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ABSTRACT

For our vivid perception of a three-dimensional world, the stereoscopic
function begins in our brain by detecting slight shifts of image features
between the two eyes, called ‘binocular disparity’. The primary visual cortex
is the first stage of this processing, and neurons there are tuned to a limited
range of spatial frequencies (SF). However, our visual world is generally
highly complex, composed of numerous features at a variety of scales,
thereby having broadband SF spectra. This means that binocular
information signaled by individual neurons is incomplete, and combining
information across multiple SF bands must be essential for the visual system
to function in a robust and reliable manner. In this study, I investigated
whether the integration of information from multiple SF channels begins in
the primary visual cortex. I measured disparity-selective responses in the
joint left-right SF domain using sequences of dichoptically flashed grating
stimuli consisting of various combinations of SFs and phases. The obtained
interaction map in the joint left-right SF domain reflects the degree of
integration across different SF channels. A substantial fraction of complex
cells in my data showed highly elongated binocular SF profile, which is
consistent with the idea that disparity information is combined from
multiple SF channels. For the majority of these neurons, the optimal
disparity is matched across the SF bands. In addition, some of the complex
cells showed extremely sharp SF tuning, i.e., narrow bandwidth for
binocular SF matching for disparity detection, compared with relatively
broad SF bandwidth for monocular response. It suggests that both
narrowband binocular SF matching and integration of broadband SF
information are achieved simultaneously for accurate disparity detection.
These results suggest that a highly specific SF integration process for

disparity detection starts in the primary visual cortex.
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GENERAL INTRODUCTION

We can recognize various complex features in our visual world such as faces,
objects, textures, surface qualities of materials or particular movements, and
three-dimensional depth, very easily without any special effort. For such outstanding
ability, visual system in our brain possesses highly specialized function of extracting
various kinds of visual features from our retinal images (Gross et al., 1972; Orban G. A,
1995; Tanaka K, 1996; Cumming and DeAngelis, 2001; Tsao et al., 2006; Nishio et al,
2012). The purpose of this research, from a very general and broad viewpoint, is to
understand mechanism at the intermediate-stage of such specialized feature detection, in
particular, binocular vision related to the stereopsis. I will start this paper by introducing

the first stage of visual processing in our brain.

Wavelet analysis of retinal images in the primary visual cortex

Visual information captured by retinae is processed hierarchically after transmitted
to our brain. For an initial stage of retinal image processing in the cerebral cortex, there
is an area named ‘primary visual cortex (A17)’. Each neuron in Al7 receives visual
inputs only within a specific small area in the visual field, ranging approximately 1 to 5
degrees of visual angle in diameter (Gattass et al., 1987; Freeman and Simoncelli, 2011).
This small area is called a ‘receptive field (RF)’. Different neurons have RFs at
different positions in our retina and the whole neuronal population covers the entire
visual field. The characteristic property of these neurons in A17 is their strict selectivity
to the image pattern, that is, selectivity to a particular ‘wave’ or ‘stripe pattern’. Each
neuron strongly responds to a small piece of wave pattern with specific orientation and
fineness at its RF position. Since a single piece of wave is defined by its orientation,
spatial frequency (SF) and position, the functional property of a neuron in A17 is well
described by its selectivity to orientation, SF and RF position.

Since the beginning of A17 studies, neurons in A17 have been classified into two
types (Hubel and Wiesel, 1962; Movshon et al., 1978a,b). One of the two types, ‘simple
cells’, have separated areas (so-called ON region and OFF region) within its RF. ON
region is an area responding to bright stimuli and OFF region is an area responding to

dark stimuli. Figure 1A shows various RFs of simple cells arranged according to the



orientation and SF, measured in cat A17. For a simple cell, stripe pattern or a piece of
wave, does not always cause its response even though the pattern has its optimal
orientation and SF. In addition to these stimulus parameters, the position or ‘phase’ of
the wave within the RF influence the activity of a simple cell. Compared with this, the
other type called ‘complex cells’ generally has no such separated sub-regions within its
RFs while they are also highly selective to the orientation and SF of the stimulus.
Complex cells are activated whenever a wave with optimal SF and orientation is
presented within their RF regardless of its absolute position.

In any case, both simple cells and complex cells possess a strict selectivity to pieces
of wave patterns. A piece of wave is called as a ‘wavelet’, and the processing of retinal
image in A17 can be understood from a viewpoint of ‘wavelet analysis’. Especially,
shapes of RFs in A17 are well described by ‘Gabor function’ (Fig. 1B), and called
‘Gabor wavelet’. In wavelet analysis, an image is decomposed into many pieces of
wavelets, and information of luminance pattern in the x-y space is represented as a
combination of strengths of many different wavelets. A single neuron in A17 works as a
channel which detects a particular Gabor wavelet by having selectivity to the position,
SF, and orientation of a stripe pattern. Only a specific SF and orientation component
located at a particular retinal position can elicit a response in a specific channel. For
example, as shown in Figure 1C, a horizontal very fine visual feature, such as the frets
of a guitar, is detected by a channel which has the small RF of a Gabor wavelet with
horizontal orientation and high SF, while a vertical coarse feature (e.g., neck of the
guitar) is detected by that with vertical orientation and low SF. And any arbitrary image
can be represented by a complete set of such channels (Lee, 1996). Viewing visual
information in the Gabor wavelet analysis is particularly important for studying visual
processing in our brain.

Wavelet analysis is a general and very strong technique in image processing
applicable to any kind of images. However, decomposed information of a single
channel itself usually doesn’t have enough information for our higher-order recognition.
Natural features we recognize or utilize in our everyday life are generally much more
complex, compared with stripe patterns (e.g., faces, textures and so on). To obtain
various kinds of feature selectivity, information of a single wavelet is incomplete, and
many of such different wavelets should be combined and refined in our visual pathway

eventually. Since different visual features are characterized as different combinations of



information in the wavelet pyramid, it may be helpful to consider what is needed for
extracting a specific feature in the wavelet pyramid, or in the orientation domain and the
SF domain. For example, ‘velocity’ is one of the visual features represented in area MT
in the cortex (Movshon et al., 2986; Maunsell & Newsome, 1987). Although I didn’t
introduce temporal selectivity of A17 neurons up to here, many of them have optimal
temporal frequency (TF) and direction of motion (Hubel & Weisel, 1959; DeAngelis et
al., 1993a,b). A particular velocity is characterized by a particular combination of A17
spatio-temporal frequency channels (Simocelli and Heeger, 1992), and neural selectivity
in MT may be constructed by combining outputs of them.

In this study, I focus on one visual feature, which is defined in the ‘binocular’
condition. Before introducing the specific purpose of my study, I will explain the details
of that binocular feature, and then explain the current understanding of mechanisms of

its detection.

Binocular disparity and its detection

We can perceive a vivid three-dimensional world although our retinal images are
two-dimensional. Various monocular and binocular features contained in our retinal
images are available for estimating depth, and our brain can compute the
three-dimensional arrangement of what we see based on such cues. Especially, the
function of estimating depth based on binocular cues is called ‘stereopsis’. Neural
mechanisms for stereopsis have been actively pursued with psychophysical (Hemholtz,
1909; Westheimer and McKee, 1980; Schor et al., 1983), physiological (Barlow et al.,
1967; Poggio and Fischer, 1977; Ferster 1981; Maunsell and Van Essen, 1983; Ohzawa
et al., 1990; Uka et al., 2000; Cumming and DeAngelis, 2001; Tanabe et al., 2011), and
computational (Marr and Poggio, 1979; Qian, 1994; Doi and Fujita, 2014; Li and Qian,
2015) approaches.

Because our left and right eyes are located at slightly different positions, left and
right images projected on our retinae are very similar, but also slightly shifted by a
small distance between the two eyes. This small difference or shift between the two
retinal images is called ‘binocular disparity’. The magnitude of binocular disparity is
systematically related to three-dimensional depth due to geometrical relationship.

Visual inputs at different depth are projected on left and right retinae with different



amounts of offset between the two eyes (Fig. 2A). If we can measure binocular disparity
of an object at a certain position accurately, we can basically estimate how far that
object is along the depth direction from the fixated plane (e.g., green curve in Fig. 2A).

It is well known that, the detection process of such binocular disparity starts in A17
in our brain. A substantial number of neurons in A17 have their RFs in both left and
right eyes and are called ‘binocular’ neurons (Hubel and Wiesel, 1962). Among them,
there are neurons that are especially selective to binocular disparity. Here, since
binocular neurons in A17 has optimal orientation and that orientation is generally
common across the left and right eyes, the disparity that a single neuron can encode is
basically along the direction orthogonal to its optimal orientation (Fig. 2B). As
described in the previous section, a simple cell is selective to the position of its optimal
wave pattern within its RF. Therefore, a binocular simple cell works partially as a
disparity sensor by having the best positional arrangement of the stimulus combination
between the two eyes to generate response. However, disparity is not the only parameter
which affects the firing rate of a simple cell. Other stimulus parameters, such as
absolute monocular position and contrast, also affect the firing rate of it.

