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Chapter 1

General introduction

In aquatic ecosystems, populations within a community are bound by a network

of interactions. The most important interactions are of a trophic nature – “eat” or “be

eaten” and the simplest connection is the food chain, which is started from producers that

are photoautotrophs consumed by primary consumers such as herbivorous animals,

zooplanktons, mollusks and nematodes. These animals are in turn eaten by secondary

consumers including carnivorous crustaceans and planktonivorous fish. Bacteria are

placed in this concept as decomposers, that is, they are responsible for the

remineralization (“destruction”) of dead organic matters. Organisms within a food chain

that can be assigned to the same position are collectively referred as a trophic level. The

primary consumer is an important trophic level to change plant biomass to animal

biomass and transfer energy from producer to the other higher trophic level (Figure 1).

Therefore, changes of life history traits of primary consumers such as population size and

longevity give great impact on the ecosystem, which have prompted researchers to study

their ecologically important life history traits.

Daphnia is the best-studied freshwater zooplankton because it is an important

keystone species in freshwater ecosystem and it is globally found in freshwater habitats,

The ecologically important life history traits of Daphnia including fecundity, longevity

and growth are known to be affected by abiotic factors such as pH, photoperiod, quality

and quantity of food, metal ions and salinity (Stross and Hill, 1968; Vijverberg, 1976;

Sterner, 1993; Caffrey and Keating, 1997; Heugens et al., 2006; Ghazy et al., 2009, 2011).
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The biotic factors also involve in the changes of Daphnia’s life history traits. Previously,

the studies of predation between fish and Daphnia revealed that fish kairomone increase

population size and body length of Daphnia via GABA inhibition (Weiss et al., 2012).

Competition, one of important biotic factors, controls the population size and biomass of

Daphnia (Loureiro et al., 2013). Another ecologically important biotic factor is symbiosis,

which concerns in interaction between Daphnia and their symbionts. Nevertheless, the

study of symbiotic relationship is limited.

Figure 1 Trophic cascade. Cascade occurs when reciprocal effects of predator-prey alter the

abundance, biomass or productivity of a population community. The trophic cascades in aquatic

ecosystem are started from producers, which are photoautotrophs consumed by primary consumers,

such as zooplanktons, mollusks and nematodes, then energy is transferred to the higher trophic levels

via food consumption.

1.1 Biology of Daphnia

Daphnia is an important keystone species, which is found in many freshwater

habitats, such as lakes and ponds. Daphnia have appendages, which are antennules,

Zooplankton
(primary consumer)

Fish
(secondary consumer)

Phytoplankton
(producer)

Piscivorous fish
(tertiary consumer)



7

antennae, maxillae, mandibles and 5 pairs of limbs on the trunk (Figure 2). The limbs are

the filter apparatus for feeding and respiration. The abdominal claws are at the end of

abdomen. Body of Daphnia is enclosed by a noncalcified shell called “carapace” which is

mainly made of chitin. It has a double wall and hemolymph flows in between the walls.

Apical spine is dominantly existent at the posterior of carapace for defences. Size of adult

Daphnia varies from 1 mm to more than 5 mm upon the species and strains. Male

Daphnia can be distinguished from females by their smaller size, larger antennules,

modified post-abdomen, and first legs, which are armed with a hook used in clasping

(Ebert, 2005).

Daphnia is a filter feeder, which gathers the small and suspended particles in the

water with their filtering apparatus, consisting of the flattened phylopods. The movements

of phylopods make the currents flows from anterior to posterior and Daphnia collect

particles and transfer into the food grove using special setae. The food filtered by feeding

apparatus is usually planktonic algae, but bacteria sometimes can be collected as well

(Hebert, 1978). In most laboratories, green algae are normally fed to Daphnia, because of

rich nutrients and easy culture in monoclonal chemostats (Ebert, 2005).

Gut of Daphnia is tubular lining with epithelium with microvilli along the gut.

The gut comprises of three parts: esophagus, midgut and hindgut. And, there are two

small ceca (diverticula) that are found at the beginning of midgut (Figure 2). The food

passes through the gut by peristalsis of gut wall where epithelial cells are capable to

absorb nutrient molecules (Ebert, 2005).
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Figure 2 Anatomy of Daphnia (Ebert, 2005).

The most important life history trait of Daphnia is high fecundity by

parthenogenesis (Hebert, 1978), leading to large population size that is fundamental to its

role as a primary consumer. Under healthy conditions, a female produces a clutch of

parthenogenetic eggs every adult molt. The eggs are placed in the brood chamber that is

located at dorsoposterior under the carapace. The embryos hatch from the eggs after 1 day

and remain in the brood chamber. After 3 days in the brood chamber, newborn Daphnia

are released from brood chamber. The juvenile Daphnia looks like the adult Daphnia,
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except that the brood chamber is not developed yet. The juveniles develop to be the adults

within 5-10 days under normal conditions and lay first clutch eggs in their brood

chambers. An adult female produce a clutch of eggs every 3-4 days in her entire life that

may live around 2 months (Ebert, 2005). By the environmental changes such as

temperature and light cycle Daphnia switch reproductive system from parthenogenetic

reproduction to sexual reproduction (Figure 3).

Figure 3 Life cycle of Daphnia. This diagram exibits the parthenogenetic (asexual) and sexual life

cycle of Daphnia. Under normal conditions, female Daphnia produce diploid eggs that develop to be

female juveniles in parthenogenetic cycle. When Daphnia is stimulated by environmental stresses,

such as photoperiod, temperature and salinity, female Daphnia produces diploid asexual eggs that

develop to be male Daphnia. Furthermore, the stressed female adult produces haploid eggs that require

fertilization by male. These eggs (resting eggs) are enclosed in protective hard shell called ephippium.

The ephippia are released from females and sink to the bottom or float in the freshwater habitats. The

resting eggs may endure during unfavorable conditions and hatching is induced by external stimuli,

such as an appropriate photoperiod, rising of temperature, light or presence of water in dry pond. Only
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females are hatched from resting eggs and develop to be the adults, which are able to produce

parthenogenetic eggs under normal conditions.

1.2 Daphnia in bioenvironmental sciences

Daphnia is globally found in freshwater habitats and has been used as a model

organism in many studies of environmental sciences: ecology, evolution, toxicology, since

it has short life cycle, small size, and the culturing is simple and easy to handle in the

laboratories (Little and Ebert, 2000; Ebert, 2008; Heinlaan et al., 2008; Weiss et al., 2012).

In addition, Daphnia shows high chemical sensitivity and phenotypic plasticity that

responds to environmental changes (Lüning, 1992; Tatarazako et al., 2003; Ebert, 2011).

Therefore, Daphnia is one of model organisms for estimation of contaminated chemicals

in freshwater.

Some guidelines of Organisation for Economic Co-operation and Development

(OECD) specify to use Daphnia for evaluation of toxicity of insecticides, metal ions and

the toxic chemicals released to aquatic ecosystems. Physiological effects, such as

immobilization and reproduction of Daphnia, are evaluated to estimate the effective

concentration (OECD 202 and 211). Furthermore, Daphnia is a subject to study in a

model system of host-microbe coevolution to understand the parasitic relationship in

ecosystems (Little and Ebert, 2000; Ebert, 2008; Stjernman and Little, 2011). The

investigations of coevolution between Daphnia and parasites reveal the dynamic of

population and specificity between hosts and parasites (Decaestecker et al., 2005; Duncan

and Little, 2007; Ebert, 2008; Hall et al., 2011).

1.3 Molecular genetics of Daphnia

Whole genome sequence of Daphnia is available in database, which allows us to
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study in molecular genetics of Daphnia. Since microinjection technique was established

in Daphnia, which enabled us to anlyase gene funcition by introduction of foreign DNAs

and RNAs. The RNA interference and targeted mutagenesis by CRIPR-Cas system and

TALEN are developed and used to knockdown or knockout, leading us to perform the

loss-of-function analyses in Daphnia (Kato, Shiga, et al., 2011; Nakanishi et al., 2014;

Naitou et al., 2015). Another way to clarify the function of target gene is to perform the

gain-of-function analyses. The overexpression of targeted genes and transgenesis

technique have been developed in Daphnia to study in vivo expression of target gene

(Kato, Kobayashi, et al., 2011; Kato et al., 2012; Törner et al., 2014). These techniques

allow us to study the function of interesting genes and the physiological mechanisms in

Daphnia.

These genetic tools have been applied to Daphnia studies, which allow us to

approach to molecular biology of Daphnia. The mechanisms of environmental sex

determination have been studied using microinjection of mRNAs and dsRNAs. This study

revealed dsx gene involving in environmental sex determination in D. magna (Kato,

Kobayashi, et al., 2011). In addition, ecdysteroid activity was investigated and visualized

in D. magna by injecting the plasmid DNA that codes for the ecdysone response element

driving a reporter gene (Asada et al., 2014). By using microinjection of plasmid,

transgenic Daphnia that habors the green fluorescent protein (GFP) gene fused with the

D. magna histone H2B gene, has been established. This transgenic line named HG line is

useful to study the embryogenesis and oogenesis of Daphnia (Kato et al., 2012).

1.4 Symbiosis

The term of “symbiosis” is an interaction between the organisms, which is

categorized to 3 groups: parasitism, commensalism and mutualism (Wells and Varel,
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2011; Martin and Schwab, 2013). Parasitism is a relationship, in which one costs to

another and one get benefits from host. This interaction has been studied widely in human,

animals and plants to investigate the preventions of widespread diseases (Wells and Varel,

2011). The term of “commensal” comes from the mediaval Latin “commensalis”, which

means “at table together” and commensalism generally refers to two organisms living

together without cost but without obvious benefit (Hooper and Gordon, 2001). Mutualism

is a beneficial interaction that two organisms interact with benefit to each other (Wells

and Varel, 2011).

The studies concerning symbiotic relationship between terrestrial invertebrates

and their symbionts have been widely studied, and revealed the symbionts play in mutual

interaction to improve longevity, growth rate, body size and reproduction of insects.

