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Abstract

Metal oxides have attracted a lot of attention because of their various promising
industrial applications, especially considering how these materials are chosen for
their unique chemical, electrical and optical properties. These properties are
often related to the presence of defects in the structure, in particular, oxygen
defects (O-vacancies) where studies on their effects are gaining interest in material
science. A new approach in materials design called “defect engineering” has been
introduced with the purpose of manipulating the nature and concentration of
defects in solids in a desired manner for specific and targeted functions. This
study reports O-vacancies as effective defects that would enable us to change
the characteristics of metal oxides, e.g., geometric and electronic structures, the
corresponding chemical and physical reactivity, for promoting a desired reactivity.
By density functional theory (DFT) calculations, a detailed understanding of the
effects of O-vacancies in two metal oxides case studies of well-known catalysts
for a lot of green-technology applications is provided: anatase TiO5(001) and

lanthanum gallate (LaGaOs3)-based materials.

Anatase TiOy(001). Anatase TiO, is popular as a photocatalyst and non-
platinum-based catalyst for fuel cells, with O, adsorption as an important step
for a lot of catalytic reactivities. Our results show that Oy molecule is diffi-
cult to adsorb on the stoichiometric anatase TiO5(001), which is attributed to a
strong repulsion from the O ions of the surface. This is in agreement with the
experimental observations on anatase TiO2(001) for O, adsorption. Creation of
O-vacancy is favourable on the 2-fold coordinated O ion on the surface, result-
ing in excess electrons. These excess electrons redistribute locally around the
two neighboring 4-fold coordinated Ti ions, and an associated localized defect
state appears in the corresponding electronic structure. Calculations with on-site
Coulomb interaction parameters, U, show that the localized defect state can be
described well with GGA+U; however, there is no significant qualitative change
on the adsorption of O5 on this surface regardless of the U value considered. The
presence of O-vacancy promotes Oy adsorption on an initially inert stoichiometric
TiO2(001) through creation of active site on the surface. The adsorbed O, can
be found either in superoxide state (O,) and peroxide state (O3 ), depending
on the adsorption configuration. An O, anion was formed when the O-O bond

is oriented parallel to the surface, along [010]. And an O3~ anion forms when



O, adsorbs perpendicularly to the surface, along [001]. O state of adsorbed O
is more stable than O3~ state. Healing/migration of the surface occurs when
one of the O atoms of the perpendicularly adsorbed O, fills the vacant site re-
covering the stoichiometric surface and the other atom diffuses. By filling the
O-vacancy which is the active site for Oy adsorption, healing/migration effect
could reduce the efficiency of the surface chemical reactions and slow down the
catalytic reaction rate. However, this effect has less probability to occur than the
O, adsorption configuration with O state. Anatase TiO5(001) with O-vacancies,

in general, still promotes Oy molecule interaction with the surface.

Pristine LaGaOs (LG) based materials. LaGaOgs-based materials are known
as promising ionic conductors for electrolyte of SOFC applications. The geomet-
ric and electronic structure of pristine/stoichiometric LG is based on the tilting
of [GaOg] octahedrons from the ideal cubic perovskite structure, which cause
the difference in the nature of the bonds of O ions and the surrounding cation
ions, especially the bonds with La ions. Equatorial O ions have weaker bonds
with La ions than apical O ions. O-vacancy is difficult to form in pristine LG
as indicated by the calculated large O-vacancy formation energy. The equatorial
O-positions of [GaOg| octahedron are found to be more favorable than the apical
O-positions for introducing O-vacancy. The effect of O-vacancy on the struc-
tural characteristics is primarily observed around the vicinity of the vacancy site.
The introduction of O-vacancy leads to excess electrons in the O-deficient LG
(LG_s), which induces accumulation of charge between two 5-fold coordinated
Ga ions, and an associated localized defect state appears in the corresponding
electronic structure. The appearance of O-vacancy allows the O ion to migrate in
LG_s through O hopping to the O-vacancy site. Calculated potential curves for
O-migration shows that the preferable migration paths are along the equatorial
edges of the [GaOg| octahedron with high activation energy. The mechanism of
O-migration reveals that excess electrons enhance not only the repulsive Coulomb
interaction between the mobile O and the surrounding Ga ions, but also the at-
tractive Coulomb interaction between the mobile O and the surrounding La ions.
Although the presence of O-vacancy induces O-migration through the initially
inert LG-based materials, it also produces excess electrons, which is the reason
for the high activation energy for O (O-vacancy) migration in pristine LG based

materials.

Srand Mg co-doped (LaSr)(GaMg)Os (LSGM) based materials. Doping diva-
lent elements into trivalent cation sites is one way to reduce excess electrons from

the creation of O-vacancy, and, consequently, decrease the O-vacancy formation
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energy and enhance the O-migration. Due to the similarities in ionic radii with
the host (La/Ga) ions, Sr and Mg dopants at La and Ga sites, respectively, were
chosen. Doping with divalent cations resulted in charge compensation, which
reduces the O-vacancy formation energy. It is easier for O-vacancies to be cre-
ated in co-doped LSGM-based materials than in LG-based materials. Due to the
nature of the bond between O ions and the surrounding cation ions, especially
Sr and Mg, O-vacancy is easier to form nearest to Sr than nearest to Mg. This
explains the experimental observation on the significant role of Sr in increasing
O-vacancy concentration. Together with reducing the O-vacancy formation en-
ergy, the co-doped LSGM shows the significant decrease in the activation energy
of O (O-vacancy) migration. Most of the preferable path for O migration in the
co-doped LSGM is still the same as that of the pristine LG-based material, i.e.,
between two equatorial O positions. The presence of dopants, especially Sr at La
sites, introduces other preferable paths, which are from the O positions outside
the vicinity of Sr to the O positions nearest to Sr, either on the apical edge or
equatorial edge of [GaOg| octahedra.

From these studies, we have shown that the presence of O-vacancies has sig-
nificant effects on the promotion of desired reactivities in initially inert materials.
Understanding about the nature of O vacancies in oxide materials allows us to
propose ways on improving it’s efficiency for a desired reaction, e.g., through
doping, etc. It raises the interest to further research of O-vacancies in metal

oxides.

1ii






Contents

Abstract
Abbreviation
List of Figures
List of Tables

1 Introduction

2 O-vacancies in Anatase TiO,(001)

2.1 Titanium Dioxide and Catalytic Reactivities . . . . . . . . . ..
2.2 The Stoichiometric Anatase TiOo(001) . . . . . . ... .. ...
2.2.1 Geometric Structure . . . . ...
2.2.2  Electronic Properties . . . . . . . ... ... ... .. ..
2.3 O-deficient/Reduced Anatase TiOo_s(001) . . . . . . . ... ..
2.3.1 O-vacancy Formation . . . . . .. ... ... ... ...
2.3.2  Geometric Structure . . ... ..o
2.3.3 Electronic Properties . . . . . . ... ... ... ... ..
24 The Oy Adsorption . . . . . . . ...
2.4.1  On the stoichiometric anatase TiO2(001) . . . . . . . ..
2.4.2  On the O-deficient/Reduced Anatase TiOy_5(001) . . . .
2.4.3 Healing/ Migration effect . . . . . . ... ... ... ...

2.5 Summary .. o.o. ...

3 O-vacancies in Pristine Lanthanum Gallate Based Materials

3.1 LG-based materials . . . . ... ... ... 0oL
3.2 The Pristine/ Stoichiometric LG . . . . . . ... ... ... ...
3.2.1 Geometric Structure . . ... ..o
3.2.2  Electronic Properties . . . . . . ... ... ... ... ..
3.3 O-deficient/Reduced LaGaO3_s (LG_s) . . . . . ... ... ...
3.3.1  O-vacancy Formation . . . .. ... ... ... ... ..
3.3.2  Geometric Structure . . . ...

3.3.3 Electronic Properties . . . . . . .. ... ... ... ...

iii

vil

Xiv

xvi

© © oo 3 = ot o

10
10
13
13
15
18
19



3.4  Oxygen Migration (O-vacancy migration) . . . .

3.5 Summary ... ...

O-vacancies in Doped LaGaO3; Based Materials
4.1 Doped LaGaOs-Based Materials . . . . . . . ..
4.2 Sr- and Mg-Doped LaGaOs: (LSGM) . . . . ..

4.3

4.2.1
4.2.2

Geometric Structure . . . . .. ... ..

Electronic Properties . . . . . . . .. ..

O-deficient /reduced (LaSr)(GaMg)Os_s . . . . . . . . .. ... ..

4.3.1
4.3.2
4.3.3

Geometric Structure . . . . ... .. ..
Electronic Properties . . . . . . . .. ..
Oxygen Migration (O-vacancy Migration)
4.3.3.1 Effect of SrIons . . ... ...
4.3.3.2 Effect of Mg Ions . . . . . . ..
4.3.3.3 Outside the Vicinity of Dopants

4.4 Summary . ... ...

Summary, Conclusion and Outlook

Density Functional Theory Formalism

Al
A2
A3
A4
A5

The Schrodinger Equation . . . . . . . . .. ..

Hohenberg-Kohn Theorems . . . . . . ... ..

Kohn-Sham Equation . . . . . . ... ... ...

Approximations for Exchange-Correlation Functional . . . . . ..

Implementation of DFT . . . . . .. ... ...

Bibliography
Acknowledgement
List of Publications

List of Scientific Meeting

vi

31
31
32
32
33
35
36
37
38
38
39
41
42

43

47
47
48
48
50
o1

53

65

66

67



Abbreviation

CB
CBM
DFT
DOS
EPR
ESR
FIM
GGA
LDA
LDOS
LG
LG_s
LSGM
LSGM_;
ORR
PEMFC
PES
SOFC
STM

SE-IRAS

STS
VB
VBM

Conduction Band

Conduction Band Minimum

Density Functional Theory

Density of States

Electron Paramagnetic Resonance
Electron Spin Resonance

Field Ion Microscopy

Generalized Gradient Approximation
Local Density Approximation

Local Density of States

LaGaOs3

LaGaO3 (6 = 0.0626)
(La;_,Sr,)(Gay Mg, )O3 (x=0.0625)
(Laj_,Sr,)(Gay_,Mg,)O3_s (x=0.0625 and § = 0.0625)
Oxygen Reduction Reaction

Proton Exchange Membrane Fuel Cell
Potential Energy Surface

Solid Oxide Fuel Cell

Scanning Tunneling Microscopy
Surface-Enhanced Infrared Reflection Adsorption Spec-
troscopy

Scanning Tunneling Spectroscopy
Valence Band

Valence Band Maximum

vii






List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

“Defect Engineering” approach to improve the desired reactivity

in metal oxides. . . . . . ...

The different polymorphs of titanium dioxide (TiO2): (a) rutile,
(b) anatase and (c) brookite. Ti: large/blue spheres. O: small/red

spheres. . . . . L

Side view (along [100]) of the slab model for anatase TiO5(001)-
(23X 2).

Calculated local density of states (LDOS) of the stoichiometric
TiO2(001) The DOS contribution of the top surface layer was
shown, and so the corresponding p orbitals of the Oy, p orbitals
of the O3, and d orbitals of the Tis.. The arrows indicate the cor-
responding valence band maximum (VBM) and conduction band
minimum (CBM). Energies given in [eV] with respect to the Fermi
level (ER). . o o v v o

Four O-vacancy positions on anatase TiO5(001) — (2 x 2), viz.,
in the Oy, and O3, planes of the topmost layer and the O planes
of the next layer (of TiOg units) (cf., Fig. 2.2). These are also

alternatively labeled as 1%, 274- 374 4% layers. . . . . . . . . ..

The O-deficient/reduced anatase TiO5(001) after relaxation. On
the surface, there are two Tiy. near the O3 site. Ot 0214 and

O34 represent the 15, 2" and 3" nearest O, from the O3 site.

Calculated LDOS of the O-deficient/reduced TiO5(001) for several
on-site Coulomb interaction values U: (a) 0.0 eV, (b) 2.4 eV, (c)
3.0 eV, (d) 4.0 eV, and (e) 5.0 eV. The DOS contribution from
d-orbitals of the Ti4., p-orbitals of the nearest Oq, ( i.e., O%') and
p-orbitals of the 2"® and 3"¢ nearest Os. ( i.e., 0324 and O3¢) from
the O3 site. The arrows indicate the corresponding VBM and

CBM. Energies given in [eV] with respect to the Fermi level (Er).

X

10

12



2.7

2.8

2.9

2.10

3.1

(a) Top view of a stoichiometric anatase Ti02(001), with the cor-
responding symmetric sites, viz., atop Tis.; Og.; Os.; and Ho: the
hollow site. Also shown are the stable configurations for an incom-
ing Oy: (b) atop Tis., with the O-O bond along [001]; (c) atop Oq,
with the O-O bond along [010]; (d) atop Og., with the O-O bond
along [001]; (e) atop Os., with the O-O bond along [100]; and (f)
atop Ho, with the O-O bond along [010]. . . . . ... ... ...

(a): Optimized structure of the Al adsorption configuration at
the O-vacancy site: Oy adsorbs with the O-O bond parallel to the
surface along the [010] direction. (b): Calculated DOS of the top
layer of the O-deficient/reduced anatase TiO5(001) after oxygen
adsorption in Al configuration with standard GGA (U = 0 eV)
calculations and GGA+U (U = 4 eV) calculations. Energies given
in [eV] with respect to the Fermi level (Eg). . . . . .. ... ...

(a): Optimized structure of the A2 adsorption configurations at
the O-vacancy site: Oy adsorbs with the O-O bond perpendicular
to the surface along the [001] direction. In the A2 configuration,
the bottom O (O,q1) of Oy protrudes from the surface, and the top
O (Oaq2) is near the Tiy-plane. (b): Calculated DOS of the top
layer of the O-deficient/reduced anatase TiO5(001) after oxygen
adsorption in A2 configuration with standard GGA (U = 0 eV)
calculations and GGA+U (U = 4 eV) calculations. Energies given
in [eV] with respect to the Fermi level (Eg). . . . . . ... .. ..

Potential energy surface for O adatom diffusion on the stoichiomet-
ric TiO2(001). The coordinates (z,y) of the O adatom are given
as fractional units of the (2 x 2) surface. The top-view and the
symmetric sites correspond to Figure 2.7. (Inset) The configura-
tion corresponding to the case when the O adatom is at a minima
above (z,y) = (0,0.125). O adatom: smaller/yellow sphere. Con-
tour spacing: 0.15 eV. Surface lattice parameter a = 3.79(4) A.

The optimized structure of the stoichiometric LG as viewed from
(a) the c-axis and (b) the b-axis, and (c) a magnified view of the
[GaOg] octahedron of the supercell. The (2 x 1 x 2) supercell
contains 80 atoms: 16 La, 16 Ga, and 48 O. The corresponding

coordinate axes (a,b,c and d’, ) are also shown. . . . ... ...

19



3.2

3.3

3.4

3.5

3.6

Calculated LDOS of the stoichiometric LaGaO3 (LG). (a) DOS
for whole (2 x 1 x 2) super-cell with the DOS contributions from
lanthanum (La), gallium (Ga), apical oxygen (O,;), and equatorial
oxygen (Ogq), respectively. (b)-(e) DOS contributions from the s,
p, d, and f-orbitals of La, Ga, O,p, and O.q, respectively. Ener-
gies are given in [eV] with respect to the Fermi level (Er). The
corresponding VBM and CBM are also indicated. . . . . . .. ..

