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Abstract
Fix a line bundlez on a connected smooth complex projective cukvef genus
at least three. LetV' denote the moduli space of all stable vector bundles over
of rank n and determinang. We assume that > 3 and coprime todegreef); If
genusk) < 4, then we also assume that> 4. We prove thatd'(N, End(TN)) =
H(X,0y) fori =0, 1

1. Introduction

Let X be a connected smooth complex projective curve of genusith ¢ > 3.
Fix an integern > 3 and also fix a line bundlé¢ over X such that the degree &f
is coprime ton. We denote by\ the moduli space of all stable vector bundlEsof
rank n over X with A" E = &. If g <4, we assume that > 4.

Our aim here is to prove that

H'(N,End(T V) = H' (X, Ox)

for i = 0,1 (see Theorem 3.4).

The proof of Theorem 3.4 involves a method of computing coblogies using
the Hecke transformation initiated in [2]. In [2], the spaakall infinitesimal defor-
mations of AV was computed to be of dimensiorg 3- 3.

The moduli spaceV is a smooth complete Fano variety (anti-canonical line bun-
dle is ample) of dimensiong(— 1)(n? — 1) with Picard group isomorphic té@. There-
fore, we obtain examples of smooth Fano varieties of Picasthber one whose
tangent bundle admits nontrivial infinitesimal deformatio

2. The universal projective bundle

Sincen and degreé() are mutually coprime, there is a universal vector bundle
over X x /. Fix a universal vector bundl& over X x /. Let P(£) denote the projec-
tive bundle overX x A/ parametrizing all hyperplanes in the fibers&fAny two uni-
versal bundles ovek x A differ by tensoring with a line bundle pulled back frai.
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264 I. BISwAS

Therefore, the universal projective bundtéf) is unique although the universal vector
bundle is not unique.
Let

(2.1) 7 PE)— X xN
be the natural projection.

NOTATIONS. For a vector bundlé/; (respectively,V,) over A; (respectively,A,),
the notationV;, X V, will be used in denoting the vector bundjg Vi ® p5 V. over
A1 x Ay, where p; is the projection to the factos;.

The holomorphic cotangent bundle &f will be denoted byKx.

Proposition 2.1. There is a canonical isomorphism
H'(N,EndTN)) = H (PE), n*(Kx XTN) ® Ty)

for everyi > 0, where T, C TIP(€) is the relative tangent bundle for the projectian
defined in(2.1).

Proof. For a vector bundl®, let ad(/) ¢ End(V) be the subbundle of trace zero
endomorphisms. For a vector bundiee A over X we have

TiN = H(X, Kx ® ad(E)).

The Serre duality give$7°(X, ad(E))* = H(X, Kx ®ad(E)). The vector bundleE be-
ing stable is simple. Hence from the Serre duality we haiéX, Ky ® ad(E)) = 0.
Now using the Leray spectral sequence for the projecfiox Y — N we con-
clude that

(2.2) H'W.EndTN))=H (N, TN ® Q) = H'(X x N, (Kx X TN) ® ad)).

Since 7 in (2.1) defines a projective bundle, we hakér,T, = 0 if i > 0 and
Rz, T, = ad). Therefore, using the Leray spectral sequence for theegiiop 7
in (2.1) we have

H (X xN,(Kx RTN)®@ad€)) = H (PE), n*(Kx R TN) @ Ty).
Combining this with (2.2) the proof of the proposition is qolete. O

Let M denote the moduli space of all stable vector bundles évexf rank » and
degree degreg] — 1. Let

Ny C X xM
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be the closed subvariety consisting of all pairs (), where \" V = & ® Ox(—x).
We recall from [2] that theHecke mapis a rational morphism

(2.3) Y PE) ——— Ny

which is defined as follows. Take any¥ (/) € P(£) (so x € X is some point and,
is a quotient of the fibe, of dimension one). Consider the short exact sequence of
sheaves orX

(2.4) 0—V-—>E—1[ —0.

If the vector bundleV is stable, then the map sends the pointK, I,) € P(£) to the
point of N§ defined by the pairx, V); if V is not stable, then/ is not defined on
the point €, .,). We refer the reader to [2], [3] for all the properties of that will
be used here.