Symbiotic bacteria is required for larval growth and adult fecundity of pea aphids

(Acyrthosiphon pisum) (Douglas, 1992). Wolbachia, a member of Alphaproteobacteria,

regulate maturation of oocytes in parasitic wasp (Asobara tabida). Moreover, symbiotic

bacteria regulate longevity of the Mediterranean fruit fly (Ceratitis capitata) (Behar et al.,

2008; Ben-Yosef et al., 2008). Disruption of gut microbiota of termites (Zootermopsis

angusticollis and Reticulitermes flavipes) causes decrease of queen’s fecundity and

severely affects to fitness and colony growth (Rosengaus et al., 2011). Burkholderia, a

member of Betaproteobacteria, is capable to increase fecundity and body length of bean

bug (Riptortus pedestris) (Kikuchi and Fukatsu, 2014). Furthermore, intestinal bacteria

stimulate the larval development and survival in common fly (Calliphora vomitoria)

(Wollman, 1911; Erkosar et al., 2013). Lactobacillus plantarum is directly responsible for

microbiota-mediated mating preference of Drosophila melanogaster (Sharon et al., 2010).

Symbiotic bacteria also show ability to resist the parasite colonization (Pan et al., 2012).

Recently, an ecotoxicological study shows symbiont could degrade insecticide and
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infected bug has higher insecticide resistance (Kikuchi et al., 2012).

In vertebrates, gut microflora provide beneficial nutrients for human health and

function in immunity (Hooper and Gordon, 2001; Binn, 2013). Probiotics in gut are

responsible for benefits to reproduction of osteichthyes. Lactobacillus rhamnosus

functions as a probiotic to play with nutrition in zebrafish (Danio rerio) leading to inhibit

follicular apoptosis, improve follicular survival, enhance germinal vesicle breakdown rate

and increase ovulated eggs (Gioacchini et al., 2010, 2013). L. rhamonosus involve in

endocrine system leading to induce oocyte maturation in female zebrafish (Gioacchini et

al., 2010). Probiotics are able to modulate bacterial community in the gut of zebrafish and

shift to increase the presence of lactic acid bacteria, Streptococcus thermophiles

(Gioacchini et al., 2013). In marine teleosts, probiotics also regulate the reproduction of

killifish (Fundulus heterociltus) resulting in enhancing of reproductive performance of

killifish, such as, gonadal growth, fecundity and embryo survival. Moreover, probiotics

are capable affecting larval development and growth of killifish larvae (Lombardo et al.,

2011).

In Daphnia, several studies revealed the parasitic interactions between Daphnia

and parasite controls Daphnia’s life history traits and function in coevolution of

host-parasite (Mangin et al., 1995; Ebert et al., 2000; Little and Ebert, 2000; Decaestecker

et al., 2005; Ebert, 2008). Recently, metagenomics of symbionts in D. pulex, D. pulicaria

and D. magna have been investigated by using shotgun sequencing. This study revealed

that the bacterial community compositions are stable among these 3 species and the

majority of microbial community is Proteobacteria. Most sequences belong to

Betaproteobacteria, family Comamonadaceae (Qi et al., 2009). However, the role of the

microbiota to function on Daphnia’s life history traits still remained unknown.
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1.5 Objective of this study

I aimed to clarify the role of symbiotic bacteria on Daphnia magna’s life history

traits. First, I established a novel method to prepare aposymbiotic Daphnia, which

allowed me to study the role of symbiotic bacteria on important life history traits of

Daphnia. Second, I developed a method to reinfect aposymbiotic Daphnia with the

dominant symbiont Limnohabitans and found the function of Limnohabitans on

Daphnia’s life history traits.

In Chapter 1 of this dissertation, structure of trophic cascade in freshwater

ecosystem, definition of symbiosis and recent studies concerning symbiotic relationship,

biology of Daphnia were described. In Chapter 2, a method to prepare aposymbiotic

Daphnia by glutaraldehyde exposure to embryos and phenotypes of aposymbiotic

Daphnia were described, in addition to the role of symbionts on ecologically important

life history traits of Daphnia: population size and longevity. Composition of the

symbiotic bacteria was also explained in this chapter. In Chapter 3, results of study on the

role of dominant bacteria on Daphnia’s important life history traits, fecundity and growth,

were shown. In Chapter 4, I will discuss the roles of symbiotic bacteria and dominant

bacterium on Daphnia’s life history traits that lead to drive trophic cascade. Finally, I will

provide new insights into role of bacteria in freshwater ecosystems and show usefulness

of an aposymbiotic Daphnia for symbiotic relationship between animals and bacteria.
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Chapter 2

Role of symbiotic bacteria on life history traits of D. magna and

bacterial community composition

2.1 Introduction

The microcrustacean Daphnia is a freshwater zooplankton that commonly

inhabits ponds and lakes throughout the world. Under normal conditions populations

consist entirely of parthenogenetic females with a high ability to propagate (Hebert, 1978),

leading to large population sizes that are fundamental to Daphnia’s key role as a primary

consumer in freshwater ecosystems. Life-history traits of female Daphnia such as size,

weight, longevity and fecundity are affected by abiotic factors such as temperature, pH,

photoperiod, quantity and quality of food, metal ions and salinity (Stross and Hill, 1968;

Vijverberg, 1976; Sterner, 1993; Caffrey and Keating, 1997; Heugens et al., 2006; Ghazy

et al., 2009, 2011). Factors such as photoperiod and quantity of food can even cause

Daphnia to switch from parthenogenetic to sexual reproduction (Hebert, 1978).

Symbiosis, a biotic factor showing the interaction between different biological

species, affects the life-history traits of many animal species (Gilbert, 2010). In insects,

the closest relatives of crustaceans, some species of symbiotic bacteria have developed

the ability to increase the longevity and fecundity of their hosts (Douglas, 1992; Dedeine

et al., 2001; Behar et al., 2008; Ben-Yosef et al., 2008; Rosengaus et al., 2011). In

Daphnia, most of the symbiosis-related research involves the relationship between

Daphnia and parasites (Metchnikoff, 1884; Ebert et al., 2000; Little and Ebert, 2000;

Decaestecker et al., 2005; Ebert, 2008) while a few studies have investigated the bacterial
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community composition in Daphnia (Qi et al., 2009; Freese and Schink, 2011) by using

metagenomic sequencing. In one of the latter studies the majority of bacteria sequenced

from 3 Daphnia species were classified under the Betaproteobacteria genera of the

family Comamonadaceae (Qi et al., 2009). The other study suggested that the diversity of

the Daphnia gut microflora was relatively low and that the dominant bacterial species

found was of the Limnohabitans species of the Betaproteobacteria genera (Freese and

Schink, 2011). Both studies revealed that symbiotic associations are stable over long

periods, suggesting that stable bacterial communities in Daphnia may play essential roles

in their hosts’ life history.

Glutaraldehyde (GA) is known to have a broad spectrum of activity, rapid

antimicrobial action and is highly active in the presence of organic matter (Gorman et al.,

1980; Salvesen et al., 1997).  The mechanism of action of GA involves a cross-linking

of protein at outer layers and inside the bacterial cell that leads to inhibit transport,

enzyme activity and synthesis of RNA, DNA and protein (Munton and Russell, 1971,

1973; McGucken and Woodside, 1973; McDonnell and Russell, 1999).

This study aimed to develop a method to prepare aposymbiotic D. magna by

sterilizing embryos using GA and investigated roles of symbiotic bacteria for two life

history traits, population size and longevity.

2.2 Materials and Methods

2.2.1 Daphnia strain and culture condition

D. magna (Belgium strain) were obtained from National Institute for

Environmental Studies (NIES, Tsukuba, Japan) (Oda et al., 2006).  Eighty Daphnia were

incubated in 5 L of M4 media (Elendt and Bias, 1990) at 23±1˚C under 16 h light/ 8 h

dark photoperiod.  1×109 cells of Chlorella sp. were added daily on first week, then
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2×109 cells daily.

2.2.2 Axenic Chlorella

Chlorella vulgaris Beijerinck were obtained from National Institute for

Environmental Studies (NIES, Tsukuba, Japan), inoculated in MAM medium (0.0025%

CaCl2, 0.0075% MgSO4, 0.0025% NaCl, 0.01% KNO3, 0.025% NH4NO3, 0.2% casamino

acids, 0.05% yeast extract and 0.05% malt extract) and incubated with shaking at 23˚C

under 16 h light/ 8 h dark photoperiod for 5 days.   Then, the cells were collected,

re-suspended in filtered M4 media prepared by filtration with 0.2 µm filter (Corning-500

mL filter system, Corning, NY, USA) and stored at 4˚C. The 108 cells of axenic Chlorella

were used for bacterial screening.

2.2.3 Preparation of aposymbiotic juvenile Daphnia

Adult Daphnia were transferred to the filtered M4 culture media and dissected to

separate the early stage of Daphnia embryos (less than 24 hours) from brood chambers.

The early stage of embryo is still covered with chorion, which protects Daphnia embryo

from bacteria in environment and harm of GA. The collected embryos were separated into

3 treatments. The 20 – 35 embryos were placed in each well of a 6-well plate, washed

twice with 1 ml of filtered M4 media, exposed to 1 ml of 0, 0.025% and 0.25% GA

(Sigma-Aldrich, St. Louis, MO, USA) for 30 minutes to find the optimized concentration

of GA for Daphnia sterilization, washed with the 1 ml of filtered M4 media twice, and

then incubated in the 4 ml of filtered M4 media at 23˚C under 16 h light/ 8 h dark

photoperiod until they grow to be swimming juveniles (about 48 hours) and then used for

experiments. The total number of Daphnia used in each experiment would be written in

the later section.
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2.2.4 Bacteria-free culture of aposymbiotic Daphnia

Except the longevity experiment, four aposymbiotic juvenile Daphnia were

aseptically transferred into 100 ml of filtered M4 solution, aseptically cultured and fed

2×107 cells of axenic Chlorella daily on first week, then 4×107 cells daily, respectively.

As a control, four symbiotic juveniles were cultured by the same culturing method.

2.2.5 Determination of longevity of Daphnia

Ten aposymbiotic or 10 symbiotic juvenile Daphnia were transferred into 100 ml

of filtered M4 solution, aseptically cultured and fed 2×107 cells of axenic Chlorella daily

on first week, then 4×107 cells daily, respectively. Newborn juveniles were removed

every second day. The proportion of survival was observed every day. The experiments

with symbiotic Daphnia and aposymbiotic Daphnia were performed twice and three

times, respectively. The mean longevity was calculated as previously reported (Fletcher et

al., 1990).