A magnified view of the most stable pyramidal structure [GaOs]
of the reduced LaGaO3 (LG_s). O vacancy (O"*: white, dashed-
outlined sphere. (Inset) The most stable position for O in the
(2 x1x2) supercell, containing 79 atoms: 16 La (largest/light pur-
ple spheres), 16 Ga (2"¢ largest /green spheres), 47 O (smallest /red
spheres). The corresponding coordinate axes (a,b, ¢ and o', ) are

also shown. . . . . . L

Calculated density of states (DOS) of O-deficient/reduced LaGaO3
(LG_s). (a) [GaOs] pyramids, which consist the surrounding La"®
ions (red/dash), the Gas. ions (blue/solid), the surrounding O¥°
ions (Ogy), including O;“/ and OF’, and the O,c-opposite O ions

(qucl) metioned in Fig. 3.3. (b) Other [GaOg] octahedra, which
include La, Ga and O ions. Energies given in [eV] with respect to
the Fermi level (Fr). Figure 4(c) shows partial charge distribution
of the defect state near the Fermi level of LG_s, where the isosur-
face value is 0.003 e/ A®. The corresponding VBM and CBM are

also indicated. . . . . . ..

(a) O-migration paths from the most stable O configuration in
an O-deficient /reduced LaGaO3 (LG_s). Path I corresponds to the
shortest path between two non-vertex sharing [GaOg] octahedra.
Path II corresponds to the path between O, sites in a a vertex-
sharing [GaOg| octahedra. There are two paths between the O,
sites, viz., paths III and IV, as shown. (b) Calculated energies
corresponding to certain points along the paths indicated. Energies

given in [eV] with respect to the initial position configuration.

The most favourable O-vacancy (O"*°) migration path (path III
in Fig. 3.5). The labels “Initial”, “17, “2”7  “3”, “Final” indicate
the initial, location, intermediate locations, and final locations of

(Ove€). O,, traces the same path in the opposite direction.

x1

27

28



3.7

4.1

4.2

4.3

Calculated energies and partial charge distributions of the defect
states correspond to each states along the O-vacancy (O'%¢) mi-
gration path (path IIT in Fig. 3.5and also cf., Fig. 3.6). Isosurfaces

are given in intervals of 0.003 e/ Ao

The optimized structure of the non-defect LSGM. (a) In the (2x1x
2) supercell, a Sr ion and a Mg ion were substituted for the La ion
and Ga ion, respectively. The supercell contains 80 atoms: 15 La
(light purple spheres), 1 Sr (blue spheres), 15 Ga (green spheres),
1 Mg (orange spheres), 48 O (red spheres). (b) A magnified view
of the vicinity of Sr ion with the three nearest O ions (viz. OfF,
O3 and OfF). (c) A magnified view of the vicinity of Mg ion. OMs
and GaM¢ refer to the O ion of [MgQOg] octahedron and the first

nearest Ga 10NS. . . . . .. ..

Calculated local density of states (LDOS) of the doped LSGM. (a)
DOS for whole (2 x 1 x 2) super-cell with DOS contributions from
lanthanum (La), gallium (Ga), apical oxygen (O,p), and equatorial
oxygen (Ogq), respectively. (b) LDOS for the vicinity of Sr ion,
which consist the surrounding LaM® ions, Sr ion and the O ions
(i.e. OF, Of and OfF"). (Inset: The magnified view of LDOS in
the energy range [-4.5 eV, 0.5 eV].) (c) DOS for the vicinity of Mg
ion, which consist Mg ion, the O ions of [MgQOg] (OM8) and the
nearest Ga ions (GaMe). (cf., Fig. 4.1) (Inset: The magnified view
of LDOS in the energy range [-4.5 eV, 0.5 eV].) Energies are given
in [eV] with respect to the Fermi level (Ex). The corresponding
valence band maximum (VBM) and conduction band maximum
(CBM) are also indicated. . . . ... ... ... .. ........

A magnified view of the most stable pyramidal structure [GaOs]
of the O-deficient/reduced LSGM_s5. One of the O ions along b-
axis is replaced by an O vacancy (OY?¢, white, dashed-outlined
sphere), resulting in two 5-fold coordinated Ga ions (Gas., viz.,
Gaz?). The (2 x 1 x 2) supercell contains 79 atoms: 15 La (2"
largest/light purple spheres), 1 Sr (largest/blue sphere), 15 Ga
(4" largest/green spheres), 1 Mg (3"¢ largest/orange sphere), 47
O (smallest /red spheres). (Inset) The most stable position for O¥*
in the (2 x 1 x 2) supercell. The corresponding coordinate axes

(a,b,c and @, ) are also shown. . . . . . ... ... ... ... ..

xii



4.4

4.5

4.6

Calculated LDOS of LSGM and O-deficient/reduced LSGM_j;. (a)
DOS for whole (2 x 1 x 2) super-cell: (b) LDOS for the vicinity
of Sr ion, which consist the surrounding LaM# ions, Sr ion and the
O% ions (incl. OF, OFF and OF"). (c) LDOS for the vicinity of Mg
ion, which consist the O ions of [MgOg] (OM8), the nearest Ga ions
(GaM&) and Mg ions. Energies are given in [eV] with respect to
the Fermi level (Ey). The corresponding VBM and CBM are also

indicated. . . . . ..

(a) O-migration paths from the most stable OY* configuration
near St ion (i.e., O%,) in the O-deficient/reduced LSGM_;4. path
Sr-I corresponds to the path near Sr ion, which has the transition
state of mobile O passing through the triangle ASr-Ga-La. path
Sr-11 corresponds to the path from the outside O site to the site
nearest Sr ion (Mobile O passes the triangle ALa-Ga-La in the
transition state). (b) Calculated energies corresponding to certain
points along the paths indicated in Fig. (a). The migration activa-
tion energy (F,) corresponds to the energy of the transition state.
Energies were given in [eV] with respect to the initial position con-

figuration. . . . .. L

(a): O-migration paths from the most stable O configuration
near Mg ion in the O-deficient/reduced LSGM_;. path II-g and
path II-m correspond to the path between the apical O site and
equatorial O sites within the nearest [GaOg] and [MgOg] octahedra,
respectively. path III-g and III-m correspond to the path between
two equatorial O sites within the nearest [GaOg] and [MgOg| oc-
tahedra, respectively. (b): Calculated energies corresponding to
certain points along the paths indicated in Fig.(a). The migration
activation energy (F,) corresponds to the energy of the transition
state. Energies were given in [eV] with respect to the initial posi-

tion configuration. . . . . . . .. ... L



4.7

(a): O-migration paths from the most stable O¥*° configuration
outside the vicinity of dopants in the O-deficient /reduced LSGM _s.
Path II-o corresponds to the path between the apical O site and
equatorial O sites, and path III-o correspond to the path between
two equatorial O sites within a [GaOg) octahedron. (b): Calculated
energies corresponding to certain points along the paths indicated
in Fig.(a). The migration activation energy (F,) corresponds to
the energy of the transition state. Energies were given in [eV] with

respect to the initial position configuration. . . . . . ... .. ..

Xiv



List of Tables

2.1 Oxygen vacancy formation energy (EJ“"Y, Eq. 2.1) in anatase
TiO2(001) — (2 x 2) (cf., Figs. 2.2and 2.4). . . . ... ... ... 10

2.2 Displacement (Az) along [001] from the stoichiometric surface,
bond length (r), the subtended angle «(Tis. — O3 — Tiy.) and
the charge gain/loss (£AQ) due to the formation of O™ for the
surface Ti (i.e., Tiy. and Tis.) and the surface O (i.e., O O3nd,
034 and Ojs,.), with various on-site Coulomb parameters U (cf.,
Fig. 2.5). Negative values of Az correspond to displacement of the

surface ions toward the bulk. . . . . . . . .. ... 11

2.3 Computed adsorption energy (FEaqs, Eq. 2.2) of O5 on the stoichio-
metric TiO5(001), bond length of the adsorbed Oy (ro-o), and
amount of charge transfer (AQ) from anatase TiO5(001) to the Oq
adsorbed at each of the five stable adsorption configurations/sites,
viz., Tise, Og.[010], O9.[001], O3, and Ho (cf., Fig. 2.7.). A positive

value of F,qs correspond to the endothermic adsorption of Os. . . 14

2.4 Computed adsorption energy (Fa.qs, Eq. 2.2) of Oy on the O-deficient /reduced
TiO4(001), bond length of the adsorbed Oy (ro_o), the stretching
frequency (vo_o), and charge gain/loss (£AQ) by the neighbor-
ing Ti and O atoms on O-reduced surface due to the adsorption

of Os, for various on-site Coulomb parameters U (cf., Fig. 2.8and
Fig. 2.9). . . . 16

vacancy

3.1 Calculated O-vacancy formation energy (Egq , Eq. 3.1) in LaGaO3
(LG) for the apical Og’ ions along the b-axis and the equato-
rial O;tqc/ and qu"/ ions along the ¢- and a-axes, respectively (cf.,
Fig. 3.1). oo 24

3.2 Bader charge analysis for each images along the O-migration path.
Positions of Gas., Gasg, Gags, Laj* and Laj' were shown in Fig. 3.6.
Oy, represents for the mobile O ions, which is in the inverse direc-
tion with the O"*. Oy, ions are the other O ions surrounding
the shared [GaOj;] pyramid. Positive (negative) values refers to

electron loss (gain) through bonding with other ions. . . . . . .. 28

XV



4.1

4.2

4.3

4.4

Bader charge analysis of the non-defected LSGM. Effective charge
of each atoms is the deduction of the corresponding Bader charge
from the original valence electrons of the atoms (10 for La, 13 for
Ga, 10 for Sr, 8 for Mg and 6 for O). Positive/negative values refers
to loss/gain electrons. O and OM# refers for O ions in the vicinity
of the Sr and Mg, respectively. “Other O” refers to the other O
ions outside of the vicinity of Sr and Mg ions. (cf., Fig. 4.1)

Calculated O-vacancy formation energy (ES“"”, Eq. 4.1) in LSGM
for the corresponding 1%, 2"® and 3"¢ nearest to the Mg and Sr
dopants (cf., Fig. 4.1). . . . . . . ...
Bader charge analysis of the the O-deficient /reduced LSGM_;. Ef-
fective charge of each atoms is the deduction of the corresponding
Bader charge from the original valence electrons of the atoms (10
for La, 13 for Ga, 10 for Sr, 8 for Mg and 6 for O). Positive/negative
values refers to loss/gain electrons. GaZ®’ was showed in Fig. 4.3.
Gag. and OFx refer to the 6-fold coordinated Ga ions in super-
cell and the surrounding O ion of [GaOs] pyramid (incl. OEe’®
respectively. . . . . Lo
Bond lengths of between mobile O and the surrounding atoms: the
shared 5-fold coordinated Ga (i.e., Gag.), O ion of [GaOjs] pyramid
nearest to mobile O, Sr/La}" for the corresponding path Sr-1/Sr-I1,
respectively, and Lay' (cf., Fig. 4.5a). . . . . ... ... ... ...

xvi

34



Chapter 1

Introduction

Global warming and the exhaustion of fossil resources are now becoming more
and more serious problems. “Green technology” is seen to be an obvious answer
to these problems. The field of green technology encompasses a continuously
evolving group of methods and materials, from techniques for generating energy
to non-toxic cleaning products. The present expectation is that this field will
bring innovation and practical changes in the industry and our daily life. This
rapidly growing field includes large subject areas, i.e., energy, green building ma-
terials, environmentally preferred purchasing, green chemistry, green nanotech-
nology, with the wide-range of applications. It cannot be denied that the devel-
opment of this field depends on the invention and development of new materials
or the improvement of the original materials to increase efficiency of green tech-
nology applications and make them more practical and popular, not only in the
industrial field, but also in daily life. Among various promising materials, metal
oxides are the largest family of materials exhibiting various interesting chemical
and physical characteristics, from the optical properties to superconductivity [1].
It is the reason for the appearance of metal oxides in many green technology
applications [2-4], e.g., cathode catalysis of proton exchange membrane fuel cell
(PEMFC), solid electrolyte for solid oxide fuel cell (SOFC), photocatalysis, etc.

“Defect engineering” Material properties, especially that of metal oxides,
are often altered by the presence of faults or defects in the structure [5,6]. For
instance, the strength of a metal is largely connected to the presence of disloca-
tions; the color of a gem is related to the amount of transition metal atom impu-
rities; the spectacular advances in the microelectronic industry are determined by
doping semiconductors by the insertion of impurity atoms; the superconducting
behaviour of some cuprates is closely connected to the level of oxygen vacancies.
Alteration of material properties in the presence of defects in metal oxide has
attracted an increasing interest in materials science, surface chemistry, and solid
state physics. A new approach in material design called “defect engineering” has

been introduced with the purpose of manipulating the nature and concentration



of defects in solid in a desired manner for specific and targeted functions.

Defect

. Metal Oxides
Metal Oxides * with Defects

* Geometric Structure * Geometric Structure
* Electronic Properties l l * Electronic Properties

* Chemical and * Chemical and
physical reactivity physical reactivity

Desired Desired

Reactivity [] Reactivity

Promotion

Figure 1.1: “Defect Engineering” approach to improve the desired reactivity in
metal oxides.

In “defect engineering”, the following scheme, as seen in Fig. 1.1, is proposed

to achieve the goal of improvement of the desired reactivity of materials

e The characteristics of metal oxides, i.e. geometric structure, electronic prop-
erties and the corresponding chemical physical reactivity, will be determined
by theoretical/experimental studies to clarify how the desired reactivity

works in the considered metal oxides

e According to the understanding of the properties of metal oxide and the
reactivity, suitable defects was proposed in the original metal oxides. The
presence of defects supposes to enhance the properties of these materials
supporting the desired reactivity, or reduce the properties hindering the

reactivity.

e The properties of the defected metal oxides will be investigated to determine

the effect of defects and the performance of the desired reactivity.

e Improvement of the desired reactivity in the defected metal oxides will be
verified by comparing with the corresponding reactivity in the original metal

oxides

In my study, oxygen vacancy (O-vacancy) was considered as a special point
defect to improve the reactivity of metal oxides. The determination of the exis-

tence and properties of O-vacancies and their role in the chemistry of compound



materials have been studied for a long time. However, the limitation in research
technology hinder the trace of their reactivity in a direct way. In recent years, the
development of technology allows us to track the reactivity of O-vacancies on the
metal oxides in direct way, e.g., using of atomically resolved scanning tunneling
microscope (STM) images follows a dynamic process of the migration of oxygen
vacancies at the surface of a well-ordered TiO, surface [7]. It was the start of
researches related to fully investigate the properties and reactivity of O-vacancies
in solid materials, especially in metal oxides. A detailed understanding on the
role of O-vacancies would enable us to understand how metal oxides function and,
perhaps, even allow us to design oxide materials exhibiting specific, targeted func-
tions. It is good to keep in mind that there is no ”"almighty” way to perfectly
improve any desired reactivity. The advantages and disadvantages of the intro-
duction of O-vacancies defect will be discussed in this dissertation through the
density functional theory (DFT)-based calculations, which give us the possibility

of molecular-level researches.

In this study, the proposed method applied to two well-known metal oxides:
titanium dioxide surface and lanthanum gallate based materials. Titanium diox-
ide is a well-known catalyst, not only for photocatalytic reactivity, but also as a
promising non-platinum based catalyst for oxygen reduction reactions (ORRs).
And, lanthanum gallate based materials is famous as promising ionic conductors,

which can be applied as electrolyte for SOFCs.

For anatase TiO2(001) surface, the desired activity of this material is for cat-
alytic reactivity. In this study, we focused on the adsorption of oxygen molecule
(O2), which plays an important role in several catalytic activities, e.g., electron
scavengers used to suppress electron-hole recombination in photo-oxidation pro-
cesses, or non-platinum catalysis. Despite the important role of O,, details of the
effect of O-vacancy on anatase TiO5(001) and the Oy adsorption on this surface
need to be studied.

For pristine and doped LG-based materials, the focus is on ionic conductivity,
which is the basis for applying these materials as electrolyte for SOFC appli-
cations. The performance of ionic conductivity in electrolyte materials strongly
depends on how oxygen migration (O-migration) work in the materials. However,
the mechanism of O-migration in this materials is not well understood. It can
be expected that the introduction of O-vacancies induces O-migration through
an initially inert LG. An understanding of the role of O-vacancies in the pristine
LG-based materials was investigated and discussed in this study. From this, dop-

ing at the cation sites was proposed as the solution to control the performance



and reduce the negative effect of O-vacancies in pristine LG-based materials, and

improve the O-migration.



