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  CHAP[I]ER ]

   '

INTRODUCTION

     The study of neutron behaviour in eell systems in nuclear reactors
                                                   }
is very important in the determination of the critical condition.

The equation which represents the neutron behaviour is the so-called

Boltzmann equation, The equation may be written in two forms; one

being the integro-differential equation and the other ehe integral

equation.

     The integro-differential equation has been treated by many authors

both exactly and approximately. Exact treatments of the equation
                             (i)have been done by Case et aZ.                                 using the singular eigenfunetion

expansion method or the Fourier transform method, although they are

limited to slab systems and cannot be adopted in practical problems.
                                                                  (2)
And on thg other hand, approximation methods such as the Pn method ,
                                           (u)             (3)
                                              have been exploitedthe S method                 and the Monte Carlo method
     n
and used in the caleulation of the neutron flux for several geometries.

The application of the P method to a highly heterogeneous system,
                        n
however, has some limitation because the method requires many terms

of the Legendre polynomials to express the neutron flux with strict

aecuracy. The treatment of such a system on the basis of the S
                                                                n
method requires a iarge number of mesh points to express the fine

structure of spatial distribution of neutrons. In the Monte Carlo

method, the transport equation cannot be solved in a reasonable time
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even with a high-speed computer, because the cross section varies in

a compiicate manner with neutron energy and the system itself is

very complex in the geometrical arrangement.
                                                                  '
     On the contrary, the integral transport equation yields a better

approximation in a highly heterogeneous system though it cannot be

solved exactly. This eomes from the faet that in the int'egral
                                                 T
transport theory the boundary condition at interfaces between two

                                                   tdifferent materials is unneeessary. An approximation in the integral

transport theory has become known as the collision,probability method.

In this approximation, there are two procedures df treatment, the

first-flight eollision probability method and the muLtiple collision

probability method.

     The first-flight collision probability was first introduced by

Chernick(5) for calculating the resonance escape probability in l955.

This method has since been used in reactor cell caleulations, the

most successful application being found in the calculations of the
                   (6)                                               (7)
                      , the thermal utilization , and the resonancefast-fission factor
                                         (8)                  (5)                     . In l963, Leslie                                            eombined the first-flightescape probability

eoliision probabiiity method and the diffusion theory to obtain the

thermal spectra in lattiee cells with large moderator regions.

In l964, the anisotropic diffusion coefficients in lattice cells were

caleulated by means of the generalized first-flight eollision probability
                     (9)
introduced by Benoist .
                          '
     On the other hand, the muZtipie coilision probability was first
  '                 (10)
                      in l957 to obtain the blackness of a fuel rod.derived by Stuart

Since then the method has been extended to multi-region ceU problems
by Amouyai et az.(ii)'(i2) and Muuer(i3). !t was aiso adopted to

-- 2-



calculate fast-fission factors in more heterogeneous eluster systems
         (IU)                       (15)             . Mayer , in l968, improved the method so thatby Rognon

it could be applied to the neutron shielding problems.

     The difference between the two co!lision probability methods comes

from the use of different types of transport kernel of neutrons.

!n the first-flight coUision probability method, the system under

consideration is divided into some regions in which the neutron cross

sections are constant. [[hus obtained is the probability that a

neutron born isotropieally and uniformly in one region undergoes its

first collision in a given region, [Ilhis is caUed the first-flight

collision probability. By using this probability, the average flux

in each region may be obtained from simultaneous equations. In the

muJ.tiple collision probability method, the neutron currents at each

interfaee are conneeted by the multiple collision probability.

This is the probability that a neutron injected in some region through

a boundary escapes from the region through one of the boundaries after

some collisions in the medium. In general, the multiple collision

probability can be expressed by means of the first-flight collision

probabilities.

     The both coilision probability methods are powerful in the

treatment of cell problerns or sh-ielding problems. !n the collision

probability methods, however, several basic assumptions are included.

Some of them prevent the methods from being applied to the analysis

of fast neutron behaviour. In this thesis we will improve the

eollision probability method by removing the basic assunptions mainly

in the first-flight collision probability method, and extend the method

to apply to various probJems. Since the energy dependence of the

                                 -3-



neutron flux may be treated by dividing the energy range into many

groups, the treatment in this paper is mainly concerned with one--speed

problems. The extension to the multigroup theory may be done

directly. The basic assumptions included in the first-flighe collision

probability method are the isotropy of neutron scattering and of source

distribution and the flatness of neutron flux in each region.

     In order to remove these assumptions, a new definition is proposed

                                                   ,for the first-flight collision probability in Chapter 2 so that it

takes into account the effects of anisotropie scattering and of the

spatial change of fiux distribution in each region in a cylindrical

cell. This ]probability is obtained by expanding the scattering

kernel, neutron angular flux and source term into spherical harmonics

series about the neutron direction and then the neutron flux into a

Legendre series about spaee coordinate. Making use of the new

reciprocity relation and the conservation law, we introduce the

probability applicable to a lattice system under the condition that

all neutrons impinging on the cell boundary should reflect, with

isotropic distribution, baek into the original ceiZ. In g2.3, the

effect of the linearly anisotropic scattering in 2-region eells is

studied particularly in detail under the assumption that all the

components of neutron angular flux (flux and current etc.) are constant

in each annular region. The assumption of the flat current, however,

is not so good as that of the flat flux. [Vhis is based on the fact

that the neutron current shows a large variation when it goes through

a lattice cell, because of the strong neutron absorption in the fuel

rod. In g2.U, the approximation of the flat flux and flat current

in each region is improved by expanding the angular flux in a Legendre
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series about the space coordinate,

     Up to this point the cell boundary has been assumed to be circular

(according to the Wigner Seitz Åëell method). However, in practice,

the configuration of the cell boundary is polygonal (square, hexagonal

and so on). It will be possible to estimate the differenee from

the exact boundary condition (effeet of the latticg configuration)

if we divide a cell into a large number of two dimensional regions

                                                    ,and calculate the first-flight collision probabilities among the regions.

The evaluation of the probabilities in two dirnensSo#al system, however,

is very complieated. Moreover, the analytieal dvcpression of the

effect of the lattice configuration is impossible to make in such a

method.

     In Chapter 3, the lattice configuration is treated analyticaUy

by using the multiple and the first-flight eollision probability methods.

In the first plaee derived is the analytic expression of the mono-

energetic disadvantage factor in polygonal cells containing 2 regions

(fuel and moderator). In view of the lattice eonfiguration, an

extended Dancoff faetor is newly introduced. This factor is defined

as the probability that a neutron escaping from a fuel rod makes its

first collision in other fuel rods when all the materials are replaeed

by the moderator. In the fuel rod the blackness of the rod is used

to express the flux depressj-on as in the paper by Amouyal et aZ.

Thus the effect of the lattice configuration is represented analytically

by two factors. Mhen, we extend the method to iLu].tie-region ceU
   '
problems by adopting the balance equations of neutron currents on the

boundaries of eaeh region and by obtaining the mu Ltiple collision

probabUities through a variational technique. Finally a study is

made of +•he effeet of a[nÅ}so'tropie sca,ttering on the f!ux distribution
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in square eelis whose moderator region is thin. In the study we
                                                             (l6)
divide the 'cell into many mesh regions as in the THERMOS code

and caleuLate isotropic and anisotropic transition probabilities among

these mesh points.

     In Chapter U we apply the first-flight eoliision probability to

the ealculation of flux distribution in lattiee cells. In SU.2 the
                                                '
first-flight collision probabilities in a cluster system are obtained
  '
and the flux distribution in the system is caZeulat6d. [IIhe direct

ealeulation of the first-flight collision probabilities in highiy

heterogeneous systems is very complicated and tMne-qonsuming, then

approximations are required. In the present method both the collision

probability in an annular system and the transition probability for a

neutron escaping from one subcell to the other are ealculated and

combined. In gU.3 the effect of finiteneee of ceU systems in the

axial direction on the flux distribution is studied. [[!he modal expansion

method is adopted for the neutron distribution i.n the axial direction.

Then derived is a kind of first-flight collision probability which

ineludes the modes in the aJcial direetion as a weighting function.

This probability is calcuLated in slab and cylindrical eells, from

which the flux eomponents in the horizontal direction are obtained.

Xn g4.4 the neutron speetra and the resonance integral are obtained

analytically in a 2-region cell containing fuel and moderator.

     In Chapter 5 the anisotropie diffusion coefficients are ealcuLated

by the improved first-flight eollision probability method for slab and
                                                                'square lattice cells with use made of the Benoist forrnul.a. In

utilizing the integral transport theory, only several collisions

suffered by a neutron have hitherto been considered. In this chapter

-6-



we take into consideration the effect of an infinite number of col-

Usions of a neutron by solving sirrLultaneous equations. Fuirther, we

consider the anisotropic scattering by means of the generalized firpt-

flight eollision probabiiity, Then we estimate the fundainental and

the additionai terms in the Benoist formuLa. We neU also discuss

the difference between the experimental and theuretical values of the

anisotropic diffusion coefficients.

                                                   ,     In Chapter 6, the sumry of the previous ehapters is presented.

Furthermore, we will diseuss the possibilities of e#gekension of the

colliston probability method to a complieated three-dimensional system,

a multigroup theory and time--dependent problems.

-7-
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                     CHAPTER 2

I)v[PROVEMENT OF [VHE FXRST-FLIGHT COLLISION PROBABILITY ME[DHOD

S2.l Introduction

     Various eharaeteristic factors of a cell have been calcuiated with

the use of the first•-flight collision probability based on the assump-

tion of isotropie scattering in the system, In praetice, however,

appreeiable anisotropic scatterings occur in the moderator or coolant

eomposed of light nuclei. In addition, the heterogeneous structure

of a system causes an anisotropic neutron distrcibution. One of the

methods to take these effects into account is Vo use the usual transport

eross section instead of the neutron cross section included in the eolli-

sion probability ealculation. The adoption of the transport cross

section is, however, valid only when the anisotropic scattering is

repeated infÅ}nitely in a hornogeneous medium. The use of a generalized

first-flight eollisÅ}on probability that includes the effect of anisotropic
seattering has already been introdueed by Takahashi(!)'(2) in a cylindri-

cal cell. In the method it was assurned that f!ux and current. are

constant in each region in the sys+.em. Furthermore he assumed that

a neutron reaehing the eell boundary undergoes perfect refleetion as he
did for the problern of isotropic scattering(3). For a lattice with a

rather large piteh, this assumption would appear to be quite valid,

but it is not the case for a closely packed lattice. In such a case
                                                                   (4)
the isotropic return boundary eondition is proved to be rather good .

                                 -9-



     Before we perform the improvement of the first-•flight collision

probability method, in g2.2 the basis of the method is described briefly.

In g2.3 w'e Ddiill extend the problem to include the anisotropie scattering

and introduce a new type of first-flight collision probability with' a

detailed example of a two-region cell, This probability can be

derived when we calculate the flux originating from a source with cosine

distribution in the radial direction instead of the Cartesian axis

directions used in Benoist's theory(5). In the probability the finite-

ness of anisotropic collision number in some regions and the direction

of neutron path after anisotropic scattering were taken into account.

Moreover, it satisfies both the usual reeiprocity relation and the usual

conservation law.

     The assumption of the flat flux and the flat current may be improved

by the increment of the number of partition, Nevertheiess the lmprove-

ment is very slow for the ealculation of the effect of the anisotropie

scattering. This is due to the fact that, from Fick's law, the assump-

tion of flat flux in a given region is contradictory to the assumption

of flat current in the region. Fixrthermore, different from the case

of caleulating the average flux for isotropic scattering, it is difficult

'bo determine the way how to divide a cell for the case where we calculate

the effect of anisotropic scattering since the current shows appreciable
ehange through the ceii. Brun and ktivenoky(6) studied the anisotropic

effect using the conservation law which relates the flux and current,

but their method was limited up to the linearly anisotropie scattering.

     Therefore, in g2.4, we will take account of the spatial dependence of

the neutron angular flux in each annular region by expanding it into a

Legendre series, This is an extension of the method for a slab system
           (7)                          (8)
by Corngold and Carlvik to a cylindrical cell.

                                -IO-



     In S2.5 the effect of anisotropic scattering on the flux

bution is evaluated numerically in cylindrical lattiee cells

and without the assumption of flat flux and flat current.

 distri--

both with
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 g2•2 Basis of the First-Flight Collision Probability Method

      In a steady state the neutron angular flux Åë(9. a.E) at position

r along direetion 9 with energy E satisfies the integral Boltzmann

 equation:

p(9, a.E)-f,dcoR e-i"VRCS,acoE'kft' Z,(r': fr.ft,E'•E)

 .-(9; ft-. E•) + S(9; a.E)) ,

                                                                (2.l)

where R is the di$tance between points S and P', S iB the directional

vector given by a= (;- r")/R, 2AR is the optieal distance between

points 'r and "r', Zs(9; 6'•a,E'•E) is the scattering kernel at point

-r' from direction 5' at energy E' to direction ft at energy E, and

S(I', ft, E) is the neutron source at point I' along the direetÅ}on ?i

and with energy E. In the above equation the induced fission by

neutron is neglected though it might be ineluded in the scattering

kernel. At the beginning we assume that the seattering and the source

are isotropic in the laboratory system:

2, c9; a•. ft,E'• E) = "i . 2, (9; E3 E) , (2. 2.)

s(Fl -<'"L,E)= i,, S(F; E)
                                 ' (2,2b)
By integrating Eq. (2.l) over the whoie angle of ft, we obtain

Åë(9, E)-J.ot f,dcoR e- fi [s<F; E)tf,i'2s(Fr E"E) yi(9; E')), (,.3)

     '
where yi(r,E) is the neutron flux at point r and with energy E, and

is defined by

 f( 'r. E) -Jk ft 9( 9J a•E) . (2.4)

                                                          '
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     In the next step the system under consideration is divided into

several regions so as the neutron eross sections to be regarded as

constants in each region. [Vhere the neutron flux 9(", E) is assumed

to be constant and in the i-th region, for example, it is expressed

by Åëi<E). Integration of Eq, (2.3) about P over the volume V, of the
                                                             J
j-th region making use of the relation d9'= R2dRdfi. Ieads to the

eguation

                                   poZe CE) Ve "G (E)= Z. P.e <E) VL {SL (e) +f,a E' 2-`S (E '" E) "e (E' )} , (2. s)

where Z,(E) is the total cross section in the j-th region and P..(E)
                                                              IJ       J
is the first--flight collision probability defÅ}ned by

Re(E) =' ts E) 5,,ct.9'J.d,9 4tRz e"'2'XR• (,.,)

In Ecl. (2.6) theranges of integration about •r and •r' are over the

volumes of the j-th and the i-th regions respectively. The energy

range is divided into multi-groups. The average flux in the energy

group g is denoted by f6i . [vhen from Eq. (2.6) we obtain the

simultaneous equation

AEe ;[G 'V,r• ",'-Z P.i ViLZAEs•({S,,•Se•'+ th,g'21•?S> ,

              u e' (2.7)
where AE3 and AEs' are the energy widths of the groups g and g'

      'and ESis'} is the scattering cross section in the i-th region from

group g' to g, and is defined by

zg,?}=
WJ]EJ,ld.dE,,Es6,S(il)-'E)A(E) , (2.s)

Equation (2.7) is the basic equation in the first-flight collision

probability method. In the following section we will show that the

assumption of isotropic scattering, Ea.. (2.2a), can be removed by intro-

                                -l3-



ducing a generalized first-flight collision probability.

g2.3 Effect of Anisotropic scattering(ll)

     [Vhe neutron angular flux "('r,a,E) is considered in a cylindrical

                                                  .cell with infinite axial length. [[[he direction A is expressed
                                                     '
by two angLes e and ct as shown in Fig. 2.l.

     We expand the angular Srlux t(9. &. E), anguLar tsouree S('r. 3-.E)

and scattering kernel Es(", it.ft,E'-> E) into $pherical harmonics series

about angles e and or(l2):

               oq ctj5<"r,ft..E) :ZZ f>M"M('r,E)Y."'t(.6.), (,.,)
              r=e wt=-r

                co irLS(9. ft. E) -ZZ SM' wt ('r. E) Y.wt (a), (2.io)
              nto m=-n

z

,

,

-
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'

'
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!, ( F. &-, .& , E'-i, E) --.

             '             tt
                '
where y.'T't (ft)

         H: -

The average cosine

Eq, (2,ll):

        dfi' Es("Y•- s,.

   eo at  22 z2(9.E'->s)y.M
 n= O mn-n

- H: P"(ce` e) e"ntct ,

 (zqtS)(m -- m)!

  -rc (ertrn)! '

 of seattering angle

ft--, ft, Ei-)E) (fr•.FS.)