2.2.6 Re-infection by co-culture with symbiotic Daphnia

Two aposymbiotic juvenile Daphnia were aseptically transferred into 100 ml of

M4 solution and then two symbiotic Daphnia were added.  Culture condition of the

co-cultured Daphnia was same as that of aposymbiotic Daphnia.

2.2.7 Re-infection by dipping in Daphnia extracts

Ten adult Daphnia were grinded roughly in 500 µl of M4 media.  The

homogenate was incubated at room temperature for 5 minutes, 200 µl of the supernatant

were transferred to a new tube after standing, diluted 10 times and used for the

re-infection experiment.  To prepare filtered Daphnia extracts, the crude extracts were
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filtered using 0.2 µm filter (Millex – LG 0.2 µm, Millipore, Ireland), then diluted 10

times. Then, the 0.25% glutaraldehyde-treated embryos were incubated in the Daphnia

extract and filtrate of the Daphnia extract. After hatching, 4 aposymbiotic Daphnia

dipped in crude extract and filtrate of crude extract were transferred into 100 ml of

filtered M4 solution and cultured by the same way as aposymbiotic Daphnia culture.

2.2.8 DNA extraction

Genomic DNA extraction was performed using a standard protocol for

Drosophila (Huang et al., 2000).  First, four Daphnia and Chlorella were homogenized

in a solution of 200 μl Buffer A (100 mM tris-HCl, 100 mM ethylenediaminetetraacetic

acid [EDTA], 100 mM NaCl and 0.5% sodium dodecyl sulfate [SDS], pH 7.5) in a

1.5-mL tube and incubated at 65°C for 30 min. Second, the homogenate was mixed with

400 μl of LiCl/KAc solution (5 M potassium acetate: 6 M lithium chloride = 1:2.5),

incubated on ice for 10 min and centrifuged for 15 min at 15000 rpm. Third, 500 μl of the

supernatant was transferred to a new tube, mixed with 300 μl isopropanol and centrifuged

for 15 min at 15,000 rpm. Finally, the supernatant was removed and the precipitate was

washed with 70% ethanol, dried and resuspended in 50 ul of MilliQ, after which

estimation of copy number of 16s rRNA genes and sequencing were conducted.

2.2.9 Quantitative polymerase chain reaction (qPCR)

PCRs were performed in MX3005P (Stratagene) using SYBR GreenER qPCR

SuperMix Universal (Invitrogen), in the presence of a primer set: forward primer

5’-AGACACGGTCCAGACTCCTAC-3’ and reverse primer 5’-TTTACGGCGTGGA-

CTACCAG-3’. PCR amplifications were performed under the following conditions: 2

minutes at 95˚C and followed by 40 two-temperature cycles (15 seconds at 95˚C and 1
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minute at 60˚C).  Average and standard error were calculated.  The detection limit was

50 copies of 16S rRNA genes.

2.2.10 Sequencing

DNA extracts from Daphnia were used to amplify 16S rRNA genes using the

primer set, which was used for the qPCR reaction.  After PCR amplification, the PCR

products (199-224 bp) were purified, cloned into a pCR4-TOPO vector (Invitrogen),

sequenced and identified via a BLAST search of the NCBI database and SILVA rRNA

database supported by Takara Bio Dragon Genomics Center (Yokkaichi, Mie, Japan).

2.2.11 Statistical analyses

All data were shown as mean ± SE. The population size and longevity were

tested using the Welch’s t-test.  The significance level for all of statistical analyses was p

= 0.01.

2.3 Results

2.3.1 Generation of aposymbiotic Daphnia

To investigate the effect of symbiotic bacteria on life-history traits in Daphnia

magna, we developed a method to generate aposymbiotic Daphnia by using the Belgian

strain of D. magna, which was obtained from the National Institute for Environmental

Studies (NIES, Tsukuba, Japan) (Oda et al., 2006). GA was used to disinfect Daphnia as

an alternative to the antibiotics that have previously been used to disinfect Daphnia

(D’Agostino and Provasoli, 1970). We tried to eliminate symbiotic bacteria by treatment

of GA from early stage of Daphnia embryos (less than 24 h old) that were covered by

chorion because this thick membrane could protect embryos from bacteria in environment
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and harm of GA. The embryos were exposed to 0%, 0.025%, and 0.25% GA for 30 min

and then incubated in filtered M4 solution (Elendt and Bias, 1990) for 48 h during which

the chorion was shed, the embryo developed into the first instar juvenile. At this stage,

more than 80% of treated Daphnia survived even when we used 0.25% GA.

To confirm removal of bacteria from Daphnia , DNA was extracted from the

juveniles by using a standard protocol for Drosophila (Huang et al., 2000) and

quantitative PCR of bacterial 16S rRNA genes were performed. We found that treatment

of the Daphnia embryos with GA for 30 min was sufficient to remove bacteria from

Daphnia (Table 1). The estimated copy numbers of bacterial 16S rRNA genes isolated

from the GA-treated Daphnia were lower than the detection limit (<50 copies of 16S

rRNA genes/ Daphnia), whereas non-treated Daphnia were found to have 2.43 ± 0.90 ×

104 copies per individual (Table 1). In addition, the copy numbers of bacterial 16S rDNA

in GA-treated Daphnia remained under the detection limit after a 3-week culture,

indicating that the bacteria in the GA-treated Daphnia had been removed. Even in 0.25%

GA, over 80% of the embryos matured to swimming juvenile Daphnia (Table 1). To

ensure the removal of the bacteria, 0.25% GA was used for the sterilization of embryos,

and the resulting aposymbiotic juveniles were used in the subsequent experiments.

Table 1 Hatching rate of embryos exposed to varied concentrations of glutaraldehyde (GA) and

copy numbers of 16S rRNA genes/juvenile Daphnia.

Concentration of GA Hatching rate Copy numbers of bacterial 16S rRNA genes /

Daphnia

0% 98% (112/114) 2.43±0.90x104

0.025% 100% (33/33) ND

0.25% 81% (112/139) ND

ND: not detectable.
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2.3.2 Longevity of aposymbiotic Daphnia

I first investigated whether symbiotic bacteria have an effect on Daphnia

longevity, because this is known to be the case in other animal species (Fukatsu et al.,

2001; Behar et al., 2008; Ben-Yosef et al., 2008; Vorburger and Gouskov, 2011). The

maximum life span of aposymbiotic Daphnia was 9 d shorter than that of symbiotic

Daphnia (Figure 4). However, the mean longevity of aposymbiotic Daphnia (28.63 ± 2.2)

was not significantly different to that of symbiotic Daphnia (p-value = 0.16; 33.50 ±

4.21). This may have been related to the mortality rate after the initial treatment with GA.

Several individuals died within 3 days after the treatment of GA. Although further

detailed analysis is needed, it is possible that aposymbiotic Daphnia have shorter

longevity than symbiotic Daphnia.

Figure 4 Survival curves of control and aposymbiotic Daphnia. The longevities of aposymbiotic

and symbiotic Daphnia were determined in thrice- and twice-repeated experiments, respectively. Data

are shown as survival rate versus age (day). Blue line indicated aposymbiotic Daphnia, and red line

indicated symbiotic Daphnia.

Symbiotic Daphnia

Aposymbiotic Daphnia
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2.3.3 Population dynamics of aposymbiotic Daphnia

Since population dynamics is an important factor in the role of Daphnia as a

freshwater keystone species, I aseptically cultured aposymbiotic Daphnia for 21 d and

investigated their population size. In contrast to the symbiotic Daphnia, the population

size of aposymbiotic Daphnia did not increase during the culture (Figures 5A and 6A).

The absence of bacteria in the aposymbiotic Daphnia was confirmed by qPCR at the

beginning and end of the experiment (Figures 5B and 6B), suggesting that symbiotic

bacteria play an important role in Daphnia population size.

2.3.4 Recovery of fecundity of aposymbiotic Daphnia by re-infection

To elucidate whether the smaller population size of aposymbiotic Daphnia was

due to the loss of symbiotic bacteria, or due to reproductive system dysfunction because

of the GA treatment, the aposymbiotic Daphnia were re-infected in 2 ways: (1)

co-cultured with symbiotic Daphnia or (2) dipped in Daphnia extracts containing

symbiotic bacteria.

I re-infected aposymbiotic Daphnia via co-culturing with symbiotic Daphnia by

culturing 2 aposymbiotic Daphnia with 2 symbiotic Daphnia under bacteria-free

conditions. After 21 d, the population size of the co-cultured Daphnia was approximately

30-fold higher than that of the aposymbiotic Daphnia, and 3-fold higher than that of the

symbiotic Daphnia (p < 0.01; Figure 5A). To confirm that the re-infection was successful,

qPCR analyses to detect bacterial 16S rRNA genes were performed at the beginning and

end of the experiment. Aposymbiotic Daphnia co-cultured with symbiotic Daphnia

contained a similar amount of bacteria as that of the symbiotic Daphnia (Figure 5B),

suggesting that bacteria from the symbiotic Daphnia had transferred to and multiplied on

the aposymbiotic Daphnia. Together, these results suggest that the transmission of
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bacteria from the symbiotic Daphnia to the aposymbiotic Daphnia lead to an increase in

the population size of the aposymbiotic Daphnia.

Figure 5 Re-infection experiment: co-culture with symbiotic Daphnia. (A) Temporal change in the

population size. Square: aposymbiotic Daphnia; triangle: symbiotic Daphnia; circle: co-cultured

Daphnia. An asterisk signifies that the population sizes were significantly different (Welch’s t-test, p <

Symbiotic Daphnia

Aposymbiotic Daphnia

Co-cultured Daphnia

Aposymbiotic
Daphnia

Symbiotic
Daphnia

Day 0

Day 21



25

0.01) at 21 d. Data are presented as means ± SE (aposymbiotic Daphnia: n = 3; symbiotic Daphnia: n

= 6; co-cultured Daphnia: n = 3). (B) Copy numbers of 16S rRNA genes. Data are presented as means

± SE (n = 3). ND signifies not detectable.

Figure 6 Re-infection experiment: dipping in Daphnia extracts. (A) Temporal change in the

population size. Square: aposymbiotic Daphnia; triangle: symbiotic Daphnia; rhombus: aposymbiotic

Symbiotic Daphnia

Aposymbiotic Daphnia

Aposymbiotic Daphnia
(crude extract)

Aposymbiotic Daphnia
(filtered extract)

Aposymbiotic
Daphnia

Symbiotic
Daphnia

Aposymbiotic
Daphnia

(crude extract)

Day 0

Day 21

Aposymbiotic
Daphnia

(filtered extract)
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Daphnia dipped into the crude extract; circle: aposymbiotic Daphnia dipped into the filtered extract.

