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ABSTRACT 

 

 For our vivid perception of a three-dimensional world, the stereoscopic 
function begins in our brain by detecting slight shifts of image features 
between the two eyes, called ‘binocular disparity’. The primary visual cortex 
is the first stage of this processing, and neurons there are tuned to a limited 
range of spatial frequencies (SF). However, our visual world is generally 
highly complex, composed of numerous features at a variety of scales, 
thereby having broadband SF spectra. This means that binocular 
information signaled by individual neurons is incomplete, and combining 
information across multiple SF bands must be essential for the visual system 
to function in a robust and reliable manner. In this study, I investigated 
whether the integration of information from multiple SF channels begins in 
the primary visual cortex. I measured disparity-selective responses in the 
joint left-right SF domain using sequences of dichoptically flashed grating 
stimuli consisting of various combinations of SFs and phases. The obtained 
interaction map in the joint left-right SF domain reflects the degree of 
integration across different SF channels. A substantial fraction of complex 
cells in my data showed highly elongated binocular SF profile, which is 
consistent with the idea that disparity information is combined from 
multiple SF channels. For the majority of these neurons, the optimal 
disparity is matched across the SF bands. In addition, some of the complex 
cells showed extremely sharp SF tuning, i.e., narrow bandwidth for 
binocular SF matching for disparity detection, compared with relatively 
broad SF bandwidth for monocular response. It suggests that both 
narrowband binocular SF matching and integration of broadband SF 
information are achieved simultaneously for accurate disparity detection. 
These results suggest that a highly specific SF integration process for 
disparity detection starts in the primary visual cortex. 
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GENERAL INTRODUCTION 
 

   We can recognize various complex features in our visual world such as faces, 

objects, textures, surface qualities of materials or particular movements, and 

three-dimensional depth, very easily without any special effort. For such outstanding 

ability, visual system in our brain possesses highly specialized function of extracting 

various kinds of visual features from our retinal images (Gross et al., 1972; Orban G. A, 

1995; Tanaka K, 1996; Cumming and DeAngelis, 2001; Tsao et al., 2006; Nishio et al, 

2012). The purpose of this research, from a very general and broad viewpoint, is to 

understand mechanism at the intermediate-stage of such specialized feature detection, in 

particular, binocular vision related to the stereopsis. I will start this paper by introducing 

the first stage of visual processing in our brain. 

 

Wavelet analysis of retinal images in the primary visual cortex 
 

   Visual information captured by retinae is processed hierarchically after transmitted 

to our brain. For an initial stage of retinal image processing in the cerebral cortex, there 

is an area named ‘primary visual cortex (A17)’. Each neuron in A17 receives visual 

inputs only within a specific small area in the visual field, ranging approximately 1 to 5 

degrees of visual angle in diameter (Gattass et al., 1987; Freeman and Simoncelli, 2011). 

This small area is called a ‘receptive field (RF)’. Different neurons have RFs at 

different positions in our retina and the whole neuronal population covers the entire 

visual field. The characteristic property of these neurons in A17 is their strict selectivity 

to the image pattern, that is, selectivity to a particular ‘wave’ or ‘stripe pattern’. Each 

neuron strongly responds to a small piece of wave pattern with specific orientation and 

fineness at its RF position. Since a single piece of wave is defined by its orientation, 

spatial frequency (SF) and position, the functional property of a neuron in A17 is well 

described by its selectivity to orientation, SF and RF position. 

   Since the beginning of A17 studies, neurons in A17 have been classified into two 

types (Hubel and Wiesel, 1962; Movshon et al., 1978a,b). One of the two types, ‘simple 

cells’, have separated areas (so-called ON region and OFF region) within its RF. ON 

region is an area responding to bright stimuli and OFF region is an area responding to 

dark stimuli. Figure 1A shows various RFs of simple cells arranged according to the 
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orientation and SF, measured in cat A17. For a simple cell, stripe pattern or a piece of 

wave, does not always cause its response even though the pattern has its optimal 

orientation and SF. In addition to these stimulus parameters, the position or ‘phase’ of 

the wave within the RF influence the activity of a simple cell. Compared with this, the 

other type called ‘complex cells’ generally has no such separated sub-regions within its 

RFs while they are also highly selective to the orientation and SF of the stimulus. 

Complex cells are activated whenever a wave with optimal SF and orientation is 

presented within their RF regardless of its absolute position. 

   In any case, both simple cells and complex cells possess a strict selectivity to pieces 

of wave patterns. A piece of wave is called as a ‘wavelet’, and the processing of retinal 

image in A17 can be understood from a viewpoint of ‘wavelet analysis’. Especially, 

shapes of RFs in A17 are well described by ‘Gabor function’ (Fig. 1B), and called 

‘Gabor wavelet’. In wavelet analysis, an image is decomposed into many pieces of 

wavelets, and information of luminance pattern in the x-y space is represented as a 

combination of strengths of many different wavelets. A single neuron in A17 works as a 

channel which detects a particular Gabor wavelet by having selectivity to the position, 

SF, and orientation of a stripe pattern. Only a specific SF and orientation component 

located at a particular retinal position can elicit a response in a specific channel. For 

example, as shown in Figure 1C, a horizontal very fine visual feature, such as the frets 

of a guitar, is detected by a channel which has the small RF of a Gabor wavelet with 

horizontal orientation and high SF, while a vertical coarse feature (e.g., neck of the 

guitar) is detected by that with vertical orientation and low SF. And any arbitrary image 

can be represented by a complete set of such channels (Lee, 1996). Viewing visual 

information in the Gabor wavelet analysis is particularly important for studying visual 

processing in our brain. 

   Wavelet analysis is a general and very strong technique in image processing 

applicable to any kind of images. However, decomposed information of a single 

channel itself usually doesn’t have enough information for our higher-order recognition. 

Natural features we recognize or utilize in our everyday life are generally much more 

complex, compared with stripe patterns (e.g., faces, textures and so on). To obtain 

various kinds of feature selectivity, information of a single wavelet is incomplete, and 

many of such different wavelets should be combined and refined in our visual pathway 

eventually. Since different visual features are characterized as different combinations of 
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information in the wavelet pyramid, it may be helpful to consider what is needed for 

extracting a specific feature in the wavelet pyramid, or in the orientation domain and the 

SF domain. For example, ‘velocity’ is one of the visual features represented in area MT 

in the cortex (Movshon et al., 2986; Maunsell & Newsome, 1987). Although I didn’t 

introduce temporal selectivity of A17 neurons up to here, many of them have optimal 

temporal frequency (TF) and direction of motion (Hubel & Weisel, 1959; DeAngelis et 

al., 1993a,b). A particular velocity is characterized by a particular combination of A17 

spatio-temporal frequency channels (Simocelli and Heeger, 1992), and neural selectivity 

in MT may be constructed by combining outputs of them. 

   In this study, I focus on one visual feature, which is defined in the ‘binocular’ 

condition. Before introducing the specific purpose of my study, I will explain the details 

of that binocular feature, and then explain the current understanding of mechanisms of 

its detection. 

