euler formula to the time derivatives in the first equation of

Eq.(3.5), we obtain the following formula.

Xc(t) = (I + AcΔt)Xc(t−Δt) + ΔtBcW (t).
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We notice that this is equal to the first equation of Eq.(3.6) with the truncation of

the terms more than the first order Δt. Hence, we can represent the approximation

errors of the coefficient matrices in its first and the second terms, respectively, as

exp(AcΔt)− (I + AcΔt) = E(exp(ΛΔt)− I − ΛΔt)E−1,

A−1c (exp(AcΔt)− I)Bc −ΔtBc = EΛ−1(exp(ΛΔt)− I − ΛΔt)E−1Bc,

by introducing the eigenvalue decomposition Ac = EΛE−1, where Λ = diag(λ1, . . . ,

λd), and E is an eigenvector matrix. Each diagonal element of exp(ΛΔt)− I−ΛΔt

is represented as

exp(λjΔt)− 1− λjΔt =
∞∑
k=2

(λjΔt)k/k!,

for j = 1, . . . , d. Thus, it is bounded as

| exp(λjΔt)− 1− λjΔt| ≤
∞∑
k=2

(|λj|Δt)k/k! ≤
∞∑
k=2

(|λ|maxΔt)k/k!

= exp(|λ|maxΔt)− 1− |λ|maxΔt.

Accordingly, the approximation error of every element in the first term is bounded

by the first formulae given in this lemma. By taking into account the definition

of Bc consisting of zeros and a unit submatrix, the error of every element in the

second term is bounded by the second formula. �

3.9.3 The proof of Lemma 10.

Proof. By substituting Eq.(2.7) into Eq.(3.3) under Assumption 4, we obtain the

following.

1

Δtp

p∑
j=0

(−1)j p!

(p− j)!j!
Y (t− jΔt) =

p−1∑
m=0

Sm
1

Δtm

m∑
j=0

(−1)j m!

(m− j)!j!
Y (t− jΔt)

+W (t) +

q∑
m=1

Rm
1

Δtm

m∑
j=0

(−1)j m!

(m− j)!j!
W (t− jΔt). (3.26)
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The terms of Y (t−jΔt) are summarized with Sp = −I and rewritten by permuting

the summations on m and j.

p∑
m=0

SmΔt−m
m∑
j=0

(−1)j m!

(m− j)!j!
Y (t− jΔt) =

p∑
j=0

(−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−mY (t− jΔt).

Similarly, the terms of W(t) and W (t − jΔt) are reformulated with R0 = I as

follows.

q∑
m=0

RmΔt−m
m∑
j=0

(−1)j m!

(m− j)!j!
W (t− jΔt) =

q∑
j=0

(−1)j
q∑

m=j

m!

(m− j)!j!
RmΔt−mW (t− jΔt).

By substituting these relationhips into Eq.(3.26), we obtain the following.

−
p∑

m=0

SmΔt−mY (t) =

p∑
j=1

(−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−mY (t− jΔt)

+

q∑
m=0

RmΔt−mW (t) +

q∑
j=1

(−1)j
q∑

m=j

m!

(m− j)!j!
RmΔt−mW (t− jΔt),

where Sp = −I and R0 = I.

By Assumption 3 and Lemma 6,
∑p

m=0 SmΔt−m is a regular matrix. Then, by

multiplying both sides of the equation by−(∑p
m=0 SmΔt−m)−1, we obtain Eq.(3.10).

Assumption 3 and Lemma 7 state that
∑q

m=0 RmΔt−m is a regular matrix, so we

can multiply both sides of Eq.(3.10) by −(∑q
m=0 RmΔt−m)−1

∑p
m=0 SmΔt−m and

add Y(t) to obtain Eq.(3.11). �

3.9.4 The proof of Theorem 3.

Proof. First, we prove Eq.(3.17). Eq.(3.14) which holds under Assumptions 3 and

4 can be reformulated as

V Ωj = (−1)j
q∑

m=j

m!

(m− j)!j!
RmΔt−m, (3.27)
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where

V =

q∑
m=0

RmΔt−m, (3.28)

which is independent of m. V is regular by Assumption 3 and Lemma 7.

In the case of j=q in Eq.(3.27), we obtain

V Ωq = (−1)qRqΔt−q ⇒ RqΔt−q = (−1)qV Ωq. (3.29)

Assume the following expression for the general case, i.e., 1 ≤ m ≤ q.

RmΔt−m = (−1)mV
(

q∑
j=m

j!

(j −m)!m!
Ωj

)
. (3.30)

Note that Eq.(3.30) subsumes Eq.(3.29). When j = k−1, we can rewrite Eq.(3.27)

as

V Ωk−1 = (−1)k−1
q∑

m=k−1

m!

(m− (k − 1))!(k − 1)!
RmΔt−m =

(−1)k−1Rk−1Δt−(k−1) + (−1)k−1
q∑

m=k

m!

(m− (k − 1))!(k − 1)!
RmΔt−m.

By substituting Eq.(3.30) for RmΔt−m in the final term, we can derive the following.

V Ωk−1 = (−1)k−1Rk−1Δt−(k−1)

+(−1)k−1V
q∑

m=k

(−1)m m!

