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第 1 章 序論 

1.1 背景 

大気汚染は, 自然な大気質の特性を変える化学的, 物理的, 生物的因子による屋内ま

たは屋外環境の汚染である (WHO, 2014)。汚染源は, 化石燃料等の利用による人為起源

と植生や火山などの自然起源に大別できる。人為起源による汚染は, 人間活動により生

じた汚染物質や前駆体が大気中へ排出され, 大気化学反応により化学的変質等を経て, 

大気が汚染されることである。 

20世紀に入り世界各地で大気汚染が報告された。1930, 40, 50年代にベルギー, アメリ

カ, イギリスで大規模な大気汚染が観測され, 特にアメリカで観測された大気汚染は, 

従来の石炭系の燃焼によるスモッグ汚染と異なっていた。1940年代の米国ロサンゼルス

市は, 急激な人口増加とそれに伴う自動車や石油系燃料の消費増加の影響で, 炭化水素

類および窒素酸化物が大気中へ大量に排出され, 大気中での光化学反応により光化学

スモッグが発生した。光化学スモッグは, 視程低下, 呼吸器障害などの健康被害, 作物

被害等を引き起こし, 人や植生に多大な影響を与え, その存在が世界中で注目されるよ

うになった。1950年初期に, Haagen-Smitがスモッグ汚染の原因はオゾンで, 自動車の排

気ガス等が大気中のオゾン形成に影響を与えることを報告した (Haagen-Smit, 1952)。そ

の後, 米国は大気質の保護と向上を達成するため, 1955年に大気浄化法 (Clean Air Act: 

CAA) を制定, 70年, 90年に法改正を行い, 環境保護庁にオゾンや窒素酸化物などの大

気質基準の策定を義務付けた。オゾンは, 高活性の分子で大気化学において非常に重要

な化学種の1つで, 10%が対流圏に存在し高い放射強制力を伴う温室効果ガスでもある。 

日本では, 自動車の利用など産業構造の著しい変化に伴い, 1960年以降に深刻な大気

汚染が観測され, 大気環境の保全および健康保護と生活環境保全を推進するため68年

に大気汚染防止法が制定された。しかし, 70年には関東地方で光化学スモッグが初めて

観測され, その後, 大気汚染は拡大し関西や東海地方などの工業地帯や都市部を中心に

大きな社会問題となった。70年以降, 光化学オキシダント等の注意報発令延べ日数は, 

72年に14都道府県 (176件), 73年には21都道府県 (328件) となり発生地域の広域化の影

響で, 国民の健康及び作物に甚大な被害をもたらした。政府は, 深刻な大気汚染を防止

するため, 大気汚染防止法の改正, 自動車の排出ガス規制等の強化, 自動車エンジンの

改良, 新触媒の開発など科学技術の革新により, 窒素酸化物等の前駆体の排出量を削減

し, 80年に入ると注意報等の発令延べ日数は減少傾向に至った。しかし, 1980年後半には

注意報の発生件数は増加に転じ, その傾向は90年代以降も続いた (大原と坂田, 2003)。

オキシダント対策として, 2004年に大気汚染防止法をさらに改正し, ばい煙発生施設・

炭化水素発生施設等の固定発生源や自動車・船舶等の移動発生源から前駆体である窒素

酸化物, 炭化水素類等の排出規制を実施した。Fig. 1.1に1990年以降の光化学オキシダン
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Fig. 1.1 Trends of annual average of daily maximum concentrations of Ox, annual average 

concentrations of NOX and annual average concentrations of NMHC between 6 am and 9 am 

((a): ambient air pollution monitoring stations, (b): roadside air pollution monitoring stations) 

(Ministry of the Environment of Japan, 2012). 
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ト濃度の昼間の日最高１時間値と主要な原因物質である窒素酸化物 (一酸化窒素と二

酸化窒素の計: 以下NOX), 炭化水素から光化学反応に不活性のメタンを除いた非メタ

ン炭化水素 (Non-Methane hydrocarbon: 以下NMHC) の午前6時～9時の3時間平均値濃

度の年平均値の推移を示す (環境省, 2012)。二酸化窒素の環境基準 (1時間値の1日平均

値が0.04 ppmから0.06 ppmまでのゾーン内又はそれ以下) は, 2006年以降, 5年間すべて

の一般環境大気測定局 (一般局) で基準を達成している。自動車排出ガス測定局 (自排

局) においても, 2010年は前年と比較すると達成率が改善されている。NMHCは, 環境基

準値は無いが中央公害審議会大気部会炭化水素に係る環境基準専門委員会の大気環境

指針で, 午前6時～9時の3時間平均値が0.20～0.31 ppmC 以下となっている。2010年の3

時間平均値の年平均値は, 一般局では0.16 ppmC, 自排局では0.21 ppmC で, 発生源の規

制等により経年的にその濃度は減少している。一方, 光化学オキシダントの環境基準 (1

時間値が0.06 ppm以下) は, 一般局と自排局のすべての測定局で達成できず, 極めて低

い水準である。1985年から2004年度の20年間において, 5年毎の日本の光化学オキシダン

ト平均濃度は, 21.1 ppb, 22.7 ppb, 24.2 ppb, 24.9 ppbであり, 約0.25 ppb/年 (1%/年) の割

合で増加している (大原, 2007)。Fig. 1.2に光化学オキシダント注意報の発令数と発令都

道府県数を示す (環境省, 2011)。発令都道府県数は増加傾向で, 2007, 2009年には観測史

上最も多い28都府県となり, 広域大気汚染が拡大している。また, 報道資料で発表され

ている被害届人数や環境基準達成状況などからも, 近年の光化学オキシダント濃度は
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Fig. 1.2 Status of photochemical oxidant warnings and reported damages (Ministry of the 

Environment of Japan, 2011). 
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上昇傾向である (環境省, 2011)。増加するオキシダントの主成分はオゾンで (玉置, 

2003), 地球規模で対流圏オゾンは19世紀末と比べて2～3倍増加している (Voltz and 

Kley, 1988)。対流圏オゾンの供給源 (オゾンソース) は成層圏オゾンの降下と光化学反

応による生成であり, 消失源 (オゾンシンク) は光化学反応による消失と地表面への沈

着である。Table 1.1に全球3次元化学輸送モデルを用いた1860年, 1993年, 2025年の対流

圏オゾンの収支結果を示す (Lelieveld and Dentener, 2000)。緯度や化学反応の活性等を考

慮する必要があるが, モデルによる計算では, 成層圏オゾンからの寄与はあまり変化が

なく, 光化学反応の寄与が大きいことを示している。また, 2000年から6年間の領域別の

寄与解析でも, 地域や季節による異なるが, 成層圏からの寄与が少ないことが報告され

ている (Nagashima et. al., 2010)。光化学反応において, 主要なオゾン前駆体は, 先述した

ようにNOX (NOX=NO +NO2) と揮発性有機化合物 (Volatile organic compounds: 以下

VOC) である。Fig. 1.3に対流圏オゾンの主要な生成・消失反応の模式図を示す (板

野, 2006; 中西ら, 2009)。オゾンの供給源はNO2とVOC, 消失源はNOである。(R1.1)～

(R1.3) に示した反応は, NOXのみが存在する場合で, NO2が光化学反応によりNOとOに

解離した後, OとO2の反応によりO3が生成・消失する。(R1.4)～(R1.7) はNOXとVOCが共

存する場合で, 各種ラジカル反応によりNO2が生成する。生成したNO2がO3の消失反応 

(R1.3) と競合するため, O3の消失速度は低下する。これらの反応系より, オゾン生成に

は光照射下でNOXとVOCの化学種が影響する。NOXとVOCは, オキシダントの生成を解

明する上で非常に重要な化学種である。 
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Fig. 1.3 Scheme of sources and sinks of stratospheric ozone (Itano, 2006; Nakanishi et 

al., 2009). 

Table 1.1 Model-Calculated Global, Annual Tropospheric O3 Budget for the Preindustrial, 

Recent, and Future Scenarios (Lelieveld and Dentener, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

オキシダントは, 人類の健康に影響を与える (Adams, 2006; Kim et al., 2011)。健

康被害は喉の痛み , 流涙 , 皮膚の発赤 , めまい , 発熱 , 頭痛 , 呼吸困難など多岐に

わたり, 濃度によりその症状は異なる。そのため , 人類の健康保護と環境保全のた

め世界中でオキシダントの環境基準が定められている。Table 1.2 に WHO 並びに世

界各国の光化学オキシダントに対する環境基準を示す  (中西ら , 2009; 環境省 , 

2013)。多くの国が 8 時間値の平均であるが, 日本の環境基準は 1 時間値が 0.06 ppm

以下と定めており, 他国と比べて非常に厳しい基準である。 

オキシダントは植生にも影響を与える  (伊豆田ら, 2001; Kohno et al., 2005)。植物

の種類により感受性は異なるが, 主成分であるオゾンの影響だけでなく RCO3NO2

等で表記されるパーオキシアセチルナイトレート (Peroxyacetylnitrate: 以下 PAN) に高 

Production/Loss Process 
      Year 

1860 1993 2025 

Stratosphere-troposphere exchang (Tg yr
-1

 ) 606 565 603 

Photochemical formation (Tg yr
-1

) 1703 3314 4001 

Photochemical destruction (Tg yr
-1

) 1865 3174 3758 

Net in situ photochemistry (Tg yr
-1

) -162 140 243 

Deposition on surface (Tg yr
-1

) 444 705 846 

(R1.1+R1.2)
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Table 1.2 Environmental quality standards for O3 in the world (Nakanishi et al., 2009; 

Ministry of the Environment of Japan, 2013). 

 

い感受性を有するものもある (小川ら, 1991; Oka et al., 2004)。それらの植物はオキ

シダントの暴露下で , 葉面に白褐色などの斑点を発現することからオキシダントの指

標として利用されることもある。オゾンは, 葉の表皮に存在する気孔を通して葉内に

侵入し組織に影響を与えると考えられ , 気孔の開閉の影響を受ける  (Reich, 1987; 

Paoletti and Grulke, 2005）。1985 年には, 関東地方を中心に杉の衰退が報告され各地

の森林枯損の実態が明らかになり , 様々な仮説が立てられた。森林枯損が著しい現

地における環境測定の結果に立脚すると, オゾン, 酸性雨などの大気汚染物質が森

林植生に対して, 影響を及ぼしている可能性が指摘されている  (村野, 1994; 畠山

と村野, 1996; 相原ら, 2004)。さらに森林植生以外にも, 世界各国でオゾンの影響によ

る農作物の被害・生産減収なども報告されている。例えば, 日本では稲 (Kobayashi et al., 

1995), インドや台湾などのアジアではジャガイモやたばこ  (Bambawale, 1986; Sun, 

1994), ヨーロッパでは小麦 (Fuhrer et al., 1989), 米国ではトウモロコシや大麦などの農

作物被害・生産減収なども報告されている (Heck et al., 1988)。植物の種類により異なる

が, 農作物の可視障害を発現するオゾン暴露濃度の閾値は, 1時間で 120 ppb, 3時間で 70 

ppb, 8 時間で 40 ppb 程度である (野内, 1979)。オゾンによる大気汚染は, 人類だけでな

く動植物も包摂する地球規模の課題である。前駆体や汚染物質は主要な大陸で発生し, 

移流, 拡散, 反応を経て全球スケールで各地域のオゾン濃度上昇に寄与する。大陸間輸

送が, 各地域のオゾン濃度に与える影響も報告されている。北米やアジア起源の汚染が

欧州に与える影響 (Wild and Akimoto, 2001; Auvray and Bey, 2005), アジアや欧州起源の

汚染が米国に与える影響 (Berntsen et al., 1999; Fiore et al., 2002), 欧州や米国起源の汚染

Nation Year Concentration (averaging period) 

WHO 2006 0.05 ppm (8 hour) 

Japan 1973 0.06 ppm (1 hour) 

United States of America 

 

2008 0.075 ppm (8 hour) 

(Annual fourth-highest daily maximum 8 hourr 

concentration, averaged over 3 years) 

Canada 2000 0.065 ppm (8 hour) 

EU 2002 0.06 ppm (8 hour) 

(Maximum daily 8 hour mean) 

China 1996 0.12 ~0.20 ppm (1 hour) 
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がアジアに与える影響 (Wild and Akimoto, 2001; Li et al., 2002) などが報告されている。 

日本では, オキシダントの原因物質である窒素酸化物や炭化水素類等は減少してい

るが, オキシダント濃度は増加傾向である。原因を推察する上で, 越境大気汚染, 地球

温暖化の影響を考えることが重要である。近年, アジア諸国は産業構造の変化に伴い, 

工場や自動車などから人為起源の NOXや VOC を多量に排出している。アジア地域の汚

染物質の詳細を把握するため, 国立環境研究所や海洋研究開発機構などの研究グルー

プは, アジア地域の排出インベントリ (The Regional Emission Inventory in Asia: 以下

REAS) を開発した (Ohara et al., 2007)。REAS は, 工業生産量, 燃料消費量や自動車の走

行量等の統計データと排出係数等をもとに地域・発生源別に大気汚染物質を算出したも

のである。REAS では 1980～2003 年の間でアジア地域の燃料消費量が約 2 倍, NOX排出

量は約 3倍, 非メタン揮発性有機化合物 (Non-Methane Volatile Organic Compounds: 以下

NMVOC) 排出量が約 2倍増加したと推計されており, その傾向が 2020年迄続くことが

報告されている (Ohara et al., 2007)。また, 近代化の影響が著しい中国の 2020 年の NOX

排出量は, 2000年と比べ約 2 倍増加し, 日本のオゾン濃度は 1980～2003年で 0.2 ppb/年

程度上昇していることも報告されている。増加する汚染物質についての発生源寄与は, 

一部で不確定な要素もあるが (池田ら, 1997; Holloway et al., 2002), 中国を始めとするア

ジア諸国の人為起源の NOXや NMVOC などの汚染物質や前駆体の増加は顕著で, 長距

離輸送に伴う日本への越境大気汚染が報告されている (Kato et al., 2004; Yamaji et al., 

2006; 早崎ら, 2008; Tanimoto, 2009; 大原, 2011)。さらに, 欧州からの越境汚染が日本の

オゾン濃度に与える影響についても報告されている (Wild et al., 2004)。これらの影響を

考えると, 今後も日本のオゾン濃度が上昇する可能性が高い。 

他方で, 地球温暖化による気温上昇, 紫外線量の変化, 市街地の密度増加や排熱増加

によるヒートアイランド化や植生地帯の減少などの都市気候の変化, 交通量の増加が

オゾン濃度や前駆体濃度の増加に寄与することも報告されている (大原, 2003; 吉門, 

2007; Khiem et al., 2010)。大原 (2003) は, 夏季の関東地域のオゾン濃度シミュレーショ

ンを行い, 2 °C の気温上昇が昼間のオゾン平均濃度を 4%程度増加することを示した。気

象庁の観測結果によると, 館野 (茨城県) での紫外領域の日射量 (波長 290～325nm) は, 

1990 年以降増加傾向で, 年平均値は 1990～2000 年で約 10%増加している。紫外線量の

増加は, 光化学反応を促進させオキシダント濃度を上昇させる。吉門 (2003) は, 関東

地域北部のオキシダント濃度の増加が, ヒートアイランド現象の影響であることを示

唆した。またオキシダントの主成分である対流圏オゾンは, 地球表面からの赤外放射の

一部を吸収するため (Lacis et al., 1990), 地球温暖化に寄与する温室効果ガスでもある。 
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本研究では, 自然発生源のオキシダント前駆体に分類される植生起源揮発性有機化

合物 (Biogenic Volatile organic compounds: 以下 BVOC) が気温上昇, 光量などの気象因

子やオゾン濃度の影響を受けどのような挙動を示すかを解明する見地で研究を進める。

BVOC の年間排出量は , 人為起源揮発性有機化合物  (Anthropogenic Volatile organic 

compounds: 以下 AVOC) の年間排出量より高いことが推定されている (IPCC, 2001)。

また, 地球全体で BVOCの年間排出量が AVOC排出量より多いことも報告されてい

る (Guenther, 2002; Guenther et al., 2006)。BVOC はすべての VOC の 90%以上を占め, 

AVOC に比べて 2～3 倍高い反応性を示すことも報告されている (Carter, 1994; Guenther 

et al., 1995)。それらの主成分は, イソプレン (C5H8), モノテルペン (C10H16: α-Pinene, 

β-Pinene 等), セスキテルペン (C15H24: β-Caryophyllene, Aromadendrene 等) などのテルペ

ン類である。BVOC 中で, イソプレンの排出量は最大で 44%を占めると推定されている 

(Guenther et al., 1995)。代表的な BVOC であるイソプレンやモノテルペンは , 大気中

でオゾンやヒドロキシラジカルとの反応性が極めて高く, ヒドロキシラジカルとの一

連の反応によって, 局地的なオゾン生成やオゾンとの反応で各種誘導体やピノンアル

デヒドなどエアロゾルの凝縮核の元となる粒子状物質や過酸化物の生成に関与するこ

とも報告されている (Yokouchi and Ambe, 1985; Benjamin et al., 1997; Claeys et al., 

2004; Goldstein and Galbally, 2007; Sakulyanontvittaya et al., 2008)。植生から排出された

BVOC は直ちに反応, 分解し大気中に留まらず濃度が極めて低い。BVOC 排出量は, 

葉温や光合成有効放射 (Photosynthetically Active Radiation: 以下 PAR) に依存し, 葉

温上昇もしくは PAR 増加に伴って排出量が増加することも報告されている  

(Guenther et al., 1993; Schuh et al., 1997)。 

BVOC はテルペンの種類により特性は異なるが, 大気化学の観点から非常に重要

な化学種である。BVOC の主要な排出源である森林植生は , 日本の国土の約 70%を

占め BVOC 排出量が多く, 大気質に与える影響が大きい国である。近年の地球温暖

化に伴う気温上昇 , また温度や光量上昇による反応速度の増加や他の気候変動の

影響を受けることも推察され, 大気中への BVOC 寄与が光化学オキシダント濃度

に影響を与えることが予測される。これらの複雑な問題を解決するために, 現状を詳

密に把握し環境因子の影響を考慮した精緻な排出インベントリを構築することが必要

で, BVOC の大気中での挙動が対流圏大気に与える影響を解明することは希求の課

題である。下記には, BVOC 排出の機構, BVOC とオゾンの相互作用, 発生源寄与の解

明を進める上で特に参考にすべき既存研究を記述する。  
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1.2 既存研究 

主要な BVOC の排出源は森林植生である。一般的に, 広葉樹からはイソプレン, 針葉

樹からはモノテルペンが主要な排出物である。イソプレンやモノテルペンは植物の光合

成産物の 2 次代謝物で, イソプレンは植物体にほとんど蓄積されず, 生成後, 直ちに排

出されるのに対し, モノテルペンは特定の器官にプールされてから気孔や組織の隙間

を通して大気中に排出される。植生が BVOC を排出する理由は仮説の域を出ないが, イ

ソプレンの排出は自己防衛, モノテルペンの排出は病虫害からの防衛, 他感作用などが

知られている。BVOC の排出機構を解明する研究は, 近年行われるようになり多数の環

境因子により排出されることが明らかになってきた。BVOC は, 葉温 (Dement et al., 

1975; Tingey, 1980; Guenther et al., 1991; 1993; Schuh et al., 1997), 相対湿度 (Vallat et al., 

2005), 光量 (Schuh et al., 1997), 葉の水分量 (Lamb et al., 1985), オゾン濃度 (Peñuelas et 

al., 1999) 等の影響を受け排出される。また, 季節変動による BVOC 排出量変化につい

ても報告されている (Matsunaga et al., 2013)。これらを含めた多数の実験結果より, 排出

量推計モデル式が考案され (Guenther et al., 1991; 1993), モデル式の光依存性を一部改

良したハイブリッドアルゴリズムも報告されている (Schuh et al., 1997; Schurgers et al., 

2009; Guenther et al., 2012)。しかし, 各地域に自生する植生は異なり, 樹木により BVOC

排出量も一定でないため, 各樹木からのBVOC排出量を把握し, 各種モデルの改良又は

新モデルの構築が急がれる。 

イソプレンは植物体内で生成され, 気孔を通って大気中に排出されるため体内に残

らない。気孔を通して排出されるため, 昼間は光合成応答に大きく依存し, 夜間は気孔

が閉じると排出されなくなる。しかし, 植物がイソプレンを大気中に排出する要因は, 

詳しく解明されていない。有力な仮設として, 熱ストレスによって葉における光合成の

代謝を保護するために排出するというものもある。つまり, 温度上昇により葉が有害な

影響を受けてしまうことを避ける役割を持つのではないかと考えられている (Bäck et 

al., 2005)。このことから, イソプレン排出量は光量と温度の両方に依存するとされてい

る。Guenther et al. (1993) は, 数種類の樹木からのイソプレン排出量の葉温および光量依

存性を検討し, モデル式を提案した。そのモデル式である (1.1) 式は, 広葉樹からのイ

ソプレン排出量を精度よく評価でき, 現在広範囲で利用されている。Guenther のモデル

式を下記に記す。 

LTS CCII 
        

(1.1)  