Chapter 2

O-vacancies in Anatase TiO»(001)

2.1 Titanium Dioxide and Catalytic Reactivi-
ties

Titanium dioxide (TiO2) has attracted a lot of attention because of its various
promising industrial applications, e.g., photocatalytic water splitting and hydro-
gen production [8,9], organic dye-sensitized solar cells [10], solar energy conver-
sion [11], to name a few. In almost all these applications, Oy adsorption on TiOs
plays an important role. They act not only as the main oxidizing reagents but
also as electron scavengers in photo-oxidation processes [12]. In addition, exper-
iments report that doping nitrogen increases O-vacancy formation and enhances
the oxygen reduction reactions (ORRs) on TiOs surfaces [13-16]. This makes
TiOy even more attractive as an alternative material to replace the expensive
platinum used, e.g., as electrocatalysts in fuel cells.

There are three polymorphs of TiO; used widely in the industry: rutile,
anatase and brookite (cf., Fig. Figure 2.1).

i e
-~
~

Brookite

(b) Anatse

Figure 2.1: The different polymorphs of titanium dioxide (TiOs): (a) rutile, (b)
anatase and (c) brookite. Ti : large/blue spheres. O: small/red spheres.



Among them, rutile and its facets are the most stable structure, which can be
found most in titanium dioxide compounds. This reason makes rutile structure
and its surfaces been extensively studied in the last decade, both experimentally
(using STM/STS: scanning tunnelling microscopy/spectroscopy and FIM: field
ion microscopy, among others) and theoretically [3,17,18]. However, anatase and
it surfaces have found to exhibit efficient catalytic reactivity [19,20]. Despite the
studies of anatase so far (e.g., in terms of processes such as molecular adsorp-
tion, dissociation, and diffusion), full understanding of the potentials of anatase

TiO5(001) surface have not been well understood.

Anatase surfaces are mostly exposed (101) facets together with a small amount
of (001) facets (less than ca. 6%, according to the Wulff construction [21]). How-
ever, the minority (001) surface exhibits high-reactivity [22-24]. In particular,
anatase TiO5(001) was found to be active for oxygen adsorption, with a cor-
responding oxygen adsorption energy lower than anatase TiO5(101) [25]. Both
high reactivity to oxygen adsorption and the small oxygen adsorption energy
play important roles in catalytic activity in fuel cells. Depending on the experi-
mental conditions [3,26-35], anatase TiO2(001) exposes in both of the unrecon-
structed [29-31] and (1 x 4) reconstructed [32-34] surfaces. Studies have shown
that the unreconstructed (001)-(1 x 1) is rather unstable [3,27,35]. There is a
large tensile stress present on the unreconstructed (001)-(1 x 1), which can be
attributed to the symmetry breaking, resulting in the inequivalent Ti-O bond
lengths on the surface. (1 x 4) reconstruction of anatase TiO5(001), realized by
replacing the rows of surface bridging oxygens with rows of TiO3 species, relieves
this large surface tensile stress [3,27,35]. However, (1 x 4) reconstructed surface

is less active than the unreconstructed one [21,36].

Experimental studies [37-39], using Auger electron spectroscopy, low-energy-
electron-diffraction, electron-energy-loss spectroscopy, confirmed the presence of
Ti** ions in both rutile and anatase phases, upon removing O atoms from sto-
ichiometric TiO,. The presence of Ti** ions can also be associated with the
appearance of a new state in the band gap, ca. 0.7 — 0.9 eV below the Fermi
level (Er) [40,41]. Electron spin resonance (ESR) observations (done on TiO,
P-25 powder, having a mixed phase of anatase and rutile, in the ratio of 4:1)
suggest that the trapped electrons are excited to the conduction band (CB) upon
illumination of light, with energy lower than the band gap, and are re-trapped
as Ti*" cations in the dark [42]. On the O-deficient/reduced rutile TiO5(110)
surface, with Ti3T ions present, studies have identified a non-vacancy-related O,

dissociation channel, resulting in O adatom pairs [43]. This is in addition to the
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O, dissociation channel that occurs at the O-vacancy site, which results in filled
vacancies and isolated O adatoms [41].

Molecular oxygen (O3) plays a key role in many TiO,-based applications; e.g.,
O, adsorbed on TiOs surfaces is known to act as an electron scavenger, which
is used to suppress electron — hole recombination in the photocatalytic reaction,
and the first step of catalytic reactions, especially ORRs. Theoretical studies
of Oy adsorption on anatase surfaces have mostly focused on the (101) surface.
The interaction between O, and other anatase surfaces, especially the active
(001) surface still need further clarification. Besides, the studies of Oy adsorption
shows the disagreement between theoretical and experimental studies. The O3~
anions were theoretically predicted to be more stable than the O, anions on
the stable anatase TiO5(101) [44-46]. This prediction seem to contradict with
the observation of the O, stabilization from the electron paramagnetic resonance
(EPR) experiment [47,48].

All these reasons make anatase TiO2(001) and the O, adsorption becomes
interesting, not only for theoretical research, but also for a wide-range of appli-

cations, e.g., photocatalysis application, fuel cell, etc.

2.2 The Stoichiometric Anatase TiO,(001)

2.2.1 Geometric Structure

The model of anatase TiO2(001) started from an optimized bulk anatase TiOs
structure. The corresponding calculated bulk lattice parameters are a = b =
3.79(4) A and ¢ = 9.51(5) A, in good agreement with previous theoretical studies
[21,49].

A four layer slab of TiO,

units was constructed with the O plane @ue-

Ti, plane -----3 -

(2 x 2) surface, consisting of <P
48 atoms: 16 Ti ions and 32 O-planes { ......
o=

O ions, separated by 20 A
of vacuum space along [001], :

in a supercell geometry (cf. [001] Q Q
Fig. 2.2). The bottom two lay-

ers (of TiOg units) represent

the bulk anatase TiOs, and _
Figure 2.2: Side view (along [100]) of the slab

consist of 6-fold coordinated model for anatase TiO2(001)-(2 x 2).
Ti ions (Tis.) and 3-fold coor-

dinated O ions (Os.). The top two layers (of TiOy units) represent the anatase

7



TiO2(001). The unsaturated 5-fold coordinated Ti ions (Tis.) are located on the
same plane, the Ti-plane, which is used as the reference plane for the adsorption
process. The planes containing the 2-fold coordinated O (denoted as O,.) and the
3-fold coordinated O (denoted as Os,.) are located above and below the Ti-plane,
respectively. Thus, the topmost layer consists of three atomic layers, viz., the
Oge-, the Tis- (or Ti-), and Ogs.-planes, in order starting from the vacuum side.
The top two layers (of TiO, units) are fully optimized, while the bottom two
layers (of TiO units) are fixed.

On the optimized anatase TiO5(001), the Oy, are displaced outwards (0.016 A),
while the Os. and Tis. relax inwards (0.038 A and 0.068 A, respectively). It
results the bond lengths between the surface atoms: rri,, o, = 1.96 A and
TTig,— 05, = 1.94 A. Each O, binds equally to two Tis., forming the subtended
angle £(Ti — O — Ti) = 149.9° (155.4° for the bulk). The anatase TiO5(001) is
under tensile stress, as previously observed for bulk anatase and other anatase sur-
faces, attributed to the repulsion from the O atoms [21,49]. Taking into account
the structural symmetry of the system induced the preservation of structural

symmetry breaking.

2.2.2 Electronic Properties

Top surface layer ---- Oy p —

SHEXNVD
5K

& 4
T T

DOS (States/eV)

|
—
=1

r

-16

Figure 2.3: Calculated local density of states (LDOS) of the stoichiometric
TiO2(001) The DOS contribution of the top surface layer was shown, and so the
corresponding p orbitals of the O,., p orbitals of the Os. and d orbitals of the
Tise. The arrows indicate the corresponding valence band maximum (VBM) and
conduction band minimum (CBM). Energies given in [eV] with respect to the
Fermi level (EF).

The corresponding local density of states (LDOS) shows the gap of 2.1 eV
between valence band (VB) maximum (VBM) and conduction band (CB) mini-
mum (CBM). Anatase TiO5(001) shows the typical band gap of anatase within
the framework of DFT studies [36,50-52], which is well- known for the under-

estimation of LDA for the band gaps of semiconductors and insulators [53, 54].
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The LDOS shows the main contribution from the surface O, ions in the energy
range from -1.5 eV to Fermi level (Er) (cf., Fig. 2.3). Meanwhile, the surface O3,
ions show the main contribution at lower energy range ([—5.4 eV, —1.5 eV], cf.,
Fig. 2.3). Since the unsaturated two-fold coordinated O, ions are expected to

be more reactive, they show the higher energetic states.

2.3 O-deficient /Reduced Anatase TiO, ;(001)

2.3.1 O-vacancy Formation

Figure 2.4: Four O-vacancy positions on anatase TiO2(001) — (2 X 2), viz., in
the Oy, and Ogs. planes of the topmost layer and the O planes of the next layer
(of TiOy units) (cf., Fig. 2.2). These are also alternatively labeled as 1%¢-) 2nd_
3rd-, 4t layers.

The feasibility of realizing such O-vacancies is evaluated with the correspond-
ing calculated O-vacancy formation energy (EG“™?), in terms of the difference
in the corresponding energies for a stoichiometric anatase TiO2(001) — (2 x 2)
([fgstoichiometricy with that of a O-deficient/reduced surface (E™dd) and a free O

1
in the gas phase (§E(g)a;, cf., Eq. 2.1 [55,56]), i.e.,

E'vacancy — Ereduced o Estoichiometric + 1 gas
0 2 O2
=F E L pgas 2.1
= Erio,; — Erio, + 5 Eo, (2.1)

The computed EG“"? are shown in Table 2.1. The Oy, plane shows the lowest
O-vacancy formation energy for the creation of O-vacancy, ES " = 4.00 eV, in
agreement with previous studies [57]. The deeper we go into the bulk, starting
from the Og.-plane, to the Os. plane, and then the O planes (alternatively, the
15t 2nd_ | 3rd_ 4th_ layers, respectively, in Fig. 2.4), the larger the formation

energy needed.



Table 2.1: Oxygen vacancy formation energy (EJ“"?, Eq. 2.1) in anatase
TiO(001) — (2 x 2) (cf., Figs. 2.2 and 2.4).

Oy.-plane O3.-plane O-plane
Vacancy site 1% layer 274 Jayer 37 layer 4" layer
B2 [oV]  4.00 477 4.76 4.96

2.3.2 Geometric Structure

On the O-deficient/reduced
anatase TiO2(001), a miss-
ing O at Og. (O32@") breaks
the symmetry, and gener-
ates two 4-fold coordinated
Ti ions (Tiy in Fig. 2.5).

Thus, there are two Tiy. and

»
{001

two Tis. ions per unit cell

of O-deficient/reduced anatase

TiO2(001). As shown in Ta- __ .
ble 2.2 (first columm, U — F}gure 2.5: The O—c.ieﬁment /reduced anatase
’ TiO5(001) after relaxation. On the surface, there
0.0 eV), the Tiy lons move are two Tis near the O site. Ot 03 and
0.13 A into the bulk. The O3 represent the 1%¢, 24 and 3" nearest O,
nearest Oy, atom from the from the O™ site.
Oyeant site (O3%) moves outward 0.56 A from surface, decreasing the subtended
angle £(Tiy — OF" — Tiy.) = 98.75° and shortening the Tiy,—O%* bond length
to 1.83 A (from 1.96 A in the stoichiometric anatase TiO5(001)). Meanwhile, the
other Oy, viz., the 2" nearest (Oy.) and the 3" nearest Oy, (O3:4) move slightly
(0.02 A and 0.09 A, respectively) into the bulk. The Os, ions move slightly out-
wards (0.04 A) from their initial positions. The presence of 032" also breaks the
equal proportionality /symmetry of the bonds between Oz, and its two nearest Ti
ions (Fig. 2.5). The two Os.—Ti bonds, which were 1.94 A in a stoichiometric
(001) surface, become Tiy—Os. and Tise—Os,, with bond lengths 1.91 A and

2.01 A, respectively.

2.3.3 Electronic Properties

In bulk anatase, O-vacancy results in delocalized excess electrons [24,51]. On
the O-deficient/reduced anatase TiO2(001) — (2 x 2), two excess electrons are

created per O-vacancy (Oy“"). As shown in Table 2.2 (first column, on-site
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Table 2.2: Displacement (Az) along [001] from the stoichiometric surface, bond
length (r), the subtended angle £(Tiy, — O3 — Tiy.) and the charge gain/loss
(£AQ) due to the formation of O3 for the surface Ti (i.e., Tis and Tis.)
and the surface O (i.e., Ot 0224 O34 and Oj,), with various on-site Coulomb
parameters U (cf., Fig. 2.5). Negative values of Az correspond to displacement
of the surface ions toward the bulk.

UleV] 0.0 2.5 3.0 4.0 5.0
Az, [A] -0.13 0.00 0.04 0.07 0.10
Azpy,, [A] -0.04 0.05 0.07 0.09 0.12
Azope [A] 0.56 0.55 0.59 0.64 0.69
Azggma [A] -0.02 0.12 0.14 0.18 0.22
Azoga [A] -0.09 0.02 0.04 0.07 0.10
Azo,, [A] 0.04 0.07 0.07 0.09 0.11
Trig—oy [A] 1.83 1.86 1.87 1.88 1.89
iy, —0s, |A] 1.91 1.93 1.95 1.95 1.96
T'ri.—ogna [A] 1.96 1.96 1.96 1.97 1.97
Prigo—ogt [A] 1.97 1.98 1.98 1.98 1.98
iy, 0g, [A] 2.00 1.97 1.97 1.97 1.97
A(Tige — OB' — Tiyg) [°] 9875  111.09 11091  110.11  109.44
AQri,, [e] 0.32 0.35 0.36 0.38 0.39

Coulomb interaction parameter U = 0.0 eV), the Tiy. gains almost all the excess
electrons (ca. 0.32 e) due to Oy
viz., Ot 024 034, O3, and Tis.. In the corresponding density of states (DOS)
(Fig. 2.6b),the excess electrons localized at the two neighboring Ti4., and appear-
ing as defect states in the middle of the gap between the VBM and the CBM

(cf., Figs. 2.6(a),(b)). Antiferromagnetic coupling between two Tiy. ions created

, leaving little to the other surface atoms,

by spin polarisation of the intermediate O to conform with the Pauli Exclu-
sion Principle. These defect states locate near the E, just below CBM. This
result indicates that with standard Generalized Gradient Approximation (GGA)
cannot clearly distinguish the experimentally observed the localized states in the
band gap of the O-deficient/reduced anatase TiO5(001) [41,42,58,59]. In order
to accurately consider the position of the defect states in the electronic structure
of anatase TiO5(001), additional calculations were performed with the on-site
Coulomb interaction U [60]
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Oy-p — Tiy~d — ngand Ox'-p — Top surface ---
G, o (@

VW U=00eV

DOS (States/eV)
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Figure 2.6: Calculated LDOS of the O-deficient/reduced TiO5(001) for several
on-site Coulomb interaction values U: (a) 0.0 eV, (b) 2.4eV, (c) 3.0eV, (d) 4.0 eV,
and (e) 5.0 eV. The DOS contribution from d-orbitals of the Ti,., p-orbitals of the
nearest Oy, (i.e., O) and p-orbitals of the 2" and 3¢ nearest Oy, ( i.e., O34
and O3') from the O3 site. The arrows indicate the corresponding VBM and
CBM. Energies given in [eV] with respect to the Fermi level (Ep).