(m− (k − 1))!(k − 1)!

q∑
j=m

j!

(j −m)!m!
Ωj. (3.31)

The double summations in the last term can be rewritten as
q∑

m=k

(−1)m m!

(m− (k − 1))!(k − 1)!

q∑
j=m

j!

(j −m)!m!
Ωj =

q∑
j=k

Ωj

j∑
m=k

(−1)m m!

(m− (k − 1))!(k − 1)!

j!

(j −m)!m!
I.

Thus, we write Eq.(3.31) as follows.

(−1)k−1Rk−1Δt−(k−1) =

V Ωk−1 − (−1)k−1V
q∑

j=k

Ωj
j!

(k − 1)!

j∑
m=k

(−1)m 1

(m− (k − 1))!(j −m)!
I =

V Ωk−1 − V

q∑
j=k

Ωj
j!

(j − k + 1)!(k − 1)!

(
j−k+1∑
u=0

(−1)u (j − k + 1)!

u!(j − u− k + 1)!
I − I

)
,
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where m = u+ k − 1. According to the binomial theorem,

j−k+1∑
u=0

(−1)u (j − k + 1)!

u!(j − u− k + 1)!
I = (−1 + 1)j−k+1I = 0.

Thus,

Rk−1Δt−(k−1) = (−1)k−1V
(
Ωk−1 +

q∑
j=k

j!

(j − (k − 1))!(k − 1)!
Ωj

)
=

(−1)k−1V
q∑

j=k−1

j!

(j − (k − 1))!(k − 1)!
Ωj.

By rewriting k−1 by m−1, we know that Eq.(3.30) holds for m−1. By induction,

Eq.(3.30) holds for all 1 ≤ m ≤ q.

Furthermore, by substituting Eq.(3.30) and R0 = I into Eq.(3.28), we can obtain

V = I +

q∑
k=1

(−1)kV
(

q∑
j=k

j!

(j − k)!k!
Ωj

)
⇒

V

(
I −

q∑
k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

)
= I.

Since V is regular by Assumption 3 and Lemma 7, and I is also regular,(
I −

q∑
k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

)
,

is also regular. Thus, we obtain

V =

(
I −

q∑
k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

)−1
. (3.32)

By substituting this into Eq.(3.30), we obtain Eq.(3.17).

Next, we prove Eq.(3.16). We can reformulate Eq.(3.13) which holds under

Assumptions 3 and 4 as follows.

VΨj = (−1)j
p∑

m=j

m!

(m− j)!j!
SmΔt−m. (3.33)

When j = p− 1 and Sp = −I, we can obtain

VΨp−1 = (−1)p−1Sp−1Δt−p+1 − (−1)p−1 p!

1!(p− 1)!
IΔt−p.

∴ Sp−1Δt−p+1 = (−1)p−1VΨp−1 + pIΔt−p. (3.34)
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Assume that Eq.(3.16) is an expression for the general case, 1 ≤ m ≤ p− 1. Using

Eq.(3.32), we can rewrite it as

SmΔt−m = (−1)m
(
V

p−1∑
j=m

j!

(j −m)!m!
Ψj + (−1)p−1 p!

(p−m)!m!
IΔt−p

)
. (3.35)

Note that Eq.(3.35) subsumes Eq.(3.34).

We write Eq.(3.13) for the case j = p as

Ψp = (−1)p−1V −1Δt−p. (3.36)

Then, we can rewrite Eq.(3.35) as follows.

SmΔt−m = (−1)mV
p∑

j=m

j!

(j −m)!m!
Ψj. (3.37)

We can rewrite Eq.(3.33) for the case j = k−1 by substituting Eq.(3.37) as follows.

VΨk−1 = (−1)k−1Sk−1Δt−(k−1)

+(−1)k−1
p∑

m=k

(−1)m m!

(m− (k − 1))!(k − 1)!
V

p∑
j=m

j!

(j −m)!m!
Ψj.

By changing the order of the double summation in the last term,

(−1)k−1Sk−1Δt−(k−1) =

VΨk−1 − (−1)k−1V
p∑

i=k

Ψj

j∑
m=k

(−1)m m!

(m− (k − 1))!(k − 1)!

j!

(j −m)!m!
I,

is obtained. Then we further obtain the following expression, in a similar manner

to Eq.(3.31).

(−1)k−1Sk−1Δt−(k−1) =

VΨk−1 − V

p∑
j=k

Ψj
j!

(j − k + 1)!(k − 1)!

(
j−k+1∑
u=0

(−1)u (j − k + 1)!

(j − u− k + 1)!u!
I − I

)
,

where m = u + k − 1. Using the binomial theorem and replacing k − 1 with

m− 1, we can show that Eq.(3.37) holds for m− 1. By induction, Eq.(3.37) holds

for 1 ≤ m ≤ p − 1. Furthermore, by substituting Eq.(3.36) into Eq.(3.37), we
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can obtain Eq.(3.35), and by further substituting Eq.(3.32) into it, we can obtain

Eq.(3.16) for 1 ≤ m ≤ p− 1.

To obtain Eq.(3.15), we substitute Eq.(3.28), (3.36) and Sp = −I into Eq.(3.12)

under Assumptions 3 and 4.