On the other hand, nearly a half of binocular complex cells in A17 are also selective
to binocular disparity (Ohzawa and Freeman, 1986b), and their property is more
suitable as a specialized detector for disparity than simple cells. An ideal disparity
detector should respond to particular disparity regardless of other irrelevant visual
features (i.e., irrelevant for disparity sensing but may be useful for other purposes).
Disparity-sensitive complex cells in A17 basically satisfy such requirements (Ohzawa et
al., 1990). For example, they respond strongly to a pair of bars with the same contrast
when they are presented dichoptically at a particular positional relationship between the
two eyes, anywhere within their RFs (i.e., regardless of absolute monocular stimulus
positions). They respond to both conditions of bright-bright pair and dark-dark pair, as
long as relative position between the two eyes is retained. The fundamental response
properties of such disparity-sensitive complex cells are well explained by the ‘disparity

energy model,” which was proposed by Ohzawa et al (1990).

Disparity energy model



The disparity energy model is constructed by combining several wavelets under
special constraints so as to produce selectivity to binocular disparity while removing
undesired selectivity to other irrelevant parameters as noted above. The model
integrates outputs from four binocular simple-type subunits. A whole structure of the
model is illustrated schematically in Figure 3. Each subunit (illustrated as a columns in
the upper part of Fig. 3) has RFs in both left and right eyes where their relative positions
have an offset by a particular distance horizontally, along the direction orthogonal to its
optimal orientation (called as ‘Position model’). The SF and orientation of subunits are
common for both eyes and for four subunits. A critical point in the model is that the
four subunits are in quadrature phase, the phase of RFs differs from that of its
counterpart by 90°. This allows the model to lose its monocular phase selectivity (a
hallmark of a complex cell), making the cell responsive to a stimulus anywhere within
the RF, while retaining the disparity selectivity. Outputs from all the subunits are
half-wave rectified, squared and combined in a single complex cell. Composed as such
structure, the model successfully obtains basic property needed for an ideal disparity
detector, and explains well many aspects of responses of actual disparity-sensitive
complex cells (Ohzawa et al., 1990).

The disparity energy model, however, has still some aspects that are not suitable for
ideal disparity detection, known as responses to false-disparities (Cumming and Parker,
1997). Further processing is needed in the next stage as described in the following
chapter. In this study therefore, I wish to consider and examine disparity specific
processing that goes beyond the conventional disparity energy model, constructed by

combining information from wavelets in different scales.



INTRODUCTION

As noted in General Introduction, our visual system possesses a remarkable function
called stereopsis that allows perception of three-dimensional depths based on a pair of
two-dimensional retinal images. As shown in a pair of stereo photographs in Figure 4A
and their cross-sections in Figure 4B, left and right images are generally similar but
slightly shifted versions of each other due to the lateral placement of the eyes. Accurate
measurement of binocular disparity, that is, such small shifts between left and right
retinal images, is a central problem of stereopsis. Here, I try to examine the selectivity
of a neuron which is specialized for detection of binocular disparity in the SF domain. I
especially focus on the SF domain for the following two reasons. One is that SF is one
of the major parameters in Gabor wavelet analysis where the visual information of
retinal images is initially processed in the cortex. The other is that, for a long time
historically, combining signals of different SF channels has been pointed out to be quite
important for improvement of detection accuracy of binocular disparity in
computational studies (Marr and Poggio, 1979; Quam, 1987; Fleet et al., 1996; Chen
and Qian, 2004).

Generally, our external world is highly complex, with features at many scales
existing simultaneously side-by-side or with overlap, sometimes with transparency,
texture, shadows and sharp edges of luminance. Clearly therefore, natural scenes are
broad-band, containing a broad range of SF components as shown in the spectral
distributions in Figure 4C. Therefore, for a robust detection of binocular disparity, the
brain must be able to utilize such broadband information. Since each neuron in Al7 is
tuned to relatively narrow range in the SF domain (red filled curves in Fig. 4C) having a
bandwidth of approximately 1.3 octave on average (Movshon et al., 1978), integrating
signals from different SF channels may take place at some stage on the disparity
processing pathway.

Note that, all the SF channels that are to be combined must be carefully selected
under the specific rule to achieve accurate disparity detection. If not, the integrated
profile would lose precise selectivity to binocular disparity feature. What combinations
of SF information should elicit the responses of disparity-detector neurons? For the
simplicity of explanation, from this point on, I will consider the disparity for

one-dimensional luminance patterns along the direction orthogonal to optimal
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orientation of each A17 neuron. Since any complex pattern can be generated as a sum of
various sine-waves of different SFs with appropriate phase and amplitude (Fourier
transform), it is convenient and sufficient to consider such various sine-waves (or SF
components) instead of a complex luminance pattern to discuss binocular disparity in
the SF domain (Figure 5). When luminance patterns are shifted, all of the SF
components contained in the patterns are shifted by the same amount across different
SFs. Since binocular disparity is basically equal to the size of the shift of patterns
between the two eyes as shown in Figure 5A, this constraint is characterized in the SF
domain as a shift of sine-waves between the two eyes, by a constant amount in position

across all of different SFs (Fig. 5B).

Taking these considerations into account, neurons that achieve accurate disparity
detection should be selective to the same inter-ocular position shifts across broad SF
band. Such neurons may be constructed by integrating or pooling outputs from multiple
disparity energy units, tuned to different SFs but to common disparity. To examine
whether such specialized processing happens, measuring binocular SF profiles as
follows is applicable. For a neuron consisting only of a single SF channel, predicted
disparity selective response would be a circular region of joint left and right
one-dimensional SF tunings, in the joint left-right SF domain (Fig. 6A). And because
most Al7 neurons show nearly identical SF tuning for the two eyes, the circular
binocular region would be centered on 1:1 diagonal. On the other hand, for a neuron
that integrates or pools multiple of SF channels each tuned to different SFs, the
combined response would be line up on the 1:1 diagonal as shown in Figure 6B. For
such neurons, a response profile would be an elongated region along 45° diagonal in the
joint left-right SF domain. At the same time, they would show common optimal
disparity across different SF channels.

Do disparity-sensitive neurons in A17 show such binocular SF profiles? Although a
previous study reported a tendency for broadly tuned V4 neurons to show weak
responses to anti-correlated (contrast inverted) stereograms (Kumano et al., 2008), no
direct measurement of binocular SF profiles described above has been attempted to date.
In this study, I first examine whether binocular SF profiles are elongated along the 45°
diagonal direction for disparity-sensitive neurons of A17 of the cat, by measuring

binocular interactions in the joint left-right SF domain. Next, I examine the consistency
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of disparity preference across different SF bands to demonstrate that binocular SF

information is precisely integrated to achieve accurate disparity detection.
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MATERIALS AND METHODS

Extracellular single-unit recordings were performed in area 17 of 23 anesthetized and
paralyzed adult cats (14 males and 9 females, 2.0 kg to 4.5kg). Details about surgical
procedure, animal maintenance, and single-unit recording are described previously
(Sasaki and Ohzawa, 2007; Ninomiya et al., 2012). Only a brief account of the basic
procedures and points different from the previous studies are provided here. All animal
care and experimental procedures conformed to the guidelines established by the
National Institutes of Health and were approved by the Osaka University Animal Care

and Use Committee.
Animal preparation and maintenance

After initial pre-anesthetic doses of hydroxyzine (Atarax, 2.5 mg) and atropine (0.05
mg), anesthesia was induced and maintained with isoflurane (2-3.5% in O,) for the
remainder of the surgical preparation. During surgery, lidocaine was injected
subcutaneously or applied topically at all points of pressure and possible sources of pain.
A body temperature was monitored and maintained near 38°C with a servo-controlled
heating pad, and ECG electrodes were placed for monitoring heart rate. A tracheostomy
was performed for the subsequent artificial respiration. After the animal was secured in
a stereotaxic apparatus, anesthesia was switched to sodium thiopental (Ravonal, 1.0
mg + kg + h™") and paralysis was induced with an initial dose of gallamine triethiodide
(Flaxedil, 10 mg * kg + h™"). Artificial ventilation was performed with a gas mixture of
70% N>O and 30% O,. The respiration rate and stroke volume were adjusted to
maintain the end-tidal CO, between 3.5 and 4.3% throughout the experiment. A
craniotomy was then performed over the central representation of the visual field of area
17 approximately at Horsley-Clarke coordinates P4 and L2. Pupils were dilated with 1%
atropine sulfate, and nictitating membranes were retracted with 5% phenylephrine
hydrochloride (Neosynesin). The corneas were protected using contact lenses of
appropriate power with a 3- to 4-mm artificial pupil.

To record single unit activities, tungsten electrodes (A-M Systems) were lowered into
a region of cortex exposed with craniotomy. Agar was applied around the electrodes to

prevent drying, and melted wax was layered over the agar to seal as a chamber and
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reduce cortical pulsation. Electrical signals from the electrodes were amplified
(x10,000) and band-pass filtered (300-5,000 Hz). Spikes were sorted by their
waveforms and time-stamped with 40 us resolution (Ohzawa et al., 1996). When the
electrodes were retracted, electrolytic lesions were made at intervals of 500—1,200 um
for each electrode track.

At the end of an experiment, the animal was administered an overdose of pentobarbital
sodium (Nembutal), perfused with buffered saline solution followed by 4% formalin in
0.1M phosphate-buffered saline (PBS), and cortical tissue was prepared for histological

examination. Electrode tracks were reconstructed and cortical laminae were identified.