On-site Coulomb interaction corrections:

As to be expected, the excess electrons change the distribution, which are mostly
concentrated around the d states of the Tiy. ions, and a modification of the Tiy.—
O% interaction. Table 2.2 shows how the corresponding changes of the surface Ti
and O atom in the surface layer and the charge transfer from O™ varies with
U. The Tis.—02 and Tis.—03!4 bonds are only slightly modified. Meanwhile,
the optimized O-deficient/reduced anatase TiO2(001), computed with GGA+U
shows an outward displacement of all surface atoms, elongating and releasing
the tensile stress of the surface. This displacement results in the enhancement
of the repulsion from the surface Og. ions on the O-deficient/reduced anatase
Ti04(001).

Figs. 2.6(c)-(f) show how the corresponding DOS changes with U. Firstly,
most of the charge transfer still occur near Tig., in the vicinity of O3, Next,
the inclusion of U weakens the exchange interaction and elongates the bond length
of of Tige—O%'. Tt changes the magnetic coupling between the two Tiy. atoms,

from antiferromagnetic (cf., Fig. 2.6(b)) to ferromagnetic (cf., Fig. 2.6(c)-(f)).
The LDOS of the surface O,,, especially the O3, become more localized. As
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increasing U, CB shifts further away from Ep, whereas valence band (VB) shifts
towards Er. The defect states appearing in the gap between VBM and CBM, near
Eg, in turn, shifts towards VBM. With U = 4.0 eV (Fig. 2.6e), the defect states
are located ca. 1.25 ¢V below CBM. With U = 5.0 eV (Fig. 2.6f), the defect states
are located ca. 1.84 eV below CBM. Based on previous experimental [46,58,59,61—
63] and theoretical [39] studies, U = 4.0 eV could well-describe the localized states
of the O-deficient/reduced anatase TiO2(001).

2.4 The O, Adsorption

The stability of the adsorption configuration is evaluated by the corresponding
calculated adsorption energy F.qs, in terms of the difference in the corresponding
energies for the surface after adsorbing Oy (Eo,/sur) and the isolated surface
(Esut) and Oy (EE, in the triplet ground state [55,56]), i.e.,

Eads = EOg/surf - [Esurf + Eg;s] (22)
2.4.1 On the stoichiometric anatase TiO,(001)

The concentration of 0.25 monolayer (0.25 ML) was considered for the Oy adsorp-
tion. Oy can be adsorbed on four sites, in five stable adsorption configurations,

as shown in Fig. 2.7. Table 2.3 shows the computed adsorption energy (F,gs,

Figure 2.7: (a) Top view of a stoichiometric anatase Ti0(001), with the corre-
sponding symmetric sites, viz., atop Tis.; Oa.; Os.; and Ho: the hollow site. Also
shown are the stable configurations for an incoming Os: (b) atop Tis., with the
O-0O bond along [001]; (¢) atop Os., with the O-O bond along [010]; (d) atop O,
with the O-O bond along [001]; (e) atop Os., with the O-O bond along [100]; and
(f) atop Ho, with the O-O bond along [010].
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Eq. 2.2), bond length of adsorbed Oy (ro_0), and amount of charge transfer (AQ)
from anatase TiO2(001) to the adsorbed Os at each of the five stable adsorption
configurations/sites. All five configurations show positive E,qs, indicating that
Oy cannot adsorb on the stoichiometric anatase TiO5(001) surface, for all four
sites and five configurations considered. The most stable configuration, with
FE.qs = 0.37 eV, corresponds to Oy center-of-mass (CM) located atop Os., with
the O-O bond oriented parallel to the surface along [010] (Fig. 2.7¢c). Adsorption
at other sites, e.g., Oy CM atop Tis. with the O-O bond oriented perpendicular to
the surface along [001] (Fig. 2.7b), Oy CM atop O, with the O-O bond oriented
perpendicular to the surface along [001] (Fig. 2.7d), and Oy CM atop Oz, with
the O-O bond oriented parallel to the surface along [100] (Fig. 2.7e) have quite
similar endothermic F,45s. The most endothermic corresponds to Oy adsorption
at the hollow site (Ho), with the O-O bond oriented parallel to the surface along
[010] (Fig. 2.7f). At all the four sites, the O-O bond length of the adsorbed O, is
longer than the corresponding gas phase bond length r§* = 1.21 A [64]. Bader
charge analysis [65] also shows that the adsorbed O does not have charge transfer
with the stoichiometric surface. The adsorbed O, retains a triplet spin state, as
O, does in the gas phase [55,56].

Table 2.3: Computed adsorption energy (F.gs, Eq. 2.2) of Oy on the stoichio-
metric TiO2(001), bond length of the adsorbed Oy (ro-o), and amount of charge
transfer (AQ) from anatase TiO5(001) to the O, adsorbed at each of the five
stable adsorption configurations/sites, viz., Tis., O3.[010], O5.[001], O3, and Ho
(cf., Fig. 2.7.). A positive value of E,q5 correspond to the endothermic adsorption
of O,.

Site Tis. 04,[010] 04[001] O3, Ho
Eags [eV] 0.55 0.37 0.54 0.53 0.98
ro-o [A] 1.23 1.24 1.23 1.23 1.23

AQ [e] 0.02 0.04 0.01 0.01 0.01

Repulsion of the surface O ions plays a significant role in deciding the structure
of anatase surfaces [21]. It also induces the repulsive force with the coming
Oy molecule, and becomes the reason why it is difficult for the Oy to adsorb
on the stoichiometric surface. It explains the endothermic adsorption on the
stoichiometric surface. In order to make adsorption favorable on this surface, it
is necessary to decrease the O-O repulsion on the surface, and the easiest way to
do that is to reduce the number of surface O atoms, i.e., by forming O-vacancies

on the surface.
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2.4.2 On the O-deficient/Reduced Anatase TiO, 5(001)

Since the excess electrons are localized at Tiy., the neighboring O-vacancy site,
i.e., Oy can be considered as the active site for O adsorption. It is confirmed
that unconstrained O adsorption only occurs at 032" and O, cannot chem-
ically absorb on the other sites on the O-deficient/reduced anatase TiO5(001).
This agrees with earlier studies [59]. We have also identified two relevant ad-
sorption configurations, viz., Os located atop the O-vacancy site, with O-O bond
oriented parallel to the surface along [010], viz., Al configuration (cf., Fig. 2.8),

and perpendicular to the surface along [001], viz., A2 configuration (cf., Fig. 2.9).

A1 Configuration: O-O bond along [010] (cf., Fig. 2.8)

—_~
=2
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1 adsorbed oxygen molecule
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WL\/\,VJ\/\/-'
/\\/\‘_

\/\/

DOS (States/eV)

6
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Figure 2.8: (a): Optimized structure of the Al adsorption configuration at the
O-vacancy site: O adsorbs with the O-O bond parallel to the surface along the
[010] direction. (b): Calculated DOS of the top layer of the O-deficient/reduced
anatase TiO5(001) after oxygen adsorption in Al configuration with standard
GGA (U = 0 ¢eV) calculations and GGA+U (U = 4 ¢V) calculations. Energies
given in [eV] with respect to the Fermi level (Er).

With O, located atop the O-vacancy site, and the O-O bond oriented parallel
to the surface along [010], F.q4s = —4.82 V. This indicates very stable Oy adsorp-
tion in the Al configuration on the O-deficient/reduced anatase TiO5(001). The
O, binds with the Tiy., at an O—Tiy,. distance of 1.87 A, and gains AQ = 1.028e
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from the surface, to form a superoxide anion (O;). In this adsorbed O state,
ro-0(0y) = 1.37 A and the stretching frequency vo_o(Oy) = 1049.7 cm™!.
This result can compare this with the O intermediates observed in ORRs on Pt
electrodes by SE-IRAS with attenuated total reflection [66,67], with ro_o(05) =
1.37 A and vo_o (05 ) = 1016 cm~!. This suggests that anatase could be a promis-
ing alternative catalyst in the ORRs. In comparison, on (101), the adsorbed O,
can be observed in the peroxide state (O3~ ) with the same O, coverage [44-46].
The results are in good agreement with experimental studies of anatase particles
using EPR spectroscopy [47,48]. The dissociation of adsorbed oxygen could not
be realized on this surface, even with the presence of O-vacancy, which agrees
with the experimental results from STM studies [59]. In the O-deficient/reduced
anatase TiO2(001), the defect states disappear upon O adsorption, for both
GGA and GGA+U results (cf., Figs. 2.8b). The adsorbed Oy locates stable on

the surface.

Table 2.4: Computed adsorption energy (F.gs, Eq. 2.2) of Oy on the O-
deficient /reduced TiO2(001), bond length of the adsorbed Oy (ro-0), the stretch-
ing frequency (vo_o), and charge gain/loss (+=AQ) by the neighboring Ti and
O atoms on O-reduced surface due to the adsorption of O,, for various on-site
Coulomb parameters U (cf., Fig. 2.8 and Fig. 2.9).

A1 configuration A2 configuration
UleV] 0.0 4.0 0.0 4.0
FE.gs [eV] —4.82 —4.08 —4.00 —3.36
ro—o [A] 1.37 1.39 1.47 1.48
vo_o [em™!] 1049.7 1033.1 908.0 888.5
AQri,, [e] —0.3 —0.36 —0.32 —0.42
AQogasorved [€] 1.03 1.08 1.23 1.3

The calculations results for U = 0.0 and 4.0 eV differ only in the corre-
sponding F,qs (cf., Table 2.4). For both U = 0.0 and 4.0 eV, Al configuration
is observed as the most stable adsorption configuration. As mentioned earlier,
there is an enhancement of the repulsion from the surface O ions on the O-
deficient /reduced surface, within the GGA+U calculations. It interferes slightly
with the creation of bond between the incoming Oy and the Tiy. ions. As a re-
sult, a lower F,q is expected from GGA+U calculations for anatase TiO9(001),
i.e., Euqs = —4.08 eV (cf., Table 2.4). In the A1l configuration, GGA+U calcula-
tions indicate that the O, still has O character, with ro_o(O5) = 1.39 A and
vo-0(05) =1033.1 cm™.
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A2 Configuration: O-O bond along [001] (cf., Fig. 2.9)

(b) Top surface — Adsorbed O, -----
“l U=0.0eV

DOS (States/ e¥)

U=4.0¢eV i M

0 2 4 6

E-E, (eV)

Figure 2.9: (a): Optimized structure of the A2 adsorption configurations at the
O-vacancy site: Oy adsorbs with the O-O bond perpendicular to the surface along
the [001] direction. In the A2 configuration, the bottom O (O,q1) of Oy protrudes
from the surface, and the top O (O,q2) is near the Tis-plane. (b): Calculated
DOS of the top layer of the O-deficient/reduced anatase TiO5(001) after oxygen
adsorption in A2 configuration with standard GGA (U = 0 eV) calculations and
GGA+U (U = 4 eV) calculations. Energies given in [eV] with respect to the
Fermi level (Er).

With Oy located atop O3 and the O-O bond oriented perpendicular to
the surface along [001], F,qs = —4.00 eV. This also indicates stable O adsorption
in the A2 configuration on the O-deficient/reduced anatase TiO2(001). In this
configuration, Oy tends to come closer to the Tis.-plane, and the lower O atom
fills up the O-vacancy site and bonds with two Tiy. ions, at a O—Tiyg. distance
of 2.02 A, cf., Fig. 2.9. Compared to the Al configuration, the A2 configuration
exhibits a larger charge transfer AQ) = 1.23e from the two Tiy. ions, as shown in
Table 2.4. In both the A1 and A2 configurations, there is negligible (one order of
magnitude less) charge transfer between the incoming O, with the oxygen ions
far from the O3 viz., Oy, and Oz.. Most of the charges transfer come from
the Tiy. ions to the adsorbed O,. This indicates the critical role of the excess
electrons on Tiy., which is due to the O-vacancy at Os,., in making Oy adsorption
on this surface more favorable.

In this A2 configuration, the adsorbed O, forms a peroxide state (037), with
r0-0(037) = 1.47 A and vo_o(027) = 908.0 cm~'. This results again can com-
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pare this with the O~ observed on Pt(111) [67-70], with ro_o(037) = 1.47 A
and vo_o(037) = 870 cm™'. The dissociation is also unfavorable on this sur-
face. Within the GGA+4U calculations, the A2 configuration also found to be
unstable, as compared to Al. In the A2 configuration, a lower F,q4 is also
observed, however, the O3~ character persists, with 7o_o(037) = 1.48 A and
vo_0(0357) = 888.5 cm~!. In the discussion in previous section (Sec. 2.3.3), the
GGA+U calculations give a better description of the energetic position of the de-
fect states (in electronic structure) of the O-deficient /reduced anatase TiO5(001).
However, there seem to be no significant direct correlation between the location
of the defect states with the corresponding E,.4, ro_o, and AQ. Furthermore,
similar to A1l configuration, the defect states disappear upon Oy adsorption on
the O-deficient /reduced anatase TiO2(001), for both GGA and GGA+U results
(cf., 2.9b). This attenuation of the defect peak signal after oxygen adsorption has
also been observed by resonant photoemission spectroscopy [58].

From Table 2.4, we see that almost all the excess electrons, which Tis. ions
gained from the O™ transfer to incoming the Oy, and occupy the 7* anti-
bonding states of the adsorbed Oy, with corresponding energy levels located just
below Er. DOS calculated with GGA+U are more localized than those calcu-
lated with GGA. However, both GGA and GGA+U calculations do not show
any significant difference in electronic structure of the system after molecular ad-
sorption. The adsorbed O, shares a strong bond with the nearest Ti ions on the
O-deficient /reduced TiO5(001). Due to the missing surface O,., the two neigh-
boring Ti ions gain excess electrons. These excess electrons enable the Ti ions to

attract the incoming O,. As the result, O, can easily adsorb on this surface.

2.4.3 Healing/ Migration effect

Although the A2 configuration is not as stable as the A1l configuration, the
A2 configuration cannot relax to the Al configuration. Moreover, in the opti-
mized A2 configuration, £(Tiy. — Ouq1 — Tiy.) subtends an angle of 155.5°, and
£(Tig — OF" — Tiye has a subtended angle of 146.8°, which is close to that
of a stoichiometric anatase TiO2(001) (i.e., 149.9°). According to our calcula-
tions, the stoichiometric anatase TiO5(001), with an O adatom at the O, site
is around 0.5 eV more stable than the O-deficient/reduced anatase TiO5(001)
with O, in A2 configuration. This implies that one O from the incoming Oy can
fill the O-vacancy of the O-deficient/reduced anatase TiO5(001), healing the O-
deficient /reduced surface, while the other O atom may become an O adatom and

migrates to other sites, on the healed stoichiometric surface. The healing effect
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Figure 2.10: Potential energy surface for O adatom diffusion on the stoichio-
metric TiO2(001). The coordinates (z,y) of the O adatom are given as fractional
units of the (2 x 2) surface. The top-view and the symmetric sites correspond
to Figure 2.7. (Inset) The configuration corresponding to the case when the O

adatom is at a minima above (x,y) = (0,0.125). O adatom: smaller/yellow
sphere. Contour spacing: 0.15 eV. Surface lattice parameter a = 3.79(4) A.

of the incoming O, corresponds to the disappearance of point defects observed
in STM studies [59]. This behavior is also observed on rutile TiO5(110) [7] and
anatase TiO,(101) [71].

Nevertheless, the potential energy surface (PES) for O adatom diffusion on
the stoichiometric anatase TiO2(001) shows that O adatom can move to the
position at the middle of the Ti5.-Og. bond without any barrier (Fig. 2.10). The
configuration corresponding to the case when the O adatom is at a local minima
above the middle of the Ti5.-Os. bond can also be seen in oxygen evolution
reaction (OER) [72]. It takes around 1.2 ¢V for the O adatom to migrate to
the nearest Tis,. site, and around 1.05 eV to migrate to the nearest hollow site
(Ho). Healing/migration effect of the O adatom on the stoichiometric anatase
TiO5(001) reduces the efficiency of the surface chemical reactions, and hence,
slows down the rate of ORRs. In this situation, the A2 configuration would show

a decreased rate in chemical reactions on the anatase TiO,((001).