I −Ψ0 = (−1)p−1Ψp

(
I −

p−1∑
m=1

Δtp−mSm −ΔtpS0

)
. (3.38)

From Eq.(3.36), Assumption 3 and Lemma 7, Ψp is regular. Then, we reformulate

Eq.(3.38) as follows.

I −
p−1∑
m=1

Δtp−mSm −ΔtpS0 = (−1)p−1Ψ−1p (I −Ψ0).

Thus,

ΔtpS0 = I −
p−1∑
m=1

Δtp−mSm + (−1)pΨ−1p (I −Ψ0).

Using Eq.(3.35), we can derive the following.

ΔtpS0 = I + (−1)pΨ−1p (I −Ψ0)

−
p−1∑
m=1

(
(−1)mΔtpV

p−1∑
j=m

j!

(j −m)!m!
Ψj + (−1)p+m−1 p!

(p−m)!m!
I

)
. (3.39)

By substituting Eq.(3.32) into Eq.(3.39), we get Eq.(3.15). �

3.9.5 The proof of Theorem 4.

Proof. Consider
∑p−1

m=1 SmΔt−m under Assumptions 3 and 4. By substituting

Eq.(3.35), we can obtain the following relation.

p−1∑
m=1

SmΔt−m =

V

p−1∑
m=1

(−1)m
p−1∑
j=m

j!

(j −m)!m!
Ψj +

p−1∑
m=1

(−1)p+m−1 p!

(p−m)!m!
IΔt−p. (3.40)

To derive Ψ0, we rewrite Eq.(3.12) by using Eq.(3.28) and Sp = −I as follows.

Ψ0 = I − V −1
(
IΔt−p −

p−1∑
m=1

Δt−mSm − S0

)
. (3.41)
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By substituting Eq.(3.39) and Eq.(3.40) into this equation, we can obtain the fol-

lowing.

Ψ0 = I − V −1Δt−p +
p−1∑
m=1

(−1)m
p−1∑
j=m

j!

(j −m)!m!
Ψj

+V −1
p−1∑
m=1

(−1)p+m−1 p!

(p−m)!m!
IΔt−p

+V −1
{
IΔt−p + (−1)pΨ−1p (I −Ψ0)Δt−p

−
p−1∑
m=1

(
(−1)mV

p−1∑
j=m

j!

(j −m)!m!
Ψj + (−1)p+m−1 p!

(p−m)!m!
IΔt−p

)}
=

I + V −1(−1)pΨ−1p (I −Ψ0)Δt−p. (3.42)

From Eq.(3.7a), we see that Φp = (I −Ψ0)
−1Ψp, where I −Ψ0 is always regular by

Assumption 3 and Eq.(3.12). Since Ψp is regular by Eq.(3.36) and Assumption 3,

Φp is also regular. Thus, we can write as Φ−1p = Ψ−1p (I − Ψ0). By substituting it

into Eq.(3.42) together with Eq.(3.32), we derive the following expression.

Ψ0 = I − V −1(−1)pΦ−1p Δt−p =

I + (−1)pΔt−p
(
I −

q∑
k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

)
Φ−1p .

We change the orders of the double summations with Ωj as follows.

q∑
k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj =

q∑
j=1

Ωj

j∑
k=1

(−1)k j!

(j − k)!k!
.

∴ Ψ0 = I + (−1)pΔt−p
(
I −

q∑
j=1

Ωj

j∑
k=1

(−1)k j!

(j − k)!k!

)
Φ−1p . (3.43)

By substituting Eq.(3.8b), we eliminate Ωj from Eq.(3.43) and further reorganize

as follows.

I −Ψ0 = (−1)pΔt−p
(

q∑
j=1

(I −Ψ0)Θj(I −Ψ0)
−1

j∑
k=1

(−1)k j!

(j − k)!k!
− I

)
Φ−1p .
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Multiplying by Φp(I −Ψ0), we can obtain the following.

(I −Ψ0)Φp(I −Ψ0) =

(−1)pΔt−p
(
(I −Ψ0)

q∑
j=1

Θj

j∑
k=1

(−1)k j!

(j − k)!k!
− (I −Ψ0)

)
.

By further multiplying Φ−1p (I −Ψ0)
−1, we can derive Eq.(3.18). �
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Chapter 4

Analysis of BWR instability

mechanisms applying a CSARMA

approach

4.1 Introduction

The development and/or application of time-series-analysis (TSA) and system iden-

tification techniques dedicated to instrumentation, monitoring and diagnostics of

Light-Water-Reactor (LWR) processes or for inference of physical mechanisms from

the latter, has been and continues to be a matter of intensive research (Williams,

1977; Fry et al., 1984; Sweeney, 1987; Pasczit, 1999; Zylbersztejn et al., 2013).

For Boiling-Water-Reactors (BWRs), a specific and important target application

of TSA that can be mentioned is the evaluation of the reactor stability properties

using measured neutron flux signals as basis.

