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Reaction dynamics of strange and charm hadron productions

by Sang-Ho Kim

Open strange and charm productions are considered to play a central role in unraveling

the features of hadrons which include not only the ground states but also various excited

states, so called exotic hadrons as well. These reactions give insights into the dynamics of

quarks and gluons. To make a close link with the underlying QCD, we need microscopic

descriptions for the reactions. In this thesis, we study the reaction mechanism of the

photon- and pion-induced strange and charm productions.

In the first part, we investigate the photoproductions of K∗Σ and K∗Λ off the nucleon

targets focusing on the role of N∗ and ∆∗ resonances. An effective Lagrangian model

is employed with hadronic degrees of freedom. Some PDG resonances are taken into

account in the s-channel diagram process in addition to other mesons and baryons of

ground states. The resonance parameters are determined by the PDG data if available,

otherwise by using the SU(6) quark model. We find that the role of resonances is different

from each other. In the K∗Σ process, higher resonances scarcely affect the total and

differential cross sections. Instead, certain higher resonances play a crucial role in the

K∗Λ process. However, in both cases, spin observables are more affected by resonances

rather than other background contributions, in general.

The structure and the interaction of charmed baryons are also important topics in hadron

physics. They have become even more interesting by the recent observation of the

pentaquark P+
c containing cc̄. In the second part, therefore, we study the production

of the most fundamental process, π−p → D∗−Yc, where Yc denotes a charmed baryon.

Pion-induced K∗Λ and D∗Λc productions off the nucleon targets are also investigated

with the effective Lagrangian and Regge models. Relying on the experimental data of

the K∗Λ process, the production rate of the D∗Λc one is estimated. This study gives an

important clue to the upcoming J-PARC experimental project.
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Chapter 1

Introduction

1.1 Hadron production reaction

Understanding various reaction mechanisms is very useful for investigating hadron prop-

erties. Many experimental facilities are becoming more sophisticated and refiend and

the electromagnetic- or hadron-beam energies are also increasing. Consequently, reac-

tions are gradually extended to the strange and charm hadron productions which are the

main issues of hadron physics nowdays. A theoretical description of reaction dynamics

is very important. Quantum Chromodynamics (QCD) is known to be the fundamental

theory of strong interactions in the standard model. But the analysis in the low-energy

regime has difficulty because of its nonperturbative property, despite the success at high

energies. Thus various effective models are essentially needed to gain a clear insight

into the structures and features of hadrons with hadronic degrees of freedom instead of

guarks and gluons.

1.2 Strangeness productions

1.2.1 Nucleon resonances

Most of the evidence and features of nucleon resonances are derived from the partial-wave

analyses of pion-induced meson productions (πN → πN, ηN etc) and photon-induced

pion production (γN → πN) [1]. The information about the nucleon resonances which

lie below 1.8 GeV is well organized since there have been a lot of studies both theoretically

and experimentally. In comparison with this low energy region, relatively higher energy

regions still need a tremendous task. Examining the resonance properties mostly with

the πN channel meets a limitation. Recently, two nucleon resonances N(2300) and

1
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N(2570) are found in the decay of ψ(3686) → pp̄π0 [2]. Although such an experiment

from the charm sector helps us to confirm some resonances, it rarely happens. Therefore,

studying alternative reactions is attracting a lot of interest.

channel threthold channel threthold

(a)KY KΛ(1116) 1.61 (c)K∗Y K∗Λ(1116) 2.01
KΣ(1193) 1.69 K∗Σ(1193) 2.08

(b)KY ∗ KΛ∗(1405) 1.90 (d)K∗Y ∗ K∗Λ∗(1405) 2.30
KΛ∗(1520) 2.01 K∗Λ∗(1520) 2.41
KΣ∗(1385) 1.88 K∗Σ∗(1385) 2.28

Table 1.1: Strangeness reaction channels and their thresholds [GeV].

Open strangeness meson and baryon productions have been playing an important role

in resolving this problem. In Table. 1.1, the relevant channels and the corresponding

threshold energies are listed together. All these channels can be suitable candidates for

identifying the nucleon resonances higher than 1.8 GeV since their thretholds lie around

1.8 GeV or even larger than that energy.

To predict the resonance spectrum from the theoretical point of view, quark models are

employed. The constituent-quark model (CQM) [3–7] is mostly developed and widely

used. But in addition to the resonances confirmed in experiment, unobserved resonances

are anticipated and they are expected to couple weakly to the πN channel but strongly

to the kaon one. This so-called “missing resonances” problem is another important

motivation for investigating strangeness hadron productions. Existence of these missing

resonances remains to be proved and these processes will promote the validity of the

constituent-quark model.

The strangeness degree of freedom is added besides the light quark ones, which leads

one to use SU(3) symmetry rather than SU(2) as done in the pion production process.

In strangeness channels, the partial-wave analyses method could not be as powerful as

before since the background contribution begins to come into play more than the πN

channels.

1.2.2 Models of strangeness productions

Besides the abundant πN scattering data, many experimental data have been produced

from the strange sector recently, especially in the photon-induced reactions of meson-

baryon final states. Correspondingly, remarkable progress in theoretical analyses is made

also. The most studied among them is the KY channel. Based on the experimental



Chapter 1. Introduction 3

data [8–14], a lot of theoretical works have been carried out in the framework of tree-

level effective Lagrangians [15–19], Regge model [20–22], RPR (Regge-plus-Resonance)

model [23–25], and coupled-channel method [26–28].

An effective Lagrangian method considers a few single particle exchanges which are

mostly chosen to be ground state particles and thus describes the low energy regions

quite well. On the other hand, a Regge approach takes account of the exchange of whole

families of hadrons with all spins J . It leads one to extend the domain of energies of

applicability to high energies from the effective Lagrangian method. An RPR model

develops the standard Regge model since it incorporates N∗ or ∆∗ resonances in the s

channel in addition to the background contribution. In other words, because high ener-

gies are mostly described by the t-channel Regge background, the Regge parameters are

constrained by this region. Then low energy regions are supplemented by constructing s-

channel resonance exchanges. Because the background plays a crucial role in strangeness

production processes contrary to nonstrange ones, this model can be widely applied to

various reaction mechanisms.

1 2 4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

σ
 [

m
b
]

PLab
K* reggeon

resonance
   region

high-energy
    region

resonance + 
 background background

Figure 1.1: RPR model for the π−p→ K0Λ.

Figure 1.1 explains schematically how the RPR model can be applied. When considering

the π−p → K0Λ reaction, only K∗-reggeon exchange is allowed in the t channel. We

first fix the K∗-reggeon coupling to the high-energy data (PLab & 3 GeV/c). Then the

low energy region is filled with resonance terms besides the background contribution.

To understand a certain reaction process completely, we eventually need to reach a full

coupled-channel method. It incorporates the effect of all possible initial and final state

interactions.

The KY ∗ channel is also sudied extensively. This channel is even more interesting since

the threthold is larger than that of the KY channel, which lies near the 2 GeV. Thus

examining this channel would be a good opportunity to extract the resonance properties

with a wider spectrum. One specific example is the KΛ∗(1520) reaction. Based on
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the effective Lagrangian method [29–33] and the Regge model [34–37], the experimental

data [38–42] are analyzed in great detail.

1.2.3 Reactions studied in this thesis

In this thesis, we mainly focus on the K∗Y channel. In contrast to the well studied

reactions (KY and KY ∗ channels), the K∗Y and K∗Y ∗ channels are still far from a

clear understanding. Both the effective Lagrangian method and the Regge approach are

utilized. In chapter 2, we explain the general framework of these two models. The pho-

toproductions γN → K∗Σ [43] and γN → K∗Λ [44] are investigated in chapters 3 and 4,

respectively, We concentrate on studying which baryon resonances near the threshold

come into play significantly as for the intermediate states. Not only the contribution of

backgrounds but also that of N∗ and ∆∗ resonances of spins up to 7/2 are taken into

account.

Photoproduction of the strange vector-meson (K∗) provides richer physics compared

with the K photoproduction. It is a vector meson with quantum number I(JP ) =

1/2(1−), thus the exchange of the scalar meson κ is allowed in the t channel, which is

forbidden in the KY channel. Furthermore, the polarization of the K∗-meson can be

taken as an important subject to be examined together with other polarization observ-

ables in terms of the spin-density matrices.

1.3 Charmed productions

1.3.1 Background

Charm- and bottom-quark physics becomes one of the most important issues in hadron

physics, as experimental facilities report new hadrons containing one or two heavy

quarks, either charm quarks or bottom ones, with unprecedented precision. Quarkonium-

like states called X, Y, Z are the main issues among them. For example, X(3872) and

Zc(3900) are found in the charm sector, and Zb(10610) and Zb(10650) in the bottom

sector. The Belle Collaboration, Babar Collaboration, and BESIII Collaboration have

announced new mesons [45–52], some of which were also confirmed by the LHCb Col-

laboration [53, 54] (see Refs. [55, 56] for reviews). These X, Y, Z states contain c, c̄ (or

b, b̄), and light quarks, which is different from the quark-antiquark states (qq̄) as the

standard quark model describes. Thus quark dynamics become more complicated than

the case where only light u, d, and s quarks are considered. Moreover, these X, Y, Z

are resonances, not ground states. Many of them above decay channel thresholds are
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not sufficiently confirmed. Therefore, it seems that investigating the combination of of

heavy and light quarks is important. We need a more basis of the system of heavy and

light quarks and one suitable opportunity is a charmed baryon and its excited states.

While the mesons with charm have been extensively studied theoretically as well as

experimentally, charmed baryons have been less investigated. However, the charmed

baryons are equally or even more important, since they provide a good opportunity to

examine the role of both chiral symmetry and heavy quark symmetry in heavy-light

quark systems. Moreover, the structure and the production mechanisms of the charmed

baryons are much less known than those of light-quark baryons.

Meanwhile, the exotic states were a highly debatable topic in the baryon sector. Partic-

ularly, the pentaquark Θ+, whose quark content is uudds̄, was of great interest in the

2000’s whether it exists in nature. This issue firstly occurred by the predictions of the

mass of about 1530 MeV and the narrow decay width of less than 15 MeV in 1997 [57].

Then the observation of the Θ+ in the LEPS Collaboration [58] triggered off a wave of

controversy. On the other hand, in the charm sector, the first evidence for the exotic

states was found at HERA by the H1 Collaboration in 2004 [59]. The mass of such a

baryon is about 3099 MeV and the minimal constituent quark composition is expected to

be uuddc̄. It can be a candicate for a charmed pentaquark state. Interestingly enough,

very recently, the so-called pentaquark charmonium state P+
c , made of uudcc̄ quarks, is

observed in Λ0
b → J/ΨK−p decays [60]. This proves more obviously that exotic baryons

exist in nature in the heavy quark sector. It indicates that the heavy baryon sector can

give us a clue to unraveling the mystery of such multiquark states by analogy with (or

even better than) the light baryon sector.

1.3.2 Planned experiments

Having mentioned the background above, we explain the status of recent experiments

regarding charmed baryon productions. In 2012, the J-PARC (Japan Proton Accelerator

Research Complex) facility submitted a new proposal for the study of charmed baryons

via the pion-induced reactions at a high-momentum beam line [61]. The high pion beam

of up to 20 GeV/c will be made for the production of charmed bayons. This energy is

suited for producing charmed baryons with a fixed target and is able to produce excited

states of energy up to around 1 GeV excitation from the ground state. Once we have

a chance to observe various charmed baryons, it will provide very useful information

about the underlying quark dynamics inherent in them.

One of the general features of charmed baryons is the distinction of different excitation

modes of a three-quark system, the so-called ρ and λ modes. For the equal quark mass
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system as in the case of light flavor baryons, they are degenerate. However, if one of

the three quarks is replaced by the charm quark which is heavier than the u, d, and s

quarks, the ρ and λ modes split. This must be shown in the excited states of charmed

baryons and is known as an isotope shift caused by a kinematical effect. The separation

of the two modes makes us to understand the dynamics of the two light quarks, that is,

the diquark. Therefore, charmed baryons will provide a good opportunity for the study

of diquarks which is not well understood while is expected to play an important role in

various hadron physics.

1.3.3 Reactions studied in this thesis

In this thesis, we aim to examine the production rates of various charmed baryons with

the aid of a quark-diquark model in chapter 5 [62]. We focus on the πp → D∗−Yc

process, where Yc is the ground or various excited charmed baryons. Then in chapter 6,

the production rate of the πp → D∗−Λ+
c reaction is estimated in comparison with the

πp → K∗0Λ. Two theoretical methods, effective Lagrangians and Regge model, are

employed. The charmed reaction is not yet established both in theory and experiment.

The production rate of the total and differential cross sections for the πp→ D∗−Λ+
c can

be useful for the future J-PARC experiments.



Chapter 2

Formalism

2.1 Effective Lagrangians

The most basic and common model when describing the hadron reactions is the tree-

level effective Lagrangians. It is known to describe the low energy region well. In

this model, there are two main ingredients: coupling constants and form factors. The

coupling constants can be determined by using SU(3) flavor symmetry or well-known

baryon-baryon potentials such as the Nijmegen potential together with the experimental

data of hadron scatterings and decays. However, the cutoff masses for the form factors

cause ambiguity in describing reactions.

For the description of hadron interaction amplitudes, we need to draw pictures for each

scattering process. According to Gribov [63],

The Feynman diagrams can be considered as a ‘laboratory of theoretical physics’.

Thus we construct tree-level diagrams classified as follows; so-called t-channel, s-channel,

u-channel, and contact terms. One simple example is the πN → πN reaction which is

expressed by diagrams in Fig. 2.2. In the effective Lagrangian method, interaction ver-

tices are given by “effective Lagrangians” and intermediate lines express propagators of

virtual particles which are contained in the Lagrangians. The corresponding Lagrangians

read

Lρππ = −igρππρµ(π · ∂µπ − ∂µπ · π),

LρNN = −gρNN N̄
[
ρµγµ −

κρNN
2MN

∂νρµσµν

]
N + H.c., (2.1)

7
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ρ
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≃

+
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Figure 2.1: diagrams for the πN → πN .

for the t-channel exchange. Then we can compute the scattering amplitude in this

channel as

Mρ = Iρ
gρππgρNN
t−M2

ρ

kµ1

[
−gµν +

(k2 − k1)µ(k2 − k1)ν
M2
ρ

] [
γν − iκρNN

2MN
σνλ(k2 − k1)λ

]
,(2.2)

Other diagrams are calculated in a similar way.

As shown here, once we define the most general Lagrangians which satisfy symmetry

principles, we can calculate the scattering amplitudes. The causality makes sure that

the scattering amplitudes are analytic functions of momenta. An analytic function is

identified by its singularities [63]. The structure of these is proceeded with the help of

Feynamn diagrams. To be clear, we make the main hypothesis [63]:

Analytic properties of the exact amplitude coincide with those of the corresponding

perturbation-theory diagrams.

The only important point is to have the input objects - bare particles - to be point-like,

which is interpreted with some quantum field theory (QFT) scheme [63].

In this thesis, we apply this method to various reactions, and the concrete expressions for

the relevant effective Lagrangians and scattering amplitudes will be discussed in detail

from next chapters.
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2.2 Regge model

2.2.1 Motivation

Most reaction processes have a tendency for a forward peak. This becomes more obvious

as the production energy increses. Regge formalism is designed to fit this high energy

region where s is large and t small. It is also applicable to the backward angle region

which corresponds to that of at large s and small u. When we measure the cross section

for a certain reaction process, the magnitude is usually governed by whether it contains

a t-channel process or not. This is due to the fact that there is a correlation between

the forward peak behavior in a s-channel process and the exchange of particles in the t

channel.

pp

π−

Σ−Σ0

π− K+K0

K∗ forbidden

Figure 2.2: t-channel diagrams for the (a) π−p→ KΣ.
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Figure 2.3: Differential cross sections for the π−p → K0Σ0 and π−p → K+Σ− at
Plab = 2.20 GeV/c (left panel). Total cross sections for the same channels (right panel).

The data are from Ref. [64].

Pion-induced K-meson production can be a proper example to confirm this. It is

classified according to the charge sums of the initial or final particles as (a) Q = 0:

π−p → K0Σ0 and π−p → K+Σ−, (b) Q = 1: π+n → K+Σ0 and π+n → K0Σ+, (c)

Q = -1: π−n → K0Σ−, (d) Q = 2: π+p → K+Σ+. Figure 2.2 depicts the t-channel

tree-level diagrams for the (a) π−p → KΣ process. After taking a careful look at the

Clebsch-Gordan coefficients for the
(

1
2 × 1

2

)
and

(
3
2 × 1

2

)
tables, we can find that there

is single charge exchange and isospin 1
2 or 3

2 for the π−p→ K0Σ0, which indicates that



Chapter 2. Formalisms 10

Kπ resonances such as the K∗(892) and K∗(1420) can be possible as for the intermedi-

ate states. Meanwhile, for the π−p → K+Σ−, double charge exchange and isospin 3
2 is

allowed, none of which exists.

This fact is proved by the experimental data for the differential cross sections as shown

in the left panel of Fig. 2.3. Since the t-channel exchange turns out to be applicable only

for the π−p→ K0Σ0 channel, it reveals a very forward peak and the backward effects are

relatively much suppressed. On the other hand, the π−p→ K+Σ− has larger backward

contribution rather than other angle regions. The relevant total cross sections in the right

panel of Fig. 2.3 also support the effect of the existence of t-channel exchange. Except for

the threthold region, it is found that σ(π−p→ K0Σ0)� σ(π−p→ K+Σ−). It indicates

that including t-channel resonances may be an essential part for the descrption of high

energy regions.

nn

π+

Σ+Σ0

π+ K0K+

K∗ forbidden

Figure 2.4: t-channel diagrams for the (b) π+n→ KΣ.

pn

π+

Σ+Σ−

π− K+K0

K∗ K∗

Figure 2.5: t-channel diagrams for the (c) π−n → K0Σ− (left panel) and the (d)
π+p→ K+Σ+ (right panel).

Concerning the (b) π+n→ KΣ channel, we can reach a similar conclusion as displayed

in Fig. 2.4, σ(π+n → K+Σ0) � σ(π+n → K0Σ+). But when the charge sums are

Q = -1 and 2, only the (c) π−n → K0Σ− and the (d) π+p → K+Σ+ channels are

possible, respectively, and t-channel exchange is also allowed for each of them, as shown

in Fig. 2.5.
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2.2.2 Formula

For a two-body scattering process, A+B → C+D, we can express the scattering ampli-

tude M as a function of Lorentz invariant kinematic variables such as the Mandelstam

variables s, t, andu. From the following relation

s+ t+ u =
4∑

i

= M2
i , (2.3)

where Mi is the rest mass of initial and final particle i, it is possible to reduce to two

independent values; for example, M(s, t) or M(s, u).

To derive the Regge theory [65], we start with the partial-wave expansion for the am-

plitude A(s, t) in the physical region of the t-channel (s < 0, t > 4M2)

A(s, t) = 16π

∞∑

l=0

(2l + 1)Al(t)Pl(zt), (2.4)

where

zt = cos θt = 1 +
2s

t− 4M2
, (2.5)

in the equal-mass case. When s is large enough, the Legendre polynomials approximate

to

Pl(z) =
1

2ll!

dl

dzl
(z2 − 1)l

' 1

2ll!

dl

dzl
z2l

=
1

2ll!

(2l)!

l!
zl, (2.6)

that is, Pl(z) ∼ zl and A(s, t) ∼ sl. After truncating the sum over the angular mo-

mentum l at a certain maximum value lmax, we would like to perform an analytical

continuation of Eq. (2.4) to the physical region of s-channel scattering (t < 0 and s is

large).

To achieve it, we first divide the amplitude A(s, t) in Eq. (2.4) into A±l (t),

A±l (t) =

{
Al(t) l even

Al(t) l odd

}
, (2.7)
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then it is organized as

A±(s, t) = 8π
∞∑

l=0

(2l + 1)A±l (t)(Pl(zt)± Pl(−zt)), (2.8)

because of Pl(−z) = (−1)lPl(z). The amplitudes A± are referred to as even- and odd-

signatured amplitudes.

Cauchy’s theorem is employed to rewrite the partial-wave expansions as integrals. To-

gether with Residue theorem defined by

∮

C
fdz = 2πi

N∑

n=1

Resf(zn), Resf(a) = Res
g(a)

h(a)
= lim

z→a

g(z)

h′(z)
, (2.9)

Eq. (2.8) is rewritten as

A±(s, t) = 4πi

∫

C
dl(2l + 1)A±(l, t)

Pl(−zt)± Pl(zt)
sin(πl)

. (2.10)

Here the contour C is chosen as Fig. 2.6.

C

0 1 2 3 4 5

Figure 2.6: Integration Contour.

The crucial point of Regge theory is that the poles of the amplitude in the complex

l-plane are closely related to bound or resonance states. The poles are known as Regge

poles, or reggeons, and are identified as ‘Regge trajectories’ α(t). These trajectories

connect hadrons with their families which have the same internal quantum numbers

(isospin, strangeness, charm, baryon number, etc.): α(M2) = J , where M and J are the

mass and the spin of a related hadron, respectively.

We can continue this partial-wave expansion from the physical t-channel region (s <

0, t > 4M2) analytically to the physical region of high-energy s-channel scattering (t <

0). We finally obtain

A±(s, t) ∼
∑

i

β±i (t)Γ(−α±i (t))(1± e−iπα±i (t))

(
s

s0

)α±i (t)

, (2.11)
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which is the Regge representation for A±(s, t). The factors

ξ±α = 1± e−iπα±i (t) (2.12)

are called signature factors and s0 is a scale parameter with the dimensions of squared

mass. The phase of the amplitude is determined by this signature factor since other

terms are known to be real in the s-channel physical region. Now, we are able to

describe high energy regions for the scattering process A + B → C + D, which has a

strong link with the collection of resonances of low-energy process in another crossing

channel, A+ C̄ → B̄ +D.

2.2.3 Unitarity

It is also interesting to examine only a single term of the amplitude written in Eq. (2.4).

Then the problem of series convergence is temporarily avoided and the following is

obtained

A(s, t) = 16π(2J + 1)AJ(t)PJ(1 +
2s

t− 4m2
)

∼ f(t)sJ . (2.13)

Using the optical theorem

σTot
12 =

1

2|p1|
√
s

ImA(s, t = 0), (2.14)

A(s, t = 0) being the elastic scattering amplitude, we can derive

σTot ∼ sJ−1, (2.15)

at large s. However, it violates the unitarity when resonances of higher spins are ex-

changed (J ≥ 2). The Froissart bound [66] tells us that

σTot(s) ≤ constant× log2(s/s0). (2.16)

Thus, it is indeed natural to include all the possible hadrons which lie on the same

trajectory to conserve the unitarity.

2.2.4 Regge trajectories

In numerical calculations, we need to know the actual value of the Regge trajectory,

α(t). As mentioned already, it is a collection of hadrons of the squared mass M2(t > 0)
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with the spin J .
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Figure 2.7: π, ω, and ρ Regge trajectories (left panel) and K and K∗ trajectories
(right panel).

Figure 2.7 displays the meson trajectories for the nonstrange (strange) sector in the left

(right) panel. For the nonstrange sector, the ω and ρ trajectories overlap each other and

the π trajectory is located below them. The trajectory lines are determined from the

Chew-Frautschi plots [20]. The values are given by

απ(t) = 0.7(t−M2
π),

αρ(t) = 0.55 + 0.8t,

αω(t) = 0.44 + 0.9t. (2.17)

For the strange sector, the resonances are richer than the nonstrange one. The K and

K∗ Regge trajectories are chosen as

αK(t) = 0.7(t−M2
K)

αK∗(t) = 0.25 + 0.83t. (2.18)

Usually, Regge trajectories have two signatures. One contains only odd spins of hadrons.

The other does only even spins. It is notable that the odd (K1(1270), K3(2320)) and

even (K(494), K2(1770), K4(2500)) trajectories are almost degenerated each other for

the K trajectory. The K∗ trajectory exhibits this behavior too.

The baryon trajectories are also need to be examined since the Regge approach is ap-

plicable to the backward regions in the u channel. For example, for the Σ trajectory,

the higher spins of some resonances are unknown. Thus assuming that the quantum

numbers of those resonances are fixed, we are able to depict the Σ(1190) and Σ∗(1385)

Regge trajectories in Fig 2.8.
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7/2

9/2
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(2250, ??)

Figure 2.8: Σ and Σ∗ Regge trajectories.

The Regge lines are determined from Ref [67] and given by

αΣ(1190)(u) = −0.79 + 0.87u,

αΣ∗(1385)(u) = −0.27 + 0.9u. (2.19)

The nucleon trajectories are classified as

αN(938)(u) = −0.34 + 0.99u,

αN∗(1520)(u) = 0.63 + 0.89u,

αN∗(1675)(u) = 0 + 0.9u. (2.20)

Other baryon trajectories read

α∆(u) = 0.07 + 0.92u,

αΛ(u) = −0.65 + 0.94u,

αΞ(u) = −0.95 + 0.84u. (2.21)

The duality ideas, supported by this amazing linearity of Regge trajectories, via the

Veneziano amplitude, brought about the concept of hadronic strings and the advance

on string theories [63].

2.2.5 General features

The Regge theory has the advantage that it determines the asymptotic behavior of the

cross section,

dσ

dt
(s→∞, t→ 0) ∝ s2α(t)−2 , (2.22)
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at high energies. Among various contributions of Regge trajectories (reggeons), the

dominance is governed by the magnitude of the intercept, α(0). For example, the vector

reggoen is more prominent than the pseudoscalar reggeon.

The gamma function contained in Eq. 2.11 has a relation to the Feynman propagator

1/(t−M2). Using the definition of the gamma function

Γ(x) = (x− 1)Γ(x− 1) (x > 1),

Γ(−x) =
Γ(1− x)

−x (x < 0), (2.23)

we can derive that

Γ[−α(t)] =
Γ[1− α(t)]

−α(t)
=

Γ[1− (t−M2
ps)α

′]

(t−M2
ps)α

′ ' 1

(t−M2
ps)

−1

α′
, (2.24)

with α(t) = (t−M2
ps)α

′. It implies that the closer we go to the pole, the more the results

of the Regge model will become similar to those of the tree-level Feynman diagram model.



Chapter 3

K∗Σ photoproduction

In chapter 1, we have mentioned that the K∗Y channel can be a good opportunity for

investigating the nucleon resonances which lie near their thresholds, 2.08 GeV for the

K∗Σ channel and 2.01 GeV for the K∗Λ one. First of all, in this section, the K∗Σ

photoproduction off the nucleon target is studied in a fully relativistic manner [43].