Visual stimulation

Visual stimuli were generated by computer and displayed on a cathode ray tube
display (a resolution of 1,600 x 1,024 pixels, refreshed at 76 Hz; GDM-FW900, Sony)
using only green channel to avoid color misconvergence across channels. In each
experiment, the luminance nonlinearity of the display was measured using a photometer
(Minolta CS-100) and linearized by gamma-corrected lookup tables. 50% Michelson
contrast was used for all grating stimuli used in this study. A haploscope was used to
present stimuli to the left and right eye separately, and the visual fields of the monitor
covered approximately 23° x30° for each eye at a viewing distance 57cm.

Once a single unit was isolated, its preferred orientation, SF, the center position and
the size of a receptive field (RF) were tested preliminarily under manual control.
Subsequently, sub-space mapping to measure tuning in the joint orientation and SF
domain was performed for each eye with flashed gratings (Ringach et al., 1997;
Nishimoto et al., 2005). After the optimal orientation, optimal SF and the range of SF
were determined for each eye, the binocular measurement was conducted to obtain a
binocular SF interaction profile in a 4-dimensional domain (sfi, sfr, phr, phr), where
"sf" and "ph" denote SF and phase, respectively, and the subscript indicates the eye. The
stimuli were flashed gratings of various combinations of SFs and phases between the
two eyes, oriented at the optimal orientation of the target cell (Ninomiya et al., 2012).
Basically, 12 SFs and 8 phases per each eye were used, so the total number of stimuli
presented in a single block was 9472, i.e., 9216 binocular (12x12x8x8), 192 monocular
(2 eyes x12x8), plus blank (8) conditions. The multiple blank conditions were used to

14



increase the reliability of base-line response estimation. The blank stimuli had the same
uniform luminance for both left and right display areas. All 9472 conditions were
presented in one randomized block, and the block was repeated about 8 to 20 times. The
stimuli were presented in a randomized sequence updated at 38Hz, and its size was
adjusted to be slightly larger (approximately 1.5-3 times) than the size of the RF. The
range of the SF was set to cover the cell’s SF band sufficiently. After the binocular
4-dimensional mapping was completed, tuning curves for orientation and SF were
verified respectively using drifting grating stimuli. In some cases, the RFs of the cells
were also measured using a standard reverse correlation procedure with dense white

noise stimuli (Nishimoto et al., 2006; Sasaki and Ohzawa, 2007).

Data Analysis

Each cell was classified into simple or complex based on standard criteria (F1/F0 ratio)
(Skottun et al., 1991). The balance of responses between the two eyes was quantified
using the binocularity index (Sasaki and Ohzawa, 2010).

In this study, a goal is to elucidate a specific SF integration for disparity detection as
illustrated in Figure 6 where neural responses to various left- and right SF combinations
are examined. The actual experiment requires varing phases of the grating stimuli for
each eye, because A17 neurons are highly sensitive to variations of stimulus phase
monocularly (DeValois et al., 1978; Movshon et al., 1978a) for simple cells, and to
variations of inter-ocular phases binocularly (Freeman and Robson, 1982; Ohzawa et al.,
1986b) for both simple and complex cells. This means that such an experiment must be
done in the 4-dimensional stimulus space (sfi, sfr, phr, phr). Such an experiment will
completely specify the binocular disparity selectivity for all possible combinations of
SFs and phases for the left and right eye stimuli.

The 4-dimensional data set may be examined in various ways, but for my purposes, it
is necessary to reduce the 4-d data into the 2-d form depicted in Figure 6. This process
was conducted by following 3 steps as shown in Figure 7. First, for each combination of
(sfr, sfr) (a square in Fig. 7B), I obtained a binocular phase combination selectivity.
This created a map in the joint (phr, phr) domain (Fig. 7C), and for a disparity energy
unit (Ohzawa et al., 1990) for example, it has a form depicted in Figure 7D. Second, I

then computed an inter-ocular phase tuning curve (Fig. 7E) by integrating the map
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along constant inter-ocular phase lines in Figure 7D (e.g. red straight and broken lines).
The final step was to extract the strength of the tuning, which was given by the
amplitude of a one-cycle sinusoid fitted to the inter-ocular phase tuning curve. The
amplitude was obtained via Fourier analysis. Repeating these steps for all (sfy, sfr)

combinations gave me a desired map as shown in Figure 6.

A complete data set in the 4-dimensional stimulus space (sf, sfr, phr, phr) was
constructed via a standard spike-triggered averaging (reverse correlation) as depicted in
Figure 7A. Such a binocular interaction profile (binocular SF interaction map) was
calculated for every recorded cell and evaluated. Specific analyses are described at the

relevant places in Results.
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RESULTS

I recorded from a total of 74 cells in area 17 of adult cats. Minimum set of
measurements could be performed on 18 simple cells, 49 complex cells and 7
unclassified type. For some specific types of measurements, the number of cells was

reduced.

Selectivity to binocular phase combinations for various SF pairs between the two
eyes

As noted in Introduction, specific integration or pooling of binocular SF channels
must happen at some stage along the visual pathway for robust estimation of binocular
disparity. Examining this is achieved by measuring disparity selective responses for a
variety of left-right combinations of different SFs. Hereafter, [ call the
disparity-selective profile in the joint left-right SF domain (Figure 6) as a ‘binocular SF
interaction map’. To quantify the response strength to be plotted in the binocular SF
interaction map, I computed the amplitude of disparity tuning for each combination of
left-right SFs (sfy, sfr). This is because I am interested in the mechanism by which
disparity specific information is combined, and not those that are due to monocular
excitations. For a given combination of (sfr, sfr), I have a complete set of response data
for all combination of different left and right phases (phr, phr). This gives me the
phase-based disparity tuning for each (sfr, sfr), from which the amplitude of disparity
tuning is computed easily. Therefore, once I obtain response data (spike counts) into
bins defined in the 4-dimensional parameter space (sf., sfr, phr, phr), the binocular SF
interaction map as well as disparity tunings for all combinations of (sfi, sfr) can be
computed.

The construction of the complete histograms in the original (sfi, sfr, phr, phr) space
was carried out via reverse correlation as illustrated in Figure 7. The responses of
neurons were measured while sine-wave grating pairs were presented dichoptically for
various combinations of SFs and phases. Stimuli were delivered in rapid flashes at 38
stimuli/sec. Since it is impossible to graphically present histograms in a 4-dimensional
space, I present our data in the format depicted in Figure 7B and C: as a matrix of

left-right phase tuning profiles (phr, phr). Here, (phr, phr) map is shown in Figure 7C
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and many of these are arranged into a matrix of (sfy, sfr) in Figure 7B. Each binocular
phase-domain map generally take a map as shown in Figure 7D for a complex cell that
is a disparity energy unit. Data were further reduced to obtain a disparity tuning curve
as a function of inter-ocular phase difference (Fig. 7E). The amplitude of modulation in
such a disparity tuning curve is a good metric of the degree of binocular interaction for

a given (sfi, sfr).

Figure 8A presents the data from a representative complex cell in the format
described in Figure 7B and C. Each small map shows responses to binocular
combinations of phases (phr, phr) for one SF pair (sf., sfr), and such maps are arranged
as a matrix of 13%13 binocular SF pairs. One of the maps marked with red border (sfy:
0.48 cpd, sfr: 0.57 cpd) is magnified in Figure 8B to show typical response property to
phase combinations of the disparity selective complex cell. Clear response of band in
45° diagonals indicates that this cell has selectivity to a particular phase difference
between the two eyes, in this case, approximately 0°. Note that the interpretation of 0°
phase difference requires care since the animal was in a paralyzed and anesthetized state
without active fixation.

To create a binocular SF interaction map for this neuron, I next evaluated the strength
of disparity tuning for each (sfr, sfr) combination. This was done by integrating the
response profile of Figure 8B along 45° paths (constant inter-ocular phase difference
lines) to obtain a one-dimensional tuning curve as a function of inter-ocular phase
difference (Fig. 8C). A degree of modulation of this tuning curve was extracted by
fitting a sinusoid for the analysis described later (green broken curve). In Figure 8D,
such tuning curves are shown for all (sfy, sfr) combinations as a matrix similar to Figure
8A in its arrangement. Notice that tuning curve has a strong modulation only for
relatively matched SF pairs between the two eyes, and such modulation cannot be
observed if difference of SF between the two eyes is large. The evidence of elongation
is already clear visually in Figure 8A and 8C. However, one of the most likely
candidates for artifacts is a contamination from multiple neurons each tuned to different
SFs. In order to reduce this possibility, I have examined recorded spike waveforms for
signs of multiple spike waveforms as shown in inset of Figure 8A. Although such an
examination of spike waveforms does not completely rule out the possibility of

multi-spike contamination, it provides a reasonable safeguard for this artifact. Therefore,
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spike waveforms were examined carefully for all neurons identified to have substantial
elongations.

Results from a representative simple cell are shown in Figure 8E-H. For this simple
cell, response to (phr, phr) combinations shows a single peak centered at a particular
phase pairs, rather than spreading along diagonal band (Fig. 8A and B). This result is
obvious because a simple cell has a selectivity to the phase presented monocularly, and

the intersection of the two monocular peaks becomes the peak in the joint domain.