2.5 Summary

We performed DFT-based calculations to investigate the effect of O-vacancy on
the electronic structure and the adsorption of oxygen on anatase TiO2(001)— (2 x

2). Our calculation results show that the stoichiometric anatase TiO5(001) does
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not favour Oy adsorption. O-vacancies play an important role in the improvement
of Oy adsorption on this surface. The absence of 2-fold coordinated O (Os,.) ion on
the surface leads to excess electrons. These excess electrons redistribute locally
around the two neighboring 4-fold coordinated Ti ions (Ti4.), and an associated
localized defect state appears in the corresponding electronic structure. The
localized defect state can be described well with GGA+U. However, regardless of
the value of U considered, we find no significant qualitative change in the results of
the Oq adsorption on this surface. On the O-deficient/reduced anatase TiO2(001),
the O-vacancy sites become active sites, making O, adsorption favorable and
exothermic. Here, we considered two adsorption configurations, viz., Oy adsorbs
at the O-vacancy with the O-O bond oriented parallel to the surface along the
[010] (A1 configuration), and with the O-O bond oriented perpendicular to the
surface along [001] (A2 configuration). In the A1l configuration, the incoming O
adsorbs with a superoxide state (O3 ). In the A2 configuration, the incoming O
adsorbs with a peroxide state (O3). Both results for the adsorbed states of Oy in
the corresponding A1 and A2 configurations agree with previous results observed
for oxygen adsorption on Pt surfaces [48,67,69]. The O; states of adsorbed
O4 are more stable than the Og_ states of adsorbed Oy. With the less stable
A2 configuration, healing of the O-deficient /reduced anatase TiO2(001) can take
place, where one adsorbed O atom fills the O-vacancy and the other becomes an
O adatom on the healed surface. The O adatom can migrate easily to positions
in the middle of the Ti—O bond along [010], but it is difficult for the O adatom to
migrate to other positions. It could reduce the efficiency of the surface chemical
reactions and slow down the reaction rate. However, the healing/migrate effect
has less probability to occur than the Oy adsorption in O; states. It indicates
that the introduction of O-vacancy significantly improve the O, adsorption on

anatase TiO5(001), which is considered as an important first step of ORRs.
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Chapter 3

O-vacancies in Pristine Lanthanum
Gallate Based Materials

3.1 LG-based materials

Perovskite materials have been used in several green-technology applications be-
cause of their interesting physical properties, e.g., ferroelectric, magnetic, optical
properties, etc. These materials show drastic changes in their physical properties
even with a slight modification of the structure by defect inclusion, chemical sub-
stitution, or by an altered external condition, etc. Lanthanum gallate, LaGaOs3
(LG), is one such perovskite with a GdFeOs-type structure. These materials
represent a family of perovskites [73,74] that exhibit ionic conductivity and find
use in various application, e.g., as electrolytes in solid oxide fuel cells (SOFCs)

applications [75-80].

Pristine LG shows the phase transition of LG, i.e., from an orthorhombic
(Pnma) to rhombohedral (R3c) structure, observed experimentally at 425K by
the powder neutron diffraction [81]. And, it was confirmed in a large number
of later reports [82-86]. In the low symmetry orthorhombic phase of LG, the
[GaOg| octahedral substructures are tilted from the ideal cubic perovskite struc-
ture, with the La atoms occupying the hollow site in between the [GaOg| octahe-
drons [82]. Judging from the geometric structure, interstitial oxygen cannot be
expected in this system, and studies indicate that introduction of interstitial oxy-
gen in perovskite structure would indeed be thermodynamically unfavourable [4].
Instead, O migration through LG-based material would be through O-vacancies.
O-vacancies has key role in LG-based materials for the desired O-migration. This
study focuses on the role of O-vacancies in the material as related to O migration,

which is an important factor for ionic conductivity.
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3.2 The Pristine/ Stoichiometric LG

3.2.1 Geometric Structure

The optimized structure of the pristine/stoichiometric LG is showed in Fig. 3.1
with the preservation of Pnma symmetry. The [GaOg| octahedrons are tilted
from their ideal cubic perovskite structure, when viewed along the b-axis (cf.,
Fig. 3.1(b)). The calculated lattice parameters: a = 5.58(3) A, b = 7.87(4) A, and

Figure 3.1: The optimized structure of the stoichiometric LG as viewed from (a)
the c-axis and (b) the b-axis, and (c) a magnified view of the [GaOg] octahedron
of the supercell. The (2 x 1 x 2) supercell contains 80 atoms: 16 La, 16 Ga, and
48 O. The corresponding coordinate axes (a, b, c and d/, ¢') are also shown.

c=5.56(2) A, agree with experimental observations, with errors within 2%. [83—
87] LG contains 6-fold O-coordinated Ga ions (Gag.), 8-fold Ga-coordinated O
ions (Og.) and 12-fold O-coordinated La ions (Lajs.) (cf., Fig. 3.1). The [GaOg]

—-b
ap?

[010] direction), and four equatorial O ions (viz., Og[fl, Oe_qcl along [101] and O;f’,
O along [—100]) (cf., Fig. 3.1(c)).

Bond lengths TGa Okt = 2.02(1) A, Taa ot = 2.01(1) A, and T
2.02(1) A for the two apical O ions and the four equatorial O ions, respectively.
Subtended angles £(0; — Ga — O1") = £(0; — Ga — O.") = 89.87° and
£(0f) — Ga — O;f/) = £(0,) — Ga — quc/) = 88.96°. The calculated small
deviations in £(O,p, — Ga — Oq) from that of the ideal octahedron, i.e., 90°, is

octahedron contains two apical O ions (viz., O:pb and O_’, which lie along the

5 =
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consistent with reported solid-state NMR studies. [88] As mentioned earlier, these
deviations indicate that the [GaOg] octahedrons are tilted from their ideal cubic
perovskite crystal structure. The tilting of the [GaOg] octahedrons occurs around
the b- and c-axes, in good agreement with previous experimental observations.
[81,85,88] Similarly, the calculated £(Ga — Oeq — Ga) = 155.80° and £(Ga —

03! — Ga) = 154.85°, are in agreement with the experimental results. [81]

3.2.2 Electronic Properties

CBM
1
2() - i ; ‘E '4a """
10 4 Ga
0 ~eps—od Oup ——-
10 P i S
20 :
|I|
2F o W | Las
fa ; p —
1
0 \_11 d -~
g f
A ’
-2 1T
JA L
2 Gas -
~ p —

DOS (StatesleV)

10+ (d) M Opp$ ===
5t pi—
0 S <0
ol © M\\ . o
10 : P —
0 s W -

9 8 -7 6 -5 4 -3 -2 -l 0 1 2 . 4 5 6
‘ * o/ o
hmml 3 hl" (eV)(eV)

Figure 3.2: Calculated LDOS of the stoichiometric LaGaO3 (LG). (a) DOS for
whole (2 x 1 x 2) super-cell with the DOS contributions from lanthanum (La),
gallium (Ga), apical oxygen (O,;), and equatorial oxygen (O ), respectively. (b)-
(e) DOS contributions from the s, p, d, and f-orbitals of La, Ga, O,p, and O,
respectively. Energies are given in [eV] with respect to the Fermi level (Er). The
corresponding VBM and CBM are also indicated.

The corresponding LDOS of the stoichiometric LG (cf., Fig. 3.2) shows that
the system is non-magnetic and insulating. The gap between the VBM and the
CBM is ~ 3.31 eV. The main contribution to the VB comes from the O atoms,
viz., Op and O ions. A weak La-O covalent interaction is indicated by the
corresponding relatively shallow d-p and p-p hybridizations (cf., [-2 eV,—0.5 eV]
and [—2 eV, Fg|, respectively, in Figs. 3.2(b),(d),(e)). Besides, La ions bond
more strongly with the O,;, ions than with the O, ions (cf., Figs. 3.2(b),(d),(e)).
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The difference of La-O hybridization will become important to decide the stable
position of O-vacancy (cf., Sec. 3.3.1). The Ga-O d-p hybridization is similar to
that of La-O, shallow [-2 eV, Er|]. However, we observe a relatively stronger
Ga-O covalent interaction, as indicated by the corresponding relatively deep s-p
and p-p hybridizations (cf., [-7 eV,—4.2 eV] and [—4.2 eV, —2 eV], respectively,
inFig. 3.2(c),(d),(e)).

3.3 O-deficient /Reduced LaGaO;_ ;5 (LG_y)

3.3.1 O-vacancy Formation

To study the role of O-vacancies on the the structural and electronics properties
of LG, we considered six possible O-vacancy configurations/locations, viz., the
locations of the two apical O ions (Of?) and the four equatorial O ions (Oifl/ C/)
(cf., Fig. 3.1).

Following Ref. [89], to evaluate the feasibility of realizing such O-vacancies, we
calculate the corresponding O-vacancy formation energy (Eg"“*"?) in terms of the
difference in the corresponding energies for a stoichiometric LG ([stoichiometric —
Erc) with that of a reduced (O-deficient) LG (E™d = Fy o ) and a free O in

the gas phase (1E&", cf., Refs. [55,56)), i.e.,

1

Egacancy _ Ereduced _ Estoichiometric + §Ega;s
1 gas
= Bra_; — (Bre + 5 EG)) (3.1)

2

Table 3.1 shows the computed EG"“*". As expected (cf., Sec. 3.3.3), it would
be harder to remove O,;,, because of the relatively stronger covalent bonding of
the O,, with surrounding cations, as compared to Oeq. Furthermore, the large
values of E5*“" also confirms that it is difficult to create O-vacancy in the pure

LG, in agreement with previous reports. [90]

Table 3.1: Calculated O-vacancy formation energy (E5" ", Eq. 3.1) in LaGaOs
(LG) for the apical OF’ ions along the b-axis and the equatorial O;'ff/ and Oeiqa/
ions along the ¢ and a-axes, respectively (cf., Fig. 3.1).

apical O ions (Ogp) equatorial O ions (Oeq)

Vacancy site O O;'ff/ Oifl
EZ“"Y [eV] 5.70 5.65 5.66

24



3.3.2 Geometric Structure

The introduction of O-vacancy (0"¢) in LG creates two unsaturated [GaOs]
pyramids near the vacancy site with two 5-fold coordinated Ga ions, viz., Ga;;’
and Gaz° (Fig. 3.3). The calculated LG_; lattice parameters: a = 5.60(2) A,
b=7.88(2) A, c=556(1) A, indicate slight expansion (as compared to LG) of the
(2x1x2) supercell. This expansion is a result of the elongation of the bonds in the
O-deficient /reduced LG_s, viz., r , =2.13 A and T Gas » =207 A.

’
C —C
25c _Oeq

+c! —c
Ga’5c _Oeq

Figure 3.3: A magnified view of the most stable pyramidal structure [GaOs] of
the reduced LaGaO3 (LG_5). O vacancy (O"*¢: white, dashed-outlined sphere.
(Inset) The most stable position for O”*¢ in the (2 x 1 x 2) supercell, containing
79 atoms: 16 La (largest /light purple spheres), 16 Ga (2"¢ largest /green spheres),
47 O (smallest /red spheres). The corresponding coordinate axes (a, b, c and @', ¢)
are also shown.

Furthermore, we observe that the structural distortion of the unsaturated
[GaOs| pyramid is most prominent in the immediate vicinity of O*.  The
other Ga-O bond lengths remain almost the same as in the stoichiometric LG
(~ 2.02(3) A). The presence of O¥¢ not only elongates the Ga?ccl—Ogcfl bond
lengths, but also tilts the [GaOs] pyramids from the [GaOg| octahedrons de-
scribed above. The subtended angles £(0," — GaZe — 0}) decrease to 171.09°
and 176.70°, respectively. Similary, the subtended angles &(O;f/ — Gate — O;“')
decrease to 171.67° and 177.31°, respectively. On the other hand, no significant
change was observed in the £(O — Ga— O) of the other [GaOg| octahedrons. The
tilting angle of [GaOj] around b-axis does not show any significant change with

the presence of OV,
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3.3.3 Electronic Properties
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Figure 3.4: Calculated density of states (DOS) of O-deficient /reduced LaGaOj3
(LG_s). (a) [GaOs] pyramids, which consist the surrounding La*® ions (red/dash),
the Gas. ions (blue/solid), the surrounding O¥° ions (Ogy,), including Oeiq“/ and
0% and the O,.-opposite O ions (O¢) metioned in Fig. 3.3. (b) Other [GaOg|

ap? €q
octahedra, which include La, Ga and O ions. Energies given in [eV] with respect

to the Fermi level (Er). Figure 4(c) shows partial charge distribution of the defect
state near the Fermi level of LG_s, where the isosurface value is 0.003 e/ A®. The

corresponding VBM and CBM are also indicated.

Upon creation of an O"* to the pure LG, the resulting LG_s is still non-
magnetic and insulating (cf., Fig. 3.4). The resulting two excess electrons in LG_
redistribute locally around the neighboring 5-fold coordinated Ga ions (Gagtcc/, cf.,
Fig. 3.4(c)), and appear as defect states located between VBM and CBM, at or
near Ep (cf., Figs. 3.2 and 3.4). The defect states are located ca. 1.80 eV below
CBM. The introduction of O"*¢ strengthens the bonds in the [GaOg| octahedrons
of LG_s as compared to the [GaOj] pyramids (cf., [-9.2 eV, —6 eV] in Fig. 3.4(b)).
Again, as mentioned in Sec. 3.3.3, this will become important when we discuss
about the O-migration (cf., Sec. 3.4).

3.4 Oxygen Migration (O-vacancy migration)

O-migration (or O* migration in the opposite direction) takes place via occu-
pation of the OY*¢ site by the nearest O ion. In Fig. 3.5(a)) we show the four

possible O-migration paths, viz.,

e path I: (shortest path) between two neighboring non-vertex sharing [GaOg]

octahedra;
e path II: from O, site to O sites of vertex-sharing [GaOg| octahedra; and

e paths III & IV: between the O, sites of vertex-sharing [GaOg| octahedra.
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Figure 3.5: (a) O-migration paths from the most stable OY*¢ configuration
in an O-deficient/reduced LaGaO3 (LG_s). Path I corresponds to the shortest
path between two non-vertex sharing [GaOg] octahedra. Path II corresponds to
the path between O, sites in a a vertex-sharing [GaOg| octahedra. There are
two paths between the O, sites, viz., paths III and IV, as shown. (b) Calculated
energies corresponding to certain points along the paths indicated. Energies given
in [eV] with respect to the initial position configuration.

As the results showed in Fig. 3.5(b), O-migration between the O, sites gives
the most favorable path (i.e., path III, ~ 2.17 eV). This indicates that O-
migration (O**-migration) occurs along vertex-sharing [GaOg| octahedra. This
result agrees with earlier experimental studies on, e.g., pure and doped LG. [83]

As shown in Fig. 3.6, O-migration (O"*¢) along path III, between the O
sites, follows an arc, starting from a Gag.(Gas.) in one [GaOg| octahedron to the
Gas.(Gag.) in the next neighboring vertex-sharing [GaOg| octahedron. In the
process of migration, Gass (Gags) corresponds to the initially Gas.(Gag.) that,
after O-migration (OY*“-migration), becomes, Gag.(Gas.). Gai, corresponds to
the Gas. that remained 5-fold coordinated after O-migration (OY*“-migration).
La" and Lal* refer to the neighboring two La ions the mobile O (Oy,) has to
pass during migration. In Table 3.2, there is only a slight change in the charge
distributed around O,,. The other surrounding La and O ions do not play a
significant role (in the charge transfer) during O-migration. In Fig. 3.7, we can see
more clearly how the excess charges are redistributed during O(O"*¢)- migration.