 

Binocular disparity and its detection 

 

   We can perceive a vivid three-dimensional world although our retinal images are 

two-dimensional. Various monocular and binocular features contained in our retinal 

images are available for estimating depth, and our brain can compute the 

three-dimensional arrangement of what we see based on such cues. Especially, the 

function of estimating depth based on binocular cues is called ‘stereopsis’. Neural 

mechanisms for stereopsis have been actively pursued with psychophysical (Hemholtz, 

1909; Westheimer and McKee, 1980; Schor et al., 1983), physiological (Barlow et al., 

1967; Poggio and Fischer, 1977; Ferster 1981; Maunsell and Van Essen, 1983; Ohzawa 

et al., 1990; Uka et al., 2000; Cumming and DeAngelis, 2001; Tanabe et al., 2011), and 

computational (Marr and Poggio, 1979; Qian, 1994; Doi and Fujita, 2014; Li and Qian, 

2015) approaches. 

   Because our left and right eyes are located at slightly different positions, left and 

right images projected on our retinae are very similar, but also slightly shifted by a 

small distance between the two eyes. This small difference or shift between the two 

retinal images is called ‘binocular disparity’. The magnitude of binocular disparity is 

systematically related to three-dimensional depth due to geometrical relationship. 

Visual inputs at different depth are projected on left and right retinae with different 
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amounts of offset between the two eyes (Fig. 2A). If we can measure binocular disparity 

of an object at a certain position accurately, we can basically estimate how far that 

object is along the depth direction from the fixated plane (e.g., green curve in Fig. 2A). 

   It is well known that, the detection process of such binocular disparity starts in A17 

in our brain. A substantial number of neurons in A17 have their RFs in both left and 

right eyes and are called ‘binocular’ neurons (Hubel and Wiesel, 1962). Among them, 

there are neurons that are especially selective to binocular disparity. Here, since 

binocular neurons in A17 has optimal orientation and that orientation is generally 

common across the left and right eyes, the disparity that a single neuron can encode is 

basically along the direction orthogonal to its optimal orientation (Fig. 2B). As 

described in the previous section, a simple cell is selective to the position of its optimal 

wave pattern within its RF. Therefore, a binocular simple cell works partially as a 

disparity sensor by having the best positional arrangement of the stimulus combination 

between the two eyes to generate response. However, disparity is not the only parameter 

which affects the firing rate of a simple cell. Other stimulus parameters, such as 

absolute monocular position and contrast, also affect the firing rate of it. 

   On the other hand, nearly a half of binocular complex cells in A17 are also selective 

to binocular disparity (Ohzawa and Freeman, 1986b), and their property is more 

suitable as a specialized detector for disparity than simple cells. An ideal disparity 

detector should respond to particular disparity regardless of other irrelevant visual 

features (i.e., irrelevant for disparity sensing but may be useful for other purposes). 

Disparity-sensitive complex cells in A17 basically satisfy such requirements (Ohzawa et 

al., 1990). For example, they respond strongly to a pair of bars with the same contrast 

when they are presented dichoptically at a particular positional relationship between the 

two eyes, anywhere within their RFs (i.e., regardless of absolute monocular stimulus 

positions). They respond to both conditions of bright-bright pair and dark-dark pair, as 

long as relative position between the two eyes is retained. The fundamental response 

properties of such disparity-sensitive complex cells are well explained by the ‘disparity 

energy model,’ which was proposed by Ohzawa et al (1990).  

 

Disparity energy model 
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   The disparity energy model is constructed by combining several wavelets under 

special constraints so as to produce selectivity to binocular disparity while removing 

undesired selectivity to other irrelevant parameters as noted above. The model 

integrates outputs from four binocular simple-type subunits. A whole structure of the 

model is illustrated schematically in Figure 3. Each subunit (illustrated as a columns in 

the upper part of Fig. 3) has RFs in both left and right eyes where their relative positions 

have an offset by a particular distance horizontally, along the direction orthogonal to its 

optimal orientation (called as ‘Position model’). The SF and orientation of subunits are 

common for both eyes and for four subunits. A critical point in the model is that the 

four subunits are in quadrature phase, the phase of RFs differs from that of its 

counterpart by 90°. This allows the model to lose its monocular phase selectivity (a 

hallmark of a complex cell), making the cell responsive to a stimulus anywhere within 

the RF, while retaining the disparity selectivity. Outputs from all the subunits are 

half-wave rectified, squared and combined in a single complex cell. Composed as such 

structure, the model successfully obtains basic property needed for an ideal disparity 

detector, and explains well many aspects of responses of actual disparity-sensitive 

complex cells (Ohzawa et al., 1990). 

   The disparity energy model, however, has still some aspects that are not suitable for 

ideal disparity detection, known as responses to false-disparities (Cumming and Parker, 

1997). Further processing is needed in the next stage as described in the following 

chapter. In this study therefore, I wish to consider and examine disparity specific 

processing that goes beyond the conventional disparity energy model, constructed by 

combining information from wavelets in different scales.  
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INTRODUCTION 
 

   As noted in General Introduction, our visual system possesses a remarkable function 

called stereopsis that allows perception of three-dimensional depths based on a pair of 

two-dimensional retinal images. As shown in a pair of stereo photographs in Figure 4A 

and their cross-sections in Figure 4B, left and right images are generally similar but 

slightly shifted versions of each other due to the lateral placement of the eyes. Accurate 

measurement of binocular disparity, that is, such small shifts between left and right 

retinal images, is a central problem of stereopsis. Here, I try to examine the selectivity 

of a neuron which is specialized for detection of binocular disparity in the SF domain. I 

especially focus on the SF domain for the following two reasons. One is that SF is one 

of the major parameters in Gabor wavelet analysis where the visual information of 

retinal images is initially processed in the cortex. The other is that, for a long time 

historically, combining signals of different SF channels has been pointed out to be quite 

important for improvement of detection accuracy of binocular disparity in 

computational studies (Marr and Poggio, 1979; Quam, 1987; Fleet et al., 1996; Chen 

and Qian, 2004). 

   Generally, our external world is highly complex, with features at many scales 

existing simultaneously side-by-side or with overlap, sometimes with transparency, 

texture, shadows and sharp edges of luminance. Clearly therefore, natural scenes are 

broad-band, containing a broad range of SF components as shown in the spectral 

distributions in Figure 4C. Therefore, for a robust detection of binocular disparity, the 

brain must be able to utilize such broadband information. Since each neuron in A17 is 

tuned to relatively narrow range in the SF domain (red filled curves in Fig. 4C) having a 

bandwidth of approximately 1.3 octave on average (Movshon et al., 1978), integrating 

signals from different SF channels may take place at some stage on the disparity 

processing pathway.  

   Note that, all the SF channels that are to be combined must be carefully selected 

under the specific rule to achieve accurate disparity detection. If not, the integrated 

profile would lose precise selectivity to binocular disparity feature. What combinations 

of SF information should elicit the responses of disparity-detector neurons? For the 

simplicity of explanation, from this point on, I will consider the disparity for 

one-dimensional luminance patterns along the direction orthogonal to optimal 
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orientation of each A17 neuron. Since any complex pattern can be generated as a sum of 

various sine-waves of different SFs with appropriate phase and amplitude (Fourier 

transform), it is convenient and sufficient to consider such various sine-waves (or SF 

components) instead of a complex luminance pattern to discuss binocular disparity in 

the SF domain (Figure 5). When luminance patterns are shifted, all of the SF 

components contained in the patterns are shifted by the same amount across different 

SFs. Since binocular disparity is basically equal to the size of the shift of patterns 

between the two eyes as shown in Figure 5A, this constraint is characterized in the SF 

domain as a shift of sine-waves between the two eyes, by a constant amount in position 

across all of different SFs (Fig. 5B). 