Substantially elongated binocular SF interaction maps for a subset of complex
cells

To visualize the degree of modulation in Figure 8D and H clearly, maps were created
as density plots where each pixel represents the degree of modulation at each (sfr, sfr).
Values were obtained as the amplitude of the first harmonic (F1) component of an
inter-ocular phase tuning curve. Figure 9A presents such a plot derived from the
complex cell data in Figure 8D. To evaluate the degree of elongation of the profile as I
discussed in Figure 6, the map was fitted with a 2-dimensional Gaussian function whose
axes were constrained to the direction of 45° and 135° diagonals (Fig. 9B). The fitted
function was always a Gaussian. In some cases, data were measured in logarithmically
constant steps. In such cases, data and a contour of the fitted Gaussian were plotted in a
logarithmic domain, resulting in the egg-shaped distortion. Elongation index in the SF
domain (EIsf) was then computed as a ratio of a fitted sigma along the 45° axis to that
along the 135° axis. Clearly, with Elsf = 3.13, this complex cell exhibits a highly
elongated shape along the 45° diagonal.

Additional binocular SF interaction maps are shown in Figure 10 for 6 cells having
various degree of Elsf. The maps are arranged in the descending order of Elsf (indicated
by a number at the upper-right corner of each map). For these 6 cells, various extent of
elongation was observed from a small value of Elsf (1.10) to a large value (3.66). It
suggests that there are multiple grades in integrating process of SF channels from one
cell to another. Results for the previous simple cell (Fig. 8E-H) are shown in Figure 10F.
This cell shows almost a circular shape of the binocular interaction map, suggesting the

lack of integration.
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Elsf from all neurons in my sample are summarized in Figure 11A-C. To examine a
possible relationship between the degree of elongation and the cell type
(simple/complex), Elsf and F1/F0 ratio measured with drifting gratings for each neuron
are plotted (Fig. 11A). Blue dots indicate simple cells while red dots represent complex
cells. Statistical significance of elongation was tested for all the data, and those that are
significant are indicated in deeper color (EIsf > 1.0, bootstrap test, p < 0.01). A strong
negative correlation between these two values was observed (r = -0.55, p < 0.001),
suggesting that integration of SF channels is essentially absent for simple cells.
Complex cells generally had large degree of elongation in comparison, but there were

also some complex cells without elongation or small degree of elongation.

Notice that even among simple cells, there are some with significant elongation. I
wondered if those cells might have complex-like mechanisms internally despite being
classified as simple based on F1/F0 ratio. To examine this discrepancy in more detail, I
also examined binocular receptive field (bRF) structure for each neuron. A separability
index of a bRF is another metric that reflects the "simple-ness" based on binocular data,
and appears to be a better metric as an indication of subunits (Sanada and Ohzawa,
2006). In contrast, F1/F0 ratio is usually defined monocularly. A separability index of a
bRF being 1.0 indicates a totally separable map while 0 indicates an inseparable map.
An ideal simple cell with a linear Gabor-like RF for each eye will have the index of 1.0.
The detailed procedure for obtaining a bRF of each cell is explained later. Figure 11B
presents the relationship between the separability index of a bRF and Elsf, showing
significant negative correlation (r = -0.61, p < 0.01). For these results, simple cells with
Elsf > 1.0 tended to show rather complex-like (inseparable) bRFs although they all had
modulated responses to drifting grating stimuli. Such neurons may have intermediate
property between simple and complex cells, as reported in the past studies (Sanada and
Ohzawa, 2006; Sasaki et al., 2010).

Since one of the expected consequences of integration of SF channels for disparity
detection is a widening of SF bandwidth, correlation between the SF bandwidth and
Elsf would be predicted. Therefore, I examined a relationship between the SF
bandwidth measured with drifting grating stimuli and Elsf. There appears to be a

correlation between these two values, although it was not significant (r = 0.23, p =
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0.057; Fig. 11C).

The previous study that defined the separability index of a bRF as noted above
(Sanada and Ohzawa, 2006), primarily examined a difference of optimal SFs between
the left and right eyes, possibly encoding three-dimensional slant. Is there any
relationship between elongation in the SF domain and difference in the left and right
optimal SF? The binocular SF interaction map of such a neuron may be elongated off
the exact diagonal. First, I examined this. Figure 11D shows the distribution of left and
right optimal SF difference for four groups of neurons. Upper row in Figure 11D
represents cells with significant elongation in the SF domain (EIsf > 1.0) while the
lower histograms show data without elongation. The Data confirm the presence of cells
with significant left-right optimal SF difference, indicated by deeper colors in the
histograms. Among 50 neurons (10 simple, 37 complex, 3 unclassified) with significant
elongation, 18 neurons showed significant SF difference between the two eyes. No
particular tendency or relationship was found among the degree of elongation, cell type
(simple/complex), and offset of binocular SF interaction maps from the diagonal (not
shown).

Note that even if there is a difference in the optimal SFs between the two eyes,
elongated binocular SF profiles should satisfy a specific relationship for maintaining the
ability to signal consistent surface slant in depth (Sanada and Ohzawa, 2006).
Specifically, the left-right SF ratio should remain constant across different binocular SF
pairs. Next, this was examined as follows for eleven of neurons showing significant
left-right SF difference with Elsf >1.5. I fitted binocular SF interaction maps of such
neurons with an elongated 2-dimensional Gaussian function, allowing its long axis to
tilt from 45° diagonal. After fitting, two high and low left-right SF combinations along
the fitted long axis were selected, which was separated by a distance of 0.8 sigma from
the fitted center. Left-right SF ratio was then calculated at each point and compared.
Although the number of data was small (n=11), there was a significant correlation of
left-right SF ratios between low and high SF combinations, suggesting that these
neurons might integrate signals while preserving consistency of surface slant

information (Pearson’s correlation coefficient, r = 0.77, p < 0.05).

In Figure 12, the relationships among the other basic parameters are shown. Figure
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12A and B present the relation of optimal SF measured with monocular stimuli to Elsf
and disparity frequency, respectively. There was a weak positive correlation between
the optimal SF and elongation in the SF domain, suggesting that neurons tuned to
higher SF may carry more reliable disparity signal than neurons tuned to lower SF (r =
0.24, p < 0.05). Furthermore, the scatter plot in Figure 12B shows a tendency also
shown in previous studies (Ohzawa et al., 1997; Prince et al., 2002; Read and Cumming,
2003) where there was a strong correlation, but the optimal SF generally is higher than
optimal disparity frequency (r = 0.73, p < 0.001). Figure 12C and D show the
relationships of optimal orientation and its bandwidth to the EIsf. No special
relationships were observed between the elongation in the SF domain and the optimal

orientation or its bandwidth.

Reconstruction of binocular receptive fields (bRFs) and disparity tunings in the
space domain

So far, I have shown that substantial elongation of binocular SF profiles occurs in
many Al7 disparity-tuned neurons. However, the most important point for accurate
disparity detection is selectivity to constant inter-ocular position shift across all the SF
components as described in Introduction. In other words, a neuron which has sharp and
a diagonally elongated binocular profile in the SF domain, must share the same
preferred disparity across different SF bands (Wagner and Frost 1993, 1994). To
address this question, the SF domain analysis is not appropriate, and we must return to

the space domain where binocular disparity tuning may be obtained directly.

A disparity tuning curve was calculated in two steps as follows. First, a reverse
correlation analysis in the joint left-right space domain was performed to obtain a
binocular receptive field (bRF) using methods similar to previous studies (Anzai et al.,
1999; Sasaki et al., 2010). Spike-triggered grating pairs were selected for an optimal
correlation delay (Fig. 13A), and one-dimensional spike-triggered sin-waves were
multiplied between the two eyes to produce binocular interaction terms (Fig. 13B). If
contrasts are the same polarity between the two eyes (white-white or black-black), value
of the interaction term becomes positive. On the other hand, when contrasts between the

two eyes are opposite (white-black or black-white), the binocular interaction term
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becomes negative. By repeating the above calculation of binocular interaction terms for
all spikes and summing them, a bRF was obtained in the joint left-right space domain
(Fig. 13C). In this bRF map, binocular disparity is constant along the +45° diagonal
while it changes along —45° diagonal. Therefore, in the second step, a disparity tuning

curve is computed by integrating the map along the +45° diagonal.

Figure 13D-I shows the results of the first step, i.e., bRFs for 6 example neurons
because they are inherently much more informative than reduced one-dimensional
disparity tuning curves. In each map, red color indicates binocular response to the same
contrast polarity for the two eyes, while blue represents that for the opposite contrast
polarity. Horizontal and vertical axes define the position along the axis orthogonal to
preferred orientation in the left and right eye, respectively.

Figure 13D shows a typical bRF for a simple cell. Because of the selectivity to
monocular phase, the map shows a separable profile. On the other hand, bRFs for other
five complex cells show inseparable shape oriented along the constant disparity line
(Fig. 13E-I). The bRF in Figure 13E shows an inverted bRF profile, found relatively
rarely, for which the strongest subregion is to a combination of opposite polarity
contrasts across the eyes. If the central blue region is at zero disparity, it would be a
tuned-inhibitory cell. Because my preparation was anesthetized and paralyzed, I do not
have accurate information on retinal correspondence. Figure 13F and G show
even-symmetric and odd-symmetric bRFs, respectively. The maps in Figure 13H and I
represent bRFs for the neuron that showed large degree of elongation in the SF domain
with Elsf 3.42 and 3.66 for H and I, respectively. Notice that, for these neurons, the
reconstructed bRFs in the space domain (H and I) are also thin and highly elongated
along +45° diagonal. Analysis on the relationship between the SF domain and the space

domain for elongation is described later.