There is nonempty Zariski open subdgétC Ny such that
(i) the complementVy \ U is of codimension at least four, and
(i) the mapy is a projective fibration ovet/.
(See the codimension estimation in the proof of Proposifeh of [3].)

Moreover, the complemer®(€) \ v ~1(U) is a Zariski closed subset of codimen-
sion at least four [2, Proposition 6.8]. The two assumptitiva
(i) ¢=>3, and
(i) n>4ifg<4
are needed for these codimension estimates.

Consider all possible extensiors of the type (2.4) with fixedv andx. They are
parametrized by

(2.5) P = P(V,),
the projective space defined by &fiesin the fiberV,. For the mapy defined in (2.3),
the fibery~1(x, V) is identified with P, provided , V) € U.

Let
(2.6) fiv N U) — X
be the obvious projection. We will show that gir1(U) there is a natural isomorphism
2.7) T, ® f*Ky = Qj =T,

wherern, ¢ and f are defined in (2.1), (2.3) and (2.6) respectively.
To construct the isomorphism in (2.7), consider the exaqtieece

(2.8) O— X\ —V,—E,—I[,—0
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of fibers atx for the exact sequence (2.4) of sheaves. Now, the fibdr, cdt the point
(E, L) € v }U) is Hom(V, /Ay, L,). Similarly, the fiber ofT, at (E,1,) € ¥ (V)
is Hom¢Q.,, V,/1,). There is a certain canonical isomorphism of the vectorcspa
with [, ® T, whereT, is the fiber atx of the holomorphic tangent bundlEX (so
¥ = (Kx)y). The isomorphism in question is obtained from the obsemathat £ ®
Ox(—x) is a subsheaf o¥/ with the image of the fiberK ® Ox(—x)). in V., coincid-
ing with the subspace, in (2.8); note that the Poindaradjunction formula identifies

T with Ox(—x),. Therefore,
T];‘\(EJ‘) = Hom(Vy /Ay, Ay) = Hom (Vi /Ay, Ie @ TY) = T |1 ® T

This gives the isomorphism in (2.7).
Let

(2.9) TIPE)— N
be the following composition of maps:
PE) - X x N — N.

Using the isomorphism in (2.7) and an Hartog type result fighér degree cohomo-
logies, [1, Proposition 1.11], the Leray spectral sequefocethe projectionys gives
that the converging limifL* of

(2.10) EJ?:=H" (U, Ry, (T*'TN @ Qj))

has the property thdt! is H (P(E), m*(KxXTN)Q®T,) for i < 2, where7 is defined
in (2.9); recall that the codimensions of; \ U and P(€) \ v~}(U) are at least four
and hence we get isomorphisms of cohomologies of degree twap

In view of Proposition 2.1 and the above observation on theveing limit of
E}Y, to computeH (N, End(TN)), i < 1, we need to compute the direct images
RIY(T*TN ® Q}p), g <2, overU. This will be carried out in the next section.

3. The direct images overU and their cohomology

Let
(3.1) h:U— X

be the natural projection. Sb sends any pairx( V) to x.

Lemma 3.1. Over U,

Ry, (T TN ® Q) =
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and R'y.(T*TN ® Q;) fits in an exact sequence
0— T — RYW, (T'TN ® Q) — h*TX — 0
where T}, is the relative tangent bundle for the projectiandefined in(3.1).
Proof. Take any pointx, V) € U. Let
(3.2) p. XxP—P
be the natural projection, whem = P(V,) is the projective space defined in (2.5). Let
(3.3) px: XxP—X

be the other projection.
On X x P we have the exact sequence of sheaves

0— pyV — F — Op(—1)ixp — O.

For any pointi, € P, the restriction of this exact sequence Xox {i.} is an exact
sequence of sheaves dn of the form (2.4). So for any line., € P in the fiber V.,
the vector bundleF|x .., over X and the hyperplane itF|,,. given by the image
of V. has the property that the image, under the Hecke gap (2.3), of this pair is
the point of N}, defined by £, V).