3.1 Motivation

Recently, new experimental data for the total and differential cross sections for the reac-

tion γp→ K∗+Σ0 were announced by the CLAS Collaboration at the Thomas Jefferson

National Accelerator Facility (TJNAF) with high precision [68]. The Collaboration at

the Super Photon Ring-8 GeV (SPring-8) also reported new data for the spin-density

matrix elements for the reaction γp → K∗0Σ+ [69]. As regards the K∗0Σ+ production

channel, earlier experiments already exist, one is from the CBELSA/TAPS Collabora-

tion at the Electron Stretcher and Accelerator (ELSA) [70] and the other is from the

CLAS Collaboration [71, 72]. Considering all these data accumulated so far, we are

nearer than ever to gaining an insight into both the γp→ K∗0Σ+ and the γp→ K∗+Σ0

reaction mechanisms together.

These two reaction processes have been studied theoretically using an effective La-

grangian method [73] as well as a chiral quark model [74]. K∗ photoproduction enables

us to study the κ exchange contribution, which is forbidden to K photoproductoin be-

cause angular momentum and parity are violated in the γKκ interaction. It turned out

that κ exchange should play an important role in the γp → K∗0Σ+ reaction mecha-

nism [73]. Subsequently, the experimental data from the LEPS Collaboration supported

17
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the importance of scalar-meson exchange indeed [69]. Nevertheless, those previous theo-

retical results are still far from the new CLAS data [68]. Thus, we think it is worthwhile

to investigate these mechanisms again more systematically.

We employ a tree-level effective Lagrgngian method as done in Ref. [73], in which sev-

eral lowest-order Feynman diagrams are considered to construct scattering amplitudes.

They are the t-channel contribution (K∗-, K-, and κ- exchanges), the s-channel dia-

grams (N(938)- and ∆(1232)-pole exchanges), and the u-channel diagrams (Λ(1116)-,

Σ(1190)-pole, and Σ∗(1385, 3/2+) exchanges). In the present work [43, 75], besides those

background terms, various baryon resonances are taken into account such as D13(2080),

S11(2090), G17(2190), D15(2200), S31(2150), G37(2200), and F37(2390) in the s chan-

nel [76]. Note that ∆ resonances are also allowed here because of isospin conservation

in addition to nucleon resonances. These resonances have not been considered in the

previous theoretical work [73] and thus lead us to a more challenging area.

3.2 Formalism

p

pp(p1)

γ

γ

Σ+

Σ+Σ+(p2)

γ(k1)

Σ,Σ∗

N,∆

K∗0

K∗0K∗0(k2)

K,κ

N∗,∆∗

(I) γp → K∗0Σ+

p p

pp

γ γ

γ

Σ0 Σ0

Σ0Σ0

γ

Λ,Σ,Σ∗

N,∆

K∗+ K∗+

K∗+K∗+

K∗,K, κ

N∗,∆∗

(II) γp → K∗+Σ0

Figure 3.1: Tree-level Feynman diagrams for the γp→ K∗Σ.

We first define the effective Lagrangians for each vertex from the Feynman diagrams.

The relevant and generic tree-leval diagrams for the reaction γp → K∗Σ are depicted

in Fig. 3.1. k1 and p1 are the momenta of the initial photon and nucleon, respectively,

while k2 and p2 denote those of the final K∗ and Σ, respectively. For convenience, we

classify this process as K∗0Σ+ and K∗+Σ0 channels, respectively, from now on,

(I) γp→ K∗0Σ+, (II) γp→ K∗+Σ0. (3.1)
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Commonly included for both channels are K and κ meson exchanges in the t channel,

N , ∆, N∗, and ∆∗ baryon exchanges in the s channel, and Σ and Σ∗(1385) hyperons in

the u channel. K∗ exchange is allowed only for the (II)K∗+Σ0 channel but not for the

(I)K∗0Σ+ one due to its electrically neutral vertex of γK∗K̄∗ provided we ignore the

magnetic and quadratic moments of K∗. Λ exchange is also absent from the (I)K∗0Σ+

channel because of charge conservation. Consequently, contact term is required only for

the (II)K∗+Σ0 channel to satisfy the Ward-Takahashi (WT) identity.

The scattering amplitude to each channel can be written as

M = ε∗ν ūΣMµνuN εµ, (3.2)

where the Dirac spinors of the nucleon and Σ are represented by uN and uΣ, respectively,

and εµ and εµ denote the polarization vectors of the photon and K∗, respectively:

εµ =
{ ε‖ = (0, 1, 0, 0)

ε⊥ = (0, 0, 1, 0)
, εµ =

{ ε1 = (0, cos θ, 0,− sin θ)

ε2 = (0, 0, 1, 0)

ε3 = 1
MK∗

(kK∗ , EK∗ sin θ, 0, EK∗ cos θ)

, (3.3)

satisfying ε2 = ε2 = −1, and otherwise zero. θ is the scattering angle between the

incoming photon and the outgoing K∗ meson in the center-of-mass (COM) frame.

3.2.1 K∗, K, and κ exchanges in the t channel

The effective Lagrangians are constructed to satisfy symmetry principles. The t-channel

scattering amplitudes are obtained from the following Lagrangians:

LγK∗K∗ = −ieK∗Aµ(K∗−νK∗+µν −K∗−µν K∗+ν),

LγK∗K = gγKK∗ε
µναβ (∂µAν)

(
∂αK̄

∗
β

)
K + H.c.,

LγK∗κ = gγK∗κF
µν κ̄K∗µν + H.c., (3.4)

for the electromagnetic interactions. Here Aµ, K∗µ, K, and κ stand for the photon,

the fields of K∗(892, 1−), K(494, 0−), and κ(800, 0+) mesons, respectively [1]. The field

tensors for the photon and the K∗ meson are defined by Fµν = ∂µAν − ∂νAµ and

K∗µν = ∂µK
∗
ν −∂νK∗µ, respectively. eK∗ denotes the unit electric charge e =

√
4παE with

the fine-structure constant αE = 1/137.04.

The coupling constants gγK∗K are determined from the experimental data of the K∗

decay width and the corresponding decay modes of Γ(K∗ → Kγ) [1]. The decay width



Chapter 3. K∗Σ photoproduction 20

is expressed in terms of the coupling constant gγK∗K

Γ(K∗ → Kγ) = g2
γK∗K

k3
γ

12π
, (3.5)

where kγ is the three-momentum of the decaying particle

kγ =
M2
K∗ −M2

K

2MK∗
. (3.6)

After calculating each decay width as [1]

Γ(K∗± → K±γ) ≈ 50.8 MeV (9.9 · 10−4) = 50 KeV,

Γ(K∗0 → K0γ) ≈ 47.4 MeV (2.39 · 10−3) = 113 KeV, (3.7)

we can easily obtain

gcharged
γK∗K = 0.254 GeV−1, gneutral

γK∗K = −0.388 GeV−1, (3.8)

using Eq. (3.5).

The vector-meson dominance model is employed to determine the coupling constants

gγK∗κ [77]:

gcharged
γK∗κ = −0.119 eGeV−1, gneutral

γK∗κ = −2gcharged
γK∗κ . (3.9)

There remains some uncertainty for the κ meson’s parameters since it is poorly estab-

lished. In the present work, they are chosen as Mκ = 800 MeV for the mass and Γκ =

550 MeV for the decay width.

The strong interactions are described by the following Lagrangians:

LK∗NY = −gK∗NY
[
K̄∗µȲ γµ −

κK∗NY
2MN

∂νK̄∗µȲ σµν

]
N + H.c.,

LKNΣ = −igKNΣK̄ Σ̄γ5N + H.c.,

LκNΣ = −gκNΣκ̄Σ̄N + H.c., (3.10)

where Y designates Λ or Σ fields in which Σ = τ · Σ and τ are the Pauli matrices.

N , Λ, and Σ stand for the nucleon, Λ(1116, 1/2+), and Σ(1190, 1/2+) baryon fields,

respectively [1]. The corresponding coupling constants for the K∗- and κ- interactions

are taken from the Nijmegen soft-core model (NSC97a) [78]:

gK∗NΛ = −4.26, κK∗NΛ = 2.66, gK∗NΣ = −2.46, κK∗NΣ = −0.47, gκNΣ = −5.32.

(3.11)

The value of gKNΣ is calculated by using the SU(3) flavor-symmetry relation, which

gives gKNΣ = 3.58.
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The scattering amplitudes for t-channel exchanges are summarized as

Mµν
K∗ = IK∗

eK∗gK∗NΣ

t− (MK∗ − iΓK∗/2)2
(2kµ2 g

να − kα2 gµν + kν1g
µα)

×
[
gαβ −

(k1 − k2)α(k1 − k2)β
M2
K∗

] [
γβ − iκK∗NΣ

2MN
σβδ(k1 − k2)δ

]
,

Mµν
K = IK

igγKK∗gKNΣ

t−M2
K

εµναβk1αk2βγ5,

Mµν
κ = Iκ

−2gγK∗κgκNΣ

t− (Mκ − iΓκ/2)2
(k1 · k2g

µν − kν1kµ2 ). (3.12)

Note that each decay width is included by replacing M in the propagator by M − iΓ/2
in the K∗ and κ amplitudes. The K∗ decay width is chosen as ΓK∗ = 50.8 MeV [1].

3.2.2 N and ∆ exchanges in the s channel

The effective Lagrangians corresponding to s-channel exchanges are expressed by

LγNN = −N̄
[
eN /A− eκN

2MN
σµν∂

νAµ
]
N,

LγN∆ = e∆̄µ

[
ig1

2MN
γνγ5 +

g2

(2MN )2
γ5∂ν

]
NFµν + H.c..

LK∗∆Σ = − ifK∗∆Σ

2MK∗
∆̄µγνγ5ΣK∗µν + H.c., (3.13)

and by LK∗NΛ written in Eq. (3.10). Here eN corresponds to the unit electric charge e for

proton and 0 for neutron interactions, respectively. The anomalous magnetic moments

of the nucleon are given by [1]

κn = −1.91, κp = +1.79. (3.14)

The ∆ field, ∆(1232, 3/2+), is described by the Rarita-Schwinger formalism [79, 80].

The electric and magnetic couplings are chosen as g1 = 4.13 and g2 = 4.74 using the

experimental data for the helicity amplitudes [81, 82]. The coupling fK∗∆Σ is estimated

using the SU(3) flavor-symmetry relation and the quark-model prediction:

fK∗∆Σ = −2MK∗

Mρ
fρN∆ = −12.8, (3.15)

with fρN∆ = 5.5 [83].

The scattering amplitudes for N and ∆ exchanges are organized as follows:

Mµν
N = IN

gK∗NΣ

s−M2
N

[
γν − iκK∗NΣ

2MN
σναk2α

]

× (/k1 + /p1 +MN )

[
eNγ

µ +
ieκN
2MN

σµβk1β

]
,
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Mµν
∆ = I∆

fK∗∆Σ

s− (M∆ − iΓ∆/2)2

e

2MK∗
γργ5(kβ2 g

νρ − kρ2gνβ)

×∆βα

[
g1

2MN
γδ −

g2

(2MN )2
p1δ

]
γ5(kα1 g

µδ − kδ1gµα), (3.16)

where Γ∆ ∼ 116 MeV [1]. The detailed form of the Rarita-Schwinger spin projection

∆βα is referred to the Appendix B.

3.2.3 Λ, Σ, and Σ∗ exchanges in the u channel

The electromagnetic effective Lagrangians for the hyperon vertices are defined by

LγΣΛ =
eµΣΛ

2MN
Σ̄σµν∂

νAµΛ,

LγΣΣ = −Σ̄

[
eΣ /A− eκΣ

2MN
σµν∂

νAµ
]

Σ,

LγΣΣ∗ = eΣ̄∗µ

[
igVγΣΣ∗

2MN
γνγ5 +

gTγΣΣ∗

(2MN )2
γ5∂ν

]
ΣFµν + H.c., (3.17)

and the strong interactions for the hyperon ones by

LK∗NΣ∗ = i
f

(1)
K∗NΣ∗

2MK∗
N̄γνγ5Σ∗µK∗µν +

f
(2)
K∗NΣ∗

(2MK∗)2
∂νN̄γ5Σ∗µK∗µν

− f
(3)
K∗NΣ∗

(2MK∗)2
N̄γ5Σ∗µ∂νK∗µν + H.c., (3.18)

and LK∗NY written in Eq. (3.10). Here the transition magnetic moment between the

fields of Σ and Λ is known as µΣΛ = 1.61± 0.08 [1] and the (eΣ+ , eΣ0 , eΣ−) correspond

to (1, 0, -1), respectively. The anomalous magnetic moments of the Σ are [1]

κΣ+ = +1.46, κΣ0 = +0.65, κΣ− = −0.16. (3.19)

In order to determine the coupling constants gV,TγΣΣ∗ , the experimental data for the Σ∗ →
Σγ radiative decay is needed. But only the upper limits of the hyperon decay rates

are known [84]. Moreover, Σ∗− → Σ−γ is known to be U -spin forbidden, which means

that its decay rate vanishes in the exact SU(3) symmetry. Instead, these decay rates

were estimated within several different theoretical predictions [85–90]. Since Ref. [89]

has computed the E2/M1 ratio as well as the hyperon radiative decay rates, we apply

the results of Ref. [89], so that gV,TγΣΣ∗ are calculated as follows:

gV+
γΣΣ∗ = +2.66, gT+

γΣΣ∗ = +0.74,

gV 0
γΣΣ∗ = +1.10, gT0

γΣΣ∗ = +0.55,

gV−γΣΣ∗ = +0.49, gT−γΣΣ∗ = −0.39. (3.20)
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The coupling constant f
(1)
K∗NΣ∗ is chosen as −5.21 by SU(3) flavor symmetry. Considering

the possible Lorentz structure for the Σ∗ to the vector-meson and the nucleon, we can

construct the interaction Lagrangian in terms of three terms. The experimental and

theoretical information on f
(2,3)
K∗NΣ∗ are not well known thus these terms are excluded in

the present work, which seems to be reasonable, since these two coupling constants are

smaller than f
(1)
K∗NΣ∗ .

The scattering amplitudes for hyperon exchanges are summarized as follows:

Mµν
Λ = IΛ

gK∗NΛ

u−M2
Λ

ieµΣΛ

2MN
σµαk1α

× (/p2 − /k1 +MΛ)

[
γν − iκK∗NΛ

2MN
σνβk2β

]
,

Mµν
Σ = IΣ

gK∗NΣ

u−M2
Σ

[
eΣγ

µ +
ieκΣ

2MN
σµαk1α

]

× (/p2 − /k1 +MΣ)

[
γν − iκK∗NΣ

2MN
σνβk2β

]
,

Mµν
Σ∗ = IΣ∗

f
(1)
K∗NΣ∗

u− (MΣ∗ − iΓΣ∗/2)2

e

2MK∗

[
g1

2MN
γρ +

g2

(2MN )2
p2ρ

]

× (kβ1 g
ρµ − kρ1gβµ)γ5∆βαγδγ5(kα2 g

νδ − kδ2gαν), (3.21)

where ΓΣ∗ = 36 MeV [1]. Similarly to the case of ∆ exchange, the form of the Rarita-

Schwinger spin projection ∆βα is referred to the Appendix B.

3.2.4 Contact term

In the case of the (II)K∗+Σ0 channel, contact term is included by the minimal gauge

substitution ∂µ → ieAµ to the K∗NΣ interaction

LγK∗NΣ = − iegK∗NΣκK∗NΣ

2MN
AνK̄∗µΣ̄σµνN + H.c., (3.22)

to conserve the U(1) gauge invariance. The corresponding scattering amplitude reads

Mµν
c = − iegK∗NΣκK∗NΣ

2MN
σµν . (3.23)

3.2.5 Baryon resonances in the s channel

We now switch to the s-channel baryon resonances besides the basic background terms

discussed above. They are referred to as PDG resonances and included are D13(2080),

S11(2090), G17(2190), andD15(2200) for the nucleon resonances and S31(2150), G37(2200),

and F37(2390) for the delta ones [76], which lie near the threshold of the K∗Σ photo-

production process.
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The relevant electromagnetic Lagrangians for those resonances read

LγNR1/2±
=

eh1

2MN
N̄Γ(∓)σµν∂

νAµR+ H.c.,

LγNR3/2±
= −ie

[
h1

2MN
N̄Γ(±)

ν − ih2

(2MN )2
∂νN̄Γ(±)

]
FµνRµ + H.c.,

LγNR5/2±
= e

[
h1

(2MN )2
N̄Γ(∓)

ν − ih2

(2MN )3
∂νN̄Γ(∓)

]
∂αFµνRµα + H.c.,

LγNR7/2±
= ie

[
h1

(2MN )3
N̄Γ(±)

ν − ih2

(2MN )4
∂νN̄Γ(±)

]
∂α∂βFµνRµαβ + H.c.,(3.24)

according to the spin and parity chosen. R, Rµ, Rµα, andRµαβ designate the spin-1/2,

spin-3/2, spin-5/2, and spin-7/2 nucleon or delta resonance fields. Γ(±) and Γ
(±)
µ are

defined by

Γ(±) =

(
γ5

1

)
, Γ(±)

µ =

(
γµγ5

γµ

)
. (3.25)

We use the experimental data for the helicity amplitudes A1,3 [76] if possible, otherwise

apply the quark-model predictions of Ref. [3] to extract the transition magnetic moments

h1,3. They are related linearly each other. The detailed relations are referred to the

Appendix B. In Table 3.1, all the relevant parameters are listed.

Resonance A1 A3 h1 h2

N∗ D13(2080) −0.020 +0.017 +0.608 −0.620
S11(2090) +0.012 · · · +0.055 · · ·
G17(2190) −0.034 +0.028 +7.69 −7.17
D15(2200) −0.002 −0.006 +0.123 +0.011

∆∗ S31(2150) +0.004 · · · +0.018 · · ·
G37(2200) +0.014 −0.004 −2.31 +2.47
F37(2390) +0.024 +0.030 −1.89 −1.54

Table 3.1: Transition magnetic moments h1,2 in Eqs. (3.24) extracted from the helicity

amplitudes A1,3 [GeV−
1
2 ] [3, 76].

The strong interactions are expressed by the following Lagrangians:

LK∗ΣR1/2±
=

− 1

2MN
R̄

[
g1

(
± Γ

(∓)
µ Σ∂2

MR ∓MN
− iΓ(∓)∂µ

)
− g2Γ(∓)σµνΣ∂ν

]
K∗µ + H.c.,

LK∗ΣR3/2±
=

iR̄µ

[
g1

2MN
ΣΓ(±)

ν ∓ ig2

(2MN )2
∂νΣΓ(±) ± ig3

(2MN )2
ΣΓ(±)∂ν

]
K∗µν + H.c.,

LK∗ΣR5/2±
= R̄µα×[

g1

(2MN )2
ΣΓ(∓)

ν ± ig2

(2MN )3
∂νΣΓ(∓) ∓ ig3

(2MN )3
ΣΓ(∓)∂ν

]
∂αK∗µν + H.c.,

LK∗ΣR7/2±
= −iR̄µαβ×
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[
g1

(2MN )3
ΣΓ(±)

ν ∓ ig2

(2MN )4
∂νΣΓ(±) ± ig3

(2MN )4
ΣΓ(±)∂ν

]
∂α∂βK∗µν + H.c.,(3.26)

according to the types of spin and parity.

The strong coupling constants g1, g2, and g3 in Eqs. (3.26) can be extracted from the

partial-wave decay amplitudesGs,l predicted by a relativized quark pair creation model [5]:

ΓR→K∗Σ =
∑

s,l

|Gs,l|2, (3.27)

where ΓR→K∗Σ is the decay width of a certain resonance R into the K∗Σ channel. In

Ref [5], the strong decays of nonstrange resonances into the strange final states, such

as Λ(1405)K, Λ(1520)K, Σ(1385)K, ΛK∗, and ΣK∗, are organized systematically. In

the present work, we aim at studying the role of resonances near the threshold regions.

Thus it seems to be fair to take account of the contribution of the lower partial waves.

Correspondingly, only the leading terms, g1, are considered. The signs of these strong

coupling constants are determined phenomenologically. Concerning the values of the

decay widths, we use ΓR = 300 MeV in common to reduce the free parameters. We

tabulate the relevant parameters in Table 3.2.

Resonance Gs,l g1

N∗ D13(2080) −0.5 −0.238
S11(2090) −0.9 ∓0.909
G17(2190) −0.3 +5.63
D15(2200) +0.2 +1.11

∆∗ S31(2150) −4.8 +2.54
G37(2200) +0.5 ±8.32
F37(2390) +0.6 +5.02

Table 3.2: Strong coupling constants g1 in Eqs. (3.26) extracted from the decay
amplitudes Gs,l [

√
MeV] [5].

The scattering amplitudes for the resonance terms for each spin and parity finally read

Mµν
R(1/2±)

= IR
−ie

s−M2
R

h1R1

(2MN )2

[
g1

M2
K∗

MR ∓MN
Γν(∓) ∓ ig2Γ(∓)σνβk2β

]

× (/k1 + /p1 +MR)Γ(∓)σµαk1α,

Mµν
R(3/2±)

= IR
e

s−M2
R

[
g1

2MN
Γ(±)
ρ +

g2

(2MN )2
p2ρΓ

(±) − g3

(2MN )2
k2ρΓ

(±)

]

×∆βα(R, k1 + p1)

[
µR3

2MN
Γ

(±)
δ ∓ µ̄R3

(2MN )2
Γ(±)p1δ

]

× (kβ2 g
νρ − kρ2gνβ)(kα1 g

µδ − kδ1gαµ),

Mµν
R(5/2±)

= IR
e

s−M2
R

[
g1

(2MN )2
Γ(∓)
ρ +

g2

(2MN )3
p2ρΓ

(∓) − g3

(2MN )3
k2ρΓ

(∓)

]

×∆β1β2;α1α2(R, k1 + p1)

[
µR5

(2MN )2
Γ

(∓)
δ ± µ̄R5

(2MN )3
Γ(∓)p1δ

]
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× kβ2
2 (kβ1

2 gνρ − kρ2gνβ1)kα2
1 (kα1

1 gµδ − kδ1gα1µ),

Mµν
R(7/2±)

= IR
e

s−M2
R

[
g1

(2MN )3
Γ(±)
ρ +

g2

(2MN )4
p2ρΓ

(±) − g3

(2MN )4
k2ρΓ

(±)

]

×∆β1β2β3;α1α2α3(R, k1 + p1)

[
µR7

(2MN )3
Γ

(±)
δ ∓ µ̄R7

(2MN )4
Γ(±)p1δ

]

× kβ2
2 kβ3

2 (kβ1
2 gνρ − kρ2gνβ1)kα2

1 kα3
1 (kα1

1 gµδ − kδ1gα1µ). (3.28)

Here the decay widths should be included in the Feynman propagators by replacing MR

by MR − iΓR/2. The details of the propagators of resonance fields up to spin-7/2 are

referred to the Appendix B [91–94].

3.2.6 Form factors

The relevant hadrons are not simply pointlike objects. To take account of the finite size

effect of hadrons, a phenomenological form factor is included at each vertex. It should

be chosen so as to conserve the gauge invariance, if necessary which is supplemented by

the inclusion of a contact term. Various efforts have been devoted not to violate the

gauge invariance [95–99]. We follow the prescription suggested by Ref. [98].

In the present work, two different types of form factors are taken into account, one is

for the mesonic (Φ = K∗,K, κ) and the other is for the baryonic (B = N,∆,Λ,Σ,Σ∗, R)

vertices,

FΦ(q,MΦ) =
Λ2

Φ −M2
Φ

Λ2
Φ − q2

, FB(q,MB) =
Λ4
B

Λ4
B + (q2 −M2

B)2
. (3.29)

Here q denotes the off-shell transfer momentum of the relevant hadron in each channel.

The cutoff masses, ΛΦ and ΛB, are determined by fitting to the experimental data.

The problem happens when the amplitude itself breaks the gauge invariance. For ex-

ample, in the process of the (I)K∗0Σ+ channel, the electric term of N exchange and Σ

exchange term do not satisfy the gauge invariance, but the sum does. In this case the

common form factor is introduced. The form is given by

Fcom = FNFΣ(K∗) − FN − FΣ(K∗). (3.30)

for the (I)K∗0Σ+ and (II)K∗+Σ0 channels, respectively. In the process of the (II)K∗+Σ0

channel, a contact term is included additionally.

Finally, the scattering amplitudes can be written as

M(γp→ K∗0Σ+) = [Melec
N +MΣ]F 2

com +Mmag
N F 2

N

+MKF
2
K +MκF

2
κ +M∆F

2
∆ +MΣ∗F

2
Σ∗
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+MN∗F
2
N∗ +M∆∗F

2
∆∗ (3.31)

for the (I)K∗0Σ+ channel and

M(γp→ K∗+Σ0) = [MK∗ +Melec
N +Mc]F

2
com +Mmag

N F 2
N

+MKF
2
K +MκF

2
κ

+M∆F
2
∆ +MΛF

2
Λ +MΣF

2
Σ +MΣ∗F

2
Σ∗

+MN∗F
2
N∗ +M∆∗F

2
∆∗ (3.32)

for (II)K∗+Σ0 channel, respectively.

Each amplitude also has an isospin factor which is summarized in Table 3.3.

channels IK∗ IK Iκ IN , IN∗ I∆, I∆∗ IΛ IΣ IΣ∗

(I) γp→ K∗0Σ+ ×
√

2
√

2
√

2 −
√

2/3 ×
√

2
√

2
(II) γp→ K∗+Σ0 1 1 1 1 2/3 1 1 1

Table 3.3: Isospin factors to each channel for the γp→ K∗Σ.

3.3 Results

In this section, our numerical results are presented and discussed. Based on the experi-

mental data for the total and differential cross sections [68, 70, 72], the free parameters,

cutoff masses, are determined. Subsequently, a few spin observables are predicted, which

are expected to be measured at various experimental facilities. To optimize the free pa-

rameters to the data, the t-channel cutoff masses are primarily determined, and then

those corresponding to baryon exchanges are fixed. They are listed in Table 3.4.

ΛK∗ ΛK Λκ ΛN Λ∆ ΛΛ ΛΣ ΛΣ∗ ΛN∗ Λ∆∗

0.80 1.15 1.15 1.50 1.50 0.70 0.95 0.95 1.00 1.00

Table 3.4: Cutoff masses [GeV] to each channel for the γp→ K∗Σ.