Are optimal disparities matched across different SF bands?

Having described the 2-dimensional bRFs, I now return to the original question and
examine binocular disparity tuning curves. Are combined elements tuned to the same
common disparity across different SF sub-bands? For this purpose, I note that the bRF

and disparity tuning curve may be calculated for a subset of stimuli limited to a
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particular SF band. This is achieved by simply limiting the spike-triggered stimuli to
within an arbitrary SF band during a reverse correlation analysis for constructing bRFs.

To compare disparity selectivity between mechanisms tuned to high and low SF, bRFs
for two SF bands were obtained by using only upper half or lower half of the SF
components. Figure 14 shows bRFs and disparity tuning curves for a representative
complex cell (the same cell shown in Fig. 8A-D and Fig. 10B). SF ranges used for each
reconstruction are illustrated in the upper row of Figure 14A—C in the form of binocular
SF interaction maps. SF components outside the selected SF band are indicated by dark
blue, and each bRFs are shown under the respective SF interaction map (A: all SF
components were used, B: only lower half of SFs were used, and C: only upper half of
SFs were used).

In Figure 14D, computed disparity tuning curves of each bRFs are superimposed
(gray: all SF components, red: low SF components, and blue: high SF components).
Clearly, peaks of all the tuning curves are at the same disparity. The result suggests that
this neuron combines inputs across different SFs while maintaining exact tuning to the
same disparity. Such a processing may allow robust detection of disparity, because
responses to the false matches at side-lobes of a tuning curve may be reduced due to
mutual cancellation of side-lobes of tuning curves for different SF bands (Fig.14D).
However, notice that the care is needed for this analysis about interpretation of
side-lobes, because based on an uncertainty principle (Daugman, 1985), bandwidth
limitation in the SF domain generates increased number of bounces in side-lobes in the
space domain. The bandwidth-limited reconstructions of bRFs were carried out using
approximately 1.5 octave bandwidth in Figure 14B and C (a half of 3 octaves total).
Although this is close to the average bandwidth of A17 neurons, at least part of

side-lobes might have been due to the bandwidth limitation.

If an integration of disparity detectors in the SF domain always occurs under the
constraint of common disparity for all SFs, neurons with refined binocular SF profiles
should show similar results to that shown in Figure 14. Therefore, I next examined
whether this constraint is common in other neurons that showed large elongation in the
SF domain. Neurons with Elsf larger than 1.5 were examined with the same analysis as
that for Figurel4, and the peak difference of disparity tuning curves between low and

high SF bands was evaluated. Figure 15A illustrates the calculation of ‘normalized peak
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difference,” that indicates the quantitative index of the difference. APeak is the
separation between the peaks of tunings between the different SF bands, and normalized
peak difference is defined as the APeak divided by the wavelength (1/SF) of disparity
tuning curve (all SF condition). Figure 15B shows the distribution of normalized peak
difference and its relationship with the phase of original disparity tuning curve for my
sample of cells (n = 44). As the histogram at the top of Figure 15B shows, most cells
had a relatively small peak difference of less than 0.1 between the low and high SF
bands, indicating a good general match of encoded disparity across different SF
sub-bands. Therefore, for the majority of disparity coding neurons, combined binocular
SF pairs satisfy the rule of sharing the same preferred disparity. However, for a small
fraction of the population, this was not the case. I wondered here if the alignment of
peak disparities might depend on the symmetry of disparity tuning curves. This is
because the peak alignment is the same as centering alignment (of the envelopes) for
even-symmetric disparity tuning curves as illustrated in Figure 15A (blue and red
curves). On the other hand, in order to peak-align odd-symmetric disparity tuning
curves across different SF bands, centers of disparity tuning curves must be offset
accordingly. In this case, it is conceivable that some neurons may combine inputs across
SF sub-bands with "zero-crossing" alignment presumably for different purposes. The
result for an example neuron that shows such an alignment across different SF bands is
indicated in Figure 15C. I do not have a definite conclusion on this, because there are
only small numbers of neurons with a large normalized peak difference (> 0.1).
However, those all had nearly odd-symmetric disparity tuning curves as indicated by the

phase of disparity tuning curves close to 90° or 270° (Fig. 15B).

Relationship between pooling in the SF domain and the space domain

Recall that some of the reconstructed bRFs showed highly elongated profiles in the
space domain (Fig. 13). As previous studies show, some degree of spatial pooling of
multiple disparity detectors occurs for a portion of A17 neurons (Sasaki et al. 2010).
However, the degree of spatial pooling found in previous studies (Sasaki & Ohzawa,
2007; Sasaki et al., 2010) is relatively limited compared with the elongation found for
some neurons in this study (Fig. 13). Therefore, I have examined a possibility that the

pooling, as evaluated by elongation of binocular SF interaction maps, is not completely
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independent in the space and the SF domains. Specifically, I consider if the apparent
elongation of bRFs in space may arise from pooling in the SF domain. If pooling across
multiple SF bands can reduce sidebands in disparity tuning curves, it may essentially
restrict the extent of bRFs along the —45° axis without necessarily extending bRFs along
the +45° axis (X axis). To examine this possibility, I consider a disparity detector that
pools only in the SF domain. Such a detector may be constructed by summing the
output of multiple disparity energy units aligned at the center (Fig. 16). The bRF of the
pooled units is slightly elongated along the constant disparity (+45°) axis without any
pooling in the space domain (gray elongated contour in Fig. 16B). Therefore, pooling
purely in the SF domain itself can be responsible for a part of extensive spatial pooling
along the X axis.

However, bRFs constructed by such SF pooling alone shows some distortion of the
bRF not observed in the bRFs of actual neurons, as shown in Figure 16B. Because the
bRF of a unit tuned to lower SF covers a larger space than that tuned to higher SF (Fig.
16A), the pooled bRF becomes sharpened only at the center, but remaining broad at the
edges shown by superimposed tuning curves of cross-sections at the center and the edge
in Figure 16B (bottom). On the other hand, actual neurons showed no such distortion of
bRFs (Fig. 16C). Tuning curves at the center and the edge are almost identical for these
neurons, although they show highly elongated shape of bRFs. Therefore, some degree
of spatial pooling clearly occurs for neurons shown in Figure 16C and others in our
sample. A prediction from this analysis is that neurons with broad-band SF tuning tend
to have a corresponding degree of spatial pooling for maintaining consistent disparity

tuning across all locations of bRFs.

Likewise, I must also consider a possibility in the opposite direction where the
apparent elongation of binocular SF interaction map may be caused by pooling multiple
disparity energy units in the space domain. In Figure 17, a schematic explanation is
provided for such elongation in the SF domain. Consider a neuron that pools multiple
disparity energy units at different spatial positions along the X axis (broken gray circles),
but tuned to the same SF (light red circle) and to common disparity. When SFs are
identical between the two eyes (45° broken line), inter-ocular phase difference is always
the same along the X axis. However, if left and right SFs are different, inter-ocular

phase difference changes depending on the positions along the X axis as shown at the
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bottom right of Figure 17. Such differences produce different firing rates across energy
units at different positions, which means that these energy units do not fire in a
concerted manner. Thus, the strength of binocular SF interaction is reduced most along
the —45° axis where SF is different maximally between the two eyes, generating the
apparent elongation of binocular SF interaction maps (elongated red filled region along

+45° diagonal in Fig. 17).

Figure 18 illustrates the relationship between pooling in the SF domain and that in the
space domain. I computed the elongation index along the X axis (EIx) for each bRF to
capture the degree of pooling in the joint left-right space domain. For EIx, the aspect
ratio of the Fourier spectrum was calculated for each bRF (Sanada et al., 2006). There
was a strong positive correlation between these two values (r = 0.82, p < 0.001),
probably due to complex interactions between the SF domain and the space domain
described above. Pooling in one domain generates a degree of apparent elongation of
the joint profile in the other domain, making the measurement difficult or almost
impossible for estimating the degree of effect caused in a single domain independently.
The profile I measured here may be the end product generated by mixed pooling in both

SF and position domains including complex interactions.

Binocular matching with substantially sharp SF tunings

Although the elongation of binocular SF interaction profiles appears to be caused by
complex factors including pooling in both SF and space domains, consequences of the
elongation for the detection of binocular disparity may be considered independently.
Since the analysis presented in Figure 17 suggests that pooling in either domain may
cause the narrowing of SF interaction profiles, I have examined the SF bandwidths in
both monocular and binocular conditions. Specifically, I ask whether binocular SF
bandwidth is narrower than monocular SF bandwidth. To address this question, a
cross-section of a binocular SF interaction map for the dominant eye (Fig. 19A, B) was
compared with monocular SF tuning curve obtained using drifting grating stimuli
(broken black curve in Fig. 19B). To clarify, for example, horizontal cross-sections of
the profile in Figure 19A represent SF tuning curves in the left eye in the presence of

constant various SFs in the right eye. These cross-sections are plotted in Figure 19B as

27



colored solid curves. Population data show that many neurons have binocular SF
bandwidth narrower than 0.5 octave width (Fig. 19C). The result suggests that binocular
matching is conducted with much higher SF precision than that predicted from average

monocular SF bandwidth of neurons in A17.
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DISCUSSION

In this study, I examined how the integration of information from different SF bands
is achieved in disparity-sensitive binocular neurons in the striate cortex. A previous
computational study proposed a model of combining outputs from multiple energy units
at different scales for robust estimation of binocular disparity (Fleet et al., 1996).
Physiologically, a previous study indicated that multiple excitatory and suppressive
subunits contributed to generate disparity-selective responses in neurons of monkey V1
(Tanabe et al.,, 2011). However, no direct assessment has been conducted
physiologically to evaluate the integration of multiple excitatory channels tuned to
different SFs as illustrated in Figure 6. I obtained a binocular SF interaction map, which
reflects the degree of integration by analyzing phase-based disparity tunings in the joint
left-right SF domain. A subset of complex cells showed substantial elongation of
binocular SF interaction profile along the 45° diagonal, which is not predicted from a

single energy unit.