 

   Taking these considerations into account, neurons that achieve accurate disparity 

detection should be selective to the same inter-ocular position shifts across broad SF 

band. Such neurons may be constructed by integrating or pooling outputs from multiple 

disparity energy units, tuned to different SFs but to common disparity. To examine 

whether such specialized processing happens, measuring binocular SF profiles as 

follows is applicable. For a neuron consisting only of a single SF channel, predicted 

disparity selective response would be a circular region of joint left and right 

one-dimensional SF tunings, in the joint left-right SF domain (Fig. 6A). And because 

most A17 neurons show nearly identical SF tuning for the two eyes, the circular 

binocular region would be centered on 1:1 diagonal. On the other hand, for a neuron 

that integrates or pools multiple of SF channels each tuned to different SFs, the 

combined response would be line up on the 1:1 diagonal as shown in Figure 6B. For 

such neurons, a response profile would be an elongated region along 45° diagonal in the 

joint left-right SF domain. At the same time, they would show common optimal 

disparity across different SF channels. 

   Do disparity-sensitive neurons in A17 show such binocular SF profiles? Although a 

previous study reported a tendency for broadly tuned V4 neurons to show weak 

responses to anti-correlated (contrast inverted) stereograms (Kumano et al., 2008), no 

direct measurement of binocular SF profiles described above has been attempted to date. 

In this study, I first examine whether binocular SF profiles are elongated along the 45° 

diagonal direction for disparity-sensitive neurons of A17 of the cat, by measuring 

binocular interactions in the joint left-right SF domain. Next, I examine the consistency 
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of disparity preference across different SF bands to demonstrate that binocular SF 

information is precisely integrated to achieve accurate disparity detection. 
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MATERIALS AND METHODS 
 

Extracellular single-unit recordings were performed in area 17 of 23 anesthetized and 

paralyzed adult cats (14 males and 9 females, 2.0 kg to 4.5kg). Details about surgical 

procedure, animal maintenance, and single-unit recording are described previously 

(Sasaki and Ohzawa, 2007; Ninomiya et al., 2012). Only a brief account of the basic 

procedures and points different from the previous studies are provided here. All animal 

care and experimental procedures conformed to the guidelines established by the 

National Institutes of Health and were approved by the Osaka University Animal Care 

and Use Committee. 

 

Animal preparation and maintenance 

 

 After initial pre-anesthetic doses of hydroxyzine (Atarax, 2.5 mg) and atropine (0.05 

mg), anesthesia was induced and maintained with isoflurane (2–3.5% in O2) for the 

remainder of the surgical preparation. During surgery, lidocaine was injected 

subcutaneously or applied topically at all points of pressure and possible sources of pain. 

A body temperature was monitored and maintained near 38℃ with a servo-controlled 

heating pad, and ECG electrodes were placed for monitoring heart rate. A tracheostomy 

was performed for the subsequent artificial respiration. After the animal was secured in 

a stereotaxic apparatus, anesthesia was switched to sodium thiopental (Ravonal, 1.0 

mg・kg-1・h-1) and paralysis was induced with an initial dose of gallamine triethiodide 

(Flaxedil, 10 mg・kg-1・h-1). Artificial ventilation was performed with a gas mixture of 

70% N2O and 30% O2. The respiration rate and stroke volume were adjusted to 

maintain the end-tidal CO2 between 3.5 and 4.3% throughout the experiment. A 

craniotomy was then performed over the central representation of the visual field of area 

17 approximately at Horsley-Clarke coordinates P4 and L2. Pupils were dilated with 1% 

atropine sulfate, and nictitating membranes were retracted with 5% phenylephrine 

hydrochloride (Neosynesin). The corneas were protected using contact lenses of 

appropriate power with a 3- to 4-mm artificial pupil. 

 To record single unit activities, tungsten electrodes (A-M Systems) were lowered into 

a region of cortex exposed with craniotomy. Agar was applied around the electrodes to 

prevent drying, and melted wax was layered over the agar to seal as a chamber and 
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reduce cortical pulsation. Electrical signals from the electrodes were amplified 

(x10,000) and band-pass filtered (300–5,000 Hz). Spikes were sorted by their 

waveforms and time-stamped with 40 µs resolution (Ohzawa et al., 1996). When the 

electrodes were retracted, electrolytic lesions were made at intervals of 500–1,200 µm 
for each electrode track. 

 At the end of an experiment, the animal was administered an overdose of pentobarbital 

sodium (Nembutal), perfused with buffered saline solution followed by 4% formalin in 

0.1M phosphate-buffered saline (PBS), and cortical tissue was prepared for histological 

examination. Electrode tracks were reconstructed and cortical laminae were identified. 

 

Visual stimulation 
 

 Visual stimuli were generated by computer and displayed on a cathode ray tube 

display (a resolution of 1,600 x 1,024 pixels, refreshed at 76 Hz; GDM-FW900, Sony) 

using only green channel to avoid color misconvergence across channels. In each 

experiment, the luminance nonlinearity of the display was measured using a photometer 

(Minolta CS-100) and linearized by gamma-corrected lookup tables. 50% Michelson 

contrast was used for all grating stimuli used in this study. A haploscope was used to 

present stimuli to the left and right eye separately, and the visual fields of the monitor 

covered approximately 23° x30° for each eye at a viewing distance 57cm. 

 Once a single unit was isolated, its preferred orientation, SF, the center position and 

the size of a receptive field (RF) were tested preliminarily under manual control. 

Subsequently, sub-space mapping to measure tuning in the joint orientation and SF 

domain was performed for each eye with flashed gratings (Ringach et al., 1997; 

Nishimoto et al., 2005). After the optimal orientation, optimal SF and the range of SF 

were determined for each eye, the binocular measurement was conducted to obtain a 

binocular SF interaction profile in a 4-dimensional domain (sfL, sfR, phL, phR), where 

"sf" and "ph" denote SF and phase, respectively, and the subscript indicates the eye. The 

stimuli were flashed gratings of various combinations of SFs and phases between the 

two eyes, oriented at the optimal orientation of the target cell (Ninomiya et al., 2012). 

Basically, 12 SFs and 8 phases per each eye were used, so the total number of stimuli 

presented in a single block was 9472, i.e., 9216 binocular (12x12x8x8), 192 monocular 

(2 eyes x12x8), plus blank (8) conditions. The multiple blank conditions were used to 
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increase the reliability of base-line response estimation. The blank stimuli had the same 

uniform luminance for both left and right display areas. All 9472 conditions were 

presented in one randomized block, and the block was repeated about 8 to 20 times. The 

stimuli were presented in a randomized sequence updated at 38Hz, and its size was 

adjusted to be slightly larger (approximately 1.5–3 times) than the size of the RF. The 

range of the SF was set to cover the cell’s SF band sufficiently. After the binocular 

4-dimensional mapping was completed, tuning curves for orientation and SF were 

verified respectively using drifting grating stimuli. In some cases, the RFs of the cells 

were also measured using a standard reverse correlation procedure with dense white 

noise stimuli (Nishimoto et al., 2006; Sasaki and Ohzawa, 2007). 