An asterisk signifies that the population sizes were significantly different when compared with

aposymbiotic Daphnia (Welch’s t-test, p < 0.01). Data are presented as means ± SE (aposymbiotic

Daphnia: n = 3; symbiotic Daphnia: n = 6; aposymbiotic Daphnia dipped in crude extracts: n = 6;

aposymbiotic Daphnia dipped in filtered extracts: n = 2). (B) Copy numbers of 16S rRNA genes. Data

are presented as means ± standard error (SE; aposymbiotic Daphnia, symbiotic Daphnia,

aposymbiotic Daphnia dipped in crude extracts: all n = 3, aposymbiotic Daphnia dipped in filtered

extracts: n = 2). ND signifies not detectable.

I also re-infected aposymbiotic Daphnia with symbiotic bacteria by dipping

embryos in crude extracts of untreated adult Daphnia which contained the bacterial

symbionts. These re-infected Daphnia produced juveniles after 1 week, displayed a rapid

population increase after 2 weeks (Figure 6A) in a manner similar to that of the symbiotic

Daphnia, and possessed an increased number of bacteria according to the qPCR results.

To determine the possibility of small molecules such as nutrients in the Daphnia

extracts affecting the results of population size, I dipped aposymbiotic Daphnia embryos

into filtered Daphnia extracts that did not contain any bacteria.  However, the filtered

extracts did not affect the population size of aposymbiotic Daphnia and bacteria could not

be detected 21 d in this sample. Together these results suggest that symbiotic bacteria play

a critical role in the population growth of this species.

2.3.5 Sequencing of symbiotic bacteria

The results from the above experiments suggest that symbiotic bacteria can

increase the population size in Daphnia. To identify the bacteria involved in this process,

the bacterial community composition of the control and re-infected Daphnia was

investigated by sequencing the bacterial 16S rRNA genes. I found that the majority of
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bacteria in both the symbiotic Daphnia and re-infected Daphnia was Betaproteobacteria

(Figure 7). The dominant bacterium was Limnohabitans sp., a Betaproteobacteria (Table

2 and 3). Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Actinobacteria

were also identified but in very small numbers.

Figure 7 Taxonomic composition of symbiotic bacteria in symbiotic Daphnia and aposymbiotic

Daphnia dipped in Daphnia extracts.

Aposymbiotic
Daphnia

(crude extract)

Symbiotic
Daphnia
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Table 2 Lists of bacteria found in aposymbiotic Daphnia dipped in Daphnia extracts.

Phylum Class Order Family Bacteria Accession

number

Clones %Similarity Accession number

registered in this study

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas sp. Eza32 JQ977273 1 100 -

Brevundimonas diminuta

TR6

KM009127 1 100 -

Rhizobiales Rhizobiaceae Rhizobium grahamii NH18 KJ921045 1 100 -

Rhodobacterales Rhodobacteraceae Rhodobacter sp. A191 GQ484552 1 98 LC006866

Betaproteobacteria Burkholderiales Comamonadaceae Betaproteobacterium O-5-10 KF827201 2 100 -

Burkholderiales bacterium

RCPCd10

DQ922760 19 100 -

Limnohabitans sp. 2KL-7 HE600663 40 100 -

Limnohabitans sp. Dn48 HM561454 1 98 LC006867

Bacterium B-17 HQ860533 1 99 LC006868

Gammaproteobacteria Chromatiales Chromatiaceae Bacterium MayA002 JQ327531 1 98 LC006869

Xanthomonadales Xanthomonadaceae Bacterium clone

RRD14.0May-94

JN641541 1 99 LC006870

Actinobacteria Acidimicrobiia Acidimicrobiales Acidimicrobineae Bacterium CW2P2_12B KC110409 1 100 -

Actinobacteridae Actinomycetales Microbacteriaceae Agrococcus sp. DoB22 JQ359093 1 100 -

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium

greenlandense Hb1

JF899297 1 98 LC006871
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Table 3 Lists of bacteria found in symbiotic Daphnia.

Phylum Class Order Family Bacteria Accession
number

Clones %Similarity Accession number
registered in this study

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Alpha proteobacterium
4520-27F

FR648027 1 100 -

Bacterium CypR_69 JQ766928 2 100 -

Bacterium CLC8 HQ271262 1 100 -
Rhizobiales Rhizobiaceae Rhizobium grahamii NH18 KJ921045 2 100 -
Sphingomonadales Sphingomonadaceae Bacterium F1Q32TO06GY GU508284 1 97 LC006872

Bacterium OTU-263 KF411929 1 97 LC006873
Betaproteobacteria Burkholderiales Comamonadaceae Bacterium BB66 KF756603 1 100 -

Bacterium 9B-72 JX298776 1 99 LC006878
Beta proteobacterium 105T36 DQ110055 1 100 -
Bacterium C1Q DQ856516 6

1
97
95

LC006874
LC006875

Burkholderiales bacterium
RCPCd10

DQ922760 2 100 -

Aquabacterium sp.
PM5_-0.3-19

JQ177862 1 97 LC006877

Limnohabitans sp. 2KL-7 HE600663 38 100 -
Oxalobacteraceae Duganella sp. HME5 HQ829837 5 99 LC006876

Rhodocylales Rhodocyclaceae Bacterium WW1_LAB_F5 JQ413524 1 100 -
Gammaproteobacteria Pseudomonadales Pseudomonadaceae Bacterium Cyp1_93 JQ766608 1 100 -
Deltaproteobacteria Myxococcales Polyangiaceae Bacterium DGGE gel band T 21 EU684012 3 100 -

Bacteroidetes Flavobacteria Flavobacteriales Cryomorphaceae Bacterium PL1 AF298766 1 100 -
Flavobacteriaceae Bacterium 3C003625 EU802198 9 100 -

Sphingobacteria Sphingobacteriales Chitinophagaceae Bacteroidetes bacterium
CrystalBog2KG7

AY792294 1 100 -

Bacterium B-17 HQ860533 2 100 -
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2.4 Discussion

In this study, I generated aposymbiotic Daphnia to investigate the effect of

symbiotic bacteria on life-history traits in Daphnia magna. GA was used to disinfect

Daphnia as an alternative to the antibiotics that have previously been used to disinfect

Daphnia, despite their high toxicity (D’Agostino and Provasoli, 1970). GA is known to

have a broad spectrum of activity, rapid antimicrobial action and is highly active in the

presence of organic matter (Gorman et al. 1980; Salvesen et al. 1997).  The mechanism

of action of GA involves a strong binding with outer layers of bacterial cells, specifically

with unprotonated amines of proteins on the cell surface (Munton and Russell, 1973;

McDonnell and Russell, 1999). Furthermore, GA causes cross-linking of protein inside

the bacterial cell and leads to inhibit transport in bacteria (McDonnell and Russell, 1999),

to inhibit dehydrogenase activity (Munton and Russell, 1973) and periplasmic enzymes

(McDonnell and Russell, 1999), and to inhibit RNA, DNA, and protein synthesis

(McGucken and Woodside, 1973). Treatment of the Daphnia embryos with GA for 30

min was sufficient to remove bacteria from D. magna. In addition, the persistence of

bacteria-free conditions was confirmed during the culture by real-time 16S rRNA gene

PCR, suggesting that disinfection and axenic culture methods allowed me to accurately

evaluate the effects of symbiotic bacteria on Daphnia in this study.

The results suggest that the population dynamics of aposymbiotic and symbiotic

Daphnia differ. As Daphnia mortality during the experiments was limited, the difference

between the population sizes was mainly due to differences in fecundity. The smaller

population size of aposymbiotic Daphnia suggests that symbiotic bacteria play an

essential role in Daphnia fecundity and population growth. Our results support most

recent study with aposymbiotic Daphnia prepared by treatment of antibiotics mixtures to

embryos for 2 days, reporting that bacteria-free Daphnia were smaller and less fecund
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than Daphnia with microbiota (Sison-Mangus et al., 2014). In addition, a similar

phenomenon has also been observed in aposymbiotic insects, such as the wasp Asobara

tabida, the termite Zootermopsis angusticollis, and the aphid Acyrthosiphon pisum

(Douglas, 1992; Dedeine et al., 2001; Rosengaus et al., 2011).

Symbiotic bacteria in Daphnia may play a role in Daphnia nutrition by producing

enzymes and/or providing nutrients. Prokaryotic symbionts in the guts of termites are

considered to play important roles in host nutrition (Ohkuma, 2008), and previous studies

have shown that certain nutrients are important in Daphnia reproduction and growth. In D.

pulex, 2 essential amino acids (arginine and histidine) are necessary for inhibiting the

production of resting eggs, and increasing the production of asexual eggs (Fink et al.,

2011; Koch et al., 2011).  Growth and reproduction in D. galeata is limited by sterols

and polyunsaturated fatty acids (DeMott and Müller-Navarra, 1997; Wacker and von Elert

2001; von Elert et al. 2003).  In addition, vitamin B12 is required for normal

reproduction in D. pulex (Keating 1985). As a result it is probable that symbiotic bacteria

play nutritional roles in Daphnia by producing certain enzymes and/or by supplying

nutrients, such as essential amino acids or lipids, to their hosts (Guarner and Malagelada,

2003; Dillon and Dillon, 2004). Therefore, the results of this study may be useful for

further investigation of the symbiosis of Daphnia and bacteria.

No significant difference in longevity was observed between aposymbiotic and

symbiotic Daphnia. This may have been related to the mortality rate after the initial

treatment with GA. Several individuals died within 3 days after the treatment of GA, and

the p-value was 0.16. Although further detailed analysis is needed, it is possible that

aposymbiotic Daphnia have shorter longevity and lower fecundity than symbiotic

Daphnia.

I further investigated the symbiotic relationship between D. magna and bacteria
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by characterizing the bacterial community composition. The sequencing analysis of the

PCR products revealed that the majority of the bacteria present in Daphnia were

Limnohabitans sp. of the Betaproteobacteria class, which are usually found in freshwater

habitats (Kasalický et al., 2010; Šimek, Kasalický, Hornák, et al., 2010; Šimek et al.,

2011). This suggests that Limnohabitans sp. may be responsible for increasing fecundity

in D. magna. These results are consistent with those from previous studies (Qi et al.,

2009; Freese and Schink, 2011) suggesting that the symbiotic relationship between

Daphnia and bacteria is stable and widely conserved, irrespective of spatiotemporal

differences. In other words, our finding suggested the importance of widely distributed

bacteria for the maintenance of the ecosystems by supporting the population size of

zooplankton.