Upon the introduction an O-vacancy, the excess electrons redistributed around
the neighboring Ga, viz., those that would later become Gags and Gasg. Thus, in
the initial configuration, as a result of the increased e-charge of Gags, the Coulomb
repulsion with Oy, increases. Subsequently, O, breaks away from Gags, and bonds
more strongly with Gaz.. As the Oy, migrates, the bond length rgas__o,, decreases
from 2.04 A to 1.90 A. The decrease in bond length in turn results in an increased
repulsion between GaZ, and O,,. Subsequently, GaZ_ loses electrons while the Gazg
ion gains more electrons. The excess electrons redistribute locally around Gasg.
This increases the Coulomb repulsion between O,, and Gasg ions and hinders

for the Oy, from bonding with Gasg ion. At the transition region, during Ov*
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Figure 3.6: The most favourable O-vacancy (O"*¢) migration path (path IIT in
Fig. 3.5). The labels “Initial”, “17, “2”, “3”, “Final” indicate the initial, location,
intermediate locations, and final locations of (O"*¢). O,, traces the same path in
the opposite direction.

Table 3.2: Bader charge analysis for each images along the O-migration path.
Positions of Gas., Gasg, Gags, Lal” and Lal' were shown in Fig. 3.6. Oy, represents
for the mobile O ions, which is in the inverse direction with the Ov*¢. Oy, ions
are the other O ions surrounding the shared [GaOj] pyramid. Positive (negative)
values refers to electron loss (gain) through bonding with other ions.

Bader charge
Atomic position Initial state Image 1 Image 2 Image 3 Final state

Gas, 11.77 11.33 11.26 11.31 11.65
Gasg 11.61 12.00 11.56 11.19 11.15
Gags 11.15 11.21 11.61 12.04 11.73
Oy 7.31 7.29 7.28 7.31 7.31
Laf" 8.97 8.94 8.94 8.96 8.98
Lag' 8.99 8.97 8.93 8.92 8.92
Osur 7.31 7.31 7.31 7.32 7.31

Effective charge
Atomic position Initial state Image 1 Image 2 Image 3 Final state

Gas, 1.23 1.67 1.74 1.69 1.35
Gasg 1.39 1.00 1.44 1.81 1.85
Gags 1.85 1.79 1.39 0.96 1.27
Om —1.31 —-1.29 —1.28 —1.31 —1.31
Laj" 2.03 2.06 2.06 2.04 2.02
Lag' 2.01 2.03 2.07 2.08 2.08
Osur —1.31 —1.31 —1.31 —1.32 —1.31
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Figure 3.7: Calculated energies and partial charge distributions of the de-
fect states correspond to each states along the O-vacancy (OY*¢) migration path
(path III in Fig. 3.5 and also cf., Fig. 3.6). Isosurfaces are given in intervals of

0.003 e/A”.

migration, O, has to pass through a triangular region/opening created by Gag,
ion and two La ions (i.e., Ga_-La*-Lay"). Following the movement of O,,, Ga$,,
La!", and La}' lose a few electrons and become more positive (in terms of effective
charge). The shorter the bond lengths between O,, ion with Ga$., La]* and La}
ions are, the stronger the Coulomb attraction between these ions become. From
the initial to the transition state, ro,, ram decreases from 2.44 A to 2.32 A; and
T0m-Lap decreases from 2.81 A to 2.34 A. At the transition state, Gasg loses
electrons and Gags gains electrons. However, most of the excess electrons are
located on the Gasg and Gags as seen in Fig. 3.7. This maintains the Coulomb
repulsion between O,, and Gasg. The attractive nature of the interaction between
O-GaZ,, Op-Lal', and Oy,-La)', and the repulsive interaction between O,,-Gasg
seem to indicate the reason for the difficulty of O, migration in LG and require
a large activation energy (energy barrier for migration). The redistribution of

excess electrons on Gags promotes Oy, migration through the transition state.

After passing through the Ga-Lal"-LaJ' triangular region, O,, gradually
bonds with Gasg, resulting in a charge reduction of Gass. Subsequently, GaZ.,
Lal* and Laj' regain the excess electrons. Gags gains the most excess electrons,
and the most increased Coulomb repulsion with the O,,. At the final state, the
roles of Gasg and Gags are reversed. The distribution of excess electrons show

again the accumulation of charge in the GaZ_-O"**-Gags bonding orbital.
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The other migration paths along the equatorial edge of the [GaOg] octahedron
(path IV) and the migration path between the apical O site and the equatorial
O site (path II) share the same mechanism. From these results, we see that

Coulomb interaction plays an important role in O-migration in pure LG.

3.5 Summary

As ionic conductors, O-vacancies are necessary in the LG-based materials. The
study of the pristine/stoichiometric LG-based materials forms a basics for un-
derstanding the role of O-vacancy in the O-defect/reduced LG_5. We can see
that it is difficult to form O-vacancy in LG, as indicated by the calculated large
O-vacancy formation energy. We also found that the equatorial O-positions of
[GaOg] octahedron are more favorable than the apical O-positions for introducing
O-vacancy. This preference is due to the difference in the nature of the bonds
with the surrounding cations, especially the weak covalent bonding with La. The
effect of O-vacancy on the structural characteristics is primarily observed around
the vicinity of the vacancy site. The introduction of O-vacancy leads to excess
electrons in the O-deficient/reduced LG (LG_s). This induces the accumulation
of charge in the Gas.-O"**-Gas. bonding, and an associated localized defect state
appears in the corresponding electronic structure. The appearance of O-vacancy
allows the O ion to migrate in LG_s through O hopping to the O-vacancy site.
Calculated potential curves for O-migration shows that the preferable migration
paths are along the equatorial edges of the [GaOg] octahedron. Coulomb inter-
action between the mobile O with other ions play an important role in the O
migration mechanism and is the main reason for the presence of high activation
energy hindering O-migration. In order to apply this material in a variety of
applications, e.g., in solid-oxide fuel cells, we need to reduce not only the O-
vacancy formation energy, but also the Coulomb interaction of the mobile O with

the surrounding ions.
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Chapter 4

O-vacancies in Doped LaGaO3; Based

Materials

4.1 Doped LaGaO3;-Based Materials

The previous chapter clarified that excess electrons from the creation of O-vacancy
increased the Coulomb interaction between mobile O ions and surrounding cation
ions and hindered the O-vacancy migration in pristine/stoichiometric LG. The
concentration of O-vacancies is also low in pure LG due to the high O-vacancy
formation energy, which was confirmed by both calculation and experimental
studies [89,90]. This raises a question: how do we avoid the excess electrons
in LG materials. Doping on a cation site could be one solution to reduce the

O-vacancy formation energy and the occurrence of excess electrons.

Following the initial discovery by Ishihara et al. [91,92], numerous exper-
imental studies have been carried out on the LaGaOs-based materials, which
include reports covering oxygen ion conductivity [76,87,93-95], structural prop-
erties [96-99], electrolyte performance within SOFCs [97,100,101] and the effect
of transition-metal doping [102,103]. Among the possible dopants, the incorpora-
tion of cation dopants such as Sr and Mg at La and Ga sites, respectively, to form
(Lay_,Sr,)Gag—,Mg,O5_5 (i.e., LSGM), gives rise to the highly mobile oxygen va-
cancies that are responsible for the observed ionic conductivity [76,91,100]. It is
revealed that Sr?*, which has ionic size almost similar to La3*, shows a strong
effect on LG in term of increasing O-vacancy concentration and ionic conduc-
tivity. However, the stability of Sr into La sites is not good. The secondary
phases, SrGaO3 and LasSrO7, created when the amount of Sr becomes higher
than 10 mol%. The investigation of dopant at Ga sites has also been carried
out. It is found that doping Mg?** into Ga®" sites is also effective at increas-
ing the O-vacancy concentration [104]. Since it was found that doping with the
Sr and Mg dopants have the most influence on LG-based materials [92] |, we

focused on gaining a deeper understanding of the effect of these dopant to the
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O-deficient /reduced LG.
4.2 Sr- and Mg-Doped LaGaO;: (LSGM)

4.2.1 Geometric Structure

In Fig. 4.1, we show the optimized structure of the doped LSGM. The calculated
lattice parameters: a = 5.60(3) A, b= 7.87(4) A, and ¢ = 5.58(2) A, agree with
experimental observations, with errors within 2%. [91]. This expansion in volume
of the unit cell is expected because of the difference in ionic radius between the
hosts (La, Ga) and the dopants (Sr, Mg). We see that the orthorhombic structure
with Pnma symmetry persists. Two dopants are found to be stable at position
far from each other (cf., Fig. 4.1a). The Sr and Mg dopants only affect the O ions
and [GaOg] octahedra nearest to the dopants. Other [GaOg] octahedra are similar
to LG-based materials with rq,_o ~ 2.01 A, and TLa—Oup/Ocq = 2-41/2.45 A for
the apical O (O,p) and equatorial O (O.q) ions, respectively.

Figure 4.1: The optimized structure of the non-defect LSGM. (a) In the (2 x
1 x 2) supercell, a Sr ion and a Mg ion were substituted for the La ion and Ga
ion, respectively. The supercell contains 80 atoms: 15 La (light purple spheres),
1 Sr (blue spheres), 15 Ga (green spheres), 1 Mg (orange spheres), 48 O (red
spheres). (b) A magnified view of the vicinity of Sr ion with the three nearest O
ions (viz. OFF, O5F and OFF). (c) A magnified view of the vicinity of Mg ion. OM8
and GaMe refer to the O ion of [MgQOg| octahedron and the first nearest Ga ions.
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The distortion of the structure only appears in the vicinity of the dopants.
The Mg dopant affects most the bond length of the nearest O ions, i.e., OM8&, with
the nearest Ga ions, i.e., GaM® The [MgQOg] octahedron maintains the tilting of
the original [GaOg] octahedra with the longer bond lengths 7y, oms = 2.08(1) A.
These shorten the bond lengths of OM& and GaMe: rgae_ ous ~ 1.97(1) A. In
the [GaOg] octahedra nearest to the Mg dopant, bond lengths rq,ms_o ~ 2.03 A,
same as the other [GaOg| octahedra.

Meanwhile, Sr dopant affects mostly on the subtended angles £(Ga— O —Ga)
in the vicinity of Sr ion, i.e., three closest O ions (O%, viz. O, O, OFF).
The subtended angles between these O ions and two bonding Ga ions open:
£(Ga—0F —Ga) = 158.72°, and £ (Ga—O05 —Ga) = £(Ga—03' —Ga) = 159.90°,
which are 154.85° and 155.80°, respectively, in pristine LG based materials.
Bond lengths rq,_os: /08 /05 slightly change to ~ 2.00 A. Besides, bond lengths
Fge_osr = 2.49 A and Fee—o§r = Tgroof = 2.52 A, for the apical OS" and the

equatorial O5F, O5T, respectively.

4.2.2 Electronic Properties

Upon substituting divalent Sr and Mg ions to trivalent La and Ga sites, the LSGM
become metallic (cf., Fig. 4.2a-b). This is not good for an ionic conducting ma-
terial, which is required to exhibit low electronic conductivity. The introduction
of dopants makes electrons less localised in LSGM. The corresponding calculated
local density of states (LDOS) shows the broadening of electronic bands of LSGM
(refer to pristine LG based materials).

The introduction of dopants reduces slightly the covalent bond of La-O/Ga-
O, seen as reducing the magnitude of the hybridizations between O ions and the
La/Ga cation ions (Fig. 4.2a). Sr and O ions share weak covalent bonds seen
as the small hybridizations of Sr-O%" (cf. [-2 eV, VBM] in Fig. 4.2b). This
causes the enhancement of the distribution of O ions near Fermi level (cf.,
[—2 eV, 0.2 eV] in Fig. 4.2b). The corresponding LDOS of Mg only shows small
and narrow hybridization with the O ions belong the [MgOg] octahedron (cf.,
[—4 eV,—3.7 eV], Fig. 4.2¢).

Sr and Mg are reducing agents, so it is easy for these atoms to lose two
outermost electrons, and become cation ions. In co-dopes LSGM, Sr and Mg ions
also present as reducing agents when losing most of two outermost electrons(cf.
Table 4.1). It makes the bonds of Sr-O and Mg-O more ionic than the bonds of
La-O and Ga-O. Bader charge analysis shows that La and Ga ions remain the

same charges as in LG-based material (cf. Table 3.2). After the charge transfer, Sr

33



YBEM CBM

1} o La
05| (a) Pristine LG 1 Ga
P 0, —
= Op
R CBM
- K- La
> g A
2 1 £ Ga
§ vj._.\ : 0.' —
Z T | Oac
§ ' (¢) Doped LSGM o
0 . ,:_-_,\.,,_-.. " /..-,::‘ 1..‘::‘* :........_...: ...u .,;2,.‘,'.‘::".1;?:»:'__‘_“_»,_-_7_--:-_;:?‘7' '—‘Jlle,
0.5 I~ \~-~\“.-_ ' 924 - WS 0
-l + "'\ = . .
- - = Mg —
is (d) Doped LSGM St B : o™
0 e | i
05} T % A A
1 b y \ 1 3 1 []
7 6 -5 -4 3 2 -1 0 1 4 5 6
btolal 2 [‘F (eV)

Figure 4.2: Calculated local density of states (LDOS) of the doped LSGM. (a)
DOS for whole (2 x 1 x2) super-cell with DOS contributions from lanthanum (La),
gallium (Ga), apical oxygen (O,p), and equatorial oxygen (O ), respectively. (b)
LDOS for the vicinity of Sr ion, which consist the surrounding LaM# ions, Sr ion
and the O ions (i.e. O, O3 and OF'). (Inset: The magnified view of LDOS
in the energy range [-4.5 eV, 0.5 eV].) (¢) DOS for the vicinity of Mg ion, which
consist Mg ion, the O ions of [MgQOg] (OM8) and the nearest Ga ions (GaMs).
(cf., Fig. 4.1) (Inset: The magnified view of LDOS in the energy range [-4.5 eV,
0.5 eV].) Energies are given in [eV] with respect to the Fermi level (Fg). The
corresponding valence band maximum (VBM) and conduction band maximum
(CBM) are also indicated.

Table 4.1: Bader charge analysis of the non-defected LSGM. Effective charge of
each atoms is the deduction of the corresponding Bader charge from the original
valence electrons of the atoms (10 for La, 13 for Ga, 10 for Sr, 8 for Mg and 6
for O). Positive/negative values refers to loss/gain electrons. OS5 and OMe refers
for O ions in the vicinity of the Sr and Mg, respectively. “Other O” refers to the
other O ions outside of the vicinity of Sr and Mg ions. (cf., Fig. 4.1)

Cation site La Sr Ga Mg (Oh OMe  other O
Bader charge (e) 891 841 11.13 6.25 730 7.35 7.30
Effective charge (¢) 2.09 159 187 1.75 -1.30 -1.35 -1.30
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ion has the ionic bonds with the nearest O ions, i.e., O". However, the difference
in effective charge with the surrounding O ion suggests that the ionic bonds of
Sr-O seem to be weak as compare to the other ionic interactions between O ions
and cation ions such as La, Ga and Mg. In contrary, Mg losses more electrons
for the surrounding O (O ions belong the [MgQOg] octahedron, i.e., OM#) than Sr
(cf. Table 4.1); and the resulting charge of OM# ions increase. This results make
the bonds of Mg-O more ionic. The ionic bond of Sr-O% and Mg-OM& becomes

important for the discussion of the O-vacancy formation (cf., Sec. 4.3).