 

Data Analysis 

 

 Each cell was classified into simple or complex based on standard criteria (F1/F0 ratio) 

(Skottun et al., 1991). The balance of responses between the two eyes was quantified 

using the binocularity index (Sasaki and Ohzawa, 2010).  

  In this study, a goal is to elucidate a specific SF integration for disparity detection as 

illustrated in Figure 6 where neural responses to various left- and right SF combinations 

are examined. The actual experiment requires varing phases of the grating stimuli for 

each eye, because A17 neurons are highly sensitive to variations of stimulus phase 

monocularly (DeValois et al., 1978; Movshon et al., 1978a) for simple cells, and to 

variations of inter-ocular phases binocularly (Freeman and Robson, 1982; Ohzawa et al., 

1986b) for both simple and complex cells. This means that such an experiment must be 

done in the 4-dimensional stimulus space (sfL, sfR, phL, phR). Such an experiment will 

completely specify the binocular disparity selectivity for all possible combinations of 

SFs and phases for the left and right eye stimuli.  

  The 4-dimensional data set may be examined in various ways, but for my purposes, it 

is necessary to reduce the 4-d data into the 2-d form depicted in Figure 6. This process 

was conducted by following 3 steps as shown in Figure 7. First, for each combination of 

(sfL, sfR) (a square in Fig. 7B), I obtained a binocular phase combination selectivity. 

This created a map in the joint (phL, phR) domain (Fig. 7C), and for a disparity energy 

unit (Ohzawa et al., 1990) for example, it has a form depicted in Figure 7D. Second, I 

then computed an inter-ocular phase tuning curve (Fig. 7E) by integrating the map 
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along constant inter-ocular phase lines in Figure 7D (e.g. red straight and broken lines). 

The final step was to extract the strength of the tuning, which was given by the 

amplitude of a one-cycle sinusoid fitted to the inter-ocular phase tuning curve. The 

amplitude was obtained via Fourier analysis. Repeating these steps for all (sfL, sfR) 

combinations gave me a desired map as shown in Figure 6. 

 

  A complete data set in the 4-dimensional stimulus space (sfL, sfR, phL, phR) was 

constructed via a standard spike-triggered averaging (reverse correlation) as depicted in 

Figure 7A. Such a binocular interaction profile (binocular SF interaction map) was 

calculated for every recorded cell and evaluated. Specific analyses are described at the 

relevant places in Results. 
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RESULTS 
 

   I recorded from a total of 74 cells in area 17 of adult cats. Minimum set of 

measurements could be performed on 18 simple cells, 49 complex cells and 7 

unclassified type. For some specific types of measurements, the number of cells was 

reduced. 

 

Selectivity to binocular phase combinations for various SF pairs between the two 
eyes 

 

   As noted in Introduction, specific integration or pooling of binocular SF channels 

must happen at some stage along the visual pathway for robust estimation of binocular 

disparity. Examining this is achieved by measuring disparity selective responses for a 

variety of left-right combinations of different SFs. Hereafter, I call the 

disparity-selective profile in the joint left-right SF domain (Figure 6) as a ‘binocular SF 

interaction map’. To quantify the response strength to be plotted in the binocular SF 

interaction map, I computed the amplitude of disparity tuning for each combination of 

left-right SFs (sfL, sfR). This is because I am interested in the mechanism by which 

disparity specific information is combined, and not those that are due to monocular 

excitations. For a given combination of (sfL, sfR), I have a complete set of response data 

for all combination of different left and right phases (phL, phR). This gives me the 

phase-based disparity tuning for each (sfL, sfR), from which the amplitude of disparity 

tuning is computed easily. Therefore, once I obtain response data (spike counts) into 

bins defined in the 4-dimensional parameter space (sfL, sfR, phL, phR), the binocular SF 

interaction map as well as disparity tunings for all combinations of (sfL, sfR) can be 

computed. 

 The construction of the complete histograms in the original (sfL, sfR, phL, phR) space 

was carried out via reverse correlation as illustrated in Figure 7. The responses of 

neurons were measured while sine-wave grating pairs were presented dichoptically for 

various combinations of SFs and phases. Stimuli were delivered in rapid flashes at 38 

stimuli/sec. Since it is impossible to graphically present histograms in a 4-dimensional 

space, I present our data in the format depicted in Figure 7B and C: as a matrix of 

left-right phase tuning profiles (phL, phR). Here, (phL, phR) map is shown in Figure 7C 
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and many of these are arranged into a matrix of (sfL, sfR) in Figure 7B. Each binocular 

phase-domain map generally take a map as shown in Figure 7D for a complex cell that 

is a disparity energy unit. Data were further reduced to obtain a disparity tuning curve 

as a function of inter-ocular phase difference (Fig. 7E). The amplitude of modulation in 

such a disparity tuning curve is a good metric of the degree of binocular interaction for 

a given (sfL, sfR). 

 

  Figure 8A presents the data from a representative complex cell in the format 

described in Figure 7B and C. Each small map shows responses to binocular 

combinations of phases (phL, phR) for one SF pair (sfL, sfR), and such maps are arranged 

as a matrix of 13!13 binocular SF pairs. One of the maps marked with red border (sfL: 

0.48 cpd, sfR: 0.57 cpd) is magnified in Figure 8B to show typical response property to 

phase combinations of the disparity selective complex cell. Clear response of band in 

45° diagonals indicates that this cell has selectivity to a particular phase difference 

between the two eyes, in this case, approximately 0°. Note that the interpretation of 0° 

phase difference requires care since the animal was in a paralyzed and anesthetized state 

without active fixation. 

  To create a binocular SF interaction map for this neuron, I next evaluated the strength 

of disparity tuning for each (sfL, sfR) combination. This was done by integrating the 

response profile of Figure 8B along 45° paths (constant inter-ocular phase difference 

lines) to obtain a one-dimensional tuning curve as a function of inter-ocular phase 

difference (Fig. 8C). A degree of modulation of this tuning curve was extracted by 

fitting a sinusoid for the analysis described later (green broken curve). In Figure 8D, 

such tuning curves are shown for all (sfL, sfR) combinations as a matrix similar to Figure 

8A in its arrangement. Notice that tuning curve has a strong modulation only for 

relatively matched SF pairs between the two eyes, and such modulation cannot be 

observed if difference of SF between the two eyes is large. The evidence of elongation 

is already clear visually in Figure 8A and 8C. However, one of the most likely 

candidates for artifacts is a contamination from multiple neurons each tuned to different 

SFs. In order to reduce this possibility, I have examined recorded spike waveforms for 

signs of multiple spike waveforms as shown in inset of Figure 8A. Although such an 

examination of spike waveforms does not completely rule out the possibility of 

multi-spike contamination, it provides a reasonable safeguard for this artifact. Therefore, 
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spike waveforms were examined carefully for all neurons identified to have substantial 

elongations. 

 Results from a representative simple cell are shown in Figure 8E-H. For this simple 

cell, response to (phL, phR) combinations shows a single peak centered at a particular 

phase pairs, rather than spreading along diagonal band (Fig. 8A and B). This result is 

obvious because a simple cell has a selectivity to the phase presented monocularly, and 

the intersection of the two monocular peaks becomes the peak in the joint domain. 

 

 

Substantially elongated binocular SF interaction maps for a subset of complex 
cells 
 

 To visualize the degree of modulation in Figure 8D and H clearly, maps were created 

as density plots where each pixel represents the degree of modulation at each (sfL, sfR). 