In order to investigate differences in life-history traits between aposymbiotic and

symbiotic Daphnia under the same culturing conditions, symbiotic Daphnia were also

cultured and maintained under aseptic conditions. However, this approach did not allow

any bacteria to further infect the host during the culture, consequently leading to a lower

abundance of symbiotic bacteria compared to normally cultured Daphnia. Therefore, it is

possible that the results may underestimate the effects of bacterial symbionts, and could

explain why the longevity of aposymbiotic Daphnia was not significantly different from

that of symbiotic Daphnia.

2.5 Summary

In this chapter, I characterized the role of symbiotic bacteria on ecologically

important life-history traits, such as population dynamics and longevity, in D. magna. By

disinfection of the Daphnia embryos with glutaraldehyde, aposymbiotic Daphnia were

prepared and cultured under bacteria-free conditions. Removal of bacteria from the
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Daphnia was monitored by qPCR for bacterial 16S rRNA genes. The population of

aposymbiotic Daphnia was reduced 10-folds compared to that of the symbiotic Daphnia.

Importantly, re-infection with symbiotic bacteria caused Daphnia to regain bacteria and

increase their fecundity to the level of the symbiotic Daphnia, suggesting that symbiotic

bacteria regulate Daphnia fecundity. To identify the species of symbiotic bacteria, 16S

rRNA genes of bacteria in Daphnia were sequenced. This revealed that 50% of sequences

belonged to the Limnohabitans sp. of the Betaproteobacteria class and that the diversity

of bacterial taxa was relatively low. I suggest that symbiotic bacteria have a beneficial

effect on D. magna, and that aposymbiotic Daphnia are useful tools in understanding the

role of symbiotic bacteria in the environmental responses and evolution of their hosts.
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Chapter 3

Role of Limnohabitans, a dominant bacterium on D. magna’s

life history traits

3.1 Introduction

In aquatic ecosystems, bacteria and zooplankton have been treated as

separate functional units in aquatic food webs (Tang et al., 2010). Aquatic

bacteria have individually been treated as free-living bacteria in studies

observing their functions. Studies of zooplanktons have tended to focus on

morphology, physiology, and interaction between them and their prey or

predators. Since the finding of the “microbial loop” (Figure 8), bacteria and

zooplankton have been regarded to be indirectly connected via nutrient cycling

and trophic cascades (Azam and Malfatti, 2007). Aquatic bacteria utilize

dissolved organic matter that is released from phytoplankton and are grazed by

zooplankton, which means some energy from the microbial loop are returned to

the conventional planktonic food chain (phytoplankton – zooplankton – fish

links) (Azam et al., 1983). Nevertheless, the direct functional connection

between zooplankton and aquatic bacteria remains largely unknown.
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Figure 8 Microbial loop. The diagram depicts of the microbial loop. Organisms involving in the

microbial loop including dissolved organic matters (DOMs) are bacteria, phytoplankton, protozoa, and

zooplankton. The pathway is started from phytoplanktons fix carbon by photosynthesis and release

DOMs (e.g. proteins, carbohydrates lipids and nucleic acids) to the aquatic habitats, then DOMs are

utilized as a food source for bacteria. Bacteria are grazed by protozoan and transfer energy to

zooplankton and the higher trophic level by consumptions. The DOMs are recycled back into the

system as various organisms of all trophic levels die off and they are decomposed by bacteria or the

other decomposers.
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Recently, some quantitative studies revealed the bacterial abundance per unit of

zooplankton body volume is between 107 and 1011 cells/ ml, which is higher than in the

surrounding water (Hansen and Bech, 1996; Olsen et al., 2000; Heidelberg et al., 2002;

Tang, 2005; Tang et al., 2010) , because the exoskeleton and gut lining of zooplankton

provide suitable surfaces for bacterial attachment and enrich organic matters that support

bacterial growth (Carman and Dobbs, 1997). In addition, intestinal bacteria of

zooplankton, such as, Homarus vulgaris, Hirondellea sp., Caprella kroyeri and Eucalanus

bungii, have been observed by SEM (Egidius, 1972; Schwarz et al., 1976; Nagasawa and

Nemoto, 1988).

The crustacean zooplankton Daphnia is a keystone species in freshwater

throughout the world. Sequencing of Daphnia’s symbiotic bacteria in Chapter 2 revealed

that Betaproteobacteria is a major group of the microbial communities with the dominant

bacterium being Limnohabitans, which is consistent with previous studies (Qi et al.,

2009; Freese and Schink, 2011). Interestingly, Limnohabitans is an abundant and

important member of freshwater bacterioplankton, inhabiting a broad range of freshwater

habitats worldwide (Hahn et al., 2010; Kasalický et al., 2010, 2013) and maintaining

growth and species diversity of bacterial communities (Šimek et al., 2011; Horňák and

Corno, 2012). Limnohabitans planktonicus located on the filter combs of Daphnia as

epibionts play important roles for the transfer of dissolved organic carbon to higher

trophic levels in freshwater food webs (Eckert and Pernthaler, 2014).

To study symbiotic relationships between microbiota and Daphnia, I developed a

method to prepare aposymbiotic Daphnia by treatment with sanitized reagents and found

that microbial communities increase population size of aposymbiotic D. magna (see

Chapter 2). In this chapter, I aimed to study the role of a major symbiotic bacterium,

Limnohabitans, on D. magna life history traits by reinfection of aposymbiotic Daphnia.
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3.2 Materials and Methods

3.2.1 Daphnia strain and culture condition

Daphnia magna strain NIES was obtained from the National Institute for

Environmental Studies (NIES, Tsukuba, Japan). A single genetic clone of D. magna was

isolated and has been subcultured parthenogenetically for more than 5 years. Eighty

Daphnia were reared in 5 L of artificial Daphnia medium (ADaM) (Kluttgen et al., 1994)

at 23 ± 1°C under a 16-h light/8-h dark photoperiod. In the first week, 5 × 108 cells of

Chlorella sp. were added daily, and thereafter, 1 × 109 cells were added daily.

3.2.2 Strains of bacteria and preparartion of bacterial suspension

Four Limnohabitans strains, 2KL-7, 2KL-3 (Kasalický et al., 2013), DM1 (V.

Kasalický, unpublished), and L. planktonicus II-D5 (Kasalický et al., 2010) were used in

this study. Each Limnohabitans was cultured in 50 ml of NSY medium (Hahn et al., 2004)

for 2 days until logarithmic phase (OD590 = 0.40). Escherichia coli strain XL-10 Gold

(Agilent technologies, USA) was grown until the logarithmic phase (OD590 = 1.00) in

NSY. Each bacterium was collected by centrifugation at 6000 rpm for 5 min, and washed

twice with filtered M4 media (Elendt and Bias, 1990) that were sterilized by filtration

with a 0.2-µm filter, which were named “filtered M4 media” in this study (Corning-500

mL filter system, Corning, NY, USA). Each pellet was resuspended in filtered M4 media

to adjust OD590 of each cell suspension to 1.72-1.82 for single reinfection experiments

and to 1.56-1.64 for multiple reinfection experiments with calorimeter (WPA CO7500

colorimeter, WPA, Cambridge, UK). In order to prepare crude extract of Daphnia, 10

Daphnia were homogenized in 500 μl of filtered M4 media and then incubated for 5 min

at room temperature.
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3.2.3 Axenic Chlorella

Chlorella vulgaris Beijerinck was obtained from the National Institute for

Environmental Studies (NIES, Tsukuba, Japan), inoculated in sterilized MAM medium

(0.0025% CaCl2, 0.0075% MgSO4, 0.0025% NaCl, 0.01% KNO3, 0.025% NH4NO3,

0.2% casamino acids, 0.05% yeast extract, and 0.05% malt extract), and incubated while

being shaken at 23°C and under a 16-h light/8-h dark photoperiod for 5 d. The cells were

then collected, washed twice, and resuspended in filtered M4 media and stored at 4°C.

The 108 cells of axenic Chlorella were used for bacterial screening.

3.2.4 Preparation of aposymbiotic Daphnia

Adult Daphnia were dissected to separate embryos from brood chambers.

Collected embryos were divided into two groups for preparation of aposymbiotic and

symbiotic Daphnia. For preparing aposymbiotic Daphnia, the embryos were exposed to

0.25% glutaraldehyde (GA) for 30 min to eliminate coexistent bacteria on the chorion and

washed twice with filtered M4 media as described previously in Chapter 2. These

GA-treated embryos were incubated in 2 ml of filtered M4 media in a 6-well plate at

23°C and under a 16-h light/8-h dark photoperiod for 48 h.

3.2.5 Single exposure of aposymbiotic Daphnia to a single strain bacterium

Four aposymbiotic juvenile Daphnia were transferred into each well of a 24-well

plate containing 2 ml of filtered M4 media. For inoculation of Limnohabitans strains

2KL-7, 2KL-3, DM1 and L. planktonicus II-D5, 200 μl of each bacterial suspension was

added in aposymbiotic Daphnia culture on the first day (day 1). Twenty microliters of

crude extract containing Daphnia microbiota and 200 μl of E. coli were inoculated as

infectant positive and negative controls, respectively. All groups were reared aseptically at
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23 ± 1°C under a 16-h light/8-h dark photoperiod, fed every second day with 3 × 107 cells

of axenic Chlorella for 1 week, and thereafter with 6 × 107 cells. Four GA-untreated

symbiotic Daphnia were cultured under the same condition. At least one Daphnia in each

well was used for bacterial screening.

3.2.6 Multiple exposures of aposymbiotic Daphnia to a single strain bacterium

Four aposymbiotic juvenile Daphnia were aseptically transferred and fed into

each well of a 24-well plate in the same manner as single reinfection. For inoculation of

Limnohabitans strains 2KL-7, 2KL-3, 200 μl of each bacterial suspension was added in

culture of aposymbiotic Daphnia every second day. Twenty microliters of crude extract

containing Daphnia microbiota and 200 μl of E. coli were inoculated as infectant positive

and negative controls, respectively. Four GA-untreated symbiotic Daphnia were cultured

under the same condition. One Daphnia in each well was used for bacterial screening.