The BWR constitutes indeed a dynamical system and can as such be considered

as stable when returning to an asymptotically equilibrium condition after that an

initial departure from this condition has occurred due to some disturbances. But

in this context, one must distinguish between core stability, which refers to fluctu-

ations in coolant flow and power generation process coupled via nuclear feedback,

and plant stability which instead refers to interactions of control and mechanical

systems (e.g., reactor pressure, feedwater flow and pump) with processes occur-

ring in the core. To evaluate the core stability properties, system identification

methods based on univariate AutoRegressive Moving-Average (ARMA) modeling

of neutron flux signals are usually applied (Rotander, 1999). This is for instance
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the case in the Paul Scherrer Institut (PSI) methodology developed over the years

for applications to the Swiss reactors (Dokhane et al., 2006). Typically, the ARMA

models are estimated based on the assumption that process noise (e.g., pressure

and temperatures) excites the core dynamics and that the driving noise is white.

The advantage is that the ARMA models can then be used in a black-box manner

when estimating the core stability properties, namely the decay ratio (DR) and

the resonance frequency (RF), even if model parameters have no physical corre-

spondence. Now regarding oscillatory modes related to plant stability, these can in

most case be clearly separated from the core stability mode. However, interactions

between the two could under certain circumstances take place and in this case, it

might no longer be straightforward to identify the noise source that is driving the

fluctuations and to establish thus a cause and effect relationship (Kwatny & Fink,

1975; Wilson, 2006; Kanemoto et al., 1982).

This was precisely the case for an event that occurred in recent years in a Swiss

BWR plant (Ferroukhi, 2008). This event was found to have been caused by intense

interactions between undamped neutron flux oscillations and specific process signal

fluctuations but without revealing the causality relationship.

To address this, causality analysis methods based on multivariate models, e.g.,

the DVAR and the DARMA models, become necessary (Ferroukhi, 2008; Oguma,

1981). For the mentioned above analysis methods, the parameters of such DVAR/

DARMA model do not need to have any physical correspondence. Also, these

DVAR/DARMA models rely on discreet-time representations of the system dy-

namics. However, as mentioned in previous chapters DVAR/DARMA models do

not uniquely represent the objective reactor processes (Gottschalk, 2001; Moneta et

al., 2010; Demeshko et al., 2014). This limitation makes difficult to understand the

dynamics of the objective system and its individual processes. In this chapter, we

apply CSARMA modeling method, that is precisely aimed to overcome this limita-

tion. This approach derives canonical CARMA and SARMA models of the systems

dynamics that uniquely represent the system and where each equation in the mod-

els has bijective correspondence to each individual process in the system. These

models allow us to investigate the dependency among the processes in the system

and give us more insights on the physical mechanisms of the system (Moneta et al.,
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2010; Stamer et al., 1996). Through this, the canonical models matrices should then

indicate physical relationships between the signals and this could in turn allow to

study underlying interactions and/or gain deeper insight into physical mechanisms

of the system dynamics.

So far the verification of the CSARMA method has been limited to numerical

cases and it therefore was considered valuable to attempt assessing its applicability

for reactor noise analysis in general and for causality analysis in particular. To that

aim, the KKL plant instability event was considered as appropriate situation target

and this is thus the scope of the work presented in the following sections. Section 4.2

gives the description of analyzed KKL plant instability event. Section 4.3 shows

the results of CSARMA applications to the KKL Cycle 24. The description and the

results of STP method application to the KKL Cycle 24 are presented in Section 4.4.

The discussion of the two methods applications is made in Section 4.5. Section 4.6

presents our conclusions.

4.2 KKL plant instability event

4.2.1 Description

During start-up of a 24th KKL cycle, high decay ratios (DR) with a correspond-

ing large resonance frequency (RF) were suddenly indicated by the plant on-line

stability monitoring system. During that time, the reactor was in the power as-

cension phase with the specific objective to raise the thermal power from 18% to

27% while maintaining a core flow around 34%1. The time evolution of some main

process signals preceding, during and following the event is illustrated in Fig. 4.1.

For simplicity, the time-frame has been decomposed into 6 periods with the main

characteristics summarized in Table 2.1.1. The core was thus indicated as having

become unstable during period 4 and 5 which lasted each around 10 minutes. How-

ever, during the entire time frame, the power/flow ratio (P/F) remained below 0.65

which is clearly very low compared to the P/F ratio range where core instability

mechanisms might potentially be triggered.

1100% power = 3600 MW, 100% flow = 11151 kg/s
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Figure 4.1: Time evolution of main process parameters during KKL plant instability

event.

4.2.2 Time series analysis

Because of the unexpected occurrence of undamped neutron flux oscillations in this

operating range, a time-series-analysis (TSA) of available measured signals was con-

ducted shortly after the event (Ferroukhi, 2008). On the one hand, one objective

was to verify if the instability alarms were triggered by erroneous evaluations of

the core stability properties by the on-line stability monitoring system. The rea-

son is that the latter employed a non-parametric method based on autocorrelation

functions (ACF) which do not contain any phase information. Thereby, in case of

several underlying oscillations at different frequencies, the ACF results might be

associated with high uncertainties depending on the relative differences in power

spectral density of the various oscillation components. Therefore, the PSI method-

ology based on ARMA model identification from measured neutron flux signals

(Wilson, 2006) was applied and the results are illustrated in Fig. 4.2, noting that

results shown there were estimated based on a weighting of the underlying domi-

nant oscillation frequencies upon their associated power spectral density. Clearly,
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Table 4.1: Characteristics of time periods during KKL plant instability event.