 

 

S

mT

S

ST

T

TTR

TTC

TTR

TTC
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









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exp1

exp

2

1

      (1.2)  
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221

1

L

LC
C

L

L









       (1.3)  

ここで, I は葉温T  (K), 光量 L  (μmol m
-2

 s
-1

) での排出量, SI は標準条件 ( ST : 303 K, 

PAR: 1000 μmol m
-2

 s
-1

) での排出量, 
TC および

LC は葉温依存係数, 光量依存係数で 

(1.2), (1.3) 式で表される。 =0.0027, 
1LC =1.066, 

1TC =95000 J mol
-1

, 
2TC =230000 J mol

-1
, 

mT は経験係数で 314 K である。R は気体定数 8.314 J K
-1

 mol
-1である。Fig. 1.4 に (1.2), 

(1.3) 式の
TC , 

LC の葉温依存性および光量依存性を示す。排出量は葉温増加に伴い上

昇し, 40 °C 付近で極大となる。また, 光量によっても排出量は増加する。 

一方, モノテルペンは植物体内で生成後, 貯蔵器官に蓄積され時間と共に大気中へ排

出される。排出場所は, イソプレンと同じように気孔であるいう報告もあるが, 親油性

の化合物であることから, クチクラから発生していることも示唆されている (Guenther 

et al., 1991; Fall and Monson, 1992; Monson et al., 1995)。クチクラは葉の表面を覆い, 葉の

保護や過剰な水分の蒸発を防ぐ役割を持つ丈夫な膜で親油性部分を有する。これらの性

能により葉面から親油性を持つモノテルペンが透過し, 水蒸気と共にモノテルペンの

蒸散が起こっていると推察できる。モノテルペンの排出が, 光の影響を受けない夜間に

おいても発生していることやクチクラが植物の中でも常緑広葉樹や針葉樹で発達して

いることを考慮すると, モノテルペンの排出が気孔だけでなく木部やクチクラからも

発生している可能性が高い (Bäck et al., 2005)。 

先述したように, 植物がモノテルペンを排出する要因については様々な議論がされ

ているが, 未だに明確な研究報告はない。可能性として考えられているのは, 草食動物

からの攻撃の防御のため, 高温で乾燥した気候から身を守るために葉を包み, 水分の損

失を防ぐためなどである。いずれも植物の生存に関わっていることである。植物がモノ

テルペンを光の影響を受けない夜間においても排出していることから, 光量の影響を 

 

 

 

Fig. 1.4 Relationship between normalized isoprene emission rates and (a) leaf 

temperature and (b) PAR values. 
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受けず, 葉温にのみ依存して排出すると考えられてきた。しかし, Bao et al. (2008) は, 

針葉樹から発生するモノテルペンについて, 同じ温度条件下で光量を高くすると排出

量が多くなることを報告した。この報告では, モノテルペンに対する光量依存性が定性

的に評価されている。モノテルペンの葉温依存性については, Guenther et al. (1993) が提

案した下記のモデル式が広く利用されている。 

TS MMM          (1.4) 

 

 )(exp STST TTMM  
       

(1.5) 

ここで, M は葉温T  (K) での排出量, SM は標準条件 ( ST : 303 K, PAR: 1000 μmol m
-2

 

s
-1

) での排出量, 
TM は葉温依存係数, 

T は経験係数 (0.057-0.144 K
-1

) である。Fig. 1.5

に (1.5) 式の
TM の葉温依存性を示す。モノテルペン排出量は, 葉温上昇により指数関

数的に増加する。このモデル式はモノテルペン排出量を精度よく評価しており, 現在広

範囲で利用されている。 

モデル式を算出するために行われている BVOC 排出量測定は, ほとんどがオープン

トップチャンバー法 (Open Top Chamber Method) や枝チャンバー法 (Branch Enclosure 

Method) などの屋外実験である (Nunes and Pio, 2001; Llusià et al., 2002; 谷, 2010)。オー

プントップチャンバー法は, 樹木の BVOC が天蓋部から排気される構造で自然条件下

でのサンプリングが可能であるが, 長期間の測定が必要である。また, 枝チャンバー法

は, 自然林の枝葉をフッ素樹脂の袋に入れ, BVOC を直接サンプリングできるが, 樹木

の葉数が限られその個性に依存し, 測定結果に影響する可能性がある。加えて, これら

の方法では気温, 光量及び湿度制御ができず, 日中の気象変化の影響を受ける。さらに, 

BVOCの自己分解を考慮できない等の欠点もあり, 外的要因の経時変化による影響を観

察することは難しい。そのため, オゾン濃度等の外的要因が BVOC 排出量に及ぼす影響

については, 長期間の評価にとどまっている。そこで, 本研究では, 気象変化による影 

 

 

 

 

 

 

 

 

 

Fig. 1.5 Relationship between normalized monoterpen emission rates and leaf temperature. 
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響を受けずこれらの欠点を補うことが可能なグロースチャンバー法を採用し, 特定の

気象条件下で, 日本の主要な針葉樹から排出される BVOC の温度依存性, 光量依存性, 

短期的かつ定量的なオゾン暴露等の外的環境因子が BVOC 排出量に及ぼす影響につい

て詳密に検討した。 

BVOC は高い反応性を有するため, 大気質に影響を与える。大気化学で重要な化学種

である BVOC の排出量推計は世界規模で行われている (Guenther et al., 1995)。また, 

BVOC 排出量は各地域に自生する植生の影響を受けるため , その推計はアメリカ 

(Sakulyanontvittaya et al., 2008), 中国 (Zhihui et al., 2003), 日本 (Bao et al., 2008), ヨーロ

ッパ (Zemankova and Brechler, 2010) など多数の国・地域単位で行われている (Solmon et 

al., 2004; Curci et al.,2009)。BVOC の排出推計モデルとして, Guenther et al. (2006; 2012) 

が開発した MEGAN (The Model of Emissions of Gases and Aerosols from Nature) が広く知

られており, 世界の研究機関で利用されている (Itahashi et al., 2013; Kajino et al., 2013; 

Chatani et al., 2014)。MEGAN は, 自然発生源由来のエアロゾル排出量を推定するための

モデリングシステムである。Vogel et al. (1995) はドイツ, Situ et al. (2013) は中国におい

て, BVOC の影響でオゾン濃度が増加することを報告している。Solmon et al. (2004) は, 

フランスの夏季でBVOCを考慮するとオゾン濃度が 18～30%増加すると報告している。

さらに, Bao et al. (2010) は, 森林植生からの BVOC を考慮することにより, 近畿圏にお

いて夏季に月平均の時間値で最大 6 ppb オゾン濃度が増加すること示した。しかし, 詳

細な発生源寄与は行われておらず, BVOC 発生源の地理的感度解析を行う必要がある。

また, MEGAN は米国の植生を中心としたもので, 日本の固有種の BVOC 排出量は十分

に考慮されていない。そのため, 国内の BVOC 排出量の影響を推定するためには, 固有

種の実験結果に基づく排出量推計モデル式の構築が必要である。大気中の汚染物質濃度

は, 温度や風などの気象条件だけでなく, 排出量の時間変化の影響も受ける。そのため, 

大気質シミュレーションには気象モデルで算出した気象データ, 排出インベントリを

基にした排出量データが必要である。化学輸送モデルは, これらのデータをもとに, 輸

送, 拡散, 反応, 沈着などによる汚染物質の大気中濃度変化を計算するものである。大

気質の評価方法は, ソースモデル (化学輸送モデル) と任意の観測点での汚染物質濃度

から各発生源の寄与を推定するレセプターモデル (観測地点モデル) の 2 種類がある。

また, 被汚染地域へのオゾン寄与を詳密に解明するためには, 発生源寄与と感度解析も

必要である。発生源寄与の解析は, 大気中の汚染物質の起源を明確にし, 感度解析は発

生源の排出量を変化させ, それによる濃度変化を明らかにする手法である。感度解析法

の 1つで広く適用されているゼロアウト法は, 対象発生源の排出量をゼロにした場合の

濃度変化量をその発生源からの寄与とする方法である。この方法を利用し, 高濃度オゾ

ンに対する中国発生源の感度解析も報告されている (板橋ら, 2009)。 

本研究では, チャンバー実験によりBVOCの光量依存性の定量化を行い, 導いた推計

モデル式を用いてモノテルペン排出量の光量依存性及びオゾン濃度寄与を評価し, 被
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汚染地域に影響を及ぼした発生源寄与を感度解析により詳密に検討することとした。研

究方法の概略を下記に記述する。 

 

1.3 研究方法 

本研究では, 任意の気象条件を設定できるグロースチャンバーを用いて, (1) 温度, 

湿度, 光量を制御し, 日本の針葉樹の優占樹種であるスギ (Cryptomeria japonica, ヒノ

キ科スギ属), ヒノキ (Chamaecyparis obtusa, ヒノキ科ヒノキ属), アカマツ (Pinus 

densiflora, マツ科マツ属) からのBVOC排出量を測定し, 光量とBVOC排出量の推計モ

デル式の構築を行った。その後, (2) 温度, 光量制御下で高濃度オゾンの短期暴露とオゾ

ン濃度上昇率が針葉樹からのBVOC排出量に与える影響を評価及び定量化した。(3) 実

験より得られたBVOC排出量の光量依存性が大気質に与える影響を評価するため, 気

象・大気質モデルを構築した。(4) 構築した大気質モデルで, 実験より導いた推計モデ

ル式を用いてモノテルペン排出量の光量依存性によるオゾン濃度への寄与を評価した。

さらに, (5) 高濃度オゾンの観測された被汚染地域への発生源寄与を評価するため, ゼ

ロアウト法を用いてBVOC発生源の地理的感度解析を行った。屋内実験と気象・大気質

モデルにより, BVOC排出量とオゾン濃度の相互作用に関する評価を行った。 

 

1.4 研究目的 

森林植生から排出される BVOC は, 対流圏オゾン生成に重要な役割を果たしている。

その役割を詳密に評価するために, 森林植生からの BVOC 排出量を高精度で推定する

ことが非常に重要である。現在, BVOC 排出量の推定は, イソプレンが葉温と光量依存

性を考慮したモデル式, モノテルペンは葉温依存性を考慮したモデル式が広く用いら

れている (Guenther et al., 1993)。しかし, 葉温にのみ依存性があると考えられてきたモ

ノテルペンについて, Bao et al. (2008) は針葉樹からの BVOC排出量を推定した際, 測定

されたモノテルペンが, 光量が大きいときほど排出量が大きくなることを示した。モノ

テルペンは気孔とクチクラの両方から発生しており, 排出量が光合成速度に関係して

いる可能性を考慮すると, モノテルペン排出量が光量に対して依存性があることを推

察できる。そこで, 本研究では定性的なモノテルペン光量依存性評価について, グロー

スチャンバーを用いて光量がモノテルペン排出量に及ぼす影響を定量評価した。実験結

果から, 新たな光量依存係数を導き, モノテルペン排出量推計モデル式を構築すること

を第 1 の目的とした。 

次に, 対流圏オゾン濃度の上昇が人類の健康や植物に影響を及ぼすことは報告され

ているが, 増加するオゾンが森林植生からの BVOC 排出量にどのような影響を与える

かの研究は, 国内ではほとんどなされておらず, 包ら (2008) の報告にとどまっている。
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地球温暖化による温度上昇や紫外線量の変化を考慮すると, オゾン暴露下での気温や

光量が BVOC 排出量に与える影響及び局所的なオゾン濃度増加, 初期のオゾン暴露濃

度上昇率が BVOC 排出量に与える影響についての評価が急がれる。本研究では, これら

の相互関係や影響について解明することを第 2 の目的とした。 

さらに, 実験により導かれたモノテルペン排出量の光量依存性が大気質に与える影

響について検討するため, 数値モデルを用いて 2010 年夏季の気象・大気質モデルを構

築した。モデルは, 任意の気象条件下で汚染源から排出された汚染物質や前駆体が化学

反応等を経て, 大気質にどのような影響を与えるかを予測するものである。そこで, チ

ャンバー実験より得た推計モデル式を用いて, モノテルペン排出量の光量依存性がオ

ゾン濃度にどのような影響を及ぼすかを解明することを第 3 の目的とした。 

加えて, 高濃度オゾンが度々観測されている夏季の大阪に影響を及ぼす発生源を分

析するため, 各地域の地理的感度解析を行った。ゼロアウト法や後方流跡線解析を利用

して, 近畿圏の発生源からの BVOC が移流, 拡散, 化学反応等によりどのように大阪の

オゾン濃度上昇へ影響するかを評価し, 大気汚染問題の解明に寄与することを第 4の目

的とした。 

そして, これらを複合的かつ精緻に評価し, BVOC 排出量とオゾン濃度の相互作用に

関する影響について包括的に検討することを本研究の目的とする。 

 

1.5 論文の構成 

本論文は, Fig. 1.6 に示すように第 1 章から第 6 章で構成されている。 

第 1 章は, 研究背景, 既存研究, 目的, 方法について示す。 

第 2 章は, グロースチャンバー法, 実験方法, 減衰実験について示す。 

第 3 章は, 気象モデル, 排出インベントリ, 大気質モデルの概要について述べる。 

第 4 章は, モノテルペン排出量の光量依存性, オゾン濃度依存性についての結果を示す。 

第 5 章は, 気象・大気質シミュレーションの精度評価, 光量依存性を考慮したモノテル

ペン排出量がオゾン濃度へ及ぼす影響, オゾン濃度に対する BVOC 排出量の地理的感

度解析について示す。 

第 6 章は, 本研究の結論と今後の展望について述べる。 
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Fig. 1.6 Outline of this paper 

第 6 章 本研究の結論と今後の展望 

第 5 章 BVOC 排出量がオゾン濃度へ及ぼす影響 

 気象・大気質シミュレーションの精度評価 

 光量依存性を考慮したモノテルペン排出量がオゾン濃度へ及ぼす影響 

 オゾン濃度に対する BVOC 排出量の地理的感度解析 

第 3 章 気象/大気質モデルの概要 

 気象モデル 

 排出インベントリ 

 大気質モデル 

第 4 章 BVOC の環境依存性 

 モノテルペン排出量の光量依存性 

 モノテルペン排出量のオゾン濃度 

依存性 

 

第 2 章 BVOC の測定方法 

 グロースチャンバー法 

 実験方法 

 減衰実験 

第 1 章 序論 

 研究背景, 既存研究 

 目的, 方法 



植生起源揮発性有機化合物とオゾンの相互作用に関する研究 

-15- 

 

第 2 章 BVOC の測定方法 

BVOC の主要な発生源は森林植生である。広葉樹はイソプレンを, 針葉樹はモノテル

ペンを排出することが報告されている (Benjamin et al., 1996)。植生がイソプレンを排出

する理由は, 自己防衛のためであると考えられているが, 仮説の域を出ずBVOC排出に

は未知の部分が多い (Sharkey and Singsaas, 1995)。イソプレンやモノテルペンは, 植物細

胞内で生成される 2 次代謝物で色素体において生産される。低沸点化合物であるイソプ

レンは速やかに排出され, 150 °C 以上の沸点を有する化合物が多いモノテルペンは, 体

内の貯蔵組織に蓄えられてから排出されると考えられている (谷, 2010)。 

BVOC の年間排出量は, AVOC の排出量より多いことが報告されている (Guenther, 

2002; Guenther et al., 2006)。BVOC は, 大気中でヒドロキシラジカル等と反応し, 対流圏

オゾンの生成や大気質の変質に影響を与えるため大気化学において非常に重要な化

学種である (Benjamin et al., 1997; Thunis and Cuvelier, 2000; Duan et al., 2002)。その

反応性は, AVOC に比べ高いことも知られている (Carter, 1994; Guenther et al., 1995)。 

BVOC 排出量測定は , 多くがオープントップチャンバー法  (Open Top Chamber 

Method) や枝チャンバー法 (Branch Enclosure Method) 等の屋外実験である (Nunes and 

Pio, 2001; Llusià et al., 2002; 谷, 2010)。オープントップチャンバー法は, 樹木の BVOC

が天蓋部を通じて排気される構造で, 成木を自然条件下でサンプリングが可能な方法

であるが, 長期間の測定が必要である。枝チャンバー法は, 樹木の枝葉をフッ素樹脂の

袋に入れ, BVOC を直接サンプリングできるが, 葉数や個体差に依存し, 測定結果に影

響を及ぼす可能性がある。また, モノテルペンの貯蔵組織を葉の表面に有するスギやマ

ツなどの測定では, 袋の接触などの刺激による影響を避け, 排出が安定するまでに時間

が必要である (谷, 2010)。樹木の種類やテルペンの種類で異なるが, BVOC の排出は葉

温, 相対湿度, 光量, 季節変動など環境因子の影響を受ける (Tingey et al., 1980; Tingey., 

1981; Guenther et al., 1993; Bertin et al., 1997; Ciccioli et al., 1997; Schuh et al., 1997; Vallat et 

al., 2005; Demarcke et al., 2010; Matsunaga et al., 2013)。特に, 葉温と光量の影響は非常に

重要であることが報告されている (Staudt and Lhoutellier, 2011)。葉温に着目すると, 

25 °C から 30 °C に上昇するとイソプレンの排出量は 2 倍, モノテルペンの排出量は 1.5

～2.5 倍になることが報告されている (Guenther et al., 1993)。上記のように, 複数の環境

因子の影響を受ける BVOC だが, 先述の方法では気温, 光量, 湿度の制御ができず, 

日々の気象変化の影響を受ける。加えて, BVOC の自己分解を考慮できない等の欠点も

あり, 外的要因の経時変化による影響を観察することは難しい。そのため, アジアで上

昇傾向にあるオゾン濃度が BVOC 排出量に及ぼす影響について, 短期間での評価が困

難であり, 長期評価にとどまっている。 

本研究では, 気象変化による影響を受けずこれらの欠点を補うことが可能なグロー

スチャンバー法を採用した。本章ではグロースチャンバー法の特徴, 実験方法, 減衰実
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Tenax TA tube 

Sampling pump 

Growth chamber 

Ozone generator 

Ozone monitor 

ATD-50 GC/MS 

Timer 
Photometer 

 

Fig. 2.1 Experimental equipment and procedures for growth chamber method. 