3.2.7 Phenotypic analyses of reinfected Daphnia

For counting the number of juveniles per individual, the ovulated Daphnia were

separated individually into a well of a new 24-well plate and cultured until the juveniles

swam out from the brood chambers. For counting the number of eggs per individual,

Daphnia were dissected after they laid parthenogenetic eggs in the brood chambers. For

measurement of growth rate, the body length of Daphnia was measured day 1 and day 9

(Anderson, 1932).

3.2.8 Screening of bacterial 16S rDNA in Daphnia and Chlorella by quantitative

polymerase chain reaction (qPCR) and sequencing.

Daphnia and Chlorella DNAs were extracted using a standard protocol for
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Drosophila (Huang et al., 2000). First, Daphnia and Chlorella were homogenized in a

solution of 200 μl Buffer A (100 mM Tris-HCl, 100 mM ethylenediaminetetraacetic acid

[EDTA], 100 mM NaCl and 0.5% sodium dodecyl sulfate [SDS], pH 7.5) in a 1.5-ml tube

and incubated at 65°C for 30 min. Second, the homogenate was mixed with 400 μl of

LiCl/KAc solution (5 M potassium acetate: 6 M lithium chloride = 1:2.5), incubated on

ice for 10 min and centrifuged for 15 min at 15,000 rpm. Third, 500 μl of the supernatant

was transferred to a new tube, mixed with 300 μl isopropanol and centrifuged for 15 min

at 15,000 rpm. Finally, the supernatant was removed and the precipitate was washed with

70% ethanol, dried, and resuspended in 50 µl of MilliQ, after which estimation of the

copy number of 16S rRNA genes and sequencing were conducted.

qPCR of bacterial 16S rRNA genes was performed using a qPCR machine

(MX3005P, Stratagene, CA, USA) and SYBR GreenER qPCR SuperMix Universal

(Invitrogen). PCR amplifications were performed using primer set (forward primer

5’-AGACACGGTCCAGACTCCTAC-3’ and reverse primer

5’-TTTACGGCGTGGACTACCAG-3’) under the following conditions: 2 min at 95°C

followed by 40 two-temperature cycles (15 s at 95°C and 1 min at 60°C). The detection

limit was 50 copies of 16S rRNA genes.

To confirm the presence of Limnohabitans in reinfected Daphnia, intergenic

spacer regions between 16S rRNA and 23S rRNA genes (IGS) of Limnohabitans strain

DM1 and L. planktonicus II-D5 were amplified using primer set (1406F

(5’-TGYACACACACCGCCCGT-3’) and 23Sr (5’-GGGTTBCCCCATTCRG-3’)

(Kasalický et al., 2013)) and using 1F (5’-CACATGCAAGTCGAACGGTAG-3’) and

586R (5’-TGCAGTCACAAAGGCAGTTC-3’) to distinguish between Limnohabitans

2KL-7 and 2KL-3. After PCR amplification, the PCR products were purified, cloned into

a pCR4-TOPO vector (Invitrogen), sequenced, and aligned with the DNA sequence from
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each Limnohabitans.

3.2.9 Statistical analyses

All data are presented as means ± standard error (SE). Data of time of

reproductive maturation and number of first clutch juveniles per individual were tested

with Kruskal–Wallis followed by a Mann-Whitney U test for comparison of means. Data

of growth rate and number of eggs per individual were tested with one-way ANOVA

followed by Tukey’s honestly significant difference test at α = 0.05 using the R statistical

program R 3.0.1 (The R Core Team, 2013).

3.3 Results

3.3.1 Development of methods for reinfection of single Limnohabitans species to

aposymbiotic Daphnia

To examine the role of Limnohabitans sp. in Daphnia, I developed methods for

reinfection of single strain of Limnohabitans to aposymbiotic Daphnia, which were

prepared by treatment of glutaraldehyde (GA) to embryos as described previously in

Chapter 2. As infectants, I chose four Limnohabitans strains DM1, 2KL-3, 2KL-7 and L.

planktonicus, all of which were found in the digestive tract of Daphnia, D. magna culture,

or both (Qi et al., 2009; Freese and Schink, 2011, V. Kasalický, unpublished). E. coli and

crude extracts of adult Daphnia containing the symbiotic bacteria were used as infectant

negative and positive controls.

At first instar juvenile stage, aposymbiotic Daphnia were exposed to each single

bacterial strain or crude extract. The exposed Daphnia were cultured without further

addition of the bacterium to the culturing medium. In parallel with culture of the exposed
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Daphnia, GA-treated aposymbiotic and GA-untreated symbiotic Daphnia were cultured.

Until producing first clutch juveniles, all of the Daphnia were aseptically cultured to

prevent bacterial contamination from the surrounding environment.

To investigate whether inoculated bacterial strain coexisted with Daphnia or not,

I extracted DNA from the exposed Daphnia at the end of all experiments, and performed

qPCR of bacterial 16S rRNA genes. The estimated copy numbers of bacterial 16S rRNA

genes were lower than the detection limit (<50 copies of 16S rRNA genes/daphniid),

whereas the symbiotic Daphnia were found to have 3.53 ± 1.05 × 104 copies per

individual. Daphnia exposed to any of Limnohabitans DM1, L. planktonicus II-D5, E.

coli and crude extracts had similar copy numbers of bacterial 16S rRNA genes as the

symbiotic Daphnia. In contrast, Daphnia exposed to either of Limnohabitans strains

2KL-7 and 2KL-3 were not detected 16S rRNA genes (Table 1).

Since single exposure was not sufficient for reinfection by Limnohabitans strains

2KL-7 and 2KL-3, I tried to increase the number of times of exposure. In addition to the

exposure of aposymbiotic Daphnia at first juvenile instar stage, each bacterium was

added to the culturing medium every second day until they produced first clutch juveniles.

This multiple exposure enabled us to detect bacterial 16S rDNA in both of the exposed

Daphnia (Table 2).

Finally, by sequencing of the intergenic spacer region of rDNA, I confirmed that

each exposed Daphnia had inoculated Limnohabitans strain (data not shown), which

meant that methods of reinfection by each Limnohabitans species were successfully

developed. These methods were applied to phenotypic analyses of Daphnia for each

Limnohabitans species.
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Table 1 Copy number of 16S rDNA in Daphnia reinfected with bacteria by single exposure

Treatments Copy number of 16S rDNA/ Daphnia

AD* (n=31) ND**

AD+crude extract (n=16) 3.59±2.37 x 104

AD+Limnohabitans DM1 (n=11) 1.47±0.53 x 104

AD+L. planktonicus II-D5 (n=11) 9.19±1.77 x 103

AD+Limnohabitans 2KL-7 (n=3) ND

AD+Limnohabitans 2KL-3 (n=3) ND

AD+E. coli XL 10-Gold (n=12) 3.16±1.08 x 105

GA-untreated symbiotic Daphnia (n=23) 3.53±1.05 x 104

*AD: Aposymbiotic Daphnia.

**ND: Copy number of 16S rDNA was under detection limit (<50 copies).

Table 2 Copy number of 16S rDNA in Daphnia reinfected with bacteria by multiple exposures

Treatments Copy number of 16S rDNA/ Daphnia

AD* (n=3) ND**

AD+crude extract (n=3) 1.98±0.61 x 104

AD+Limnohabitans 2KL-7 (n=3) 3.00±0.39 x 103

AD+Limnohabitans 2KL-3 (n=3) 5.57±1.94 x 104

AD+E. coli XL 10-Gold (n=3) 2.47±0.03 x 105

GA-untreated symbiotic Daphnia (n=3) 1.12±0.32 x 104

*AD: Aposymbiotic Daphnia.

**ND: Copy number of 16S rDNA was under detection limit (<50 copies).
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3.3.2 Limnohabitans species can recover fecundity of Daphnia

The study in Chapter 2 found that symbiotic bacteria contribute to increased

population size of Daphnia. I first characterized the role of Limnohabitans sp. on

Daphnia fecundity by comparing the number of juveniles produced by the reinfected

Daphnia with that produced by aposymbiotic Daphnia in their first clutches. Consistent

with finding in Chapter 2, the number of juveniles produced by aposymbiotic Daphnia

decreased 2-fold compared to wild-type Daphnia (Figure 9). Importantly I also found that

aposymbiotic Daphnia produced abnormal juveniles unable to swim normally and that

died during first instar juvenile stage, which were defined as “nonviable juvenile” in this

study.

Daphnia with Limnohabitans strain DM1 or L. planktonicus II-D5 produced

similar numbers of juveniles as GA-untreated symbiotic Daphnia (Figure 9). In contrast,

Daphnia reinfected with any of Limnohabitans strains 2KL-7, 2KL-3 and E. coli

produced nonviable juveniles as well as aposymbiotic Daphnia, which led to a reduction

in number of juveniles produced in the first clutch (Figure 10). To test the possibility that

the multiple exposures conferred an adverse effect on fecundity of Daphnia, I performed

multiple exposures of GA-untreated symbiotic Daphnia to each bacterium and counted

the number of juveniles. However, I found no decrease of fecundity in the Daphnia

exposed to each bacterium (Figure 11). These results suggested that fecundity of

aposymbiotic Daphnia could be recovered by reinfection of both Limnohabitans DM1

and L. planktonicus II-D5.



45

Figure 9 Fecundity of Daphnia reinfected with Limnohabitans strain DM1 and L. planktonicus by

single exposure. Each bacterium or crude extract of Daphnia were inoculated at first instar juvenile

stage. The number of juveniles in Daphnia was counted in their first clutch. Aposymbiotic Daphnia

(aposymbiotic, n = 4 individuals per treatment, 24 replicates); aposymbiotic Daphnia reinfected with

crude extract (bacteria exposed + crude, n = 4 individuals per treatment, 9 replicates), Limnohabitans

strain DM1 (bacteria exposed + DM1, n = 4 individuals per treatment, 6 replicates), L. planktonicus

strain II-D5 (bacteria exposed + II-D5, n = 4 individuals per treatment, 6 replicates) and E. coli

(bacteria exposed + E. coli, n = 4 individuals per treatment, 6 replicates); and GA-untreated symbiotic

Daphnia (symbiotic, n = 4 individuals per treatment, 18 replicates). Different letters above the bars

indicate significant differences between treatments (Mann-Whitney U test, p<0.05)

Apo-
symbiotic

Symbiotic

Bacteria-exposed

Crude E. coliDM1 II-D5
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Figure 10 Fecundity of Daphnia reinfected with Limnohabitans strains 2KL-7 and 2KL-3 by

multiple exposures. Each bacterium or crude extract of Daphnia were inoculated every second day

after first instar juvenile stage. The number of juveniles in Daphnia was counted in their first clutch.