We haveTz N = HY(X,ad(E)) and p, ad(F) = 0. Therefore, to prove the lemma
it suffices to show the following assertions are valid:

) C for j=0
3.4 H’ (P, R'p,adF) @ QL) =
(34) ( p-2d) 2 0 for j=2
and there is a natural exact sequence
(3.5) 0— HYX,ad(V)) — H*(P, R'p,ad(F) ® Q}) — T.X — 0.

We start proving (3.4) and (3.5) by first noting that the exseguence (2.4) gives



268 I. BISwAS

the following diagram of homomorphisms of sheavesXon

0

|

0 End(,)

|

0—— Hom(E, V) —— End(f) —— Hom(E, )y ————0

(3.6) |
End(V) Hom(vx/(lx ® Kx)a lx)
! |
Hom(, ® K., V), 0
|
0

where K, denotes the fiber at of the canonical line bundl&x. To explain the verti-
cal homomorphisms in (3.6), recall that just after (2.8) vated that the vector space
Ay is identified withl, ® 7. The vertical homomorphism Endf — Hom(, ®
K., V), in the left-hand side of (3.6) is obtained by combining ths®morphism
with the restriction homomorphism Erid() — Hom(r,, V,). Similarly, the vertical
homomorphism

Hom(E, 1), — Hom(V. /(I ® K,), L)

in the right-hand side of (3.6) is obtained by combining tissmorphismi, =1, ® T}
with the homomorphism

Hom(E,, l,) — Hom(V,,l,)

constructed using the homomorphisih — E, in (2.8).
The above diagram (3.6) of morphisms of sheaves dvavidently gives the fol-
lowing diagram

(3.7)
0
-
0 End(Op(-1)®T:) |,
| {
0 — Hom(F, p}V) — End(F) — Hom(F, Op(-1)® T,) |, , —>0
| {
End(p}V) Hom (V. /Op(~1). Op(-1)@ T1) | »

' |

Hom(Op(-1), p3V) | 0

|

0

xxP
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of sheaves oveX x P, where \N/x and f\. are the trivial vector bundles over with
fiber vV, and T, respectively.

Now consider the long exact sequence of direct images, weisipact to the pro-
jection p defined in (3.2), for the horizontal short exact sequence3if)( Since

HO(X,Hom(E, V)) =0

(the vector bundleE being stable is simple and is a proper subsheaf df) and also
HO(X, End(V)) = C, the long exact sequence of direct images becomes

(3.8)

0— C — Hom(Flixp, Op(-1)® I;) = R'p,Hom(F, p5V) — R'p,End(F) — 0

(as Hom(F, 0p(-1)® T.)|
)|, ) =0).

Note that the image oH°(X, End(E)) in Hom(E, I,), for the horizontal short ex-
act sequence in (3.6) coincides with the subspace /BEnif( the right-hand side verti-
cal exact sequence in (3.6). Therefore, the long exact sequ3.8) gives
(3.9
0— Hom(\N/x/Op(—l), Op(-1)® i) — Rp, Hom(]—", p}k(V) — Rlp,End(F) — 0.

is supported o x P, we haveRr!(p,Hom(F,Op(—1)®

xxP

The initial cohomologies oR*p, ad(F)®Q} (see (3.4), (3.5)) will be computed using
the long exact sequence of cohomologies correspondingetstibrt exact sequence of
sheaves onP obtained by tensoring (3.9) witkel.

Our next step in the proof of Lemma 3.1 will be to prove the daiing
proposition.

Proposition 3.2. The initial cohomologies ofR!p, Hom(F, piV) ® QL are
as follows

C for j=0
H/ (P, R'p,Hom(F, p3V) ® Q}) = { HY(X,End(v)) for j=1.
0 for j=2

Proof. To prove this proposition, first consider the longaxsequence of direct
images onP for the left-hand side vertical exact sequence of sheavg8.if). Since
V is stable, after using the exact sequence
(3.10)

0 — End©p(—1)) — Hom(Op(-1), V) — Hom(Op(-1), V,/Op(—1)) —> O

over P, just as in (3.9) the long exact sequence of direct imageshioideft-hand side
vertical exact sequence becomes