3.3.1 Total cross sections

In the left panel of Fig. 3.2, each contribution to the total cross sections is drawn

as a function of the photon energy Eγ for the the (I)K∗0Σ+ channel. Note that the

data of open squares are estimated ones, based on the interpolating polynomial method

to the fourth order. In general, the total result fits the estimation from the CLAS
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Figure 3.2: Total cross sections for the γp→ K∗0Σ+ (left panel) and the γp→ K∗+Σ0

(right panel). The data are from Ref. [70] (black circles), Ref. [72] (open squares), and
Ref. [68] (black triangles).

data [72] pretty well, while it seems to be underestimated compared to the CBELSA/-

TAPS data [70]. K and ∆(1232)-pole exchanges play the most important role, while the

N∗ and ∆∗ resonance contributions are almost marginal over the whole energy region.

In the right panel of Fig. 3.2, the total cross section for the (II)K∗+Σ− channel is pre-

sented. Since we have used the same coupling constants for the corresponding vertices,

isospin factors chiefly control the relative strength between the two channels. It turns

out that the total result of this channel is a little smaller than that of the (I)K∗0Σ+ one.

Though the isospin factor of the K∗+Σ0∆+ vertex is larger than that of the K∗0Σ+∆+

one, i.e. IK∗+Σ0∆+/IK∗0Σ+∆+ =
√

2, the t-channel contribution is prominent in the

(I)K∗0Σ+ channel rather than in the (II)K∗+Σ− one. At any rate, with the domi-

nant effects of ∆(1232)-pole exchange on the total result, we can reproduce the CLAS

data [68] quite well. On the other hand, the N∗, ∆∗ resonances and u-channel hyper-

ons have minute effects on the (II)K∗+Σ− channel, which is similar to the (I)K∗0Σ+

one. However, although resonance contributions are almost tiny, they can play a cer-

tain role in describing the polarization observables. They are expected to exhibit more

sensitive angular dependence than other contributions. Since there is also some ambigu-

ity in choosing the coupling constants, we tried to use other values from the Nijmegen

potential (NSC97f) [78]. But we reached the same conclusion.

In Fig. 3.3, each resonance contributions to the total cross sections are shown for both

channels. As will be checked in the next subsection, the N∗ and ∆∗ resonances have

some effects on the polarization observables, thus we need to scrutinize them. Although

G17(2190) has a large effect among the resonances, it is too small compared to the

total result. The magnitude of the resonance contributions is approximately 100 times

smaller than that of the background ones. The D15(2200) and G37(2200) are not shown

in Fig. 3.3, because they are almost negligible.
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Figure 3.3: Resonance contributions to the total cross sections for the γp→ K∗0Σ+

(left panel) and the γp→ K∗+Σ0 (right panel).

3.3.2 Differential cross sections
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Figure 3.4: Differential cross sections for the γp → K∗0Σ+ in the range of Eγ =
(1.925 − 2.9125) GeV. The data are from Ref. [70] (black circles) and Ref. [72] (open

squares).

Figure 3.4 draws the numerical results of the differential cross sections dσ/d cos θ for

the (I)K∗0Σ+ channel as functions of cos θ. As expected from the results of total cross

sections, there is almost no effect from N∗ and ∆∗ resonances. Near threshold regions,

the angular dependence of ∆-pole and t-channel (K and κ) exchanges looks similar,

but as the energy increases, the t-channel contribution becomes large in the forward

direction. On the other hand, the u-channel exchanges (Σ and Σ∗) come into play in

the backward direction.

We depict the differential cross sections for the (II)K∗+Σ0 channel in Fig. 3.5. Unlike

the (I)K∗0Σ+ channel, K∗ exchange, Λ exchange, and the contact term are taken into

account besides other diagrams so as to satisfy the WT identity. Thus the angular

dependence looks different each other. There are some contributions of t-channel ex-

changes at the forward angles, but in general the ∆ exchange governs its behavior over
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Figure 3.5: Differential cross sections for the γp → K∗+Σ0 in the range of Eγ =
(1.85− 3.75) GeV. The data are from Ref. [68].

the whole angular region. Excpet for the bump structure of the CLAS data [68] near

the threshold regions, our result is in good agreement with the data.

3.3.3 Spin observables

Having fixed the free parameters to the total and differential experimental data given

above, we are ready to display the predictions of the single-polarization observables. The

definitions of the photon-beam Σγ , recoil Py, and target Ty asymmetries are followed

from Ref. [100]:

Σγ ≡
dσ(ε⊥)− dσ(ε‖)

dσ(ε⊥) + dσ(ε‖)
,

Py ≡
dσ(sΣ

y = 1
2)− dσ(sΣ

y = −1
2)

dσ(sΣ
y = 1

2) + dσ(sΣ
y = −1

2)
,

Ty ≡
dσ(sNy = 1

2)− dσ(sNy = −1
2)

dσ(sNy = 1
2) + dσ(sNy = −1

2)
. (3.33)
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Here all the denominators are equivalent to the dσunpol., that is, the unpolarized differ-

ential cross section. These polarization observables satisfy the following conditions in

the collinear limit

Σγ = Py = Ty = 0 at cos θ = ±1. (3.34)

In the present work, we define the reaction plane by the x-z axes. Thus the y axis

is perpendicular to the reaction plane. ε⊥ and ε‖ are the photon polarization vectors

defined in Eq. (3.3) in detail. sBy indicates the spin of a baryon B along the y direction.
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Figure 3.6: Photon-beam asymmetries Σγ for the γp→ K∗0Σ+ (upper panel) and the
γp→ K∗+Σ0 (lower panel) as functions of cos θ in the range of Eγ = (2.075− 2.9125)

GeV.

We draw the numerical results of the photon-beam asymmetries Σγ in Fig. 3.6. It

turns out that the N∗ and ∆∗ resonances do not much come into play the Σγ for both

the (I)K∗0Σ+ and (II)K∗+Σ0 channels. While t-channel exchange governs the K∗Σ

channel mechanisms because of their large magnetic couplings, the ∆-pole contribution

pulls down Σγ to the negative direction. The effect of the ∆-pole contribution becomes

important with Eγ increasing.

In contrary to the Σγ , the resonances have some effects on the recoil asymmetries Py as

depicted in Fig. 3.7. Since we have taken into account rather large spins for resonances,

their effects on recoil and target asymmetries, defined as the subtraction between the

opposite spin directions of the polarized differential cross sections of the baryons, are

expected to be natural. But the absolute values of the total results are less than 0.15

over the whole energy region. Thus their effects are not so impressive. We present the

numerical results of the target asymmetries Ty in Fig. 3.8. The effects of the resonances

on Ty tend to be very similar to those on Py. But the phases of the Ty and Py curves

for the corresponding channels are opposite to each other.

Let us switch to the description of the same oaservables as functions of Eγ , fixing the

angles θ between θ = 0◦ and θ = 180◦. In Fig. 3.9, we can find that, though the N∗ and
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Figure 3.7: Recoil asymmetries Py for the γp → K∗0Σ+ (upper panel) and the
γp→ K∗+Σ0 (lower panel) as functions of cos θ in the range of Eγ = (2.075− 2.9125)

GeV.
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Figure 3.8: Target asymmetries Ty for the γp → K∗0Σ+ (upper panel) and the
γp→ K∗+Σ0 (lower panel) as functions of cos θ in the range of Eγ = (2.075− 2.9125)

GeV.

∆∗ resonances seem to exhibit small effects, one can see a slight change of Σγ with Eγ

increasing. In particular, in the intermediate angles (60◦ . θ . 120◦), the influence of

the resonances is more clearly revealed.

Figures 3.10 and 3.11 draw the Py and Ty, respectively. When the resonances are turned

off, both the Py and Ty have almost zero, independent of Eγ . When the resonances are

included, it turns out that both the Py and Ty in the intermediate angles start to rise

until certain regions and then falls off slowly, as Eγ increases. This tendency is more

obvious especially for the (I)K∗0Σ+ channel.
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Figure 3.9: Photon-beam asymmetries Σγ for the γp → K∗0Σ+ (upper panel) and
the γp→ K∗+Σ0 (lower panel) as functions of Eγ , the scattering angle being changed

from 0◦ to 180◦.
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Figure 3.10: Recoil asymmetries Py for the γp → K∗0Σ+ (upper panel) and the
γp→ K∗+Σ0 (lower panel) as functions of Eγ , the scattering angle being changed from

0◦ to 180◦.
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Figure 3.11: Target asymmetries Ty for the γp → K∗0Σ+ (upper panel) and the
γp→ K∗+Σ0 (lower panel) as functions of Eγ , the scattering angle being changed from

0◦ to 180◦.

3.4 Summary

We have studiedK∗Σ(1190) photoproduction, employing the effective Lagrangian method

at the tree-level Born approximation. We mainly took account of the N∗ and ∆∗ reson-

nce contributions besides the nonresonant background ones. The form factors are chosen

so as to satisfy the WT identity.

It turned out that the total cross sections for both the (I)K∗0Σ+ and (II)K∗+Σ0 pho-

toproductions are negligibly affected by the resonance contributions. Instead, they are

dominated by the Born diagrams such as the ∆-pole and K exchanges. The total

cross section for the (II)K∗+Σ0 channel turns out to be a little smaller than that for

the (I)K∗0Σ+ one because of the differences in the coupling constants and isospin fac-

tors. This tendency is obviously distinguished from the case of KΣ(1190) photoproduc-

tion [15]. The differential cross sections for the (I)K∗0Σ+ channel are reproduced quite

well compared with the CLAS data [72], showing that the main dependence is due to the

∆-pole and K exchanges. As for the (II)K∗+Σ0 channel, the ∆-pole occupies almost

entire regions, exhibiting rather flat curves.

The photon-beam asymmetry Σγ is marginally affected by the resonance contribu-

tions, but because of the Born terms it has a negative value especially in the range

of −0.5 ≤ cos θ ≤ 0. The recoil and target asymmetries Py and Ty reveal some struc-

tures due to the N∗ and ∆∗ resonances in comparison with the Born terms, though their
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effects are almost invisible in the cross sections. The predictions of those polarization

observables will bring us useful guides for future experiments in understanding the role

of resonances in photoproductions, together with the double polarization observables

such as the polarization transport coefficients Cx,y [101, 102]. They are expected to be

be measured by the CLAS, LEPS, and CBELSA/TAPS Collaborations.



Chapter 4

K∗Λ photoproduction

We investigate the γN → K∗Λ process focusing on the role of nucleon resonances in

a similar way as done in chapter 3. An effective Lagrangian method is employed at

the tree-level Born approximation. After determining the background parameters, we

extract the resonance couplings based on the experimental data and the SU(6) quark

model. It turns out that the relevant resonances play a different role compared with the

γN → K∗Σ process.

4.1 Particle data group

The 2012 edition of Review of Particle Physics [103] were much improved from those

in the 2010 edition [76], especially for the information about the N∗ resonances. This

revision is mainly based on a new multi-channel partial wave analysis [104]. So far

the existence and properties of N∗ resonances were determined by the partial wave

analyses of πN scattering data [105] but more investigation is needed for a complete

understanding. Anisovich et al. performed a multichannel partial wave analysis taking

both the pion- and photon-induced reactions off proton targets [104].

According to this analysis, a few new N∗ resonances were either newly found or re-

arranged in the N∗ spectrum [103, 106, 107]. The former ones are N(1880)1/2+ and

N(2040)3/2+ even though they are not well established. The latter ones correspond to

S11(2090) and D15(2200), which were moved down to N(1895)1/2− and N(2060) 5/2−,

respectively, with their photon decay amplitudes added. As for the N(2190) 7/2−, its

photon decay amplitudes were renewed. Whereas there has been only a two-star N(2000)

concerning the evidence for a JP = 5/2+ state with a mass above 1800 MeV, it was split

(according to mass) into two two-star states, the N(1860) 5/2+ and N(2000) 5/2+. A

36
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Figure 4.1: Spectrum of nucleon resonances.

noticeable thing is that the D13(2080) has disappeared in the PDG 2012 edition. Instead,

two new resonances with JP = 3/2− are included: N(1875)3/2− and N(2120)3/2−. The

old D13(2080) seems to correspond to N(1875)3/2− below the K∗Λ threshold, though

the new data for the photon decay helicity amplitudes [103, 104] are very different from

the old ones [76, 108, 109]. A diagrammatic expression is shown in Fig. 4.1.

4.2 Motivation

Before the Review of Particle Physics was changed in 2012, a few theoretical works

were performed concerning the γp → K∗+Λ process. Ref. [82] employed an effective

Lagrangian approach considering only Born term tree diagrams, the t-channel mesons

(K, K∗, and κ), s-channel nucleon, and u-channel hyperon (Λ, Σ, and Σ∗) contribu-

tions. In addition to those, nucleon resonances were included in Ref. [110], D13(2080)

and D15(2200), which lie close to the threshold energy of K∗Λ photoproduction. Others

such as S11(2090) and P11(2100) were excluded since they are poorly confirmed exper-

imentally. Because of the complexity stemming from their higher spins, G17(2190) and

H19(2220) are not included too. It was found that the D13(2080) resonance played

an important role in describing the experimental data near the threshold region. A

Reggeized meson exchange model is also attempted to describe the behavior of the total

cross section [111]. However, they are all based on the preliminary experimental data

for the total and differential cross sections [112, 113].

The first high-statistics experimental data for both the total and differential cross sec-

tions for the reaction γp→ K∗+Λ has been reported recently by the CLAS Collaboration
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at the Thomas Jefferson National Accelerator Facility (TJNAF) [68]. As for the total

cross section data, the threshold region was enhanced compared to the previous prelimi-

nary data depicted in the conference proceeding [112]. Though the original motivation of

Ref. [68] was to study the role of κ(800) meson in the t-channel process, the new CLAS

data near the threshold gives us a clue in understanding the role of higher nucleon

resonances. The new data indicates that there are still missing parts in the previous

analyses.
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Figure 4.2: Total cross sections for the γp→ K∗+Λ with various theoretical results.

As discussed in Ref. [68] in detail, all theoretical results [73, 82, 110, 111] look different

from the new CLAS data. The explicit results are displayed in Fig. 4.2 with various con-

tributions. The thin- and thick-dashed curves are drawn from the effective Lagrangian

approach (O-K model) [82] and Reggeized model (O-N-H model) [111], respectively.

The thin-solid curve represents our model (K-N-O-K model) [110], which includes two

resonances (D13(2080) and D15(2200)) besides the Born term contributions. To match

the Born term parameters with the O-K model, some cutoff masses in form factors are

changed from ΛK,κ = 1.25 GeV to ΛK,κ = 1.1 GeV. The modified O-N-H model, which

is based on the O-N-H model but additionally includes extra resonances used in the

K-N-O-K model, are represented in the thick-solid curve. If one takes this situation

seriously, the production mechanism of the γN → K∗Λ should be reanalyzed with the

new N∗ data employed.

4.3 Formalism

In this subsection, we account for the general formalism of an effective Lagrangian

approach. The tree-level Feynman diagrams relevant to the γN → K∗Λ reaction are
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Figure 4.3: Tree-level Feynman diagrams for the γN → K∗Λ.

displayed in Fig. 4.3. We classify this process as

(I) γp→ K∗+Λ, (II) γn→ K∗0Λ. (4.1)

The t-channel process includes K∗, K, and κ exchanges. The nucleon and N∗ resonance

exchanges are taken into account in the s channel, and the u-channel process corresponds

to Λ, Σ, and Σ∗ exchanges. The contact term is included to preserve gauge invariance

only in the (I)K∗+Λ channel. K∗ exchange is also considered only in this channel

because of charge conservation.

4.3.1 Nonresonant terms

The photon-meson interactions are described by the following effective Lagrangians:

LγK∗K∗ = −ieK∗Aµ
(
K∗νK∗†µν −K∗µνK∗†ν

)
,

LγK∗K = gγK∗Kε
µναβ (∂µAν)

(
∂αK̄

∗
β

)
K + H.c.,

LγK∗κ = gγK∗κA
µν κ̄K∗µν + H.c., (4.2)
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and the electromagnetic (EM) interactions for the baryons are

LγNN = −N̄
[
eNγµ −

eκN
2MN

σµν∂
ν

]
AµN,

LγΛΛ =
eκΛ

2MN
Λ̄σµν∂

νAµΛ,

LγΛΣ =
eµΣΛ

2MN
Σ̄σµν∂

νAµΛ + H.c.,

LγΛΣ∗ = − ie

2MN

[
gVγΛΣ∗Λ̄γν −

igTγΛΣ∗

2MN
∂νΛ̄

]
γ5Σ∗µF

µν + H.c.. (4.3)

The EM couplings for the spin-3/2 hyperon Σ∗ are related to the well-known magnetic

dipole (M1) and electric quadrupole (E2) moments. These coupling constants are de-

termined by the experimental data for the radiative decay width ΓΣ∗→γΛ [1], which leads

to (gVγΛΣ∗ , g
T
γΛΣ∗) = (3.78, 3.18).

Finally, the effective Lagrangians for the meson-baryon interactions are given by

LKNΛ = −igKNΛN̄γ5ΛK + H.c.,

LκNΛ = −gκNΛN̄Λκ+ H.c.,

LK∗NY = −gK∗NY N̄
[
γµY −

κK∗NY
2MN

σµνY ∂
ν

]
K∗µ + H.c.,

LK∗NΣ∗ = − if
(1)
K∗NΣ∗

2MK∗
K̄∗µνΣ̄∗µγνγ5N −

f
(2)
K∗NΣ∗

(2MK∗)2
K̄∗µνΣ̄∗µγ5∂

νN

+
f

(3)
K∗NΣ∗

(2MK∗)2
∂νK̄∗µνΣ̄∗µγ5N + H.c.. (4.4)

Here Aµ, K∗µ, K, and κ denote the photon, K∗(892, 1−) vector meson, K(494, 0−) pseu-

doscalar meson, and κ(800, 0+) scalar meson, respectively. N , Λ, Σ, and Σ∗ stand for

the nucleon, Λ(1116, 1/2+), Σ(1190, 1/2∗), and Σ∗(1385, 3/2+) hyperon fields, respec-

tively [1]. The Fµν and K∗µν represent the field tensor for the photon and K∗ vector

meson, defined by Fµν = ∂µAν − ∂νAµ and K∗µν = ∂µK
∗
ν − ∂νK∗µ, respectively. Y denote

Λ or Σ fields, and Σ = τ ·Σ and Σ∗µ = τ ·Σ∗µ. The baryon fields with spin s = 3/2 are

described by the Rarita-Schwinger field [79, 80].

Finally, the contact term is considered only for the charged K∗ production to conserve

the U(1) gauge invariance. The corresponding Lagrangian is given by

LγK∗NΛ = − ieK∗gK∗NΛκK∗NΛ

2MN
Λ̄σµνAνK

∗
µN + H.c.. (4.5)

As for the details of the coupling constants and the structures of scattering amplitudes,

we refer to chapter 3.



Chapter 4. K∗Λ photoproduction 41

4.3.2 Nucleon resonances in the s channel

We use the PDG 2012 edition [103] as for the information about the N∗ resonances. We

consider, in this work, theN(2000) 5/2+, N(2060) 5/2−, N(2120) 3/2−, andN(2190) 7/2−

resonances near the threshold region. The values of the masses and decay widths are

taken from the Breit-Wigner ones [104, 114].

The EM Lagrangians are written as

LγNR3/2±
= −ie

[
h1

2MN
N̄Γ(±)

ν − ih2

(2MN )2
∂νN̄Γ(±)

]
FµνRµ + H.c.,

LγNR5/2±
= e

[
h1

(2MN )2
N̄Γ(∓)

ν − ih2

(2MN )3
∂νN̄Γ(∓)

]
∂αFµνRµα + H.c.,

LγNR7/2±
= ie

[
h1

(2MN )3
N̄Γ(±)

ν − ih2

(2MN )4
∂νN̄Γ(±)

]
∂α∂βFµνRµαβ + H.c.. (4.6)

The transition magnetic moments h1,2 given in Eq. (4.6) are determined by the Breit-

Wigner helicity amplitudes from Refs. [104, 114] or by the predictions from the relativis-

tic quark model [3]: the parameters for N(2000) 5/2+, N(2060) 5/2−, and N(2120) 3/2−

are taken from Refs. [104, 114], whereas those for N(2190) 7/2− are from Ref. [3]. All

the relevant parameters are organized in Table 4.1.

Resonances A1 A3 h1 h2

N(2000) 5/2+ +32 (−18) +48 (−35) +0.114(−0.395) +1.22(−0.500)
N(2060) 5/2− +67 (+25) +55 (−37) −2.45(+0.027) −3.81(−2.85)
N(2120) 3/2− +130 (+110) +150 (+40) −0.827(−1.66) +2.14(+2.31)
N(2190) 7/2− −34 (+10) +28 (−14) +7.87(−2.94) −7.36(+2.49)

Table 4.1: Transition magnetic moments h1,2 in Eqs. (4.6) extracted from the helicity

amplitudes A1,3 [GeV−
1
2 ] [3, 104, 114] for the (I)K∗+Λ ((II)K∗0Λ) channel.

The effective Lagrangians for the strong vertices read

LK∗ΛR3/2±
=

iR̄µ

[
g1

2MN
ΛΓ(±)

ν ∓ ig2

(2MN )2
∂νΛΓ(±) ± ig3

(2MN )2
ΛΓ(±)∂ν

]
K∗µν + H.c.,

LK∗ΛR5/2±
= R̄µα×[

g1

(2MN )2
ΛΓ(∓)

ν ± ig2

(2MN )3
∂νΛΓ(∓) ∓ ig3

(2MN )3
ΛΓ(∓)∂ν

]
∂αK∗µν + H.c.,

LK∗ΛR7/2±
= −iR̄µαβ×[

g1

(2MN )3
ΛΓ(±)

ν ∓ ig2

(2MN )4
∂νΛΓ(±) ± ig3

(2MN )4
ΛΓ(±)∂ν

]
∂α∂βK∗µν + H.c..(4.7)
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The strong coupling constants in Eq. (4.7), gi, are obtained from the following relation,

ΓN∗→K∗Λ =
∑

s,l

|Gs,l|2, (4.8)

where the explicit form of the decay amplitudes Gs,l is given in Ref. [5]. Here, we

take account of the lowest partial-wave contribution for Gs,l and thus only the lowest

multipole, i.e., the first term of Eq. (4.7), is considered as in Ref. [110]. The signs of

these strong coupling constants are determined phenomenologically. Because of lack

of information, we also assume that N(2000) 5/2+, N(2060) 5/2−, N(2120) 3/2−, and

N(2190)7/2− may correspond to F15(2000), D15(2200), D13(2080), and G17(2190) in

the PDG 2010 edition [76], respectively. However, as will be shown in the next section,

the N(2120) 3/2− turns out to be distinguished from the old D13(2080) that played an

important role in the previous work [110]. In fact, the D13(2080) more or less corre-

sponds to the lower-lying 3-star N∗ resonance N(1875) 3/2−. Therefore, we have to

fit the parameters of the N(2120) 3/2− to the CLAS data. Table 4.2 list the relevant

parameters.

PDG MBW ΓBW Gs,l g1 g1(final)

N(2000) 5/2+ 2090 460 +0.3 +1.37 +1.37
N(2060) 5/2− 2060 375 +0.2 +5.42 +5.42
N(2120) 3/2− 2150 330 +3.8 +1.29 +0.30
N(2190) 7/2− 2180 335 +2.5 −44.3 −44.3

Table 4.2: The masses, the decay widths, and the strong coupling constants g1 in
Eqs. (4.7) extracted from the decay amplitudes Gs,l [

√
MeV] [5].

4.3.3 Form factors

In an effective Lagrangian approach, a form factor should be considered at each vertex,

since it parameterizes the structure of the hadron. However, it is in fact rather difficult

to handle the form factors at an EM vertex, since it breaks the gauge invariance due to

its nonlocality [115]. To circumvent this problem, the prescription explained in Refs. [97–

99] is used. Though it is phenomenological, it provides a convenient way of dealing with

the form factors for an EM vertex. The form factors for off-shell mesons and baryons

are given by

FΦ =
Λ2

Φ −M2
Φ

Λ2
Φ − p2

, FB =
Λ4
B

Λ4
B + (p2 −M2

B)2
, (4.9)

respectively, where M(Φ,B), and p denote the the mass and the momentum of the off-shell

hadron, respectively. For the charged K∗ production, to conserve the gauge invariance,
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we consider a common form factor for the K∗ and N exchanges as

Fcom = FK∗FN − FK∗ − FN , (4.10)

which is excluded for the neutral K∗ production since all the particle exchanges satisfy

the gauge invariance by themselves. The cutoff parameters are determined phenomeno-

logically. However, to reduce theoretical ambiguities due to the wide range of the cutoff

masses, we limit their values around 1 GeV.

Considering all the ingredients so far, the scattering amplitudes have the following forms:

M(γp→ K∗+Λ) = (MK∗ +MN +Mc)F
2
com +MKF

2
K +MκF

2
κ

+MΛF
2
Λ +MΣF

2
Σ +MΣ∗F

2
Σ∗ +MN∗F

2
N∗ (4.11)

for the (I)K∗+Λ channel and

M(γn→ K∗0Λ) = MKF
2
K +MκF

2
κ +MNF

2
N

+MΛF
2
Λ +MΣF

2
Σ +MΣ∗F

2
Σ∗ +MN∗F

2
N∗ (4.12)

for the (II)K∗0Λ channel.

Each amplitude also has an isospin factor. In Table 4.3, we list them.

channels IK∗ IK Iκ IN , IN∗ IΛ IΣ IΣ∗

(I) γp→ K∗+Λ 1 1 1 1 1 1 1
(II) γn→ K∗0Λ × 1 1 1 1 −1 −1

Table 4.3: Isospin factors to each channel for the γN → K∗Λ.

4.4 Results

In this section, we first present the results of the total and differential cross sections after

determining the cutoff masses by fitting them to the available exprimental data [68].

Then various spin observables are predicted and discussed. The cutoff masses chosen

are given in Table 4.4.