験などについて詳細に述べる。 

 

2.1 グロースチャンバー法 

実験装置は, グロースチャンバー (TGE-3 エスペックミック), 熱脱着装置 (ATD-50 

PerkinElmer: 以下 ATD) を備えたガスクロマトグラフ・質量分析装置  (Gas 

Chromatography/Mass Spectrometer QP2010 島津: 以下GC/MS), 大気サンプリングポンプ 

(SP208-1000Dual ジーエルサイエンス), 捕集剤 Tenax TA (60/80mesh ジーエルサイエン

ス) を充填した捕集管, オゾンフィルター (100% KI 和光純薬), シリカゲル (SiO2 和

光純薬), テフロンチューブで構成した。Fig. 2.1 に実験装置と実験の流れを示す。本研

究で用いたチャンバーは, 温度制御幅が±1 °C, 湿度制御幅が±7% r.h.に制御でき, 精 
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度よく実験をすることができる。チャンバーの容量により成木を入れることができず苗

木での実験となるが, 一度に数本を入れることができ, 樹木によるBVOC排出量に対す

る個体差の影響を軽減することも可能である。 

 

2.2 実験方法 

対象樹木は, 実験前は自然光のもとで管理し, BVOC 排出を安定化させるため前日に

チャンバー内へ同一種 6 本を入れ順化させた。当日, チャンバー内の換気扇 (60 m
3
 

min
-1

) を起動させ十分に通気し, BVOC が検出されていないことを確認した後, 温度と

光量を制御し実験を行った。チャンバー内の標準温度は, Guenther et al. (1993) によって

提案された 30 °C に設定し, 相対湿度を 50%に制御した。サンプリングポンプを用いて

200 mL min
-1の流量で 60分間, チャンバー内の試料大気を樹木と同じ高さに設置したテ

フロンチューブに誘導しシリカゲル, オゾンフィルターでフィルタリング後, 捕集管に

BVOC を採取した。捕集管内の試料は, 直ちに ATD, GC/MS を用いて定量化した。 

実験終了後, 使用した 6 本の樹木から最も葉の多い苗木と葉の少ないものを選択し, 

全ての葉を切り取り 105 °C で 24 時間乾燥後, 重量測定を行った。その平均値を用いて

樹種ごとの葉の総乾燥重量を求めた。その後, 樹木毎の BVOC 排出速度を算出, 算出値

を葉の総乾燥重量で除して, 乾燥重量・単位時間あたりの BVOC 排出量を求めた。 

 

2.2.1 光量依存性実験 

BVOC 排出量の推定は, イソプレンが葉温と光量依存性を考慮したモデル式, モノテ

ルペンは葉温依存性を考慮したモデル式が広く用いられている (Guenther et al., 1993)。

樹木の葉温が排出量に支配的な影響を与えると考えられてきたモノテルペンの排出に

ついて, Bao et al. (2008) は針葉樹からのモノテルペン排出量が光量の影響を受け増加

することを示した。モノテルペンが気孔とクチクラの両方から発生することを考慮する

と, 光量がモノテルペン排出量に与える影響についての解明する必要がある。そこで, 

Bao et al. (2008) が定性的に評価したモノテルペンの光量依存性について, グロースチ

ャンバーを用いて光量を制御し, モノテルペン排出量と光量の定量評価を行った。 

標準条件での光量評価を行うため, 標準温度下でチャンバー内に光量子センサー 

(PAR- 01 PREDE) を入れ, チャンバーの PAR (光合成有効光子量) を各実験で 0, 500, 

700, 850, 1200, 1400 μmol m
-2

 s
-1

 の 6通りに制御し, 樹木から排出されるモノテルペンの

光量依存性を検討した。Table 2.1 に PAR と葉温の関係を示す。樹木は光の影響で葉温 

 

Table 2.1 Relationship between PAR and leaf temperature. 

PAR (μmol m
-2

 s
-1

) 0 500 700 850 1200 1400 

leaf temperature (°C) 30 32 33 34 36 38 
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が変化するので, 赤外線サーモグラフィ装置 (サーモトレーサ TH9100MR/WR 日本ア

ビオニクス) を用いて, 葉の表面温度を撮影・測定すると, PAR 増加に伴い葉温上昇が

観察された。グロースチャンバーを用いてモノテルペンの光量依存性を評価し, 光量依

存係数を導き, 新たなモノテルペン排出量の推定モデルを構築することを実験の目的

とした。 

 

2.2.2 オゾン暴露実験 

オゾン暴露が樹木の成長や生理機能に影響を及ぼすことは広く知れられているが, 

オゾン暴露が BVOC 排出に与える影響についての研究は, 報告例が少なく低濃度の長

期暴露評価にとどまっている (伊豆田ら, 2001; Kohno et al., 2005)。本研究では, 高濃

度・短期オゾン暴露がモノテルペン排出量に与える影響を評価することを目的とした。

また, オゾン暴露時における光量依存性や温度依存性, オゾン濃度上昇率が排出量に及

ぼす影響についても検討した。 

標準条件でのオゾン暴露評価のため, 標準温度下の光量を設備の制約上 850 μmol m
-2

 

s
-1とした。Guenther モデルでの標準光量は 1000 μmol m

-2
 s

-1であるが, 光量変化に伴う

排出量変化を精緻に評価しておらず , 設定光量との差は軽微であると考えられる 

(Guenther et al., 1993)。そこでオゾン暴露実験は, 温度 30 °C, 相対湿度 50%, 光量 850 

μmol m
-2

 s
-1を標準条件とした。 

オゾン発生器 (VR-40 オーニット) をチャンバー内に設置し, 発生器で10 mg h
-1にな

るようにオゾン濃度を上昇させ, タイマー (KV-P16 キーエンス) を用いて, 濃度を 100 

ppb に制御した。オゾン濃度の経時変化は, オゾン測定器 (MODEL-1150 ダイレック) 

を用いてモニタリングした。Fig. 2.2 にオゾン濃度の経時変化を示す。タイマー制御で

あるが, 100±20 ppb にオゾン濃度を制御できており, 実験条件を充足していると考えら

れる。BVOC 捕集時には, 吸湿や捕集管内で BVOC とオゾンの反応を防ぐため, シリカ

ゲルとオゾンフィルターをサンプリングポンプ前に接合後, 実験を行った。標準条件 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.2 Relationship between ozone concentration and time of exposure. 
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でのオゾン暴露実験に加え, オゾン暴露下での温度依存性 (25 °C, 35 °C) や光量依存性 

(0 μmol m
-2

 s
-1

, 1200 μmol m
-2

 s
-1

), 暴露初期のオゾン濃度上昇率 (25 ppb h
-1

, 50 ppb h
-1

) 

が BVOC 排出量に及ぼす影響についても検討した。すべてのオゾン暴露実験で, 暴露前

の試料を 1 時間毎に 4 時間連続して採取・分析後, 平均化し BVOC 標準排出量を算出し

た。その後, オゾン暴露を 16 時間連続して行い, 1 時間毎に採取・分析し, オゾン暴露

が BVOC 排出量に与える影響について評価した。 

 

2.2.3 供試樹木 

実験の供試樹木として, 近畿圏の優先樹種で BVOC の主要な発生源である針葉樹の

スギ (Cryptomeria japonica, ヒノキ科スギ属), ヒノキ (Chamaecyparis obtusa, ヒノキ科

ヒノキ属), アカマツ (Pinus densiflora, マツ科マツ属) の 3 種類を選んだ。これらの樹木

は高さ 80～100 cm のものを選定し, 園芸用培養土 (赤玉土, バーク堆肥, ピートモス, 

鹿沼土の混合土) を詰めたポリプロプレン製植木鉢 (直径: 20 cm, 高さ: 20 cm) に植栽

し, 実験に用いた。供試樹木は, BVOC 排出量の測定時以外, 自然光のもとで管理した。

Fig. 2.3 に対象樹種の葉の形状を示す。 

 

2.2.4 対象物質 

BVOC は多種であるが, 本研究では Isoprene, 9 種類のモノテルペン (α-Pinene, 

β-Pinene, β-Myrcene, α-Terpinene, γ-Terpinene, p-Cymene, d -Limonene, α-Phellandrene, 

Terpinolene), 4 種類のセスキテルペン (β-Caryophyllene, Aromadendrene, α-Humulene, 

β-Farnesene) の計 14 種類を対象とした。Table 2.2 に対象とした BVOC の特性を示す。 

 

2.2.5 分析方法 

2.2.5.1 定性分析 

捕集管内の試料は, 熱脱着装置により脱着させ, GC カラムに導入し物質の保持時間

差により分離させた後, MS 部でイオン化させ, 同定を行った。ATD, GC/MS の条件は,  

     

 

 Fig. 2.3 Leaf shapes of coniferous trees. 

 

Cryptomeria japonica      Chamaecyparis obtusa        Pinus densiflora 
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Table 2.2 Chemical characteristics for 14 kinds of BVOC. 

 

Compound Molecular formula Chemical structure Molecular weight d (g/mL) b.p.(°C)

166-168

β-Farnesene C15H24 204.35 0.807 206

α-Terpinene C10H16 136.23 0.84 173

γ-Terpinene C10H16 136.23 0.84 183

Aromadendrene C15H24 204.35 0.91 261-263

α-Humulene C15H24

Terpinolene C10H16 136.23 0.8628 186-187

β-Caryophyllene C15H24 204.35 0.901 129-130

α-Phellandrene C10H16 136.23 0.86 171-172

d-Limonene C10H16 136.23 0.845 175-176

176-178

166-168

p-Cymene C10H14 134.22 0.857

β-Myrcene C10H16 136.23 0.8

204.35 0.889

β-Pinene C10H16 136.23 0.87 164-166

α-Pinene C10H16 136.23 0.86 155-156

Isoprene C5H8 68.12 0.681 34
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以下のように設定した。ATD でのチューブオーブン温度は 280 °C, コールドトラップ温

度は-30 °C, 二次脱着温度は 280 °C, 加熱バルプ温度は 200 °C, トランスファーライン

温度は 200 °C に設定した。捕集管は熱脱着装置で 2 分間パージ後, 280 °C で 10 分間脱

着し, その後-30 °Cで高速にトラップへ吸着, 再びトラップから脱着し, 38.8分間 GCカ

ラムに送入した。GC カラムは, J&W Scientific 製 DB-5MS キャピラリカラム (膜相：0.25 

μm, 30 m length×0.25 mmi.d.) を選択し, カラムのオーブン温度は 35 °C で 2 分間保ち, 

20 °C/minで70 °Cまで上昇させて, そこから1 °C/minで80 °Cまで上昇, さらに2 °C/min

で 125 °C まで昇温させた後, 30 °C/min で 200 °C まで上昇させた。キャリヤーガスとし

ては, 高純度 (99.999%) のヘリウムガスを用いた。MS 部の設定はイオン源温度を

200 °C に, インターフェイス温度を 200 °C に設定し, 溶媒溶出時間を 0.5 分に設定し, 

開始時間と終了時間をそれぞれ 1.0 分, 38.8 分に設定した。スキャンモードを選択し, イ

ンターバルを 0.5 秒に設定した。開始 m/z 及び終了 m/z を 40, 400 に設定し, しきい値を

0 に設定した。そして, イオン化モード EI (Electron Ionization Method) を選択した。 

定性分析で得られたデータは次の手順に従い処理した。スキャンモードによる定性分

析結果は, クロマトグラムとマススペクトルが表示される。クロマトグラム上で拡大し, 

検定対象になる物質のマススペクトルを得て, バックグランドを削除し, ライブラリ検

索を行った。そして, マススペクトルデータベースを表示させ, 未知成分のマススペク

トルをデータベースと比較することにより同定を行い, 標準試料の保持時間との一致

を確認することにより検定した。本研究で対象とした BVOC の保持時間を Table 2.3 に

示す。 

 

 

Table 2.3 Retention time of BVOC in gas chromatography. 

 

 

 

 

Compound Retention time 

(min) 

Compound Retention time 

(min) 

Isoprene 1.46 d-Limonene 9.8 

α-Pinene 6.37 α-Phellandrene 11.4 

β-Pinene 7.68 Terpinolene 13.18 

β-Myrcene 8.1 β-Caryophyllene 32.3 

α-Terpinene 8.76 Aromadendrene 33.51 

γ-Terpinene 9.22 α-Humulene 34.75 

p-Cymene 9.6 β-Farnesene 35.24 
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2.2.5.2 定量分析 

定量メソッド中の GC と熱脱着装置の設定は, 定性分析の設定を用いた。MS の設定

は, 測定モードを SIM モードに切り替え, インターバルを 0.2 秒に設定した。14 種類

の物質を保持時間により 8 グループに分け, 定量メソッドを作成した。検量線の作成

には 100 ppm の BVOC 標準試料を用い, 絶対検量線法で作成した。Fig. 2.4 に各 BVOC

の検量線を示す。これらの検量線の相関係数はすべて 0.96 以上で, 十分な精度で定量

できている。 
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Fig. 2.4 Calibration curve for 14 kinds of BVOC.

 

 

 Fig 2b Shape of coniferous trees 
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Fig. 2.4 (continued)
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2.3 BVOC 発生量の算出と減衰実験 

2.3.1 BVOC 減衰速度係数算出方法 

チャンバー実験では, チャンバー内の壁面沈着や漏れ, BVOC の自己分解が生じる。

樹木からの BVOC 排出量を正確に評価するためには, これらを考慮しなければならな

い。チャンバー内濃度変化は, (2.1) 式で表現される。 

C
V

G

dt

dC
         (2.1) 

C : BVOC 濃度 (mol m
-3

), t : 時間 (s), G : 樹木からの BVOC 排出速度 (mol s
-1

), V :

チャンバーの体積 (m
3
),  : BVOC の自己分解, 壁面沈着, チャンバーからの漏れによ

る減衰速度 (s
-1

) である。BVOC 濃度C は (2.2) 式により求めることができる。 

Mqt

dC
C

S

GC

1000
         (2.2) 

GCC : GC/MS からの測定値 (pL), d : BVOC 密度 (g mL
-1

), q : サンプリング流量 (mL 

min
-1

), St : サンプリング時間 (min), M : BVOC 分子量 (g mol
-1

) である。ある時刻の濃

度を
nC , t 進んだ次の時刻の濃度を 1nC とすると樹木からの BVOC 排出速度G は 

(2.3) 式から算出できる。減衰速度 は, 供試樹木を入れない濃度減衰実験により求め

ることができる。 

 
 t

tCC
VG

nn













exp1

exp1

      (2.3) 

本研究では, 樹木からの排出量が多かったモノテルペンを対象に標準試料を用い, チャ

ンバー内を暗室条件下にし, 減衰実験を行った。Fig. 2.5 に減衰実験の結果を示す。モノ

テルペンの種類によって減衰速度が大きく異なることが分かった。減衰実験の決定係数

R
2は 0.93 以上となり, 実験精度に問題がないことも確認した。図中の直線の勾配から減

衰速度 を算出し, BVOC 排出量の補正を行い, BVOC 排出量を求めた。 
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2.3.2 光量と BVOC 濃度減衰 

BVOCの光分解性は, 各化合物の性状により異なる。対象としたモノテルペンについ

て, 標準温度下でPARを0, 1400 μmol m
-2

 s
-1

 に制御し光量減衰実験を行った。Table 2.4

に減衰速度結果を示す。α-Pinene, β-Pinene, β-Myrcene, α-Phellandrene, d-Limonene, 

γ-Terpineneは, 光量増加に伴い減衰速度が増加した。特にγ-Terpinene, α-Phellandreneの減

衰速度変化は大きく, 光量の影響を強く受けることを示した。一方, α-Terpinene, 

p-Cymene, Terpinoleneは, 光量による影響をほとんど受けず, 減衰速度の変化は観察さ

れなかった。 

 

2.3.3 オゾンと BVOC の反応定数算出方法 

オゾン暴露実験では, BVOC とオゾンが共存しており BVOC の酸化反応により, メタ

クロレイン, メチルビニルケトン, ピノンアルデヒド, ホルムアルデヒド, アセトン等

の含酸素化合物が生成する (Killus and Whitten, 1984; Hatakeyama et al., 1991)。BVOC と

オゾンは, 様々な要因により濃度が減少する。BVOC とオゾンの 1 次反応を仮定すると, 

BVOC のチャンバー内濃度変化は, (2.4) 式で示される。 

 3 kCC
V

G

dt

dC
        (2.4) 

Fig. 2.5 Decay experiment for nine kinds of monoterpenes at standard condition in the 

growth chamber. 

 

 

 Fig 2b Shape of coniferous trees 
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 3 : オゾン濃度 (mol m
-3

), k : BVOC とオゾンの反応定数 (m
3
 mol

-1
 s

-1
) である。濃度

減衰の影響を算出するため, 標準温度下で BVOC 標準試料をチャンバー内で気化させ, 

減衰実験により, 減衰速度 とオゾンとの反応定数 k を求めた。Fig. 2.6 に排出量が多

かった α-Pinene, β-Pinene, d-Limonene のオゾン暴露による濃度減衰結果を示す。実験よ

り, α-Pinene, β-Pinene, d-Limoneneの減衰速度は 4.97×10
-5

 s
-1

, 3.67×10
-5

 s
-1

, 5.83×10
-5

 s
-1

, オ

ゾン反応定数は 53.9 m
3
 mol

-1
 s

-1
, 11.6 m

3
 mol

-1
 s

-1
, 26.8 m

3
 mol

-1
 s

-1となった。これらのモ

ノテルペンとオゾンの反応定数は既存の研究 (Atkinson et al., 1982; 1990; Bao et al., 

2008) の数値の範囲に収まっており, 本実験の妥当性を示している。 

 

Table 2.4 Decay coefficients (s
-1

) for nine kinds of monoterpenes at an air temperature of 30 °C 

and PAR flux of 0 and 1400 μmol m
-2

 s
-1 

in the growth chamber. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monoterpene 0 μmol m
-2

 s
-1

 1400 μmol m
-2

 s
-1

 

α-Pinene 3.1×10
-5

 6.8×10
-5

 

β-Pinene 2.5×10
-5

 5.9×10
-5

 

β-Myrcene 2.5×10
-5

 1.4×10
-4

 

α-Phellandrene 7.1×10
-5

 9.2×10
-4

 

α-Terpinene 1.4×10
-4

 1.4×10
-4

 

p-Cymene 2.5×10
-5

 2.5×10
-5

 

d-Limonene 5.3×10
-5

 7.1×10
-5

 

γ-Terpinene 6.2×10
-5

 2.8×10
-4

 

Terpinolene 1.2×10
-4

 1.2×10
-4

 

Fig. 2.6 Decay experiment for three dominant monoterpenes under ozone exposure 

in the growth chamber. 

 

 

 Fig 2b Shape of coniferous trees 
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第 3 章 気象/大気質モデルの概要 

大気環境は極めて複雑で, 気象学, 大気化学などの多様な科学的知見を利用し評価・

予測を行わなければならない。大気中の汚染物質濃度は, 温度や風などの気象条件だけ

でなく, 排出量の時間変化の影響も受ける。そのため, 大気質シミュレーションには気

象モデルから算出した気象データ, 排出インベントリを基にした排出量データが必要

である。大気質モデルは, これらのデータをもとに, 輸送, 反応, 沈着による汚染物質の

濃度変化を計算し, 大気質のシミュレーションを行うものである。 

気象モデルとして, コロラド州立大学が開発した領域気象モデルである RAMS (The 

Regional Atmospheric Modeling System), 米国大気研究センター等が開発したメソスケー

ルモデルで MM5 (The Fifth-generation Mesoscale Model) や WRF (The Weather Research 

and Forecasting) が利用されている (Pielke et al., 1992; Grell et al., 1994; Skamarock and 

Klemp, 2008; Skamarock et al., 2008)。これらの気象モデルは, 完全圧縮非静力学モデルで

多数の物理過程を内挿し国内外の研究機関によって利用されているが, 空間差分, 座標

系, 気象場の補正機能などの一部が異なっている (鵜野ら, 2005; 斉藤ら, 2012; Wong et 

al., 2012)。気象モデルによる気象場は, 大気質モデルによる汚染物質の濃度や沈着量分

布の計算に強く影響する。 

排出インベントリ (Emission Inventory) は, 全球から地域規模に至るまで多くのもの

が開発されている。全球規模の EDGAR (The Emission Database for Global Atmospheric 

Research) や GEIA (The Global Emissions Inventory Activity), 地域規模でアジア対象の排

出インベントリである東アジア大気汚染物質排出量グリッドデータベース (The East 

Asian Air Pollutant Emissions Grid Database: 以下 EAGrid) や REAS などが知られている 

(Olivier et al., 1996; Guenther et al., 1995; 神成ら, 2003; Kannari et al., 2007; Ohara et al., 

2007; Kurokawa et al., 2013)。排出インベントリは, 発生源別の大気汚染物質等の排出量

が示されており, 人為・自然起源由来, 地域別に分類され, 目的に応じて選択し使用す

ることが必要である。 

大気質モデルは, 発生源から大気中に排出された汚染物質の量と環境中の化学物質

濃度の関係を数式で表したもので, ソースモデルとレセプターモデルの 2種類に大別さ

れる。ソースモデルでのシミュレーションは, 固定及び移動発生源の排出量情報から, 

移流, 拡散, 化学変化, 沈着などを計算し, 任意の点での濃度を予測するもので, レセ

プターモデルは, 任意の観測点での実測値から, 各発生源の濃度寄与を推定するもので

ある。本研究では, 近畿圏の大気質が各地域のオゾン濃度に与える影響を検討するため, 

ソースモデルを用いた。 

この章では, 気象モデル, 排出インベントリ, 大気質モデルの特徴を記述する。 
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3.1 気象モデルの概要 

3.1.1 WRF の概要 

WRF は, 1990 年代後半から米国大気研究センター (National Center for Atmospheric 

Research: 以下 NCAR) と米国環境予測センター  (National Centers for Environmental 

Prediction: 以下 NCEP) 等が開発した非静力学・完全圧縮系の次世代メソスケール数値

モデルで , 現業  (天気予測 ) のために開発された WRF-NMM (WRF-Nonhydrostatic 

Mesoscale Model) と大気研究のために開発された WRF-ARW (The Advanced Research 

WRF) に分類される。本研究では WRF-ARW のバージョン 3.5.1 を用いた。その特徴を

以下に記す。詳細は, Skamarock and Klemp (2008), Skamarock et al. (2008), 日下 (2009), 

嶋寺 (2011) で述べられている。 

 

1. Fortranで記載されたオープンソースの数値モデルで, LinuxなどのUNIX系OSで運用

可能で, 並列計算にも対応している。 

2. 鉛直方向の運動を静水圧近似せず, 直接計算するので時間は要するが再現性は高い。

準圧縮系や非弾性系のモデルよりも精度が高い。 

3. 実際の気象場だけでなく, 理想条件下でのシミュレーションも可能である。 

4. 地形準拠座標系のため, 形状に対応したモデル構築が可能である。 

5. nesting 機能を有するため, 計算領域は数十メートルから全球スケールに対応し, 複数

領域の同時計算が可能である。 

6. データ同化, 多様な物理過程が選択可能である。 

7. 様々な大気質モデルが WRF の利用を前提に設計されている。また, 化学反応過程が

組み込まれたオンラインカップルモデル WRF-Chem (WRF model coupled with 

Chemistry) (Grell et al., 2005) も開発されている。 

8. 入出力のファイルは, 気温, 気圧, 風速などの多次元データを格納し, 科学データの

作成やアクセス等をサポートするために設計された NetCDF (Network Common Data 

Form) ファイル形式が採用されている。 

9. 第5世代のメソスケールモデルであるMM5 の後継で, 高精度な計算スキームや物理

モデルが採用され 130 か国以上で運用されている。 

10. NCAR のメソ, マイクロスケール気象部 (The Mesoscale and Microscale Meteorology 

Division, MMM) がシステムの管理, サポートやモデル更新だけでなく, ユーザー支

援, ワークショップやバク情報の公開など積極的な情報交換の場を設けている

(http://www2.mmm.ucar.edu/wrf/users/)。 

 

WRF を利用した研究は, 気象, 農学, 工学分野など多岐にわたり, 最近では, 集中豪

雨や台風による局所的な気象変動の解析 (Shem and Shepherd, 2009), 作物の収量変動 
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Fig. 3.1 Schematic of WRF vertical coordinate. 