Values were obtained as the amplitude of the first harmonic (F1) component of an 

inter-ocular phase tuning curve. Figure 9A presents such a plot derived from the 

complex cell data in Figure 8D. To evaluate the degree of elongation of the profile as I 

discussed in Figure 6, the map was fitted with a 2-dimensional Gaussian function whose 

axes were constrained to the direction of 45° and 135° diagonals (Fig. 9B). The fitted 

function was always a Gaussian. In some cases, data were measured in logarithmically 

constant steps. In such cases, data and a contour of the fitted Gaussian were plotted in a 

logarithmic domain, resulting in the egg-shaped distortion. Elongation index in the SF 

domain (EIsf) was then computed as a ratio of a fitted sigma along the 45° axis to that 

along the 135° axis. Clearly, with EIsf = 3.13, this complex cell exhibits a highly 

elongated shape along the 45° diagonal. 

 Additional binocular SF interaction maps are shown in Figure 10 for 6 cells having 

various degree of EIsf. The maps are arranged in the descending order of EIsf (indicated 

by a number at the upper-right corner of each map). For these 6 cells, various extent of 

elongation was observed from a small value of EIsf (1.10) to a large value (3.66). It 

suggests that there are multiple grades in integrating process of SF channels from one 

cell to another. Results for the previous simple cell (Fig. 8E-H) are shown in Figure 10F. 

This cell shows almost a circular shape of the binocular interaction map, suggesting the 

lack of integration.  
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 EIsf from all neurons in my sample are summarized in Figure 11A-C. To examine a 

possible relationship between the degree of elongation and the cell type 

(simple/complex), EIsf and F1/F0 ratio measured with drifting gratings for each neuron 

are plotted (Fig. 11A). Blue dots indicate simple cells while red dots represent complex 

cells. Statistical significance of elongation was tested for all the data, and those that are 

significant are indicated in deeper color (EIsf > 1.0, bootstrap test, p < 0.01). A strong 

negative correlation between these two values was observed (r = -0.55, p < 0.001), 

suggesting that integration of SF channels is essentially absent for simple cells. 

Complex cells generally had large degree of elongation in comparison, but there were 

also some complex cells without elongation or small degree of elongation. 

 

  Notice that even among simple cells, there are some with significant elongation. I 

wondered if those cells might have complex-like mechanisms internally despite being 

classified as simple based on F1/F0 ratio. To examine this discrepancy in more detail, I 

also examined binocular receptive field (bRF) structure for each neuron. A separability 

index of a bRF is another metric that reflects the "simple-ness" based on binocular data, 

and appears to be a better metric as an indication of subunits (Sanada and Ohzawa, 

2006). In contrast, F1/F0 ratio is usually defined monocularly. A separability index of a 

bRF being 1.0 indicates a totally separable map while 0 indicates an inseparable map. 

An ideal simple cell with a linear Gabor-like RF for each eye will have the index of 1.0. 

The detailed procedure for obtaining a bRF of each cell is explained later. Figure 11B 

presents the relationship between the separability index of a bRF and EIsf, showing 

significant negative correlation (r = -0.61, p < 0.01). For these results, simple cells with 

EIsf > 1.0 tended to show rather complex-like (inseparable) bRFs although they all had 

modulated responses to drifting grating stimuli. Such neurons may have intermediate 

property between simple and complex cells, as reported in the past studies (Sanada and 

Ohzawa, 2006; Sasaki et al., 2010). 

 Since one of the expected consequences of integration of SF channels for disparity 

detection is a widening of SF bandwidth, correlation between the SF bandwidth and 

EIsf would be predicted. Therefore, I examined a relationship between the SF 

bandwidth measured with drifting grating stimuli and EIsf. There appears to be a 

correlation between these two values, although it was not significant (r = 0.23, p = 
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0.057; Fig. 11C). 

 

  The previous study that defined the separability index of a bRF as noted above 

(Sanada and Ohzawa, 2006), primarily examined a difference of optimal SFs between 

the left and right eyes, possibly encoding three-dimensional slant. Is there any 

relationship between elongation in the SF domain and difference in the left and right 

optimal SF? The binocular SF interaction map of such a neuron may be elongated off 

the exact diagonal. First, I examined this. Figure 11D shows the distribution of left and 

right optimal SF difference for four groups of neurons. Upper row in Figure 11D 

represents cells with significant elongation in the SF domain (EIsf > 1.0) while the 

lower histograms show data without elongation. The Data confirm the presence of cells 

with significant left-right optimal SF difference, indicated by deeper colors in the 

histograms. Among 50 neurons (10 simple, 37 complex, 3 unclassified) with significant 

elongation, 18 neurons showed significant SF difference between the two eyes. No 

particular tendency or relationship was found among the degree of elongation, cell type 

(simple/complex), and offset of binocular SF interaction maps from the diagonal (not 

shown). 

  Note that even if there is a difference in the optimal SFs between the two eyes, 

elongated binocular SF profiles should satisfy a specific relationship for maintaining the 

ability to signal consistent surface slant in depth (Sanada and Ohzawa, 2006). 

Specifically, the left-right SF ratio should remain constant across different binocular SF 

pairs. Next, this was examined as follows for eleven of neurons showing significant 

left-right SF difference with EIsf >1.5. I fitted binocular SF interaction maps of such 

neurons with an elongated 2-dimensional Gaussian function, allowing its long axis to 

tilt from 45° diagonal. After fitting, two high and low left-right SF combinations along 

the fitted long axis were selected, which was separated by a distance of 0.8 sigma from 

the fitted center. Left-right SF ratio was then calculated at each point and compared. 

Although the number of data was small (n=11), there was a significant correlation of 

left-right SF ratios between low and high SF combinations, suggesting that these 

neurons might integrate signals while preserving consistency of surface slant 

information (Pearson’s correlation coefficient, r = 0.77, p < 0.05). 

 

 In Figure 12, the relationships among the other basic parameters are shown. Figure 
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12A and B present the relation of optimal SF measured with monocular stimuli to EIsf 

and disparity frequency, respectively. There was a weak positive correlation between 

the optimal SF and elongation in the SF domain, suggesting that neurons tuned to 

higher SF may carry more reliable disparity signal than neurons tuned to lower SF (r = 

0.24, p < 0.05). Furthermore, the scatter plot in Figure 12B shows a tendency also 

shown in previous studies (Ohzawa et al., 1997; Prince et al., 2002; Read and Cumming, 

2003) where there was a strong correlation, but the optimal SF generally is higher than 

optimal disparity frequency (r = 0.73, p < 0.001). Figure 12C and D show the 

relationships of optimal orientation and its bandwidth to the EIsf. No special 

relationships were observed between the elongation in the SF domain and the optimal 

orientation or its bandwidth. 

 

Reconstruction of binocular receptive fields (bRFs) and disparity tunings in the 
space domain 
 

 So far, I have shown that substantial elongation of binocular SF profiles occurs in 

many A17 disparity-tuned neurons. However, the most important point for accurate 

disparity detection is selectivity to constant inter-ocular position shift across all the SF 

components as described in Introduction. In other words, a neuron which has sharp and 

a diagonally elongated binocular profile in the SF domain, must share the same 

preferred disparity across different SF bands (Wagner and Frost 1993, 1994). To 

address this question, the SF domain analysis is not appropriate, and we must return to 

the space domain where binocular disparity tuning may be obtained directly. 