,LL -           S,.d &- E,("r'. .6L•-> ft. Ei" E)

Since we are dealing with an infinitely

remain in Egs. (2.9)tNv(2.11) only the

number, The transport equation (2.l)

lowing form:
                           t"v"(9•ft,E)-fd9•Xd.ft- Re-;Ks(&-tv)

 '{ S(9; fy, E)'J,dcoE'f,d,,ft" P(9•' ft". E') 2s

where fi' = (9-• F')/t9 -- 7-i, the veetor

Substituting Eqs. (2.9)n-(2.U) into Eq.

and then integrating over the whole angle

lowing equation for Åën,M:

                    t A.               oa A                              .ZRi6pm("r'•E) = .\, ;,.-.. Jd;" Iilz                                 xr :L ' ( &,) Y

    '
 • { s"tt M'( "r'r E) + jl,dcoE• s6 "; ""'( 9r E') 2s"'(r

In order to niake the anisotropic mode

of a neutron path explicit, we represent

                                 - 15

    ('&) Y.m,(.ft. ) ,

                          (2.Il)

                              '
                          (2.I2a)

                          (2.12b)
             '
 il is obtained by making use of

     z;

     E,e ' (2.l3)
  long eylindrieal cell, there

terms of which n+m is an even

  may be rewritten in the fol-

  5 (ft- - ft, )

(9;6•t.a•. E.)E)) ,

                          (2.IU)

along the neutron path.
   (2.l4), multiplying by Y:`<.i{L),

        •    of -SZ , we obtain the fol--

     pt?' ( .eiLv )

', E'.E)l) . (2.ls)

of collisions at the both ends

   .il.ee's in both spherical harmo-



nics functions by the angles defined at I and "r' respective2y; azimuthal

angles ct and ct' are measured from the radial lines at the points 'r and

'r' respectively (see Fig. 2.2), so that Y."(j!b at a andY,'(it)at ct' have

not the same expression.

                       nsm     If we transform Åë                           to

 OC"Oe)= Åíi'O , (2.16.)
 "ca ,.) .. tM'"" ; H( -ll )M """ "'L , (2.i6b)

 p(.z,.) .L """M -2 (H-t')"` "nt""'t , , (2a6,)

and use the correspondents for Sn'M , we obtain the foliowing three

equations:

/
- '

        et-- --- -     d- `- tt'

z
N OI

ot
 Ni
9

l
l
l

  I

l
 . "bl-"

/

--

 ,
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("(Z? l&)) (g,.) .= S JdF' Sl;'YK p..(cede')

                  rv=o

( lt",/.,,C, C(e`'(c,,,,,e`se l,)) cpm,sd. t,,,,,di, ) (H,e• )Z { s (nO'o)(gf E) +J,dcoEt s(nO'o)( g; E•) z,"'( rÅÄ; E•., E))

 + :.,l:,il.-, JL9' Re"SR p.';'L'(oeoe')2c,e<i t,n;'rk' '

' Ppt"
.-pm

,.( t(`",.e,e i))c.e,:, n.of, (Hntnt")2(5("wt')(9;E)tf,dcoE'"(""'`?'r;•e')z,"'(F;E'.E))

                   .-Y 't- :.,t.., Jd?' 2;R p,,,rr"'(ceoe')2A`;rt •nt'.t`i

  P. ( cee e) .  ;"..va (<`,`.l e,>)xe, :: (H::)Z{S(av2'pt')<?; E)'i,dE' "(avZ'za')(9,'e)Zsa'(r; Eza)) ,

                                                            (2.I7)

in this equation, Åë(n"o) , Åë(K") and j6(rira) are reai and have ciear

physical meanings. For example,' Åë(eOO)(9,E) corresponds to the scalar

flux at point i;, "("')(9,E) to the radial eurrent and S6('Z')('r"',E) to the

rotational current around the z-axis. The heterogeneous system is
divided into many regions and it is assumed that P<8o) , fo(aevt) and

  9Cn2en) are constants in each region. In the i-th region, for exampl6,

they are e.xpressed by S4c(ptOo), PcC't"')and SZ5,CrZert)respeetive].y. we

introduce an operator Jeid defined by '
                          .'Y Jzttr?g- i7.f.d,,gJsi ft-.ZRy. (2.is)

Using this operator the foUowing generalized collision probabilities
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are defined:

P,(
iO)" (M( :()&)> = (H:. )2 JPC,i P,,,. (cec e) P,,(ÅíI)( cee e) (cpmed', •,,n.,of, ) l

                                                               (2.I9)
p,/i'rrv')'(e(Lei)&)) ., .(H :f,')`,PIC,,. p,..'Lk`eeer)P,,(M'O")(ceee) cs4•rvt'sk' (`.e.,o`.'w,',,eC,) , (,.,6)

p.G"}'"t')-'(.L( :'<)&))N) = 2 <H.wt,')Z,lz ,} Rr'(ceo e') P,,(&)(ceoe) •d";t '"t'sst' (`.e,,,Ot, ",',.t e,C(: ) .

                                                               (2.21)

                                                                  'By using Eqs. (2.l9)tv(2.21), Eq. (2.l7) is transforined to

]E( CE) ve f5e ("(:'()&)))(E) = #., :., ( p, [l.:ftO'e)'("CZ9c)-,,,:o )) (sL(nte•e)(.)

t JLdO"E' f4,C;i'o)(Et) Er.' (E'-, E)} t• ;il,li., Ri.A'wt') -' ('t( Zl)22•> { s,("-n')(,) .t.Xde'E• is,(a'-n2e)

. z,rv,' (E•-)E)} + tr.i p,[l.iZ'"'L"'(il(/t):it')> {slrvZ'•-')(.) •,-j,1:E• ",(n""c'2•) E,?'(e/. E)>l] ,

                                                               (2.22)

where N is the total number of regions included in the system, and

   'Z:s is the seattering eross section of order n' in the i-th region.

If we assume that the scattering as we!l as the angul.ar distribution

of the source are isotropie, Eq. (2.22) reduces to the saine equation

                     (eee)) (eOo)as Eq. (2.5) since P.                             corresponds to the usual first-flight
                    ij

collision probabUity P...
                       IJ
     We now consider the ease where the seattering is iinearly aniso--

tropic (n = O, l in Eq. (2.ll)), and the rotational source is zero

(S(a'")= O) in Eq. (2.22) within the limit of the one-velocity theory.

si.,e pi( j"Z'""')'("O'), pi( /in')' ("'") , p;S.O'O)'("2avL) ..d pi("je"'t')'("Z")disapp..r

in a cylindrical system, only >S,CbO')and 24.("') remain in Eq. (2.22).

So we obtain
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 2e'Vel Sbd.(OOo) = ,Eiil C p.}(eOo)"CeOo) { st(oeo) -t- zeo, h.(oOe)}'vc.

              L=I

           t Re( "i)-' (oee) { s,( "' ) t 21, ".("') } vl, ) ,

                                                            (2.23)
 Z, V, Sfdl <L'`) = i [ P,(tiaO")-'(`'`) { s,(oOo) + E,", s6,(OOO)}VEL

               C=l
          t Re(. "L )' <"') { Sc( "') + 2- ,!s S6L (''i) []I VTL ] . (2 •21"F )

It ean be concluded from the above equations that foiur kinds of proba-

bilities are necessary for the study of the effects of the forward

scattering in a cell.

     Fo] simplicity we treat ct" cy,lindrical eeU composed of two media

under the assumption that seattering is isotropie in the inner region l

while anisotropic (forward) scattering occurs in the external region 2.

An extension to the ease of multi-region cells can easily be done.

If the distributions of sourees are isotropie in the both regions

     IN( St(``J = o ), we obtain from .P.qs. (2.23) and (2•24)

2d ve 9e(eeO)= ;,., Pu*e, (S,COOO)t 7LOs A(OOO))Vle (2.2s.)

where

R*
e = p,;eoo)'(so)t R?"O i'(i" lllii,)/t,l')'f)'2ziiO,e) (2 2sb)

Thus, the problem of anisotropiÅë scattering in the moderator can be

treated with use made of the new type probability PiS in plaee of the

usual probability Pij(VCO)"("Ots)for isotropie scattering. The secopd term

on the right-hand side o!a Eq. (2.25b) represents the probability with

which a neutron born in the i-th region with an isotropie distribution

repeats its arAsotxopic scactering in region 2 and, after anisotropic
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escape from the region 2, coUides isotropieally in the j-th region.

     The reeiprocity relations for the four kinds of probabilities in

Eq. (2.25b) are as follows:

 2,v;. p,(deOO)'(OOQ> = ,21+ ve Pe(ieOe)'(OOe), (2.26a)

2vv;. Pc/.'`')' (eOO) = -. 3 2e vdi7 pd(vOOe)'(i'J))

                                                               (2.26b)

        ("t)) (tll) (rt )) ("t)
Ee VL Ra = EQF Vd PdL '

                                                   , (2.26c)
                                              '
Here the minus sign appearing in Eq. (2.26b) denot'es that the paths of

neutrons traveling from the i-th region to the j-th region and the

corresponding paths from the j-th region to the i-th region are mutually

inverse and a is repLaced by T-ct. [Dhe neutron conservation laws are

i pc;.oeo)-(oOo) .,. 1 s

i pL[l.:'`i)-)(oeo) = o .

The first is the usual conservation law and the seÅëond means that,

once the suinrnation is made over the whole volume, the direetional compo-

nent of the probability no longer retains the source direetion owing to

the isotropy of the first collision.
                                         (r2M)
                                            that a neutron with an     We ne)rt define the probabilities P                                       sj

isotropic distribution enters into a eeU through a unit area of the

boundary to undergo the first coUision of mode ("t2erv) in the j-th region:

p,/)oOe)= ;l:i S dsS f,irce th ef,:'y( li'nyi{•s)jl,2}R eZ""e- Z"'R""' `iEd ' (2.'

2s.)
p, i. `") - - -k f di J,1//e tht2 e j[2 sf ( it•s, ).[ :"R er` Ke2"ev' `ed b( ze .

                                                               (2.28b)
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where n is the unit vector inwards normal                                          to                                                                , As                                                      boundary                                                               s                                                 cell                                             the

                                        .'v the unit vector along the neutron path, ZRetj the optical distance from

 the eeU boundary to the j-th region, and Rj the distance of the neutron

path in the j-th region, [lhe probability that a neutron starting

 isotropically from the cell boundary reaches again the ceU boundary

without collision is

               z pss =l- )ll.lllxi p,;eOe). (2.2g)
                              ({tt)                    C eOe )
 rYhe probabilities Psj and Psj defined above may,be related to the
 four generalized probabilities. First, p.(I")) (80) may be transformed
                                           Jz
 as follows:

                                 t'-L pelt''"`eOO'- li2i,"f.,a,9'J.a,9 ,2-,Z." thei ceQde

=-
 z,3y, fdsJ,.d4Al` (a a,> pe" eJ,aKE e- Z"NK' e- ZdRcee de (i- elr"k"), (2 3o)

       -'Ywhere ZRw is the optical distance between the i-th region and the j-th

 region, Suniming the above equation over all i in a cell, we obtain
 ;.., PeSJ")'`OOe)= e, Jdsf..2#s (a•ft,),`2thv ef,dRk cedec, {l- e"`ZdR'ÅíK7e',))

  == -- 2iVi fdSf.,.:t;'}`(?t''`-':Ls>taD'v af,dKRj Ze e-ZdR e-Z""KtL'` ,.c ,ke .

                                                              (2.31)

 Using this equation, we may reduce Eq. (2.28b) to

 p,i.'U)= `""lliesL'V'aT• #.., p6.E.t'')'COOO). (2.32)

 In a simila] manner, the foUowing usual reciprocity reiation can be

 obtained:

 p, ioOo) ... fgs Ve (y" ;, ., p, SeOo) i' (POO) ). (2.33)
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Here we assumed that aLl the neutrons in a celi with isotropie or .

anisotropic source distributions are reflected back into the same eell

with an isotropic distribution on the boundary instead of ieaking out
of the ceu(i3). Benoist used here a distribution proportionai t6

AA as an anisotropic source on the inner boundary of a eeU (k=x,

y, z). 1]hough he used such a means as to take into account the
                                                 4
effect of anguLar distribution refered to Cartesian eoordinates, his

procedure is not necessarily convenient to take into'consideration

the tendency of distribution eharacterized by the boundary condition.

[[here appears a difference between his method and'ours in the details

of determining the anisotropy of neutron flux distribution.

     From the conservation laws (2.27 a,b), we can assume that the

rate at which a neutron born in the i-th region is reflected on the

boundary back into the sarne eell is the same as the rate of leakage

from the eell:
 ! - 2 p,i"eo).(ee,> ,

       k-l
(for an isotropic souree in the i-th region)
    2' Zl. p, ;"' ) -' (eov) ,

(for an anisotropic source in the i-th region).

     To take into aeeount the effect of neutron current frorn other cells

we define p3i("eO)'(eee), p.el (oeo)-'("'), pcl <"')) CoOo)and Rj,iCt)"> Ct',) by adding the

probability jncrease based on the reflection on the surface:

p"e.(oOo>'<eOo)..p,;.eOe)'(eOe)+(t-ip,/'eO)'(ee))Tl/ISIilil]-S ---O"i),, ) (2.34)

   '                                         tt                                                    (itt)p,:;..(,o,).c,,,) = R:,oeo)-> crt) -f. <i- : p,CiOo)•(e"o))it.P5 p.s s (2.3s)

p,t ic
 ,'t ). ceOo) = p, ;. t'j )' Ceee ). : p, i' 't )b (eOo) / -Ps /'iei, , (2. 36)
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                                              c",)
p,:. cth),Ct'`) .. p,:t'i)'(,'t)- IS..], pik"t)•COeO) j -PSap' ,, . (2.37)

Using the above equations, a new type of first-flight collision proba--

bility for the case of anisotropic scattering and of the isotropic

pe:,:e:tiE:l,,bg".":aliY,COndB`IO ;",I•anc,il,.l,,ll,/e,'d,Cl'i`,' ,,,,,

     In Appendix 2A, we will show that Eqs. (2.25b) Emd (2.38) satisfy

the usual reciprocity relation and the conservation law. The formu-

lations for higher order anisotropy are written in Appendix 2B.

g2•4 space Dependency of the coiLision probabiÅ}ity(l4)

     :n thÅ}s sec'tion the assumption that all the components of neutron

anguiar flux are constant in each region is improved in the case of

cylindrical lattice ceUs, We divide a eell into N concentrie annuJ-ar

regions and express the inner and outer radii of the i-th region by

ri-1 and ri respectively. [[[hen the neutron an.d source distributions

at radius r in the i-th region may be expanded using the Legendre

funetions Pk(Zr` i...Ytt ltlt}' )(k = o,1,2,•---- ). In practice, the

rotational source Si(ptava> can be assumed to be zero in each region..

Then the flux ft(n2'") becomes zero. Therefore, from the beginning,

                                                               'we can expand the neutron f!ux and source only by cos mct (mf-•O,l,2,••••)

in Egs, (2.9) and (2.IO). NanieLy we put the neutron anguJLar distri-
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bution and the souree distribution in the i-th region in the forms:

             oo n co9, (7. ft ) - Z Z Z <H: )2 ",`r' ""' Åí' P.nt ( cee e) c•eQ ttrt cs,

            n=o n=o n=o

            '           • pk (2r`-'y'.irvli'y,.X-IZ-t ) (2- s..,) ,

                                                           (2.39)

               OO ,VL coSL(7. a) == Z2Z(H: )Z 5tE""Jk' P,,"L(cee e) c.`K) ortek

             lt=e wtto A=e
                  2Ti •- rLZ - YL},
             'Pk(ff,z"re., )(2'`Se.e),
                                                           (2.4o)

wnere 6..o is the Kroneeker delta and Hlg is defined by Eq. (2.l2b).

As described in the last seetion, there remain in'the above equations

only the terms of n+m= even number. [Ehe scattering kernei E;,('r.5'.A)

has no spatial dependence in a given region (for exanpie in the i-th

region) and has the same forrn as Eq. (2.ll), which may be rewritten

in the form:

                   ee wt ZLs ( 'r. fr) -& ) - Z Z<H: )Z 2,2 P."" ( cee e) P." ( tme e')

                  r=o .m=o

                 • cb<7 t"t Cdi '- sk') (2- 8one) . (2.41)

     We follow the similar procedure as in the preceding section;

inserting Eqs. (2.39), (2.UO) and (2.41) in the integral transport

equation (2.l4), multiplying the resulting equation by P.wt(ceoo) cee,rtLof

                                             •and integrating over the whole direetion about dn.. [Vhen we obtain
S.,9orC"'"'"'R('i'-kllkllLt'V -e.r.-r,I-ei')==f,decRf,a.-c'Lp.wt(ceoe)cecm&e-Zfk

' :,., lll.li.,]Ill.:.,<H:; )Z p.Tn'(ceo e) cse ,rvt'oK' pÅí.( 2r'Lri. -rtzri.,ri}, ) .

 . (2- s.,,){ ss.n'•n'• k')+ z,n,' ",C"" "t" k')} . ' (2.42)

we multiply the above equation by Pk(2Yt- )tl,eX-- i./`I' > and integrate about
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 I over t,he volume of the j--th region, and obtain

  .fti. i vr "in'"'L'Åí' = t/l.l;, ll.li,:,.,#., f.fr"'1ig.'r eR--;"'R' R:(cece) c,ectrnq

  ' Pk (Z' si-kZr-,..-rl}' )(H."'L.' )Z p.e'(cee&) c-eo trn'q' Pk. (2'y'l..d'l`Lri,},r"}' )

  . < 2 --- S.,.,) { s ,C "" pt; k') + z ,it,' g, cn; wt; a') } ,

                                                                (2,43)

 where V. is the volume of the j-th region.
        J
      Here we define the foUowing generalized first-flight coUision

                                                     ' probability:
                                          t"`' p,i.";"-; '`t"'CM'"rt'rt' . .Zv2.e J,dnS-f.d,-t' eR-.2A (H."",')2 P.rt'(ceoe) cec •7rt'o<'

 . pe ( '2 r'iiirir./L,r"'Z' ) (2- ,s.,,) p,.'"L(,,. e) ce. t,r, ,k p. ( 2rili. //Lid..r.,ei ) .