 

(田中ら, 2012), 都市化が環境に及ぼす影響 (Miao et al., 2009, Lin et al., 2008), 地球温暖

化に伴う気温上昇 (Porter et.al., 2012) なども報告されている。WRF の気象場シミュレ

ーションは, WPS (The WRF Preprocessing System) の入力データをもとに行われる。WPS

は, 地形データの作成 (geogrid.exe の実行), 大気データの解凍 (ungrib.exe の実行), 地

形データ・大気データの合成 (metgrid.exeの実行) から構成される。Fig 3.1にWRF-ARW

の概略を示す。 

geogrid は , 水平方向のモデル領域や格子解像度を設定し ,米国地質調査所  (U.S. 

Geological Survey, USGS) が作成した地形・土地利用, 土壌区分データ等のもとで, 各格

子に水平位置 (緯度・経度), 垂直位置 (高度), 土地被覆などの水平方向の空間情報を含

む静的な地理データを内挿したファイルを作成する。 

ungribはGRIB (GRIdded Binary) 形式の大気や海面水温などの気象場データを解凍し, 

読み込んで中間ファイルを作成する。metgrid は, 水平方向にジオグリッドしたモデルに

ungrib によって抽出された気象場を内挿する。 

その後, metgridの出力ファイルをもとに real.exeにより初期条件, 側面境界条件, 底面

境界値及び 4 次元データ同化 (Four-Dimensional Data Assimilation, FDDA) のファイルを

作成する。real.exe で作成したこれらのファイルを入力し, wrf.exe により, 移流・拡散, 雲

微物理, 放射, 地表面, 大気境界層 (Planetary Boundary Layer, PBL), 積雲過程などにつ

いて計算される。 

 

3.1.2 基礎方程式と物理過程 

WRF の基礎方程式は, 静力学平衡の近似を用いない非静力学系で, 大気の圧縮性を

考慮し, 密度に関する近似を行わない完全圧縮型の数値予測モデルである。 

基礎方程式は, 2 つの水平方向と 1 つの鉛直方向の大気の流れを支配する運動方程式, 

連続の式 (質量保存の式), 大気の温度変化に関する熱力学方程式, 水蒸気・雲水・雨・

氷・雪・霰などの混合比の保存からなる水蒸気の方程式, 状態方程式等である。WRF

は, フラックス形式のオイラー方程式を, (3.1) 式で表される地形準拠の静水圧座標系 
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Fig 3.2 Schematic of WRF vertical coordinate (Skamarock et al., 2008). 
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(質量座標系) (Laprise, 1991) において解くことにより, 大気運動を計算する。 

d

dhtdh pp





         （3.1） 

dhtdhsd pp          （3.2） 

ここで, dhP : 圧力の静水圧成分, dhtP : 計算領域上端の圧力, dhsP : 地表面の圧力, 
d : 

単位面積当たりの乾燥空気の質量である。は, 地表面の 1 から計算領域上端の 0 まで

の範囲で時間により変化する (Fig. 3.2)。基礎方程式は, 下記のように記述できる。 

   
Uxt

FpuU  ,PV  （3.3） 

   
Vyt

FpvV  ,PV  （3.4） 

    Wdt FpwW   ,PV  （3.5） 

    0 V
td  （3.6） 

 


 F
t

 V  （3.7） 

   0
1




gWdt  V  （3.8） 

   
mQmtm

FQQ  V  （3.9） 

  dmd pRpp 00 /  （3.10） 

   
earth on the distance

,
,

yx
mm yx


  （3.11） 

(3.3)～(3.5) 式は運動方程式, (3.6) 式は連続の式, (3.7) 式は熱力学方程式, (3.8) 式はジ
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オポテンシャルの時間変化, (3.9) 式は水蒸気・雲水・雨水・氷・雪・霰などの混合比の

保存からなる水蒸気の方程式 , (3.10) 式は状態方程式を表す。ここで,  yx,  は, 

 yx,  座標における単位面積当たりの乾燥空気の質量を表す。各変数は yd muU / , 

xd mvV / , yd mwW / , yd m/  , d , 
mdm qQ  と定義される。

  wvu ,,v  は, 水平2方向および鉛直 1方向の速度成分, は反変鉛直速度成分, は

温位,  ,,, rcvm qqqq   は水蒸気, 雲水, 雨水などの混合比 (
mq の数は雲物理モデル

に依存), m はマップスケールファクター (格子上の距離を地球上の実際の距離で除し

たもの) を表す。また,  gz  はジオポテンシャル, g は重力加速度,  は比容積, 

 CvCp /  は定圧比熱と定積比熱の比, 
dR は乾燥空気の気体定数, 

m は仮温位, 
0p

は基準気圧 (=1000 hPa) である。添え字の x , y ,  , tは各々の偏微分, (3.3)～(3.5) 式

の左辺第 3 項は気圧傾度項, (3.3)～(3.5), (3.7), (3.9) 式の右辺は物理過程, 乱流混合, 球

面の投影, 地球の自転から生じる強制項を表す。WRF の物理過程は, 雲微物理過程・積

雲過程・PBL 過程・地表面過程・放射過程に大別され, 各々に複数のオプションが用意

されている。Fig. 3.3 に各物理過程が他の過程に及ぼす影響を示す。以下に概略を述べ

る。 

 

(1) 雲微物理過程 

大気中の水は, 多様な大きさ・形態で存在し, 相変化している。バルク法による分類

では水蒸気, 雲水, 雨, 氷, 雪, 雹などの状態に分けることができる。これらの状態の水

についてそれぞれの混合比や個数濃度を計算し, それらの相互作用を扱う。相変化など

に伴う大気との熱交換, 雲粒・雨粒の生成・発達過程などが考慮され, 水平計算格子で

解像されるモデルグリッドスケールの雲による降水が計算される。 

(2) 積雲過程 

計算格子では解像されない水平スケールの小さい (サブグリッドスケール) の対流

雲の影響を扱う。サブグリッドスケールの上昇・下降流および雲の周囲の補償流が表現

され, それに伴う対流性の降水が計算される。用意されている積雲スキームは, 概ね水

平格子サイズが 5～10 km 以上の場合を想定している。 

(3) 大気境界層過程 

地表面過程からの熱・水分フラックスをもとに, 乱流輸送によるサブグリッドスケー

ルの鉛直フラックスを扱う。PBL スキームは, 安定・不安定層における地表面からのフ

ラックスのプロファイル, 大気中の温度・水分・水平方向の運動量の鉛直勾配を決定す

る。また, 接地境界層過程において接地層の大気の状態を決定する。 

 

 



第 3 章 気象/大気質モデルの概要 

-32- 

 

(4) 地表面過程 

土壌の温度や含水率, 地表面の熱収支, 積雪, 土地利用ごとの性質, および接地層の

大気の状態, 下向き放射, 雲微物理・積雲過程からの降水などの他の過程からの入力を

もとに, 地表・海・氷面における熱・水分フラックスを計算する。水平格子間の相互作

用については考慮されていない。 

(5) 放射過程 

上向き放射は, 地表面過程において, 長波放射については土地利用と表面温度, 短波

放射については地表面アルベドによる反射で決まる。それをもとに, 長波放射について

は, 水蒸気, CO2, O3などのガスや雲による赤外放射の吸収・放出過程を扱う。短波放射

については, 太陽放射の大気における吸収・反射・散乱過程を扱い, 大気の加熱量や地

表面熱収支を解くための下向き放射量を決める。 

FDDAまたはナッジングは, 時空間内挿した解析値あるいは観測値とモデル予測値の

誤差に係数をかけた外力項を方程式に付加し, モデル予測値を解析値あるいは観測値

に近づけるための手法である。 

   
 








0

ˆWGF
t

      （3.12） 

ここで,  F は通常のモデル予測による変数
 の時間変化, 


G はナッジング係数 

(s
-1

), 


W はさらなるナッジング制限のための重み, 
0

ˆ
 は時空間内挿した解析値あるい

は観測値である。WRF は, 風速の東西・南北成分, 温位, 水蒸気混合比に対して FDDA

が適用できる。FDDA には, モデル予測値や観測値をもとにした格子状の解析データを

用いる解析値ナッジングと, 観測値を直接用いる観測値ナッジングがある。解析値ナッ

ジングは通常の初期・側面境界の作成のために用意している解析データを用いるため, 

より容易に行うことができる。 
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Fig. 3.3 Interactions of WRF physical processes. 
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3. 2 排出インベントリ 

排出インベントリは, 排出源の化学物質の分析等を通して, どの地域から汚染物質や

前駆体が排出されているかを示すものである。発生源区分は, 事業所や工業過程等の人

為起源別・植生や火山等の自然起源別, 固定・移動発生源別, 物質別に詳細に整理され, 

特定地域の汚染物質等の排出量情報を与える。汚染物質の排出量は, 単位活動量当たり

の汚染物質の排出量を示す排出係数 (Emission Factor) と走行距離, 消費量や製造量等

を示す活動量 (Activity) の積により, 任意地域の排出量が算出される。排出インベント

リは, 大気質モデルの入力に利用され, 大気汚染対策の重要なツールである。 

全世界対象の排出インベントリとして , オランダ環境評価保護庁等が開発した

EDGAR, スウェーデン王立科学研究所等が開発した GEIA などがある。EDGAR を用い

た温室効果ガスの推計 (Olivier et al., 1999), GEIA を利用したイソプレン排出量の推定 

(Zare at al., 2012) が報告されている。しかし, これらの排出インベントリでは, 地域の

排出源や排出係数を十分に考慮できていないため, 欧州, 米国や日本などでは地域の実

態を考慮したものが作成されている。欧州環境庁 (European Environment Agency: 以下

EEA) が, CORINAIR (Core Inventory of Air Emissions) を米国環境保護庁 (Environmental 

Protection Agency: 以下 EPA) は, NEI (The National Emissions Inventory) などのインベン

トリを作成している。日本では, アジア対象のインベントリとして国立環境研究所等が

開発した EAGrid, 国立環境研究所や海洋研究開発機構などの研究グループが開発した

REAS などがある。EAGrid は, 中国, 韓国, 日本などを対象とした詳細な排出インベン

トリで, 発生源ごとの排出量推計も報告されている (Kannari et al., 2007)。REAS は, 工

業生産量, 燃料消費量や自動車の走行量等の統計データと排出係数等をもとに地域・発

生源別に大気汚染物質を算出可能なインベントリで, 2020年迄の推計データが示されて

いる。REAS を用いた汚染物質の推計は, 農業分野でも可能で, 水田や家畜からのメタ

ン排出量なども報告されている (Yamaji et al., 2003; Yan et al., 2003)。また, REAS により

1980～2003年でアジア地域の燃料消費量は約 2倍, NOX, NMVOC排出量がそれぞれ 3, 2

倍増加していることも報告されており, その傾向が 2020 年迄続くことも示されている 

(Ohara et al., 2007)。人為発生源は事業所, 家庭, 焼却炉等の固定発生源や自動車, 船舶等

の移動発生源など細分化され, 対象物質も VOC, SO2, NOX, CO, NH3, PM など多岐にわ

たる。一方, 自然発生源として植生起源の VOC, 火山からの SO2などの排出インベント

リが作成されている。上記のように多くの排出インベントリが存在する。 

国内の BVOC 排出量インベントリとして EAGrid2000-Japan が用いられることも多い

が, BVOC の排出量推計モデルとして, EPA が開発した BEIS (The Biogenic Emission 

Inventory System) (Pierce and Waldruff, 1991) や NCAR が開発した MEGAN などがあり, 

広範囲で利用されている (Itahashi et al., 2013; Kajino et al., 2013; Chatani et al., 2014)。ま

た, モデルによる排出量推計の影響を評価するため, BEISとMEGANの比較も行われて
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いる (Carlton and Baker, 2011; Zare at al., 2012)。 

 

3.3 大気質モデルの概要 

3.3.1 CMAQ の概要 

大気質を検討するため, EPA が主導で開発したオイラー型の 3 次元大気質シミュレー

ションモデルである CMAQ (The Community Multiscale Air Quality modeling system) を使

用した。詳細は, Byun and Schere (2006), 嶋寺 (2011) で述べられている。 

本研究では CMAQ のバージョン 5.0.1 を用いた。その特徴を以下に記す。 

1. Fortranで記載されたオープンソースの数値モデルで, LinuxなどのUNIX系OSで運

用可能で, 並列計算にも対応している。 

2. 入出力ファイルは, 科学データの作成やアクセス等をサポートするために設計され

たNetCDF に基づいた Input/Output Applications Programming Interface (I/O API) 形式

で統一されている。 

3. 多種の前駆体と化学物質を同時に取り扱うことができる。様々な反応式を内包して

いる。 

4. 広域から狭域に情報を渡せる 1 way nesting 機能を有するため, 計算領域は狭域から

全球スケールに対応し, 複数領域の大気環境を同時に計算することが可能である。

バックグラウンド濃度を評価することもできる。 

5. 気象モデル WRF と連携してモデル計算を行えるように設計されているため, 特殊

な気象状況での計算も可能である。 

6. シミュレーション条件に合わせて, 気相反応, エアロゾル, 雲スキームなどを選択

することができる。利用者によるスキームの追加も可能である。 

7. 大気汚染物質の移流, 拡散, 化学反応, 沈着等のプロセス解析が可能である。 

8. Community Modeling and Analysis System (CMAS) センター が, トレーニング, 情報

交換, バグ情報の公開やオンライン窓口などを開設しユーザー支援を行っている。

また, 気象学, 水文学, 排出量や他の環境モデル等の共同開発を可能にしている 

(https://www.cmascenter.org/index.cfm)。 

 

CMAQ は世界中で広く使用されており , その適用例は, 対流圏オゾンの挙動解析 

(Tong and Mauzerall, 2006; Jiménez et al., 2006; Bao et al., 2010), 大気中の微小粒子等の長

距離輸送による影響の解析 (Zhang et al., 2004; Shimadera et al., 2013; 2014), エアロゾル

過程の解析 (Tesche et al., 2006; Zhang et al., 2010) など多岐にわたる。 

Fig. 3.4 に CMAQ の 5 つのプログラムを示す。CMAQ は, 初期条件プロセッサー 

(Initial condition processor: 以下 ICON), 境界条件プロセッサー  (Boundary condition 

processor: 以下 BCON), 晴天時光解離反応定数プロセッサー (Clear-sky photolysis rate 
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calculator: 以下 JPROC), 気象化学インターフェースプロセッサー  (Meteorology 

-Chemistry Interface Processor: 以下 MCIP), CMAQ 化学輸送モデル (CMAQ Chemical 

Transport Model: 以下 CCTM) で構成されている。CCTM は ICON, BCON, JPROC, MCIP

の 4 種の入力データをもとに大気質シミュレーションを行う。ICON と BCON は, シミ

ュレーション開始時において, モデル化した領域における気相化学種, エアロゾル, 非

反応化学種等の大気汚染物質および前駆体などの微量化学種の初期濃度場と側面境界

濃度場を作成するプログラムである。ICON はモデル化した領域内のすべてに対して, 

BCON はモデル化した領域境界に対して化学種濃度を作成する。入力データとして, ク

リーンな対流圏大気の鉛直濃度プロファイルや CCTM の計算結果を用いることができ

る。広域から狭域へのネスト計算が必要な場合は, 広域における CCTM 出力を利用し

BCON による狭域の境界条件を作成する。 

広域の境界条件の一部では, 航空機による観測値や Model for OZone And Related 

chemical Tracers (MOZART) (Brasseur et al., 1998), Chemical transport model driven by 

observations from the Goddard Earth Observing System (GEOS-Chem) (Bey et al., 2001) な

どの全球化学輸送モデルによる計算値が用いられることもある。 

JPROC は, 反応スキーム内の光解離反応定数を作成するプログラムである。大気汚染

物質の光化学反応は, 太陽放射による前駆体の光解離によって始まる。太陽放射は, 太

陽角度, 季節, 緯度, および地表面の特性の影響だけでなく, 大気の散乱や吸収の影響

Meteorology Model 

WRF-ARW 

CMAQ Default 

 Concentration Profile 

・Gas-phase chemistry 

・Advection 

・Diffusion 

・Aerosol chemistry 

・Aerosol deposition 

・Cloud and Aqueous chemistry 

CCTM 

Global CTM  

MCIP 

Photolysis Rate Table 

Emission 

Inventory  

Emission  

Processor 

ICON  

BCON  

JPROC  

External Data 

Dry and Wet 

Deposition  

Gas and Aerosol 

Concentration  

Nested or Restart Simulation 

Fig. 3.4 CMAQ modeling system 
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も受ける。JPROC は, 晴天時における緯度 (北緯 10 度, 20 度, 30 度, … 90 度, 南緯 10