 

 A disparity tuning curve was calculated in two steps as follows. First, a reverse 

correlation analysis in the joint left-right space domain was performed to obtain a 

binocular receptive field (bRF) using methods similar to previous studies (Anzai et al., 

1999; Sasaki et al., 2010). Spike-triggered grating pairs were selected for an optimal 

correlation delay (Fig. 13A), and one-dimensional spike-triggered sin-waves were 

multiplied between the two eyes to produce binocular interaction terms (Fig. 13B). If 

contrasts are the same polarity between the two eyes (white-white or black-black), value 

of the interaction term becomes positive. On the other hand, when contrasts between the 

two eyes are opposite (white-black or black-white), the binocular interaction term 
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becomes negative. By repeating the above calculation of binocular interaction terms for 

all spikes and summing them, a bRF was obtained in the joint left-right space domain 

(Fig. 13C). In this bRF map, binocular disparity is constant along the +45° diagonal 

while it changes along "45° diagonal. Therefore, in the second step, a disparity tuning 

curve is computed by integrating the map along the +45° diagonal. 

 

 Figure 13D–I shows the results of the first step, i.e., bRFs for 6 example neurons 

because they are inherently much more informative than reduced one-dimensional 

disparity tuning curves. In each map, red color indicates binocular response to the same 

contrast polarity for the two eyes, while blue represents that for the opposite contrast 

polarity. Horizontal and vertical axes define the position along the axis orthogonal to 

preferred orientation in the left and right eye, respectively.  

  Figure 13D shows a typical bRF for a simple cell. Because of the selectivity to 

monocular phase, the map shows a separable profile. On the other hand, bRFs for other 

five complex cells show inseparable shape oriented along the constant disparity line 

(Fig. 13E–I). The bRF in Figure 13E shows an inverted bRF profile, found relatively 

rarely, for which the strongest subregion is to a combination of opposite polarity 

contrasts across the eyes. If the central blue region is at zero disparity, it would be a 

tuned-inhibitory cell. Because my preparation was anesthetized and paralyzed, I do not 

have accurate information on retinal correspondence. Figure 13F and G show 

even-symmetric and odd-symmetric bRFs, respectively. The maps in Figure 13H and I 

represent bRFs for the neuron that showed large degree of elongation in the SF domain 

with EIsf 3.42 and 3.66 for H and I, respectively. Notice that, for these neurons, the 

reconstructed bRFs in the space domain (H and I) are also thin and highly elongated 

along +45° diagonal. Analysis on the relationship between the SF domain and the space 

domain for elongation is described later. 

 

Are optimal disparities matched across different SF bands? 
 

  Having described the 2-dimensional bRFs, I now return to the original question and 

examine binocular disparity tuning curves. Are combined elements tuned to the same 

common disparity across different SF sub-bands? For this purpose, I note that the bRF 

and disparity tuning curve may be calculated for a subset of stimuli limited to a 



 24 

particular SF band. This is achieved by simply limiting the spike-triggered stimuli to 

within an arbitrary SF band during a reverse correlation analysis for constructing bRFs. 

 To compare disparity selectivity between mechanisms tuned to high and low SF, bRFs 

for two SF bands were obtained by using only upper half or lower half of the SF 

components. Figure 14 shows bRFs and disparity tuning curves for a representative 

complex cell (the same cell shown in Fig. 8A–D and Fig. 10B). SF ranges used for each 

reconstruction are illustrated in the upper row of Figure 14A–C in the form of binocular 

SF interaction maps. SF components outside the selected SF band are indicated by dark 

blue, and each bRFs are shown under the respective SF interaction map (A: all SF 

components were used, B: only lower half of SFs were used, and C: only upper half of 

SFs were used).  

  In Figure 14D, computed disparity tuning curves of each bRFs are superimposed 

(gray: all SF components, red: low SF components, and blue: high SF components). 

Clearly, peaks of all the tuning curves are at the same disparity. The result suggests that 

this neuron combines inputs across different SFs while maintaining exact tuning to the 

same disparity. Such a processing may allow robust detection of disparity, because 

responses to the false matches at side-lobes of a tuning curve may be reduced due to 

mutual cancellation of side-lobes of tuning curves for different SF bands (Fig.14D). 

However, notice that the care is needed for this analysis about interpretation of 

side-lobes, because based on an uncertainty principle (Daugman, 1985), bandwidth 

limitation in the SF domain generates increased number of bounces in side-lobes in the 

space domain. The bandwidth-limited reconstructions of bRFs were carried out using 

approximately 1.5 octave bandwidth in Figure 14B and C (a half of 3 octaves total). 

Although this is close to the average bandwidth of A17 neurons, at least part of 

side-lobes might have been due to the bandwidth limitation. 

 

 If an integration of disparity detectors in the SF domain always occurs under the 

constraint of common disparity for all SFs, neurons with refined binocular SF profiles 

should show similar results to that shown in Figure 14. Therefore, I next examined 

whether this constraint is common in other neurons that showed large elongation in the 

SF domain. Neurons with EIsf larger than 1.5 were examined with the same analysis as 

that for Figure14, and the peak difference of disparity tuning curves between low and 

high SF bands was evaluated. Figure 15A illustrates the calculation of ‘normalized peak 
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difference,’ that indicates the quantitative index of the difference. !Peak is the 
separation between the peaks of tunings between the different SF bands, and normalized 

peak difference is defined as the !Peak divided by the wavelength (1/SF) of disparity 

tuning curve (all SF condition). Figure 15B shows the distribution of normalized peak 

difference and its relationship with the phase of original disparity tuning curve for my 

sample of cells (n = 44). As the histogram at the top of Figure 15B shows, most cells 

had a relatively small peak difference of less than 0.1 between the low and high SF 

bands, indicating a good general match of encoded disparity across different SF 

sub-bands. Therefore, for the majority of disparity coding neurons, combined binocular 

SF pairs satisfy the rule of sharing the same preferred disparity. However, for a small 

fraction of the population, this was not the case. I wondered here if the alignment of 

peak disparities might depend on the symmetry of disparity tuning curves. This is 

because the peak alignment is the same as centering alignment (of the envelopes) for 

even-symmetric disparity tuning curves as illustrated in Figure 15A (blue and red 

curves). On the other hand, in order to peak-align odd-symmetric disparity tuning 

curves across different SF bands, centers of disparity tuning curves must be offset 

accordingly. In this case, it is conceivable that some neurons may combine inputs across 

SF sub-bands with "zero-crossing" alignment presumably for different purposes. The 

result for an example neuron that shows such an alignment across different SF bands is 

indicated in Figure 15C. I do not have a definite conclusion on this, because there are 

only small numbers of neurons with a large normalized peak difference (> 0.1). 

However, those all had nearly odd-symmetric disparity tuning curves as indicated by the 

phase of disparity tuning curves close to 90° or 270° (Fig. 15B). 

 

Relationship between pooling in the SF domain and the space domain 
 

   Recall that some of the reconstructed bRFs showed highly elongated profiles in the 

space domain (Fig. 13). As previous studies show, some degree of spatial pooling of 

multiple disparity detectors occurs for a portion of A17 neurons (Sasaki et al. 2010). 