(3.11)

0 — Hom(Op(~1), V. /Op(~1)) = R*p,Hom(F, p3V) — R*p,.End(psV) — 0.
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Firstly, HY(P,Q}) =C and H (P, Q1) =0 for all i #1 (note thatH(P, Q}) has
a canonical generator given by the hyperplane class). 8gcai’ (P, Op(1)@QL) =0
for i <2 [4, Theorem 4.3] (see [4, Theorem 4.3 (a)] fo= O, [4, Theorem 4.3 (d)]
for i =1 and [4, Theorem 4.3 (b)] far=2). Combining these two facts with the long
exact sequence of cohomologies for the short exact sequérsteeaves orP obtained
by tensoring (3.10) wit2%, we have

C for j=0
H’ (P,Hom(Op(=1), V./Op(-1)) @ Q1) =30 for j=1.
0 for j=2

Finally, R*p, End(p3 V) is the trivial vector bundle oveP with fiber H1(X, End(V)).
Therefore, the proposition follows from the long exact same of cohomologies for
the exact sequence of sheaves Probtained by tensoring (3.11) witf2}. ]

We need another proposition for the proof of Lemma 3.1.

Proposition 3.3. For the vector bundlé—lom(ﬁ/op(—l), Op(—1))®93 over P,
whereV € U,

for

H’ (P, Hom(V, /Op(—1), Op(~1)) ® Q}) = for

1
w N -k O

J
J
for j
J

oA o o

for
Proof. To prove the proposition consider the exact sequehactor bundles
(3.12)
0 —> Hom(V,/Op(-1), Op(-1)) ® @ —> Hom(V,, Op(-1)) ® 2y —> Q) — 0
over P obtained by tensoring the exact sequence
0 — Hom(V, /Op(~1), Op(~1)) — Hom(V,, Op(~1)) —> Op —> 0
(this is the dual of (3.10)) witt2}. As n > 2, we have
H*(P,0p(-1)®Q}) =0
for k < 3 [4, Theorem 4.3] (see [4, Theorem 4.3 (c)] for 1 and [4, Theorem 4.3 (b)]
for k = 2,3). (Note that ifn = 2, then HY(P, Op(—1) ® QL) # 0.) Now the proposi-

tion follows from the long exact sequence of cohomologiesesponding to the exact
sequence in (3.12) of vector bundles owver ]
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Continuing with the proof of Lemma 3.1, in view of Propositi®.2 and Propo-
sition 3.3, the initial part of the long exact sequence ofaoblogies for the exact
sequence (3.9) tensored wifty, becomes

(3.13)
0—0— C— H°(P,R'p,End(F) ® Q3) — 0 — H(X, End(V))

— H' (P, R'p.End(F) ® 2}) > T — 0 — H*(P, R'p, End(F) ® 23)) — O,

where T,, as before, is the tangent line ate X. Now (3.4) follows immediately
from (3.13).
For proving (3.5), consider the short exact sequence

(3.14) 0— HYX,End(V)) — H'(P, R'p,End(F) ® Q) — T, — 0

contained in the exact sequence in (3.13). We will show tlBat4) gives an exact
sequence

(3.15) 0— HY(X,ad(V)) — H'(P, R'p,ad(F) ® Q}) — T, — 0.
To construct (3.15) from (3.14) first observe that
R'p.End(F) ® Q3 = (R'p, ad(F) ® R'p.Ox.p) ® Q3

and hence
(3.16)
H' (P, R'p.End(F) ® Q}) = H* (P, R'p.ad(F) ® Q}) & H' (P, R'p.Oxxp ® Q}).

Now, R'p,Ox.p is the trivial vector bundle oveP with fiber H(X, Ox). Since
H'(P,Q}) =C,
we conclude that
H*(P, R'p.Ox«p ® Q3) = HY(X, Ox).
Consequently, from (3.16) we obtain an inclusion
(3.17) HY(X,0x) C H*(P, R'p.End(F) ® Q3) .