ΛK∗ ΛK Λκ ΛN ΛΛ ΛΣ ΛΣ∗ ΛN∗

0.90 1.10 1.10 0.90 0.90 0.90 0.90 0.90

Table 4.4: Cutoff masses [GeV] to each channel for the γN → K∗Λ.
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4.4.1 Total cross sections

In Fig. 4.4, we depict the total cross sections for the (I)K∗+Λ and (II)K∗0Λ channels in

the left and right panels, respectively. In the case of the (I)K∗+Λ process, resonances

play a decisive role in describing the CLAS data [68] in that the total result is in good

agreement with the experimental data. On the other hand, in the case of the (II)K∗0Λ

process, resonances are not as important as the K∗+Λ one. The K∗ exchange and the

contact term are forbidden because of the neutral charge of the K∗0. Nevertheless, the

total cross section is quite larger than that of the (I)K∗+Λ process, since the neutral

coupling constant of the γKK∗ vertex is larger than the charged one by a factor of about
√

2 (Eq. (3.8)), which gives rise to a twofold difference in the total cross section (see the

dashed curves in Fig 4.4 for comparison). Thus the main contribution to the total cross

section for the (II)K∗0Λ channel comes from the K exchange.
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Figure 4.4: Total cross sections for the γp→ K∗+Λ (left panel) and the γn→ K∗0Λ
(right panel). The data are from Ref. [68].
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Figure 4.5: Resonance contributions to the total cross sections for the γp → K∗+Λ
(left panel) and the γn→ K∗0Λ (right panel).

The details of resonance contributions are drawn in Fig. 4.5. In the case of the (I)K∗+Λ

channel, it is found that the N(2000) 5/2+ is almost negligible and the N(2060) 5/2−

gives a small contribution to the total cross section. Concerning N(2120) 3/2−, we first

assume that it corresponds to the old D13(2080) (see Fig. 4.1). Then the effect of the
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N(2120) 3/2− turns out to be overestimated in comparison with the experimental data,

namely approximately ∼ 1.9 µb for the total cross section. Thus we put the strong

coupling constant of N(2120) 3/2− as a free parameter and fit it to the experimental

data. The coupling constant g1 is changed from +1.29 to +0.30, as shown in Table 4.2.

Consequently, the N(2120) 3/2− is found to be as equally important as N(2190)7/2−.

With these two N∗ resonances considered, the CLAS data of the total cross section is

well reproduced. In the case of the (II)K∗0Λ channel, the resonance contribution is

approximately four times smaller than that of the the (I)K∗+Λ channel.

4.4.2 Differential cross sections
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Figure 4.6: Differential cross sections for the γp → K∗+Λ in the range of Eγ =
1.7− 3.9 GeV. The data are from Ref. [68].
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Figure. 4.6 shows the differential cross sections for the (I)K∗+Λ channel as a function

of cos θ. There exist broad bump struectures in the range of 1.8 GeV ≤ Eγ ≤ 2.3 GeV,

which are not sufficient to be described by our model. But as Eγ increases our results

begin to match the CLAS data pretty well. Together with the Born terms, N∗ reso-

nances improve on the cross sections. At high energies, we again find discrepancy in

forward angle regions. This is the limitation of the effective Lagrangian method. More

sophisticated theoretical models may enhance the present results.
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Figure 4.7: Differential cross sections for the γn → K∗0Λ in the range of Eγ =
1.9− 2.7 GeV.

Figure 4.7 predicts the differential cross sections for the (II)K∗0Λ channel. The corre-

sponding experimental data will be announced soon [116, 117].

4.4.3 Spin observables

Let us turn to the discussion of the polarization observables [118–120], which provide

important information on the helicity amplitudes and spin structure of a process. In

Appendix C, they are expressed in terms of the helicity amplitudes. The reaction takes

place in the x − z plane. The notation for the polarized differential cross sections are

given by [120]

dσ(B, T ;R, V ) =
dσ

dΩ
(B, T ;R, V ), (4.13)

where B, T , R, V stand for the polarizations of the photon beam (B), the target

nucleon (T ), the recoil Λ (R), and the produced K∗ vector meson (V ), respectively, for

the γN → K∗Λ process.

We begin with the single polarization observables. The definitions of the photon-beam

asymmetry (Σx), the target asymmetry (Ty), and the recoil asymmetry (Py) are defined

by

Σx =
dσ(⊥, U ;U,U)− dσ(‖, U ;U,U)

dσ(⊥, U ;U,U) + dσ(‖, U ;U,U)
,
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Ty =
dσ(U, y;U,U)− dσ(U,−y;U,U)

dσ(U, y;U,U) + dσ(U,−y;U,U)
,

Py =
dσ(U,U ; y, U)− dσ(U,U ;−y, U)

dσ(U,U ; y, U) + dσ(U,U ;−y, U)
, (4.14)

where ‖ and ⊥ stand for the linear polarizations of the photon along the direction of

the x and y axes, respectively (Eq. (3.3)). y and −y represent the polarization states

of the baryons in the direction of the y and −y axes, respectively. The U means that

the corresponding particle state is unpolarized.
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Figure 4.8: Photon-beam asymmetries Σγ for the γp→ K∗+Λ (upper panel) and the
γn→ K∗0Λ (lower panel) as functions of cos θ at Eγ = 2.15 and 2.65 GeV.

In the upper panel of Fig. 4.8, the photon-beam asymmetries Σx for the (I)K∗+Λ channel

are displayed. Similarly to the γN → K∗Σ process as done in the previous chapter, the

beam asymmetry is close to with zero without the N∗ resonances. But when included,

it is found that Σx becomes positive and has broad bump structures. The lower panel

of Fig. 4.8 shows the Σx for the (II)K∗0Λ channel. We can see that including the N∗

resonances does not exhibit a notable feature, since K exchange governs the total and

differential cross sections.

Figures 4.9 and 4.10 correspond to the results of the target and recoil asymmetries,

respectively. It is interesting that the shape the Py is clearly distinguished from that

of the beam asymmetry. The Py keeps its netagive value from the forward angle, and

turn positive around cos θ = −0.5 until the backward angle. In the case of the recoil

asymmetries, the results are just opposite to those of the target asymmetries.

Next, we examine the results of the double polarization asymmetries. Among the many

different polarization observables in the vector meson photoproduction, only some of the
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Figure 4.9: Recoil asymmetries Py for the γp→ K∗+Λ (upper panel) and the γn→
K∗0Λ (lower panel) as functions of cos θ at Eγ = 2.15 and 2.65 GeV.
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Figure 4.10: Target asymmetries Ty for the γp → K∗+Λ (upper panel) and the
γn→ K∗0Λ (lower panel) as functions of cos θ at Eγ = 2.15 and 2.65 GeV.
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double polarization asymmetries will be investigated, which are defined as follows:

CBT
zz =

dσ(r, z;U,U)− dσ(r,−z;U,U)

dσ(r, z;U,U) + dσ(r,−z;U,U)
,

CBR
zz =

dσ(r, U ; z, U)− dσ(r, U ;−z, U)

dσ(r, U ; z, U) + dσ(r, U ;−z, U)
,

CTR
zz =

dσ(U, z; z, U)− dσ(U, z;−z, U)

dσ(U, z; z, U) + dσ(U, z;−z, U)
,

CTV
zz =

dσ(U, z;U, r)− dσ(U,−z;U, r)
dσ(U, z;U, r) + dσ(U,−z;U, r) ,

CRV
zz =

dσ(U,U ; z, r)− dσ(U,U ;−z, r)
dσ(U,U ; z, r) + dσ(U,U ;−z, r) , (4.15)

where r designates the circularly polarized photon beam (or produced vector meson)

with helicity +1. The CBTzz , CBRzz , CTRzz , CTVzz , and CRVzz are called the beam-target

(BT) asymmetry, the beam-recoil (BR) asymmetry, the target-recoil (TR) asymmetry,

the target-vector-meson (TV) asymmetry, and the recoil-vector-meson (RV) asymmetry.

The N∗ resonances reveal even more dramatic effects, in particular, in the case of the

(I)K∗+Λ channel.
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Figure 4.11: Beam-target asymmetries CBTzz for the γp → K∗+Λ (upper panel) and
the γn→ K∗0Λ (lower panel) as functions of cos θ at Eγ = 2.15 and 2.65 GeV.

In the upper panel of Fig. 4.11, the effects of the N∗ resonances on the BT asymmetry

for the (I)K∗+Λ channel are shown in comparison with the results without the N∗.

While the CBTzz vanishes in the very backward direction (cos θ = −1) without the N∗

resonances, the inclusion of them brings its value down to be negative (≈ 0.8). It implies

that the polarization of the proton chiefly depends on the N∗ resonances. Interestingly,

the effects of the N∗ resonances are not at all lessened even at a higher Eγ . The value

of the CBTzz turns positive at the forward angle, as Eγ increases. The effects of the N∗
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resonances on the (II)K∗0Λ channel are different from those on the (I)K∗+Λ one, as

depicted in the lower panel of Fig. 4.11. However, in this case, the BT asymmetry is

positive in the very backward direction and then turns negative as cos θ increases.
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Figure 4.12: Beam-recoil asymmetries CBRzz for the γp → K∗+Λ (upper panel) and
the γn→ K∗0Λ (lower panel) as functions of cos θ at Eγ = 2.15 and 2.65 GeV.
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Figure 4.13: Target-recoil asymmetries CTRzz for the γp → K∗+Λ (upper panel) and
the γn→ K∗0Λ (lower panel) as functions of cos θ at Eγ = 2.15 and 2.65 GeV.

The upper and lower panels of Fig. 4.12 depict the BR asymmetries for the (I)K∗+Λ

and (II)K∗0Λ channels, respectively. Again, the effects of the N∗ resonances on CBRzz

are clearly seen in the case of the charged reaction. On the other hand, the N∗ effects

are tiny for the neutral channel. We come to the same conclusion for the TR, TV,
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Figure 4.14: Target-vector-meson asymmetries CTVzz for the γp → K∗+Λ (upper
panel) and the γn → K∗0Λ (lower panel) as functions of cos θ at Eγ = 2.15 and 2.65

GeV.
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Figure 4.15: Recoil-vector-meson asymmetries CRVzz for the γp → K∗+Λ (upper
panel) and the γn → K∗0Λ (lower panel) as functions of cos θ at Eγ = 2.15 and 2.65

GeV.
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and RV asymmetries, as shown in Figs. 4.13–4.15, respectively. Future measurements of

the double polarization observables will be essential to scrutinizing the role of the N∗

resonances in the γN → K∗Λ reactions.

4.5 Summary

The aim of this chapter was to study the role of the N∗ resonances in describing the reac-

tion mechanism of γN → K∗Λ. We took account of four N∗ resonances, N(2000) 5/2+,

N(2060) 5/2−, N(2120) 3/2−, and N(2190) 7/2− located near the threshold, based on

the PDG 2012 edition.

The N(2120) 3/2− and N(2190) 7/2− played a decisive role in explaining the experi-

mental data for the γp → K∗+Λ. The total cross sections are in excellent agreement

with the CLAS data. The differential cross sections were also well described in the

range of 2.3 GeV ≤ Eγ ≤ 3.5 GeV, except for the bump structures near the threshold

and the forward angle data at higher energies. This feature of the N∗ resonances is

totally different from the case of K∗Σ photoproduction [43] studied in chapter 3. The

extracted resonance coupling constants based on the SU(6) quark model [5] indicate this

conclusion. Directly comparing Table 4.2 in this work with Table 3.2 in chapter 3, one

can verify the large difference, for example, gK∗ΣG17/gK∗ΛG17 ∼ 1/8 due to the different

isospin factors.

We calculated the total and differential cross sections for the γn → K∗0Λ. It turned

out that the effects of the N∗ resonances on the neutral channel are marginal. We also

predicted the the single and double spin observables for both channels. The contribution

of the N∗ resonances to them is prominent in the γp → K∗+Λ reaction, while it is less

noticeable for K∗0Λ photoproduction.

The γN → K∗Λ can be regarded as a subprocess of the γN → KπΛ reaction. It

indicates that K∗Λ photoproduction may be strongly coupled to another subprocess

such as the γN → KΣ∗(1385) reaction. Therefore it is also interesting to study both

the γN → K∗Λ and γN → KΣ∗(1385) processes within a coupled-channel formalism.



Chapter 5

Production rates of charmed

baryons

Having examined the role of resonances in the strange scattering processes, we now turn

our attention to the charm sector. The structure and the production mechanisms of the

charmed baryons are investigated in chapters 5 and 6. In this chapter, we study the

production rates of charmed baryons for the π−p → D∗−Yc, where Yc is the ground or

excited states of charmed baryons, using a quark-diquark model.

5.1 Motivation

In the standard quark model, baryons and mesons are described as a three-quark state

(qqq) and a quark-antiquark state (qq̄), respectively, For baryons there are two indepen-

dent internal motions of modes, ρ and λ ones. They are degenerate in the light flavor

sector, and obviously split in the presence of one heavy quark exhibiting a different

spectrum. In the strange sector, the so-called isotope shift is already observed as seen

in the inversion of the mass ordering in Σ(1775)-Λ(1830). When we come to the charm

sector, it may also be important to examine the structure of baryons systematically.

Quark models [121, 122] exist for the study of the structures of charmed baryons.

Let us consider the reaction mechanism πN → V B, where V stands for a charmed vector

meson (D∗) and B denotes a charmed baryon in ground or excited states (Λc, Σc...).

In Fig. 5.1, the corresponding t-channel process is drawn in which a charmed reggeon

is exchanged. It couples with a light quark in the initial nucleon and transforms into a

charm quark forming a charmed baryon in the final state.
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π
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V

V

B
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d
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Figure 5.1: t-channel process for the πN → V B, where V = K∗, D∗ (left panel).
Quark-diquark structure (right panel).

In this chapter, we aim to compute the production rates of various charmed baryons, up

to the orbital excitations of d-wave (l = 2), compared to ground state production, using

a quark-diquark model [62]. In doing that, one assumption is made: we consider only

vector (V = D∗ or K∗) reggeon exchanges assuming that they dominate. It is known

that at high energies the cross section shows a forward peak. Thus we compute the

differential cross sections only at the forward angle.

5.2 Quark-diquark model

Baryons can be described as a two-body system of a quark and a diquark. Then a heavy

quark and a light diquark constitute a charmed baryon which is schematically drawn in

the Jacobi coordinates in the left panel of Fig. 5.2. Here the ρ, λ, and Rcm coordinates

are defined by

ρ =
r1 − r2√

2
, λ =

r1 + r2 − 2r3√
6

, Rcm =
m(r1 + r2) +mQr3

2m+mQ
, (5.1)

assuming that the masses of two light quarks are the same. The ρ and λ coordinates

are antisymmetric and symmetric, respectively, under the exchange of r1 and r2.

A quark model Hamiltonian with spin-spin interactions can be expressed as

H0 =
1

2m
(p2

1 + p2
2) +

1

2mQ
p2

3 −
1

2Mtot
P 2

+ Vconf(HO) + VCS + .... (5.2)

With the definitions

M = 2m+mQ, mρ = m, mλ =
3mmQ

2m+mQ
, (5.3)

we obtain the momentum conjugate to the above three coordinates

pρ = mρρ̇, pλ = mλλ̇, P cm = MṘcm. (5.4)
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Finally, in terms of these, the oscillator Hamiltonian reads

H0 =

(
p2
ρ

2mρ
+

3

2
Kρ2

)
+

(
p2
λ

2mλ
+

3

2
Kλ2

)
+
P 2

cm

2M
. (5.5)

Since the last term does not affect on the intrinsic spectrum of the baryon, only the first

two terms play an important role. It turns out that λ mode acts more collectively. Since

mρ < mλ and

ωρ =

√
3K

mρ
=

√
3K

m
,

ωλ =

√
3K

mλ
=

√
K(2m+m′)

mm′
, (5.6)

we get ωρ > ωλ.

The color-magnetic (spin dependent) interaction in Eq. (5.2) has the following form

VCS = −
∑

ij

α

mimj

λa(i)

2

λa(j)

2
σ(i) · σ(j). (5.7)

The interaction is proportional to the inverse masses of the quarks. Thus it is found that

the diquark prefers to correlate strongly with light quark pairs, while the combination

of containing at least one heavy quark is suppressed.

mQ

m

m

r1

r2

r3

Rcm

Q

q q

Figure 5.2: Jacobi coordinates (left panel). λ and ρ coordinates of a three-quark
system (right panel).

In right panel of Fig. 5.2, the relative motion of the quark and the diquark is depicted

by the λ coordinate. The ρ mode is also implicit in this scheme. Due to the spin-spin

interaction, the pair of 3Sρ0 quarks (d0) is expected to have a lower mass than that of

3Sρ1 quarks (d1). Even though there can be internal excitations of diquarks and mixing

of the λ and ρ modes, we focus on the λ motions of (orbitally) ground state diquarks of

the two kinds, d0 and d1, because the reaction mechanism shown in Fig. 5.2 excites the

λ mode dominantly.
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The quark-diquark wave functions of the λ modes are summarized in Appendix D. We

have then made a tentative assignment of these states with the nominal ones listed

in PDG when available [103] as shown in Table 5.1. We have also made arbitrary

assignment for the unknown states to fill the corresponding ones by simply guessing

their masses. The latter are shown in Table 5.1 with a ∗ symbol.

5.3 Amplitudes

To obtain the production rates of various charmed baryons, the baryon matrix elements

should be computed. To do that, we introduce the following two interaction Lagrangians,

LπV V = fεµναβ ∂
µπ∂νV αV β, (5.8)

LV qc = gc̄γµqVµ, (5.9)

where f and g denotes the coupling constants, and q and c the spinors of the light

(q = u, d) and charm quarks, respectively.

First, the matrix element of the πV V coupling of Eq. (5.8), reads

〈
V (kV )|LπV V |π(kπ)V (q)

〉
∼ 2fεµ0αβk

µ
πk

0
V e

αeβ → 2fk0
V
~kπ × ~e · ~e , (5.10)

where kπ, kV , and q are the momenta of the initial pion, the final V , and the exchanged

V meson, respectively. eα,β are the polarization vectors of either the final or the inter-

mediate vector mesons. Here we assume that the reaction energy is not too large since

the produced energy is limited to the range of s/s0 . 2.

Next, we turn to the baryon matrix element of the V qc coupling of Eq. (5.9),

〈
LV qc

〉
=

〈
gc̄γµVµq

〉

= gϕ†f

(
1,− σ · pf

mc + Ec

)(
V 0 −σ · V
σ · V −V 0

)
 1

σ · pi
mq + Eq


ϕi , (5.11)

where ϕi,f stand for the two component spinors for the initial light quark and the final

charm quark, respectively. Only the spatial component of the V meson is taken into

account, because it solely survives when contracted with the πV V vertex . Thus we get

〈
LV qc

〉
∼ −gϕ†f

[
1

mq + Eq
(σ · V )(σ · pi) +

1

mc + Ec
(σ · pf )(σ · V )

]
ϕi

= −gϕ†f
[(

pf
mc + Ec

+
pi

mq + Eq

)
· V + iσ ×

(
pf

mc + Ec
− pi
mq + Eq

)
· V
]
ϕi (5.12)
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Finally, combining the matrix elements Eqs. (5.10) and (5.12), we can express the scat-

tering amplitude as

tfi ∼ 2fgk0
V kπ × e · JfiGV (t) , (5.13)

where the baryon transition current Jfi reads

Jfi =

∫
d3xϕ†f

[
pf

mc + Ec
+

pi
mq + Eq

+ iσ ×
(

pf
mc + Ec

− pi
mq + Eq

)]
ϕi e

iqeff ·x ,(5.14)

and the Regge propagator GV (t) is expressed as

GV (t) =

(
s

s0

)αV (t)−1

Γ(1− αV (t)). (5.15)

Here we have defined the effective momentum transfer

qeff =
md

md +mq
PN −

md

md +mc
PB, (5.16)

which takes into account the recoil of the center of mass motion due to the change in

the masses of q and c quarks [123].

Finally, we obtain a rather concise formula for the amplitude

tfi ∼
(

PB
2(mc +md)

− 1

)
k0
V kπ

〈
f | e⊥ · σ eiqeff ·x |i

〉
GV (t) . (5.17)

Here e⊥ denotes the transverse vector, and hence the transverse spin induces the tran-

sition, as expected for the vector (JP = 1−) exchange process.

5.4 Production rates

We have computed the transition amplitudes tfi from the nucleon i ∼ N to various

charmed baryons f ∼ B. For charmed baryons, we consider all possible states including

the ground, p-wave and d-wave excitations. The production rates are computed by

R ∼ 1

Flux
×
∑

fi

|tfi|2 × Phase space. (5.18)

Using the results of the amplitudes as shown in Appendix D, we find

R(B(JP )) =
1

4|p|√sγ
2K2C |IL|2

q

4π
√
s
. (5.19)
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In this expression, C is the geometric factor of the matrix element
〈
f | e⊥ · σ eiqeff ·x |i

〉

determined by the spin, angular momentum and total spin of the baryon, while IL(L =

0, 1, 2) contains dynamical information of the baryon wave function. K is the kinematic

factor

K = k0
V kπ

(
PB

2(mc +md)
− 1

)
GV (t) (5.20)

and γ the following isospin overlap factor

γ =
1√
2

for Λ baryons ,

=
1√
6

for Σ baryons , (5.21)

l = 0 Λ(1
2

+
) Σ(1

2

+
) Σ(3

2

+
)

M [MeV] 1116 1192 1385
2286 2455 2520

C 1 1/9 8/9
R(Bs) 1 0.04 0.210
R(Bc) 1 0.03 0.17

l = 1 Λ(1
2

−
) Λ(3

2

−
) Σ(1

2

−
) Σ(3

2

−
) Σ′(1

2

−
) Σ′(3

2

−
) Σ′(5

2

−
)

M [MeV] 1405 1520 1670 1690 1750 1750 1775
2595 2625 2750 2800 2750 2820 2820

C 1/3 2/3 1/27 2/27 2/27 56/135 2/5
R(Bs) 0.07 0.11 0.002 0.003 0.003 0.01 0.01
R(Bc) 0.93 1.75 0.02 0.04 0.05 0.21 0.21

l = 2 Λ(3
2

+
) Λ(5

2

+
) Σ(3

2

+
) Σ(5

2

+
) Σ′(1

2

+
) Σ′(3

2

+
) Σ′(5

2

+
) Σ′(7

2

+
)

M [MeV] 1890 1820 1840 1915 1880 2000∗ 2000∗ 2000∗

2940 2880 1840 3000∗ 3000∗ 3000∗ 3000∗ 3000∗

C 2/5 3/5 2/45 3/45 2/45 8/45 38/105 32/105
R(Bs) 0.02 0.04 0.003 0.001 0.001 0.001 0.001 0.001
R(Bc) 0.49 0.86 0.01 0.02 0.01 0.05 0.11 0.09

Table 5.1: Baryon masses M [MeV], spin-dependent coefficients C and the ratios of
production rates R given in Eq. (5.19). The second and third rows are the ratios R
for the strange and charmed baryons, respectively, which are normalized to the ground
state Λ. They are computed at kLabπ = 4.2 GeV for the strange, and at kLabπ = 20 GeV

for the charmed baryons.

By using the baryon wave functions as summarized in Appendix D, the geometric factors

C and the production rates R are computed. In Table 5.1, results are shown for both

charm and strangeness productions at the pion momentum in the laboratory frame,

kLabπ = 20 GeV for charm production and kLabπ = 4.2 GeV for strangeness production.

These momenta correspond to s/sth = 2 for both cases. The wave functions of strange
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baryons are obtained by replacing the charm quark by a strange quark. The rates R
presented in the Table 5.1 are normalized by that of the lowest Λ baryon.

5.5 Summary

We conclude that the Λ baryons are more produced than the Σ’s for both the strange

and charm reactions when comparing the states which have the same quantum numbers.

This is a consequence of SU(6) symmetry of the quark-diquark baryons. The charmed

resonances turn out to exhibit higher rates of productions than the strangeness ones,

except for the Σ(1/2+) and Σ(3/2+) when comparing the corresponding states. The

Λc resonances are similarly or even more produced than the ground state Λc(2286).

This is owing to the large overlap of the wave functions when the momentum transfer

is large, typically around 1 GeV for charm production. Meanwhile, in the case of the

strange production, the Λs resonances are much suppressed compared to the ground

state Λs(1116).

In our calculation, we assumed that vector (V) reggeon exchange is dominant. But

pseudoscalar (P) reggeon exchange also can be considered by replacing the transverse

spin by the longitudinal spin, e⊥ · σ → e|| · σ. Note that the amplitudes of the V and

P reggeon exchanges do not interfere each other due to the spin selection rule.



Chapter 6

Pion-induced K∗0Λ and D∗−Λ+
c

productions

The aim of this chapter is to investigate both the π−p → K∗0Λ and π−p → D∗−Λ+
c

processes based on an effective Lagrangian method and a Regge approach. The total

and differential cross sections for the K∗ production are calculated and those for the D∗

one are estimated.

6.1 Motivation

In 2012, a new proposal was submitted at the J-PARC (Japan Proton Accelerator

Research Complex) facility to investigate the charmed baryons via the pion-induced

reactions at a high-momentum beam line [61]. There has been only one attempt at

Brookhaven National Laboratory (BNL) in 1985 to search for the charm productions

associated with the mechanism π−p → D∗−Bc, where Bc stands for a charmed baryon

in ground or excited states (Bc = Λ+
c ,Σ

+
c , ...) [124]. No evidence was found for these

reactions, but only an upper limit (95% confidence level) is estimated, namely 7-nb.

On the theoretical side, the differential cross sections dσ/dt for the strange and charm

productions, i.e. π−p → K∗0Λ and π−p → D∗−Λ+
c , were calculated as a function of

s/sth by using a simple Regge model [62] as shown in Fig. 6.1. s/sth is the threshold

value of s: sth(strange) = (mK∗+mΛ)2 and sth(charm) = (mD∗+mΛc)
2 and the unit of

the cross sections is artibrary [au]. We simply considered only vector reggeon exchange

for a rough estimation of the relative strength. The Kaidalov’s prescription is employed,

60
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Figure 6.1: Forward differential cross sections dσ/dt(θ = 0) as a function of
s/sth Ref. [62].

which is based on the quark-gluon string model (QGSM) [125–128],

dσ

dt
=

factor

64π(pcm)2s
Γ2(1− αV (t))

(s
s̄

)2
(
s

s0

)2αV (t)−2

. (6.1)

Here pcm is the relative momentum of the initial particle in the center-of-mass frame

and s̄ is a universal scale parameter. At this moment, the role of s̄ is not important.

The other scale parameter s0 depends on flavors of the reggeon, and is determined by

the QGSM [125],

s0(strange) = 1.66 GeV2 , s0(charm) = 4.75 GeV2 . (6.2)

The detailed form of Regge trajectories is referred to the Appendix E. The point here is

to examine the forward cross section dσ/dt(θ = 0) for strange and charm productions,

which seems to be plausible since a Regge model is designed to work best in the forward

angle region. The ratio of the charm to strange production turns out to be 10−3 near

the threshold and 10−5 at high energy s/sth ∼ 10. The J-PARC experiment is expected

to measure the total cross section most efficiently at s/sth ∼ 2. According to our results

in Fig. 6.1, the rate of charm production is smaller than strange production by a factor

about 10−4 at this point. Thus, if one uses the data of the total cross sections for the K∗

production, which is of the order of 10 [µb] [129, 130], the value for the D∗ production

is expected to be of the order of 1 [nb], using this simple Regge model.