4.3 O-deficient /reduced (LaSr)(GaMg)O;_;s

An O-vacancy was introduced into the t5(2 x 1 x 2) supercell of LSGM | re-
sulting in the O-deficient/reduced (La;_,Sr,)(Ga;—,Mg,)Os_5 (x = y = 0.0625;
d = 0.0625) (LSGM_;). All possible positions in supercell for O-vacancy are
considered. Following Eq.3.1, to evaluate the feasibility of realizing such O-
vacancies, we calculate the corresponding O-vacancy formation energy (Eg5"“"%)
in terms of the difference in the corresponding energies for a non-deficient LSGM
([stoichiometric. — [ o) with that of a reduced (O-deficient) LG (Ereduced =

Ersam_,) and a free O in the gas phase (3E3", cf., Refs. [55,56]), i.e.,

Evacancy — Ereduced o Estoichiometric + 1

=+ 1gas
O 2 O2
1 as
= Frsam_; — Frsam + §E%2 (4.1)

Table 4.2: Calculated O-vacancy formation energy (ES“"®, Eq. 4.1) in LSGM
for the corresponding 1%, 2"? and 3"¢ nearest to the Mg and Sr dopants (cf.,
Fig. 4.1).

refer to Mg ions refer of Sr ion
Vacancy 15t ond 3rd - o o
site nearest  nearest  nearest O Oz O3
vacanc 4 4 51 1 22 2
Eecaney (] 0.47 0.48 0.5 0.18 0 0.25

In Table 4.2, we show the computed ES“"® for the O position 1%, 2"¢ and
34 nearest to the dopants of Mg and Sr (cf., Fig. 4.1). The introduction of Sr and
Mg considerably reduces the O-vacancy formation energy, which has the value
of 5.65 eV in LG-based materials [89]. The most stable O-vacancy position is
found to be at the nearest O ions from the Sr ion (viz., ES“"Y = 0.18 V). The
highest O-vacancy formation energy is found at the O ions nearest Mg ion (viz.,

ES"™ =0.51 eV). It means that O-vacancy was created easier near Sr ion than
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Mg ion. It can be expected from the nature of the bonds between the dopants,
i.e, Sr and Mg, and the corresponding O nearest to each dopant, i.e., O™ and
OMe | respectively. This result is in good agreement with the observation from
experiments, which reported that the concentration of O-vacancies increases with
the amount of Sr [76].

4.3.1 Geometric Structure

Figure 4.3: A magnified view of the most stable pyramidal structure [GaOs]
of the O-deficient/reduced LSGM_;s. One of the O ions along b-axis is replaced
by an O vacancy (OY*, white, dashed-outlined sphere), resulting in two 5-fold
coordinated Ga ions (Gase, viz., GaZ’). The (2 x 1 x 2) supercell contains 79
atoms: 15 La (2"? largest/light purple spheres), 1 Sr (largest/blue sphere), 15 Ga
(4" largest /green spheres), 1 Mg (3" largest /orange sphere), 47 O (smallest /red
spheres). (Inset) The most stable position for O¥ in the (2 x 1 x 2) supercell.
The corresponding coordinate axes (a, b, c and @', ') are also shown.

The introduction of O-vacancy (O¥2¢) in LSGM creates two unsaturated [GaOs]
pyramids near the vacancy site with two 5-fold coordinated Ga ions, viz., Gag';b
(Fig. 4.3). The calculated LSGM_; lattice parameters: a = 5.60(2) A, b =
7.88(2) A, ¢ = 5.56(1) A, does not indicate the expansion (as compared to
LSGM) of the (2 x 1 x 2) supercell. In contrast to the expansion of the pris-
tine/stoichiometric LG, the introduction of O does not shows the consider-
able change of lattice parameters, even show the slight compression in c-axis,
which is a result of reducing the bonds in [GaOs| pyramid, viz., TGatt—0th and
Gatt—0ke GaZt—0ke decrease 2 ~ 3%. The
effect of O on bending [GaOs] pyramids in LSGMj is similar to the effect
in the O-deficient/reduced LG;. The subtended angles £(03% — GaZ’ — Of%)

vac vac

T —b_~-b decrease ~ 7% while r rand r
Gag, —Oyac
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decrease to 164.24° and 164.29°, respectively. Similarly, the subtended angles
£(05¢ — Gag? — Of¢) decrease to 163.83° and 164.13°, respectively. The struc-

vac vac

tural distortion can observed mostly in the immediate vicinity of OY*¢. The
distance between GaZ? and the first Gag. (Gag, ) just change in order of 1% from

the corresponding lengths in LSGM. It makes the elongation of the bond of the

0Z%/ jons of [GaOs] pyramids and the nearest Gag,, i.e., Gas. ions (~ 5%).

4.3.2 Electronic Properties

Table 4.3: Bader charge analysis of the the O-deficient/reduced LSGM_;. Ef-
fective charge of each atoms is the deduction of the corresponding Bader charge
from the original valence electrons of the atoms (10 for La, 13 for Ga, 10 for
Sr, 8 for Mg and 6 for O). Positive/negative values refers to loss/gain electrons.
Gaz! was showed in Fig. 4.3. Gag. and O3 refer to the 6-fold coordinated Ga
ions in supercell and the surrounding O ion of [GaOj;] pyramid (incl. ot/ cl,
respectively.

Cation site Gaz? Gag. O Mg O  OM&  other O

vac

Bader charge (e) 11.25 1115 732 6.25 733 737 7.31
Effective charge (¢) 1.75 1.85 -1.32 1.75 -1.33 -1.37  -1.31
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Figure 4.4: Calculated LDOS of LSGM and O-deficient /reduced LSGM_;. (a)
DOS for whole (2 x 1 x 2) super-cell: (b) LDOS for the vicinity of Sr ion, which
consist the surrounding LaM ions, Sr ion and the O ions (incl. OfF, O3 and
O3"). (c) LDOS for the vicinity of Mg ion, which consist the O ions of [MgOg]
(OMe), the nearest Ga ions (GaM8) and Mg ions. Energies are given in [eV] with
respect to the Fermi level (Ex). The corresponding VBM and CBM are also
indicated.
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Table 4.3 shows that the GazZ? ions gain most of electrons from the formation
of O¥*. Beside, most of ions of LSGM_; also gain electrons with the creation
of OY#¢, It is the results of the presence of dopants, which make electrons less
localised in co-doped LSGM.

Upon the presence of the dopants, the excess electrons, which were seen in
LG-based materials, were suppressed in the O-deficient/reduced LSGM_gs; and,
it leads the unoccupied defect states (ca. 3 eV in Fig. 4.4). The introduction of
O-vacancy induced the insulating properties in LSGM_; materials, which is re-
quired for an ionic conductor. The gap between the valence band (VB) maximum
(VBM) and the conduction band (CB) minimum (CBM) is 2.96 eV (cf., Fig. 4.4).
No significant change is observed in the corresponding calculated LDOS for the

vicinity of dopants. (cf., Fig. 4.4b-c)

4.3.3 Oxygen Migration (O-vacancy Migration)

Both of dopants are stable far away from each other, and the structure distortion
of [GaOg] octahedra is observed only in the vicinity of the dopants. It is possible

to consider individually the effect of each dopants on the O-migration.

4.3.3.1 Effect of Sr Ions

Path Sr-1 ~6— Path Se-11 —

—~
T

Relative energy (eV)

S

. 2 . K 4
Reaction coordinate

Figure 4.5: (a) O-migration paths from the most stable O**¢ configuration near
St ion (i.e., OF,) in the O-deficient/reduced LSGM_4. path Sr-I corresponds to
the path near Sr ion, which has the transition state of mobile O passing through
the triangle ASr-Ga-La. path Sr-II corresponds to the path from the outside O
site to the site nearest Sr ion (Mobile O passes the triangle ALa-Ga-La in the
transition state). (b) Calculated energies corresponding to certain points along
the paths indicated in Fig. (a). The migration activation energy (F,) corresponds
to the energy of the transition state. Energies were given in [eV] with respect to
the initial position configuration.

O-migration (or O migration in the opposite direction) takes place via oc-

cupation of the O'*¢ site by the nearest O ion. In Fig. 4.5(a), we show the two
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representative O-migration paths from the most stable configuration of OY2¢ |

Viz.,

e path Sr-I: (near Sr ion, between two nearby O ions) Mobile O has to pass
through the triangle ALa-Gag -St in the transition state. (GaZ, refers to the

Gas. that remained 5-fold coordinated after O-migration (OY*°-migration))

e path Sr-II: (far Sr ion, between the “outside” O ion to the O ion nearest to
the Sr dopant) Mobile O has to pass through the triangle ALa-Ga$ -La in

the transition state.

We can see in Fig. 4.5b: the path Sr-II (from outside O site to the nearest O
site) give the more favourable path (i.e., ~ 0.22¢V’). This indicates that Sr ion
does not support for the nearby O(OY2¢)-migration.

Table 4.4: Bond lengths of between mobile O and the surrounding atoms: the
shared 5-fold coordinated Ga (i.e., Gai,.), O ion of [GaOj] pyramid nearest to
mobile O, Sr/Lal" for the corresponding path Sr-1/Sr-1I, respectively, and La*
(cf., Fig. 4.5a).

"'Gag.—Om [A] TOm—0,st [A] T'Sr/La}—Om [A] TLa— O, [A]

Initial 2.04 2.73 2.80 3.38
Path Sr-1
1.81 2.59 2.33 2.45
Initial 1.97 2.75 2.42 2.61
Path Sr-11
TS 1.83 2.68 2.31 2.38

The closer view of the transition states in the O(OY2°)-migration process can
give an explanation for this results. The transition state of path Sr-I shows the
unstable configuration, as compare to the transition state of path Sr-II. Mobile
O (Oy) in the transition state moves closer to Sr ion. The larger ionic radius
of Sr elongates the bonds of O,, with Sr-O,, and La}-O,,, and decreases the
bond lengths of O,, with Ga,, esp., with the nearest O of same [GaOs| pyra-
mid, i.e., O (cf., Table 4.4). This results in the stronger bond of Ga$.-O,, and
the Coulomb repulsion between O,, and the nearest O ion. It makes the tran-
sition state configuration of path Sr-I more unstable than the transition state

configuration of path Sr-II | resulting higher activation energy.

4.3.3.2 Effect of Mg lons
In Fig. 4.6(a) we show the four possible O-migration paths (shortest path), viz.,
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Figure 4.6: (a): O-migration paths from the most stable O configuration near
Mg ion in the O-deficient /reduced LSGM _;. path II-g and path II-m correspond
to the path between the apical O site and equatorial O sites within the nearest
[GaOg] and [MgOg| octahedra, respectively. path III-g and III-m correspond to
the path between two equatorial O sites within the nearest [GaOg] and [MgOg]
octahedra, respectively. (b): Calculated energies corresponding to certain points
along the paths indicated in Fig.(a). The migration activation energy (E,) cor-
responds to the energy of the transition state. Energies were given in [eV] with
respect to the initial position configuration.

e path II-g: from O,, site to Oy sites within the [GaOg| octahedra nearest
to Mg ions

e path III-g: between the O sites pf the [GaOg] octahedra nearest to Mg

lons
e path II-m: from O, site to O sites within the [MgOg] octahedra

e path III-m: between the O sites along the equatorial edge of the [MgOg]

octahedra

We can see in Fig. 4.6b: for both of [MgOg] and the nearest [GaOg] octa-
hedra, O-migration between the O, sites gives the most favourable path (i.e.,
path TII-g, ~ 0.27 eV, and path III-m, ~ 0.59 eV, for the nearest [GaOg] and
[MgOg], respectively). The trending of O(OY*)-migration near the Mg dopant
in the O-deficient/reduced LSGM_; is similar to the O(OY*°)-migration in the
O-deficient /reduced LG_;. It is in agreement with the study by molecular dy-
namics [83,105]. It is notable that O(O"*)-migration between two equatorial sites
within the nearest [GaOg] octahedron have a lowest activation energy among the
paths near Mg ion. It results from the structural distortion of the nearest [GaOg|
octahedron. This octahedron is under the effects of Mg dopant, which affects
the bond length of Ga-O, and the effect of O-vacancy, which affects the tilting
of [GaOj;] pyramid. It elongates strongly the bonds between the equatorial O
ion, which near the 0¥, and La ions (2.53 [A] and 2.64 [A]). This expansion

weakens the bonds between the equatorial O ion and the surrounding La ion, and

40



produces the lower activation energy. In Fig. 4.6, the O(O¥?¢)-migration seem to
become less favourable within the [MgOg| octahedron, for both of the paths from
O,p site to Ogq sites and the path between the O sites.

4.3.3.3 Outside the Vicinity of Dopants

Path ll<0 =~ Path lll-o —8—

(b).

~—
T

Relative energy (eV)
(=]
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0
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Figure 4.7: (a): O-migration paths from the most stable O* configuration
outside the vicinity of dopants in the O-deficient/reduced LSGM_;. Path II-o
corresponds to the path between the apical O site and equatorial O sites, and
path ITI-o correspond to the path between two equatorial O sites within a [GaOg]
octahedron. (b): Calculated energies corresponding to certain points along the
paths indicated in Fig.(a). The migration activation energy (FE,) corresponds to
the energy of the transition state. Energies were given in [eV] with respect to the
initial position configuration.

Outside the vicinity of Sr and Mg dopants, [GaOg| octahedra are not under
the effect of dopant, and maintain the geometric and electronics properties of
the O-deficient/reduced LGy. In Fig. 4.7(a) we show the two representative O-

migration paths, viz.,

e path II-o: from O, site to O, sites within the [GaOg] octahedron outside
the vicinity of dopants.

e path III-0: between two O, sites of the [GaOg| octahedra outside the vicin-
ity of dopants.

Outside the vicinity of the dopants, the tendency of the O-migration is as
same as the tendency of the O-deficient/reduced LG_s: path III-o between two
equatorial sites is more preferable than path II-o from apical site to equatorial site.
Path IlI-o exhibits the low activation energy, i.e., E, ~ 0.27 eV. The presence
of the co-dopants, i.e., Sr and Mg, and O"* decreases greatly the migration
activation energy in the O-deficient/reduced LSGM_;s. The values of activation
energies got from the investigated paths show a good agreement with experimental
[87,106], which observed the activation energy E, = 0.78 eV.
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4.4 Summary

We performed DFT calculations to investigate the role of O-vacancy and dopants,
i.e., Sr and Mg, in the co-doped (LaSr)(GaMg)Os; (LSGM). The introduction of
Mg and Sr dopant considerably decreases the O-vacancy formation energy, and
thereby increase the concentration of O-vacancy in LSGM based materials. We
also found that O vacancy formation energy is lowest at positions nearest the
Sr ions and highest at O positions at the [MgO6] octahedron. This preference
is due to the difference in the nature of the dopants in LSGM based materials.
It indicates that O-vacancy is preferable on the position nearest to Sr dopant.
The effect on the structural characteristics and electronic structures is primarily
observed around the vicinity of the dopants and O-vacancy sites. With the sup-
pression of excess electrons from the creation of O-vacancy, which was determined
as the main reason of high activation energy in pristine LG-based materials (cf.,
chapter 3), the O-deficient /reduced co-doped LSGM_; shows the great decrease
in activation energies in all considered O (O-vacancy)-migration paths. These
results indicate the co-doped LSGM-based materials as good ionic conductors.
The detail investigation of different O (O-vacancy)-migration paths shows that
the small change of the bonds between O ions and cation ions, i.e., La, Sr, Ga,
and Mg, can cause the drastic difference in term of activation energy. O (O-
vacancy )-migration in the O-deficient/ reduced (LaSr)(GaMg)O;_s (LSGM_j)
has the similar tendency as pristine LaGaQO3-based materials: paths between two
equatorial O sites are more favourable than path between apical site and equa-
torial site. The presence of Sr introduces an addition O-migration path with the
low activation energy, i.e., O migration towards the vicinity of the Sr dopants

from either the apical edge or the equatorial edge of the [GaOg| octahedron.
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Chapter 5

Summary, Conclusion and Outlook

In this dissertation, the improvement of metal oxides’ reactivity through O-
vacancy is presented. It starts from an understanding of how metal oxides func-
tion for realizing the desired reactivity related to green technology applications,
which can be carried out within the framework of the density functional theory
(DFT)-based investigation. Consequently, O-vacancy is introduced as one simple
but effective way to modify metal oxides in order to improve the corresponding
reactivity. Despite the advantages of the presence of O-vacancies, there are still
some undesired effect of O-vacancies, which still needs to be considered. A de-
tailed understanding of how O-vacancy affects metal oxides and their reactivity
would enable us to avoid undesired effects of O-vacancies in order to improve
more the efficiency of the desired reactivity; and, perhaps, even allow us to de-
sign oxide materials exhibiting specific, targeted functions. Two well-known case
studies of metal oxides are provided: anatase TiO5(001) and lanthanum gallate
(LaGaO3) based materials.