Interactions of pooling across multiple stimulus dimensions

As noted in the last part of Results, a complex interaction between SF and space
domains occurs for the binocular profile when pooling of multiple energy units are
considered. In theory, other forms of interactions are conceivable across multiple
stimulus dimensions. For example, given that neurons in the primary visual cortex are
tuned sharply for orientation, pooling in the orientation dimension might also affect
some of the properties we examined in the present study. For the complete
understanding of underlying neural mechanisms, it may be desirable to consider and
measure the degree of pooling by taking all of such relevant domains into account
exhaustively, although practically it does not seem so easy. Comprehensive and
systematic examination for such complicated interactions may be needed in the future

study, both theoretically and physiologically.

Binocular matching is conducted with substantially sharp SF tunings

The results presented in Figure 19 suggest that binocular matching is conducted with
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much higher SF precision than that predicted from average monocular SF bandwidth of
neurons in Al7. What benefits are there for narrow-band binocular matching?
Receptive fields of typical A17 neurons appear to be designed for achieving a best
balance between high positional (x, y) and SF (fx, fy) accuracies, giving typical
monocular SF bandwidth of 1.3 octaves. However, when matching left and right
patterns, some neurons in my data show that the binocularly relevant SF bandwidth is
around 0.5 octaves. It means that even though the front-end linear filter, simple cells,
and complex cells in the next stage are of medium bandwidth monocularly, a subset of
the same complex cells achieves narrow-band binocular matching. It is somewhat
surprising that these widely different bandwidths can coexist in the same cells.

One of the benefits of narrow-band binocular matching may be that, in the SF domain,
signaling accuracy with respect to spatial phase is particularly important, as that is the
parameter which is directly related to positional shift. However, such a conversion
between phase and positional shift relies on the accurate knowledge of SF. Narrow-band
SF tuning that applies only for binocular matching appear to achieve the desired
condition, without necessarily modifying basic front-end tuning characteristics of
neurons. Obviously, the output of these initial stage neurons are used for many purposes
other than stereopsis, such as determining shape and motion velocities. For those other
visual functions, extremely narrow-band SF tuning may not be desirable. Overall, the
binocular processing for stereopsis appears to be remarkably well-designed with highly
suitable tuning properties actually achieved for different purposes, but with relatively

simple schemes.

Relation to coarse-to-fine mechanism

Some of computational models of stereoscopic processing take a sequential approach,
known as coarse-to-fine algorithms (Marr and Poggio, 1979; Quam, 1987; Chen and
Qian, 2004; Li and Qian, 2015). In these algorithms, disparity information is
hierarchically processed from coarse to fine scales, improving the accuracy of disparity
detection as it proceeds. Do cortical neurons also implement a sequential refinement in
integrating multiple SF bands? While I cannot directly address this question, my
analysis implies that neurons simply pool the output of multiple subunits tuned to

different SFs but with common preferred disparity. No explicit and non-trivial
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sequential interactions from coarse-to-fine (or from low SF to high SF) are assumed in
this pooling scheme. Such a simple pooling mechanism appears sufficient to explain the
results obtained.

However, there may be a sequential element of coarse-to-fine organization in the
simple pooling process. It is well known that, in monocular spectral-time receptive field
analyses, the optimal SF increases from low to high as a function of response delay
(Bredfeldt and Ringach, 2002; Mazer et al., 2002; Nishimoto et al., 2005). In other
words, signals for high SFs arrive at the neuron with a longer temporal delay than low
SF signals. The same phenomenon is also observed for binocular responses.
Disparity-time response analyses reveal progressive shift of disparity frequency as a
function of temporal delay (Menz and Freeman, 2003). My data also showed similar
tendency in the time course of disparity tuning (not shown). Specifically, SF interaction
map showed elongation in a single time delay (e.g., Fig. 9A), and at the same time,
showed slight progressive shift of its optimal SF from low to high as the temporal delay
was increased. Therefore, regardless of the implementation, the real visual system may
also effectively achieve progressive computation and refinement of disparity
information simply by summing signals from multiple subunits with various temporal

delays.

Possible effects of suppressive elements

Although I have so far assumed that the elongated shape of a binocular SF interaction
map is caused by pooling of multiple excitatory channels, possibility of suppression
effect may not be negligible (Tanabe et al., 2011). Instead of elongating a response
region by adding subunits (Fig. 6B), it is also possible that binocular response is
inhibited at specific SF combinations where difference of SF is large between the two
eyes. Unfortunately, because my measurements contain too few blank stimuli to
estimate the baseline response level accurately, it is difficult to evaluate suppressive
responses for this purpose. However, although possible in principle, such a hypothetical
scheme seems unlikely or at least inefficient, because units exerting suppression need to
be constructed in the first place with inputs from highly unmatched SFs between the
two eyes. Such neurons with a large difference in preferred SFs are not generally found
(Sanada and Ohzawa, 2006).
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Other schemes are also possible if one allows more complexity in the model. For
example, inhibitory input from a neuron tuned to a slightly higher SF than the excitatory
neuron may be present. If such an inhibitory neuron is turned off (assuming an
appropriate disparity tuning), the result will be a disinhibition, which will result in net
increase in excitation for the postsynaptic neuron. However, such schemes are
indistinguishable from excitatory input as recorded from the postsynaptic neuron.
Therefore, functionally, such schemes fall within the framework being considered.
Unless there is a substantial functional difference, it is simpler and more natural to
consider a detector that combines multiple excitatory subunits rather than one that use

suppression.

Alignment of disparity tuning curves for pooling across SF bands

Majority of neurons in my sample exhibit elongation of binocular profiles in the SF
domain while preserving a common optimal disparity across SF bands. As a previous
computational study shows (Fleet et al., 1996), combining energy units tuned to
different SFs but to common disparity would improve detection accuracy by increasing
response probability at the true disparity and decreasing it at the false disparities.
However, there are some neurons that showed a large difference in optimal disparity
when pooling across SF bands (Fig. 15B). These neurons tended to have odd-symmetric
disparity tuning curves, and the results of multi-SF-band analysis show that disparity
tuning curves for high and low SFs are aligned approximately at zero-crossings rather
than at peaks (Fig. 15C). Do such neurons play some functional roles?

In higher visual areas, especially those in the dorsal visual stream such as MT and
MST, it is known that the number of disparity-selective neurons with odd-symmetric
tuning curve substantially increases (Cumming and DeAngelis, 2001; DeAngelis and
Uka, 2003). A possible role is suggested that the output of these neurons provides a
signal for oculomotor vergence control (Masson et al., 1997). Characteristics of signals
required for fine vergence control may be different from those for depth perception.
Specifically, it may be more important to achieve high sensitivity near 0 disparity for
determining the direction and size of vergence: converge or diverge, rather than
detecting a disparity. Neurons with odd-symmetric disparity can provide such a signal,

although the same information may be obtained from peaks of multiple neurons. Such a
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vergence signal should also function for large disparity deviations. In other words, SF
bands may be pooled such that the slope at zero-crossing is increased and the output
maintained even at large disparities. This goal is achieved by pooling multiple SF
components with zero-crossing alignment, as the famous Fourier series decomposition

of a square wave indicates.

Effects of SF pooling on the shape of disparity tuning curve

There are two known refinements in the shape of disparity tuning curves in neurons
beyond that of a disparity energy model. The refinement begins in A17 (Ohzawa, 1998;
Haefner and Cumming, 2008; Tanabe et al., 2011) but become more pronounced in
high-order areas such as V4 and IT. One is the reduction of multiple side-lobes as
illustrated in Figure 14, and noted by Fleet et al. (1996). The other is the reduction of
responses to anti-correlated random-dot stereograms (aRDS) (Janssen et al., 2003;
Tanabe et al., 2004). These two factors are often discussed together but are distinct
(Nieder and Wagner, 2001). In relation to the latter, a previous study shows that in
monkey V4, disparity-sensitive neurons show a correlation between SF bandwidth and
the degree of attenuation of response amplitude for aRDS compared with that for
correlated RDS (cRDS) (Kumano et al., 2008). They interpret this as a consequence of
integrating multiple SF channels. However, pooling multiple disparity-selective units
across SF bands by itself doesn’t produce attenuation of response amplitude to aRDS.