PeriodProcess Reactor Manoeuvres On-Line

Characteristics Stability

Monitoring

1 Stationary — Stable

2 Non-Stationary Power Reduction Stable

(CR insertion and reduced Subcooling)

3 Non-Stationary Power Increase Stable

(Feedwater Injection followed by

CR withdrawal)

4 Stationary — Unstable

5 Stationary — Unstable

6 Stationary None but following a short power reduction Stable

(CR Movements and reduced Subcooling)

this analysis confirmed the correctness of the on-line stability indications with a

jump in frequency up to 0.9 Hz accompanied by a decay ratio close to 1.0.

To understand the reasons for the above behavior, the TSA was enlarged to a

complete signal analysis of available measured signals including thus spectral, phase

and coherence analyses. For simplicity, results will hereinafter only be reported for

Periods 1 and 6 to represent time-frames for stable conditions prior and after the

event respectively. And only results for Period 4 will be reported as representative of

the unstable event time frames. Hence, for the stable Periods 1/6 and the unstable

period 4, the power spectral density of neuron flux and selected process signals

are shown in Fig. 4.3. Clearly during Period 4, a strong spectral peak previously

not present appeared at around 0.9-1 Hz in all the signals with marquantly high

spectral density especially in the steam flow signals. Once the core went back to

indicated stable conditions (Period 6), such peak remained in the steam flow and

neutron flux although with much lower power density and basically disappeared

from the reactor pressure spectrum.
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Figure 4.2: PSI evaluation of decay ratio and resonance frequency during instability

event.

To further investigate the observed peaks, phase- and coherence analyses between

all signals were for all periods conducted. For Period 4, illustrative results of the

coherence analysis between neutron flux and steam flow are illustrated in Fig. 4.4.

There, corresponding results from a stability test carried out at the plant and during

which the core was brought close to unstable conditions, are also shown. For this

test conducted at very low flow conditions, the measured decay ratio and resonance

frequency evaluated from neutron noise signals were 0.97 and 0.47 Hz respectively.

From Fig. 4.4, the first observation is a full and COH between neutron flux and

steam flow around 0.9-1 Hz. The same trend was observed between neutron fluxes

and all other signals as well as between the latter. Thereby, it appeared clear that

the undamped neutron flux oscillations causing the instability alarm were clearly

the result of interactions with process signals related to pressure control (e.g., via

steam flow) and/or eventually feedwater control. As causality analysis methods

were not implemented at the time of this TSA, the comparison with the stability

test served the purpose of providing indications of the relationship between (core)

neutron flux and (plant) steam flow. Because in this case, it was known that the core
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Figure 4.3: Spectral analysis of selected measured neutron and process signals.

was close to unstable without any interactions from plant control systems. This is

indeed reflected by a very distinct large neutron flux spectral peak at around 0.5 Hz,

i.e., in the expected core natural frequency range while the stream flow only shows

a slightly damped peak above this frequency, something that could to some extent

be indicative of a shift due to the time constants between fission power oscillations

and resulting steam outflow response. However, the main observation deduced from

the practically zero COH was that in case of an unstable core with strong neutron

flux oscillations, this would not produce corresponding strong oscillations of the

steam flow. Thereby, it was concluded that most likely, the start-up stability event

was driven by noise disturbances and fluctuations stemming from interactions with

plant control systems. Recently, work towards confirming this by causality analysis

methods was initiated and this is thus presented in the flowing sections.
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Figure 4.4: Comparison of spectral- and coherence analysis for neutron flux and

steam flow between KKL plant instability event and stability test with close to

unstable core.

4.3 Application of CSARMA for causality anal-

ysis of KKL plant instability event

For understanding the physical mechanisms of the reactor dynamics, we need to

have a mathematical model and its corresponding parameters that precisely re-

flect the reactor processes. Since the reactor noise generation processes can be

often approximated by a multivariate linear Markov system, we apply the devel-

oped CSARMA modeling approach. It derives SARMA model that represents the
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physical dynamics of the system in canonical manner, and the parameter matri-

ces Ψj and Ωj of the SARMA model give us the information on the fundamental

processes in the system. Finally, by using the relations between the SARMA and

the CARMA models presented in Eq.(3.15)-(3.17), we estimate parameters of the

CARMA model of the system (Demeshko et al., 2014).

For the analysis of the KKL plant instability event, we point out that particular

intense interactions between reactor pressure (PRESS), neutron fluxes (LPRM) and

steam flow (SFLOW) were shown by the time series analysis explained in Section

2. For these reasons, the CSARMA method is applied here for a 3-dimensional

multi-variate system comprising Y = [PRESS, LPRM, SFLOW ]t.

For the CSARMA application, it is necessary to know the model orders of the

system. They were provided by HPTSAC method developed at Paul Scherrer Insti-

tute, Switzerland (Dokhane, 2004), based on the combination of Akaike information

criterion, Plateau method and Minimum description length principle. According

to the HPTSAC estimations, the dynamics of the objective processes might be

approximately represented by DARMA(4,3) model. Accordingly, for each period,

we applied CSARMA method deriving CARMA (4,3) model from the estimated

DARMA(4,3) model, where the orders of the CARMA model correspond to the

orders of differential equations representing the system.