度, 20度, 30度, … 90度: 10度間隔), 高度 (0, 1, 2, 3, 4, 5, 8, 10, 15, 20 km), および時角 (1

時間間隔) における各光解離反応定数のデータを日付毎に作成する。作成したテーブル

は, 化学輸送モデルに入力する。雲存在下では, 雲量による減少を考慮し, 計算に利用

できる解離定数を得ることができる。光解離反応定数の計算のためには, オゾン濃度, 

エアロゾル濃度, 気温, 気圧や地球外からの放射量の季節毎の鉛直プロファイルだけで

なく, 吸収断面積・量子収量などのデータをもとに算出される。オゾンについては, Total 

Ozone Mapping Spectrometer (TOMS) のデータを用いることも可能である。CCTM 内部

で処理することも可能で, その場合 JPROC は必要ない。 

MCIP は, 大気質シミュレーションに必要な気象場を作成するプログラムである。多

くの気象モデルは, 大気質モデルとの連携を目的に構築されていない。MCIP は, 作成

した気象モデルの出力データから , 必要な領域と時刻の気象データを抽出・加工し

CCTM 用で利用可能なデータファイルを I/O API 形式で作成する。水平領域は, 格子解

像度は変わらないが, 気象モデルの側面境界付近の不確定な結果を取り込まないよう

にトリミングするため, 大気質モデルの計算領域は気象モデルより小さくなる。トリミ

ングを実施することを考慮して, 気象モデルの計算領域を構築しなければならない。気

象モデルより解像度は低くなるが, 鉛直領域について上層において高解像度が必要で

ない場合には, 気象モデルより解像度を粗く設定して層の数を減らし, 地表付近の格子

間隔を密にして大気質の観察を行うことも可能である。しかし, 極端に行うと再現性が

向上しない。空間情報は, 発生源プロセッサー, BCON, ICON の処理にも必要である。

ガス状物質の乾性沈着速度 (=空気力学的抵＋表面抵抗＋残査抵抗の和の逆数) も

Pleim et al. (2001) の手法により算出できるが, CCTM 内部で計算する場合は必要ない。 

発生源プロセッサーとして, EPA 等により開発された SMOKE (Sparse Matrix Operator 

Kernel Emission) が米国や北米では利用されているが, 発生源別に集計された排出イン

ベントリ等の入力データに詳細な情報が必要であるため, 直接日本に適用することは

難しい  (鵜野ら , 2005)。 SMOKE をもとに排出量配分プログラムを作成し , 

EAGrid2000-JAPAN 等の複数データを組み合わせ対応できる。 

CCTM は, 上記の前処理プログラムの入力データをもとに, 多種の大気汚染物質や前

駆体について排出, 移流, 拡散, 反応, 沈着過程を計算し, 各物質の濃度分布や湿性・乾

性沈着量などを算出・出力する。 

 

3.3.2 化学輸送モデル 

CMAQ の化学輸送モデルである CCTM は, 各種入力データをもとに大気汚染物質や

前駆体が移流, 拡散, 気相反応, エアロゾル, 雲, 湿性・乾性沈着等の過程後, 変化した

化学物質の濃度を計算し出力する。それぞれの過程では, 数種類のプログラムから目的

に応じて選択可能となっている。 
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CMAQ で計算される各格子における化学物質C の濃度 cC は次式で表される。 

ccc
c SER

t

C





DiffAdv  （3.13） 

ここで, Adv は移流, Diff は拡散, cR , cE , cS は各化学物質C の変化, 排出, 消失 (湿

性・乾性沈着) を表す。移流と排出は, MCIP と発生源プロセッサーからの入力データに

よってほぼ決定する。拡散, 化学変化, 消失は入力データをもとに CCTM 内部で計算さ

れる。 

気相化学において太陽光による物質の光解離反応は, 大気中の汚染物質や前駆体に

関連する化学反応が多く, 反応後の生成物やその濃度を正確に予測することが大気質

シミュレーションにおいて非常に重要である。CCTMは, 気相化学モデルとして, Carbon 

Bond mechanism version 2005 (CB05) (Yarwood et al., 2005) と Statewide Air Pollution 

Research Center mechanism version 1999 (SAPRC-99) (Carter, 2000a; 2000b) が選択可能で

ある。また, 利用者の習熟度により既存の光化学スキームを変更又は新しい機構を追加

することもできる。反応モデルの解法として, Rosenbrock (ROS3) (Sandu et al., 1997), 

Euler Backward Iterative (EBI) (Hertel et al., 1993), Sparse Matrix Vectorized GEAR 

(SMVGEAR) (Jacobson and Turco, 1994) の 3 種類がある。EBI は CCTM の CB05 および

SAPRC-99 にそれぞれ最適化されたものであるため, 反応モデルに変更を加える場合, 

ROS3 または SMVGEAR を用いる必要がある。光化学反応の予測において重要となる光

解離反応定数の計算は, JPROC からの緯度, 高度, 時角, 日付毎の晴天時の光解離反応

定数をもとに, CCTM において雲の影響を考慮して格子ごとに計算が行われる。JPROC

の入力データを利用せず, CCTM 内部のオプションで計算することも可能で, その場合

JPROC は必要ない。 

微量ガスの光解離により, 多くの大気化学反応が開始する。太陽光のエネルギーによ

り気相化学種は解離し, スモッグや大気汚染問題を引き起こす。正確に光化学反応をシ

ミュレートすることにより, 大気質モデルの性能を上げることができる。CCTM は

PHOT モジュール内の光解離反応を計算するために, 最新の科学技術を用いている。光

解離速度は日射量の関数で, 日, 季節, 緯度や土地の状態に基づいて変化し複数の影響

を考える必要がある。また, 日射量は, 曇量と大気中のエアロゾルの吸収と散乱の影響

も受ける。光解離速度は, 入射放射線の波長や温度などの特性に依存する。高度な光解

離モデルである JPROC は, 時間変化する光解離速度にも対応している。 

エアロゾル過程は, 自然または人工源から大気中に放出された 1 次粒子, 反応・凝縮

により生じた 2 次粒子, 粒子の凝集, 乾性沈着などが含まれる。CCTM のエアロゾルモ

ジュールは, エアロゾルの挙動を表現するために Regional Particle Model (RPM) が実装

されている。RPM による粒径分布は, Aitken モード, accumulation モード, coarse モード

の 3 つの対数正規分布の重ね合わせで表現されている。Aitken モードと accumulation モ

ードは, 粒径の極大値が 0.01～0.1 μm および 0.1～1.0 μm の範囲で, 粒子状物質 
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(Particulate Matter: 以下 PM) のうち粒径 2.5 μm 以下の PM2.5 に相当する。coarse モード

では粒径 2.5～10 μm のエアロゾルを PM と表現している。PM10 は, PM2.5 と PM の和

としてモデル化されている。粒子状物質は, CMAQ によってモデル化され湿式または乾

式沈着によって地面に堆積される。湿性沈着は CMAQ のクラウドモジュール内で計算

される。乾性沈着は, 3 つの粒径モード別に, Venkatram and Pleim (1999) をもとに, 衝突

も考慮に入れて沈着速度が計算される。CCTM 内のより詳細な計算の説明は, Binkowski 

and Shankar (1995), Binkowski and Roselle (2003), Byun and Schere (2006) に記載してある。 

雲と液相は大気質のモデリングにおいて重要な構成要素である。雲過程は, 液相化学, 

汚染物質の鉛直混合, 湿性沈着により汚染物質の除去などで重要な役割を果たしてい

る。CCTM のクラウドモジュールは, 雲物理・化学に関連するいくつかの機能を有する。

サブグリッドスケールの降水性の対流雲, サブグリッドスケールの非降水性の対流雲, 

モデルグリッドスケールの数種類の雲が考慮されている。2 つのサブグリッドスケール

は, 垂直方向に汚染物質を再分配後, 雲・降水作用を考慮し, 液相化学計算を実行し湿

性沈着量を推定する。モデルグリッドスケールの雲は, MCIP からの入力データに含ま

れている。サブグリッドスケールの対流雲モデルは , Asymmetric Convective Method 

(ACM) (Pleim and Chang, 1992) が用いられており, 水平格子が 8 kmより大きい場合, 考

慮される。MCIP からの入力データに対流性雲による降雨が存在するかどうかで, 降水

性か非降水性の対流雲が区別される。液相反応および湿性沈着過程は, Regional Acid 

Deposition Model (RADM) をもとにしている。雨, 雲などの液相中の物質濃度は, ガス

成分については, 液相中成分との間の気液平衡が計算される。エアロゾルについては, 

accumulationおよび coarseモードの粒子は雲核として取り込まれ, Aitkenモードの粒子は

徐々に洗浄される。さらに, 液相での物質のイオン解離, 酸化が計算される。以上の過

程によって決まる液相中物質濃度と降水強度の積によって湿性沈着量が計算される。 

SAPRC-99 内で考慮されている多種の気相反応の中で , 本研究で取り扱うオゾン, 

NOXと VOC の反応について簡単にまとめる。ヒドロキシラジカルは, 多数の分子種の

中で反応性や酸化力が極めて高く, 他の分子とすぐに反応する。また, ヒドロキシラジ

カルは, オゾンとほとんど反応しない炭化水素類とも反応するため大気化学において, 

非常に重要な物質である。 

対流圏化学におけるオゾンは, NO2の光解離反応と第3体の衝突反応により生成する。

第 3 体とは, 空気中の窒素, 酸素分子を示し, 触媒とは異なる。反応によって生じたエ

ネルギーを持ち去り, 生成したオゾンを安定化し解離を防ぐ働きをもつものである。 

 2 ONOhNO         (R3.1) 

 32 MOMOO         (R3.2) 

M: 第3体 
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一方, 生成したオゾンは, NO と反応し NO2を生じる。この反応は, 都市大気中で生じ

ることが多く, オゾンの重要な消失反応である。 

 223 ONONOO         (R3.3) 

また, オゾンは光分解し, O 原子を生成する。 

 23 OOhO         (R3.4) 

O 原子は, 大気中の水と反応しヒドロキシラジカルを生成する。 

 2 2HOOHO         (R3.5) 

ヒドロキシラジカルは, オゾンや窒素酸化物と反応し, ヒドロぺルオキシラジカル, 

亜硝酸ガスや硝酸を生成する。高活性のヒドロぺルオキシラジカルは, オゾンや窒素酸

化物と反応し, ヒドロキシラジカルやペルオキシ硝酸などを生成する。また, 亜硝酸ガ

スは, 光の影響でヒドロキシラジカルや窒素酸化物を生成する。 

223 OHOOHO         (R3.6) 

 HONONOHO         (R3.7) 

32 HNONOHO         (R3.8) 

232 2OHOOHO         (R3.9) 

22 NOHONOHO         (R3.10) 

422 HNONOHO         (R3.11) 

 NOHOhνHONO         (R3.12) 

亜硝酸ガスとヒドロキシラジカルが反応すると二酸化窒素を生じる。 

 22 NOOHHONOHO        (R3.13) 

上記の反応系 (R3.1), (R3.2), (R3.3) を中心としたオゾンと窒素酸化物の反応サイク

ルでは, オゾン濃度はほとんど変化しない。一方, 大気中に VOC が存在すると新たな反

応機構が生じオゾン濃度に与える影響を考慮する必要がある。VOC 存在下では, ヒドロ

キシラジカルは有機ペルオキシラジカルを生成する。このラジカルは, すぐに NO と反

応し有機オキシラジカルを経由し, カルボニル化合物とヒドロぺルオキシラジカルを

生成する。このラジカルは, 上記の反応でも示したようにヒドロキシラジカルや窒素酸

化物を生じる。 

 222 OHROOHOVOC(RH)       (R3.14) 
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 22 NORONORO         (R3.15) 

22 HOCHOR'ORO        (R3.16) 

VOC が存在すると, オゾンの消失源である NO が (R3.10), (R3.15) の反応で消費され

オゾン濃度に影響を与える。主要な BVOC であるイソプレンや α-Pinene もヒドロキシ

ラジカルと反応し, 高活性の複雑な有機ペルオキシラジカルを生成する。上記は一例だ

が, 大気質モデルではこのような多様で複雑な大気化学反応が考慮されている。 

 



植生起源揮発性有機化合物とオゾンの相互作用に関する研究 

-41- 

 

第 4 章 BVOC の環境依存性 

植生からのBVOC排出は, 第 2章で記述したように葉温や光量などの因子に支配され, 

現在までに多数の推計モデル式が考案された (Guenther et al., 1991; 1993; Schuh et al., 

1997; Schurgers et al., 2009)。BVOC の組成はイソプレンが 44%, モノテルペンが 10%で

ある (Guenther et al., 1995)。イソプレンは, 葉温と光量依存性を考慮したモデル式, モノ

テルペンは葉温依存性を考慮したモデル式で評価されている (Guenther et al., 1993)。し

かし, モデルは対象樹木の実験から算出されたもので, すべての植生を包括しておらず

Guenther モデル式と観測値の不一致も報告されている (Hayward et al., 2004)。各地域に

自生する植生を把握し, 樹木からの BVOC 排出量を測定し Guenther モデル式を始めと

する各種モデルの改良又は新モデルの構築が急がれる。 

近畿圏の優占樹種は針葉樹で, スギ, ヒノキ, アカマツで 60%を占有し (Bao et al., 

2008), 針葉樹はモノテルペンを排出することが知られている (Benjamin et al., 1996)。モ

ノテルペンの排出は, 葉温にのみ依存性があると考えられてきたが, Bao et al. (2008) は

日本の針葉樹からの BVOC 排出量は光量上昇に伴い増加することを示した。エアロゾ

ルや天候変動に伴う紫外線量などの環境因子の変化を考慮すると, 光量がモノテルペ

ン排出量に与える影響を定量的に評価することが必要である。そこで, Bao et al. (2008) 

が定性的に評価したモノテルペンの光量依存性について定量評価を行い, モノテルペ

ン排出量の推計モデル式を構築することを第 1 の目的とした。 

近年, アジア地域は産業構造の変化による前駆物質排出量の増加に伴い対流圏オゾ

ン濃度が上昇している (Ohara et al., 2007)。欧州の大気汚染が, 日本のオゾン濃度へ影響

を及ぼすことも報告されている (Wild et al., 2004)。対流圏オゾンは生物にとって有害で, 

人類の健康被害, 森林枯渇や作物の生産減収など多大な影響を与える  (村野 , 1994; 

Kobayashi et al., 1995; 伊豆田ら, 2001; Kohno et al., 2005)。中国を始めとするアジア諸

国の人為起源による NOX や NMVOC などの汚染物質やオゾン前駆体の増加は顕著で, 

長距離輸送に伴う日本への越境大気汚染が報告されている (Kato et al., 2004; Yamaji et 

al., 2006; 早崎ら, 2008; Tanimoto, 2009; 大原, 2011)。また, 越境大気汚染等の影響で局所

的なオゾン濃度上昇も観察されている (岩本ら, 2008)。しかし, 樹木へのオゾン暴露が

BVOC排出量にどのような影響を及ぼすかの研究は, 国内ではほとんどなされておらず, 

包ら (2008) の報告にとどまっている。本研究では, 日本の針葉樹に高濃度オゾンを暴

露し, オゾン暴露がモノテルペン排出量に及ぼす影響を検討することを第 2の目的とし

た。さらに, 近年の温度上昇や紫外線量などの環境因子の変化を考慮し, オゾン暴露条

件下での気温や光量がモノテルペン排出量に及ぼす影響の解明も急がれる。多様な環境

因子がモノテルペン排出量に与える影響を評価することを第 3 の目的とした。さらに, 

広域的なオゾン濃度上昇も観察されているため (早崎ら, 2008), オゾン濃度上昇率がモ

ノテルペン排出量に及ぼす影響についても検討し, 環境因子が BVOC 排出量に及ぼす
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影響を総合的に評価し, 排出インベントリを開発することを目的とした。 

 

4.1 モノテルペン排出量の光量依存性 

4.1.1 光量と葉温の関係性 

光量依存性評価のため, 6 種類の PAR 0, 500, 700, 850, 1200, 1400 μmol m
-2

 s
-1から数種

類を選択し検討した。本実験で, チャンバー内温度は, Guenther et al. (1993) によって提

案されたモデル内の標準温度である 30 °C に制御した。また, 相対湿度は 50%に制御し

た。光量に伴う葉温変化を観察するため, 赤外線サーモグラフィ装置で葉の表面温度を

撮影・測定した。チャンバー内温度は一定であるが, 第 2 章の Table 2.1 で示したように, 

PAR増加に伴い葉温上昇が観察された。PAR 500 μmol m
-2

 s
-1で葉温は 32 °C, 700 μmol m

-2
 

s
-1で 33 °C, 850 μmol m

-2
 s

-1で 34 °C, 1200 μmol m
-2

 s
-1で 36 °C, 1400 μmol m

-2
 s

-1で 38 °C

となる。本章では, 上記の葉温を基本に Guenther et al. (1993) により提案されたモデル

式を用い (経験係数 T は一般的に標準とされる 0.09 K
-1

 を使用), 葉温変化に伴い植物

から排出されるモノテルペン排出量の影響を補正し, 補正後のモノテルペン排出量と

光量の関係性を示す。標準条件の PAR は, 1000 μmol m
-2 

s
-1

 とする。 

 

4.1.2 スギのモノテルペン排出量の葉温依存性と光量依存性 

α-Pinene, β-Pinene, β-Myrcene, α-Phellandrene, p-Cymene は, 葉温上昇に伴い排出量が

指数関数的に増加した。α-Pinene, β-Pinene, α-Phellandrene の決定係数 R
2値は 0.99, 0.89, 

0.94 となり, 葉温依存性を示す結果となった。一方, 他のモノテルペンは, 葉温上昇に

よる排出量増加がほとんど観察されなかった。 

α-Pinene, β-Pinene, α-Phellandreneは, 光量増加に伴い排出量が指数関数的に増加した。

α-Pinene, β-Pinene, α-Phellandrene は, 全排出量の 61%を占め, それらの決定係数 R
2値は

0.92, 0.66, 0.91 となり, 光量依存性を示す結果となった。光量依存性が観察された

α-Pinene, β-Pinene, α-Phellandreneについて, PAR増加に伴う排出量の増加傾向は, ほぼ一

致していた。一方, 他のモノテルペン排出量と光量の相関性は観察されなかった。 

Fig. 4.1 に PAR と高い相関性が観察された α-Pinene, β-Pinene, α-Phellandrene 排出量の

関係を標準条件 (1000 μmol m
-2

 s
-1

) で 1 となるように計算したものを示す。これらの結

果より, スギの光量依存係数を算出した。光量依存係数  LM は 

  ))1000(1010.1exp( 3   LLM      （4.1） 

となった。ここで, Lは光量とする。 
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4.1.3 ヒノキのモノテルペン排出量の葉温依存性と光量依存性 

α-Pinene, β-Pinene, β-Myrcene, α-Terpinene, p-Cymene, d-Limonene は, 葉温上昇に伴い

排出量が指数関数的に増加した。α-Pinene, β-Myrcene, d-Limoneneの決定係数R
2値は 0.98, 

0.54, 0.92 となり, 葉温依存性を示す結果となった。一方, α-Phellandrene, γ-Terpinene, 

Terpinolene は, 葉温上昇に伴う排出量増加がほとんど観察されなかった。 

α-Pinene, β-Pinene, d-Limonene は光量増加に伴い排出量が指数関数的に増加した。

α-Pinene, β-Pinene, d-Limonene が全排出量の 63%を占め, それらの決定係数 R
2値は 0.94, 

0.92, 0.82 となり, 光量依存性が高い結果となった。光量依存性が観察された α-Pinene, 

β-Pinene, d-Limonene について, PAR 増加に伴う排出量の増加傾向は, ほぼ一致していた。

一方, 他のモノテルペン排出量と光量の相関性は観察されなかった。高い相関性を示し

た 3 種類のモノテルペンについて, T 値の範囲を考慮してもスギと同様に, あらゆる

T 値で PAR 増加による排出量増加が確認できた。 

Fig. 4.2 に PAR とヒノキの α-Pinene, β-Pinene, d-Limonene 排出量の関係をスギと同様

に標準条件で 1 となるように計算したものを示す。これらの結果より, ヒノキの光量依

存係数を算出した。光量依存係数 )(LM は 

))1000(1073.0exp()( 3   LLM      （4.2） 

となった。ここで, Lは光量とする。 

 

Fig. 4.1 Relationship between light intensity and emissions of three dominant monoterpenes 

from C. japonica. 
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4.1.4 アカマツのモノテルペン排出量の葉温依存性と光量依存性 

アカマツの α-Pinene, β-Pinene, β-Myrcene, α-Phellandrene, α-Terpinene, p-Cymene, 

d-Limonene, γ-Terpinene は , 葉温増加に伴い排出量が指数関数的に増加した。特に

α-Pinene, β-Pinene, β-Myrcene, d-Limoneneの決定係数 R
2値は 0.72, 0.67, 0.50, 0.57となり, 

葉温依存性を示す結果となった。 

α-Pinene, β-Pinene, β-Myrcene, α-Phellandrene, α-Terpinene, p-Cymene, d-Limonene は, 光