Aposymbiotic Daphnia (aposymbiotic, n = 4 individuals per treatment, 3 replicates); aposymbiotic

Daphnia reinfected with crude extract bacteria-exposed, crude, n = 4 individuals per treatment, 3

replicates), Limnohabitans strain 2KL-7 (bacteria-exposed, 2KL-7, n = 4 individuals per treatment, 3

replicates), Limnohabitans strain 2KL-3 (bacteria-exposed, 2KL-3, n = 4 individuals per treatment, 3

replicates) and E. coli (bacteria-exposed, E. coli, n = 4 individuals per treatment, 3 replicates);

GA-untreated symbiotic Daphnia (symbiotic, n = 4 individuals per treatment, 3 replicates). Different

letters above the bars indicate significant differences between treatments (Mann-Whitney U test, p <

0.005).

Apo-
symbiotic

Symbiotic

Bacteria-exposed

Crude E. coli2KL-7 2KL-3
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Figure 11 Effect of multiple exposures on fecundity of symbiotic (GA-untreated) Daphnia. Each

bacterium or crude extract of Daphnia were inoculated at first instar juvenile stage. Each

bacterium or crude extract of Daphnia were inoculated at first instar juvenile stage. The number of

juveniles in Daphnia was counted in their first clutch. GA-untreated symbiotic Daphnia

(GA-untreated, n = 4 individuals per treatment, 3 replicates); symbiotic Daphnia exposed to crude

extract (bacteria-exposed, crude, n = 4 individuals per treatment, 3 replicates), Limnohabitans strain

2KL-7 (bacteria-exposed, 2KL-7, n = 4 individuals per treatment, 3 replicates), Limnohabitans strain

2KL-3 (bacteria-exposed, 2KL-3, n = 4 individuals per treatment, 3 replicates) and E. coli

(bacteria-exposed, E. coli, n = 4 individuals per treatment, 3 replicates). There was no significant

difference between groups (Kruskal-Wallis test, p > 0.05).

3.3.3 Limnohabitans sp. prevents the production of nonviable juvenile in Daphnia

Lethality of offspring produced by aposymbiotic Daphnia provided us a

hypothesis that Limnohabitans sp. increases fecundity of Daphnia by preventing the

production of nonviable juveniles rather than increasing egg production. To confirm this

hypothesis, I first counted the number of first clutch eggs of GA-treated aposymbiotic and

GA-untreated symbiotic Daphnia and found no difference in number of eggs between

GA-
untreated

Bacteria-exposed

Crude E. coli2KL-7 2KL-3
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aposymbiotic and symbiotic Daphnia (Figure 12). I also confirmed that Daphnia

reinfected with Limnohabitans sp. had similar numbers of first clutch eggs as the

symbiotic Daphnia. Only through exposure to crude extracts did the reinfected Daphnia

increase egg production. These data supported the hypothesis of a role of Limnohabitans

strains on fecundity of Daphnia.

Figure 12 Egg production of Daphnia reinfected with Limnohabitans strain DM1 and L.

planktonicus by single exposure. Each bacterium or crude extract of Daphnia were inoculated at first

instar juvenile stage. The number of eggs in Daphnia was counted in their first clutch. Aposymbiotic

Daphnia (aposymbiotic, n = 3 individuals per treatment, 3 replicates); aposymbiotic Daphnia

reinfected with crude extract (bacteria-exposed, crude, n = 3 individuals per treatment, 3 replicates),

Limnohabitans strain DM1 (bacteria-exposed, DM1, n = 3 individuals per treatment, 3 replicates), L.

planktonicus strain II-D5 (bacteria-exposed, II-D5, n = 3 individuals per treatment, 3 replicates) and E.

coli (bacteria-exposed, E. coli, n = 3 individuals per treatment, 3 replicates); and GA-untreated

symbiotic Daphnia (symbiotic, n = 3 individuals per treatment, 3 replicates). Different letters above

the bars indicate significant differences between treatments (Tukey’s HSD test, p < 0.05).

Bacteria-exposed

Apo-
symbiotic

SymbioticCrude E. coliDM1 II-D5



49

3.3.4 Limnohabitans does not affect to growth rate of Daphnia

Because change of growth rate can also affect population size of Daphnia, I investigated

the growth rates of GA-treated aposymbiotic Daphnia, GA-untreated symbiotic Daphnia

and Daphnia reinfected with one of Limnohabitans DM1, L. planktonicus II-D5, or crude

extract. Growth rates of Daphnia in all reinfections were not significantly different when

compared with wild type Daphnia (Figure 13), suggesting the possibility that symbiotic

Daphnia including Limnohabitans DM1 and L. planktonicus II-D5 did not concern the

growth of Daphnia.

Figure 13 Growth rate of Daphnia reinfected with Limnohabitans strain DM1 and L.

planktonicus by single exposure. Each bacterium or crude extract of Daphnia were inoculated at first

instar juvenile stage. The number of eggs in Daphnia was counted in their first clutch. Aposymbiotic

Daphnia (aposymbiotic, n = 3 individuals per treatment, 4 replicates); aposymbiotic Daphnia

reinfected with crude extract (bacteria-exposed, crude, n = 3 individuals per treatment, 4 replicates),

Limnohabitans strain DM1 (bacteria-exposed, DM1, n = 3 individuals per treatment, 2 replicates), L.

planktonicus strain II-D5 (AD + II-D5, n = 3 individuals per treatment, 2 replicates) and E. coli

(bacteria-exposed, E. coli, n = 3 individuals per treatment, 3 replicates); and GA-untreated symbiotic

Bacteria-exposed

Apo-
symbiotic

SymbioticCrude E. coliDM1 II-D5
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Daphnia (symbiotic, n = 3 individuals per treatment, 2 replicates). There was no significant difference

between groups (one-way ANOVA, p > 0.05).

3.4 Discussion

Here I first report the symbiotic relationship between D. magna and their major

symbiont, Limnohabitans sp. Four strains of Limnohabitans sp. were used for reinfection

by a single bacterial strain in order to investigate the role of Limnohabitans on Daphnia

fecundity and growth. Recently, methods to prepare aposymbiotic Daphnia using the

crosslinking reagent glutaraldehyde have been established and effects of the microbiota

on D. magna’s life history traits were observed in Chapter 2. The results in this study

suggested that Limnohabitans strain DM1 and L. planktonicus II D-5 are symbionts

necessary for increasing fecundity of their host D. magna.

In this study, I found that Daphnia reinfected with Limnohabitans strain DM1

and L. planktonicus II-D5 produced more numbers of viable juveniles than that by

aposymbiotic Daphnia. These strains may produce useful enzymes for digestion in

Daphnia’s gut, increasing production of nutrients incorporated into parthenogenetic eggs

during development of oocytes and leading to increased numbers of viable Daphnia

juveniles. Previous studies revealed that certain nutrients are important in Daphnia

reproduction. Arginine and histidine, essential amino acids, are necessary for production

of asexual eggs and inhibition of resting eggs production (Fink et al., 2011; Koch et al.,

2011). Sterols and polyunsaturated fatty acids are also considered essential nutrients for

reproduction in D. galeata and D. magna (Demott and Muller-Navarra, 1997; Wacker and

von Elert, 2001; von Elert et al., 2003; Martin-Creuzburg et al., 2006; Freese and

Martin-Creuzburg, 2013). D. magna can assimilate fatty acids from some methanotrophic

bacteria, Methylomonas methanica and Methylosinus trichosporium (Taipale et al., 2012).
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Vitamin B12 is also required for normal reproduction in D. pulex (Keating, 1985).

Symbiotic bacteria might mediate syntheses of these nutrients necessary for Daphnia

reproduction.

Limnohabitans strains 2KL-7 and 2KL-3 could not recover Daphnia fecundity

although Limnohabitans strains 2KL-7 was a major symbiont of D. magna NIES strain

used in this study. Limnohabitans strains 2KL-7 and 2KL-3 are known to belong to the

same sublineage of Limnohabitans sp. named LimC6 (Kasalický et al., 2013).

Aposymbiotic Daphnia exposed to crude extracts of D. magna NIES strain containing

Limnohabitans strain 2KL-7 recovered their fecundity. Therefore, LimC6 might function

in collaboration with other bacteria or associate with Daphnia without providing any

benefit to the host, in contrast to Limnohabitans strain DM1 and L. planktonicus II-D5,

both belonging to a different sublineage (Kasalický et al., 2013).

Symbiotic bacteria did not seem to affect the growth rate of Daphnia, in contrast

to a previous study (Sison-Mangus et al., 2014). This contradiction might be due to

difference of algae between the two studies. It is possible that some nutrients in

Scenedesmus might be degraded by autoclave in the previous study and the nutrients of

Chlorella we used might be sufficient for the growth of Daphnia, preventing us from

observing positive effects of symbiotic bacteria on their growth.

3.5 Summary

In this chapter, I investigated symbiosis between a crustacean zooplankton

Daphnia magna and its dominant bacterial symbiont Limnohabitans, an abundant and

globally distributed freshwater Betaproteobacteria. Aposymbiotic juvenile Daphnia were

prepared and exposed to any of four Limnohabitans sp.—Limnohabitans strains DM1,

2KL-3, 2KL-7, and Limnohabitans planktonicus strain II-D5, all previously found in D.
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magna digestive tract or culture. Reinfected Daphnia were cultured until they produced

the first clutch of juveniles. Limnohabitans strain DM1 and L. planktonicus strain II-D5

successfully reinfected Daphnia through single exposure at the first instar juvenile stage.

In contrast to aposymbiotic Daphnia that produced non-viable juveniles, reinfected

Daphnia produced viable juveniles and increased fecundity to levels of that of symbiotic

Daphnia. Reinfected Daphnia did not increase their number of eggs nor growth rates.