                                                                (2.44)

                               (n',m',K').(n,m,k)
 [[7ie explicit expression for P                                                  is gÅ}ven in Appendix                               ij

 2C. In terms of 'the above equation, iT]q. (2.43) reduces to

2e.'
 tt-,".e'l""'Q) .. t9.,t:.,ill,I.l-:,., p.II.'LC"'L;k"'Cpt"'L'kV, {s,"""ptt{"-t- z.".L,' v6,5O't"'L;{'))2i.L,s)

 In the case of isotropic scattering and isotropic source distribution

 it is sufficient to take account of the eontribution from the faetor

 with (n,m) = (O,O). In order to consider up to the linearly aniso-

 tropic scattering, it will suffice to treat the contribution frorn the

 factors with (n,m) = (O,O) and (l,l). In any case the contribution

 from k must be considered from k=O to k=oo,

    . We calculate the generalized collision probability in lattiee
 ce us pl S. n' ,M' ,k' )" (n ,M,k), whi ch is the prob abiii ty th at a ne ut ron

 starting with mode (n',m',K') from the i-th region undergoes the first

 coUision of mode (n,.m,k) in the j-th region in any celL. At first
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we caZcuJ.ate the generalized first-flight collision probabili.ty for

 a neutron born in a cell to make its first collision in the nearest

 neighboring ceU. As shown in Fig. 2.3, we divide a distance from

                                                                      ' the i-th region to the j-th region into two parts Rl and R2; Rl being

the path length in the original cell l and R2 being the path length in

 the neighboring celJ 2. [Vhe optical distanees along R                                                          and R                                                                 are                                                        12
            tN ,N denoted by ER, and 2Rz respectively. [[hen we obtain

 R;.ni's; ft')'(mJ""•k) ,. :,j JsS•JldRLJ(dft(H r,')ZR.Mtc.oe) ceeq,t'd' P,• (ar'a',',.'"-Z- -,,/,if' )

 .(z-s,,,)e'ÅíR'e'Z'NR`p.wt(ceee)cecwtqPk(-U'til-ISK2iee.kr"IZ),

                                                              (2.U6)

                                                                  .where dR is a line eiement in the j-th region aiong the direction A.

We describe the neutron direetion measured from the interface of the

two cens by .6LX and the unit normal vector at the interfaee by )n.
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     In order to calculate the above equation by using quantities
                                                    '
evaluated only in a cell, we matke the foLlowing approximatlon,

Inserting an identical operator

 sts-..,, '(a.ft., JgsJl.tit (K'ft) (2,47)

(S is the surface area of the cell per unit height) between the terms

                                                   '    A XN e-ER` and eV2Rz in Eq. (2.46), the dependency of the latter terd on

D -Fr' and -Q. is neglected. This is based on the assumption that aU

the neutrons impinging on the cel.1 surface may return isotropicaLly.

Then we obtain

                                    cnt. pt. k ) pv ;, nC n: S' >, + CntJ ptj a) .. F )L(;'. pt'J Åí') Psi g

                                                                (2.48)

where pÅí.:''M''k') is the probability that a neutron startlng with mode

(n',m',k') in the i-th region in a cell escapes frorn the cell without

collision, and is given by

p,C;"'L" ft" . Sr, J{:.;'ld..c'>- e' ZrtR"(' H:I )Z P.TrL'(cDa e) cee •7rt'(' R. (2r'Zyi.5. -'`-,i,r,"}`) (z?28,wtg )) ,

and pS, 'M'k) is the probability that a neutron entering the ceU 2

isotropically makes a collision of mode (n,m,] ) in the j-•th region,

and is expressed in the form:

Ps3pm'a' = sf,ftl(a.?x,) f,diS.1,ld.A'-' (}t'6L')fdR e'ÅíRt P.wt(ceoe)

           •cee tm"K,pk(aY2i,,.rli"r}.-rl' )2e ' (2.so)

Equation (2.L9) ean be transformed into

RY' n"ft" - V, J,d,.9'la.G (/ -- f,dRi zcpe'Zk)(H J)Z p..nt'(csce)

                             2 riX - r,i - r,Z.,
             ' Ca9`, 'wt' crk' R• ( r,z - n.z, ) (2 -- S,n'o )
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                                    tN.= 8t'o Snio S-•e - ii. Jlgfrfl$9, zcr') e-iR(H ;)2 P.1fr'(cDQ e)

  • ceo on'&' Pi. (2Vii..riX: -r,..l"l' ) (2'gm•o) ,

                                                              (2.5i)

where the integration about I is made over the volume of the celL 1.

                               (n',m',k')"(n,m,k)
In terms of the definition of P                                                  the above equation                               ij '
reduees to

                             N P,g";"" k') = 8.,, 8,,,to St,o - ;..l Pvi'""'"L k')'(O'O'O) . (2.s2)

                                       (n ,m ,k)
     In the foUowing the probability P.                                               is calculated. In a
                                       sJ
circular cyiinder

f.acit(K•ft) - rc .                                                              (2.53)

We denote the solid angle subtended by the surface area dS at the

point of coUision "r in the j--th region by d.6.' . [lhen using the

relations
 cK• &")   Ri d5 =dft•,                                                              (2.54a)

 R: aR dM = a'r ,
                                                              (2.54b)

we have the relation

 ( L• ft') dtr ds dR == ot fr d'r' ,
                                                              (2.55)

Adopting these reJations we rewrite Eq. (2.50). At this point it

should be noticed that, if we express the azimuthal angle by ct for a

                                .neutron starting from the point r toward the cell surface, we must

replace ct in equation (2.50) by fi-ct because the ct in Eg. (2.50) is

measured for a neutron directing from the cell boundary to the point

'r. [ihen Eq. (2.50) reduees to

P,i'"'""'k'- sE;t 51g;r.Il:f,.fi• e`frRZ P,,ewt<cea e) (-i)pt ceg tvrt e, P, ( 2'i,i -r.'Z,-,irlZ" )
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 :`Z$'XC s., g., sk, - s2;t Jlf/ ;i,a.A'J,RalR .z(R)ezrR

 ' P.,t'"t<ceQ e) cedi •nx (-')wt R (l-!t:l-ik!ll-llliLe,rfZ ya}r,eZ` )

                             -tt ' N
= +Zs'ir+ {Sno8neSAo- ilitii-(rdjiliflrg;;;HrjiC•)i.s.,) 2Z..., Pdg`"'cr't'a>"FCO'e'O)) .

                                                               (2.56)

                                tt             (n,m,k) .
Considering Psj in the case of n=m=k=O, the pgeobability Pss defined

in E•g. (2.29) uay be rewritten in the form:

            NNp,,=/- ;..,42se' 'Vi- {i - ;.t Pe;O"e`O)'CO'O'O'}. (2.s7)

From Eqs. (2.52), (2.56) and (2.57), the generalazept, first-flight

collision probability in lattice cells is given by

pcte,<nL nL pt)-(nt,pt)t) = piecn', evtC S')) cnt.pt. k)

-t- { tS trL'o S.,, <S A,, - #g , P, ;"'L ""L A')' (e' O' O) l!t ! ..l pss

•-2Ii:2 11ft--i!iiLtrV"{s.,s,,,,s.,-tov<H:)lil;.-.s",)Sp,;nt''M'k"`e'O'Ob}. (2.ss)

Using this probabillty instead of Eq. (2.U4)) in Eq. (2.45>, the range

of suJnmation about i is reduced to ltv N.
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g2.5 Numerical Results and Conclusions

     In g2,3, flat flux and flat current in each region are assumed,

so that the method is suitable for a cell with a smaU fuel rod and thin

moderator region. Takahashi's method is unsuitable for a high2y

heterogeneous system beeause the probability that a neutron born in a

moderator makes its first coUision in the saxne region is overestimated

by his adoption of the perfect reflection eondition on the ceU boundary.

We consider several cases of eylindrical cells composed of fuel and

moderator regions, whose neutron cross sections and geometries are

listed in Table 2.l. Suffixes 1 and 2 represent the fuel and the

moderator regions respectively.

         Table 2.l !nput data for two-region cylindrical cells

Case ]- 2 3 u 5(6) 7

Innerradius(cm) O.381 O.l O.5 l.O 2.0 2.5
Outerradius(cm) o.6U5 3.0 3.0 3.0 3.0 3.0

E,(cm") o.78 1.0 i.o 1.0 l.O 1.0

2z(cm") 1.o62 2.0 2.0 2.0 2.0 2.0
Z,s(cm-') o.387 O.5 O.5 O.5 O.5 O.5
Z25(CM"') l.o62 2.0 2.0 2.0 2.0(L5) 2.0

                                                                  tee     In Table 2.2, the probabiiities Plj for an isoZated cell and Pij

for a lattice system evaluated from the present method are compared

with those based on the use of the transport cross seetion in place of

the total eross section. In each case, they are evaluated for three

values of V (O, l/3, 2!3) where V is the average cosine of the scattertng

angle in the moderator. Among the probabilities PiX j, the value of

P:z for the transport approximation is independent of 'V'beeause it contains

only the cross section of the fuel eLement, but inthe present method the

          x             decreases with V.value of P          u
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Table at2 Normalized new type collision probabilities

Case i
l
:

1

lt

Probabilities for one cell
i
1 Probabilities for a lattice cell

'

1t I)il
1

;
i p,ro

1
1
1

P,1 L
t

P,1
1
`

:

Pltit
1
:
I

P]t2t
F

l Pilt
1
1
/

PI:t

1

Io
i--..

kI ' 3
i--

+
,
l

.i
 l

----.o.2s16Io,24ollo.og4so O.5989l,O.2357lO,7643
o,2"7'56:o.23o71o,ogos2e,2s16io,1727I.o.lo2o

O,3981

O.4630

o.6olglo.236g1o,7631
O.5370iO.3170ii O.6830

L

I2
l--i3
'

I

i O•2Goo
I O.2816

1
t
'

O.2212

e.09372

I

i

O,08707

O.1107

  O,3339
I O.1423

1

I
I

O,3E 50

O.5920

         i  O,6050 1
         t/l o•4oso l•

O.2381

O.4818

i

i O,7619

l O.5182

lo '

1 O.1150
l

I o.ssoo
i

!
'

O.OO0489
       '
O.9163 [
       '

O.1150
o.ssso 1 O.OO0492

i
l' O.999s

2

1/--i`ri'6.n47lo,s37o' lo.ooo46sL3''Io,11so1o.s714lO.OO0727 o.g132lo.1147o.s7s41•O.1150

!

O.8853lO.OOo492lO.gggs
O.8850iO.OO0738iO.9993

'-' 2"'io.1141ttt/3lo.iise Io.767slo.ooo427
iO.7877lO.OO1331

Ntr'tt'rt

IO.7626iO.1150O.8850
O,9080IO.1141O.8859iO.OO0493•O.9995

O.OO1477lO.9985'

olo,4o4olo.sg34t lo.oos47pttt

o.go61l O.4041iO.5959lO.O08514lO.991o-

!Ill•LL'O,40043[3io.4o4oI'
o,s67sIo.ooslosIO.5836IO.O1251 o.go34lo,4oo4

o.s6o4lO.4040
/t

O.5996

O.5959

o.ooss6sIo.gg14
o.o1277lo.gs721'

li2io.3g44io.s24gi-=I3iO.4040iO.5182

O.O07499

O.02221

O.8991lO,3945O.7383lO.40511

O.5949

o.6o5sio.oos6solio.gg13li

lolo.sg51)/
O.4042

o.o2s26io.sslslo.sgsl]i

O.4049 I,o.o2s31lo.g747
•lvLf

O.58Sl

3iO.5951
O.3899

O.3918

O.02437

O.03673

O.4119

O.4048

O.02574O,9742
O.03795O,96211

O,3663
o.3320l

O.02289

O.06225

;e.8766O,5766
O.4234

O.4011

O.02646lO.9735
o.o7s21lO.924sL

'

OI O.7641
  1

/

I O.22oo
i

i
J O.08799 o,7694 l

       L
O.7648 O.2352 O.09409 O.9059

5

  l
1i O.7527
3 I o. 7641

i

2
3

o

O.7363

O.7641

O.7641

O.2155

O.1977

l
l
l
l

O.08620

O.1186

o.7687 l

O.6824 [

O.7547

O.7680

o.2453 1

o.2320 i

O.09812

O.1392

11 O.9019
l
l O.8608
,

O.2090

O.1436
l

O.08362

O.1723
l
+

O.7676 i

O.5123

O.2200 O.08799 O.7694

O.7402

O.7880

o.24gs l

       t
O.2119

6

II
3

O,7559

O.7641

l o.2i6s
i

  O.2052

/

O.7648 O.2352

O.08670

O.1094

       I
O.7688 I

O.7091

O.7575

O.7666

O,2425 ,

O.2334

O.1039

O.2543

O. 8961

O.7457

O.09409
/

l. O.9059
'

2

O.09698

O.1245

E
i• O.9030
1
1 O.S755
l

O.7453
       lO.2126 O.08504 O.7682 O.7482 O.2518 o.leo7 i O.8993

i
3Io.7641F

O.1768 O.61351O.7737 O.2263lO.1811iO.S189i!

olo.so6sIo.i474 IO.61371O.8156
O.1844 O.2095[O.7905

7
•11
il

'

2
3

O.7946

O.8Q68
O.7 OO

O. 068

O,1457

O.1209

1
L
E

O.1655

O.2060

O.6134

O.5141

O.8081

O.8289

O.1918 i

O.1711

O.2180

O.2916

i O.7820
1

[ O.7084
O.1436

O.07689

O.1631

O.2621

O.6131 l
       [
O,3546 l

O.7992

O.8659

O.2008

O.1341

O.2282

O.4570

l O.7718
i
i O.5430

The values of upper rows are evaluated by
by the transport approximation.

the present method, lower rows
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     This decrease is based on the faet that a neutron which has

escaped from the fuel rod has much more chances of leaking towards the

void region outside the original ceU by forward scattering in the

moderator than in the case of isotropic scattering. For a ceU with

a large fueL rod, neutrons eseaping from the fuel rod and suffering

few collisions in the moderator have a forward anguiar distribution,

                         x                            reduces with the increase of leakage.so that the probability P                         ll

For a cell with a large moderator region, a neutron which has suffered

many eollisions in the moderator will no longer retain traces of the

original direction, so that the probability is nearly the saine as in

the case of isotropic scattering. In respect of the probability P!1,

the present method yields resuJ.ts opposite to those based on the transport

approximation. A neutron born in the moderatorwithuniform and

isotropic distributions has rnuch more chances (due to the larger solid

angle subtended by the moderator) of remaining in the sane region than

proeeeding towards the fuel rod, so that the anisotropic scattering

in the moderator may reduce the proportion of neutrons that enter the

fuel rod when the region outside the moderator is void. This is the

                            eereason why the probability P21 in the present method decreases with the

average cosine of the moderator. In the transport approximation,

nowever, the only assumption is that the cross section of the moderator
                   (13)reduces to Z -A Zs . [Vl)us, a larger proportion of neutrons than

in the case of isotropie scattering would enter the fuel rod, and the

       xvalue P21 in the transport approximation increases with the average

cosine of the moderator. This is a drawback of the transport approxi•-

mation, especially for a moderator of smaU volume and large leakage

from the ceLl.

                                                              t ec     For a lattice system, on the other hand, the probabUity P21

                                 t)n                               "' JL -



of the present method has the same tendency as that of the transport

approximation, [Vhis is due to the increase of volume of the moderator.

                                     teeThe same is true for the probability P22. Comparing the values of
 tee         tceP            of the present method with those of the transport approxi-    and P ll         l2

mation, we may fÅ}nd opposing tendencies for a iattice ceU.