Responses to aRDS are merely inverted versions of disparity tuning for cRDS.
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ON region
OFF region

10 deg

Figure 1. A, A variety of receptive fields (RFs) of simple cells measured in cat A17
are shown. Green-colored area indicates an ON region and red-colored area
indicates an OFF region in each RF. RFs are arranged according to their optimal
orientation and SF (This panel is provided by Sasaki. KS). As a neural population,
A17 simple cells construct a self-similar wavelet pyramid. B, Even-symmetric
Gabor function is represented in the two-dimensional form in the grayscale image.
Its horizontal cross-section that passes through the center is indicated at the top. The
RF structure of A17 simple cell is well fitted by such a function. C, A schematic
illustration of visual feature detection by Gabor wavelets is shown. Two of the
Gabor-shape RFs are superimposed on the different feature at different parts of the
image (surrounded by broken yellow circles). A horizontal fine feature (e.g., frets of
a guitar) is detected by an RF with horizontal orientation and high SF, while a
vertical coarse feature (e.g., a neck of a guitar) is detected by an RF with vertical
orientation and low SF.
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Figure 2. A, Geometrical relationship between three-dimensional depth and the
retinal position shift of a projected object is illustrated. Three different locations
along depth direction are indicated in different colors. As location of an object is
shifted along depth direction, a relative position and resulting left-right difference
between the two retinal projections change systematically. B, Direction of binocular
disparity produced by oriented two-dimensional sine-waves is indicated. Top panel
shows grating stimuli projected onto portions of the retinae (illustrated as squares).
Positional shift of sine-wave patterns between the left and right retinae is detectable
only along the direction orthogonal to its orientation (shown at the bottom), since
there is no change of luminance along its orientation direction.
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Figure 3. Structure of the disparity energy model proposed by Ohzawa et al. (1990)
1s illustrated. Four binocular simple-type subunits lying up in columns give inputs
to a single complex-type unit. At the top, RFs for each binocular simple-type
subunit are illustrated on the left and right retina (white squares). All subunits have
a constant offset of RF position between the two retinae. The optimal orientation
and SF is also common among subunits. Therefore, disparity encoded along the
horizontal direction is identical across subunits. The phases of RFs of subunits are
in quadrature pairs (a pair of the first column and the third column, and a pair of the
second column and the fourth column). The phase of one subunit differs from the
phase of the other by 90 ° in a pair. Inputs from the left and right retina are summed
(indicated by plus symbol), half-wave rectified and squared (illustrated by a panel
showing output as a function of summed binocular inputs). Outputs of these four
subunits are simply summed into a single complex-type unit.
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Figure 4. A, A pair of stereo photographs is shown (Source: Middlebury Stereo
Datasets). Small parts of the left and right images within white circles are enlarged
for close examination. B, Left and right luminance profiles for cross-sections of
the images along the broken lines in A are plotted (red: left image, blue: right
image). Cross-sections were taken after conversion to gray scale. C, Amplitude
spectra of the profiles in B are shown. SF tunings of three typical V1 neurons are
illustrated schematically with red filled curves. Multiple V1 neurons, tuned to
different frequencies, are needed to represent the broad stimulus spectra. For
reliable stereoscopic depth detection, integration of signals from multiple
frequency bands may be required.
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Figure 5. A, Left and right luminance profiles that are the same as shown in Figure
4B are plotted (red: left image, blue: right image). B, A complex luminance pattern
is represented schematically as a combination of many sine-waves with different
SFs. Binocular disparity, that is, the shift of luminance patterns between the two
eyes as shown in A is equal to a constant amount of position shift between the left
and right sine-waves (blue and red curves) across different SF components.
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Figure 6. Predictions of binocular responses are illustrated schematically for
neurons with and without pooling in the SF domain. 4, Neuron without pooling
in the SF domain. A neuron having only a single SF channel would show a
circular response profile in the joint left-right SF domain. Monocular SF tunings
are indicated by red curves on horizontal and vertical axes for left and right eyes,
respectively. B, Predicted binocular response profile for a neuron with pooling in
the SF domain. In this scheme, multiple subunits as shown in A but with different
optimal SFs are pooled. The profile lies on the diagonal, because V1 neurons are
generally tuned to similar SFs through either eye.
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Figure 7. Reverse correlation analysis was performed to obtain binocular phase
selectivity maps for various SF pairs. 4, Using spike data recorded while static
sine-wave grating stimuli were presented dichoptically in rapid flashes, a pair of
spike-triggered stimuli was selected for an optimal correlation time delay. The
spike-triggered SF and phase parameters in the left and right eyes were extracted for the
selected grating pair. B, A spike was voted in a 4-dimensional domain (sf, sf,, ph ,
ph,), where "sf" and "ph" denote SF and phase, respectively, and the subscript indicates
the eye. For clarity of understanding the 4-dimensional data, the procedure may be
understood in the following steps. First, spike-triggered pair of SFs (sf , sf ) was
determined (left, pink; right, cyan). The selected pair is indicated by a gray square. C,
Then, within the selected joint phase subdomain (ph,, ph,), the spike was voted into a
particular phase combination for the triggered stimulus pair. Repeating this procedure
for all recorded spikes, complete binocular phase selectivity maps were obtained for
various SF pairs between the two eyes. D, The model response of a typical disparity
energy unit is illustrated in the joint (ph , ph, ) subdomain, for the combination of
optimal (sf , sf ). The strength of response is shown w1th gray scale. Constant
inter-ocular phase difference lines are indicated with red color (straight line for 0 degree
and broken line for 180 degree). E, One-dimensional tuning curve to inter-ocular phase
difference was derived from D by integrating it along constant disparity lines.
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Figure 8. In A-D, responses are shown for a representative complex cell to stimuli containing
various combinations of phases and SFs between the two eyes. A, The entire data are response
strengths in a 4-dimensional parameter space (sf , sf, ph , ph ), and presented here as multiple
cross sections (ph , ph,) at each (sf, sf;) for clarity. Each small domain is a binocular
phase-selectivity map (ph,, ph,), illustrating responses to various combinations of left and right
phases. These small maps are arranged as a 13x13 matrix of left and right SFs (sf , sf ). Color scale
shows the number of spikes collected for each pair of phases for the two eyes. One of the phase
selectivity maps is marked with a red border and is magnified in B. Example spike waveforms of
this cell is superimposed at the bottom-right corner (100 spikes). B, Selectivity to binocular phase
combination for the highlighted SF pair in A is shown. Strong responses are observed along a 45
degree diagonal where the inter-ocular phase difference was constant. C, One-dimensional tuning
curve to inter-ocular phase difference was calculated from a binocular phase selectivity map shown
in B by integrating responses to the same inter-ocular phase difference between the two eyes. A
sinusoid was fitted to the tuning curve to determine the modulation amplitude (green broken
curve).