In this chapter, we want to further elaborate the study of Ref. [62] on these two processes,

employing both an effective Lagrangian method and a Regge approach, placing emphasis

on the latter. In Ref. [126], the π−p→ D−Λ+
c reaction is studied with the QGSM, relying

only on the D∗ reggeon. However, in this work, we consider the contribution of the D

and Λc reggeons as well as that of the D∗ reggeon using the same model. As we will

show later, the D∗ reggeon plays a crucial role in describing the π−p→ D∗−Λ+
c reaction.



Chapter 6. Pion-induced K∗0Λ and D∗−Λ+
c productions 62

6.2 Formalism (Effective Lagrangian method)

In this section, we explain the general framework of an effective Lagrangian approach

to study both the π−p→ K∗0Λ and π−p→ D∗−Λ+
c reactions. The effective Lagrangian

method is known to be successful in describing hadron productions near the low energy

region.

6.2.1 Effective Lagrangians

pp(p1)

π−

ΛΛ(p2)

π−(k1) K∗0K∗0(k2)

K∗+,K+

n

π− K∗0

p Σ+ Λ

(a) (c)(b)

Figure 6.2: Tree-level diagrams for the π−p→ K∗0Λ.

We first start with the π−p → K∗0Λ reaction. The relevant tree-level diagrams are

depicted in Fig. 6.2 in which k1 and p1 stand for the momenta of the initial π and

proton, respectively. k2 and p2 denote those of the final K∗ and Λ, respectively. In this

model, we consider (a) the t-channel process (K and K∗ exchanges); (b) the s-channel

one (the nucleon exchange); and (c) the u-channel one (Σ exchange).

The invariant Feynman amplitudes are calculated from the following Lagrangians:

LπKK∗ = −igπKK∗(K̄∂µτ · πK∗µ − K̄∗µ∂µτ · πK),

LπK∗K∗ = gπK∗K∗ε
µναβ∂µK̄

∗
ντ · π∂αK∗β, (6.3)

for the K∗ meson and pseudoscalar-octet-meson interactions. To determine the coupling

constant gπKK∗ , the experimental data of the decay width Γ(K∗ → Kπ) [1] is used. From

the above Lagrangian LπKK∗ , the decay width can be expressed kinematically as

Γ(K∗ → Kπ) = g2
K∗Kπ

k3
π

8πM2
K∗
, (6.4)

where kπ is the three-momentum of the decaying particle

kπ =

√
[M2

K∗ − (MK +Mπ)2][M2
K∗ − (MK −Mπ)2]

2MK∗
, (6.5)
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so that one can easily obtain gπKK∗ = 6.56. Using the hidden local gauge symmetry [131]

and SU(3) flavor symmetry (Appendix F), we get the πK∗K∗ coupling constant as

gπK∗K∗ = 7.45 GeV−1 .

The interaction between the K∗ vector meson and the baryon octet is represented by

the following effective Lagrangian:

LK∗NY = −gK∗NY N̄
[
γµY −

κK∗NY
2MN

σµνY ∂
ν

]
K∗µ + H.c., (6.6)

where Y designates Λ or τ ·Σ. We take the values of the coupling constants gK∗NY and

κK∗NY from the Nijmegen soft-core model (NSC97a) [78].

For the pseudoscalar meson and baryon octet vertices, two types of couplings are possi-

ble: the pseudoscalar (PS) or the pseudovector (PV) couplings. The former one corre-

sponds to

LPS
πNN = −igπNN N̄γ5τ · πN,
LPS
πΣΛ = −igπΣΛΛ̄γ5π ·Σ + H.c.,

LPS
KNΛ = −igKNΛN̄γ5ΛK + H.c., (6.7)

and the latter one reads

LPV
πNN =

gπNN
2MN

N̄γµγ5∂
µτ · πN,

LPV
πΣΛ =

gπΣΛ

MΛ +MΣ
Λ̄γµγ5∂

µπ ·Σ + H.c.,

LPV
KNΛ =

gKNΛ

MN +MΛ
N̄γµγ5Λ∂µK + H.c.. (6.8)

Note that the t-channel process is equivalent each other because only at this case the

relevant baryons are on their mass shell. In other words, only LPS
KNΛ and LPV

KNΛ are

equivalent each other. But the s- and u-channel processes do not yield the same result

in two types. In the next section, we compare two different results according to the

types of Lagrangians. The coupling constants gπNN , gπΣΛ, and gKNΛ are again taken

from the Nijmegen potential [78].

We tabulate all the relevant coupling constants in Table 6.1.

gπKK∗ gπK∗K∗ gπNN gπΣΛ gKNΛ gK∗NΛ κK∗NΛ gK∗NΣ κK∗NΣ

6.56 7.45 GeV−1 13.3 11.9 -13.4 -4.26 2.91 -2.46 -0.529

Table 6.1: The relevant coupling constants used in the π−p→ K∗0Λ.
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6.2.2 Scattering amplitudes

The scattering amplitude for the πN → K∗Λ can be expressed as

M = ε∗µūΛMµ uN , (6.9)

where uN and uΛ stand for the Dirac spinors for the incoming nucleon and for the

outgoing Λ, respectively, and εµ denotes the polarization vector of the outgoing K∗

meson.

For t-channel exchange, the amplitudes are obtained as follows:

Mµ
K(PS) = IK

−igπKK∗
t−M2

K

gKNΛγ5k
µ
1 ,

Mµ
K(PV) = IK

igπKK∗

t−M2
K

gKNΛ

MN +MΛ
γνγ5k

µ
1 (k2 − k1)ν ,

Mµ
K∗ = IK∗

gπK∗K∗gK∗NΛ

t−M2
K∗

εµναβ
[
γν −

iκK∗NΛ

MN +MΛ
σνλ(k2 − k1)λ

]
k2αk1β,(6.10)

and for s- and u-channel exchanges, we get

Mµ
N (PS) = IN

igK∗NΛgπNN
s−M2

N

[
γµ − iκK∗NΛk2ν

MN +MΛ
σµν
]

(/k1 + /p1 +MN )γ5,

Mµ
N (PV) = IN

igK∗NΛ

s−M2
N

gπNN
2MN

[
γµ − iκK∗NΛk2ν

MN +MΛ
σµν
]

(/k1 + /p1 +MN )γαγ5k1α,

Mµ
Σ(PS) = IΣ

igK∗NΣgπΣΛ

u−M2
Σ

γ5(/p2 − /k1 +MΣ)

[
γµ − iκK∗NΣk2ν

MN +MΣ
σµν
]
,

Mµ
Σ(PV) = IΣ

igK∗NΣ

u−M2
Σ

gπΣΛ

MΣ +MΛ
γαγ5(/p2 − /k1 +MΣ)

[
γµ − iκK∗NΣk2ν

MN +MΣ
σµν
]
k1α.(6.11)

6.2.3 Form factors

We choose the following form of form factor

F (q,M) =
Λ4

Λ4 + (q2 −M2)2
, (6.12)

which is also used in the photoproduction process as discussed in chapters 3 and 4.

Here q and M denote the transfer momentum and the mass of the exchanged particle,

respectively. Note that we employ another type of form factor when investigating the

Regge model. The cutoff mass Λ is usually fitted to reproduce the experimental data.

The final form of the scattering amplitude is written as

M(π−p→ K∗0Λ) =MK · FK +MK∗ · FK∗ +MN · FN +MΣ · FΣ. (6.13)
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The isospin factor I turns out to be the same for all the channels, IK = IK∗ = IN =

IΣ =
√

2.

6.2.4 Charm production

pp

π−

Λ+
cΛ+

c

π− D∗−D∗−

D̄∗0, D̄0

n

π− D∗−

p Σ++
c

Λ+
c

(a) (c)(b)

Figure 6.3: Tree-level diagrams for the π−p→ D∗−Λ+
c .

Now we turn to the charm production reaction π−p → D∗−Λ+
c . The amplitude for

this process is obtained just by replacing the strange mesons and the hyperons by the

charmed ones. The relevant Feynman diagrams are shown in Fig. 6.3. In principle,

the coupling constants for the charmed hadrons should be different from those for the

strange hadrons. In the present calculation, however, we use intentionally the same

coupling constants for the corresponding vertices. This might be considered to be a

good assumption if strange and charm quarks are sufficiently heavy. One exception

is the coupling constant gπD∗D∗ . The dimensionful constant gπK∗K∗ is related to the

dimensionless one ḡπK∗K∗ as gπK∗K∗ = ḡπK∗K∗/MK∗ . On the other hand, we normalize

the dimensionful constant for the πD∗D∗ vertex to be gπD∗D∗ = ḡπK∗K∗/MD∗ , which

means that gπD∗D∗ = MK∗/MD∗ · gπK∗K∗ . Typically, the coupling constants in the

strange and heavy sectors differ by a factor of order one; for instance gπKK∗ ∼ gπDD∗/2,

while other relations are unknown. This is the main source of the possible uncertainty

in our present study. Keeping this in our mind, we expect that the present prescription

allows us to make a comparison between the strange and charm productions.

The form of the scattering amplitude is similar to that of the strange production ampli-

tude

M(π−p→ D∗−Λ+
c ) =MD · FD +MD∗ · FD∗ +MN · FN +MΣc · FΣc . (6.14)

6.3 Results (Effective Lagrangian method)

We present our numerical results in this section. Te determine the cutoff parameters, the

experimental data of the total and differential cross sections for the π−p→ K∗0Λ [129,
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130, 132, 133] are used. In general, the cutoff mass Λ depends on the reaction channel,

K,- K∗-, N -, and Σ-exchanges. At this moment, to minimize the number of parameters

for a rough estimation of the production rate, two different values are employed, for the

meson exchanges and baryon exchanges, separately. With the same coupling constants

and cutoff masses, the total and differential cross sections for the π−p → D∗−Λ+
c are

predicted and compared to those for the π−p → K∗0Λ. The determined cutoff masses

are listed in Table 6.2.

channel ΛK ΛK∗ ΛN ΛΣ

π−p→ K∗0Λ 0.55 0.55 0.60 0.60

channel ΛD ΛD∗ ΛN ΛΣc

π−p→ D∗−Λ+
c 0.55 0.55 0.60 0.60

Table 6.2: Cutoff masses [GeV] to each channel for the π−p→ K∗0Λ and the π−p→
D∗−Λ+

c .

6.3.1 Total cross sections

We first depict the contributions of each channel to the total cross section for the π−p→
K∗0Λ. In the previous section, it is mentioned that there can be two types of couplings:

pseudoscalar (PS) and pseudovector (PV) ones. Figures. 6.4 and 6.5 correspond to the

results of the former and latter cases, respectively. It is drawn as a function of s/sth,

where sth is the threshold value of s, i.e. sth = (mK∗ +mΛ)2 = 4.05 GeV2.
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Figure 6.4: Total cross section for the π−p→ K∗0Λ based on the effective Lagrangian
method with the PS Lagrangian. The data are taken from Ref. [129] (triangles) and

Ref. [130] (circles).

In both cases, it is found that the t-channel process makes the most dominant contri-

bution to the total cross section. K exchange plays a decisive role in explaining the

experimental data in the low energy region, whereas K∗ exchange governs its behavior

in the high energy region. This is so since the contribution of K exchange falls off as
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Figure 6.5: Total cross section for the π−p→ K∗0Λ based on the effective Lagrangian
method with the PV Lagrangian. The data are taken from Ref. [129] (triangles) and

Ref. [130] (circles).

s increases, while the effect of K∗ exchange becomes larger with s increasing. But, in

the end, it gets constant when s is large enough. The reason of this pattern of behavior

comes from the fact that the cross section is proportional to J − 1, σ ∼ sJ−1, where

J denotes the spin of an exchange particle in the t channel. This relation is derived

by combining a single term of the t-channel partial-wave analysis and the optical the-

orem (Eq. 2.15). There is no interference between K and K∗ exchanges as explained

in Ref [62] in detail. Moreover, since the Lagrangian LPS
KNΛ (Eq. (6.7)) is equivalent to

LPV
KNΛ (Eq. (6.8)), the contribution of K+K∗ exchange is the same for both the PS and

PV types.

On the other hand, baryon exchanges give almost marginal contribution at any energies.

One noticeable feature is that the phase between this baryon exchanges and meson

exchanges are different each other. In the case of the pseudoscalar (PS) type, the phase

is destructive at lower energies and becomes constructive from s/sth ∼ 2 (Fig. 6.4). In

the case of the pseudovector (PV) type, it is always constructive over the whole energy

region (Fig. 6.5).

The result of the total cross section matches the experimental data [129, 130] only in

the relatively low energy region (s/sth . 2.1) and begins to deviate from the data as s

increases. It seems to be reasonable because the effective Lagrangian method is based

on the Born approximation and thus is constructed to describe mainly the lower energy

region near threshold.

6.3.2 Differential cross sections dσ/dΩ

In Figs. 6.6 and 6.7, the results of the differential cross sections dσ/dΩ for the π−p →
K∗0Λ are drawn as functions of cos θ. θ is the scattering angle between the incoming
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Figure 6.6: Differential cross sections dσ/dΩ for the π−p → K∗0Λ as functions of
cos θ based on the effective Lagrangian method with the PS Lagrangian. The data are

taken from Ref. [130].
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Figure 6.7: Differential cross sections dσ/dΩ for the π−p → K∗0Λ as functions of
cos θ based on the effective Lagrangian method with the PV Lagrangian. The data are

taken from Ref. [130].

π and the outgoing K∗ meson in the center-of-mass frame. Similarly to the previous

subsection, two types of results are illustrated separately.

K and K∗ exchanges are mostly dominant, especially in the forward angle region. When

they reach near cos θ ∼ 1, the contribution of K∗ exchange is sharply reduced. But that

of K exchange keeps its rising behavior over the whole angle region. s-channel exchange

is known to exhibit the flatness in angle distribution. This is reflected in the PV type

more precisely rather than in the PS one as seen in the N exchange. A relativistic effect

may shift it slightly. On the other hand, Σ exchange in the u channel becomes important

at backward angles though the magnitude is much smaller that of t-channel exchange.

Because of these different characters of each contribution, the dip structure appears in

the range of −0.6 ≤ cos θ ≤ −0.2 and −0.8 ≤ cos θ ≤ −0.4 for the PS and PV types,

respectively. As Plab increases, this tendency becomes stronger for both cases, and in

the former case the the differential cross section is much deeper than the latter case.

This dip structure is not enough to describe the flatness of the experimental data [130]

between the intermediate angles −0.5 ≤ cos θ ≤ 0. Only the very forward angle region

is well reproduced by using the effective Lagrangian approach.
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6.3.3 Differential cross sections dσ/dt

We show the results of the differential cross sections dσ/dt for the π−p → K∗0Λ in

Fig. 6.8. Only the PV type is considered here and will be applied to the Regge formula

in the next section since it seems to describe the total cross section better rather than

the PS type. They are drawn as functions of −t′ = tmax − t, where the minimum and

maximum values of t are expressed kinematically as

tmax
min = M2

π +M2
K∗ −

1

2s

[
[s− (M2

N −M2
π)][s− (M2

Λ −M2
K∗)]

∓
√

[s− (MN +Mπ)2][s− (MN −Mπ)2]
√

[s− (MΛ +MK∗)2][s− (MΛ −MK∗)2]

]
, (6.15)

respectively. For each of fixed energies, t varies between tmin and tmax (or −t′ varies

between 0 and tmax − tmin). The differential cross section is defined in terms of the

Feynman amplitude M as

dσ

dt
=

1

64π(pcm)2s

1

2

∑

si,sf ,λf

|M|2, (6.16)

where si and sf designate the spins of the nucleon and the Λ, respectively. λf stands

for the polarization label of K∗ meson and the pcm the momentum of pion in the center-

of-mass frame.
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Figure 6.8: Differential cross sections dσ/dt for the π−p → K∗0Λ as functions of t′

based on the effective Lagrangian method with the PV Lagrangian. The data are taken
from Ref. [132] (squares), Ref. [133] (stars), and Ref. [130] (circles).
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The contributions of t-channel exchanges decrease as −t′ increases, as expected. K

exchange governs dσ/dt near −t′ ≈ 0, whereas K∗ exchange becomes the main contri-

bution to dσ/dt. This feature does not change in general, even though Plab increases.

The s- and u-channel effects are almost negligible. The results from the effective La-

grangian approach are in good agreement with the experimental data between −t′ = 0

and −t′ = 1.2 GeV2, and they start to deviate from the data as −t′ increases. Note

that the effective Lagrangian method can only explain the data in the smaller −t′ region

when Plab = 6.0 GeV/c.

6.3.4 Charm production

We now turn to the charm production, again based on the effective Lagrangian method.

In the left panel of Fig. 6.9, the results of the total cross section for the π−p→ D∗−Λ+
c

reaction are drawn as a function of s/sth. Note that sth is different from the case of

strange production, i.e. sth = (mD∗ + mΛc)
2 = 18.4 GeV2. In contrast with the K∗Λ

production, the effect of D exchange is very much suppressed in the D∗Λc production,

while D∗ exchange dominates the process. As mentioned in the case of the strange

production, the total cross section for the πN → D∗Λc reaction is proportional to sJ−1

when s is large, so that D∗ exchange dictates the total cross section at higher energies.

All other contributions including D exchange have some effects on it only in the vicinity

of threshold.
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Figure 6.9: Total cross section for the π−p → D∗−Λ+
c based on the effective La-

grangian method using PV Lagrangian (left panel). Comparison of the total cross
section for the π−p→ D∗−Λ+

c with that for the π−p→ K∗0Λ (right panel). The data
are taken from Ref. [129] (triangles) and Ref. [130] (circles).

The result of the total cross section for the π−p → D∗−Λ+
c reaction is compared with

that for the π−p → K∗0Λ in the right panel of Fig. 6.9. The total cross section for

the charm production is about 104 times smaller than that for the strange one near the

threshold region. When s/sth reaches around 10, the total cross section for the D∗Λc
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production becomes approximately 103 times smaller than that for the K∗Λ production.

The reason for this smallness mainly comes from the form factors.
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Figure 6.10: Comparison of the differential cross section for the π−p → D∗−Λ+
c

with that for the π−p → K∗0Λ based on the effective Lagrangian method using PV
Lagrangian. The data are taken from Ref. [130].

The difference in the differential cross section dσ/dΩ is also analyzed in Fig 6.10. As

expected from the data of the total cross section, D∗ exchange is dominant, particularly

in the range of 0 ≤ cos θ ≤ 1. In the backward region, Σc exchange governs the charm

process.

6.4 Formalism (Regge approach)

Having studied the effective Lagrangian method so far, we now switch to another model

to examine the same strange and charm productions. Spurred on the finding that the

effective Lagrangian method explains the experimental data only near low energy regions,

we will introduce a Regge approach, which is known to explain high energy scattering

quite well with unitarity preserved.

6.4.1 Regge propagators and trajectories
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u
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d
s̄

s
u
d

π− d
ū
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Figure 6.11: (a) Planar and (b) non-planar diagrams for the π−p→ K∗0Λ.
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We first consider the π−p→ K∗0Λ. The relevant diagrams are drawn in Fig. 6.11 by the

quark lines. In the Regge theory, the planar diagram is described by reggeon exchange

in the t channel, whereas the non-planar one corresponds to reggeon exchange in the u

channel. In our process, the reggeons in the t channel are dictated by the K and K∗

trajectories, whereas the Σ-baryon trajectory leads to the reggeon in the u channel as

displayed in Fig. 6.11.

In the case of t-channel exchange, the Regge amplitudes are derived by replacing the

Feynman propagator PF by the Regge propagator PR [65] as follows:

PF
K =

1

t−M2
K

⇒ PR
K(s, t) =

(
1

e−iπαK(t)

)(
s

sK

)αK(t)

Γ[−αK(t)]α′K ,

PF
K∗ =

1

t−M2
K∗

⇒ PR
K∗(s, t) =

(
1

e−iπαK∗ (t)

)(
s

sK∗

)αK∗ (t)−1

Γ[1− αK∗(t)]α′K∗ ,(6.17)

where αK(t) and αK∗(t) denote the Regge trajectories for the K and K∗ mesons, re-

spectively. sK and sK∗ stand for the energy scale parameters. The Regge trajectories

for K and K∗ are taken from Ref. [134], respectively, as αK(t) = −0.151 + 0.617t,

αK∗(t) = 0.414 + 0.707t. The energy scale parameters are determined by using the

QGSM [125–128]: sK = 1.752 and sK∗ = 1.662. In Appendix E, more details are

explained.
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Figure 6.12: K and K∗ meson trajectories.

In general, a Regge propagator is expressed in terms of a linear combination of the two

different signatures. However, when a Regge trajectory for a hadron with odd spins is

approximately the same as that for a hadron with even spins, that is, two trajectories are

almost degenerate, one of the signature is canceled out. As depicted in Fig. 6.12, which

are taken from Ref. [134], both the K trajectory and the K∗ one are almost degenerate,

respectively. Thus the Regge propagator can have either the signature 1 or e−iπαK(K∗)

as shown in Eq.(6.17) [20, 23]. Since we have these two different signatures, there are



Chapter 6. Pion-induced K∗0Λ and D∗−Λ+
c productions 73

four different ways of selecting the signatures for both the K and K∗ Regge propagators.

We will examine each case in the next section.

Within the framework of a Regge approach, the differential cross section dσ/dt must

comply with the following form when t approaches to zero

dσ

dt
(s→∞, t→ 0) ∝ s2α(t)−2. (6.18)

In the case of u-channel exchange, we similarly replace the Feynman propagator by the

Regge propagator as done in the t channel

PF
Σ =

1

u−M2
Σ

⇒ PR
Σ (s, u) =

(
1

e−iπαΣ(u)

)(
s

sΣ

)αΣ(u)− 1
2

Γ

[
1

2
− αΣ(u)

]
α′Σ.(6.19)

As for the Σ trajectory, it is not easy to find some tendency like the K and K∗ tra-

jectories. In Fig. 6.13, we depict two trajectories for Σs, assuming that the quantum

numbers for some unknown resonances are fixed [67]. In the present calculation, the

solid trajectory is taken into account, for which αΣ(u) = −0.79 + 0.87u [67], since it

contains the lowest-lying Σ(1190). Based on this trajectory, we are able to determine the

scale parameter to be sΣ = 1.569. We also assume that the Σ trajectory is degenerated

and two different signatures 1 and e−iπαΣ(u) are considered as we did for the mesonic

cases.
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Figure 6.13: Σ trajectory [67].

The differential cross section dσ/du should obey the following condition when u ap-

proaches zero asymptotically

dσ

du
(s→∞, u→ 0) ∝ s2α(u)−2. (6.20)
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6.4.2 Regge amplitudes and form factors

The key point of our model is to interpolate between the low and high energy regions

just by substituting the Regge propagator PR for the Feynman propagator PF from the

Feynman amplitude M defined in Eqs. (6.10) and (6.11)

TK(s, t) = MK(s, t)
PR
K(s, t)

PF
K(t)

,

TK∗(s, t) = MK∗(s, t)
PR
K∗(s, t)

PF
K∗(t)

,

TΣ(s, u) = MΣ(s, u)
PR

Σ (s, u)

PF
Σ (u)

. (6.21)

By doing that, we keep the structure at low energies which comes from the effective

Lagrangians, and the asymptotic behavior (Eqs. (6.18) and (6.20)) is also conserved at

high energies. To prove the latter point, analytical calculations are essentially required

and done carefully. It is found that, in the limit of s→∞, one hasMK ∝ s0,MK∗ ∝ s1,

and MΣ ∝ s
1
2 . The explicit forms are given in Appendix G. In this section, we use the

PV type because it fits the data of the total cross section better rather than the PS type

(see Figs. 6.4 and 6.5 for comparison).

In the previous section, when dealing with the effective Lagrangians, we take account

of the form factor which satisfies F (q,M) = 1 provided the relevant particle is on mass

shell q2 = M2 (see Eq. (6.12)). Here we consider another type of form factor C(q),

which is only a function of the transfer momentum and is independent of the particle

mass

C(q) =
a

1− q2/Λ2
, (6.22)

where a and Λ denote a dimensionless constant and a cutoff mass in units of GeV,

respectively.

The final form of the scattering amplitude for this strange process is given by

T (π−p→ K∗0Λ) = TK · CK + TK∗ · CK∗ + TΣ · CΣ. (6.23)

Note that, since the Regge approach is not applicable to the s channel, N exchange is

excluded here.
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ū

u
d
u

p
d
c
u
Λ+c

d
c̄ D∗−

(a) (b)

Figure 6.14: Planar and non-planar diagrams for the π−p→ D∗−Λ+
c in the left and

right panels, respectively.

6.4.3 Charm production

Replacing the s quarks in Fig. 6.11 with c quarks, we can display the quark diagrams

for the π−p→ D∗−Λ+
c process (Fig. 6.14). We can derive the Regge amplitudes for the

charm production in a similar way directly by using the expressions for the π−p→ K∗0Λ

process:

TD(s, t) = MD(s, t)

(
s

sD

)αD(t)

Γ [−αD(t)]
α′D
PF
D(t)

,

TD∗(s, t) = MD∗(s, t)

(
s

sD∗

)αD∗ (t)−1

Γ [1− αD∗(t)]
α′D∗

PF
D∗(t)

,

TΣc(s, u) = MΣc(s, u)

(
s

sΣc

)αΣc (u)− 1
2

Γ

[
1

2
− αΣc(u)

]
α′Σc

PF
Σc

(u)
. (6.24)

The final form of the scattering amplitude is expressed as

T (π−p→ D∗−Λ+
c ) = TD · CD + TD∗ · CD∗ + TΣc · CΣc . (6.25)

We can now directly compare the magnitude of the charm production with that of the

strange one. We consider the same signatures as in the strange production for both the

t- and u-channels, the values of which will be determined in the next section.

6.5 Results (Regge approach)

We are now in a position to discuss the numerical results from the Regge approach.

The Regge amplitudes behave typically as T ∼ sα(0) as s becomes very large, which in

general are in accordance with the experimental data. Thus, the intercepts α(0) play a

decisive role in explaining the experimental data at high energies. On the other hand,

the magnitude of the total cross section is determined by the coupling constants and

form factors.
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6.5.1 Form factors and phases

Before showing final results, we should fit free parameters, the dimentionless constant

a and the cutoff mass Λ in the form factor C(q), and the phases, either a constant or

rotating one.