The CARMA autoregressive matrices Sm for m=0,1,2,3 and moving-average ma-

trices Rn for n=1,2,3 represent the dependency mechanisms among variables, where

the first column shows the effects of reactor pressure on the other variables, the sec-

ond column - the effects of LPRM and the third one - the effects of steam flow.

The (i,j)-element of each matrix represents the effect from the j-th variable to the

i-th in the variable vector Y, and its absolute value represents the intensity of the

effect, e.g., (1,2)-element represents the effect from LPRM to reactor pressure.

For periods 1,4 and 6 of KKL plant instability event, we first evaluated the ratios

of the average value of the MA matrices over that of the AR matrices as follows:

ϕ =

1
q

∑q
k=1

1
d2

∑
i,j |rk,ij|

1
p

∑p
k=1

1
d2

∑
i,j |sk,ij|

,

where |rk,ij| and |sk,ij| are absolute values of i, j-elements for k-order MA and AR

matrices, respectively. The ratios are 0.14%, 0.18% and 0.19% for periods 1,4 and
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6, respectively. In addition, there are no exceptionally large elements in any MA

matrices that do not follow these ratios. Thus, we exclude the MA part of the

CARMA models in our analysis and concentrate on the AR part.

According to the above notation, the estimated diagonal elements of the CARMA

matrices represent the effect of a signal on itself, i.e., ”self-effects”. They are

shown for the various signals, periods and matrices in Fig. 4.5, from which a few

observations can be made. First, for each signal, the self-effects show a cyclic

nature (change of sign) as function of matrix order, i.e., time shift. Secondly, for

any matrix order, it is interesting to note a relatively much stronger self-effect for

the steam flow compared to the two other signals. This might indicate that the

steam flow is influenced by some external process not included in the three-signals

system investigated here. That might be a disturbance in some control system or

the influence of the feed water system, which can effect steam flow on such low

power levels (Kwatny & Fink, 1975). However, these are just hypotheses and they

need to be clarified in the future by additional investigation. Third, it is noted that

the two stable Periods 1/6 show a very similar behavior. However, also Period 4

show a similar pattern, the only minor difference being a reduction of the LPRM

and steam-flow self-effects combined with an increase of the pressure self-effect.

However, overall, the patterns are rather similar between all periods indicating that

the self-effects, i.e., the CARMA diagonal terms, do not provide enough information

to allow discriminating the core/plant dynamics between Periods 1/6 and 4.

Next, our focus is given to the effects between variables, i.e., the off-diagonal

elements of the CARMA matrices. The results of the CARMA model excluding

diagonal matrices are shown in Fig. 4.6. The following three major observations

are obtained based on the qualitative features indicated by the CARMA matrix

off-diagonal elements.

• First, the causal structure is quite similar in the stable periods 1 and 6. This

indicates that the core/plant dynamics represented by the CARMA model

returned to the similar dynamics after the instabilities occurred in period 4.

• Secondly, the less stable period 4 shows on the other hand distinctly different

patterns compared to the two other periods. This indicates that the CARMA
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Figure 4.5: CSARMA results for self-effects - diagonal matrix elements.

model has captured a complete change in the dynamical interactions between

the three investigated variables during this period. And this is fully in-line

with the fact that among all three periods, a core/plant related instabilities

occurred indeed only during period 4.

• Third, we note that the consistency between period 1/6 and the distinctly

difference of period 4 are observed in every matrix order, i.e., each time

differential in the dynamics between the variables.

By closely looking at this figure, we notice that the dominant effects, {SFLOW
=⇒ PRESS}, {LPRM =⇒ PRESS} and {LPRM =⇒ SFLOW} are observed in

some orders of the AR matrices at periods 1/6. For period 4, a radically different

behavior is seen. Indeed, the dominant effect is {PRESS =⇒ SFLOW } only,

however we also observe some minor effects like {PRESS =⇒ LPRM}, {SFLOW
=⇒ LPRM} and the feedback {SFLOW =⇒ PRESS} additionally. In other words,

PRESS and SFLOW have bidirectional causality while the influence from PRESS
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Figure 4.6: CSARMA results for casual structure - off-diagonal elements, where

the blue bars show the elements of the first row, the red bars - the elements of the

second row, and the green bars - the elements of the third row of CARMA models

matrices.

is much bigger than other way around, which is radically differs from periods 1 and

6. Also the CSARMA results for period 4 indicate, it was {PRESS =⇒ SFLOW

} disturbances that induced/guided LPRM fluctuations and not the other way

around. Finally, it is worth noting that the changes of the signs of elements show
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some oscillatory behavior over matrices orders for all the effects.

4.4 Benchmarking against STP method

4.4.1 Signal transmission path analysis

The signal transmission path analysis has been widely used in the causal relation-

ship analysis by the aid of multivariate time series modeling (Oguma, 1981, 1982a,

1982b; Oguma & Turkan, 1985; Oguma, 1996). In addition, using this analysis

allows detecting the feedback effect among variables of interest and allowing infor-

mation about how the noise power is propagating from one variable to another.