However, the degree of spatial pooling found in previous studies (Sasaki & Ohzawa, 

2007; Sasaki et al., 2010) is relatively limited compared with the elongation found for 

some neurons in this study (Fig. 13). Therefore, I have examined a possibility that the 

pooling, as evaluated by elongation of binocular SF interaction maps, is not completely 
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independent in the space and the SF domains. Specifically, I consider if the apparent 

elongation of bRFs in space may arise from pooling in the SF domain. If pooling across 

multiple SF bands can reduce sidebands in disparity tuning curves, it may essentially 

restrict the extent of bRFs along the –45° axis without necessarily extending bRFs along 

the +45° axis (X axis). To examine this possibility, I consider a disparity detector that 

pools only in the SF domain. Such a detector may be constructed by summing the 

output of multiple disparity energy units aligned at the center (Fig. 16). The bRF of the 

pooled units is slightly elongated along the constant disparity (+45°) axis without any 

pooling in the space domain (gray elongated contour in Fig. 16B). Therefore, pooling 

purely in the SF domain itself can be responsible for a part of extensive spatial pooling 

along the X axis. 

  However, bRFs constructed by such SF pooling alone shows some distortion of the 

bRF not observed in the bRFs of actual neurons, as shown in Figure 16B. Because the 

bRF of a unit tuned to lower SF covers a larger space than that tuned to higher SF (Fig. 

16A), the pooled bRF becomes sharpened only at the center, but remaining broad at the 

edges shown by superimposed tuning curves of cross-sections at the center and the edge 

in Figure 16B (bottom). On the other hand, actual neurons showed no such distortion of 

bRFs (Fig. 16C). Tuning curves at the center and the edge are almost identical for these 

neurons, although they show highly elongated shape of bRFs. Therefore, some degree 

of spatial pooling clearly occurs for neurons shown in Figure 16C and others in our 

sample. A prediction from this analysis is that neurons with broad-band SF tuning tend 

to have a corresponding degree of spatial pooling for maintaining consistent disparity 

tuning across all locations of bRFs. 

 

  Likewise, I must also consider a possibility in the opposite direction where the 

apparent elongation of binocular SF interaction map may be caused by pooling multiple 

disparity energy units in the space domain. In Figure 17, a schematic explanation is 

provided for such elongation in the SF domain. Consider a neuron that pools multiple 

disparity energy units at different spatial positions along the X axis (broken gray circles), 

but tuned to the same SF (light red circle) and to common disparity. When SFs are 

identical between the two eyes (45° broken line), inter-ocular phase difference is always 

the same along the X axis. However, if left and right SFs are different, inter-ocular 

phase difference changes depending on the positions along the X axis as shown at the 
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bottom right of Figure 17. Such differences produce different firing rates across energy 

units at different positions, which means that these energy units do not fire in a 

concerted manner. Thus, the strength of binocular SF interaction is reduced most along 

the –45° axis where SF is different maximally between the two eyes, generating the 

apparent elongation of binocular SF interaction maps (elongated red filled region along 

+45° diagonal in Fig. 17). 

 

  Figure 18 illustrates the relationship between pooling in the SF domain and that in the 

space domain. I computed the elongation index along the X axis (EIx) for each bRF to 

capture the degree of pooling in the joint left-right space domain. For EIx, the aspect 

ratio of the Fourier spectrum was calculated for each bRF (Sanada et al., 2006). There 

was a strong positive correlation between these two values (r = 0.82, p < 0.001), 

probably due to complex interactions between the SF domain and the space domain 

described above. Pooling in one domain generates a degree of apparent elongation of 

the joint profile in the other domain, making the measurement difficult or almost 

impossible for estimating the degree of effect caused in a single domain independently. 

The profile I measured here may be the end product generated by mixed pooling in both 

SF and position domains including complex interactions. 

    

Binocular matching with substantially sharp SF tunings 
  

   Although the elongation of binocular SF interaction profiles appears to be caused by 

complex factors including pooling in both SF and space domains, consequences of the 

elongation for the detection of binocular disparity may be considered independently. 

Since the analysis presented in Figure 17 suggests that pooling in either domain may 

cause the narrowing of SF interaction profiles, I have examined the SF bandwidths in 

both monocular and binocular conditions. Specifically, I ask whether binocular SF 

bandwidth is narrower than monocular SF bandwidth. To address this question, a 

cross-section of a binocular SF interaction map for the dominant eye (Fig. 19A, B) was 

compared with monocular SF tuning curve obtained using drifting grating stimuli 

(broken black curve in Fig. 19B). To clarify, for example, horizontal cross-sections of 

the profile in Figure 19A represent SF tuning curves in the left eye in the presence of 

constant various SFs in the right eye. These cross-sections are plotted in Figure 19B as 
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colored solid curves. Population data show that many neurons have binocular SF 

bandwidth narrower than 0.5 octave width (Fig. 19C). The result suggests that binocular 

matching is conducted with much higher SF precision than that predicted from average 

monocular SF bandwidth of neurons in A17. 
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DISCUSSION 
 

   In this study, I examined how the integration of information from different SF bands 

is achieved in disparity-sensitive binocular neurons in the striate cortex. A previous 

computational study proposed a model of combining outputs from multiple energy units 

at different scales for robust estimation of binocular disparity (Fleet et al., 1996). 

Physiologically, a previous study indicated that multiple excitatory and suppressive 

subunits contributed to generate disparity-selective responses in neurons of monkey V1 

(Tanabe et al., 2011). However, no direct assessment has been conducted 

physiologically to evaluate the integration of multiple excitatory channels tuned to 

different SFs as illustrated in Figure 6. I obtained a binocular SF interaction map, which 

reflects the degree of integration by analyzing phase-based disparity tunings in the joint 

left-right SF domain. A subset of complex cells showed substantial elongation of 

binocular SF interaction profile along the 45° diagonal, which is not predicted from a 

single energy unit. 

 

Interactions of pooling across multiple stimulus dimensions 
 

  As noted in the last part of Results, a complex interaction between SF and space 

domains occurs for the binocular profile when pooling of multiple energy units are 

considered. In theory, other forms of interactions are conceivable across multiple 

stimulus dimensions. For example, given that neurons in the primary visual cortex are 

tuned sharply for orientation, pooling in the orientation dimension might also affect 

some of the properties we examined in the present study. For the complete 

understanding of underlying neural mechanisms, it may be desirable to consider and 

measure the degree of pooling by taking all of such relevant domains into account 

exhaustively, although practically it does not seem so easy. Comprehensive and 

systematic examination for such complicated interactions may be needed in the future 

study, both theoretically and physiologically. 

 

Binocular matching is conducted with substantially sharp SF tunings 
  

  The results presented in Figure 19 suggest that binocular matching is conducted with 
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much higher SF precision than that predicted from average monocular SF bandwidth of 

neurons in A17. What benefits are there for narrow-band binocular matching? 

Receptive fields of typical A17 neurons appear to be designed for achieving a best 

balance between high positional (x, y) and SF (fx, fy) accuracies, giving typical 

monocular SF bandwidth of 1.3 octaves. However, when matching left and right 

patterns, some neurons in my data show that the binocularly relevant SF bandwidth is 

around 0.5 octaves. It means that even though the front-end linear filter, simple cells, 

and complex cells in the next stage are of medium bandwidth monocularly, a subset of 

the same complex cells achieves narrow-band binocular matching. It is somewhat 

surprising that these widely different bandwidths can coexist in the same cells. 