1 2 4 8
s/sth

10
-2

10
-1

10
0

10
1

10
2

10
3

σ
 [

µ
b

]

KR

K*
R

ΣR

[Regge]

π−p -> K*0Λ

0 1 2 3
-t  [GeV2] `

10
-1

10
0

10
1

10
2

d
σ

/d
t 

[µ
b

/G
eV

2
]

KR

K*
R

Plab = 6.0 GeV/c

π−p -> K*0Λ
[Regge]

Figure 6.15: Total cross sections for the π−p→ K∗0Λ based on the Regge approach
without form factors. The data are taken from Ref. [129] (triangles) and Ref. [130]

(circles).

Figure 6.15 draws the s and t dependence on the total and differential sections, respec-

tively, without considering the form factors. It is notable that the total cross section

is comparable in relative magnitude to that of the effective Lagrangian method (see

Figs. 6.4 and 6.5 for comparison). Taking a look at the slope of each channel, it is

implied that K∗ reggeon would play an important role by comparing its slope with that

of the experimental data. The t dependence is even more interesting. The slope seems

to be similar each other, but near small t region the curve of K∗ exchange rapidly de-

creases, which is also shown in the experimental data. This fact also indicates that the

contribution of K∗ exchange could be dominant.

To reduce the ambiguity, the same values of cutoff masses are employed, which turns

out to be almost the same as the ones used in the effective Lagrangian method. The

dimentionless constnat a is fitted to the experimental data. It constrols the absolute

value of the cross sections. The free parameters contained in the form factors are listed

in Table 6.3.

channel aK aK∗ aΣ ΛK ΛK∗ ΛΣ

π−p→ K∗0Λ 0.6 0.9 1.6 0.55 0.55 0.55

channel aD aD∗ aΣc ΛD ΛD∗ ΛΣc

π−p→ D∗−Λ+
c 0.6 0.9 1.6 0.55 0.55 0.55

Table 6.3: Free parameters in form factors to each channel for the π−p→ K∗0Λ and
the π−p→ D∗−Λ+

c .
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It should be noted that the cutoff masses are related to the size of relevant hadrons. Since

we have determined the cutoff masses by fitting to the strange production, those for the

charmed production ought to be different. In Appendix H, the size of a charmed baryon

is calculated in comparison with the nucleon which is given by 0.5 fm. It turns out to be

0.512 fm. Threrfore, since the cutoff mass is in inverse proportion to the size of a relavant

hadron, the cutoff mass for the charmed production might be 0.55 GeV · 0.5/0.512 =

0.537 GeV. However, this change does not affect the general result when employing

0.55 GeV.
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Figure 6.16: Total cross sections for the π−p→ K∗0Λ based on the Regge approach
according to the phases for each channel. The data are taken from Ref. [129] (triangles)

and Ref. [130] (circles).

There are all eight possibilities for the phases. We have examined each case in Fig. 6.16.

c and r in the parentheses denote the constant or rotating phases, respectively, for each

channel. Whatever phase we use, the contribution of K + K∗ exchange is the same

since there is no interference between them [62]. But when Σ exchange is included, all

different results appear. Only the low energy region (1 ≤ s/sth ≤ 2) is affected by the

change of the phase, and within 20% we have similar absolute values. We choose the

signature factor 1 in common for all the Regge propagators.

6.5.2 Total cross sections

In Fig. 6.17, each contribution to the total cross section is illustrated. K∗ reggeon

exchange governs its dependence on s. The contribution of K reggeon exchange is

smaller than that of K∗ reggeon exchange and the gap gets larger as s increases. The

reason is clear from the value of αK(t) mentioned previously: the corresponding intercept

is smaller than that for the K∗ trajectory. We have seen in Figs. 6.4 and 6.5 that

the contribution of K∗ exchange in the effective Lagrangian method rises slowly as s

increases, which results in deviation from the experimental data. On the other hand, K∗

reggeon exchange exhibits the s dependence of the total cross section correctly, so that it
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Figure 6.17: Total cross sections for the π−p→ K∗0Λ based on the Regge approach.
The data are taken from Ref. [129] (triangles) and Ref. [130] (circles).

desribes the experimental data much better thanK∗ exchange in the effective Lagrangian

method at higher values of s. Σ reggeon exchange in the u channel makes some effects

only on the threshold region and falls off more rapidly than t-channel exchange. This

can be understood from the behavior of the u-channel Regge amplitude: TΣ ∼ s−0.79.

6.5.3 Differential cross sections dσ/dΩ
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Figure 6.18: Differential cross sections dσ/dΩ for the π−p → K∗0Λ as functions of
cos θ based on the Regge approach. The data are taken from Ref. [130].

Figure 6.18 depicts the results of the differential cross section dσ/dΩ for the π−p →
K∗0Λ. The K∗ reggeon in the t channel makes a dominant contribution to the differential

cross section in the forward region, whereas the Σ reggeon in the u channel enhances it

at the backward angles. The effect of K reggeon exchange is important to describe the

experimental data at the very forward angle. We already have found that the results

from the effective Lagrangian method deviate from the experimental data except for the

forward region. However, the Regge approach correctly describes the experimental data

at Plab = 4.5 GeV/c over the whole angles. Moreover, on the whole, it elucidates the

flatness of the differential cross section between cos θ = −0.7 and cos θ = 0.3, which was

never explained in the effective Lagrangian method.
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6.5.4 Differential cross sections dσ/dt

In Fig. 6.19, we draw the results of the π−p→ K∗0Λ differential cross section dσ/dt as

functions of −t′ at four different values of Plab. The most dominant contribution comes

from K∗ reggeon exchange. K reggeon exchange plays a crucial role in explaining the

data at the very forward angle together with K∗ reggeon exchange. A similar feature

can be also found in the case of KΛ photoproduction [20]. The effect of Σ reggeon

exchange turns out to be tiny. Though the general tendency of the results from the

Regge approach looks apparently similar to that of the effective Lagrangian ones, they

are in fact different each other. The results from the Regge approach fall off faster

than those from the effective Lagrangian method, as −t′ increases. The results from

the Regge approach are in better agreeement with the experimental data in comparison

with those from the effective Lagrangian method.
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Figure 6.19: Differential cross sections dσ/dt for the π−p→ K∗0Λ as functions of t′

based on the Regge approach. The data are taken from Ref. [132] (squares), Ref. [133]
(stars), and Ref. [130] (circles).

6.5.5 Charm production

We now discuss the results of the charm production. In the left panel of Fig. 6.20, we

draw each contribution to the total cross section of the π−p → D∗−Λ+
c . D∗ reggeon

exchange dictates the s dependence of the total cross section. The effect D reggeon and

Σc reggeon exchanges is smaller than that of D∗ reggeon exchange.
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Figure 6.20: Total cross section for the π−p→ D∗−Λ+
c based on the Regge approach

(left panel). Comparison of the the total cross section for the π−p→ D∗−Λ+
c with that

for the π−p→ K∗0Λ (right panel). The data are taken from Ref. [129] (triangles) and
Ref. [130] (circles).

In the right panel of Fig. 6.20, we find that the total cross section of the charm production

is approximately 103− 106 times smaller than that of the strange production depending

on the energy range. The resulting production rate for D∗Λc at s/sth ∼ 2, which is the

expected maximum energy J-PARC Collaboration can produce, is suppressed by about

factor 104 in comparison with the strange production. This implies that the production

cross section of D∗Λc is around 3 nb at that energy.
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Figure 6.21: Comparison of the differential cross section for the π−p→ D∗−Λ+
c with

that for the π−p → K∗0Λ based on the Regge approach. The data are taken from
Ref. [130].

In Fig. 6.21, the differential cross section dσ/dΩ is also compared for both strange

and charm productions. D∗ reggeon exchange plays an crucial role through the whole

angle region, even at the backward angles. This is unexpected since u-channel exchange

usually comes into play backward angle regions. The form factor results in the rising

behavior in the t channel at backward angles.
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6.5.6 Comparison with another model

So far, we have employed a minimal formulation for the Regge approach (except for the

form factor). In the literature, a phenomenological form factor is additionally introduced

to describe a better t-dependence, which exhibits a model dependence for the estimation

of the charm production. To discuss it briefly, we take a model of Grishina et al. [135]

as an example, where an additional t-dependent form factor is included. Their formula

for the total cross section takes the following form [135, 136]

σ =

∫
C
g2
πK∗K∗g

2
K∗NΛ

64π(pcm)2s
exp(2R2t)

(
s

sth

)2αK∗ (t)

dt, (6.26)

where R2 = 2.13 GeV−2 [135] and a dimensionless factor C is chosen to reproduce the

experimental data for the strange production. The Regge trajectory αK∗ is taken from

Ref. [134]. The results are drawn in Fig. 6.22 in which the solid curves correspond to the

results from the present work, whereas the dashed ones are obtained based on Eq. (6.26).

The slope obtained from Eq. (6.26) for the strange production seems to be slightly less

steeper than the present one. However, when it comes to the charm production, the

situation becomes very interesting. While the total cross section is strongly suppressed

near the threshold region than that of the present work, it turns larger than that, as

s increases. Considering the fact that Ref. [124] has experimentally measured only a

upper limit σ ∼ 7nb at the pion momentum Plab = 13 GeV/c for the charm production,

we find that the result derived from Ref. [135] is within this upper limit, while our result

slightly overestimates it: σ = 2.3nb from Eq. (6.26) and σ = 24nb from the present

work.

1 2 4 8

s/sth

10
-6

10
-4

10
-2

10
0

10
2

σ
 [

µ
b

]

π−p -> ( K*0Λ & D*-
Λc

+ ) 
[Regge]

< 7nb 
 BNL

K*0Λ

D*-
Λc

+

Ref. [135]
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6.6 Normalization factor

In this section, we employ the prescription motivated by Totiv et al [137]. Regge model

generally explains the s dependence of the total cross section at high energies, whereas

its magnitude cannot be determined. To solve this problem, they introduced a normal-

ization factor to the Regge amplitude.

6.6.1 Formalism

The normalization factor is inserted into the Regge amplitude as follows:

TK(s, t) = MK(s, t)NK(s, t)
PR
K(s, t)

PF
K(t)

,

TK∗(s, t) = MK∗(s, t)NK∗(s, t)
PR
K∗(s, t)

PF
K∗(t)

,

TΣ(s, u) = MΣ(s, u)NΣ(s, u)
PR

Σ (s, u)

PF
Σ (u)

, (6.27)

where the corresponding normalization factor N is defined by [137]

N (s, t) =
A∞(s)

A(s, t)
, A2(s, t) =

∑

si,sf ,λf

|M′(s, t)|2, (6.28)

for the t channel and

N (s, u) =
A∞(s)

A(s, u)
, A2(s, u) =

∑

si,sf ,λf

|M′(s, u)|2, (6.29)

for the u channel.

Here, M′ is the reduced amplitude that excludes the isospin factor, the coupling con-

stants, and the Feynman propagator

MK(s, t) = M′K(s, t) IK gπKK∗ gKNΛ P
F
K(t),

MK∗(s, t) = M′K∗(s, t) IK∗ gπK∗K∗ gK∗NΛ P
F
K∗(t),

MΣ(s, u) = M′Σ(s, u) IΣ gK∗NΣ gπΣΛ P
F
Σ (u). (6.30)

A∞(s) represents the dominant term for the A(s, t) when s is largh enough. This method

removes the extra s and t dependence coming from the Lagrangians, whereas it keeps

the ratios of K and K∗ Regge amplitudes as dictated by the coupling constants, gπKK∗ ,

gπK∗K∗ , and so on.
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For the K reggon, the dominant term is expressed as

A∞K =
1√

2MK∗
(M2

K∗ −M2
π)(MΛ −MN ), (6.31)

and

A∞K∗(s, t) =
√
−2s2t, (6.32)

for the K∗ reggeon.

We still have a further problem. The asymptotic behavior of the differential cross section

given by Eq. (6.18) is not completely satisfied, since the t dependence is not suppressed,

even though t → 0. To deal with this problem, let us introduce additionally a form

factor C(t) defined by

C(t) =
0.6

1− t/Λ2
, (6.33)

into A∞K∗(s, t), so that we have

A∞K∗(s, t) =
√
−2s2t C(t). (6.34)

Then, we are able to restore the correct asymptotic behavior of dσ/dt in Eq. (6.18)

phenomenologically. The form factor C(t) is exactly the same as that used in the previous

section and the corresponding cutoff mass is chosen as Λ = 1.0 GeV. As will be shown in

the next subsection, it improves much the t dependence of the differential cross section

dσ/dt, keeping the s dependence of the total cross section more or less satisfied.

For the Σ reggeon, the dominant term reads

A∞Σ (s) =
√

2s
MΛ

MΣ +MΛ

[
M2

Σ(M2
N/M

2
K∗ + 2) + 6

κK∗NΣ

MΣ +MN
MNM

2
Σ

+
κ2
K∗NΣ

(MΣ +MN )2
M2

Σ(2M2
N +M2

K∗)
] 1

2
. (6.35)

The normalization factors satisfy the following condition

lim
s→∞

NK(s, t) = lim
s→∞

NK∗(s, t) = lim
s→∞

NΣ(s, u) = 1. (6.36)

6.6.2 Results

In Fig. 6.23, each contribution to the total cross section for the π−p → K∗0Λ and the

π−p → D∗−Λ+
c is shown in the left and right panel, respectively. A striking difference

of this model from ours comes for the charm production. Whereas K∗ (vector) reggeon
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Figure 6.23: Total cross sections for the π−p→ K∗0Λ (left panel) and for the π−p→
D∗−Λ+

c (right panel) based on the Regge approach using the Titov’s prescription. The
data are taken from Ref. [129] (triangles) and Ref. [130] (circles).

exchange dominates the whole energy region in the strange process, D (pseudoscalar)

reggeon exchange, in general, has larger values than D∗ (vector) reggeon one. It implies

that the dominant (leading order) term in the normalization factor does not reflect a

consistent result concerning the relative strength.
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Figure 6.24: Comparison of the total cross section for the π−p→ D∗−Λ+
c with that

for the π−p→ K∗0Λ using the Titov’s prescription. The data are taken from Ref. [129]
(triangles) and Ref. [130] (circles).

In Fig. 6.24, the difference in the total cross section is depicted. At threshold it turns

out to be a factor of 102 and as s increases, the gap becomes large. When it reaches

s/sth = 10, the difference is nearly a factor of 105.

6.7 Summary

In this chapter, we aimed at describing both the strange and charm productions by

the pion beam, based on both an effective Lagrangian method and a Regge approach.
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We started with the effective Lagrangian method to describe the πN → K∗Λ and

πN → D∗Λc reactions. The coupling constants were determined either by using the

experimental data or by employing those from a nucleon-nucleon potential. The cutoff

masses of the form factors were fixed to reproduce the experimental data. However, in

order to reduce the ambiguity of the effective Lagrangian method, we used the same

values of the cut-off masses for each case of meson exchange and baryon exchange.

We were able to explain the total cross section for the π−p → K∗0Λ in lower energy

regions within the framework of the effective Lagrangian method. However, the results

from the effective Lagrangian method start to deviate from the data, as the square of the

total energy s increases. The magnitude of the total cross section for the πp− → D∗−Λ+
c

was approaximately 1000 times smaller than that for the πN → K∗Λ. As expected, the

t channel contributes to the differential cross section in the forward direction, whereas

the u channel does to that in the backward direction. The differential cross section

dσ/dt for the π−p → K∗0Λ tends to decrease, as −t′ increases. The results of dσ/dt

were in agreement with the experimental data only at lower Plab.

We constructed the Regge propagators for K-, K∗-, and Σ-reggeons. Since the corre-

sponding trajectories are degenerate, we were able to consider the signature either to be

1 or to be a complex phase. We selected 1 as the signatures for all three Regge prop-

agators. Compared with the results from the effective Lagrangian method, the Regge

approach describes the experimental data much better, in particular, in higher energy

regions. The total cross section for the π−p→ D∗−Λ+
c turns out to 103-106 times smaller

than that for the π−p→ K∗0Λ depending on the range of production energy.



Chapter 7

Summary

In this thesis, we have studied strange and charm hadron productions with the aid of

an effective Lagrangian method and a Regge approach.

In chapter 2, we explained the general framework of two theoretical models, the effetive

Lagrangian and Regge models. They are known to describe the reactions at low and

high energy regions, respectively.

In chapter 3, we started with the photoproduction γN → K∗Σ, in which two different

final states, γp → K∗0Σ+ and γp → K∗+Σ0, are considered. An effective Lagrangian

method is employed at the tree-level Born approximation. K and κ exchanges in the t

channel, N -and ∆-pole exchanges in the s channel, and Σ and Σ∗ exchanges in the u

channel are regarded as the background contribution. Additionally, K∗ and Λ exchanges

are included only in the K∗+Σ0 channel because of charge conservation. The contact

term is required for the K∗+Σ0 channel too, to preserve gauge invariance. It was found

that the ∆-pole and K exchanges make a dominant contribution to the cross sections

of the CBELSA/TAPS and CLAS data rather than other exchanges for both channels.

Various N∗ and ∆∗ resonances listed in PDG are also taken into account in addition

to the background contribution. They are D13(2080), S11(2090), G17(2190), D15(2200),

S31(2150), G37(2200), and F37(2390) in the s channel, which lie near the threshold of

K∗Σ production. The resonance transition magnetic moments are derived by the helicity

amplitudes given by the PDG or by the SU(6) quark model. The other parameters,

strong coupling constants, are derived by using the SU(6) quark model. It has turned out

that all the resonance contributions make almost negligible effects on the cross sections

due to their small couplings. On the other hand, the spin observables are affected by

the resonance terms unlike by the background ones.
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In chapter 4, we continued to study the photoproduction, γN → K∗Λ, using effective

Lagrangians. The different charged states in the final state, γp → K∗+Λ and γn →
K∗0Λ, were considered. Concerning the background terms, the t-channel mesons (K

and κ), s-channel nucleon, and u-channel hyperons (Λ, Σ, and Σ∗) are included in

common for both channels. K∗ exchange and the contact term are possible only for the

K∗+Λ channel. The four PDG resonances N(2000) 5/2+, N(2060) 5/2−, N(2120) 3/2−,

and N(2190) 7/2− are also considered besides the background terms. Contrary to the

K∗Σ photoproduction, some resonances play important roles in explaining the CLAS

data such as N(2120) 3/2− and N(2190) 7/2− for the K∗+Λ channel. But for the K∗0Λ

channel, the effects of N∗ resonances are almost marginal. Since the values of the strong

coupling constants are the same for both channels, this different feature mainly comes

from the electromagnetic couplings.

In chapter 5, we moved on to the charm production reactions. Based on the process

π−p → D∗−Λ+
c , the production rates of various ground and excited charmed baryons

(Λ∗+c , Σ+
c , Σ∗+c ,...) were predicted in comparison with the ground state Λ+

c . All possible

states including the ground, p-wave, and d-wave excitations are considered with the aid

of a quark-diquark model. We assumed that t-channel D∗ reggeon exchange governs this

process for the high energy reaction (kLab
π = 20 GeV). This method was also applied

to the strange production reaction π−p → K∗0Λ at kLab
π = 4.2 GeV. It has turned out

that the production rates of Λ baryons are larger than those of Σ baryons, which is a

consequence of the SU(6) symmetry of quark-diquark baryons. Moreover, some excited

Λ∗c ’s are comparable in rate to the ground state Λc or even larger. This will give a good

opportunity for the study of excited states.

In chapter 6, we examined the differences in the total and differential cross sections for

the π−p → D∗−Λ+
c and the π−p → K∗0Λ reactions. For each of the two theoretical

methods, effective Lagrangians and a Regge approach, the production rates are com-

pared and discussed. When employing effective Lagrangians, K (pseudoscalar) and K∗

(vector) exchanges are important in low and high energies, respectively, for the strange

production because of the property of the cross section, σ ∼ sJ−1, in the t channel. For

the charm production, the role of D (pseudoscalar) exchange is relatively smaller but

the importance of D∗ (vector) exchange at high energies is unchanged. For both reac-

tions, baryon exchanges give small contributions. However, the dominant vector-meson

exchange eventually violates the unitariry. Thus, a Regge model is taken into account

to describe the high energy region. The Regge parameters are fixed by using QGSM

(Quark-Gluon String Model). We have found that K∗(D∗) reggeon governs the whole

energy region for the stragne (charm) production. It is due to the intercept of Regge

trajectory, which is related to the Regge amplitude as T ∼ sα(0). It should be noted

that the K reggeon exchange also plays a crucial role in describing the forward angle
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region together with the K∗ reggeon one. The magnitude of the total cross section for

the π−p→ D∗−Λ+
c was smaller than that for the π−p→ K∗0Λ by a factor of about 104

near threshold and about 106 at s/sth = 10.

Both photon- and pion-induced reactions are the commonly used scattering processes.

We have made a systematic study of strange and charmed productions of them. The

recent CLAS data of cross sections for the K∗Σ and K∗Λ photoproductions are well

described with the inclusion of N∗ and ∆∗ resonances. Our achievement will be the

basis for the future investigation of other unknown reactions such as K∗Λ∗ and K∗Σ∗

photoproductions. The pion-induced charm production reaction is one of the major

experimental issues in J-PARC. As shown by using the quark-diquark model, this process

is useful to disentangle the structure of charmed baryons. To predict the production

rates of charmed hadrons, our Regge approach seems to be useful since it is desigened

to interpolate between the low and high energy regions. We want to study more the

microscopic dynamics of hadrons through various production reactions such as D∗−Σ+
c ,

D∗−Λ∗+c , D∗−Σ∗+c , D−Λ+
c , D−Σ+

c , and J/ψX pion-induced productions.



Appendix A

Notation and kinematics

A.1 Notation

The Bjorken-Drell convention is used for the metric and the γ-matrices. We used two

types of spinors in the numerical calculation.

A.1.1 Metric

The metric in the Minkowski space is defined as

gµν = gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



. (A.1)

The space-time four-vector xµ ≡ (x0, x1, x2, x3) = (t, x, y, z) is contravariant and thus

the covariant four-vector xµ is given as

xµ = gµνx
ν = (t, −x, −y, −z). (A.2)

Note that the derivative operator is

∂µ =
∂

∂xµ
=

(
∂

∂t
, ∇
)
, ∂µ =

∂

∂xµ
=

(
∂

∂t
, −∇

)
. (A.3)

Based on these notations, we can express the scalar-product of two four-vectors as

aµbµ = gµνa
µbν = a0b0 − a · b,
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aµ∂µ = a0 ∂

∂t
+ a · ∇,

∂µ∂µ =
∂2

∂t2
−∇ · ∇. (A.4)

A.1.2 Pauli and Dirac matrices

The general form of the Pauli matrices is given as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.5)

with the properties

tr(σi) = 0,

tr(σiσj) = 2δij ,

(σi)† = σi,

σiσj = δij + iεijkσk,

(σ · a)(σ · b) = a · b+ iσ · (a× b). (A.6)

The Dirac γ-matrices are represented by the Pauli matrices and the unit 2 × 2 matix

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
. (A.7)

They obey the following relations

{γµ, γν} = 2gµν ,

(γµ)† = γ0γµγ0,

{γµ, γ5} = 0,

(γ5)† = γ5,

(γ5)2 = 1, (A.8)

and have the following trace properties

tr(any odd # of γ′s) = 0,

tr(γµγν) = 4gµν ,

tr(γµγνγαγβ) = 4(gµνgαβ − gµαgνβ − gµβgνα),

tr(γ5) = 0,

tr(γµγνγ5) = 0,

tr(γµγνγαγβγ5) = −4iεµναβ . (A.9)
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Also note that the following identities

εµναβεµναβ = −24,

εµναβεµναδ = −6δβδ,

εµναβεµνδγ = −2(δαδδ
β
γ − δαγδβδ), (A.10)

which are derived from the last form of Eq. A.9.

A.1.3 Spinors

A.1.3.1 Bjorken-Drell representation

u(p, sz = +
1

2
) =

1√
2Mp




√
Ep +Mp

0
pz√

Ep+Mp

px+ipy√
Ep+Mp



, u(p, sz = −1

2
) =

1√
2Mp




0
√
Ep +Mp

px+ipy√
Ep+Mp

− pz√
Ep+Mp



.

(A.11)

ū(p, s)u(p, s′) = δs,s′ ,

u†(p, s)u(p, s′) =
Ep
Mp

δs,s′ . (A.12)

A.1.3.2 Helicity based representation

u(p, s) =

√
Ep +Mp

2Mp

(
1

2σ|p|
Ep+Mp

)
,
2σ · p
2|p| |λ〉 = λ|λ〉,

=

√
Ep +Mp

2Mp

(
1

2λ|p|
Ep+Mp

)
. (A.13)

u(p, sz = +
1

2
) =

1√
2Mp




√
Ep +Mp

0
|p|√
Ep+Mp

0



, u(p, sz = −1

2
) =

1√
2Mp




0
√
Ep +Mp

0
−|p|√
Ep+Mp



.

(A.14)

ū(p, s)u(p, s′) = δs,s′ ,

u†(p, s)u(p, s′) =
Ep
Mp

δs,s′ . (A.15)
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A.2 Kinematics

A.2.1 Mandelstam variables

p1 p2

k1 k2

M1 M2

M3 M4

Figure A.1: Mandelstam variables in the two-body process.

A scattering amplitude can be expressed in terms of the Lorentz-invariant Mandelstam

variables

s = (k1 + k2)2 = (p1 + p2)2,

t = (k1 − p1)2 = (k2 − p2)2,

s = (k1 − p2)2 = (k2 − p1)2, (A.16)

s = (k1 + k2)2 = M2
1 +M2

2 + 2|~k|2 + 2E1E2,

= (p1 + p2)2 = M2
3 +M2

4 + 2|~p|2 + 2E3E4, (A.17)

t = (k1 − p1)2 = M2
1 +M2

3 − 2(E1E3 − |~k||~p| cos θ),

= (k2 − p2)2 = M2
2 +M2

4 − 2(E2E4 − |~k||~p| cos θ), (A.18)

u = (k1 − p2)2 = M2
1 +M2

4 − 2(E1E4 + |~k||~p| cos θ),

= (k2 − p1)2 = M2
2 +M2

3 − 2(E2E3 + |~k||~p| cos θ), (A.19)

where θ is the scattering angle in the COM frame and

s+ t+ u =
∑

i

Mi. (A.20)

A.2.2 Energy and momentum in two-body process

Combining the definitions E2
1 − |~k|2 = M2

1 , E2
2 − |~k|2 = M2

2 , and E1 + E2 = Ecm =
√
s,

one can easily derive each energy of initial particles in the center of mass (COM) frame
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θk1


√

M 2
1 +

~k2, ~k

 k2



√

M 2
2 +

~k2, −~k



p2
(√
M 2

4 + ~p2, −~p
)

p1
(√
M 2

3 + ~p2, ~p
)

Figure A.2: center of mass frame.