Results showed a strong repulsion of the surface O atoms on the stoichiometric
anatase TiO2(001). This is the assumed reason why it is difficult for Oy molecule
to adsorb on the stoichiometric surface. It is in agreement with experimental
observations of anatase TiO5(001). An O-vacancy can be created at the 2-fold
coordinated O ion on the surface, resulting in excess electrons. These excess elec-
trons redistribute locally around the two neighboring 4-fold coordinated Ti ions,
and an associated localized defect state appears in the corresponding electronic
structure. The localized defect state can be described well with GGA+4U. How-
ever, regardless of the value of U considered, we find no significant qualitative
change in the results of the Oy adsorption on this surface, in terms of stable
adsorption configuration and the states of adsorbed O,. The presence of O-
vacancy promotes Oo adsorption on an initially inert stoichiometric TiO5(001).
The O-vacancy sites became active sites, making O, adsorption favorable and
exothermic. The adsorbed Os can be found either in superoxide state (O3 ) and

peroxide state (O3 ). The O, anion was formed when the O-O bond is oriented
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parallel to the surface, along [010]. And the O3~ anion was formed when the O-O
bond is oriented perpendicular to the surface, along [001]. The superoxide anion
becomes more stable than peroxide anion. Healing/migration of the surface oc-
curs when one of the O atoms of the perpendicularly adsorbed O fills the vacant
site and the other atom diffuses, recovering the stoichiometric surface. The O-
adatom can move easily to positions in the middle of the Ti—O bond along [010],
but difficult for the O-adatom to diffuse to other positions. It could reduce the
efficiency of the surface chemical reactions and slow down the catalytic reaction
rate. However, the healing/migration effect occurs only on the less stable adsorp-
tion configurations. In essence, the introduction of O-vacancy can promote O,

adsorption on anatase TiO,(001).

The geometric and electronic structures of pristine/stoichiometric LG are
based on the tilting of the [GaOg] octahedrons from the ideal cubic perovskite
structure. It is difficult to form O-vacancy in LG, as indicated by the calculated
large O-vacancy formation energy. The equatorial O-positions of [GaOg] octahe-
dron are found to be more favorable than the apical O-positions for introducing
O-vacancy. This preference is due to the difference in the nature of the bonds with
the surrounding cation ions, especially the weak covalent bonding with La. The
effect of O-vacancy on the structural characteristics is primarily observed around
the vicinity of the vacancy site. The introduction of O-vacancy leads to excess
electrons in the O-deficient LG (LG_s). This induces the accumulation of charge
between two 5-fold coordinated Ga ions, and an associated localized defect state
appears in the corresponding electronic structure. The appearance of O-vacancy
allows the O ion to migrate in LG_s through O hopping to the O-vacancy site.
Calculated potential curves for O-migration show that the preferable migration
paths are along the equatorial edges of the [GaOg] octahedron with the high
activation energy. The mechanism of O-migration reveals that excess electrons
enhance not only the repulsive Coulomb interaction between the mobile O and
the surrounding Ga ions, but also the attractive Coulomb interaction between
the mobile O and the surrounding La ions. It is the reason for the high migration

energy in pristine LG based materials.

From an understanding of the positive and negative effects of introducing O-
vacancy in LG-based materials, doping at cation sites is proposed as one way
to decrease O-vacancy formation energy and enhance the desired O-migration.
Sr and Mg dopants at the La and Ga sites, respectively, were investigated with
the dopant concentration (La;_,Sr,)(Ga;_,Mg, )O3 (x=0.0625), i.e., LSGM. The

effect of the dopants on the structural characteristics is primarily observed around
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the vicinity of each of the dopant sites, same as the effect of O-vacancy. The
presence of co-dopants at cations site suppresses the excess electrons resulting
from the creation/presence of O-vacancy. This results in a significant decrease
in O-vacancy formation energy, and therefore increases the concentration of O-
vacancies. The O-vacancy formation energy shows the lowest value in the vicinity
of the Sr ion and the highest value in the vicinity of Mg ion. It explains the
experimental observation of the significant role of Sr in increasing O-vacancy
concentration. With the suppression of excess electrons, which was determined
as the main reason of high activation energy in pristine LG-based materials, a
significant decrease in the activation energy for O (O-vacancies)-migration was
observed. Apart from the preferable being between two equatorial O sites , i.e.,
same in LG-based materials, the introduction of dopants, especially Sr dopant at
La sites, provides one more preferable migration path: migration paths towards
the Sr dopants, either originating from the apical or equatorial edges of [GaOg]
octahedra. The dopants in this case play an important role of promoting the effect
of O-vacancies through the enhancement of O (O-vacancy)-migration. Presence
of both O-vacancies and dopants makes co-doped LSGM-based materials good
ionic conductors for electrolyte of SOFC applications.

These studies show that understanding the effect of O-vacancy on various
metal oxides, i.e., surface and periodic system, plays a key factor in the improve-
ment of their reactivity for specific purposes, e.g., electrocatalytic reactions, ionic
conductivity. The presence of excess electrons through the introduction of O-
vacancies plays a major role in the improvement of metal oxides’ reactivity. In
some cases, O-vacancies can significantly improve metal oxides’ reactivity by the
introduction of excess electrons on the materials, e.g., enhancement the adsorp-
tion on the surface. In some cases, they can act as an obstacle for the desired
reactivity, e.g., reason for high activation energy for O-migration in pristine LG-
based materials. From this view-point, it is necessary to avoid the occurrence
of excess electrons. The introduction of dopants at cation sites is clarified as an
effective solution to solve this problem.

Taking advantage of this understanding in further research in order to im-
prove various types of metal oxides for desired reactivity is one important tool we
could employ. The improvement of metal oxides’ reactivity through “defect en-
gineering”, i.e., O-vacancy, is proven to be a good approach, which we can apply

for the further research of metal oxides and, also, for other material families.
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Appendix A

Density Functional Theory Formal-
ism

The basic idea of the DFT is that: the many-body problem of interacting electrons
is mapped to a problem of one-particle reference system with the same density
as the real system. This is performed by replacing the Schrodinger equation with

the Kohn-Sham equation. This procedure is briefly introduced in the following.

A.1 The Schrodinger Equation

Any electronic properties of matters are described by the Schrodinger equation. In
this review, we consider time-independent Schrédinger equations, which are used
in most cases. Within the Born-Oppenheimer non-relativistic approximation, this

equation is given by:

~

HU(ry,ro,...,ry) = EV(ry,ro, ..., ry) (A1)
IA{ = T + ‘Zluc—ele + U (AQ)

where E is the electronic energy, W(ry, r, ..., ry) is the wave function, and H is the
Hamiltonian operator including the kinetic energy operator T, the nuclei-electron
interaction operator ‘Zluc_ele, and the Coulomb interaction between electrons U.
The interaction of electrons with nuclei can be considered as a simple “external”
potential Vext. For an N-electron system, the external potential Vemt completely
determines the Hamiltonian (A.1). N and Vewt determine all properties of the
non-degenerate ground state.

The probability density of finding an electron with any particular set of co-
ordinates {ry,rs,...,ty} is |¥(ry,To,...,rx|[%. The electron density has a close

relationship with this expression and is written as
p(r) =N / |\Ij(r17 ro,Ir3..., rn)|2dr17 er, dr37 sy drn (AS)

The lowest energy eigenvalue, Ey, is the ground state energy corresponding to the
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ground state wave function ¥y3. The ground state of the Schr’,odinger equation
is found by minimising the expectation value of the energy according to the

variational principle
S[(U|H|T) — E(W|W)] =0 (A.4)

Even with the variational principles, solving the Schrodinger equation by a direct
minimisation of N-electron systems is still far from practical because the wave
function has 3N degrees of freedom. Omne of the best methods to avoid this
difficulty is to use the electron density, by which the ground state energy is

determined, instead of the wave function itself.

A.2 Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems enable us to solve the Schrodinger equation by
using the electron density p(r) as a basic variable [107].

There are composed of two theorems: the first theorem is stated as “The exter-
nal potential Ve (r) is, except for a constant, uniquely determined by the electron
density p(r)”. Since p(r) determines the number of electrons as N = [ py(r)dr,
p(r) also determines the ground state wave function and all other electronic prop-
erties of the system. In principle, given the ground state electron density, the
Hamiltonian operator is uniquely determined.

The second theorem establishes a variational principle: “For any positive
definite trial density p(r) such that [ p(r)dr = N, then E[p;] > E,”, where
Ey is the true ground state energy, and E|[p;] is defined as the sum of the ki-
netic interaction, electron-electron interaction and external potential functionals,
Elpi) = Tlp] + Ulpe] + [ pi(r)vesdr.

The Hohenberg-Kohn theorems established the one-to-one correspondence be-
tween ground state p(r) and the external potential ve,.(r). 3-dimensional electron
density functions now become a basic variable. The ground state and ground state
energy can be obtained by minimizing the energy functional with respect to the

electron density. It makes a great simplification of solving many-body problems.

A.3 Kohn-Sham Equation

Kohn and Sham pointed out an exact way to consider the electronic structures of
condensed matters [108]. As is mentioned above, the ground state total energy

of the system for a given external potential v, (r) is:

Elp] = Tlo] + Ulo] + / () eardr (A5)
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Since Ve, appears only in [ p(r)veudr, the functionals T[p] and Ulp] are the
universal functionals of the density, independent of v,,;. Here, they introduced
a fictitious system of N non-interacting electrons that are described by single
electron wave functions with N “orbitals” 1. In this system, the ground state

density is expressed as:
N
p=> i’ (A.6)

The kinetic energy of the non-interacting system of electron is write on:

N

> Wil V) (A7)

i

1

Tslp] = )

The important point is that a significant part of the electron-electron interaction
Ulp] is the classical Coulomb interaction or Hartree energy Vj. This we can write

in terms of electron density as:
1 [ [ p(r)p(r)
Vi =< L drdr’ A8
" 2//)h—ﬂ - A9
Thus the energy functional can be rearranged as:

Elp] = Ts[p] + Vearlp] + Varlp] + Exelp] (A.9)

Where, the ezchange-correlation functional E,.[p] is introduced. All the many-

body effects are counted in E,.[p].

E.e=(T-1Ts)+ (U - Vg) (A.10)
The variational equation given by Hohenberg and Kohn, 5 becomes
p
0T !
=0 + Vext + / p(r ) dr’ + Vpe =0 (All)
op r— 1|
where
5E:cc
Vpe = (A.12)
op
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Then, the so-called Kohn-Sham equations are obtained:

[—%Vz + Veff(r):| Yi(r) = eabi(r) (A.13)

/
Veff(T) = Veyt + / “)f(—i)r/’dr’ + Vge (A.14)

This set of non-linear equation (the Kohn-Sham equations) describes the be-
haviours of non-interacting “electrons” in an effective local potential. For the
exact functional, and thus exact local potential, the “orbitals” yields the exact

ground state density via Eq. A.6 and exact ground state energy via Eq. A.9.

It is notable that there is no approximation used until this point. In the Kohn-
Sham equation, the exchange-correlation energy seems to be much smaller than
kinetic energy and Hartree energy, and all of difficulties are included in this part.
The exchange-correlation potential in Eq. A.14 is the universal functional of the
electron density, which is same for any systems from molecules to bulk systems.
The exact form of this potential is unknown. However several approximations
have been proposed for exchange-correlation potential. Among them, two of the
most useful approximations are the local density approximation (LDA), which
was proposed in 1960s [107,108], and generalized gradient approximation (GGA),
which was reported later by Perdew et al. [109-111].

A.4 Approximations for Exchange-Correlation

Functional

The major problem of the DFT is that the exact functional of exchange-correlation
energy is not known. Using approximations for the exchange-correlation energy
allows us to solve the Kohn-Sham equations for solids. LDA and GGA are the

most well-known approximations.

In the LDA, the representation for E,.[p] is given by a simple function of
the local charge density e,.[p]. Here, e..[p] is the exchange correlation energy
per electron of a homogeneous electron gas of density p. The as approximate

expression for the exchange-correlation energy is given by:

Euclp] = / p(1)eselp)dr (A15)

Since e.4.(p) is a function of only the local value of the density, the functional
E..(p) is constructed as a sum of the local exchange-correlation energies. The

remarkable performance of the LDA is its reasonable description of the spherically
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averaged exchange correlation hole.

A natural progression beyond the LDA is obviously taking gradients of the
charge density at a local point. In the GGA, the exchange-correlation energy
depends on both the density and its gradients, but the analytic properties of
LDA remains. The typical form of the GGA is:

Bl = [ p0)eacp, Vs (A.16)

In some cases the GGA significantly improves the LDA * s description of the
binding energy.

A.5 Implementation of DFT

In the calculations presented in this dissertation, spin-polarized density functional
theory calculation were implemented via the Vienna ab-initio simulation pakage
(VASP) [112,113].

For the investigation on the metal oxides’ surface, i.e., anatase TiO5(001), the
supercell approach is used. The surface was modelled using infinitely repeating
periodic slabs of atoms separated by vacuum layers. The slab should be thick
enough to accurately simulate the surface of material. With the introduction of
adsorption in the calculations, the asymmetry of the slab model containing the
adsorbate create a net dipole moment in the direction of the surface, and slow
down the energy convergence in the respect with the supercell size. In order to
reduce this effect, electric dipole correction layer in the vacuum area was used to
cute the dipole interactions between the repeated image layer systems [114,115].

Within the Bloch’s theorem, for an electron in a periodic potential, the elec-
tronic wave function at each k point can be expanded in terms of a discrete

plane-wave basis set:

Yin(r) =Y Ciyge ™ (A.17)
G

where, G is the reciproval lattice vector and k is set to lie within the first
Brillouin zone. Substituting Eq. A.17 to Eq. A.13 and taking the inner product,

the Kohn-Sham equations in the plane-wave representation can be written as:

1 /
> {_5“‘ +Glaar + verf(G = G) | =¢;C)xrar (A.18)
G
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In principle, an inifinite plane-wave basis set is required in expanding the

electronic wave funxtions, However, the coefficients Cjx @/ for the plane waves

with small kinetic energy —%|k + G|? are more important than those with large
kinetic energy. Hence, a certain kinetic energy cutoff (i.e., Ecutorr) for plane-waves
which defines the size of the matrix to be setup for diagonalization. Numerical
convergence for the F o is performed as a standard first step in plane-waves
calculations. It was chosen E =540 eV for anatase TiO5(001) and Eeuor=600
eV for the pristine and doped LaGaOs-based materials.

In the infinite periodic system, the total energy calculations of the crystal
requires an infinite number of k points. However, since electronics wave functions
at k points are almost identical for the points close together. It leads that only
finite number of “special” k point may be necessary. The first Brillouin zone
integrations were carried out by Monkhorst-Pack scheme [116] for generating
sets of k points with Methfessel-Paxtion smearing [117] of ¢ = 0.1 eV. While
Monkhorst-Pack k points of 5 x 5 x 1 was used for anatase TiO5(001), the k
points are chosen 3 x 3 x 3 for the pristine and doped LG-based materials.

Other conditions was used, e.g. conjugate-gradient algorithm for the relax-
ation into the ground state, harmonic vibrational frequencies using finite differ-
ence method with step size of 0.02 A. The electron-ion interactions were described
by the projector-augmented wave (PAW) potentials. [118]. Calculations of O-
migration and the corresponding activation migration energy were implemented

using climbing image nudged elastic band (CI-NEB) [119].
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