On the other hand, sincH(X, Ox) ¢ HY(X, End(V)), using (3.14) we have an-
other inclusion

(3.18) HY(X,0x) C H* (P, R'p,End(F) ® Q3}).
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To obtain the exact sequence (3.15) from (3.14) we need tw ghat the two
subspaces?(X, Ox) in HY(P, R'p,End(F) ® QL) constructed in (3.17) and (3.18)
actually coincide.

The subspace?*(X, Ox) in (3.17) must lie inside the kernel of the projection
to 7, in (3.14). Indeed, this is an immediate consequence of the tfat there is
no nonzero homomorphism @y into 7X (by moving the pointx over X we get
a homomorphism tdI'X of the trivial vector bundle ovex with fiber H(X, Oy)).
Therefore, the subspace in (3.17) is contained in the sebspa(X, End(V)) in (3.14).

We haveH(X, End(V)) = HY(X, ad(V))® H(X, Ox). To obtain (3.15) it suffices
to show that the projection of the subspadé(X, Oyx) in (3.17) to H'(X, ad(V)) van-
ishes (we have already shown that the subspdéex, Ox) in (3.17) is contained in
HY(X, End(V))).

Considery~(U), wherey and U are as before (see (2.6)). Lét denote the
trivial vector bundle overy—Y(U) with fiber H'(X, Ox). Moving over the points of
Y¥~1(U), the projection of the subspadé'(X, Ox) in (3.17) to H(X, ad(V)) gives a
homomorphism of vector bundles

J//: F— w*Tha

where 7), is the relative tangent bundle for the projectibndefined in (3.1). Indeed,
this follows immediately from the fact that the fiber @} at any point ¢, V) € U

is HY(X,ad(V)). Since the projectiony|,-1y) is proper with connected fibers, any
homomorphism fromF to *7), is obtained from a homomorphism B, from the
trivial vector bundle ovei/ with fiber H(X, Oy). Let

(3.19) y. F' — T,

be the homomorphism of vector bundles, whéteis the trivial vector bundle ovet/
with fiber H1(X, Oy), from which the above homomorphisi is obtained.

Let N” be a moduli space of stable vector bundles o¥eof rank n and fixed
determinant. We have

(3.20) HOW", TN")=0
[2, Theorem 1]. From this it follows that the homomorphigmin (3.19) vanishes.
Consequently, the two subspacld(X, Ox) in HY(P, R'p, End(F)® Q1) constructed

in (3.17) and (3.18) coincide. Therefore, the exact sequéBcl4) gives the exact se-
quence (3.15). This completes the proof of Lemma 3.1. ]

Now we are in a position to prove the main result.
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Theorem 3.4. For the moduli spaceV,

C for i
HYX,Ox) for i

HI. End@T ) = 2 .

Proof. If we fix a pointy € X, then N3 (see (2.3)) gets identified with the prod-
uct X x A/, where N is the moduli space of all stable vector bundle bundiesover
X of rankn and \"W =& ® Ox(—y). In this identification of N} with X x N’, the
relative tangent bundl@), is the pullback ofTA” to X x N.

We have

H? (N",C’)N/) =0

and H°(\’, O) = C. ConsequentlyH! (U, Oy) = H (X, Ox) for i =0, 1. Therefore,
in view of Proposition 2.1, Lemma 3.1 and the fact thg}? in (2.10) converges to
HPE), n*(Kx RTN)® Ty) for i <2, it suffices to show that
(3.21) H° (U, Ry, (T TN ® Q)) = 0.

Consider the exact sequence of cohomologies

0— H(U.T)) — H®(U.RY. (TN ® @)) — H(U.h*TX)

obtained from the exact sequence of sheaves in Lemma 3.1.aweHP(X, TX) =0
and henceH°(U, h*T X) = 0. Also, from (3.20) it follows that#°(U, T;,) = 0. There-
fore, (3.21) follows from the above exact sequence of coHogies. This completes
the proof of the theorem. ]

REMARK 3.5. SinceH?(U, Oy) = 0 = H(X, TX), it follows from (2.10) and
Lemma 3.1 that

HYU, T;) — H?*W, EndTN)).

As a consequence, we have did(N, EndTN)) > 3g — 3.
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