(Fig. A.2) as

E1 =
1

2
√
s

(s+M2
1 −M2

2 ), E2 =
1

2
√
s

(s+M2
2 −M2

1 ), (A.21)

and similarly,

E3 =
1

2
√
s

(s+M2
3 −M2

4 ), E4 =
1

2
√
s

(s+M2
4 −M2

3 ). (A.22)

The three-momenta of the initial and final particles in the COM frame are

|~k| = kcm =
1

2
√
s

√
(s− (M1 +M2)2)(s− (M1 −M2)2),

|~p| = pcm =
1

2
√
s

√
(s− (M3 +M4)2)(s− (M3 −M4)2). (A.23)

k1(Elab, ~klab) k2(M2, 0)

Figure A.3: laboratory frame.

In the laboratory (LAB) frame (Fig. A.3),

s = (Elab +M2)2 − ~k2
lab

= (E2
lab − ~k2

lab) +M2
2 + 2ElabM2

= M2
1 +M2

2 + 2ElabM2, (A.24)

that is,

Elab(k1) =
1

2M2
(s−M2

1 −M2
2 ), Elab(k2) = M2. (A.25)
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Using this relation, one can derive the three-momentum of the particle 1

klab =
1

2M2

√
(s− (M1 +M2)2)(s− (M1 −M2)2), (A.26)

and using Eqs. (A.23) and (A.26), we obtain

kcm = klab
M2√
s
. (A.27)



Appendix B

Propagators and helicity

amplitudes

In chapters 3 and 4, when dealing with the resonance parameters, resonance propagators

and photon helicity amplitudes, we used the following forms.

B.1 Resonance propagators

The resonance field for a spin-3/2 is treated as the Rarita-Schwinger field [79, 80], and

the corresponding propagator with momentum p and mass M is written as

∆αβ(p,M) =
/p+M

p2 −M2

[
−gαβ +

1

3
γαγβ +

1

3M
(γαpβ − γβpα) +

2

3M2
pαpβ

]
.(B.1)

The propagators for spins-5/2 and -7/2 resonances are given by [91–94],

∆βα(R, p) = (/p+MR)

[
−gβα +

1

3
γβγα +

1

3MR
(γβpα − γαpβ) +

2

3M2
R

pβpα

]
,

∆β1β2;α1α2(R, p) = (/p+MR)

[
1

2
(ḡβ1α1 ḡβ2α2 + ḡβ1α2 ḡβ2α1)− 1

5
ḡβ1β2 ḡα1α2

− 1

10
(γ̄β1 γ̄α1 ḡβ2α2 + γ̄β1 γ̄α2 ḡβ2α1 + γ̄β2 γ̄α1 ḡβ1α2 + γ̄β2 γ̄α2 ḡβ1α1)

]
,

∆β1β2β3;α1α2α3(R, p) = (/p+MR)
1

36

∑

P (α),P (β)

[
−ḡβ1α1 ḡβ2α2 ḡβ3α3 +

3

7
ḡβ1α1 ḡβ2β3 ḡα2α3

+
3

7
γ̄β1 γ̄α1 ḡβ2α2 ḡβ3α3 −

3

35
γ̄β1 γ̄α1 ḡβ2β3 ḡα2α3

]
, (B.2)
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where the summation runs over all possible permutations of αi’s and βi’s. Here the

following notations are used for convenience:

ḡαβ ≡ gαβ −
pαpβ
M2

, γ̄α ≡ γα −
pα
M2

/p, (B.3)

and the mass of the resonance in the N∗ propagator is replaced as M →M − iΓ/2 with

its decay width Γ.

In principle, off-shell parameters may appear in resonance propagators and vertices.

However, in our numerical calculation, it turns out that such off-shell effects are negligible

since resonances come into play near the on-mass shell region [29], which has been verified

numerically.

B.2 Photon helicity ampltudes

From the effective Lagrangians LγNR of electromagnetic vertices expressed in chapters 3

and 4, the helicity amplitudes are obtained using the following relations

A1/2

(
1

2

±)
= ∓ eh1

2MN

√
pγMR

MN
, (B.4)

for spin-1/2 resonances,

A1/2

(
3

2

±)
= ∓e

√
6

12

√
pγ

MNMR

[
h1 +

h2

4M2
N

MR(MR ∓MN )

]

A3/2

(
3

2

±)
= ∓ e

√
2

4MN

√
pγMR

MN

[
h1 ∓

h2

4MN
(MR ∓MN )

]
, (B.5)

for spin-3/2 resonances,

A1/2

(
5

2

±)
= ± e

4
√

10

pγ
MN

√
pγ

MNMR

[
h1 +

h2

4M2
N

MR(MR ±MN )

]

A3/2

(
5

2

±)
= ± e

4
√

5

pγ
M2
N

√
pγMR

MN

[
h1 ±

h2

4MN
(MR ±MN )

]
, (B.6)

for spin-5/2 resonances, and

A1/2

(
7

2

±)
= ∓e

√
70

280

p2
γ

M2
N

√
pγ

MNMR

[
h1 +

h2

4M2
N

MR(MR ∓MN )

]

A3/2

(
7

2

±)
= ∓e

√
42

168

p2
γ

M3
N

√
pγMR

MN

[
h1 ∓

h2

4MN
(MR ∓MN )

]
(B.7)

for spin-7/2 resonances.
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The helicity amplitudes, in which the transition magnetic moments h1,2 are included,

can be expressed as follows:

Γ(R→ Nγ) =
p2
γ

π

2MN

(2j + 1)MR
[|A1/2|2 + |A3/2|2], (B.8)

where the three-momentum of decaying particle is pγ = (M2
R −M2

N )/(2MR).
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Spin observables

In chapters 3 and 4, we exhibited the results of various spin observables. They can be

expanded in terms of the helicity amplitudes in the COM frame. Since the γN → K∗Y

process is studied, the corresponding helicity amplitudes are decomposed as [120]

H1,λV ≡
〈
λV , λf = +

1

2

∣∣∣T
∣∣∣λγ = 1, λi = −1

2

〉
,

H2,λV ≡
〈
λV , λf = +

1

2

∣∣∣T
∣∣∣λγ = 1, λi = +

1

2

〉
,

H3,λV ≡
〈
λV , λf = −1

2

∣∣∣T
∣∣∣λγ = 1, λi = −1

2

〉
,

H4,λV ≡
〈
λV , λf = −1

2

∣∣∣T
∣∣∣λγ = 1, λi = +

1

2

〉
, (C.1)

where λγ , λV , andλi,f stand for the helicities of the photon, vector meson V, target

nucleon, and recoil hyperon Y, respectively. Note that parity invariance makes the

following relation

〈
λV , λf

∣∣∣T
∣∣∣λγ , λi

〉
= (−1)λf−λi

〈
−λV ,−λf

∣∣∣T
∣∣∣− λγ ,−λi

〉
. (C.2)

The 6× 4 matrix F in helicity space is given by

F≡




H2,1 H1,1 H3,−1 −H4,−1

H4,1 H3,1 −H1,−1 H2,−1

H2,0 H1,0 −H3,0 H4,0

H4,0 H3,0 H1,0 −H2,0

H2,−1 H1,−1 H3,1 −H4,1

H4,−1 H3,−1 −H1,1 H2,1




.
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The general form of spin observable Ω̄ is expressed as

Ω̄ =
Tr[FAγANF†BVBY ]

Tr[FF†] , (C.3)

from which we can construct any of spin observables. Here Aγ , AN , BV , andBY are

given in terms of the elements of the corresponding density matrices.

The cross section intensity is defined by

I(θ) =
1

4
Tr(FF†) =

1

2

4∑

i=1

∑

a=±1,0

|Hi,a|2. (C.4)

C.1 Single polarization observables

The polarized beam asymmetry Σx, target asymmetry Ty, recoil asymmetry Py, and

vector-meson asymmetry Vi are defined by

Σx =
Tr[FσxγF†]
Tr[FF†] ,

Ty =
Tr[FσyNF†]

Tr[FF†] ,

Py =
Tr[FF†σyY ]

Tr[FF†] ,

Vi =
Tr[FF†ΩV

j ]

Tr[FF†] , (C.5)

where

ΩV
j =

√
3

2
(Sx, Sy, Sz),

1√
6

(Sxx − Syy),
1√
2
Szz,

√
2

3
(Sxy, Syz, Szx), (C.6)

with the following notation

Sx =
1√
2




0 1 0

1 0 1

0 1 0


 , Sy =

1√
2




0 −i 0

i 0 −i
0 i 0


 , Sz =




1 0 0

0 0 0

0 0 −1


 . (C.7)

They have the property

Sjk =
3

2
(SjSk + SkSj)− 2δjk13, Tr ΩV

j ΩV
k = 3δjk. (C.8)
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Finally, with all these ingredients, we can express the nonvanishing single polarization

observables as

Σx · I(θ) = −Re{H∗4,1H1,−1 −H∗4,0H1,0 +H∗4,−1H1,1

−H∗3,1H2,−1 +H∗3,0H2,0 −H∗3,−1H2,1},
Ty · I(θ) = −Im{H∗4,−1H3,−1 −H∗4,0H3,0 +H∗4,1H3,1

+H∗2,−1H1,−1 +H∗2,0H1,0 +H∗2,1H1,1},
Py′ · I(θ) = −Im{H∗4,−1H2,−1 +H∗4,0H2,0 +H∗4,1H2,1

+H∗3,−1H1,−1 +H∗3,0H1,0 +H∗3,1H1,1},

Vy′ · I(θ) = −
√

3

2
Im{H∗4,0(H4,1 −H4,−1) +H∗3,0(H3,1 −H3,−1)

+H∗2,0(H2,1 −H2,−1) +H∗1,0(H1,1 −H1,−1)},

Vx′x′y′y′ · I(θ) =

√
3

2
Re{H∗4,−1H4,1 +H∗3,−1H3,1 +H∗2,−1H2,1 +H∗1,−1H1,1},

Vz′z′ · I(θ) =
1

2
√

2
{|H4,−1|2 − 2|H4,0|2 + |H4,1|2 + |H3,−1|2 − 2|H3,0|2 + |H3,1|2

+|H2,−1|2 − 2|H2,0|2 + |H2,1|2 + |H1,−1|2 − 2|H1,0|2 + |H1,1|2},

Vz′x′ · I(θ) = −
√

3

2
Re{H∗4,0(H4,1 −H4,−1) +H∗3,0(H3,1 −H3,−1)

+H∗2,0(H2,1 −H2,−1) +H∗1,0(H1,1 −H1,−1)}. (C.9)

C.2 Double polarization observables

It is even more interesting to polarize simultaneously two of the four components. One

example is the beam-target (BT) asymmetry CBT
ij which is defined by

CBT
ij =

Tr[FσiγσjNF†]
Tr[FF†] . (C.10)

In total, six double polarizaton observables are possible, and among which we display

some of the nonvanishing ones. The beam-target (BT) asymmetries CBT
ij are

CBTzz · I(θ) =
1

2
{|H4,−1|2 + 2|H4,0|2 + |H4,1|2 − |H3,−1|2 − |H3,0|2 − |H3,1|2

+|H2,−1|2|+H2,0|2 + |H2,1|2 − |H1,−1|2 − |H1,0|2 − |H1,1|2},
CBTyx · I(θ) = −Im{H∗4,−1H2,1 −H∗4,0H2,0 +H∗4,1H2,−1

−H∗3,−1H1,1 +H∗3,0H1,0 −H∗3,1H1,−1},
CBTyz · I(θ) = +Im{H∗4,−1H1,1 −H∗4,0H1,0 +H∗4,1H1,−1

+H∗3,−1H2,1 −H∗3,0H2,0 +H∗3,1H2,−1},
CBTzx · I(θ) = +Re{H∗4,−1H3,−1 +H∗4,0H3,0 +H∗4,1H3,1

+H∗2,−1H1,−1 −H∗2,0H1,0 +H∗2,1H1,1}. (C.11)
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The beam-recoil (BR) asymmetries CBR
ij are

CBRzz · I(θ) = −1

2
{|H4,−1|2 + |H4,0|2 + |H4,1|2 + |H3,−1|2 + |H3,0|2 + |H3,1|2

−|H2,−1|2 − |H2,0|2 − |H2,1|2 − |H1,−1|2 − |H1,0|2 − |H1,1|2},
CBRyx′ · I(θ) = Im{H∗4,−1H3,1 −H∗4,0H3,0 +H∗4,1H3,−1

−H∗2,−1H1,1 +H∗2,0H1,0 −H∗2,1H1,−1},
CBRyz′ · I(θ) = +Im{H∗4,−1H1,1 −H∗4,0H1,0 +H∗4,1H1,−1

−H∗3,−1H2,1 +H∗3,0H2,0 −H∗3,1H2,−1},
CBRzx′ · I(θ) = −Re{H∗4,−1H2,−1 +H∗4,0H2,0 +H∗4,1H2,1

+H∗3,−1H1,−1 +H∗3,0H1,0 +H∗3,1H1,1}. (C.12)

The target-recoil (TR) asymmetries CTR
ij are

CTRzz′ · I(θ) = −1

2
{|H4,−1|2 + |H4,0|2 + |H4,1|2 − |H3,−1|2 − |H3,0|2 − |H3,1|2

−|H2,−1|2 − |H2,0|2 − |H2,1|2 + |H1,−1|2 + |H1,0|2 + |H1,1|2},
CTRxx′ · I(θ) = Re{H∗4,−1H1,−1 +H∗4,0H1,0 +H∗4,1H1,1

+H∗3,−1H2,−1 +H∗3,0H2,0 +H∗3,1H2,1},
CTRxz′ · I(θ) = −Re{H∗4,−1H3,−1 +H∗4,0H3,0 +H∗4,1H3,1

−H∗2,−1H1,−1 −H∗2,0H1,0 −H∗2,1H1,1},
CTRzx′ · I(θ) = Re{H∗4,−1H2,−1 +H∗4,0H2,0 +H∗4,1H2,1

−H∗3,−1H1,−1 −H∗3,0H1,0 −H∗3,1H1,1}. (C.13)

The beam-vector-meson (BV) asymmetries CBV
ij are

CBVzz′ · I(θ) = −1

2

√
3

2
{|H4,−1|2 − |H4,1|2 + |H3,−1|2 − |H3,1|2

+|H2,−1|2 − |H2,1|2 + |H1,−1|2 − |H1,1|2},

CBVyx′ · I(θ) = −
√

3

2
Im{H∗4,−1H1,0 +H∗4,0(H1,−1 +H1,1) +H∗4,1H1,0

−H∗3,−1H2,0 +H∗3,0(H2,−1 +H2,1)−H∗3,1H2,0},

CBVyz′ · I(θ) = −
√

3

2
Im{H∗4,−1H1,1 −H∗4,1H1,−1 −H∗3,−1H2,1 +H∗3,1H2,−1},

CBVzx′ · I(θ) =

√
3

2
Re{H∗4,0(H4,−1 +H4,1) +H∗3,0(H3,−1 +H3,1)

+H∗2,0(H2,−1 +H2,1) +H∗1,0(H1,−1 +H1,1)}. (C.14)

The target-vector-meson asymmetries CTV
ij are

CTVzz′ · I(θ) = −1

2

√
3

2
{|H4,−1|2 − |H4,1|2 − |H3,−1|2 + |H3,1|2

+|H2,−1|2 − |H2,1|2 − |H1,−1|2 + |H1,1|2},

CTVxx′ · I(θ) = −
√

3

2
Re{H∗4,0(H3,−1 +H3,1) +H∗3,0(H4,−1 +H4,1)

+H∗2,0(H1,−1 +H1,1) +H∗1,0(H2,−1 +H2,1)},
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CTVxz′ · I(θ) = −
√

3

2
Re{H∗4,−1H3,−1 −H∗4,1H3,1 +H∗2,−1H1,−1 −H∗2,1H1,1},

CTVzx′ · I(θ) = −
√

3

2
Re{H∗4,0(H4,−1 +H4,1)−H∗3,0(H3,−1 +H3,1)

+H∗2,0(H2,−1 +H2,1)−H∗1,0(H1,−1 +H1,1)}. (C.15)

The recoil-vector-meson asymmetries CRV
ij are

CRVz′z′ · I(θ) = −1

2

√
3

2
{|H4,−1|2 − |H4,1|2 + |H3,−1|2 − |H3,1|2

−|H2,−1|2 + |H2,1|2 − |H1,−1|2 + |H1,1|2},

CRVx′x′ · I(θ) = −
√

3

2
Re{H∗4,0(H2,−1 +H2,1) +H∗3,0(H1,−1 +H1,1)

+H∗2,0(H4,−1 +H4,1) +H∗1,0(H3,−1 +H3,1)},

CRVx′z′ · I(θ) =

√
3

2
Re{H∗4,−1H2,−1 −H∗4,1H2,1 +H∗3,−1H1,−1 −H∗3,1H1,1},

CRVz′x′ · I(θ) =

√
3

2
Re{H∗4,0(H4,−1 +H4,1) +H∗3,0(H3,−1 +H3,1)

−H∗2,0(H2,−1 +H2,1)−H∗1,0(H1,−1 +H1,1)}. (C.16)
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Baryon wave functions

D.1 Three quark system

D.1.1 Spin (23 = 8 = 4(S) + 2(ρ) + 2(λ))

Three spin-1
2 quarks cause a total spin S = 3

2 or S = 1
2 .

The S = 3
2 states are symmetric under the exchange of any two spins.

4(S)





χ 3
2
, 3
2

= α(1)α(2)α(3),

χ 3
2
, 1
2

= 1√
3
(ααβ + αβα+ βαα),

χ 3
2
,− 1

2
= 1√

3
(αββ + βαβ + ββα),

χ 3
2
,− 3

2
= βββ.

(D.1)

When considering the case of total spin S = 1
2 , there are two types of mixed symmetric

states, χρ1
2

and χλ1
2

.

χρ1
2
, 1
2

=
∑

ms

(
0m

1

2
ms

∣∣∣1
2

1

2

)∣∣∣0m
〉∣∣∣1

2
ms

〉

=
(

0 0
1

2

1

2

∣∣∣1
2

1

2

)∣∣∣0 0
〉∣∣∣1

2

1

2

〉
=

1√
2

(αβ − βα)α. (D.2)

χλ1
2
, 1
2

=
∑

ms

(
1m

1

2
ms

∣∣∣1
2

1

2

)∣∣∣1m
〉∣∣∣1

2
ms

〉

=
(

1 1
1

2

−1

2

∣∣∣1
2

1

2

)∣∣∣1 1
〉∣∣∣1

2

−1

2

〉
+
(

1 0
1

2

1

2

∣∣∣1
2

1

2

)∣∣∣1 0
〉∣∣∣1

2

1

2

〉

=
2√
6
ααβ − 1√

3

1√
2

(αβ + βα)α =
1√
6

(2ααβ − αβα− βαα). (D.3)
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χρ1
2
,− 1

2

=
∑

ms

(
0m

1

2
ms

∣∣∣1
2

−1

2

)∣∣∣0m
〉∣∣∣1

2
ms

〉

=
(

0 0
1

2

−1

2

∣∣∣1
2

−1

2

)∣∣∣0 0
〉∣∣∣1

2

−1

2

〉
=

1√
2

(αβ − βα)β. (D.4)

χλ1
2
,− 1

2

=
∑

ms

(
1m

1

2
ms

∣∣∣1
2

−1

2

)∣∣∣1m
〉∣∣∣1

2
ms

〉

=
(

1 − 1
1

2

1

2

∣∣∣1
2

−1

2

)∣∣∣1 − 1
〉∣∣∣1

2

1

2

〉
+
(

1 0
1

2

−1

2

∣∣∣1
2

−1

2

)∣∣∣1 0
〉∣∣∣1

2

−1

2

〉

= − 2√
6
ββα+

1√
3

1√
2

(αβ + βα)β =
1√
6

(−2ββα+ αββ + βαβ). (D.5)

D.1.2 Flavor (33 = 27 = 10(S) + 8(ρ) + 8(λ) + 1(A))

10(S) =





3 : uuu, ddd, sss,

6 : ψS(udd) = 1√
3
[udd+ dud+ ddu],

ψS(uss) = 1√
3
[uss+ sus+ ssu],

ψS(duu) = 1√
3
[duu+ udu+ uud],

ψS(dss) = 1√
3
[dss+ dsd+ ssd],

ψS(suu) = 1√
3
[suu+ usu+ uus],

ψS(sdd) = 1√
3
[sdd+ dsd+ dds],

1 : uds.

(D.6)

8 ρ-type is antisymmetric in 1 and 2, and 8 λ-type is symmetric in 1 and 2.

D.1.3 Spin×Flavor wave functions (23 × 33 = 63 = 216)

56 (S)
410 : χSφS 28 : (χρφρ + χρφρ)/

√
2

20 (A)
41 : χSφA 28 : (χρφλ − χλφρ)/

√
2

70 (ρ)
210 : χρφS 48 : χSφρ

28 : (χρφλ + χλφρ)/
√

2 21 : χρφA

70 (λ)
210 : χλφS 48 : χSφλ

28 : (χρφρ − χλφλ)/
√

2 21 : χλφA

Table D.1: Spin-flavor wave functions of a baryon.

410 + 28 = 56(S),
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41 + 28 = 20(A),
210 + 48 + 28 + 21 = 70(ρ),
210 + 48 + 28 + 21 = 70(λ). (D.7)

D.2 Two body system

When one of the three quarks in a baryon is heavy enough, the dynamics is governed

by the other light quarks.

Spin : 2× 2 = 1(A) + 3(S), (D.8)

Flavor : 3× 3 = 3̄(A) + 6(S). (D.9)

For the ground and p-wave excited states, the following is possible qq states

ground : 3̄ 1S0, 6 3S1, (D.10)

p− wave : 3̄ 1λ1, 6 3λ0,1,2, 3̄ 3λ0,1,2, 6 1ρ1. (D.11)

D.3 Matrix elements

Let us calculate the matrix elements
〈
f
∣∣~e⊥ ·~σ ei~qeff ·~x

∣∣i
〉

for baryons B with various spin

and parity JP . For forward scattering, due to helicity conservation, it is sufficient to

consider only one helicity flip transition for a given J (remember that only transverse

polarization transfer is possible),

i→ f = Jz(N)→ (Jz(B), h) = 1/2→ (−1/2, 1) (D.12)

for J = 1/2 and 3/2, and

Jz(N)→ (Jz(B), h) = −1/2→ (−3/2, 1) (D.13)

for J = 3/2. Here h denotes the helicity of the vector meson V . Other amplitudes are

related to these elements by time reversal.

The total cross section is then proportional to the sum of squared amplitudes over

possible spin states. For J = 1/2

σ ∼
∣∣〈−1/2,+1

∣∣t
∣∣+ 1/2

〉∣∣2 +
∣∣〈+1/2,−1

∣∣t
∣∣− 1/2

〉∣∣2

= 2
∣∣〈−1/2,+1

∣∣t
∣∣+ 1/2

〉∣∣2 (D.14)
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and for J = 3/2 and 5/2

σ ∼ 2
(∣∣〈−1/2,+1

∣∣t
∣∣+ 1/2

〉∣∣2 +
∣∣〈+3/2,−1

∣∣t
∣∣+ 1/2

〉∣∣2
)
. (D.15)

D.3.1 N(1/2+)→ ground state baryons

First we consider the transition to Λ(1/2+) (of both charm and strangeness)

〈
ψ000χ

ρ
−1/2V (+1)

∣∣~e⊥ · ~σ ei~qeff ·~x
∣∣ψ000χ

ρ
+1/2

〉
, (D.16)

where the baryon orbital wave functions ψnlm are given in this Appendix. Note that

since the diquark behaves as a spectator in the reaction (Fig. 5.1), the good diquark

component of χρ for the nucleon is taken. The spectroscopic (overlap) factor of the good

diquark component in the nucleon is tabulated in below where isospin factor is included

also. Choosing the V polarization as ~e⊥, we have

〈
ψ000χ

ρ
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
+1/2

〉
=
〈
χρ−1/2

∣∣σ−
∣∣χρ+1/2

〉 〈
ψ000

∣∣√2 ei~qeff ·~x
∣∣ψ000

〉
,(D.17)

where the spin and orbital parts are separated and σ− is the spin lowering matrix given

as

σ− =

(
0 0

1 0

)
. (D.18)

The spin matrix elements are easily computed as

〈
χρ−1/2

∣∣σ−
∣∣χρ+1/2

〉
= 1 ,

〈
χλ−1/2

∣∣σ−
∣∣χλ+1/2

〉
= −1

3
,

〈
χS−1/2

∣∣σ−
∣∣χλ+1/2

〉
=

√
2

3
,

〈
χS−3/2

∣∣σ−
∣∣χλ−1/2

〉
= −

√
2

3
, (D.19)

where we have shown all relevant matrix elements in the following calculations. There-

fore, the remaining is the elementary integral over the radial distance r with Gaussian

functions. We find

Λ(1/2+) :
〈
ψ000χ

ρ
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
+1/2

〉
= I0 , (D.20)
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where the radial integral I0 is given by

I0 =
〈
ψ000

∣∣√2 ei~qeff ·~x
∣∣ψ000

〉
=
√

2

(
α′α

A2

)3/2

e−q
2
eff/(4A

2) ,

A2 =
α2 + α′2

2
. (D.21)

The oscillator parameters are α and α′ are for the initial and final state baryons, respec-

tively.

Similarly, we calculate the transitions to the ground state Σ’s, picking up the χλ part

for the nucleon wave function. Only the difference is the spin matrix element which are

computed by making Clebsh-Gordan decompositions. Results are

Σ(1/2+) :
〈
ψ000χ

λ
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
= −1

3
I0 ,

Σ(3/2+) :
〈
ψ000χ

S
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

√
2

3
I0 ,

〈
ψ000χ

S
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
= −

√
2

3
I0 , (D.22)

where two independent matrix elements for Σ(3/2+) are shown.