  One of the benefits of narrow-band binocular matching may be that, in the SF domain, 

signaling accuracy with respect to spatial phase is particularly important, as that is the 

parameter which is directly related to positional shift. However, such a conversion 

between phase and positional shift relies on the accurate knowledge of SF. Narrow-band 

SF tuning that applies only for binocular matching appear to achieve the desired 

condition, without necessarily modifying basic front-end tuning characteristics of 

neurons. Obviously, the output of these initial stage neurons are used for many purposes 

other than stereopsis, such as determining shape and motion velocities. For those other 

visual functions, extremely narrow-band SF tuning may not be desirable. Overall, the 

binocular processing for stereopsis appears to be remarkably well-designed with highly 

suitable tuning properties actually achieved for different purposes, but with relatively 

simple schemes. 

 

Relation to coarse-to-fine mechanism 

 

 Some of computational models of stereoscopic processing take a sequential approach, 

known as coarse-to-fine algorithms (Marr and Poggio, 1979; Quam, 1987; Chen and 

Qian, 2004; Li and Qian, 2015). In these algorithms, disparity information is 

hierarchically processed from coarse to fine scales, improving the accuracy of disparity 

detection as it proceeds. Do cortical neurons also implement a sequential refinement in 

integrating multiple SF bands? While I cannot directly address this question, my 

analysis implies that neurons simply pool the output of multiple subunits tuned to 

different SFs but with common preferred disparity. No explicit and non-trivial 
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sequential interactions from coarse-to-fine (or from low SF to high SF) are assumed in 

this pooling scheme. Such a simple pooling mechanism appears sufficient to explain the 

results obtained. 

  However, there may be a sequential element of coarse-to-fine organization in the 

simple pooling process. It is well known that, in monocular spectral-time receptive field 

analyses, the optimal SF increases from low to high as a function of response delay 

(Bredfeldt and Ringach, 2002; Mazer et al., 2002; Nishimoto et al., 2005). In other 

words, signals for high SFs arrive at the neuron with a longer temporal delay than low 

SF signals. The same phenomenon is also observed for binocular responses. 

Disparity-time response analyses reveal progressive shift of disparity frequency as a 

function of temporal delay (Menz and Freeman, 2003). My data also showed similar 

tendency in the time course of disparity tuning (not shown). Specifically, SF interaction 

map showed elongation in a single time delay (e.g., Fig. 9A), and at the same time, 

showed slight progressive shift of its optimal SF from low to high as the temporal delay 

was increased. Therefore, regardless of the implementation, the real visual system may 

also effectively achieve progressive computation and refinement of disparity 

information simply by summing signals from multiple subunits with various temporal 

delays. 

 

Possible effects of suppressive elements 
 

 Although I have so far assumed that the elongated shape of a binocular SF interaction 

map is caused by pooling of multiple excitatory channels, possibility of suppression 

effect may not be negligible (Tanabe et al., 2011). Instead of elongating a response 

region by adding subunits (Fig. 6B), it is also possible that binocular response is 

inhibited at specific SF combinations where difference of SF is large between the two 

eyes. Unfortunately, because my measurements contain too few blank stimuli to 

estimate the baseline response level accurately, it is difficult to evaluate suppressive 

responses for this purpose. However, although possible in principle, such a hypothetical 

scheme seems unlikely or at least inefficient, because units exerting suppression need to 

be constructed in the first place with inputs from highly unmatched SFs between the 

two eyes. Such neurons with a large difference in preferred SFs are not generally found 

(Sanada and Ohzawa, 2006).  
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  Other schemes are also possible if one allows more complexity in the model. For 

example, inhibitory input from a neuron tuned to a slightly higher SF than the excitatory 

neuron may be present. If such an inhibitory neuron is turned off (assuming an 

appropriate disparity tuning), the result will be a disinhibition, which will result in net 

increase in excitation for the postsynaptic neuron. However, such schemes are 

indistinguishable from excitatory input as recorded from the postsynaptic neuron. 

Therefore, functionally, such schemes fall within the framework being considered. 

Unless there is a substantial functional difference, it is simpler and more natural to 

consider a detector that combines multiple excitatory subunits rather than one that use 

suppression. 

 

Alignment of disparity tuning curves for pooling across SF bands 

 

  Majority of neurons in my sample exhibit elongation of binocular profiles in the SF 

domain while preserving a common optimal disparity across SF bands. As a previous 

computational study shows (Fleet et al., 1996), combining energy units tuned to 

different SFs but to common disparity would improve detection accuracy by increasing 

response probability at the true disparity and decreasing it at the false disparities. 

However, there are some neurons that showed a large difference in optimal disparity 

when pooling across SF bands (Fig. 15B). These neurons tended to have odd-symmetric 

disparity tuning curves, and the results of multi-SF-band analysis show that disparity 

tuning curves for high and low SFs are aligned approximately at zero-crossings rather 

than at peaks (Fig. 15C). Do such neurons play some functional roles? 

  In higher visual areas, especially those in the dorsal visual stream such as MT and 

MST, it is known that the number of disparity-selective neurons with odd-symmetric 

tuning curve substantially increases (Cumming and DeAngelis, 2001; DeAngelis and 

Uka, 2003). A possible role is suggested that the output of these neurons provides a 

signal for oculomotor vergence control (Masson et al., 1997). Characteristics of signals 

required for fine vergence control may be different from those for depth perception. 

Specifically, it may be more important to achieve high sensitivity near 0 disparity for 

determining the direction and size of vergence: converge or diverge, rather than 

detecting a disparity. Neurons with odd-symmetric disparity can provide such a signal, 

although the same information may be obtained from peaks of multiple neurons. Such a 
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vergence signal should also function for large disparity deviations. In other words, SF 

bands may be pooled such that the slope at zero-crossing is increased and the output 

maintained even at large disparities. This goal is achieved by pooling multiple SF 

components with zero-crossing alignment, as the famous Fourier series decomposition 

of a square wave indicates. 

 

Effects of SF pooling on the shape of disparity tuning curve 
 

 There are two known refinements in the shape of disparity tuning curves in neurons 

beyond that of a disparity energy model. The refinement begins in A17 (Ohzawa, 1998; 

Haefner and Cumming, 2008; Tanabe et al., 2011) but become more pronounced in 

high-order areas such as V4 and IT. One is the reduction of multiple side-lobes as 

illustrated in Figure 14, and noted by Fleet et al. (1996). The other is the reduction of 

responses to anti-correlated random-dot stereograms (aRDS) (Janssen et al., 2003; 

Tanabe et al., 2004). These two factors are often discussed together but are distinct 

(Nieder and Wagner, 2001). In relation to the latter, a previous study shows that in 

monkey V4, disparity-sensitive neurons show a correlation between SF bandwidth and 

the degree of attenuation of response amplitude for aRDS compared with that for 

correlated RDS (cRDS) (Kumano et al., 2008). They interpret this as a consequence of 

integrating multiple SF channels. However, pooling multiple disparity-selective units 

across SF bands by itself doesn’t produce attenuation of response amplitude to aRDS. 

Responses to aRDS are merely inverted versions of disparity tuning for cRDS.  
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