-
Table2•3 Fluxratioj' (

p./tttt t')

Aver'ecosine o
ii.ti

l3 213
Casel //

Presentmethod 1.I405 l.13U5 l. 1286
Transportapprox. 1.1405 1.L372 l. 3330

Case2
Presentmethod 1.o6s8 z.o6so l. o639
Transportapprox. 1.o6s8 l.o6s6 l. o6ijg

Case3
Presentmethod J.3590 i.3402 1. 3137
Transportapprox. l.3590 l.3515 L 3318

Case4 s

Presentmethod l.8005 1.7285 l. 6335
Transportapprox. l.8005 1.7611 l. 6841

Case5
Presentmethod 2.5855 2.3884 2. l759
Transportapprox. 2.5855 2.U392 2. 28U8

Case6
Presentmethod 2.5185 i 2.3953 2. 2598

12.5185 2.U300 2. 3300

Case7
Presentmethod 2.7073 2.5410 2. 3751
TransportaTtyprox. 2.7073 2.5999 2. 5U50

      In Table 2,3, moderator-to--fuel flux ratios are shown for eaeh

case in Table 1 assuming a uniform source in the moderator. In .the

calculation the moderator region is divided into two regions with equaZ

volume. The resuJLts evaluated by the transport approximation are

in good agreement with t,hose of the present method onJy for a eell with
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large moderator-to-fue] volume ratio (Case 2). With the increase of

the fuel radius, the fiux ratio by the present method becomes smaUer

than by the transport approximation for each average cosine of the

scattering angle. For Case 7, this tendency is espeeially remarkable,

and the difference of the flux ratios between the two methods reaehes

about 7 idia. The transport approximation always underestimates the

deerease of the flux ratio caused from anisotropic scattering. [Vhis

approximation is equivalent to diluting the moderator with increasing

V, and Å}n the limÅ}t of 2.. O, the fluxes in the fuel and the moderator

becorne

9-
f == i,l.'tl'",L-- ) h-..=S(P-"-' zl',Szliiiv,)

where P.".=.Iltigy., zPn.n •

Thus it is proved that, in such a heterogeneous case or in a cell

surrounded by air, the adoption of the transport cross section is not

effective in taking into account the effect of anisotropic scattering.

From Cases 5 and 6, we can see that the values based on the transport

approximation approach to ours to some extent by the inclusion of

absorption in the moderator. .
        "lable 2.4 Values of eorrectionS("wt/tt) by anisotropic
                      scattering in the moderator (Case L)

Averae .eosznei 1/3 2/3
Methodof i2.3 l-O .oos66 -- o .Oll3
Methodof s2.4 I-o .oo6og -o .Ol21
Benoist,s -o .oo675 -o .O135
Transport correctionl -o .OO19L •- o .O028
Transport correctionee -o .O022 -o .O033

   ce Values listed in Ref. (14)

In Table 2.4 are shown the values of the correction S<iwtl"- s)
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to the disadvantage factor induced by anisotropic scattering in the

moderator. [Rhe results from the present method are in good agreen.ent
                     (i4)
with those by Benoist .

       Next we evaluate the effect ofi higher order anisotropy from the

method in Appendix 2B. From tXte discussion in Ref. (l5), it is

sufficient to take into account the effect up to guadratic anisotropy

for the calculation of the disadvantage factor. The total cross sections

used for the fuel and the moderator are both l cm-', The seattering

cross seetions used for the fuel and the moderator age,e O.5537 cm'i and

O.99163 enf' respectively. The average cosine (Pl component of

scattering angle) and P2 component (Zitsg /ZOns ) are assumed to be 2/3

and 1/h respeetively. The outer radius of the moderator is taken to

be 3,O cm. Using these data, the flux ratio (moderator-to-fuel flux

ratio) is shown for two different fuel radii. In the calculation

we dÅ}vided a cell into 5 resions-2 in the fuel and 3 in the rnoderator.

         Table 2.5 Flux ratio for different orders of anisotropy
                               of scattering angle
                 ' '

rC&se,Fuelrq,qius o ,t5cm
'

'ethodOrderof
anisotropy

reseint

,h.
P .3-approx:.

ton
P .rappToxi-

lon
ol2 i.3s56

1.268o
l.279L

lll .336o
.2126
.2249

l.
I.
ec

2292
I053

c se2 Fuelradius 2.0 cm
MethodOrderof

anisotropy Present
rnetod

P .-approXl--

3mation P .1-aWproxi-

o
o12' lt 2.2813

2.0269
2.0620

2.3285
2.0395
2.0999

l1ee

..

99U6
705h

ee Pi- g?Pg2g,i' eegllfig gftE22Y treat the second order anisotropy
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From Table 2.5 we can see that the linear anisotropy decreases the flux

ratio evaluated in the case of isotropic scattering, but that the quadratic

anisotropy acts to recover the flux ratio to some extent. [[hese

resul.ts should be eontrasted with the case of slab lattice cells.

     In the folLowing the effect of va]riation of flux in each region

is investigated. We calculate the flux distributions for two different

lattice ceUs from the method in g2.4. [ihe first eell (Case l) is a

cLosely packed lattice cell and the seeond (Case 2) is that with a large

moderator. In both cases a eeU is composed of a fuel rod and a

moderator. For Case l the outer radii of the fueL and the moderator

are O.381 and O.64487 cm respectively and the total and seattering cross

sections of the fuel are O.78 and O.387 cm" and those of the moderator

are l,0618 and l.053 cm-'. For Case 2 the outer radii of the fuel and

the moderator are 2.0 and IO.O cm respectively and the total and seattering

cross sections of the fuel are O.6 and O.35 cm-' and those of the moderator

are O.3 and O.3 cm't. [[1ie Case l corresponds to the Case 1 in Table 1.

                                                     Q6)
[Vhe Case 2 eorresponds to the cell adopted by Lewis . In the

calculation we divide the cell of Case l into 2-regions and that of

Case 2 into 3-regions (one fuel region and two moderator regions d[Lvided

by a eircie of radius 6 em). In ca)culating flux distribution we

assume a uniform and isotropic source per unit volurne only in the

moderator.

     In the case of isotropic scattering, the expansion coefficients

si <O'"'Åí) of the flux are given in Table 2.6 for each case where the

upper Limit of k is taken to be O, 1, 2 or 3. For the case where

the highes+. order of +.he Legendre polynornLals is taken to be 3, the

coefficients S (O'e' Åí) (k = O, 1, 2, 3) can reproduce an almost continuous

flux curve at interfaces. [Ehe convergency of the coefficients

            '                      '
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Table 2.6 Legendre
     for

exp ans1on
isotropic

coefficients of flux
scattering

Upperlimiti
ofLegendre
polynornials

iExpansion
t,co- effieientlL.tL..L.

iCase
Fuel'

iModerator IiFuel Case2
Inner
mogrator

Outer
moderator

o
.N.t

I4.s296 5.I556 ig6.o l61.66
-m-t.t....-"-

l77.95

5.l65Ui
1

/g6.o l70.68 l92.IO

;
{ Åë

(o,o,O
----------

e----L-TT-T
/o.
1

25U6 o.I3L6 l
i 2U.3U 21.66

---.-------.
4------..mH-+--....-..-"

3.49

2

3

io
I

  Åë

  Åë
;-

  Åë

  Åë

lÅë

  Åë

(o,o,o)

(O,O,l)

(O,O,2)

(6,o,o)'

(O,O,1)

(O,O,2)

(o,o,3)

i

'U,5292

 O.2532

io.o4ol
I
1

1U.5292

 O.2531

 O,0399
l

Io.ol323

 5.

 o.

-o  --

 5e

 o.

-• o.

 o.

l679

l323

ll20

l681

l320

1120

o3o6

3.85 -9.9

l' g6.o

ii 23.95
I
/

I g6.o
I

 23.88

   3•77

j 1.05

l72

 22

L72

 21

-lO

  4

.

.

.

.

.

.

52

io

97

82

87

ll

56

l93.75

  3.66

     .- -2,26
 .t
l93.99

  3.62

 -2.25

  O.3U

Table 2.7 Moaerator-to-fuel flux ratio
for iSotropie scattering

Upperlimitof Casel Case2
1Oi1.l382[l[1.l4oU

l.7971
l.9267

2
3

I
l

L.141o
1.I412

l.94U5
1.9U72

 f<O'O'O is very fast for the Caselbut not so rapid for the Case 2.
                           '
This shows that the deviation of the flux from the flat flux in each

region is very smali for the Case l, but is ].arge.for the Case 2.

     T'he moderator-to-fuel flux ratio is given in Table 2.7. From

this table it can be easily seen that the value of the flux ratio converges

ver' y rapidly with the increase of the number oÅí terms in the Legendre

expansion. For the ratio, it is suffieient Lo take into aceount only
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the first two terms (k = O and 2).

     [[[he Legendre expansion coefficients in the case of linearly

anisotropic scattering are presented in Tables 2.8 and 2.9 where

the average cosines of the scattering angle - ii' are taken to be l/3

and 2/3 respectively. From these tables it can be seen that the

convergency of the expansion coefficients S<i'LÅí) (k = o, 1, 2, 3)

is very slow for both eases compared with that oi f(e' O' Åí) .

In particular the term f(Lt'i) is nearly comparable with the term

 9(Li'O) in each region. 1]hen the flat eurrent approximation fails

to express the tendency of the current over a ceU. In the case of

anisotropic scattering, also, the inclusion up to the terrn k=lyields
good resul.ts for the expansion coeffieients Åë(O'O,O) and Åë(i,1,O).

rDhe moderator-to-fuel flux ratio for the case of anisotropic scattering

is presented in Tables 2.IO and 2.ll, and shows that the error resuLted

from the flat flux and flat current approximation decreases with the

increase of the average cosine of the scattering angle of the moderator.

rlhus a remarkable improvement is obtained when we inelude the term

k=L
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Table 2.8 Legendre

linearly

expansion eoefficients

anisotropic seattering

of

(V

angular

= 1/3)

flux for

Upperltlltrt'.ofLegendrepolynomials

Exl)ansion
coeffieient

Case
Fuel

1Moderator
Fuel

Case2
Inner
moderator

Outer
moderator

o

Åë(o,o,o)
4.5305

-o.2o67

5.1367

-O.1343

96

-l2

.Ol57.37

.U3'-8.24

l69.70

-1.85

l

U.5306

o.2545

-O.21U

-o.I422

5.I362

O.1121

-O.I390

o.I594

96

24

-l3

-IO

.ol61.95

.22l5.9S

.86-lo.l8

.706.27

177.30

2.17

-2.I7

2.42

4.5305

O.2533

o.o4ol

-O.2110

-o.I427

O.0261

5.1382

O.Ll35

-O.I027

-• O.I392

o.I621

-o.0287

96

28

3-l3-IO]-

.o162.97

.88l6.sU

.80-7.93

.84-lo.26

.897.02

.37--2.91

l78.l8

2.34

-;.58

-2,17

2,55

-o.46

4.5305

O.25321O.0399

5.I383

O.Il32

-O.I029i

96

23

3

.ol63.l5

.81l6.39

.73-8.l4

178,33

2.31

-1.57

3

'

1

I
I

I
1

l

Åë

cl'

Åë

(O,O,3)

(1,l,O)

(l,l,1)

li O.Ol32 O.0287 1i

I-O.211o -o.13g2 i
1

i/ .o.iL27 o.i62i ':•

  ]-

-l3

-10

.

.

.

05

84

88

  3

-IO

  7

.

.

.

96

26

o8

o

-2

2

'

.

,

l5

l6

55

l.33

-o.88

-3.19

l.48

-o.47

O..IO
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Table 2.9 Legendre

linearly

expansion eoefficients

anisotropic scattering

of

(r

angular

= 2!3)

fiux for

Upperlimit Expansion Case l 2

ofLegendre eoeffieien Fuel Moderator Fue1 Inner Outer
polynomials moderator moderator

4 •53)3 5 ,l176 g6.o l52.38 l60.07
o

-o .2o68 -o ,l352 -8.90 -2.03

4 .5318 5 .I069 g6.o 152.88 lb2,Ol

l

(O,O,l);Åëi•Åë(i,i,O)

o-o .25U5

.2li3

o-o .0925

.l392

24.10

-l3.94

IO.i2

-• IO.32

o.8i

-2.20

-o .IU22 o .i597 -- lo.61 6.52 2.49..-.tt.-

l,t,(o,o,o) u .5317 5 .I083 g6.o l53.18 l62.2U
j

o .2533 o .og46 23.79 )o.85 O.99

o .OUOI -o .093U 3.76 -5.8U -o,8g
2

-o .2112 -o .139U -l3.92 .. )O.39 •- 2.2O

•- o .I427 o .i621 -IO.79 7.IO 2.57

o .0261 -o .o288 1.35 -2.g6 -o.47

4 .5317 5 .io8U g6.o 153.27 L62.31

11Åë(O,O,l)
o .2532 o .09U3 23.73 IO.77 O.97

ll,t,(o,o,2)l,lÅë(o,o,3)I

o

O.0399

.O132

-o

o

.0938

.o268

3.68

l.o4

-6.I2

3.36

-o.8g

-o.ou
3

-o
i

.2112 -o .I394 -l3.93 -10.39 -2.I9
i1-o.

1426 o .I622 -IO.78 7.I5 2.57

io
.0259 -o .0292 1.31 -3.20 -O.U7

-o .Ol37 o .oo68 -O.87 l.47 O'.Il
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"l a ble 2.IO Moderator-to-fuel flux

anisotropie scattering

ratio

(V =]

for

/3)

linearly

Legendre polynomiaLs Case 1 Case 2

          o l ]..l338 i l.72L9
                       i I-         l [ 1.l337 i 1.793b
                                       t          2 i 1.1341 l l.8o32
                       ll----ptL---mL

rv ab le 2.Il Moderator•-to-fuel flux

anisotropic scattering

ratio

(V -

 for

2/3)

linearly

Upper limit of
Legendre poZynomials Case l Case 2

o l.Å}zg4 l.6Lo7

l l .l269 l .
-o559
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          Appendix 2A

Reciprocity Relation and Conservation Law for Eqs. (2.25b) and (2.38)

     Here we verify that the new type of first-flight collision

pyobabilities (2.25b) and (2.38) satisfy the usual reeiprocity relation

and the usual conservation law. First we verify the conservation

law for P?if. Using the relations
         IJ
Et p3drCeOe)"(eOo) ,. Åí p,/.eoo)b(ooe)

"=i e=t+(/---;z.:,p.iooo)'(ooo))pttRR'ii',)) =t) (2A.o

and
 S. P.t,,("t)'(O"O) =i p.Ce.,'i)b(qeo)

 or --- t                    euI

 -t3,RE"')•<eOe)ge'p,{,o,) =O' (2A.2)

we obtain the eonservation relation
t Petd* = i p:"(eeo)'(eOe)

 e=J eat
         t(eee )ÅÄ ("l) Zals 2

+ /R i p.t.c",).(,liili`zz.;,,, Za=, P"e'("`)"(eOe)= i • (2A.3)

                                                 eelvext we will derive the reciprocity relation for Pij:

                                    tp,:. .,. p,:.oeo).(eOo) , P`:8 ,O'• .-`"" pili??i',l'i",il'

                                                                 '
                                              i

.,

 z,t:f•, pi,oeo).(ooo) + (-t) iL,;t• /p
ii'.`i",l,li•t,,;-3).zi,liVvJz Pd:"e"("')
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= zZ t, ttt { piEeeo)')ceOo) +

==

 -iliiliillil•VE• Pa5' .

In a similar manner, we

reciprocity relation as

piC'Oo)'(ti') Zz- tlS, p.S."')"CeOe)

       ("t)b(,'t) Z;s
/- Pz2 Z:s

}

                                      (2A.4)

                teecan verify that P..                    also sa'tisfies the same
                 IJ
Pee .
 ij

              Appendix 2B
Formula for Higher order Anisotropie scattering(17)

     [Vhe equations which determine the neutron fLux in the case of

quadratically anisotropic scattering are

z}ve Pe(oOo) = zN ( Ri(oOo)'(eeo){s,C.b"e) + 2co, Pv<bOe)}'vrv

              L=1
+ P.e("`)"(eOO){ s,(."') + 2s, stS,('b>'v,; + p.e(`eO)"(eO">{ s,(zOo)+z:.I, s!),S-Oe)])rv7,.

-t- p.,}.( iz) '> (eOe) { s,C 2' Z)+ Zl•Is fS"( Z`Z)} VL ) s (2B .1)

Zj• 'Veii YIrev ("' ) == #. ., [ P. ,v( OOO) -' ("') { S L( OOo) + 2l, f6,(eOo) } v,

t- p,[i."t)-)(",) { s,(,',) + ii],t, ",<t`,)}vi, + p.,i.<2eo)->("i){s,,(zeo)+ zt., f6"(zoo))-vi.

-t- Re( i2>' ("`) { s ,( lz) + z!, e ,( iz) } V'L ) ,

                                                               (2B.2)

 E"7e i6i(20o) ., 2iE, [ RGC"eO)"(ZO") { S,(OOO)+z,O, ",(eOO)}Vv

               v=t
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 t p.}(ii,)'C2eo) {s,('`t) t zt., ",("')} v7. + P,a(20o)•(20o) {S

t p.&(a'a)-(zee) { sv(ii) + zt.s 9o(z`z)}'v") ,

 2Ea Ve7 "i(a`z) ., #., ( p""eeb)'(z'z> { s"(eOe) .t. zt, glt"(oOe>)

t p, ,i(. "'>' (2`z> { s ,( "t ) + 2 t. , sE?,, ("s ) } v, -f- p.d.( zOe) '> (2 x) { s i,(

+ Ri2'2)'(2'z) {s,(iz) + z:, ",( h)> vT`) .