量増加に伴い排出量が指数関数的に増加した。α-Pinene, β-Pinene, β-Myrcene が全排出量

の 95%を占め, それらの決定係数 R
2値は 0.89, 0.99, 0.92 となり, 光量依存性が高い結果

となった。増加傾向の観察された他のモノテルペンは, 決定係数 R
2値が非常に小さかっ

た。相関を示さなかったモノテルペンは排出量が非常に少なく, 誤差の方が大きいため

だと考えられる。相関を示した 3 種類のモノテルペンについて, T 値の範囲を考慮して

もスギ, ヒノキと同様に, どの T 値でも PAR 増加による排出量増加が確認できた。 

Fig. 4.3 に PAR とアカマツの α-Pinene, β-Pinene, β-Myrcene 排出量の関係をスギ, ヒノ

キと同様に標準条件で 1 となるように計算したものを示す。これらの結果より, アカマ

ツの光量依存係数を算出した。光量依存係数 )(LM は 

))1000(1030.1exp()( 3   LLM      （4.3） 

となった。ここで, Lは光量とする。 

 

Fig. 4.2 Relationship between light intensity and emissions of three dominant monoterpenes 

from C. obtusa. 
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4.1.5 モノテルペンの光量依存係数 

スギ, ヒノキ, アカマツからのモノテルペン排出量の光量依存性評価をするため, 0, 

500, 700, 850, 1200, 1400 μmol m
-2

 s
-1の PARで実験を行ったところ, 数種類のモノテルペ

ンについて光量依存性を確認することができた。樹種により排出されるモノテルペンの

種類は一部で異なるが, 排出量と光量の関係は同様の傾向を示した。以上より, モノテ

ルペンの種類や樹種によらず同じ光量依存係数を与えることができると推察できる。

Fig. 4.4 に樹種によるモノテルペン排出量比と光量の結果を示す。同様の傾向を示した 3

樹種の結果をまとめると, 下記 (4.4) 式を与えることができる。 

))1000(1004.1exp()( 3   LLM      （4.4） 

ここで, )(LM は光量依存係数, Lは光量とする。 

実験設備上, 本研究では PAR 1400 μmol m
-2

 s
-1までの測定となった。得られた光量依

存性は PAR が大きくなればモノテルペン排出量が, 指数関数的に大きくなることを示

している。しかしながら, 光量が非常に大きくなると成立しない可能性を考慮しなけれ

ばならない。イソプレンの光量依存係数と同じように, 特定の PAR 値で排出量増加が飽

和すると考えられるためである。これは光量の影響を受ける光合成と共に, 気孔からモ

ノテルペンが発生するという知見を考慮しなければならないためである。実験結果より, 

PAR が 0～1400 μmol m
-2

 s
-1

 までの場合は, 排出量が増加する傾向が見られるが, それ

以上 PAR が大きくなると飽和し, 極値が存在すると考えられる。 

Fig. 4.3 Relationship between light intensity and emissions of three dominant monoterpenes 

from P. densiflora. 
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植物は, 光合成の反応過程における二酸化炭素の固定法によって, C3植物 (C3 plant) 

と C4植物 (C4 plant) に大別される。C3植物は還元的ペントースリン酸回路のみによっ

て光合成炭素同化を行う植物で, 最初の炭素同化産物が炭素 3原子をもつものである。

一方, C4植物は最初の炭素同化を C4光合成回路で行う植物である。C4植物は C3植物か

ら進化した植物と考えられ, その多くは強い日射, 高温, 水分供給が少ない状況でも

適応し, このような環境条件でも呼吸を抑えられるため, C3 植物に比べ光合成能力が

高いと考えられている (石川ら, 2010)。 

また, 植物の生態生理学の観点から考察すると, 光合成速度が飽和する光量が存在

し, その値は C4植物でも 1600 μmol m
-2

 s
-1と考えられている (Larcher, 2001)。これらの

知見や実験結果より, (4.4) 式の PAR の最大値は 1600 μmol m
-2

 s
-1と考えることができ

る。それ以上の PAR の場合, 排出量を一定とすると下記 (4.5) 式を導くことができる。 

 

   （4.5）
 

 

さらに, 光量依存を考慮したモノテルペン排出量の推計モデル式として, 下記 (4.6) 

式を導くことができる。ここで, SE : 標準排出量, ST : 標準温度 (303 K), SL : 標準光

量 (1000 μmol m
-2

 s
-1

), T : 温度 (K), L : 光量 (μmol m
-2

 s
-1

), T : 0.09 K
-1とする。実験

により導いたモノテルペンの光量依存係数を, 以後行う計算において使用する。 

 

         （4.6）
 

Fig. 4.4 Integrated relationship between light intensity and monoterpenes emission from C. 

japonica, C. obtusa and P. densiflora. 

       1600 ＜1004.1expexp 3 　LLLTTEE SSTSTL  

       160016001004.1expexp 3   LLTTEE SSTSTL 

      1600 ＜1004.1exp 3 　LLLLM S 

      160016001004.1exp 3   LLLM S
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4.2 モノテルペン排出量のオゾン濃度依存性 

4.2.1 標準条件におけるモノテルペン類排出量 

Table 4.1 に各樹木の乾燥重量あたりのモノテルペン類の標準排出量を示す。すべての

供試樹木で, 最も多く排出されたモノテルペン類は α-Pinene であった。各樹種で全排出

量に占める α-Pinene の割合は, スギで 53%, ヒノキで 44%, アカマツで 87%となった。

オゾン暴露によるモノテルペン類排出量の経時変化の評価は, 排出量が最も多かった

α-Pinene を対象とする。オゾン暴露による排出量変化の影響を算出するため, 暴露前 4

時間の排出量を平均化し算出した標準排出量で, オゾン暴露開始後の各経過時間の排

出量を除した排出量比で議論を行う。 

 

4.2.2 オゾン暴露によるスギの α-Pinene 排出量 

Fig. 4.5 にスギへ 100 ppb のオゾンを暴露したときの α-Pinene 排出量比を示す。暴露

直後に α-Pinene 排出量は約 2～4 倍増加し, その後, 緩やかに減少・収束した。暴露前と

実験開始 12 時間以降の排出量の有意差検定 (p<0.01) では, 3 回中 2 回の実験で暴露前

と収束期の排出量に有意差がみられなかった。収束期の α-Pinene 排出量比は, 平均±標

準偏差で 1.01±0.33 となった。α-Pinene 排出量 (×10
-3

 μg gdw
-1

 h
-1

) の月毎の測定結果は, 9

月が最も多く 35.2, 11 月では 6.4, 1 月は 0.3 となった。測定時期によりばらつきはある

が, 樹木からの標準排出量は季節によって大きな違いがあることも報告されている 

(Yokouchi and Ambe, 1984; Kim et al., 2005)。今回の結果も季節性によるものであると考

えられる。排出量には差はあるが, 季節によらず同様の挙動を示していることから樹木

からの α-Pinene 排出量はオゾンに依存すると考えられる。 

 

Table 4.1 Standard emission of C. japonica, C. obtusa and P. densiflora (10
-3

μg gdw
-1

 h
-1

). 

 C.japonica C.obtusa P.densiflora 

Isoprene 0.2  0.4  0.9  

α-Pinene 14.0  3.9  33.7  

β-Pinene 1.7  3.0  2.4  

β-Myrcene 1.5  N.D. N.D. 

α-Phellandrene 4.2  N.D. N.D. 

α-Terpinene 0.3  N.D. N.D. 

p-Cymene 1.2  0.7  0.2  

d-Limonene 3.0  0.9  1.7  

γ-Terpinene N.D. N.D. N.D. 

Terpinolene 0.3  N.D. N.D. 
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Fig. 4.5 Normalized α-Pinene emissions after ozone exposure for C. japonica. 

Fig. 4.6 Normalized α-Pinene emissions after ozone exposure for C.obtusa. 

4.2.3 オゾン暴露によるヒノキの α-Pinene 排出量 

Fig. 4.6 にヒノキへ 100 ppb のオゾンを暴露したときの 9 月の α-Pinene 排出量比の結

果を示す。スギと同様の傾向を示した。暴露直後に α-Pinene 排出量は約 3 倍増加した。

その後, 樹木からの α-Pinene 排出量は減少・収束した。暴露前と暴露実験開始 12 時間

以降の排出量の有意差検定 (p<0.01) では, 暴露前と収束期間で有意差が観察された。

収束期の α-Pinene 平均排出量比は, 0.53±0.21 であった。 

 

4.2.4 オゾン暴露によるアカマツの α-Pinene 排出量 

Fig. 4.7 にアカマツへ 100 ppb のオゾンを暴露したときの 9 月の α-Pinene 排出量比の

結果を示す。スギ, ヒノキと同様の傾向を示した。暴露直後に α-Pinene 排出量は約 1.8

倍増加した。その後, 樹木からの α-Pinene 排出量は, 他の樹種と同様に減少・収束した。 
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暴露前と暴露実験開始 12時間以降の排出量の有意差検定 (p<0.01) では, 暴露前と収束

期間で有意差が観察された。収束期の α-Pinene 平均排出量比は, 0.46±0.24 であった。 

 

4.2.5 オゾン暴露による針葉樹の α-Pinene 排出量 

Fig. 4.8にオゾン暴露下によるスギ, ヒノキ, アカマツの α-Pinene排出量比の近似曲線

を示す。オゾン暴露下で α-Pinene 排出量が最も多かった樹種は, スギであった。すべて

の樹種で暴露直後に排出量が急激に増加し減少・収束するといった挙動を示した。排出

量の急激な増加について , 樹木が短時間で高濃度オゾンを暴露されたことにより , 

α-Pinene 排出量を増加させたと考えられる。一方, オゾン暴露下にも関わらず排出量が, 

経時的に減少・収束する理由として, 樹木がオゾンに順化したためだと考えられる。ヒ

ノキやアカマツは, オゾン暴露時にスギと同様の挙動を示すものの順化が早く, 収束期

ではすべての実験で暴露前に比べ α-Pinene 排出量が少ないことを示した。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Normalized α-Pinene emissions after ozone exposure for P. densiflora. 

Fig. 4.8 Normalized α-Pinene emissions after ozone exposure for C. japonica, C. obtusa 

and P. densiflora. 
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4.2.6 オゾン暴露下での α-Pinene 排出量の光量依存性 

オゾン暴露実験で α-Pinene 排出量が最も多かったスギを対象に, 100 ppb のオゾン暴

露下で光量依存性を検討した。チャンバー内を標準温度に設定後, 光量を標準条件と異

なる 0, 1200 μmol m
-2

 s
-1に制御し実験を行った。Fig. 4.9 にオゾン暴露時の光量依存性結

果を示す。暴露開始後, 標準条件と同じような挙動が示されたが, 収束期の α-Pinene 排

出量が異なった。Fig. 4.10 に 0, 850, 1200 μmol m
-2

 s
-1の収束期の平均排出量比を示す。

暴露前と実験開始 12時間以降の排出量の有意差検定 (p<0.01) では, 1200 μmol m
-2

 s
-1の

1 度の実験以外ですべて有意差が観察された。平均排出量比は光量 0 μmol m
-2

 s
-1 で

0.63±0.05, 1200 μmol m
-2

 s
-1で 1.42±0.31 となった。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10 Normalized α-Pinene emissions after ozone exposure for C. japonica at various 

light intensities. 

Fig. 4.9 Relationship between light intensity and normalized α-Pinene emissions after 

ozone exposure for C. japonica. 
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照射した光量の影響で, 収束期の α-Pinene 排出量が減少した。理由として, 生体内の

抗酸化物質の生成速度の関係が考えられる。樹木が BVOC を排出する原因として, 外的

ストレスに対する防御反応や外的ストレスの軽減が仮説として存在する  (Paré and 

Tumlinson, 1999; Vickers et al., 2009)。暴露直後, 急激なストレスにより多量の BVOC を

排出するが, 光量が弱い場合, 暴露後期に生体内の抗酸化物質の生成に余裕ができ , 

α-Pinene 排出量が減少した可能性が考えられる。逆に, 光量が強い場合では, 暴露後期

においてもオゾン暴露によるストレスに光によるストレスも加わることで, 酸化スト

レスが強く生体内の抗酸化物質の生成が追いつかず, α-Pinene の排出が行われたと考え

られる。 

 

4.2.7 オゾン暴露下での α-Pinene 排出量の温度依存性 

光量依存性評価と同様にスギを用いて, 100 ppb のオゾン暴露下で温度依存性を検討

した。チャンバー内の光量を 850 μmol m
-2

 s
-1に設定後, 温度を 25 °C と 35 °C に制御し

実験を行った。Fig. 4.11 にオゾン暴露時の温度依存性結果を示す。暴露開始後, すべて

のオゾン暴露実験と同じような挙動を示したが, 収束期の α-Pinene排出量が標準条件と

異なる結果であった。Fig. 4.12 に 25 °C, 30 °C, 35 °C の収束期の平均排出量比を示す。

暴露前と実験開始 12時間以降の排出量の有意差検定 (p<0.01) では, 25 °Cの 1度の実験

以外ですべて有意差が観察された。平均排出量比は 25 °C で 1.16±0.10, 35 °C で 0.49±

0.15 となった。 

植物は, 温度が低いほど抗酸化物質の生成速度が遅いという報告がある (Gechev et 

al., 2003)。論文内で報告されている 5～25 °C における抗酸化物質の生成速度の傾向を, 

25～35 °C の範囲でも同様の傾向がみられると仮定すると, 本実験の高温条件下で, オ

ゾン暴露後期の α-Pinene排出量が減少する理由は, 生体内の抗酸化物質の生成速度が温

度に依存している可能性が考えられる。温度が低い場合, 抗酸化物質の生成が少なく, 

BVOC 排出が必要となる。逆に, 温度が高い場合は, 抗酸化物質の生成が活発になり, 

BVOC 排出が抑えられると考えられる。 

 

4.2.8 α-Pinene 排出量のオゾン濃度依存性 

オゾン濃度による排出量への影響を評価するため, 暴露初期にオゾン濃度上昇率を

25 ppb h
-1

, 50 ppb h
-1に変化させ初期のオゾン暴露濃度がスギの α-Pinene排出量に及ぼす

影響について検討した。Fig. 4.13 に初期オゾン暴露濃度と α-Pinene 排出量の経時変化を

示す。25 ppb h
-1

, 50 ppb h
-1の速度でオゾン暴露を行った場合, 排出量は緩やかに増加, 減

少・収束した。暴露前と実験開始 12 時間以降の排出量の有意差検定 (p<0.01) では, す

べての実験で有意差が観察された。平均排出量比は 25 ppb h
-1で 0.68±0.12, 50 ppb h

-1で

0.57±0.11 となった。これは, オゾン濃度上昇率が, 収束期の排出量に影響を及ぼすこと

を示しており, 初期に 100 ppb h
-1のオゾン濃度上昇率で暴露を受けた場合, 収束時には 
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Fig. 4.12 Normalized α-Pinene emissions after ozone exposure for C. japonica at various 

temperatures. 

Fig. 4.13 Relationship between different increasing rates of ozone concentration at the 

beginning of ozone exposure and α-Pinene emissions from C. japonica. 

Fig. 4.11 Relationship between temperature and α-Pinene emissions after ozone exposure 

for C. japonica. 
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暴露前と同程度の排出量になるが, オゾン濃度上昇率が 25 ppb h
-1

, 50 ppb h
-1時では, 暴

露前の排出量を下回った。Table 4.2 に初期オゾン暴露濃度の収束期における有意差検定

の結果を示す。オゾン濃度上昇率が異なる場合, 収束期での有意差検定 (p<0.05) は, 25 

ppb h
-1

, 50 ppb h
-1間で有意差を示さなかった。これらの結果は, 暴露時の初期濃度が順

化後の α-Pinene 排出量に影響を与えたこと示唆している。 

 

Table 4.2 Statistical significance test for experiments with different increasing rates of ozone 

concentration at the beginning of ozone exposure for C. japonica. 

 

 

 

 

 

 

 

 

 

 25 ppb h
-1

 50 ppb h
-1

 100 ppb h
-1

 

25 ppb h
-1

 - N.S. * 

50 ppb h
-1

 N.S. - * 

100 ppb h
-1

 * * - 

  *P<0.05, Significant difference 
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第 5 章 BVOC 排出量がオゾン濃度へ及ぼす影響 

オゾンによる大気汚染は, 人類だけでなく動植物も包摂する地球規模の課題である。

オゾン生成は, NOXと NMVOC の影響を受ける。これらの前駆体は主要な大陸で発生し, 

輸送, 反応を経て全球スケールで各地域のオゾン濃度上昇に寄与する。大気質モデルを

利用した解析により, 北米やアジア起源の汚染が欧州に与える影響 (Wild and Akimoto, 

2001; Auvray and Bey, 2005), アジアや欧州起源の汚染が米国に与える影響 (Berntsen et 

al., 1999; Fiore et al., 2002), 欧州や米国起源の汚染がアジアに与える影響 (Wild and 

Akimoto, 2001; Li et al., 2002) などが報告されている。日本もその影響を受け, 国内の前

駆体濃度が減少しているにも関わらず, オゾン濃度は増加している。アジア地域の排出

インベントリである REAS では 1980～2003年の間でアジア地域の燃料消費量が約 2倍, 

NOXは約 3 倍, NMVOC排出量が約 2 倍増加したと推計されており, その傾向が 2020 年

迄続くことが報告されている (Ohara et al., 2007)。 

BVOC は, 対流圏化学に影響を与える重要な化学種であり, ヨーロッパ各地域のオゾ

ン濃度上昇に寄与することも報告されている (Solmon, 2004; Curci et al., 2009)。日本は

国土の約 70%が森林植生で, 大気質に影響を与える BVOC を多く排出する国であ

る。近年の気温上昇やエアロゾルや天候変動に伴う光量変化などが植生からの BVOC

排出量へ影響を及ぼし, 大気中での反応が促進されることが推察され, BVOC がオ

ゾン濃度へ及ぼす影響を評価することが急がれる。そこで, 構築した大気質モデルにお

いて, 導いたモノテルペンの推計モデル式を用いてモノテルペン排出量の光量依存性

及びオゾン濃度寄与を評価することを第 1 の目的とした。 

汚染物質がどの地点へ影響を及ぼすかを評価することは, 数値モデル以外では難し

い。大気質を評価する場合, 排出量データを基に, 移流, 拡散, 反応などを計算し, 任意

の点での濃度を予測するソースモデルと, 任意の観測点での汚染物質濃度を基に, 各発

生源の濃度寄与を推定するレセプターモデルに大別される。有効な汚染対策を構築する

ためには, 発生源寄与と感度解析が重要である。発生源寄与解析は, 大気中の汚染物質

の起源を明確にするもので, 感度解析は発生源の排出量を変化させ濃度変化を調べる

ものである。感度解析法の 1 つで広く利用されているゼロアウト法は, 対象発生源の排

出量をゼロにした場合の濃度変化量をその発生源寄与とする方法で, 高濃度オゾンに

対する中国発生源の解析が報告されている (板橋ら, 2009)。高濃度オゾンが観測された

地域は, 各汚染源からの前駆体の移流・反応等による寄与と域内生成の影響を受ける可

能性が高い。被汚染地域へ与える各汚染源の影響を検討することにより, 地域別オゾン

発生源寄与を推定し, また域内生成がどのような気象場で推進されるかを評価するこ

とにより, 被汚染地域と排出源の関係構築に繋がる。本研究では, WRF/CMAQ を用い近

畿圏で観測された高濃度オゾン汚染地域への各発生源からの VOC の種別寄与と域内生

成の推定を行い, 近畿圏の汚染地域と発生源の関係を評価することを第 2の目的とした。 
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5.1 計算条件 

5.1.1 計算領域 

Fig. 5.1 に CMAQ の計算領域と計算結果の評価に用いた観測地点を示す。計算対象期

間は 2010年 7月 1日～8月 9日, 7月 1～5日を助走計算期間とした。水平計算領域は, 北

緯 32.5 度, 東経 125.5 度を中心としたランベルト正角円錐図法で表示される。東アジア

広域を対象とする 64 km 格子領域 (D1), 主要な日本域を対象とする 16 km 格子領域 

(D2), 近畿圏を対象とする 4 km 格子領域 (D3) の 3 領域とした。BVOC 発生源の寄与評

価の際に, 大阪都市域を代表として国設大阪測定局に着目した。国設大阪測定局は, 北

緯 34.680 度, 東経 135.535 度に位置する。Table 5.1 に WRF-ARW および CMAQ の設定

条件を示す。水平領域は, 気象モデルの側面境界付近の不確定な結果を取り込まないよ

うにトリミングするため, 大気質モデルの計算格子は気象モデルより小さくなってい

る。鉛直層は, 地表面から上空 100 hPa までを 30 層に分割した。地表付近の鉛直層の中

心高さは, 標高に依存するため格子ごとに異なり, 時間変化もするが第 1層が約 26 mで

ある。 
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Fig. 5.1 Modeling domains for CMAQ prediction and locations of observation sites. 
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Table 5.1 WRF-ARW and CMAQ configurations. 