D.3.2 N(1/2+)→ p-wave baryons

Let us first consider the transition to Λ(1/2−). The rerelvant matrix element is given as

〈
[ψ01, χ

ρ]
1/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
+1/2

〉
=

√
1

3

〈
χρ−1/2

∣∣σ−
∣∣χρ+1/2

〉 〈
ψ010

∣∣√2 ei~qeff ·~x
∣∣ψ000

〉
,(D.23)

where the factor
√

1/3 is the Clebsh-Gordan coefficients in the state [ψ01, χ
ρ]

1/2
−1/2. The

radial part is computed as

〈
ψ010

∣∣√2 ei~qeff ·~x
∣∣ψ000

〉
=

(α′α)3/2α′qeff
A5

e−q
2
eff/(4A

2) ≡ I1 (D.24)

and so

Λ(1/2−) :
〈
[ψ01, χ

ρ]
1/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
+1/2

〉
=

√
1

3
I1 . (D.25)
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Other matrix elements can be computed similarly:

Λ(3/2−) :
〈
[ψ01, χ

ρ]
3/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
+1/2

〉
=

√
2

3
I1 ,

〈
[ψ01, χ

ρ]
3/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
−1/2

〉
= 0 ,

Σ(1/2−) :
〈
[ψ01, χ

λ]
3/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

1

3
√

3
I1 ,

Σ(3/2−) :
〈
[ψ01, χ

λ]
3/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
= −1

3

√
2

3
I1 ,

〈
[ψ01, χ

λ]
3/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
= 0 ,

Σ′(1/2−) :
〈
[ψ01, χ

S ]
1/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
= −1

3

√
2

3
I1 ,

Σ′(3/2−) :
〈
[ψ01, χ

S ]
3/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

1

3

√
2

15
I1 ,

〈
[ψ01, χ

S ]
3/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
=

√
2

5
I1 ,

Σ′(5/2−) :
〈
[ψ01, χ

S ]
5/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
= −

√
2

15
I1 ,

〈
[ψ01, χ

S ]
5/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
= −

√
4

15
I1 . (D.26)

D.3.3 N(1/2+)→ d-wave baryons

Computations go in completely similar manner as before, except for the radial matrix

element

〈
ψ020

∣∣√2 ei~qeff ·~x
∣∣ψ000

〉
=

1

2

√
2

3

(αα′)3/2

A3

(
α′q

A2

)2

e−q
2
eff/(4A

2) ≡ I2 . (D.27)
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The results are

Λ(3/2+) :
〈
[ψ02, χ

ρ]
3/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
+1/2

〉
= −

√
2

5
I2 ,

〈
[ψ02, χ

ρ]
3/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
−1/2

〉
= 0 ,

Λ(5/2+) :
〈
[ψ02, χ

ρ]
5/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
+1/2

〉
=

√
3

5
I2 ,

〈
[ψ02, χ

ρ]
5/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
ρ
−1/2

〉
= 0 ,

Σ(3/2+) :
〈
[ψ02, χ

λ]
3/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

√
3

5
I2 ,

〈
[ψ02, χ

λ]
3/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
= 0 ,

Σ(5/2+) :
〈
[ψ02, χ

λ]
5/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

√
3

5
I2 ,

〈
[ψ02, χ

λ]
5/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
= 0 ,

Σ′(1/2+) :
〈
[ψ02, χ

S ]
1/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

√
3

5
I2 ,

Σ′(3/2+) :
〈
[ψ02, χ

S ]
3/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

√
3

5
I2 ,

〈
[ψ02, χ

S ]
3/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
= 0 ,

Σ′(5/2+) :
〈
[ψ02, χ

S ]
5/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

√
3

5
I2 ,

〈
[ψ02, χ

S ]
5/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
= 0 ,

Σ′(7/2+) :
〈
[ψ02, χ

S ]
7/2
−1/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
+1/2

〉
=

√
3

5
I2 ,

〈
[ψ02, χ

S ]
7/2
−3/2

∣∣√2σ− e
i~qeff ·~x

∣∣ψ000χ
λ
−1/2

〉
= 0 . (D.28)

D.4 Baryon wave functions

We summarize the baryon wave functions used in the present calculations [138]. They

are constructed by a quark and a diquark, and are expressed as products of isospin, spin

and orbital wave functions. Here we show explicitly spin and orbital parts. For orbital

wave functions, we employ harmonic oscillator functions as given in Appendix D.

For spin wave functions, using the notation for angular momentum coupling [L1, L2]Ltot

we employ the three functions

χρm = [d0, χ]1/2m ,

χλm = [d1, χ]1/2m ,

χSm = [d1, χ]3/2m , (D.29)
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where dS denotes the diquark spin function, and χ the two component spinor for a single

quark. For the ground baryons we have three states

Λ(1/2+,m) = ψ000(~x)χρm ,

Σ(1/2+,m) = ψ000(~x)χλm ,

Σ(3/2+,m) = ψ000(~x)χSm . (D.30)

For the first excited states of negative parity there are seven states (ψnlm → ψnl = ψ01)

Λ(1/2−,m) = [ψ01(~x), χρ]1/2m ,

Λ(3/2−,m) = [ψ01(~x), χρ]3/2m ,

Σ(1/2−,m) = [ψ01(~x), χλ]1/2m ,

Σ(3/2−,m) = [ψ01(~x), χλ]3/2m ,

Σ′(1/2−,m) = [ψ01(~x), χS ]1/2m ,

Σ′(3/2−,m) = [ψ01(~x), χS ]3/2m ,

Σ′(5/2−,m) = [ψ01(~x), χS ]5/2m . (D.31)

Similarly, we obtain the wave functions for the l = 2 excited baryons.

Finally, the nucleon wave function is given by

N = ψ000
1√
2

(
χρφρ + χλφλ

)
, (D.32)

where φρ and φλ are the ispsoin 1/2 wave functions of the nucleon with three quarks.

D.5 Harmonic oscillator wave functions

We summarize some of the harmonic oscillator wave functions for low lying states.

Including the angular and radial parts, they are given by

ψnlm(~x) = Ylm(x̂)Rnl(r) , (D.33)



Appendix D. Baryon wave functions 111

where Rnl(r) are

R00(r) =
α3/2

π1/4
2e−(α2/2)r2

,

R01(r) =
α3/2

π1/4

(
8

3

)1/2

αre−(α2/2)r2
,

R10(r) =
α3/2

π1/4
(2 · 3)1/2

(
1− 2

3
(αr)2

)
e−(α2/2)r2

,

R02(r) =
α3/2

π1/4

(
16

5 · 3

)1/2

(αr)2e−(α2/2)r2
. (D.34)

The oscillator parameter α is related to the frequency ω by

α =
√
mω = (km)1/4 , (D.35)

where k is the spring constant.



Appendix E

Regge parameters

E.1 Regge trajectories

For meson trajectories, we use the so called “square-root” trajectory [134]

α(t) = α(0) + γ[
√
T −
√
T − t], (E.1)

where γ is an universal slope and T a scale parameter. Equation (E.1) can be approxi-

mated to a linear form

α(t) = α(0) + α′t, (E.2)

in a high energy limit with the slope α′ = γ/2
√
T .

In the case of the ρ trajectory, the intercept is chosen to be αρ(0) = 0.55 from many

evidences as explained in detail in Ref. [134]. Other parameters are determined by

using the relation between the mass and the spin of ρ and ρ3: αρ(M
2
ρ ) = 1 with Mρ =

769.0±0.9 MeV and αρ(M
2
ρ3

) = 3 with Mρ3 = 1688.8±2.1 MeV, which is given as [134]

γ = 3.65± 0.05 GeV−1,
√
T ρ = 2.46± 0.03 GeV. (E.3)

The universal parameter γ is applicable to all the trajectories.

In the case of the K∗ trajectory, a similar relation is used to get the intercept and

the slope of the K∗ reggeon: αK∗(M
2
K∗) = 1 with MK∗0 = 896.1 ± 0.3 MeV and

αK∗(M
2
K∗3

) = 3 with MK∗03
= 1776± 7 MeV. Their numerical values are given as [134]

αK∗(0) = 0.414± 0.006,
√
TK∗ = 2.58± 0.03 GeV. (E.4)
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We finally extract the φ trajectory from the following relations [125, 134]

2αs̄q(0) = αq̄q(0) + αs̄s(0), (E.5)

2/α′s̄q = 1/α′q̄q + 1/α′s̄s, (E.6)

where αq̄q(t), αs̄q(t), and αs̄s(t) are the trajectories corresponding to ρ, K∗, and φ

mesons, respectively. We display all the numerical values of the related Regge trajec-

tories in Table E.1, including the cases of pseudoscalar reggeons and the corresponding

charm trajectories [134].

For the baryon trajectories, we use similar relations as Eqs. (E.5) and (E.6) [137]:

2αds(0) = αd̄d(0) + αs̄s(0), (E.7)

2/α′ds = 1/α′d̄d + 1/α′s̄s, (E.8)

where d denotes a uu diquark, and αds(u) is the Σ trajectory taken from Ref. [67]

αds(u) ' αΣ(u) ' −0.79 + 0.87u. (E.9)

Since we know the value of αs̄s(u) from the above, αd̄d(u) can be easily obtained. We

use this to get the Σc trajectory, αdc(u). Another input parameter is the J/ψ trajectory,

αc̄c(u), taken from Ref. [134]. In Table E.2, We summarize all the values of the baryon

trajectories.

π−p→ K∗0Λ π−p→ D∗−Λ+
c

α(0)
√
T [GeV] α′ [GeV−2] α(0)

√
T [GeV] α′ [GeV−2]

q̄q(ρ) 0.55 2.46 0.742 q̄q(ρ) 0.55 2.46 0.742
s̄q(K∗) 0.414 2.58 0.707 c̄q(D∗) -1.02 3.91 0.467
s̄s(φ) 0.27 2.70 0.675 c̄c(J/ψ) -2.60 5.36 0.340

q̄q(π) -0.0118 2.82 0.647 q̄q(π) -0.0118 2.82 0.647
s̄q(K) -0.151 2.96 0.617 c̄q(D) -1.61105 4.16 0.439
s̄s(ηs) -0.291 3.10 0.606 c̄c(ηc) -3.2103 5.49 0.332

Table E.1: Mason trajectories from Ref. [134].

π−p→ K∗0Λ π−p→ D∗−Λ+
c

α(0) α′ [GeV−2] α(0) α′ [GeV−2]

ds(Σ) -0.79 0.87 Ref. [67] d̄d -1.85 1.22
s̄s(φ) 0.27 0.675 Ref. [134] c̄c(J/ψ) -2.60 0.340 Ref. [134]
d̄d -1.85 1.22 dc(Σc) -2.23 0.532

Table E.2: Baryon trajetories.
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Let us check whether the baryon trajectories satisfy the correct relations between the

mass and the spin: α(M2) = J . For reference, we calculate the bottom part also. We

obtain the trajectories as α(M2
Σ) = 0.442, α(M2

Σc
) = 0.971, and α(M2

Σb
) = 0.484 [1].

Note that there is some uncertainty in the charm sector, compared with the others.

However, we take it as a good approximation.

E.2 Regge energy scale parameters

The energy scale parameters sπN , sK
∗Λ, and sD

∗Λc are computed from

sab =

(∑

i

mi⊥

)

a


∑

j

mj⊥



b

, (E.10)

where mi is the transverse mass of the constituent quark i with mq ' 0.5 GeV, ms '
0.6 GeV, and mc ' 1.6 GeV [126]. From these values, we can deduce the energy scale

parameters [126, 137]

(sπN :K∗Λ
K )2αK(0) = (sπN )απ(0) × (sK

∗Λ)αηs (0), (E.11)

(sπN :K∗Λ
K∗ )2(αK∗ (0)−1) = (sπN )αρ(0)−1 × (sK

∗Λ)αφ(0)−1, (E.12)

(sπN :K∗Λ
Σ )2(αds(0)− 1

2
) = (sπN )αd̄d(0) × (sK

∗Λ)αs̄s(0)−1, (E.13)

(sπN :D∗Λc
D )2αD(0) = (sπN )απ(0) × (sD

∗Λc)αηc (0), (E.14)

(sπN :D∗Λc
D∗ )2(αD∗ (0)−1) = (sπN )αρ(0)−1 × (sD

∗Λc)αJ/ψ(0)−1, (E.15)

(sπN :D∗Λc
Σc

)2(αdc(0)− 1
2

) = (sπN )αd̄d(0) × (sD
∗Λc)αc̄c(0)−1. (E.16)

In Table E.3, we summarize all the related values.

sπN sK
∗Λ sD

∗Λc sπN :K∗Λ
K sπN :K∗Λ

K∗ sπN :K∗Λ
Σ sπN :D∗Λc

D sπN :D∗Λc
D∗ sπN :D∗Λc

Σc
1.5 1.76 5.46 1.752 1.662 1.569 5.434 4.748 3.513

Table E.3: The energy scale parameters



Appendix F

Isospin Factors

F.1 ∆ vertex

The isospin structures of the ∆ vertices in Eq. (3.13) are given as follows, respectively:

∆̄I0N, ∆̄I ·ΣK∗, (F.1)

where I stands for the isospin transition (3/2→ 1/2) matrices

I− =
1√
6




0 0

0 0
√

2 0

0
√

6



, I0 =

1√
6




0 0

2 0

0 2

0 0



, I+ =

1√
6




√
6 0

0
√

2

0 0

0 0



. (F.2)

Thus the ∆ and nucleon vertex is expressed as

∆̄I0N =

√
2

3
(∆̄++, ∆̄+, ∆̄0, ∆̄−)




0 0

1 0

0 1

0 0




(
p

n

)

=

√
2

3
(∆̄+p+ ∆̄0n). (F.3)
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The ∆ΣK∗ vertex has the form

I ·Σ = −I(+)Σ+ + I(−)Σ− + I(0)Σ0 =
1√
3




−
√

3Σ+ 0
√

2Σ0 −Σ+

Σ−
√

2Σ0

0
√

3Σ−



, (F.4)

∆̄I ·ΣK∗ =
1√
3

(∆̄++, ∆̄+, ∆̄0, ∆̄−)




−
√

3Σ+ 0
√

2Σ0 −Σ+

Σ−
√

2Σ0

0
√

3Σ−




(
K∗+

K∗0

)

=
1√
3

(−
√

3∆̄++Σ+K∗+ +
√

2∆̄+Σ0K∗+ − ∆̄+Σ+K∗0

+∆̄0Σ−K∗+ +
√

2∆̄0Σ0K∗0 +
√

3∆̄−Σ−K∗0). (F.5)

F.2 VVP vertex

The isospin structure of the V V P vertice in Eq. (6.3) is expressed as

P =




1√
6
η + 1√

2
τ · π K

K̄ − 2√
6
η


 =




1√
6
η + 1√

2
π0 π+ K+

π− 1√
6
η − 1√

2
π0 K0

K− K̄0 − 2√
6
η


 , (F.6)

V =

[
1√
2
ω + 1√

2
τ · ρ K∗

K̄∗ −φ

]
=




1√
2
ω + 1√

2
ρ0 ρ+ K∗+

ρ− 1√
2
ω − 1√

2
ρ0 K∗0

K∗− K̄∗0 −φ


 , (F.7)

LV V P = gV V P ε
µναβTr(∂µVν∂αVβP ), (F.8)

Tr[V V P ] =
1√
2
K̄∗τ · πK∗ − 1√

6
K̄∗K∗η +

1√
2
K̄∗τ · ρK +

1√
2
K̄∗Kω

−K̄∗Kφ+
√

2ρ · πw +
1√
6
ρ · ρη +

1√
6
ωωη − 2√

6
φφη. (F.9)



Appendix G

Structures of Feynman

Amplitudes

The analytical calculations for the amplitudes of the π−p→ K∗0Λ reaciton is expressed.

G.1 K amplitude

M′K = ūΛγ5uNε
∗
µk

µ
1 . (G.1)

∑

si,sf ,λf

|M′K |2 =
∑

si,sf ,λf

(ūΛγ5uN )(−ūNγ5uΛ)ε∗µενk
µ
1k

ν
1

= −Tr

(∑

sf

uΛūΛ

)
γ5

(∑

si

uN ūN

)
γ5

(∑

λf

ε∗µεν

)
kµ1k

ν
1

= −Tr (/p2 +MΛ)γ5(/p1 +MN )γ5

[
−gµν +

1

M2
K∗
k2µk2ν

]
kµ1k

ν
1

= Tr (/p2 +MΛ)(/p1 −MN )

[
−gµν +

1

M2
K∗
k2µk2ν

]
kµ1k

ν
1

= A2
K(t) =

1

2M2
K∗

(M2
K∗ −M2

π)2(MΛ −MN )2,

−t
[
(MΛ −MN )2

(
1 +

M2
π

M2
K∗

)
+

1

2M2
K∗

(M2
K∗ −M2

π)2

]

+t2
[
1 +

M2
π

M2
K∗

+
1

2M2
K∗

(MΛ −MN )2

]
− t3 1

2M2
K∗

=
3∑

x=0

axt
x. (G.2)

117



Appendix G. Structures of Feynman Amplitudes 118

The dominant term is expressed as

A∞K =
1√

2MK∗
(M2

K∗ −M2
π)(MΛ −MN ). (G.3)

G.2 K∗ amplitude

M′K∗ = εµναβūΛ

[
γν −

iκK∗NΛ

MN +MΛ
σνλ(k2 − k1)λ

]
uNk1αk2βε

∗
µ

= εµναβūΛ

[
(1 + κK∗NΛ)γν − κK∗NΛ

(p1 + p2)ν
MN +MΛ

]
uNk1αk2βε

∗
µ. (G.4)

∑

si,sf ,λf

|M′K∗ |2

=
∑

si,sf ,λf

εµναβεµ
′ν′α′β′ ūΛ

[
(1 + κK∗NΛ)γν − κK∗NΛ

(p1 + p2)ν
MN +MΛ

]
uN

× ūN
[
(1 + κK∗NΛ)γν′ − κK∗NΛ

(p1 + p2)ν′

MN +MΛ

]
uΛ

× (k1αk2βε
∗
µ)(k1α′k2β′εµ′)

= εµναβεµ
′ν′α′β′Tr

(∑

sf

uΛūΛ

)[
(1 + κK∗NΛ)γν − κK∗NΛ

(p1 + p2)ν
MN +MΛ

]

×
(∑

si

uN ūN

)[
(1 + κK∗NΛ)γν′ − κK∗NΛ

(p1 + p2)ν′

MN +MΛ

](∑

λf

ε∗µεµ′

)

× (k1αk1α′k2βk2β′)

= εµναβεµ
′ν′α′β′Tr (/p2 +MΛ)

[
(1 + κK∗NΛ)γν − κK∗NΛ

(p1 + p2)ν
MN +MΛ

]

× (/p1 +MN )

[
(1 + κK∗NΛ)γν′ − κK∗NΛ

(p1 + p2)ν′

MN +MΛ

]

×
[
−gµµ′ +

1

M2
K∗
k2µk2µ′

]
(k1αk1α′k2βk2β′)

= A2
K∗(s, t)

= −2s2t+ 2s2t2
κ2
K∗NΛ

(MN +MΛ)2

−2s(M2
K∗ −M2

π)(M2
Λ −M2

N ) + 2st(M2
π +M2

N +M2
K∗ +M2

Λ)

+2stκ2
K∗NΛ(M2

K∗ −M2
π)
MΛ −MN

MΛ +MN

−2st2 − 2st2
κ2
K∗NΛ

(MΛ +MN )2
(M2

π +M2
N +M2

K∗ +M2
Λ) + 2st3

κ2
K∗NΛ

(MΛ +MN )2

−t
[
(1 + κK∗NΛ)2

(
2M2

NM
2
Λ +M2

K∗(2M
2
Λ − 4MNMΛ +M2

K∗)

−M2
π(4MNMΛ − 2M2

N −M2
π)

)
− 4κK∗NΛ(1 + κK∗NΛ)(M2

Λ −M2
K∗)(M

2
N −M2

π)

+
2κ2

K∗NΛ

(MΛ +MN )2

(
M2
NM

2
Λ(MΛ +MN )2 − 2M2

π(M2
Λ −M2

K∗)(M
2
Λ +MNMΛ)
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−M2
K∗M

2
N (2MNMΛ + 2M2

N +M2
K∗) + 2M2

πM
2
K∗M

2
N −M4

πM
2
Λ

)]

+t2
[
(1 + κK∗NΛ)2

(
(MΛ −MN )2 + 2(M2

K∗ +M2
π)

)

+
2κ2

K∗NΛ

(MΛ +MN )2
(M2

Λ −M2
K∗)(M

2
N −M2

π)

]
− t3(1 + κK∗NΛ)2

+

[
(1 + κK∗NΛ)2

(
2M2

K∗M
2
N (M2

Λ −M2
N ) +M4

K∗(M
2
Λ − 2MNMΛ −M2

N )

−2M2
π(M4

Λ −M2
NM

2
Λ − 2M2

K∗MNMΛ)−M4
π(M2

Λ + 2MNMΛ −M2
N )

)

−2κK∗NΛ(2 + κK∗NΛ)

(
(M2

Λ −M2
N )(M2

K∗M
2
N −M2

πM
2
Λ)

+(M2
Λ +M2

N )M2
πM

2
K∗ − (M4

K∗M
2
N +M4

πM
2
Λ)

)]

= s2
2∑

x=1

axt
x + s

3∑

x=0

axt
x +

3∑

x=0

tx. (G.5)

The dominant term is

A∞K∗(s, t) =
√
−2s2t. (G.6)

G.3 Σ amplitude

M′Σ = ūΛγ5(/p2 − /k1 +MΣ)

[
γµ − iκK∗NΣ

MN +MΣ
σµνk2ν

]
ε∗µuN . (G.7)

∑

si,sf ,λf

|M′Σ|2

=
∑

si,sf ,λf

ūΣγ5(/p2 − /k1 +MΣ)

[
γµ +

κK∗NΣk2ν

2(MN +MΣ)
(γµγν − γνγµ)

]
uN

× ūN
[
γµ
′
+

κK∗NΣk2ν′

2(MN +MΣ)
(γν

′
γµ
′ − γµ′γν′)

]
(/p2 − /k1 +MΣ)(−γ5)uΣ(ε∗µεµ′)

= −Tr

(∑

sf

uΣūΣ

)
γ5(/p2 − /k1 +MΣ)

[
γµ +

κK∗NΣk2ν

2(MN +MΣ)
(γµγν − γνγµ)

]

×
(∑

si

uN ūN

)[
γµ
′
+

κK∗NΣk2ν′

2(MN +MΣ)
(γν

′
γµ
′ − γµ′γν′)

]
(/p2 − /k1 +MΣ)γ5

×
(∑

λf

ε∗µεµ′

)

= −Tr (/p2 +MΣ)γ5(/p2 − /k1 +MΣ)

[
γµ +

κK∗NΣk2ν

2(MN +MΣ)
(γµγν − γνγµ)

]

× (/p1 +MN )

[
γµ
′
+

κK∗NΣk2ν′

2(MN +MΣ)
(γν

′
γµ
′ − γµ′γν′)

]
(/p2 − /k1 +MΣ)γ5
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×
[
−gµµ′ +

1

M2
K∗
k2µk2µ′

]

= A2
Σ(s, u)

= s

2∑

x=0

axu
x +

3∑

x=0

ux. (G.8)

The dominant term is

A∞Σ (s) =
√

2s
MΛ

MΣ +MΛ

[
M2

Σ(M2
N/M

2
K∗ + 2) + 6

κK∗NΣ

MΣ +MN
MNM

2
Σ

+
κ2
K∗NΣ

(MΣ +MN )2
M2

Σ(2M2
N +M2

K∗)
] 1

2
. (G.9)



Appendix H

Size of a charmed baryon

Let us estimate the size of a charmed baryon compared with the nucleon. The size of a

baryon can be obtained from the square root of an average of distance of COM (center

of mass), which is defined by

√
〈R2〉 =

√√√√1

3

3∑

i=1

(xi −Rcm)2, (H.1)

where the coordinate xi is depicted in Fig. H.1.

m′

m

m

x1 −Rcm

x2 −Rcm

x3 −Rcm
Rcm

Figure H.1: Relative coordinates for a three-body system.

We can express it in terms of the ρ and λ coordinates as

x1 −Rcm =
m′

2m+m′
λ+

1

2
ρ,

x2 −Rcm =
m′

2m+m′
λ− 1

2
ρ,

x3 −Rcm = − 2m

2m+m′
λ, (H.2)

and

〈
R2
〉

=
1

3

[
2m′2 + 4m2

(2m+m′)2

〈
λ2
〉

+
1

2

〈
ρ2
〉]
. (H.3)
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The
〈
λ2
〉

and the
〈
ρ2
〉

are calculated by using the harmonic oscillator wave function

defined in Eq. (D.33) for the lowest states,

〈
λ2
〉

=

∫
d3λλ2 ψ∗000(λ)ψ000 (λ)

=
4α3

λ√
π

∫
dλλ4 e−α

2
λλ

2

∫
dΩY ∗00(λ̂)Y00(λ̂)

=
3

2

1

α2
λ

,

〈
ρ2
〉

=
3

2

1

α2
ρ

. (H.4)

Thus Eq. (H.3) is changed to

〈
R2
〉

=

[
m′2 + 2m2

(2m+m′)2

1

α2
λ

+
1

4α2
ρ

]
. (H.5)

The oscillator paramter α is defined by

α2
ρ = mρωρ = mρ

√
3K

mρ
=
√

3mρK =
√

3mK,

α2
λ = mλωλ = mλ

√
3K

mλ
=
√

3mλK = 3

√
mm′K

2m+m′
. (H.6)

To calculate the spring constant K, let us consider the case of the nucleon. The quark

core size of the nucleon is well known as around 0.5 fm experimentally. The constituent

light-quark mass is chosen as m′ = m ' 0.35 GeV. Then Eq. (H.5) reduces to

〈
R2
〉

=
1

3α2
λ

+
1

4α2
ρ

=
7

12

1√
3mK

= (0.5 fm)2 = (2.5 GeV−1)2 (H.7)

and K is obtained as

K = 0.0083 GeV3. (H.8)

In the case of a charmed baryon, the constituent heavy-quark mass is given by m′ =

mQ ' 1.5 GeV and Eq. (H.5) becomes

〈
R2
〉

=

√
1

mQK


 1

3m
1
2
Q

m2
Q + 2m2

(2m+mQ)
3
2

+
1

4
√

3


 = (2.56 GeV−1)2 = (0.512 fm)2. (H.9)

Finally, it is found that the size of a charmed baryon is 0.512 fm, which is slightly larger

than the size of the nucleon.
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