                      Ck")'(mA•'n')
  In the calculation of P..                                we can use the
                     IJ

                            CeOo )- C oOo )          (oee) . (oee)   z,v, P,& =Zi-V.7 Rv ,

   ZL 'Vv PLe("`)'(OOO) == --3 Z" v+ Pd<,eOO)"("`) ,

   2[L Vv P;e (`") -' <"' ) == 2Ee V+7 P} ,( "')'("') ,

   7cVv P,i(iOe)'>(oOb) == s zevT+ pi"(eOo))(`Oo) ,

    Zev, P"e(z'z)"(o"e) ---t ti 2le-v+T PtS.oOo)ÅÄ(2`2),

    2,vl, p."zOo)'(t") = -.- g 2+v+ pdi."')'`'(20o) ,

    ZL 'V, P, d..( 200 )" GZ) .. / 2. 2- 've;. pe L( x'z)' (2ee) ,

    z,lz.: P,l(dZ)'(t`') = -- sl?- ,2E"-viT p.v(,'i)')(z'z),

    2L V. P.}(ZOO)'(ZeO) .. 2" vd. PeL"Oo)'(zOO) ,

       '

v(iOo) + El•s

v,

zeo)+ 2 z
vS

fEre( LOo)} V,

  (2B.3)

iv

reciprocity

(io ')V.

(2B.4)

relations

<2B.5)

(2B.6)

(2B.7)

(2B.8)

(2B.9)

(2B.IO)

(2B.Il)

   '
(2B.I2)

(2B.I3)

•- 4U .



E"Vrv Pe"Ga)'(iZ) = z+ ve p,L(iZ)'(22) .

                                                              (2B.14)

The conservation relations are given by

 \.II.., p;:. oeO).-> (Oee) .. 1 , . (2B.ls)

                                                  '
 i PL:•l"`))(eOe) --- o J

 i P,i(aOo))(oOo> = o J

 t P.6(2'z)'(oOo) = o ,

The probabiiities p ,(e"L") that a neutron entering a cell isotropicaiLy

                   sJ
from its surface undergoes its first collision in the j•-th region with

modes (.{trt) are given by

 p,,f. eOo)., fL g.• V. (l- #.., p},(,"e)'(oOe)), (2B.lg)

 p,de("t)= 43`;Eg- Ve #.., Pi(,"')-'("Oe) , (2B.2o)

         ' p, gE zee) -- - Sttgll'il 161 l, lll., Pi [iOO)' (eOO> , (2B .2i-)

 P, i2") == --- 4' lli ";Eil :' 17"7 #. ., Pe (.' 2` 2> -' (OOe) . (2B.22)

Using the above equations aU the probabilities in a cylindrieal cell

are calculated for quadraticaUy anisotropic scattering.
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                       Appendix 2C

Caieulation of the Generalized Collision ProbabiUty; Eq. (2.4U)

                          '     We evaluate the generalized first-flight eollision probabtlity
for a cyiindrical cen using the same technique as Kavenoky's one(i8)

adopted for the calculation of the usua2 first-flight collision proba-
                              (n',m',k')-->(n,m,k)
bility. First we calculate Pij .for i(.. j. [ffhe
region number is enumerated from the inner side of the cylindrieal cell.

The variables h, y and y' are taken as in Fig. 2.4. In the integra-

tion about y' over the i•-th region, we concurrently sum up the values

at two points A and A' located symmetrieally about the h-axis.

Further we express the optical distances along the paths AB and A'B on

                 A t'vthe x-y plane by E.P, andZ.S'z respecttvely. 7]hen we obtain

                           t ---                        !N                     /Å~                  /Å~               /Å~      /// Å~Å~Å~Å~
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p,;.x""v"Åë'""rjct'L' -= s\`(H ;)zf,aYi ki..i'f,lll i,dee { acttp (- ;i,i,`'f"e )

+ (-t)op'•Åío`p (- Jil{ll!;i`e)) P.TL'(ceee) c-eo ,,rt'x' R• ( 2Viti i!3yi.t-l "i` )

• (2 -- S,,,t,) P.""(toa e) ca(s nrLdi PA (-i'l !!iiii;-lii:kV : t-`yd}\Z ) ,

                                                              (2C,0
                                                   '
where yi and yj are given by JYIY=pt' and yiL-sL respectively.

For the case m' = O the integrations about dy' and dy can be aehieved

since the quantities r'2 and r2 are expressed by h2 + yt2 ana h2 + y2

respectively. The integration about the polar angle e is expressed

by the Bickley function. [Ihe rationaJ. expression for the function

                      (l9) ''is presented by Makino .
     in th' e caieuJation of p5.:' 'M''k')->(n'M'k) for i>j, the fouowing

reciprocity relation can be used

 (H.za; )X(z- S..,)Z+vl p, ,(")'"tJÅí)'("; wt') k')

  = (-i )"'t""L'(H :S(z-- 6..,) zv"Vlt P,e(. nt: "; Åí')' Cnt' '"t' A) . (2c.2)

                                                         '
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                            CHAP[I]ER 3

                  EFFECT OF LATE]?ICE CONFIGURATION

g3.l Introduction

     In this chapter the effect of lattice eonfiguration on the mono-

energetic dtsadvantage faetor for elosely packed lattice cell is studied.
                                                  (2)             (l)
T;"e Sn method , the collision probability method , the method of
                   (3)                                                      (4)
Auiouyal and Benoist , the spherica2 harmonics method , and the
                              (5)
diffusion approximation method                                  are general procedures established

for obtaining the flux ratio in different lattice cells. [Phere are

drawbacks of the existing methods; the Sn and the coUision probability

methods usually require a large number of mesh points. On the other

hand, in order to take into account the azimuthal dependence of a flux

in the moderator, many higher harmonics components shouLd be taken in

the spherica2 ha]rmonics.

     r]Though this azimuthai dependence of a flux is not considered in the

A]mouyal-Benoist method, it stÅ}ll gives fairly accurate results, and has

been utilized in the case of criticality calcul.ations for several kind
           (6)
of lattÅ}Åëes . [Phe accuracy of the method comes from its embodying

the quantity representing the blackness of the fuel rod. Inside the

moderator it utilizes the diffusion equation with boundary condition

of no net eurrent at the equivalent outer eeU boundary and of the extrapo-

lation distance for a black rod at the surfaee of the fuel rod. [lhis

condition in the moderator becomes useless for closely packed lattice cells.
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     [Vherefore we use the multiple collision probability in the moderator

and derive an extended Dancoff factor whieh includes the efÅíect of

configuration of the lattice. 7]hus we correlate all the probabilities

in the moderator to the extended Dancoff factor.

     In S3.2 an analytie expression of the disadvantage factor is

introduced in two-region cell consisting of a fuel rod and a surrounding

moderator. Tihe disadvantage factor obtained is similar to that obtained

by the collision probability method, if the blackness of the fuel rod

is expressed in a simplified form. The result of the present method

differs from that of Arnouyal and Benoist in the point that the flux ratio

between the moderator and the fuel for a eell with a thin rnoderator

includes not only a factor inversely proportional to the blackness of

the fuel rod but also an additional factor proportional to the extended

Dancoff faetor. It would appear reasonable to assume that, for a cell

including a thin moderator, the flux ratio depends directly on the

extended Dancoff factor.

     An extension to muLti-region cell problems is done in g3.3.

In this section the neutron currents on both sides of each interface are

connected by the multiple collision probability. In the multiple

collision probability method, it is usually assumed that the neutron

anguJ.ar distribution on each interface is angu2ar independent in each

half range; u>O or y<O. Therefore too many increase of the number

of division makes the assunption worse. In general the multiple

collision probability is evaluated by assuming the fiat flux in each

region. This assumption is not good for a region with thickness' larger

than the neutron mean free path, because the neutron density shows

appreciable change through the region. Therefore the usual rnultiple

eollision probability is unsatisfactory to use under the above assumption.
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[[hen we adopt a variational technique to obtain a better estimation of

the multiple collision probability. rl]he neutron flux within each

annuLar region is expanded into a Legendre series as done in g2,U and

the first two terms are retained in a functional. At the outermost

moderator region we use the extended Dancoff factor instead of the perfect

reflection condition.

     In S3.4 the effect of the anisotropic scattering in a square ceU

with a thin moderator is investigated to estimate the accuracy of the

isotropic return boundary condition. In this section we divide a cell

into many square regions and calculate the flux and current at each

mid-point of the square regions by using the first-flight collision

prob ab iMty .

     In S3.5 flux distributions in both cases of two-- and three-region

polygonai cells are obtained and compared with the resuLts of Arnouyal-

Benoist and Fukai. [Dhe effect of the anisotropic scattering in a

square cell on the flux distribution is also evaluated, and is compared

with the method in the preceding chapter.
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g3.2 Disadvantage Factor in [Dwo•-Region poiygonal cens(7)

     In this section an analytie expression for the disadvantage factor

in two-region celL system that includes the effeet of lattice configu-

ration is derived by improving the Arnouyal-Benoist method.

     Tio begin with, tne fundamentals of the Arnouya:--Benoist method

are described here briefly. We utilize notations•originally used:

 Zua is a cross section of type n which is one of t, s, c denoting

total, seattering and capture respeetively in the i-th region (O = fuel

rod, 1 = moderator); Vi and Si are the volume and outer surface area

of the i-th region per unit height along the axiaZ direetion. We

assume that the neutron souree is uniforndy distributed only in the

moderator and scattering is isotropic in the iaboratory system.

     In terms of the Slux distribution Y("..9,) ereated at a point ts in

the fueZ by a unit source at a point "rl in the moderator, the thermal

utilization factor ean be written

f- l,O` fg,7eJ.d,7' Y(9e'F')• (3•i)
using the reciproeity reiation(8), this reduees to

s- Vv',Zzg,`. <P,y• <,.,)
Here !S>e is the probability that a neutron born uniforrnly in the fuel

rod eseapes Åírom the rod directiy or after some col"sions in the rod,

and S' is the probability that a neutron whieh has eseaped from the

fueX rod isotropically is captured in the rnoderator after suffering a

number of scatterings.

     If Ye represents Y in the case where the fuei rod is repZaeed

byablack body, Y is related to Ye by
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Si' =: Sp. + (l--- sr. )( l- ,e,) s'

                           ' (3.3)
                                                              'I'] erefore we have

.!tp -, .SP. ,
        /'- (l- fPo )(/" ,Be) (3•U)
where Fo is the blackness of the fuel rod, and is related to '?. by

 5e ". F3o == Ve Zec i5)o .
                                                             (3.5)

'w' e assume that IP, is the probability for a neutron born uniformLy

in the moderator to be captured in the fuel rods in the case where

the fuel is black. [[hen !P, is related to Y, by

if?o= `-'  g',Z'C "[Pi ' (3.6)
From Eqs, (3.2) through (3.6) we obtain

 t vr, z,. t- /R, 4v7, 2,,Y"i= v. z,, e. + !P, ' 5, '
                                                             (3.7)

From the above equation and the definition

            fo Vlo Zee
f='
        Po Vo ioc+ ", V, Zie (3•8)
( "v is the average flux in the i--th region), the flux ratio is given

by

ll2:/; - 6, -- tiLl!lo,Zeo + ",i,", Z,e,t . '-,p#il, .

                                                              (3.9)

d•quation (3.9) is the resu2t of the Amouyal--Benoist method. In their

paper !IP, is ea].cul.ated by taking into aceount the first and second

collisions exactly and by approximating the subsequent coUisions by

                                 -53-



uniform source distributions, and /P, is calculated by making useQf

the diffusion equation in the moderator.

     In the following, we calculate `5), or IP by the muJtiple coi-

lision probability method. It is seen from Eq. (3.2) that, in order

to obtain the flux ratio, two probabUities !i?, and Y are neeessary.

     First we ealeulate SP by considering a homogeneous linit of the

lattiee cell. Equation (3.U) may be rewritten in the forrn:

                (/- Y,)P,

           1 "- (1"' Seo)C1'Be)
                                                               (3.iO)

When the fuel is replaced by the moderator, the above equation transforms

to

                 (l- 9o ) /e?o`
/-'  Y'  == / -- (1-y.)(/-p,"> '

                                                               (3,ll>

where X indicates that the mediun of the fuel rod is replaeed by the

moderator. From Eqs. C3.IO) and (3.11), we obtain

                  1 -- Y'
i-"  S'  == -fg/"+(/... y)")(/- ie') ' (3.i2)

Sinee this reZation shows that the heterogeneous vaiue S' can be

represented by the homogeneous va]ue$ S'* and F." , it is sufficient

that, from now on, we treat these probabilities in a homogeneous system.

We introduce an extended Daneoff factor Cee whieh is the sum of the

probabilities for a neutron escaping from the surface of a fuel rod with

isotropic distribution to make its first coUision in any other fuel

rod which has the saJne eross seetion as the moderator. For a neighboring
fuel rod, cX is given by(9),(IO)
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c` ==

             zqZit ceee
 '(/-e-'AthY),
                                                                (3,13)

where a is the fuel radius and d is the distanee between the two fuel

rods eonsidered. If we assume that a uniform neutron distribution

throughout the ceU is ereated by the first collision due to asource
                                                                     '
at the surfaee, we have

 yr =: l`i, (lv C*) + v,! v, 2z`i

      -v7,Vt' •v, + ll'i(lt,Iilvl, -C*). (3.14)

     More rigorousiy, we can proceed as follows. If we represent

the average fluxes in the fuel and the moderator by i," and -i*

respectively, and if there is a unit isotropic souree direeted outward

at the surfaee of the fuel rod, ' i,K and ",* satisfy the foUowing

equations of neutron conservation:

                    '
v,z,t "oX •-- c*+ Vo 2,s "e' Po: + 'VT' Z`s 7El'` RX ' (3.lsa)

Vt Z,t 9,' = / -' C" t VeZts fe" Pbf + Ve 2is ",` Rf ,
                                                                C3.I5b)

where Plj is the first-f2ight collision probabi2ity for a neutron

born in the i-th region to undergo its first collisioninthe j•-th region

in the case of homogeneous limit. L'liminating fi,pt from the above

two equations, we have
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          /- c" + -x,g"iilili;;isiif,-tS, p,t C'Pet

V'"i"  ""  z,,-2,,Rf- -iSitii!-kll;Sll's-P.i:,,Pif,., '

                                                               (3.i6)

rlihen, making use of the cQnservation laws:

 Pie`"Ptr =ls (3.i7b)
                                                             '                                                                     'and the reciprocity reiation;

 Vle Per=: V; Pt:, (3•id)
the absorption ratio in the moderator is given by

                     l v- c"t + -Et"IIg- jll-illT;lii:-t- `its p,, C` Pof

 Y* -- V, ",`2,c =
                        l + vT,iz'S,,Vl."..z,sp,,,) Pe'i

                        ci Ztc
        VT, /' Zts Pe`,

      VotVt "v, Zic '                 t - v.tV, 'Z{s Po",
                                                               (3.19)

In the case of a small absorption cross seetion in the moderator

(Z`c1Z`s <K 1 ), we have

Ypt=: v,V.' •vT, {i+( 7,'V+i' v, -C') Eiii;of }• (3.2o)

Equation (3.20) reduces to Eq• (3•IU) if we assume P& = Vl/(VotVL)•

lgarnely Eq. (3.20) embodies a more heterogeneous effect than Eq. (3.l4).

     Using Eqs. (3.12) and (3.L9) and a relation obtained from Eqs.

(3.2) and (3.8):
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 s6, l Vlo Zoc
 9o -Z5.73;-y -' v`z,, '
                                                               (3.21)

we ean obtain the flux ratio

:ft,-=: 7ig, (i+Å}'iJg:g' f,:)-- liz.e,t

                                                  '

='
7ils, (t+ CiZ.`.c,',IIiLi"!P,Ol.,y ' B'e; ) pt '.V,,;o, IE: •

                                                               (3.22)

I]he blackness fioK of the fuel rod with the saine cross seetion as in the

moderator is expressed in the form (see Appendix 3 A):

  * t 2tL :! ic (l '-" Pc`)

    =1+Y*' /-" l:.s Pc` ' (3•23)
       ee is the quantity that represents the deviation of the value of

    blackness obtained by the flat flux approximation from the exaÅët

       and P: is the probability that a neutron born uniformi.y in the

     rod makes its first collision within the same rod when the medium

       fuel rod is replaced by the moderator. Using Eqs. (3.5) and

        Eq. (3.22) reduees to
                                       '
          t vozoc <t- ll;+ Vv';eZi,`tCp',",)(1+ z`iiCtR-""p.*))(t'\`)

Po

where Y

the

value,

fuel

of the

(3.23),

 "I

 "o

     -

smaJ.I ,

    /5?o + -Vi-Xt;,e'

    'VTe Zoc
            .    vr, z,,

When the absorption

  the above eguation

                       Z`c Pe:             z,, c*
       / '-' S;;,TSiS,f t Ere p.f

                                      (3.2L)

cross section in the moderator is negligibly

 reduces to
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g,t - 7il, + 'v,:,o, z,,o,i ( vellii,vi• . IIf

 -t+ ft.eB., .---• 71ioi +y`)• (3.2s)

                     xHere the probability Pol can be assumed to be a produet of two proba-

                                                'bilities; one is a probability that a neutron born uniforrnLy in the

fuel rod with the same cross section as the moderator escapes from

the rod, and the other is that a neutron which has eseaped from the

rod makes its first eollision in the moderator, Namely it can be

written in the form

Pof =: (l-- Pe")(/- C")• (3.26)
Then Eq. (3.25) is written in the form

4: =: 7jls, ' V'sL',IO,i{ g,:,Vi, 'Y"-'}•

                                                            (3.27)
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                                                         (11)
g3.3 Application to )vlulti-Region Polygonal CeU System

     7]he method in the preceding section is appUed to polygonal ceU

system in which each cell is divided into several eoncentric annular

regions except an outermost moderator region. Eaeh annular regÅ}on

is denoted by an integer n (l< n`- lk-) numbered from the center outwardly

and the outermost moderator by M (cf. Fig. 3.l). Let us consider

the n-tn region and express the incomming and outgoing neutron total

                                  -+currents on the outer boundary by Jn and Jn respectively and those on

                       -+the inner boundary by Jn-1 and Jn..l. I'he inner and outer radii of

the regi.on are denoted by rn-l and rn respectively, and the surface

area of the outer boundary is denoted by o . The total neutron souree
                                         n
                 '
                               '
                                                   .tt .              '

j
t

M
N

n
JK.-,

JF

Jn"-i

JS

Fig. 3.l Notations in a square cell
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<

 (source densityx volume) in the n-th region is e)rpressed by Sn.