Limnohabitans strains 2KL-7 and 2KL-3 could not recover fecundity even in multiple

exposures during culture. This study shows the functional evidence demonstrating that a

single bacterium Limnohabitans regulates fecundity of the consumer Daphnia through

symbiosis. The results indicated that symbiotic relationship between major

bacterioplankton and zooplankton is important for maintaining the population of

zooplankton and driving the trophic cascades in freshwater ecosystems.
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Chapter 4

General discussion and conclusion

This study aimed to study the symbiotic relationship between primary consumer

Daphnia and bacteria. First, I established a novel method for preparation of aposymbiotic

Daphnia by exposure of GA, which is capable to eliminate bacteria on the surface of

early-stage Daphnia embryos. The aposymbiotic Daphnia is a useful tool to allow me to

clarify the role of symbiotic bacteria on Daphnia’s life history traits; longevity and

population size. The results suggest that symbiotic bacteria are important to regulate

population size of Daphnia. However, the difference of mean longevity between

aposymbiotic and symbiotic were not statistically observed. Subsequently, I investigated

microbial community composition in Daphnia body and found that the majority of

microbiota was Betaproteobacteria and a dominant genus of Betaproteobacteria is

Limnohabitans. In order to characterize the role of the dominant bacterium on

ecologically important life history traits of Daphnia; fecundity and growth rate, the

reinfection of aposymbiotic Daphnia with Limnohabitans strain was performed. The

results suggest that fecundity of Daphnia magna is enhanced by Limnohabitans strain

DM1 or Limnohabitans planktonicus II-D5. These microbial symbionts may play a

nutritional role in their host by producing some necessary nutrients or enzyme to digest

algae, which allows Daphnia to utilize the nutrients for their fecundity (Guarner and

Malagelada, 2003; Dillon and Dillon, 2004; Ohkuma, 2008).

The effect of symbiotic bacteria on reproduction is not limited in Daphnia.

Previous studies revealed the function of symbiotic bacteria is enhancing fecundity of
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their host insects (Douglas, 1992; Dedeine et al., 2001; Kikuchi et al., 2007; Ben-Yosef et

al., 2008; Rosengaus et al., 2011; Kikuchi and Fukatsu, 2014). Intestinal bacteria

stimulate the larval development and survival in common fly (Calliphora vomitoria)

(Wollman, 1911; Erkosar et al., 2013). In addition, Lactobacillus plantarum is directly

responsible for microbiota-mediated mating phenotype of Drosophila melanogaster

(Sharon et al., 2010). The human gut microflora provide benefit to human health

involving nutritional and immune functions (Hooper and Gordon, 2001; Binn, 2013). The

probiotic activity results in the production of the short chain fatty acids (SCFA) acetic,

propionic acid, butyric acid and lactic acid. SCFA are absorbed to enhance the uptake of

water and salts, and used as a source of energy by the host. Butyric acid is also the major

source of energy of the epithelial cells lining the colon and can impact cell growth and

differentiation (Binn, 2013). These suggest that function of symbiotic bacteria as

maintenance of host population by modulating the life history traits of their hosts is

conserved among animal species.

Interestingly, the results in Chapter 3 showed that Limnohabitans strain DM1 and

L. planktonicus strain II-D5 could regulate fecundity of Daphnia and induce Daphnia to

produce more viable juveniles, while Limnohabitans strain 2KL-7 and 2KL-3 could not

recover Daphnia fecundity although Limnohabitans strains 2KL-7 was a major symbiont

of D. magna NIES strain used in this study. Limnohabitans strains 2KL-7 and 2KL-3 are

belonging to the same sublineage namely LimC6 (Figure 14). Aposymbiotic Daphnia

exposed to Daphnia crude extracts containing Limnohabitans strain 2KL-7 recovered

their fecundity. Therefore, LimC6 might function in collaboration with the other

symbiotic bacteria or associate with Daphnia as a commensal without providing any

benefit to the host. In contrast, Limnohabitans strain DM1 and L. planktonicus II-D5 are

belonging to a different sublineage (Kasalický et al., 2013).
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Figure 14 Phylogenetic tree of Limnohabitans genus based on 40 isolated strains (Kasalický et al.,

2013). The simplified phylogeny schema was built on analyses of 16S rRNA gene and intergenic

spacer regions between 16S rRNA and 23S rRNA genes (IGS) sequences. The phylogeny depicts L.

planktonicus strain II-D5 belongs to LimC1 sublineage, while Limnohabitans strain 2KL-7 and 2KL-3

belong to sublineage LimC6.

One of the reasons for the different roles between Linmonhabitans species in

increasing fecundity of Daphnia may be that the different sublineages of Limnohabitans

may have different metabolisms resulting in different function and relationship with

Daphnia. To prove this hypothesis, the analysis of metabolites in Limnohabitans is

necessary to predict nutrients affecting the fecundity of Daphnia. The candidate of
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essential nutrients that Limnohbitans produces should be subjected to aposymbiotic

Daphnia to confirm the effects of essential nutrients on Daphnia’s fecundity. Furthermore,

investigation of metabolic pathways of each strain of Limnohabitans should be performed

by genome sequencing to predict metabolic capabilities and mechanisms of

Limnohabitans by following to a method previously established in the other bacterial

species (Kwong et al., 2014), which uncover the factors that may describe the

enhancement of Daphnia’s fecundity. Another reason may be that the other bacteria

collaborate with Limnohabitans to enhance reproduction of Daphnia, hence, the

collaboration between Limnohabitans and other symbiotic bacteria in Daphnia should be

clarified.

Moreover, this study revealed the novel role of bacteria to regulate fecundity of

freshwater zooplankton in aquatic ecosystem. Previously, Limnohabitans sp. as members

of Betaproteobacteria are globally distributed and abundant in neutral and alkaline lakes

(Šimek, Kasalický, Jezbera, et al., 2010) and are known to contribute to carbon flow

within the grazer food chain (Šimek et al., 2014). This study indicates that Limnohabitans

could also function as a mediator of carbon transfer leading to increase fecundity of

Daphnia. This novel role also would contribute to carbon transfer to higher trophic levels

to maintain the food chain core due to Daphnia plays a central role in freshwater

ecosystems as a primary consumer (Figure 15). Eckert and Pernthaler (2014) found

another pathway of carbon transfer through symbiosis between Limnohabitans and

Daphnia where L. planktonicus function as epibionts attached on filter apparatus on the

freshwater zooplankton D. magna (Eckert and Pernthaler, 2014). A recent study also

showed that a single bacterial strain of Aeromonas sp. potentially increases body size of

aposymbiotic Daphnia (Sison-Mangus et al., 2014). These suggest that complex and

diverse symbiotic relationships between bacteria and Daphnia are required for ecosystem
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maintenance. These findings may become a clue to solve a fundamental problem in

ecology “How symbioses between bacteria and aquatic animals influence food webs in

freshwater ecosystems is a fundamental question in ecology”.

Figure 15 Carbon transfer pathway in freshwater ecosystem. Conventional concept of food chain

considers zooplankton to function as a primary consumer, which transfers carbon from producer to the

higher trophic level. In microbial loop, bacteria are decomposers and utilizers of dissolved organic

matters, which transfer carbon to zooplankton through protozoan. This study revealed the hidden role

of bacteria to regulate fecundity of zooplankton through symbiosis, in which zooplankton and bacteria

are considered in one unit and function to enhance fecundity of zooplankton leading to maintain the

food chain in freshwater ecosystem.
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organic carbon

bacteria
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Microbial loop

zooplankton

Fish

phytoplankton
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The further analyses are necessary to clarify the mechanisms of symbiosis in

Daphnia. First, localization of the interesting symbiotic bacteria in Daphnia by using

fluorescence in situ hybridization is necessary to clarify where bacteria function in

Daphnia body for regulating fecundity of Daphnia. Second, bacterial genomic analyses

or metabolic profiling in important symbiotic bacteria are important for prediction of

essential nutrients produced by bacterial symbionts. Third, single strain of symbiotic

bacteria should be isolated from Daphnia and the effects of minor symbiotic bacteria on

Daphnia’s fecundity also should be investigated because some minor bacteria may

collaborate with Limnohabitans and play an important role on Daphnia’s fecundity.

Fourth, since many approaches of molecular genetics in Daphnia are available, the

transcriptomics and proteomics involving reproduction of aposymbiotic Daphnia should

be compared with those of symbiotic Daphnia to understood how symbiotic bacteria

regulate Daphnia fecundity. Fifth, the candidate bacterial gene responsible for Daphnia

fecundity can be introduced into Daphnia to analyze its function by using recently

established genetic engineering tools. These analyses are needed to provide more

evidences to answer how symbiotic bacteria regulate fecundity of Daphnia.

Daphnia can be used as a model for study of symbiosis in aquatic invertebrate,

because diversity of symbionts in Daphnia is stable among species of Daphnia (Qi et al.,

2009; Freese and Schink, 2011). Because host-microbe interaction is known to be one of

factors driving host specificity and coevolution between bees and their gut symbionts

(Kwong et al., 2014), the stability of bacterial community in Daphnia might become a

model to study the host-microbe interaction and coevolution between hosts and

symbionts.

Aposymbiotic Daphnia allows us to clarify the functions of single bacterial

species on morphological, physiological, and behavioral effects of Daphnia. Furthermore,
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we can obtain the accurate functions of symbiotic bacteria in Daphnia, to estimate the

actual chemical resistance of the host (Kikuchi et al., 2012; P. Manakul, unpublished) and

to investigate immunity responses to parasite (Pan et al., 2012). Therefore, aposymbiotic

Daphnia developed in this study can be a useful tool to study in toxicology and immunity

in Daphnia.

Conclusions

In this study, I firstly established a method to prepare aposymbiotic Daphnia by

using glutaraldehyde. This method was simple, less time consuming and achieved high

survival rate of treated Daphnia. Aposymbiotic Daphnia is a useful tool to study the role

of symbiosis between Daphnia and their symbionts which is useful for further

understanding the host-microbe interaction in freshwater ecosystem. Furthermore, I

developed a method to reinfect D. magna with single strain of Limnohabitans and found a

function of symbiotic relationship between Daphnia and Limnohabitans for increasing

Daphnia fecundity and population size. These findings indicate a previously unidentified

symbiotic relationship between major bacterioplankton and zooplankton for driving

trophic cascade in freshwater ecosystems. Further analyses of the relationship between D.

magna and symbiotic bacteria will be necessary for understanding the structure of

freshwater ecosystem.
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