 Parameter Setting 

 Spin-up period 1 - 5 July 2010 

 Simulation period 1 July - 9 August 2010 

 Output interval 1 hour 

 Map projection Lambert conformal conic 

 Central point 35 ° N, 135.0 ° E 

 Horizontal grid spacing 64, 16 and 4 km 

 Vertical domain 30 layers （Ground surface - 100 hPa） 

WRF Version ARW 3.5.1 

 Horizontal grid number 120×108, 84×84, 92×92 

 Initial and boundary NCEP FNL, GPV-MSM, RTG_SST_HR 

 Analysis nudging  Gt, q, uv = 3.0 × 10
-4

 s
-1

 (D1, D2)  

  Guv = 7.5 × 10
-5

 s
-1

 (D3) 

 Explicit moisture WSM6 

 Cumulus Kain-Fritsch (D1, D2) 

 PBL and surface layer YSU PBL and Monin-Obukhov similarity 

 Surface Noah LSM 

 Radiation RRTM and Dudhia 

CMAQ  Version 5.0.1 

 MCIP Version 4.1 

 Horizontal grid number 108 × 96, 68 × 68 and 76 × 76 

 Initial and boundary CMAQ default concentration profile 

 Horizontal / vertical advection Yamartino / WRF- based scheme 

 Horizontal / vertical diffusion Multiscale / ACM 2 

 Photolysis rate On-line photolysis module 

 Gas phase chemistry (solver) SAPRC-99 (EBI) 

 Aerosol AERO5 

 Cloud and aqueous chemistry On 

 

5.1.2 近畿圏の BVOC 標準排出量の推定 

日本の森林面積は国土の 3分の 2であり, 森林植生からのBVOC排出量を精度よく推

定できれば BVOC によるオゾン濃度寄与を評価することができる。Fig. 5.2 に近畿圏の

針葉樹と広葉樹の水平分布を示す。森林データベースを用いた材積データから葉バイオ

マス量を算出し, 近畿圏のモノテルペン排出量を推定した。Fig. 5.3 に標準条件における 
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近畿領域のモノテルペン排出量を示す。モノテルペンは主に針葉樹から発生するので, 

モノテルペン排出量の水平分布は近畿圏の針葉樹の分布と重なる。 
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Fig. 5.2 Horizontal distribution of coniferous and broadleaf trees in the Kinki region. 

Fig. 5.3 Horizontal distribution of estimated standard monoterpene emission rates (temperature of 

30 °C and PAR flux of 1000 μmol m
-2

 s
-1

) from forest vegetation in the Kinki region. 
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5.2 WRF の計算条件と結果 

5.2.1 WRF の計算条件 

WRF による気象場の構築は, 境界条件の作成と雲微物理過程・積雲過程・PBL 過程・

地表面過程・放射過程の 5 つの物理過程からそれぞれ適切なスキームを選択する必要が

ある。初期および底面・側面境界条件の作成には, National Centers for Environmental 

Prediction (NCEP) による全球最終解析データ (NCEP FiNaL operational global analysis 

data: 以下 NCEP FNL) を利用した。NCEP FNL は, 全球を対象に 6 時間間隔, 1° × 1°の

水平解像度で整備されている。WRF への入力データとして土壌温度, 土壌含水率, 表面

温度, 陸域割合, 氷河割合, 積雪量, 海面更生気圧, 地上気圧, 気温, 相対湿度, 風速の

東西・南北成分を使用した。WRF の計算は, D1～D3 内でオンラインネスティングを行

った。FDDA については, D1 および D2 における気温, 水蒸気混合比, 風速の東西・南

北成分, および D3 における風速の東西・南北成分に対して Table 5.1 に示したナッジン

グ係数で解析値ナッジングを行った。 

雲微物理過程は水蒸気, 雨, 雪, 雲氷, 雲水, 霰の 6つの状態と過冷却過程を考慮した

WSM6 scheme を採用した。 

積雲過程は, 水物質の状態が多様な Kain-Fritsch scheme を採用した。このスキームは, 

雲外から雲内への輸送であるエントレインメントと逆方向の輸送であるデトレインメ

ント, 雲微物理の影響を考慮した雲モデルにより水分の上昇流と下降流が示されてい

る。 

大気境界層過程は, YSU PBL scheme を採用した。接地境界層過程は, Monin-Obukhov

の相似則をもとにしたものを用いた。 

地表面過程は, NCEP Noah Land-Surface Model (Noah LSM) (Chen and Dudhia, 2001) を

採用した。4層の土壌深さは0-10 cm,10- 40 cm, 40-100 cm, 100-200 cmに分けられている。

植生の区分, 割合等を考慮し, 表面流出, 土壌排水等を予測し, 土壌温度および土壌内

の含水率の予測を行った。 

長波放射には, Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997) を採用した。

このモデルは, 高精度かつ高効率で放射伝達が計算できるモデルである。短波放射には, 

Dudhia scheme (Hong et al., 2004) を使用した。 

 

5.2.2 気象場予測結果 

WRFモデルによる地表付近の気象予測結果は, D3内で 25地点の気象観測所の観測デ

ータと比較した。予測精度は, ピアソンの相関係数 (R), 平均バイアス誤差 Mean Bias 

Error (MBE), 平均絶対誤差 (Mean Bias Error, MAE), 二乗平均平方根誤差 (Root Mean 

Square Error, RMSE), 統計指標 (Index of Agreement, IA) を用いて評価した。 
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M は計算平均値, Oは観測平均値を示す。 iM と iO は, 任意の観測地点・時間 i におけ

る計算値と観測値, N はサンプル数を示す。IA は, Willmott (1981) により考案された統

計指標で, 0～1の範囲内で 1に近いほど計算値と観測値の差が小さいことを表す。Emery 

et al. (2001) は, 気象モデルによる予測精度を評価するため MBE, MAE, RMSE, IA につ

いてベンチマークを設定している。気温では, MBE ≤ ±0.5 °C, MAE ≤ 2 °C, IA ≥ 0.8, 湿度

は, MBE ≤ ±1 g kg
-1

, MAE ≤ 2 g kg
-1

, IA ≥ 0.6, 風速については, MBE ≤ ±0.5 m s
-1

, RMSE ≤ 

±2 m s
-1

, IA ≥ 0.6 である。Table 5.2 に 25 地点の気象観測所の観測データとの比較結果を

示す。気温については, MBE が 18 地点, MAE が 24 地点で, IA が 22 地点でベンチマー

クを満たした。また, 湿度は MBE が 25 地点, MAE が 24 地点, IA が 23 地点で, 風速は

MBE が 18 地点, RMSE が 21 地点, IA が 21 地点でベンチマークの設定を充足した。こ

れらの結果は, 計算値と観測値の良好な相関を示し, WRFが 2010年 7月～8月の近畿地

方の気象場を適切にシミュレートできたことを示している。本研究での計算期間は 1 ヶ

月であるが, シミュレーション結果は以前報告された国内の 2ヶ月間のシミュレーショ

ンモデルと同等の性能である (Shimadera et al., 2009; 2013)。 

第 4 章で述べたように, 国内の主要な BVOC 排出源は植生である。植生からの BVOC

排出は, 葉温と光量に依存する。BVOC がオゾン濃度へ与える影響について詳細な評価

を行うためには, 温度と太陽放射は重要な気象要素である。Fig. 5.4 に 2010 年 7 月 6 日

から 8 月 9 日までの気温と短波放射の毎時間値を示す。この期間の気象は, 梅雨前線の 
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Table 5.2 Statistical values for model performance of meteorological simulation at all the 

meteorological observatories in D3 and at the Osaka meteorological observatory from 6 July to 

9 August 2010. 

 

  All  Osaka 

temperature n 20099 (839 - 840) 840 

 mean Obs. (°C) 27.6 (26.2 - 28.6) 28.6 

 mean Sim. (°C) 27.5 (25.1 - 29.4) 29.1 

 R 0.85 (0.61 - 0.96) 0.92 

 MAE (°C) 1.3 (0.7 - 2.3) 0.9 

 IA 0.92 (0.71 - 0.98) 0.95 

humidity n 20099 (839 - 840) 840 

 mean Obs. (g kg
-1

) 17.1 (15.6 - 18.4) 16.5 

 mean Sim. (g kg
-1

) 16.8 (15.7 - 19.2) 16.7 

 R 0.62 (0.42 - 0.77) 0.68 

 MAE (g kg
-1

) 1.2 (0.8 - 2.2) 0.9 

 IA 0.77 (0.56 - 0.87) 0.81 

wind speed n 20099 (839 - 840) 840 

 mean Obs. (m s
-1

) 2.6 (1.2 - 3.9) 2.5 

 mean Sim. (m s
-1

) 2.8 (1.4 - 5.1) 2.7 

 R 0.62 (0.15 - 0.78) 0.71 

 RMSE (m s
-1

) 1.6 (0.9 - 2.5) 1.2 

 IA 0.78 (0.44 - 0.88) 0.84 

Parenthetical values show ranges of values for the individual observatories. 

 

影響で放射の少ない初期の 10日間および低気圧等の影響で降水のあった 7月 29日を除

いて, 高温・晴天であった。気温および短波放射の観測値と計算値の相関係数はそれぞ

れ 0.92および 0.92となり, WRFにより作り出された気象場が, 適切な性能を有すること

示している。この気象場で, 植生からの BVOC 排出量予測とオゾン濃度シミュレーショ

ンを実施した。 
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5.3 CMAQ の計算条件と結果 

5.3.1 CMAQ の計算条件 

CMAQのD1における大気汚染物質およびその前駆体濃度の初期条件および側面境界

条件には, 清浄大気を想定した CMAQ デフォルトの濃度プロファイルを使用した。D2, 

D3 の側面境界条件は, それぞれ D1, D2 における大気中ガス・粒子濃度の 1 時間間隔の

計算結果から作成した。気相反応過程には SAPRC-99, エアロゾル過程には

Fifth-generation modal CMAQ aerosol model (AERO5) を用い, 雲・液相反応過程オプショ

ンを使用した。 

大気汚染物質の排出量データとして, CMAQ には SO2, NOX, CO, NH3, PM, NMVOC の

排出量を与えた。 

日本域の人為起源排出量については , 自動車排出量は JATOP Emission Inventory 

Database (JEI-DB) (森川ら, 2012) による 2010 年のデータを使用した。自動車以外の排出

量は EAGrid2000-JAPAN (Kannari et al., 2007) を用いた。 

船舶排出量データは , 海洋政策研究財団 (Ocean Policy Research Foundation: 以下

OPRF) が作成した船舶排出量データを用いて計算を行った (OPRF, 2012)。OPRF が作
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Fig. 5.4 Hourly time series of observed and simulated (a) temperature and (b) downward 

shortwave radiation at the Osaka meteorological observatory from 6 July to 9 August 2010. 

Dates and times are in local time (UTC+9). 



第 5 章 BVOC 排出量がオゾン濃度へ及ぼす影響 

-62- 

 

成した船舶排出量データは, 2005年を基準年とし船舶の活動量に各排出係数をかけて算

出したものである。対象船舶は, 商船 (外航船と内航船) 及び漁船である。商船の排出

源データは, 船舶の航行時と停泊時別に作成されている。漁船については搭載される主

機の規模が小さく MARPOL 条約附属書 VI に基づく海防法の適用は一部の船舶しか受

けていない。このため海防法上 NOX 規制の対象となる機関出力規模等を考慮した船型

及び使用形態を想定している。 

日本以外のアジア領域における人為起源 SO2, NOX, CO, PM, NMVOC の排出量は, 米

国航空宇宙局 (National Aeronautics and Space Administration: 以下 NASA) が開発したア

ジア対象排出インベントリである Intercontinental Chemical Transport Experiment-Phase B 

(INTEX-B) (Zhang et al., 2009) と Arctic Research of the Composition of the Troposphere 

from Aircraft and Satellites (ARCTAS) (http://mic.greenresource.cn/arctas_premission) の

排出インベントリを使用した。日本以外のアジア領域のNH3排出量は, Ohara et al. (2007) 

の値を用いた。 

BVOCの排出量は, AVOC排出量よりも多く重要である (Kannari et al., 2007)。植生起源

排出量データは, 針葉樹と広葉樹に対して標準排出量を設定し, 月平均気温と光量の時

間変換から作成されている。植生分類に対する排出係数の変更等による推定方法の違い

によりBVOC排出量に大きな差が出ることも報告されている (井上ら, 2010)。BVOCの

排出量推計モデルとして, 近畿圏のイソプレンとモノテルペンは, Bao et al. (2008) のデ

ータを, それ以外はMEGANのversion 2.04を使用した。その際, チャンバー実験で得たモ

ノテルペンの光量依存性が, 大気質のオゾン濃度へ与える影響を評価するため, モノテ

ルペンの光量依存性を考慮せずに排出量データを作成した場合 (Case1) とモノテルペ

ンの光量依存性を考慮した (4.5) 式を含んだモデル式で排出量データを作成した場合 

(Case2) の2つのケースに分け, 各データを入力し排出量推計を行った。 

アジア域におけるバイオマス燃焼起源の排出量は, 排出量推計モデルである The Fire 

Inventory from NCAR (FINN) (Wiedinmyer et al., 2011) を利用した。火山起源の SO2排出

量は, 人為起源の SO2の 2 倍程度存在することが示唆されている (森川, 2010)。排出量

データは, Andres and Kasgnoc (1998) 等をもとに作成された Aerosol Intercomparison 

(Aerocom) データを使用し, 日本国内については気象庁火山活動解説資料で活動が活発

な火山のみ排出を考慮した。 

 

5.3.2 排出量推計結果 

Fig. 5.5にWRFで計算した気象データをもとにしたCase1, Case2における2010年7月6日

～8月9日の近畿圏のモノテルペン排出量の経時変化と日内変動を示す。Case2の方が, 

昼間のモノテルペン排出量は大きかった (Fig. 5.5)。一方で, Case1とCase2におけるモノ

テルペン排出量の日内変動は, 異なる挙動を示した (Fig. 5.5)。光量の影響により昼間の

モノテルペン排出量は多くなったが, 日没で光の影響がなくなる夜間はCase2のモノテ
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Fig. 5.5 Total monoterpene emission rate from forest areas in the Kinki region: (a) hourly 

time series and (b) mean diurnal variation from 6 July to 9 August 2010. Dates and times are 

in local time (UTC+9). 
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Fig. 5.6 Spatial distributions of mean NOX and NMVOC emission rates in the modeling 
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ルペン排出量がCase1に比べて少なくなった。各々のモノテルペン総排出量はCase1, 

Case2で69.0 mol s
-1

, 60.3 mol s
-1となった。 

Fig. 5.6 にモデル化した領域内の NOXと NMVOC 排出量の空間分布を示す。NOXの主

要排出源は, 車両, 船舶及び固定された大きな燃焼源である。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



第 5 章 BVOC 排出量がオゾン濃度へ及ぼす影響 

-64- 

 

NMVOC の主要排出源は, 固定蒸発発生源及び生物起源である。Case1 の Fig. 5.6 の

D3 内で NOX排出強度は 360 s
-1

, NMVOC 排出速度は 3703 molC S
-1であった。イソプレ

ンとモノテルペン排出量は, Case1 の D3 内で NMVOC の総排出量の 57%を占めた。一

般にオゾン生成は, NOXと VOC のいずれの前駆体も必要だが, NOXや VOC の増加がオ

ゾン濃度減少をもたらす場合もあり非線形性の関係である。 

 

5.3.3 大気質予測結果 

CMAQモデルによる大気質予測結果は, オゾン濃度を用いて検証した。大気質比較は, 

近畿全体の測定局と大阪中心部にある国設大阪測定局で評価した。国設大阪測定局は, 

大阪で最大の NOX排出量を示す場所である。予測精度は, 相関係数 (R), 二乗平均平方

根誤差 (RMSE), 統計指標 (IA) を用いて評価した。Table 5.3 に近畿全体と国設大阪測

定局における, モノテルペン排出の光量依存性の有無がオゾン濃度に与える影響につ

いて評価するために実施した 2 ケースの大気質モデル計算結果と観測値の比較を示す。

近畿全体および国設大阪測定局の 1 時間毎オゾン濃度の Case1 (光量依存性を考慮せず

に排出量データを作成した場合) と Case2 (光量依存性を考慮し排出量データを作成し

た場合) の相関係数は, ほぼ同じであった。オゾン濃度の日最大 1 時間値で比較しても, 

1 時間値と同じように Case1 と Case2 で相関係数はほとんど変わらず, 同程度の再現性

を示している。 

Fig. 5.7 に 2010 年の 7 月 6 日～8 月 9 日における近畿全体の測定局と国設大阪測定局

の O3観測値と計算値 (Case 1) の経時変化を示す。この間, 国設大阪測定局で観測され

た O3濃度が 100 ppb を超えた日は, 高温・晴天条件の特徴が見られた 7 月 8 日, 7 月 23

日, 7 月 25 日, 8 月 2 日, 8 月 3 日であった (Fig. 5.4, Fig. 5.7)。シミュレーション結果より

モデルは, O3濃度のピークや発生などの時間変動を正確に表している (Fig. 5.7)。一方, 

シミュレーションによるオゾン濃度は全体を通してやや過大評価となった。国設大阪測

定局のオゾン濃度の日較差が大きいのは, NOX の影響が考えられる。また, モデルは夜

間のオゾン濃度を過大評価した。この傾向は, 近畿全体の測定局に及び国設大阪測定局

での影響よりも大きかった。この結果は, CMAQ が NOX排出量の少ない地域での O3濃

度シミュレーションに改善の余地が必要であることを示している。モデルは O3 濃度を

過大評価する傾向にあるが, 相関係数及び IA の値は高くモデルが十分に評価領域や計

算期間において O3を精度よくシミュレートできていることを示している。 
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Table 5.3 Statistical values for model performance of O3 simulation at all the ambient air 

pollution monitoring stations in the Kinki region and at Kokusetsu Osaka air pollution 

monitoring station from 6 July to 9 August 2010. 

 

 All                     Kokusetsu Osaka 

Osaka  Case1  Case2  Case1 Case2

 Case2 1-h O3 concentration 

n 123782 (522 - 840)   825  

mean Obs. (ppb) 24.0 (11.7 - 31.0)   24.7  

mean Sim. (ppb) 36.8 (27.5 - 42.7) 36.5 (27.3 - 42.7) 31.4 31.0 

R 0.82 (0.61 - 0.90) 0.81 (0.61 - 0.90) 0.87 0.87 

RMSE (ppb) 18.6 (12.5 - 35.1) 18.5 (12.3 - 34.8) 14.5 14.2 

IA 0.83 (0.50 - 0.93) 0.83 (0.50 - 0.93) 0.91 0.91 

daily maximum 1-h O3 concentration 

n 5203 (21 - 35)   34  

mean Obs. (ppb) 55.0 (29.7 - 73.5)   61.4  

mean Sim. (ppb) 64.2 (51.6 - 73.9) 63.6 (51.5 - 73.0) 64.4 63.4 

R 0.81 (0.61 - 0.94) 0.82 (0.60 - 0.94) 0.85 0.85 

RMSE (ppb) 19.4 (10.1 - 49.6) 19.0 (10.1 - 48.8) 17.6 17.0 

IA 0.88 (0.48 - 0.95) 0.88 (0.48 - 0.95) 0.92 0.92 

Parenthetical values show ranges of values for the individual observatories. 
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5.4 モノテルペン排出の光量依存性がオゾン濃度へ及ぼす影響 

5.4.1 光量依存性を考慮したモノテルペン排出量 

モノテルペン排出量の光量依存性の有無がオゾン濃度に与える影響について検討す

るため, 光量依存性の有無 (Case1とCase2) の条件下でモノテルペン排出量を推定した。

5.3.2 で示したように, Case1 と Case2 におけるモノテルペン排出量の日内変動は異なる

結果を示したが (Fig. 5.5), 大阪全体と国設大阪測定局の 1 時間毎又は昼間のオゾン濃

度最高値は類似していた。 

 

5.4.2 オゾン濃度の空間分布 

Fig. 5.8 に 2010 年 7 月 6 日～8 月 9 日の 3:00 と 15:00 の平均オゾン濃度の空間分布を

示す。夜間のオゾン濃度は昼間のオゾン濃度に比べ低いことが観察された。Fig. 5.9 に

2010 年 7 月 6 日～8 月 9日の 3:00 と 15:00 における Case1 と Case2 の平均オゾン濃度の

差分の空間分布を示す。差分の結果は, 夜間の方が昼間よりもオゾン濃度が高いことを

示した。一般的に, 夜間の都市部は NOX濃度が高くなり, オゾン濃度は低くなる。Case2
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Fig. 5.7 Hourly time series of observed and simulated (Case1) O
3
 concentrations: (a) values 

averaged for all the ambient air pollution monitoring stations in the Kinki region and (b) 

values at Kokusetsu Osaka air pollution monitoring station from 6 July to 9 August 2010. 