                                                  (l2)
 [Vhen there are relations among the neutron currents:

  r =: ;.t, !5);O + JTK <PXO + 6. <Ptlie, (3,2s.)

                                           .  J.:, ., i iPÅíL t J'1.ri i5)X + S. '"PX", (3,2sb)

 where all the probabilities 0n's defined be2ow are to be calcuiated

 in the case where all the inner regions than the n-th region are black,

 and

 t/i>aO = the probabiZity that a neutron entering the n-th region

        isotropically from the inner boundary escapes from the region

        through the outer boundary directly or after suffering some

        collisions in it,

 1PXO = the probability that a neutron entering the n-th region

        isotropically from the outer boundary escapes from the region

        through the outer boundary again direetly or after some

        collisions in it,

  15)XO= the probability that a neutron born uniformLy in the n-th region

        escapes from the region through the outer boundary.

 Another tbree probabUities will eastly be eonjectured from the suffixes.

 rVhoug"n the probabilities i5),,'s include the effect of mvd.tiple collisions

 we define sirnilar probabilities P's with the saine suffixes as /P.'s,

 by taking account of the first-flight effect only.

      Equation (3.28> may be written in the matrix form:

J.+x `PX'O- ll]/fl'iiPa" llll/8!' r.t, 'p"ony 2i:i?X` n

Jpt-7=  ea' iv,L 6i,, if.:,' ,o.p.a"..L b"•

                                                            (3.29)

'
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Thus, (g".-')may be connected with (lli ) by sueeessive appiication

of the above equation. Then if there are two boundary conditions

on the inner- and outermost boundaries all the currents are evaluated.

The average neutron flux Åë in the n-th region is determined from the
                          n
conservation law:

'VrTZ•rLc `i)•,, == Set +( lr•T; + J"1.t,- r,it -' rnt:t ) , (3.3o)

Where Vn and Zne are the volume and the capture cross section of the

n-th region.

     In what follows, the six probabilities !?ke, /IP,,,OO, IJ).LVO,

 /IP"i, xiPa'L and t!5)"i are calculated to determine the neutron

     First, we calculate the probability /ili:O. Let the flux be fS(9)

which is produced at position 'r in the n-th region due to an isotropically

injected neutron source from the outer boundary. Here we assume that

aU regions except the n-th region are black, namely the mean free path

is zero elsewhere. The uneollided flux due to the source is denoted

by no('r), then

                                                               'n,('r)= 6.trc S,d.SCKR',zft') e':>S, (3.3o

where fi is the inward normal vector on the outer boundary of the n-th

        .region, 9ee the unit directional vector along a neutron flight, and

       t.x.Rs and ZRs the real and optical distances from the boundary to the

      >point r respectively. The integral about u means the surface integ-

ration on the outer boundary of the n-th region. The neutron flux

satisfies the integral Boltzrnann equation

                  .x.                 - ZRyt(y') ="f.d.'r' -e.Rz ZntsF(9') + Z"(9)• (3,32)

                                             (13)     We eonsider the functional T of the form
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                                    ,-..T = 2k.9 "(r')7To(;)"f.a.9 "(9>LJ.la:v' 4SI-RZRz zns"('r') -'.G:r ti(9).

                                                             (3.33)

 'rhis functional is stationary with respect to the variation of f6(r'),

     Uw'e expand the flux in the n-th annuiar region into a Legendre

    ' senes:

          K o({l)=: lii.lll, gsE p,s.<2r`'i,,.,r7-L` -'y:r.4'` ) , (3.34)

 - .-- t- - wnere A is the upper lzmit of k after whieh terms are truncated.

 By substituting Eq. (3.34) into 'ts'q. (3.33) and using the stationary

 condition

 -:Et[l, == o , (k=oJ i, •••• K) (3.3s)

we have
                         t'N..                        -ZR Åëft [J.d.9 PE(")k.7' 4enRz Zns Pk<v")- .ftV",, )

                                .zk
t i. 9" [Jl-;lfi PtC"`)fgE,' `,Il,2 z., p,/(r"))

+Jg.9 "e(r) Pft(r") -- O, (3.,6)

where we used

           2r`- r.Z -- rS-,
  r* =' y.z-r.2., '

and the orthogonal reZation of the Legendre polynomials:

                             VT.                                   --••• Åí=a'
Jla9 Pk(r;) p.(r,) = 2k+t
 7n
                            o •••••• aik'                                                    • C3.37)

If we put K=l in Eq. (3.36), it foUows that
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fo(C" PnVV-t) + ", Cn QV.V+ loe =" O,

Åët (C" R"."' S) t "o Cpt (BW+ 777ei = O ,

where cn is the scattering ratio in the n-th region and

rroo : e. ts.9 rro (9), ,

 n,, == vi. f.d;r 7r,(y)R(r'),

                        t'v  P""- .Z#J.dSf.d.?- 4;',Z; ,

                         rN. (BLW= i."Jg.9f.d.9' 4eiEK2 p, (r"),

                      .- 2K
  RV,.V= lli'Jlerf.d.9' gercRz P•(r')P•(y*).

Using the solution of Eq. (3.38) the functional T may be

the form

 T = V. { ",Z(Cr P."'-I)+2 io ii Cnt (Gi:"t 2 fo neo

          t Åë,2(c.RscV-- -;-) + z f, 7To,}

      (/- Cn PrV"b)7Tet + 2 C. (S:"7r,, 'Tr,, + (g - Ce RV.')

   Vn
           (/•--- c. p.vv)( g- - c.Rv.V) - ca,,, ((Gt' ;v )2

The stationary value of [P is given by
                                  AvT Js.99(r) iK-i.i-Jl.tty(a•tv) e,-gZR`

=c.4z.,Jstt "(T)Z"sf.Yrc e-ÅíK5= G.Yz., 1?:'O,
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     (3.38a)

     (3.38b)

     (3.39)

     (3.UO)

     (3.41)

     (3.42)

     (3.43)

redueed to

rro:

.

C3.4U)

(3.U5)



'IPst -- Åë. ' (i- c.px")(t-c.RV.V)-c:((Gt".")Z (l.,4s)

  "i"he probability i?Xe is obtaÅ}ned by adding to !?;"Othe probability for

  a neutron entering the n-th region from the outer boundary to escape

  from the region directly through the outer boundary:

  •ts},:o ., ,••?X'V"Q + p.:o .
                                                              (3.U9)

  This expression reduces to the well--known formula by the flat flux

  approximation if the quantity Q= O in Eq. (3.U8). [Dhe quantity Q

  expresses the deviation of the flux from the flat one.

       Using the same teehnique as in obtaining dtP*"O, we get

    "'V il " E., v. ( P."` )Z (g - c. RV.")+2 P;• (Gxl:i"' c. GV." + ( l- c. P.")(G'";' )2

where the integration about GL is performed over the domain Ao

corresponding to the whole angle UT minus the soMd angle $ubtended

by the outer surface of the (n-1)-th region at eaeh point r, The

              ovoprobability !5)m is defined as that for a neutron entering the n-th

region isotropically from its outer surfaee to eseape from the region

through the outer boundary after suffering some collisions in it,

ln the same manner as in deriving Eq. (3.U5), we obtain

rree= 'tl'=er. fs.e f..t2 e"Z"K` = g. PnVO, ,,.,,,

n,, = -Åík• e. J.d:r f..2i R(r') dÅíRS= & OVnyte • (,.,,)

By equating Eq. (3,U4) to Eq. (3.45) and making use of Eqs. (3.U6) and

(3.U7) we get the equation

ovo f2., v. (P.Åëe )Z(g •- c.RX')+2P.'e G".O c. (GLI:l"+ (i- c. P."V)(Gr.O )Z

((- C. P.re)(g- c.RV,,')- ck (Q'.V )Z
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Since there is no neutron which leaks direetly through the inner boun-

dary due to a source emitted from the inner boundary,

i[P'trl' I" =: 'IP.Il'Vb"

                 ' (3,51)
     ln the foUowing, we ealculate the probabilities (biacknesses)

  Bo and Rv respeetively that a neutron entering the n.th region

                                                i
from the outer or inner boundary is absorbed in the region when all the

internal media are biack. Since there are conservation laws

/iF',,e`+ /S),jle + l(9, = l, (3. s2a)

 ,ti)RO + r'P"tt /9L=l, (3.s2b)
 t" )ÅíL and /5PkO are easily evaluated if Po and A are known.

Substitution of Eq. (3.34) (K = l) into Eq. (3.32) and integration

over the volume of the n-th region after multiplying by Pk(ree) (k = O, 1)

lead to the equations

Po En" Er 7r,, t P,Z., P.V"+ ", z., Qa."V,                                                             (3.53)

f',Zoc = z. 771,, -t- ", Z., <GNi :" + P,2ptsRV.", (3.s4)

The solution of these equations is

      7Tee (g d Cn RVpt" ) + Cct GVtTtV 711ot
fO `= (i- c. p.VV)( S - c. R:")- c.Z ((BL:" )2 "

                                                             (3.55)

Then the blackness t8o is calculated from the definition

 fie ==ff.9 ZMc"(r) = 7ptZmc "e

              7r,. (g-c.RIV) + c. QV." 7T.,
  == V" EMC (l. ,. p.vv)( .g. . c.R:v) . c; ( (El}' IV )2 '

                                                             (3.56)
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 In terms of

 V. E. P.Vo

 'VT. z. (6t' le

 Eg. (3.56)

fie = (/'-' Cn)

 In a similar

Bv = (/- cn)

      The

  Sn  TBo =

  -I2'i" /ts?, .

Thus all the

have been

      In the

region is

 configuration

For the

probability

the N-th '
 in another

media.

 Yo = the

 Eqs. (3.U6) and

= ?P.ov,

    C.          ov= 7 G.,

is transformed to

  P.e"<g -- c.RXV

(3.47)

)'

and

c. e e fv'

n

the reciprocity

Gv.v
'

relations

(/ - Cn PnV")(S -' Cas RY.V)- Ck ((G)Xli")X

maxmer, B. may be calculated as follows:
         i

  PkV( -3; - c. R;V) + c. (SK' 'Ttr (G),zaM

.

(3

(3

.

.

57)

58)

(3.59)

     '                                                 •     (/' c. P.W)(t- CntR"n'V)- CavZ ((GL:" )2 (3.6o)

 probabilities /S)"O and tiPXi are evaluated from the relations

   Vn Znc !?nVO , (3.61)
    VN 2nc IP.Ve.
                                                        (3.62)

     probabilities necessary to determine the neutron currents

  caleulated.

    following, the boundary condition in the outermost moderator

  considered. To take into account the effect of the lattiee

      we adopt the concept of the extended Dancoff faetor.

present case the extended Dancoff factor Cee is defined as the

    that a neutron emitted outwardiy from the outer boundary of

 region undergoes its first collision at any of the regions lnvN

   cells composed of the moderator material replaced with real

  Notations adopted in the preceding seetion are redefined by

   probability that a neutron emitted outwards from the
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        boundar'y uN is captured in the moderator in the case where the

        media of lnvN regions become black,

Y'* =the similar probability to Y. in the meaning that the medÅ}a

        in the regions ltvN are replaced by the moderator,

/9gy = the blackness of the regions l'"N for a neutron inwardly

        entering the regions from the boundary oN, under the assumption

        of the isotropic distribution, to be capturedin the regions

        1'"-N when they have the same medium as the moderator.

Using these quantities we calculate the probabilities /5)ALand /PXi,

                               + .-which are necessary to relate JN and JN:

Vi - r.' ii)X + s, p."'L .
                                                               (3.63)

From th'e definition of Yo ,

Making use of Eq. (3.ll) in the ease where le: is very smaU, the '

probabiiity /PAtreduces to

!PkV=/- !-Y" y. fio`. (3.6s)
Here, for the calculation of te8 , it will be sufficient to use the

flat fLux approximation:

  * 2 YN ZMc (l- Pe')
AO == !.- IM.s p." ' (3•66)
where P: is the probability for a neutron born uniformly in the regions

l'N.N having the same property as the moderator to undergo its first

collision in the regions l.vN. [rhe quantity Y* has already been

given in Eq. (3.20). Then Eq. (3.65) can be evaluated.

     Next we ealculate liPXi. The probability ilPnV-s related to
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    Ye by

   !', l``= ,, vli "z .. EPO ' (3•67)

   Using Eqs. (3.ll) and (3.66) the above eguation is reduced to the form

 'P,r` = l '- 1-PCS.,' ll`,`- // po" + 'VTOv';,'VT' (v,M+Ov, "c') 2,,oZ-'ilii.x)(t.c,) '

                                                               (3.68)

   where subscript O corresponds to all Å}nner regions than M and subscript

   i to the region M. Thus the boundary eondition of the outermost

   moderator region, Ld'q. (3.63), is established.

       The neutron flux in the moderator is detemined by

   2..v. ",= S. /PX"+ J," /PkV, (3.6g)

   whereupon using the relations

  o.w= /-Y;. 2/r"-Z-"C2i./iRRi.`) ' (3 7o)

   and

!s }.V"'= t-P." B"• Zz"." + '\:' B,'- VOi,V' (Lii,Il ii-i , - C') E., ({-Z- R"i' )(s-- c') '

                                                               (3.71)

   we nave
  S6M : vS'M. { 1-P"R`.`'":Er. + -Vv;';,' illi'(ll!efPCR`.), - Ve.v-;t','VT`

 '(-vi!tiliiffO"v7, -C"> z., (i-ts.s)(i"c:,t)} + l'iH" t-S-';;" ' li lii" (ll:-f-s /.C*,) •

                                                               (3.72)

       One more boundary condition is given in the innermost region by

  JT,'= ir,"'/P,OO+S, t'P,'"'O (3.73)
                             .
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Here t' f?,OOcorresponds to 1 minus the blackness for a neutron impinging

upon the innermost regÅ}on inwardly to be captured; the blackness for

the central fuel rod being evaluated in Appendix 3A. Thus aU the

muHltiple co]lision probabilities and the boundary conditions have been

obtained aJnd the neutron currents and fluxes can be evaluated.
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g3.4 Effect of Anisotropic scattering in a square Lattice(i4)

     Xn this seetion we will study the effect of anisotropic scattering

on the flux ratio in a square eell containing a thin moderator.

In the preeeding chapter we introduced the anisotropic collision proba-

bility under the isotropic reflection condition on the lattiee ce21

boundary. In the case of large fuel rod, however, there is no

assurance of the validLty of isotropie reMeetion condition on the cell

surface. Then we divide a eeU into meshes as in the THERr(OS code

and investigate the effect of anisotropic scattering.

     beT,e make use of the Boltzmann integral equation (2.IU), Since,

in this section, we take into account up to the anisotropic scattering

proportional to p (cosine of the scattering angle) and the current

along the z-•axis is zero for infinitely 2ong fuel rods, the scattering

kernel, flux and source are expanded as follows:

( 9; a•. 3. ) == 417i { z.e (?J) +3 Zg (9'> ( nx S2,L• + n7 A?, + nt •< tE' )}, (3. 74)

(t ft) .. -i . { Åë'< 'r)+ 3( ".' (r) Ax + 9i (9) A? )} ,

                                                               (3.75)

(9, ft) - B' ,,. se( g) ,
                                                               (3.76)

Three equations for flux components f60, "l and ti are obtained

by the integration overda, and stx or Q7 muLtiplied integrations

after the substitution of Eqs. (3.7U)'v (3.76) into Eq. (2.l4):

                   l,hY                  -:K"O(9)-fg"' ..eR. (so(;•)+ 2g dr-) 9o(7-) •

      + 3 zg (•r'){ "2(?')A'. + "S (9') A'? )) ,

                                                               (3.77)
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                   AÅë; ('r) =Jd9' ,.e-RZ.R n: ( so(9') + z;('r')"od•)

         t 3 zg (1•){ 9.'(t')n! + "i (F-) d, }] ,

                                                                 (3.78)

                     rs                   -- zR 9,' (9) == Jd 7i le. R. d<>Ls ( so( F•) + 2g ( 9-) -,o(h

         + 3 zg (9•) { ".' ( 9•) n: + . foi ('r ') n', )] .