In the current study, the STP analysis is performed for pairs of variables of in-

terest, using the main two functions, i.e., the coherence (COH) and the noise power

contribution (NPC). The coherence function is very important to be evaluated since

it represents the correlation between two variables in frequency domain and allows

characterizing the dynamic relationship between the measured variables. The NPC

function is used to evaluate noise source power propagation from one variable to

another, allowing determination of the causal relationship between the variables of

interest. The followings are the definitions of these two main functions (Oguma,

1981).

Consider a linear dynamic system with feedback effect between variables X1 and

X2 that can be described as:

X1(z) = G12(z)X2(z) +N1(z), (4.1)

X2(z) = G21(z)X1(z) +N2(z), (4.2)

where G21(z) and G12(z) are the open loop transfer functions from X1 to X2 and

from X2 to X1, respectively. N1(z) and N2(z) are noise sources to X1 and X2,

respectively, and they are assumed to be stationary random with zero mean and

mutually independent.

The auto power spectral density (APSD) functions P11(ω) and P22(ω) for the cor-

responding variables and the cross power spectral density (CPSD) function P12(ω)
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are given by:

P11(ω) =
(
1/Δt2

)
(|G12(ω)|2Q22(ω) +Q11(ω)), (4.3)

P22 (ω) =
(
1/Δt2

) (|G21 (ω)|2Q11 (ω) +Q22 (ω)
)
, (4.4)

P12 (ω) =
(
1/Δt2

)
(G∗21 (ω)Q11 (ω) +G12 (ω)Q22 (ω)) , (4.5)

where Δ = |1−G12(ω)G21(ω)| , Q11(ω) and Q22(ω) are the APSDs of the respective

noise sources, |·| denotes the absolute value and the superscript * the complex

conjugate. Using Eq. (4.3)-(4.5), we define the COH function γ2
12(ω) between X1

and X2 as

γ2
12 (ω) =

|P12 (ω)|2
P11 (ω)P22 (ω)

. (4.6)

The NPC ratio from X2 to X1 through the noise source N2 is

Γ12(ω) =
|G12 (ω)|2Q22 (ω)

|G12 (ω)|2Q22 (ω) +Q11 (ω)
. (4.7)

Similarly, the NPC ratio from X1 to X2 through the noise source N1 is

Γ21(ω) =
|G21 (ω)|2Q11 (ω)

|G21 (ω)|2Q11 (ω) +Q22 (ω)
. (4.8)

Note that the mutual comparison of COH and NPC functions allows the iden-

tification of causal relationship and the detection of the feedback between the two

variables. Hence the following possibilities may exist (Oguma, 1996):

• The two functions are zero at all frequencies if no dynamic relationship be-

tween the two variables exists.

• If there is an explicit causal relationship only from X1 to X2, i.e., no feedback,

then the NPC function from X1 to X2 coincide with the COH function, while

the NPC function from X2 to X1 is zero at all frequencies, and vice versa.

• The two functions differs from each other if there is a feedback between the

two variables.

It should be emphasized that the current STP analysis is carried out based on the

DARMAmodeling technique using the NAG subroutine g13dc. Under the condition
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Figure 4.7: Application of STP to KKL plant instability event period 1.

of independent noise sources between the pair variables, the transfer functions and

the power spectra of the noise sources are derived in terms of the DARMA model

parameters. Because STP analysis is based on non-canonical DARMA model, its

results can have some discrepancy with the causal structure of the actual nuclear

plant.

4.4.2 Application to KKL plant instability event

Similar to CSARMA, the STP method is applied to each of the three periods, i.e.,

1, 4 and 6. The results for periods 1 and 6 are similar, therefore, for shortness we

show only the one for period 1 in Fig.4.7. The results for period 4 are shown in
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Figure 4.8: Application of STP to KKL plant instability event period 4.

Fig.4.8. We see that for period 1 and 6, the COH and NPC functions for all signal

pairs are almost less than 0.1, which is negligible. This means the STP method does

not show any strong dynamic relationship among all the three variables, i.e., steam

flow, reactor pressure and LPRM. However, for period 4, as expected (see section

2.2), a clear peak at around 0.9 Hz is observed for the COH function of all the signal

pairs with a maximum value for the pair (LPRM, steam flow), indicating a COH

between the neutron flux and the steam flow at 0.9 Hz. As can be seen from Fig.4.8,

the NPC from reactor pressure to steam flow and neutron flux is dominant, while

the NPC in the opposite direction, i.e., from neutron flux to reactor pressure and

from steam flow to reactor pressure, is negligible. In addition, the NPC from steam
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flow to neutron flux is dominant while it is negligible in the opposite direction.

4.5 Discussion

Here, we note that the STP method failed to indicate any effects among variables

for periods 1 and 6. However, the STP results for period 4 are in total agreement

with those obtained using CSARMA approach.

Also, the CSARMA method results for periods 1 and 6 indicated several domi-

nant effects. The dominance of {SFLOW =⇒ PRESS} reflects correctly the ”reac-

tor master-turbine slave” concept with the pressure controller adjusting the opening

of the turbine inlet/bypass valves to regulate the reactor pressure. The {LPRM
=⇒ PRESS} dominance also follows from the same concept, i.e., during normal

operation without any ex-vessel or system induced disturbances, the reactor pres-

sure will be held constant and will increase/decrease as a response to a sudden core

power (LPRM) increase/decrease. Hence, in this mode, the neutron flux will guide

the reactor pressure evolution through the pressure controller, also guide the steam

flow behavior as reflected by the observed {LPRM =⇒ SFLOW } dominance.