Dates and times are in local time (UTC+9). 
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と Case1 の差は, モノテルペン排出量が多い針葉樹地域で大きかった (Fig. 5.3)。これら

の結果は, 昼間にNOXなどの多い都市部でNOが主要なオゾン吸収体であることを示し, 

夜間の針葉樹地域ではモノテルペンが主要なオゾン吸収体であることを示唆している 

(Fig. 5.6)。夏季の夜間におけるオゾン濃度の空間分布は, 光化学反応や海洋風などの影

響で非常に複雑であるが, 光量依存性を考慮した Case2 のオゾン濃度が Case1 のオゾン

濃度に比べ低くなることを示した。また, 夏季の昼間において Case2 のモノテルペン排

出量の増加は, オゾン濃度を減少させることを示した。 

 

 

 

 

 

 

 

 

[ppb]

64

56

48

40

32

24

16

(a)
(ppb)

(b)

Fig. 5.8 Spatial distributions of mean O
3
 concentration in Case1 at (a) 3:00 and (b) 15:00 

local time (UTC+9) from 6 July to 9 August 2010. 

Fig. 5.9 Spatial distributions of difference of mean O
3
 concentration between Case1 and 

Case2 at (a) 3:00 and (b) 15:00 local time (UTC+9) from 6 July to 9 August 2010. 
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Fig. 5.10 に 2010 年 7 月 6 日～8 月 9 日の近畿圏における, Case1 と Case2 のオゾン濃

度の平均日内変動の差分とその空間変動を示す。昼間のモノテルペン排出量の増加は, 

系統的にオゾン濃度減少へ寄与し, 夜間のモノテルペン排出量の減少は, オゾン濃度増

加へ寄与していることが観察された。これらの結果は, モデルにおいて, モノテルペン

がオゾン濃度を減少させる役割を果たしていることを示している。Case1 から Case2 へ

の変化, つまり光量依存性を加えることにより, オゾン濃度の日最大値は近畿圏の平均

および最大でそれぞれ 0.3 ppb および 2.2 ppb減少し, 日最小値は近畿圏の平均および最

大でそれぞれ 0.4 ppb および 1.8 ppb 増加した。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10 Mean diurnal variations of difference between Case1 and Case2 for O
3
 concentrations 

in land areas of the Kinki region from 6 July to 9 August 2010. 
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5.5 オゾン濃度に対する BVOC 排出量の地理的感度解析 

5.5.1 BVOC 排出量のオゾン濃度に対する寄与の推計方法 

D3 領域内の各地域からの BVOC によるオゾン濃度への寄与を検討するため, BVOC

発生源を地域ごとにゼロと仮定し, 各地域が及ぼす影響をゼロアウト法 (対象とした発

生源の寄与濃度＝全発生源の予測濃度 (Baseケース: 5.4の Case1と同一) －対象発生源

を除外した予測濃度) で評価した。ゼロアウト法は, 対象とした発生源の寄与濃度, 対

象発生源を除外した予測濃度, 全発生源の予測濃度を利用して, 発生源別の寄与濃度を

推定できる方法である。ゼロアウト法で Base ケースとの比較を行い各地域の寄与を求

めた。D3 領域を三重県 (Reg.1), 滋賀県 (Reg.2), 京都府 (Reg.3), 大阪府 (Reg.4), 兵庫

県 (Reg.5), 奈良県 (Reg.6), 和歌山県 (Reg.7) の 7 都道府県と中部地方 (愛知県, 岐阜

県, 福井県 (Reg.8)), 中国地方 (岡山県, 鳥取県 (Reg.9)), 四国地方 (香川県, 高知県, 

徳島県 (Reg.10)) の 3 地方を含む 10 地域に分類した。Fig. 5.11 に D3 領域の分類図及び

各地域の AVOC と BVOC 排出量を示す。大阪府は, D3 領域で最大の AVOC 排出地域で

ある。一方, 大阪府は最小の BVOC 排出量地域であるが, 京都府, 兵庫県, 和歌山県等

の BVOC 排出量の多い地域に囲まれているため, 気象場によっては周辺地域からの

BVOC がオゾン生成に寄与することが予想される。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 BVOC source regions (a), and ratios of regional AVOC and BVOC emissions to the 

total emissions (b) in D3. 
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5.5.2 各地域の BVOC 排出量が大阪のオゾン濃度に与える影響 

Fig. 5.12 に国設大阪測定局でのオゾン濃度の経時変化を示す。シミュレーション結果

は, O3濃度のピークや発生などの時間変動を適切に計算しており, 構築したモデルは十

分な性能を有している。モデルにおいて, 国設大阪測定局でオゾン濃度が 100 ppb を超

えた日は 7 月 8 日, 7 月 23 日, 7 月 25 日, 8 月 2 日, 8 月 3 日, 120 ppb を超えた日は 7 月

23 日と 8 月 2 日であった (Fig. 5.12)。両日とも晴天で (Fig 5.4), Base ケースにおいて 7

月 23 日は 15 時, 8 月 2 日は 14 時にオゾン濃度がそれぞれ日最高値 138.2 ppb, 147.3 ppb

となった。地理的感度解析は, 高濃度オゾンが観察された国設大阪測定局の 7月 23日, 8

月 2 日で行った。 

高濃度オゾンの原因を解明するためには, 各地域発生源から大阪への寄与と域内生

成を考える必要がある。また, Fig. 5.12 にゼロアウト法を用いて推定した国設大阪測定

局における 10 地域からの BVOC 排出量寄与を示した。各地域からの寄与は, 一定では

なく日変動が見られるが, 大阪の大気質に影響を及ぼしていることが示された。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 Hourly time series of observed and simulated (baseline case) O3 concentrations (a), 

and estimated contributions of BVOC emissions from each source region in D3 and from the 

entire D3 to daily maximum 1-h O3 concentration (b) at Kokusetsu Osaka air pollution 

monitoring station from 6 July to 9 August 2010. 
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Fig. 5.13 Horizontal distributions of O3 concentration with wind field at the first layer and 

backward trajectory arriving at 300 m above Kokusetsu Osaka air pollution monitoring 

station (circles represent 3-hour transport distances) at 15 local time on 23 July (a) and 14 

local time on 2 August (b). 

(b) 2 August (a) 23 July 

3 hour

backward
trajectory 

7 月 23 日の特徴的な地域寄与は, 兵庫県から 19.0 ppb (寄与率: 14.1%), 京都府から

14.3 ppb (寄与率: 10.7%) であった。一方, 8 月 2 日の特徴的な地域寄与は, 京都府から

7.5 ppb (寄与率: 5.1%), 大阪府から 4.8 ppb (寄与率: 3.3%), 兵庫県から 4.2 ppb (寄与率: 

2.9%) であった。この結果は, 7 月 23 日と 8 月 2 日の両日で, 各地域からの BVOC 寄与

が異なることだけでなく, 7月 23日の方が 8月 2日に比べ主要地域からの BVOC寄与が

大きいことも示している。 

ゼロアウト法による解析では, 兵庫県と京都府の寄与が両日とも上位を占めたが, 8

月 2 日は大阪府からの寄与 (域内生成) も観測された。これらの解析結果は, BVOC の

各地域からの寄与に差があることを示すだけでなく, オゾン生成過程に違いがあるこ

とも示唆している。BVOC 発生源からの移流, 拡散および気相中の化学反応等を検討し, 

オゾン濃度への寄与を詳密に評価する必要がある。発生源からの汚染物質の複雑な移流, 

拡散 , 分散等を推定するため , 米国海洋大気局  (National Oceanic and Atmospheric 

Administration: 以下 NOAA) 等が開発した HYSPLIT モデルを用いて後方流跡線解析を

行った。Fig. 5.13 に 7 月 23 日の 15 時と 8 月 2 日の 14 時の流跡線解析とオゾンの空間

分布を用いた気魂の軌道を示す。流跡線解析の結果では, 気魂は両日とも兵庫県や京都

府などの西方から移動してきている。日中の風速は, 7 月 23 日の方が 8 月 2 日よりも強

いことが観察され, 各地域からのBVOC寄与の違いは, 風速に起因することが推察され

る。また, オゾンの空間分布解析の結果より, 7 月 23 日は, 高濃度オゾンが大阪だけで

なく沿岸地域の広範囲で分布しているのに対し, 8月2日の高濃度地域は限定的で, 大阪

のみであった。VOC が両日のオゾン濃度へ与える影響を明らかにするため, 7 月 23 日と 
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8 月 2 日のオゾン生成過程で, AVOC 又は BVOC のどちらが支配的にオゾン濃度へ寄与

しているかを評価した。初めに, 大阪の AVOC に着目しゼロアウト法を用い, AVOC の

オゾン寄与を検討した。Fig. 5.14 に 7 月 23 日と 8 月 2 日のオゾン濃度と VOC 寄与を示

す。7 月 23 日は, 京都府と兵庫県など大阪府外の地域からの移流が大きく影響してい 

Fig. 5.14 Estimated contributions of BVOC emissions from Osaka Prefecture (Reg.4), from 

Kyoto (Reg.3) and Hyogo Prefecture (Reg.5), from the other 7 source regions in D3, and 

AVOC emissions from Reg.4 to O3 concentrations at Kokusetsu Osaka air pollution 

monitoring station on 23 July (a) and 2 August (b). 
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ることが示された。一方, 8 月 2 日は, 他地域からの移流は少なく, 大阪府内の AVOC 寄

与が大きく, 域内で排出された AVOC が反応を経てオゾンを生成し, 濃度に影響を与え

たと考えられる。Fig. 5.15 に当日に影響を及ぼした VOC とオゾン濃度を示す。7 月 23

日は, 前日までの BVOC の光化学反応を経て生成されたオゾンの移流が濃度に影響を

Fig. 5.15 Estimated contributions of BVOC emitted on the target day and by the day before 

from 10 source regions in D3, and AVOC emitted from Osaka Prefecture (Reg.4) to O3 

concentrations at Kokusetsu Osaka air pollution monitoring station on 23 July (a) and 2 

August (b). 
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与えたと考えられる。他方で 8 月 2 日は, 前日までの影響は少なく当日に大阪府内で排

出された AVOC が反応を経てオゾンを生成し, 濃度に影響を及ぼしたことが示された。

これらの寄与が, どのような移流過程でオゾン濃度に影響を与えたかを考察するため, 

両日の上空の大気質状態を評価した。Fig. 5.16 に 7 月 23 日と 8 月 2 日の BVOC の影響

による上空 2000 m のオゾン濃度を示す。前日までに BVOC の反応によって生成したオ

ゾンが日の出まで上空に滞留していたことが観察できる。この滞留オゾンが鉛直方向に

移流・混合を経てオゾンの高濃度化に寄与したと考えられる。一方, 8 月 2 日は 7 月 23

日に比べ上空の滞留オゾンの影響が少なかった。 

高濃度オゾンが観測された 7月 23日と 8月 2日の各地域からのVOCの寄与を感度解

析で評価すると, 7 月 23 日は BVOC 寄与が大きく, 特に兵庫, 京都からの BVOC が影響

を及ぼした。その際, 前日までに BVOC の反応を経て生成したオゾンが夜間から早朝に

かけて上空に滞留し, 当日の鉛直混合によって地表付近に輸送され大阪のオゾン濃度

上昇に寄与したと考えられる。一方, 8月 2日のBVOC寄与は 7月 23日に比べ小さく, 当

日大阪で排出された AVOC の光化学反応がオゾン濃度上昇に寄与したと考えられる。 
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Fig. 5.16 Altitude-local time cross sections of estimated contributions of BVOC emissions 

from the entire D3 to O3 concentration with PBL height (dashed line) at Kokusetsu Osaka air 

pollution monitoring station on 23 July (a) and 2 August (b). 
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第 6 章 結論 

大気環境の保全は, 人類の健康維持や植生保護だけでなく, 持続可能な自然共生を実

現するために必要不可欠なもので, 世界が直面している重要な課題である。近年, 人間

活動に伴う環境変化や気候変動の影響で, 化学種の反応が複雑化し人類だけでなく, 自

然環境に多大な影響を及ぼしている。本研究は, 未だ環境基準の達成に至っていないオ

キシダント問題に着目し, 気候変動による気温上昇や光量変化, 主成分であるオゾン濃

度の上昇等の環境因子がオキシダントの前駆体である VOC, 特に BVOC 排出量に与え

る影響を検討した。BVOC は, 自然起源の揮発性有機化合物の総称で, 主に植生から排

出され, AVOC よりも排出量が多く, 高い反応性を有するイソプレン, モノテルペンな

どの化学種を含んでおり, 大気化学において重要や役割を果たしている。大気中へ排出

された BVOC が輸送, 反応を経て, 大気質にどのような影響を示すかを評価し, BVOC

とオゾンの相互作用を解明することを目的とした。以下に本論文の各章の概略を述べる。 

第 1 章では, 本論文の序論を示し, オキシダントの歴史や現況, 人為又は自然起源の

前駆体, オキシダントが植生に与える影響等の背景を述べた。次に, オキシダントの原

因物質であるBVOCの発生機構, 環境因子が及ぼすBVOC排出量への影響, イソプレン, 

モノテルペン等のBVOCの排出量推定式, BVOC排出量測定実験等の既存研究とその方

法を述べた。 

第 2 章では, 本研究で採用したグロースチャンバー法の概要を示し, 供試樹木, 分析

対象の BVOC, 物性, ATD-GC/MS の分析条件, 機器の精度について記述した。また, 

BVOC の葉温・光量依存性評価実験, オゾン暴露実験, BVOC 減衰実験の方法について

も述べた。 

第 3 章では, BVOC が大気質に与える影響を評価するために必要な気象モデル WRF, 

国内外の人為起源排出インベントリおよび植生起源排出量推計モデル, 大気質モデル

CMAQ の概要を記述した。 

第 4章では, 初めに針葉樹から排出されたモノテルペン排出量の葉温依存性と光量依

存性について記した。対象樹木からのモノテルペン排出量は, 葉温上昇に伴い排出量が

増加し, 葉温依存性を確認した。次に, モノテルペンの光量依存性について, 6 種類の

PAR 0, 500, 700, 850, 1200, 1400 μmol m
-2

 s
-1から数種類を選択し評価し, 各樹木でモノテ

ルペン排出量の基礎方程式を導いた。各樹木の実験結果を考察し, 日本の主要な針葉樹

からのモノテルペン排出量と光量との関係性を解明し, モノテルペン排出量の新しい

モデル式を提案した。さらに, オゾン濃度がモノテルペン排出量に及ぼす影響について

検討した。特に, モノテルペン排出量が最も多かった α-Pinene を対象に実験を行った。

供試樹木へ 100 ppb のオゾンを暴露すると, α-Pinene 排出量は, 暴露直後に急激に増加・

減少, 収束するといった挙動を示した。樹木からの排出量が季節によって差が生じるこ

とも観察した。また, 供試樹木により, 暴露前と暴露実験開始 12 時間以降の収束期の排
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出量の違いも観察され, 高濃度オゾンに対する順化の違いを見出した。加えて, オゾン

暴露下で光量依存性実験を行い, オゾン, 光量と α-Pinene 排出量の関係を評価した。暴

露開始後は, すべての光量で同じような挙動を示したが, 収束期の α-Pinene 排出量が光

量により異なった。暴露前と収束期の平均排出量比は光量 0 μmol m
-2

 s
-1 で 0.63±0.05, 

1200 μmol m
-2

 s
-1で 1.42±0.31 となり, 高光量条件下でのオゾン暴露は, 排出量の収束が

遅く, 収束期で標準光量下と比べて増加することが示された。一方, オゾン暴露下で温

度依存性実験では, オゾン, 温度と α-Pinene排出量の関係を評価した。収束期の α-Pinene

排出量が温度により異なった。暴露前と収束期の平均排出量比は 25 °C で 1.16±0.10, 

35 °C で 0.49±0.15 となった。高温度条件下でのオゾン暴露では, 経時的に排出量が収束

し, 収束期で標準温度下に比べて減少することが観察された。加えて, 暴露初期のオゾ

ン濃度上昇率を25 ppb h
-1

, 50 ppb h
-1に変化させ初期のオゾン暴露濃度がα-Pinene排出量

に及ぼす影響についても検討した。暴露前と収束期の平均排出量比は, 25 ppb h
-1 で

0.68±0.12, 50 ppb h
-1で 0.57±0.11となり, オゾン濃度上昇率が, 収束期の排出量に影響を

及ぼすことが観察された。 

第 5 章では, 第 1 に, 気象場・大気質予測の結果を示した。第 2 に, モノテルペン排

出量の光量依存性がオゾン濃度に与える影響について, 実験より導いたモデル式を用

いてモノテルペン排出量の光量依存性及びオゾン濃度への寄与を評価した。日没で光の

影響がなくなる夜間のモノテルペン排出量は, 光量依存条件下の方が少なかった。昼間

のモノテルペン排出量の増加はオゾン濃度減少へ寄与し, 夜間のモノテルペン排出量

の減少はオゾン濃度増加へ寄与した。光量依存性を考慮することにより, オゾン濃度の

日最大値は近畿圏の平均および最大でそれぞれ 0.3 ppb および 2.2 ppb減少し, 日最小値

は近畿圏の平均および最大でそれぞれ 0.4 ppbおよび 1.8 ppb 増加した。モデルにおいて, 

夏季の近畿圏においてはモノテルペンがオゾン濃度を減少させる役割を果たすことを

示した。第 3 に, 大阪の高濃度オゾン発生日の原因を解明するために, 各地域発生源か

ら大阪への寄与と域内生成の結果を示した。7 月 23 日と 8 月 2 日の各地域からの VOC

の寄与を地理的感度解析で評価したところ, 7月 23 日は BVOC の寄与が大きく, 特に兵

庫, 京都から前日までに排出されたBVOCの反応を経て生成されたオゾンが, 夜間から

早朝にかけて上空で滞留後, 日中に鉛直混合して大阪都市域の地上濃度を上昇させた

ことを示した。8 月 2 日は, BVOC 寄与は 7 月 23 日に比べ小さく, 当日大阪で排出され

た AVOC が光化学反応によりオゾンを生成し, 濃度上昇に寄与したことを示した。 

既存研究の多数は, モノテルペン排出量が葉温に多大な影響を受けるとしているが, 

本研究では, 日本の針葉樹から排出されるモノテルペン排出量が光量依存性を有する

ことを示し, 第 1 の目的である新たなモノテルペン排出量推計モデル式を構築した。ま

た, オゾン暴露が BVOC 排出量へ与える影響についての研究はほとんどなされておら

ず, 光量, 温度, オゾン濃度上昇率とモノテルペン排出量の定量評価を行い, 第 2 の目

的である環境因子と排出量の相互関係や影響について明らかにした。第 3 の目的である
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光量依存性を考慮することによるモノテルペン排出量が大気質にどのような影響を与

えるかを評価し, モノテルペンがオゾン濃度に及ぼす影響について解明した。第 4 の目

的である近畿圏の発生源からの影響を感度解析によって検討し, 移流・拡散・反応等と

上空の汚染物質の鉛直混合によるオゾン濃度への寄与を評価し, 大阪の夏季の大気質

の解明に至った。これらを複合的かつ精緻に考究し, 植生起源揮発性有機化合物のオゾ

ン濃度へ及ぼす影響について評価した。BVOC は樹木によりその排出量が異なり, 研究

での供試樹木が 3 種類の針葉樹, 対象化合物が限られていることから, 今後さらに他の

樹木・多種の BVOC についても検討する必要がある。 

本研究は, オキシダント問題の解決のための基礎研究となるもので, さらに対象樹木, 

BVOCを拡大することにより, 精緻な排出インベントリの構築及び大気質モデルの精度

向上に寄与するものであり, BVOC が大気化学に与える影響を解明するための重要な知

見である。 
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