                                                                 (3,79)

  L"e can perform the integration over dz' in the volume integral dr':

jlSe(x,?) = 4i,,. JfaLzidM' ({so(jLC ?')+ z,e (xt ei) Ye(xc?')} :-KL, Co

+ 3 ZS ( tC ?') {( t" )c) "! cxi 7') + (2' 7') "?' Cx'• 7')} .2snz KL. (r )) ,

                                                                 (3.8o)

Sb! (x,M) = "i lt ffdu,d7i (x--- )c.) ({ so(xt ?/) + E,o (x; e') gS'(xt tr)} f. KL.c:)

 + 3 zg (zc v){ct-x') C (x: ?') + (e-a') PJ (z; x')} s23 Ke3 cr)) ,

                                                                 (3.81)

9e (x.M) == -i. ffdx'dx' (7-M') [{ se(x', ?i) + z.O. cxt e') te(x', a')] i;. Kc.(T)

  t 3 2g (x•. ?,){(x-x.) Pt (x'. 7')+ (?- ?') fd (x'. e')} -I ,;- Kc, (= )) ,

                                                                 (3.82)

                                              (15) where Kin is the Bickley function of order n , .S' the length

 between 'r and'P' projected onto the x-y plane, and T the optical

  distance along the projected length.

       In the case of dividing the surface integral over dx'dy' into

 meshes, we concisely express the mesh having the center point x = xi,

 y= yj by ij; Aid is the area of the mesh ij. [[hereupon we have
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Afig Zke 7E)R; = Z Atd [( S:e + Zs2 ,, 9!'iO, ) Pe;' ll> Åís

         e,i
+ 3Eg.,e ( "i.,, R"O,, + f,lit PL:•gÅíi ))l ,

Afii Za2 V[)xlA2 = ;,," `SLe ((SIe 't ZsO.il S6;ee• )Ri:Aa

+3 Zslii ( "l.`e Pe;;fi2 + foili} PL;3 Åí2 )) ,

ASaZa2 f?l" == Z,.a A"e((S2di' + Esrae AO,• )ReZ.OaÅí

 t 3 2s!ie ( "x'.te R}';ag + P?l"e ReZ':ti )) ,

where Pij .-> kl's are defined by

R;•2.kL = 2A2AJ,iaig,, KL,('cceJts) ,

P,S•O.ag = AiarcZfge,i;i-X") li<tz(rea.{a),

P,tZ•L;{, = " IIa,,Z. IIÅít,,(.gii'}") KLz('uDaJap),

                 z iJ Ait ZÅíg ()Ca-jC")P`i-' S2 == 2. ,t J.?.d," Ki3 <i Le,kÅí),

P"ij;RA = Aa2a7[Z- JÅí,L.,,e(iii}i)i KL3('cei,Kg),
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(3.83)

(3.8U)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)



Pci: as == 4" Zt 2rc( XsÅí/, ' e. li), (7g- Vi) K ts (r ie , {g) ,

R,2'-;{s == Pci:kL •

Pij ) kl's have the following properties

  z p,lx,, - i ,
  S.2

  ili,IA R;:Aa = ll.I, Pbe2':aÅí = o)

  ill,l, Pc e' -l, ieLn = iii.Ii, P" :' l; A2 = 5 '

  Z PLPÅí, -- Z R:•;,, - o .
                    ka   fi,s

rl]hese relations have been used to obtain Pij - kl'S fOr i

Furthermore. since there are syrnmetries for 9S;z , 12.A2

 shown in Table 3.l, the number of variables in a ceU can

          Tab le 3.l Symmetries ab out Åëii , fÅí. " and 6v', tR

=k
and

be

(3.91)

(3.92)

(3.93)

(3,9L)

(3•95)

   (3.96)

 and j =2,

 foe',al as

redueed.

Quadrant

1 2 3 4

Åëte2
+ + + +

g2.,, + - - +

Åë7'," + + - .

Ail

the

the values of fa02 , "2.aa and "iaA are taken

first quadrant.

positive in
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93.5 tGuraerical Resu]ts and Conclusions

     In Table 3.2 the blackness of a cylindricai rod in the eases of

scattering ratio Zes ! 2.= O.2, O.5 and O.8 is presented a$ a function

of x (= aZ, , a is the fueZ radius, 2e tlie total neutron eross seetion).

[rhe value Yce, the difference between the exact vaLue of the blac}cness

and that of the flat flux approximation, increase$ wit] x especially

in the case of large scattering ratio. 'when the scattering ratio

is zero, the values evaluated from Eq. (3A.9) of the present method and

from Eq.(3A.IO) of the flat flux approximation are identical since

                                                  '

      Table3.2 Values of blackness for different x (radiusXtota! cross section)

-l So,12i"o,=O.2 So,1-Y'et=O.5 2i'o,/Sei=O•8

t-r''''L'M)----------- .-H•.- ..r.."-,.t...r '[xi Black- lBlack- Y' l B!ack-
nesst

B.l easCslfti Y. Black-
nesst

Black-:
nessttl

}r1

+..tnesstt)
--L--

O.1

O.2

O.3

O,4

O.1449

O.2647

O.3644

O.4481

llO.1449iO.2647O,3645O.4483

O.09389

O.1769

".25g3

O,3153

O.09390

O.1769

O.25g4

O.3!57

O,6068Å~10-`

o.22e4Å~lo-s

O.5449x1O-3

O.1053Å~10-3

O.03899

O.07602

O.U12
O.1444

O.038se

O.07603

O.11!2

O.1446

O.4048Å~10-4

O.1532Å~lo-3

O.3952Å~10-3

O.7970Å~lo-•i

O.5 O.5182 O.5187 O.9693Å~10--S O.3727 O.3734 O.1821Å~10-2 O.1759 O.1761 O.1437xio--2

O,6 O.5758 O.5767 O.1587Å~10-t O.4226 e.4239 O.3087Å~10-2 O.2S53 e.2C58 e.2547Å~IO-2

O,7 O.6249 O.6264 O.2267Å~lo-2 O.4669 O.4690 O.4552Å~10-2 O.2330 O.2339 O.3917Å~lo-2

O.8 O.6665 O.6685 O.3035Å~1O-2 e,5058 O.5090 O.6277XIO--t O.2590 O.2604 O.5625Å~1O-:'

O,9 O.7018 O.7045 O.3870Å~lo-2 O.5402 O.5446 O.8228Å~10-a O.2833 O.2855 O.7667xlo-L•

!.o

11l
O.7319

O.7576

lO.7353
lo.761g

O,4753Å~10-2

O.5667Å~lo-2

O.5705

O.5973

O.5764

O.6048

O.1037Å~1O-i

O.1266Å~10-i

O.3061

O.3273

O.3091

O.3315

O.1003Å~lo-i

O.1270Å~1o-i

O.7798
llO.7849 O.6598Å~10-: O.621e O.6303 O.1508Å~le-i O.3471 O.3525 O.1565Å~1O-t

1,3 e.7989 O.8249 O.7534Å~10-2 e.642a O.6532 O.1758Å~10--i 'O.3656 O.3725 O.1887Å~lo-i

1.4 O.8154 iO.8223 O.8465Å~lo-2 O.6606 O.6739 O.2015Å~10-t O.3828 O,3913- O.2232Å~lo-i

1.5 e.8298
lO.8376 O.9385Å~10-e O.6772 O.6926 O.2275Å~1O--i O.3988 O.4oo2 O.2599xlo-i

1,6 iO.8424 O.8511 O.1029Å~10-i e.6920 O.7095 O.2537Å~10-i O.4!37 O.4261 e.2985Å~lO-i

1.7
lO.8534 O.8629 O.1117Å~10-i O.7052 O.7249 O.2800Å~10-•t O.4276 e.4421 O,3389Å~lo-i

1.8 O.8630 O.8734 O,1202Å~10-i O.7170 O.7389 O.3061Å~10--t O.4406 O.4573 O.3807Å~1o-i

1.9 O.8827 O.1285Å~10-i O.7276 O.7518 O.3320Å~10', O.4526 O.4718 O.42tlO;<1o-t

 2.0 O.8790
 2,2 O.8916
 2,4 O.9016
 2,6 o.gog61

 2.s O.91621
 3,o , O.92I6 i

 3,2 l O,9260

 3.4 O, 9. 297

         l 3.6 O,9328
 3.8 O.9355
 4.0 O.9378
    b

O.8910 O.1365Å~10-i O.7371
O.9051 O.1516Å~10-i O.7534
O.9166 O,1655Å~10-i O.7668
e.9259 O.1783Å~10"-i O.7778
O.9336 O.1900Å~10--i O.7869
O.9401 O.2008Å~10-i O.7945
b.9455 e.211gXlg-t g.gG"6
O.9501 O.2199Å~10-i O.8061
O.9541 O.2280Å~10-i O.8108
O.9575 l O.235• 5 Å~ 10-i O.8149

O.9605i O.2423Å~10-i O.8184

O.7635

O.7842

O. 8017

O.8168

O. 8299

O.8412

o. grJn

o. eeoo

O.8678

O.87t19

O.8812

e.3576Å~10-i

O.4076Å~10-`

O.4557XIO-i

e.so2oxlo-i

e.5462Å~10-i

O.5886Å~10-t

6.6316Å~lg-s

O.6685Å~10-i

O.7033Å~10-i

O.7363Å~10-,

O.7674Å~1O--i

O.4638 O.4855
O.4839 O.5110
O.5012 O.5341
O.5162 O.5552
O.5292 O.5745
O.5402 O.5922
C.5492 O.6084
O.5576 O.6235
O.5648 O.6374
O.5710 O.6503
O.5764 O.6623

'

O,4684Å~10-i

O.5604Å~lo-i

O.6559xlo-i
O.75i16Å~lo-s

O.8562Å~1O-i

O. 9CU9 .Å~ 1o-i

o.1e?g),,<lod,

O.1181Å~10e

O.1284Å~1OO

O.1388Å~100

O.1L191Å~1oa

t based on the present method
tt based on the flat flux approximation
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a neutron that suffers one coLlision is captured and does not contribute

to the neutron distribution. The comparison of the values frorn Eq,

(3A.9) with those from curves obtained in Ref. (l3) attests to the

accuracy of Eq. (3A.9)

     The forrn of Eq. (3.27) is very simUar to that of Eq. (3B.7)

obtained from the coUision probabiltty method. The main differenee

is that the effect of the deviation from the eonstant flux is taken

into account in Eq. (3.27). 71hus we can apply Eq. (3.27) to closely

paeked lattices where aeeuracy of the Itmouyal-Benoist method can be

considered to be poor. The form of Eq. (3.27) also verifies Fukai's

      (2)
result          by the collision probability method that the absorption

ratio of the moderator has little effeet on the flux ratio in a lattice

if the absorption is small.

     [ehe extended Daneoff factor depends directly on the flux ratio,

which was not eontained in the Ainouyal-Benoist theory. The extended

Dancoff faetor Cce, necessary to evaluate the flutx ratio, is easUy

       Table 3.3 Convergency of the extended Dancoff faetor in
                    square lattices

                    Fuel radius: 1.0 cm, Pitch: 2.50663 cm

dee Total cross section of themoderator
o •5em'i 1. Ocnft

1 o .o4g8U o. OU50
E o .O1778 o. oo88o

2 o .O0523 o. OOI18
vf' 5- o .O0332 o. OO055

2/:; o .OOIIU o. OOO09
3 o .oo085 o. OOO05

J:r6 o .ooo64 o. OOO03
v'its' o .OO031 o. OOOOI
3le o .OOOII o. ooooo

Cee o .334ol o. 2232U

dce: Distance between the original rod and the rod
    considered in unit of pitch
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ealculated since the shadowing effect by intermediate fuel rods need

not be considered. In Table 3.3 is given the convergency of the

extended Dancoff factor. These values indicate that, in the caleu-

lation of the extended Dancoff faetor for a square lattice, it will

suffice to take into account the U8 fuel rods immediately surrounding

a fuel rod.

     In Table 3,4 are given the values of the flux ratio in two-region

square eeUs for the input data used in Ref. (2) (here 2e=2cL Ze,

2,=ZaZ, V,IVe). The absorption tn the moderator is neglected.

The values by Fukai can be considered to be rather correet since he

divided a cell into many shells. The results obtained by the present

method (Eq. (3.27)) are in good agreement with Fukai's values. They

                                    '

             Table3•4 Calculated results of flux ratios in square lattices

    l
case l

    l
VL1Vo

E
L

ti

;
t

   ill2I
3I
4I
51

1

s

LO

   L9[
8I
91   1   ]10   i

1 2.0

n"I
12 I
13

14

15

1 Le

lo ]IE os/Eot

s
l
l

            ÅëilÅëo
PresentmeMthod Fukait t Arnouyaltt

O.5 o.i l

gg I

   iO.75 i

O.9

O.5 O.1

O.2

O.5

O.75

O.9

1.224

1.199

1.125

1.062

1.025

     -l1.240     j
1.213 I
1.134 i
1.o67 l

1.027

1.219

L195
L122
1.061

1.025

E
l

1.229

1.204

1.128

1.064

1.026

     E1.239     l
1.213 l•

1.133

1.067
     1
1.027 i
     1

1,207

1.184

Ll15
1.058

1.023

LO o.1 I

glg

O.75

O.9

1.468

1.417

1.262

1.132

1.053

i.so2 l
1.4,7 I

     '1.282

1.142
     i1.057 i
     l

1.459

1.408

1.256

1.129

1.052

16 II 2.0l LO O.1l 1.479 1.434

17 O.2 1.426 1.139 1.386

18 O.5 1.268 1.277 1.242

19
e.75f 1.13sl1 1.139 1.l22

20 O.9 1.054 1.056I 1.049

t V-ILtes h"sed on :uulti-sheii rol"nioLi probo1};lities
tt V"lucs ILHte{l i,} Re{,(Z>
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represent an improvement over the Amouyal-B'enoist met] oa. Since the
                                                      '
contribution of YX in Eq, (3.27) is very smaLl (Yee = O.OOO021 for cases

(1) rv (5) and (ll)tNv (15) and Yee = O.OOO088 for cases (6)/Nr (IO) and

(16)rs-t (20)), we can caleulate the fLux ratio from the equation

f,i = 51is. ' lllll ZzO,i { <i --. il;.; )ili/ .- c*) v, ' '> .

This equation is simpler than the result by the coilision probability

method, L' a-. (3B.7), whi'ch requires taK' ing account of the shadowing

effeet i,n the caleulation of Pol. Iqoreover, the effect of difference

in lattice configuration is easily taken into aceount by the factor Cee.

                                                                  '
rÅ}P ]ne above equation is very suitable for a series of flux calculations

where it is only the cross section of the fuel rod that changes, sirice

oniy one calculation of Cee is requi]red. 'inus the present method

should be particularly suitable for calculating the resonanee absorption.

     !•n Iable 3.5 are presented the fl'LLx ratios evaluatect oy the above

Tab1e 3 .5

  Zbt
   2,t
Fuel

 Flux ratios for various
 in square lattices

: O.7221 cmi', Z,c:
: O.3721 em-', Z,c:
radius: 1.5 cm

o
o

lattice pitches

•3230 cm"
.3118x to'3 cm-'

Pitch(cm) 3.2 3.5 u 5 IO 20

"i/"OiÅ}
'- TTtTtt'Tt

1,6U2 1.6o6 l •592 l .6o4 l.684 1 .727

eauation
 L

lncrease

pointed

 :-or sauare lattices of various
       i

 iiionotonously with lattiee pitch

        (l6)
             . 'Ihe ratio risesby Fukai

pitches.

  but has'

 in level

  Fl-'he ratio does nc•Z

a minimum point, as

with decreasing
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moderator thickness. Tals is attributed to the increase brought

the reby to the eoe ffi cient C* V, /( /- P,') (1- C') Vo in the ab ove equation.

     In Tabie 3.6 the flux ratio by the present method in a ewo-region

square ceU is compared with values of the collision probability method
and of carivik's numericai method(L7). Good agreement is seen

between the present method and the Carlvik's method. The first-

flight collision probability method with the perfect refleetion

condition overestimates the value appreciably,

     Next as an application of the method in g3.3 we calculate the flux

distribution in a three-region squaJre cell. Outer radii of the

central region (region 1) and the intermediate region (region 2) are

taken to be 1.0 ana 1.5 cm respectively. [[he outermost region 3 is

a moderator and arranged in a square lattice with a lattice pitch 4.0

cm. In the system we adopt two cases of neutron cross sections in

     Table 3.6 Disadvantage factor in a square lattice cell
                 with two regions

           volume ratio l.865
            fuel radius O.381 cm
            distance between adjacent fuel rods l.IU3 cm
            totaL cross section of the fuel O.78 cm-'
            scattering cross section of the fuel O.387 cm-'
            total cross section of the moderator l.0618 cni'
            scattering cross section of the moderator 1.053 cm-'

Methods "-"'ivrv/ab-

f

Presentmethod l.I4g8

Carlvik'smethod l.l50Å} o .O05

[Vwo-regioncoUisionprobability
method(isotropicreflection l.I407
condition)

[[Xifo-regioncollisionprobability
method(perfectreflection l,28U3
condition)
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each region. For both cases the total cross sections of the both

regions l and 3 are l.O cni' and the scattering cross sections of these

regions are O.5 and O.9999 eni` respectively. In the first ease, the

total and seattering cross sections of the region 2 are taken to be l.O

and O.5 cm'`. In the second case, those of the region 2 are taken to

be l.O and O.8 cm-` respectiveiy. In the ealcuLation of the flux

distributions for both cases we eonsider a uniform and isotropic source

per unit volume only in the moderator. Values of the eurrents at

interfaces of each region are presented in Table 3.7 for both eases.