For period 4, both CSARMA and STP analysis methods indicated the opposite

behavior of the influence from reactor pressure to steam flow which is inconsistent

with the conventional ”reactor master-turbine slave” concept. Thus, we can assume

that reactor pressure is driven by some mechanisms which are not included into the

”reactor master-turbine slave” concept. This would be in-line with the expected

physics of the origin of the event, e.g., a fluctuation at the turbine/bypass valve

inlet zone that propagated back to the vessel, inducing disturbances in the pressure

control system.
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4.6 Conclusions

This chapter has presented a first application of a novel Continuous and Struc-

tural Autoregressive Moving Average (CSARMA) modeling approach to BWR noise

analysis. This method derives more robust and reliable models as basis for signal

analysis in general and for reactor diagnostics or causality analysis in particular.

As a first step towards assessing the potential of CSARMA the latter type of ap-

plications, a stability event that occurred in a Swiss BWR plant during power

ascension phase was analyzed. To that aim, CARMA models for a multi-variate

system comprising steam flow, reactor pressure and LPRM were estimated based on

measurements taken during the closed to instability event. Similarly, corresponding

CARMA models were also estimated for more stable time periods that preceded

and followed the event.

On that basis and focusing only on qualitative results at this stage, the esti-

mated time-domain based CARMA matrix structures were studied as function of

model order as well as between the various selected time periods. As main obser-

vations, it was found that the CARMA matrix structures would clearly indicate a

different dynamical state during the less stable period 4 compared to the two more

stable periods 1 and 6. Moreover, during the period 4, the CSARMA results would

show a distinctly dominant relationship from steam flow to neutron flux and not

vice versa, indicating thus that the core instability was caused by a plant system

disturbance rather than the opposite. As well, a very dominant relationship from

reactor pressure to steam flow was indicated, this being in total opposition to the

normal situation during reactor master/turbine slave operation when reactor pres-

sure is adjusted through the steam flow. Hence, these CSARMA results could be

interpreted as pointing out a disturbance in the pressure control system as primary

cause for the instabilities during period 4.

To benchmark all these findings, the frequency-domain based Signal Transmis-

sion Path (STP) method, currently being implemented at PSI as part of the overall

noise analysis methodology for the Swiss reactors, was also applied. And with

the STP method, for period 4 exactly the same relationships as mentioned above

were obtained. On the one hand, this consistency between both methods could
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be considered as having confirmed that the period 4 instabilities were caused by

a steam flow disturbance and not induced by the core. On the other hand, this

consistency could also be considered as a verification of the CSARMA ability to

correctly indicate the causality relationships even during less stable event.

It is also worth to note that for periods 1 and 6 the STP analysis failed to

catch the dynamical relations between variables. The possible reason for it might

be that the STP analysis is based on non-canonical DARMA model, therefore, its

results can have some discrepancy with the causal structure of the actual nuclear

plant. Also, the STP analysis is usually unable to estimate the interactions among

variables for the cases when the system has weak noise function, e.g., very stable

cases. However, the CSARMA modeling approach clearly indicated intense effects

from both steam flow and neutron flux to reactor pressure for periods 1 and 6.

These results fully correspond to the background knowledge on the BWR physics.
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Chapter 5

Conclusion
This dissertation investigated new modeling approaches to derive canonical VAR

and ARMA models. In particular, we considered structural and continuous time

VAR and ARMA models, as the basis of our framework.

First, we worked on approach called CSVAR method. It assumes that the objec-

tive system is continuous time, multivariate, linear, Markov, stable and controllable

system. This approach is based on the mathematical relations between the CVAR,

SVAR and DVAR models. The advantages of CSVAR modeling over the existing

modeling approaches have been verified numerically.

Next, we considered a modeling approach advanced to ARMA processes, what we

called CSARMA method. Upon on the general assumptions on the system, it allows

us to derive the canonical CARMA and SARMA models from the DARMA model

estimated by using time series data observed from the system. Both the CARMA

and the SARMA models are general representations of a continuous time, multivari-

ate, linear Markov system in comparison with the CVAR and SVAR, respectively.

The advantages of CSARMA modeling over the past modeling approaches have

been verified through numerical experiments.

Last, we applied the developed CSARMA modeling approach to the real world

system of BWR for the investigation of the occurred instability event. This ap-

plication showed the superior performance of our method over the STP method,

traditionally used for nuclear reactor analysis. It gave us dynamical relations be-

tween variables, which STP method failed to indicate and allowed us to conclude

that a primary cause for the instabilities observed during reactor operation was a

disturbance in the pressure control system.

Apart from the remaining problems raised in each chapter, we point out a general
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issue as the further improvement direction of this study. While CSARMA aims at

overcoming a limitation of time domain methods in terms of ensuring a unique

representation of the system dynamics, its application via time-domain structural

matrices to infer causality relationships might not be sufficient. A transformation of

the latter to the frequency domain could therefore become necessary and is therefore

planned as part of further method developments and verifications of this method.
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