D, Tuning curves to inter-ocular phase difference are represented for all binocular combinations
of SFs. The highlighted SF pair shown in C is indicated with a red border. The optimal SF and
orientation for the dominant eye of this cell were 0.64 cpd and 19 degree, respectively. Values
were similar for the non-dominant eye (0.61 cpd, 8 degree). In E-H, responses are shown for a
representative simple cell to stimuli containing various combinations of phases and SFs between
the two eyes. Panels E, F, G, and H are shown in the same format as A, B, C, and D. Optimal SF
and orientation for the dominant eye of this cell were 0.56 cpd and 9 degree, respectively. Values
were similar for the non-dominant eye (0.53 cpd, 30 degree).
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Figure 9. Binocular SF interaction maps were fitted for each neuron by a
two-dimensional Gaussian function. A, A binocular SF interaction map was
obtained by extracting the degree of modulation (i.e., amplitude of F1
component) in tuning curves to inter-ocular phase difference for all binocular SF
combinations (e.g., Fig. 4D). B, The two-dimensional Gaussian function that
yielded the best fit to the data presented in A is shown. The axes of a Gaussian
were constrained to the direction of 45 degree and 135 degree diagonals. The
sigmas of the fitted Gaussian along the 45 degree and 135 degree axes were
extracted to calculate the index which indicates a degree of integration of SF
channels. Specifically, elongation index in the SF domain (Elsf) was defined as a
ratio of a sigma along the 45 degree axis to that along the 135 degree axis. Elsf
for this cell was 3.13.
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Figure 10. Binocular SF interaction maps showed various degrees of elongation
across neurons. These maps are arranged in the descending order of Elsf. Value of
Elsf is shown at the upper-right corner. 4, Optimal SF was 0.36 cpd, and optimal
orientation (OR) was 163 degree for the dominant eye. B, SF: 0.64 cpd, OR: 19
degree. C, SF: 0.30 cpd, OR: 96 degree. D, SF: 0.27 cpd, OR: 1 degree. E, SF:
0.38 cpd, OR: 103 degree. F, SF: 0.56 cpd, OR: 9 degree. Values were similar for
the non-dominant eye (not shown). Cells for E and F were of simple type, while
the remaining cells were complex.
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Figure 11. Possible relationships are examined between the Elsf (elongation of
binocular SF map) and other response properties of cells. 4, Relationship between
F1/F0 ratio and Elsf is presented as a scatter plot for all the recorded cells (n = 67).
Negative correlation was observed between these two values (r = -0.55, p < 0.001).
Blue: simple cells and red: complex cells. Deeper color indicates data with
significant elongation (EIsf > 1.0, bootstrap test, p < 0.01). B, Relationship between
separability of binocular receptive field (bRF) and Elsf is presented as a scatter plot
(n = 67). Detailed procedure of bRF calculation is explained in Figure 9. There was
a significant negative correlation between these two values (r =-0.61, p <0.01). C,
Relationship between SF bandwidth and Elsf is plotted similarly (n = 67). Insets
show SF tuning curves measured with drifting sinusoidal grating stimuli for three
representative cells. D, Distributions of left and right optimal SF difference are
summarized in the histograms. Horizontal axis shows optimal SF difference in an
octave unit. The upper row shows neurons with significant elongation in the SF
domain (EIsf > 1.0) while the lower shows those without elongation. Color usage is
the same as other panels (Blue: simple cells and red: complex cells). Deeper color
shows data with statistically significant SF difference obtained by a bootstrap test (p
<0.01).
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Figure 12. Relationships among basic parameters are presented as scatter plots
for all the recorded cells. Blue: simple cells, Red: complex cells, and Black:
unclassified (for C and D). 4, Relationship between optimal SF and Elsf is
shown. Positive correlation was observed between these two values (r = 0.24, p
< 0.05). B, Relationship between optimal SF and optimal disparity frequency is
shown. Broken black line indicates 1:1 identity line. Positive correlation was
observed between the two values (r = 0.73, p < 0.001). Most cells showed
lower optimal disparity frequency than monocular optimal SF. C, Relationship
between optimal orientation and Elsf is presented. Orientation here is defined
that horizontal is 0 degree, and the value increases counterclockwise as
illustrated at the bottom of the panel. D, Relationship between orientation
bandwidth and Elsf is presented.
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Figure 13. Although stimuli were defined in the SF and phase domain, it is possible to
perform a reverse correlation analysis in the joint left-right space domain to obtain a binocular
receptive field (bRF) for a given neuron. 4, Using a spike train recorded while binocular
sine-wave grating stimuli were presented, spike-triggered stimulus pairs were selected for an
optimal correlation time delay. B, Binocular interaction terms were calculated from each pair
of spike-triggered gratings as follows. The XL- and XR-axes are defined as the axis
orthogonal to preferred orientation in the left and right eyes, respectively. These
one-dimensional spike-triggered sinusoids in the XL- and XR-domains were multiplied to
produce binocular interaction terms in the joint XL-XR domain. Positive values (red) mean
that stimuli with the same contrast polarity were presented between the two eyes, whereas
negative values (blue) mean those with the opposite polarity were presented between the two
eyes. C, A bRF was obtained by summing these interaction terms for all spike-triggered
stimulus pairs. Binocular disparity is constant along the +45 degree diagonal in the map,
while disparity changes along —45 degree diagonal. In D-I, reconstructed bRFs are shown for
several representative cells. The horizontal axis of each map indicates position in XL-axis
while the vertical axis indicates that in XR-axis. D, BRF of a simple cell. Optimal SF, optimal
orientation and Elsf of this cell was 0.09 cpd, 176 degree, and 0.97, respectively. All the
remaining cells were of complex type, and the parameters are indicated in the above order. E,
Tuned inhibitory bRF. (SF: 0.25 cpd, OR: 73 degree, Elsf: 1.62) F, Even-symmetric bRF.
(SF: 0.27 cpd, OR: 1 degree, Elsf: 1.36) G, Odd-symmetric bRF. (SF: 0.21 cpd, OR: 98
degree, Elsf: 1.81) H and I, BRFs of cells that had relatively large Elsf. Parameters for the
cell in H (SF: 0.40 cpd, OR: 20 degree, Elsf: 3.42), and I (SF: 0.36 cpd, OR: 163 degree, Elsf:
3.66). The bRFs allow evaluation of pooling along X axis (Sanada & Ohzawa, 2006) as EIx.
Values of EIx were 1.04, 1.39, 1.80, 1.79, 3.39, 4.31, for DI, respectively.
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Figure 14. To allow visualization of properties of underlying pooled subunits, bRFs
were reconstructed in different SF bands for a representative complex cell. In A-C,
bRFs were reconstructed using limited SF bands. Binocular SF interaction maps are
presented in the top row to show SF components used to reconstruct bRFs.
Reconstructed bRFs are shown in the bottom row. 4, All SF components were used
for reconstruction. B, Only a lower half of the SF components was used for
reconstruction. C, Only an upper half of the SF components was used. Components
that were not used for reconstruction are indicated by the darkest blue color. D,
Disparity tuning curves were obtained from the three bRFs. Color of the curves
represents SF bands used for reconstruction (gray: all SF components, red: low SF
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Figure 15. Are pooled SF sub-bands tuned to a common binocular disparity?
A, Alignment of preferred disparities is evaluated between low and high SF
sub-bands by normalized peak difference. APeak is the separation between the
peaks originally in the unit of degrees. Normalized peak difference is the A
Peak expressed as a fraction of the wavelength (1/SF), where SF is determined
from the tuning curve using all frequency components. B, Relationship
between normalized peak difference and symmetry of disparity tuning curve
(phase of fitted Gabor function) is plotted for 44 cells, which showed Elsf
larger than 1.5. The blue dot indicate a neuron shown in Figure 10. The
histogram on the top shows distribution of normalized peak difference. C, An
example cell that shows odd-symmetric tuning curve marked with red color in
panel B is indicated. Disparity tuning curves obtained from three different
bRFs in the same format as shown in Fig. 10 are superimposed, suggesting
zero-crossing alignment across different SF bands (gray: all SF components,
red: low SF components, and blue: high SF components).
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Figure 16. A, Predicted response of three energy model units are shown in the
format of bRFs. The three units are tuned to different SFs separated in steps of
1.7 (=V3) times (therefore, the highest SF is 3 times larger than the lowest).
Light gray circle indicates 10 % contour of the envelope. For the unit tuned to
the highest SF, additional two locations are shown diagonally in the bRF space
to indicate a possibility of greater degree of spatial pooling at higher SF. B, A
predicted response of a neuron that pools the three units shown in A is indicated.
This is a model implementation of a neuron with pure SF pooling but without
spatial pooling. The bRF is shown in the upper panel, with the envelope of bRF
(25% of peak) depicted by a diagonally elongated light gray contour, calculated
by Hilbert transform. Cross-sections of the bRF along the disparity axis
(indicated as red and black lines) are compared in the bottom panel. Red curve
shows a disparity tuning curve obtained as the cross-section at the center, while
black curve shows the cross-section near the edge of the bRF (50% of the
maximum amplitude of its envelope where there is little contribution from the
highest SF unit). Each curve was normalized to be 1.0 at the maximum. C, Data
from two example neurons that had large EIx are shown. Upper panels show
bRFs, while bottom panels show superimposed disparity tuning curves at the
center and at the edge (50% of the maximum amplitude of its envelope) of each
bRF. Each tuning curve was calculated as an average of cross-sections within
band-shaped regions (shown as light red and black bands in the bRF).
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Figure 17. A schematic illustration explains how an apparent elongation of
binocular SF interaction map may occur due to spatial pooling. In the left of the
panel, a joint left-right SF tuning profile is illustrated as a light red circle for a
neuron having a single SF channel. Each of three black dots on the response profile
indicates different SF combination in the binocular SF domain. On the right,
corresponding spatial arrangement of left and right sin-waves in the XY space
domain is illustrated for each case. Broken gray circles show presumed spatial
positions of different pooled subunits, and at the bottom of each row, cross-sections
of left and right stimulus sin-waves are superimposed as black (left) and red (right)
curves. When left and right SFs are the same between the two eyes like shown in
the upper two cases, inter-ocular phase difference is always the same at any position
along the X axis. However, in the case of different SF combinations between the
two eyes, inter-ocular phase difference changes depending on the position along the
X axis, generating different binocular phase arrangement between subunits at
different positions. This causes mutual cancelling of inter-ocular phase tunings
between subunits at different position by pooling them, resulting in apparent
elongation of binocular SF interaction map along the 45° axis (red filled region).



2 (J
W 4ot N=74 o®
=
g ® oo
-8 3.0 ®
®
S o Lo
Q. 20t g ¢
c .\.(oﬁ"”
= © 0%9 o
X ()
) o .‘.,’ Qo
O o0 So
- o w0
9 % ®
= 10k €
2
(@) | 1 1 1
L 1.0 2.0 3.0 4.0

Elongation Index in SF domain (Elsf)

Figure 18. Relationship is shown between Elsf and elongation index in the
space domain along the X-axis (diagonal) in the bRF (EIx). Symbol colors blue,
red and black indicate simple, complex, and unclassified cells, respectively. A
significant positive correlation was observed between the two values (r = 0.8, p

<0.001).
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Figure 19. 4, To obtain binocular SF tunings, cross-sections were obtained in the
binocular SF interaction map by fixing SF presented in the non-dominant eye at
various values. Thus, binocular SF tuning curves were obtained for the dominant
eye (in this case, left eye). The neuron shown in panel A and B is identical to one
presented as a representative complex cell in Figure 8A. B, Binocular SF tuning
curves at various SFs in the right eye are superimposed for the neuron in A.
Different color shows different SF in the right eye (as used in A). Monocular SF
tuning obtained by drifting grating stimuli is indicated by a broken black curve. C,
Comparison of SF tuning bandwidth between monocular and binocular conditions is
shown for a population of neurons. Among many binocular SF tuning curves (as
presented in B), the tuning curve showing the maximum response (i.e., at the peak
of a binocular interaction map) was used for binocular SF tuning. Broken black line
indicates identity line between the bandwidth of two conditions. Color usage of the
dots 1s the same as previous Figures (Blue: simple cells, Red: complex cells). D,
Elsf is compared with the discrepancy of SF bandwidth between monocular and
binocular conditions (SF bandwidth ratio). SF bandwidth ratio for each neuron was
obtained from values shown in C.
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