The neutron currents for the case 1 show strong anisotropy, large

difference between inward and outward currents, at each interface.

This is due to the strong absorption in the regions l and 2. For

such a heterogeneous system the present method is powerfuL since it

takes into aecount the spatial change of neutron flux in each region.

Comparing the currents for both cases it can be seen that, in the case

                                ++2, the outward neutron currents Jl, J2 show larger increase than those

in the case 1. This is based on the fact that neutrons which have

arrived at the inner regions from the moderator wilZ have more chances

to escape from the inner regions outwardly in the case 2 than in the

             Table 3.7 Neutron currents at each interfaee

Currents Casel Case2
J+

1JI+J2J5

2.666o

6.2o69

3.IU09

l2.o682

L.22U6

9.8355

6.3U59

l5.2720
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Case l. fgherei'ore the neutron flux for the case 2 approaÅëhes to ÅíLat

one. This is easily seen from TabLe 3.8 where the neutron average

flux in each region is shown. Since the effeet of the iattiee'

configuration is taken into aecount by the extended Daneoff factor,

this method can be used to caleulate neutron flux distributions for

elosely packed lattices. The flux distributions based on the flat

flux approximation are shown in Table 3.9. Comparing Tables 3.8 and

3.9, it can be seen that the flat flux approximation leads to flatter

                                                      '

     Table 3.8 Neutron flux in eacn region

Region number Casel Case2

l2 2.25U2

2.7U33

3.5720

U.2210

-3 U5997 59600
Tabie 3.9 Neutron flux in each region

flat flux approximation
based on the

Region number Case1 Case2
123 2.2973

2.7o88

4.s629

3.6262

4.IL27

5.84Ui

1i ab le 3.I O

         Zot
         Zlt
        Piteh

      o

     l/3

     2/3

Moderator-to-fuel flux ratio in a
for anisotropic scattering
; l.o cm"-t, Zes : O.5 cm"
: 2.0 em-', Z,3 : 2.0 cm-t
 : 3•5 cm

        1.66sl 1.6734
        l.s446 l.cr)6s4

        L.44ol l.4578

square eell

.iii Present method Method .In Chap. 2
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flux distribution.

     Next we evaluate the effect of anisotropic scattering in a square

cell by the method in g3.4, We take 36 mesh points in 1/8 of a ceZl.

Thus direct flights of neutrons ainong the meshes in the originai and

the first and second nearest neighboring cells have been taken into

eon$ideration. [Ehe ratios of average flux in the moderator to that
                                                   ,
in the fuel are shown in Table 3.IO for three vaiues of the average

cosine of the scattering angle ,iZ in the moderator. The average

cosine for the fuel is zero in all cases. Good agreement is obtained

between the results of the present method and those in the preceding

ehapter, which proves the validity of the "white" or isotropic return

condition on the cell boundary in the case of anisotropic scattering.
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                         Appendix 3A

Determination of the BXackness of a Fuel Rod

     In Ref. (l3), the bLackness was ealcuiated by Stuart based on

variationa: method. Here we use his method by choosing a trial

funetion of the fuel fZux in a forrn of a quadratic: function about r

We now describe it briefly.

     From Eq. (3.33) we obtain a functional

                 <f.,d'r 1, c'r)y(•r))Z

a

.

  T-

  The

  iTl =

  If we

  y(•r)

  and '

  Eq.

     4zT=(s;

  Here Q
        e

  source

  in the

  rod

  same

  Jl,9Ya(9)-.f/Jl,7J.:,9'fp(?)y)&•)2:'jl-fi;2::;lfi :,'Ze"R '

stationary value of T is given by

    s,-z ., { k Vse,20t ( t " p. ) -" ttE?e) .

  ehoose a trial function of the flux in the fuel such as

  =` 1tbrZ

elzminate the constant b by the relation dTldb = O about T

(3A.I), we obtain

      f(l-Pc)Z(l- iO,`,Rc)-- (1-a.)(t+ EZ,"`,G.P.- Z"{.ie` Pc '-

 )V7e

( 3A.I)

( 3A.2)

( 3A.3)

in

2es - Zec
 2et Qc)

            g(/- !e,s, p.xi- Zze,s,R,) - (/- loi,G.)a

                                                           C3A.4)

    is the probability that a neutron born in the fuel rod with a

                                 2   distribution proportional to r undergoes its first coUis;on

   same rod; Rc is the probability that a neutron born in the fuel

      2with r source distribution undergoes its first eollision in the

                                    2 rod with a weight proportional to r , whieh ts normalized -by

                             .. 82 -
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                  u
dividing vith the r integrai:

                                 -ZetR

Gc=
f.,dr'l yz .[ld,'YYZff,7'Ei'IiillF'-t "rcei .

Re==
 JT.,s,F1' ,, J[ljl,7'if.fF' r'z 2;t,,i;O'R

                    and R versus x (= fuelThe behaviours of Q
                  cc
are shown in Fig. 3.2 together with that oÅí P

sions for them are given by

                             l

                 (3A.5)

 '

                 (3A.6)

radiusx cross section)

 . Approximate expres-
c

l '`' Qc =

l + l. I99S8x- o. o3nC3 sJci+

                 /

o. oo l3I3 `x,a

   t-

  The

Ao = 2az

  If we

Rc =:

error

From

t

Lx

+ l. i66 35.x, - o. o289S 9• sc .x,2+ o. oeo 78oz x3

 - 34xz + iille for /o(-x

                '
l -t• O•84-9-b8Sx.- O.D7`l2loSxL +

                  1

o.olgo2ssxs

for osxS8

for s<x <- lo

        (3A.7)

  for O `- X -( 3

 t, 2932 l77 + O,SO So 77 9.c t O.OOS7S'3 2 9.zt -• O. OOoSS-sco3KZj

  3 23 /S                            for lo <-x     ---+ +                      4xs  2.re Xl              2x8

of each expression is smaller than O.l %.

Eqs. (3A.2) and (3A.4), we obtain

# (l-R)( t - i"t Rc ) m -Ill :1 (l- Pc ) -- :ll ,2 (/' G. >Z

for 3SXS IO

(3A.8)

ec

let P
c

k
y (! -

Qc =

ze2 p.)(/m

R , we have
 c

,Z
:,O  Re) '-
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p,'  =2aZoC l/ --  iS, P. '

and this is the form which could be obtained easiiy by the flat

approximation. From the definition of YX we obtain

         P,' Y` == Ae -t' '

                          Appendix 3B

FIux Ratio Based on the Collision Probability Method
                                                          '

     In the case where the moderator contains a uniform source

neutron conservation in each region may be expressed by

Vle Zot f(ol == Ve Zes 15e Po, + Vi 2;s V!It Pte + PtoG.

Vt Zte ", = Ve Eos fo Po, +V2ts ", P,i+ P,t OL .

From the above eguations, flux ratio is given by

 $t == l,Ol- V-v;;', IOi, + zi,O;is,, '

We introduce the quantity

   J !' Pc/iPb == /- lo:.P. '

where ' denotes that the quantity is expressed in terms of the

flight colUsion probability. Then Eq. (3B.3) becomes

                                    '                                                 '
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 flux

(3A.Il)

Q, the

(3B.1)

(3B.2)

(3B.3)

(3B.4)

first--



X,' = ;s,' ' loOi ( iil,, - /-' p. ) - llle, le,i ,

                                                               (3B.5)

where Pc is the probability for a neutron born uniformly in the fuel

rod to undergo its first collision in the sanie rod. -wTe put

 Pei= (IV Pc )(/- C'), (3B.6)
where C' is the sum of the probabilities for a neutron emitted isotro-

pically from a fuel rod to collide in any fuel rod other than the

original rod. Then Eq. (3B.5) reduÅëes to

 "t i Zec C' Ve 2oc
 `l'o = rpe' + ZetPe,- Vl' Z't ' (3B.7)

This corresponds to Eq. (3.27) in the case where Yee = O, Cce/PoleeZlt =

C'/PoiZot anct ttS), = /S).'.
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          CHA]XVER U

FLUX CALCULATION IN ],ATTICE CELLS

S4.1 Introduetion

     In this chapter the usual first-flight eollision probability

method is applied to the ealculation of the neutron distributions in

various eeZZ systems. In a highly heterogeneous system such as

pressurized heavy water reactor, the calculation method based on the

first-flight eollision probability is very useful.. rn such a

heterogeneous system, however, it is very hard to take into account

the deviation from the flat flux (see g2.L), and we are obliged to

assume flat flux within each region. Thus it is necessary to divide

the system into the largest number of regions by possibly diminishing

the size of each region. It takes very long to evaluate numerically

the exact colZision probabilities between many regions.

     rn g4.2, therefore, we introduce a new approximate expression

for the firstd-flight collision probability for eluster systems.

First, we obtain an approximation of the probability in an annular

system. This corresponds to an improvement of the Bonalumi
             (l) ev(3)
                    , and the numerical results are compared withapproximation

those of Bonalumi's, though our expression eoineides with his result

in a system containing only two regions.

     In a cluster system, we must divide the system into many ring

regions in each of which several fuel rods are included. By using
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                (4)
                   , collision probabilities between different ringsLeslie's method

are calculated by replacing the heterogeneous rings by annuLar domains

having equivaÅ}ent homogeneous cross seetions. His method requires

a knowLedge of the collision probabilities ainong fuel, cladding and

coolant in the same ring when the inner domain is void. But he did

not take rigorous aceount of the existenee of the void region.

Tb rernedy this shortcoming, we introduee the transition probability

for a neutron escaping from one subceil to collide in another subeeU

when the internal medium is void. The transition probability between

two adjacent subcells corresponds to a prineipa: constituent of the
Dancoff factor(5)'"'(7) in the case where the medium between the subceus

is empty. Conibining the colMsion probability in aii annular system

with the transition probability between subcells and using Leslie's

method, we obtain the collision probability in a cZuster system.

     As an application of this method, we treat a hexagonal cluster

containing 7 fuel rods without cladding and a square cluster containing

28 fuel rods with cladding. Our numerieal resuLts for eollision

probabilities in annular and cluster systems show good agreement with

the results obtained by the exaet method.

     In this section, we assume the infinite extension of the system

in the axial direction. Usually the buckling approximation is used

to take into account the finiteness of the system. [Dhis approximation

eomes from the fundamental diffusion theory; the flux distributiDn in

the axial direction is assumed to be sin Bz, then the pseudo absorption

in the system increases by DB2. [[his approximation, however, iinplies

                   theory in the whole three dimensions; there is nothe use of the P                 1

theoretieal justification that the pseudo absorption may be app2ied to

                                 -89-



the first-flight collision probability method in reduced two dimensional

        '

     In gU.3 we calcuZate the first-flight collision probability for

finite slab and cylindrical systems directly, assuming the flux distri-

bution in the axial direetion of the type sin Bmz(8). Generauy the

integral ineluded in the calcul.ation of the first-flight eollision

    '                                                bprobability is sixfold. In such a case the numerieal evaluation of

the probability is impossible and the Monte Carlo method is usually
       (9)
adopted . In the present method the integraZ is reduced to threefold.

Then the first-flight collision probability is evaluated directly from

the expression obeained. In a slab system the first-flight collision

probability that a neutron born in a region makes its first collision

in a given region in the lattice cells is obtained by sumrning the proba-

bilities that the neutron undergoes its first collision in the original

ceU and in the next neighboring cell and so on. rn the cylindrical

cell, however, this is not the case. [lhe first-flight eollision

probabilities in one cell are calculated direetly. Next it is assumed

that the spatial distribution of an escaping neutron from the original

cell is proportional to sin Bz and isotropic. Under the above as-

sumption with the isotropie return condition on the ceZl boundary, the

first-flight collision probabilities in the lattiee cells are obtained.

     The methods described up to now could be extended to the multi-

group theory. But the resonannce region need to be partieularly treated

because of the rapid change of neutron cross section with energy.

     Then, in S4.4, the neutron spectra and the resonance integral for

an isolated wide resenance are caleulated analytically for a two•-region

cell. The resonance integrals in homogeneous system have been calcu-

lated by many aythors through various analytie treatments (for example,
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Goidstein's x method(iO)'"(i3), chernick's improved w.R. approximation(i4),

and spinney's N.R. approximation (i5)). [vhey have aiso improved'
the

methods in order to treat the resonance integral in heterogeneous
               '
systems. The usual treatment of the resonanee absorption, however,

                                               'involves the assumption that the speetrum is symmetric about the energy

of the resonance peak. [ghis assumption of flux recovery is proved
                                                 'to be incorrect for a large wide resonance. Even if we take into

account the flux depression the moderator eorreetion by
repeating iterativeiy Goidstein's !nethod, the improvement is very siow(i6)

Furthermore the neutron spectra far belbw the resonanee energy cannot

be expressed correctly in the method.

     Therefore, in the equation of neutron balance in a cell, we use
                                   (17)
the Greuling-Goertzel approximation                                       for the siowing down kernel in

the moderator by assuming the known flux in the fuel. After two

iterations about the neutron fluxes, we obtain the resonance integral
                    '
and analytie expressions for fluxes in the fuel and the moderator. The

neutron spectra obtained show the exact neutron behaviour far below the

resonance. The correetion to the constant flux in the fuel rod could

easily be taken into aceount by the method in g2.U.

.
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                                             (18)
g4.2 Flux Distribution in Cluster Systems

     In this section we derive a new calculational method of the first-

flight colLision probability in cluster systems. To begin with, we

will derive an approximate expression for the coUision probability in

ari annuLar system. The collision probability that a neutron born

unÅ}formly and isotropicaUy in a cylindrical rod rpakes its first col•-

lision within the same rod has been evaLuated by case et al.(19), and

may be written in the following form:

                                =P. (aZ) = / - 2Åíz + 7t.lllzi,iY ce<i S' KL3 (2az qx, fP) , (4a)

where a and Z are the radius and the total eross section of the rod,

and Ki3(x) is the Bickley function, and is given in terms of the poZar

angle e between the aJcis of the cylinder and the direction of the

neutron path:

                                                          'K,, c.)=J/-"'e ,ainae eJiS'i& .. (4.,)

     We calculate the probability Pii in aJi annular region for a neutron

born in the i-th region, and having a uniform and isotropic distribution,
                                                 (20),(2i)
to undergo its first col)ision in the saJne region .                                                              Using

the notations in Fig. U.l, we obtain

piL'--'
 2.'i J7/-X'e ,othLe[ S,'`d,y c,sdyf,`t'2 {i-- e A"th,•2S` }

                          v
      'Jj y ce4 yf,aL2 {(/- e71Li't't ) + (t- e`tt;i.) z` )

          v               + e- AiL.,,+.,. Xe:d'Z"" (/- e- ,Xe`h,#2"s )> .

          y"z                                    9z, (Xu-.Åë)z,     + fy,,d Y csd Y Z//2 {( l - e' ma' Le )t (t - e- Ath' .e )
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where Xi is the projection of a chord length in the i-th region onto

the radial plane, along which a neutron starting from the outer boundary

of the i-th region travels till it reaches the inner boundary of the

region. And Xi' is the similar )ength aZong which a neutron starting

frcm the outer boundary of the i-th region travels till it reaches

again the outer boundary of the same region without passing any internal

                                                  4
region. W-e denote the Pii for the case where Zi-1 = Zi-2 = .., = O

     oby Pii. When we let Zj =O forjSi-l in Eq. (U.3), and use the

relation

rLf,//g, ceey" - v;-tJ,]g'y,-, cxyo y;-, ,

we have the expression
Rl = / ny .2, i`, f,S y, c6ro y,f,ifr pmie(/ -. e -Z"---tt/Lge Y")

      t .2, !i` J,2a y.p, cee ge,., J,3e ,aAhtxe e- tt' l`

                  2 ri., 2" ced Ye.,       •(/- e'- the ). (L.4)
iv' ow we adopt an approximation by which we replace the integrand of the

last term of Eq. (4.L) by the product of each average using Eq. (U.1):

Pt9. = / -- /-l d: (/ '- P.(r;2;)

      - "k t• {/ - P. (r", z,)} (l -• "-i ,-,., )Z ) ,

                                                                (4.5)

where cti = ri..l/ri and Hi-1,i is the probability for a neutron emitted

isotropically from the outer boundary of the region i-l to undergo•Å}ts

first collision in the region i:
Ht-t,t= rc4 f,3'yid, c•GK) y,.,J,a-!e idit•'nze (1-- e- lil'Xis- ) ,

                                                                (U.6)
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     Substituting Eq. (4.5) into Eq. (4.3) and transforming the range

of integrals about Y) from O to T/2 by using the reLation

 rvSg.il?g. `ee yv = r,-kfi"Zy,.E eeg y.t

                   `- VL-N-iioTi yL-ft-t ceo yc.Åí-i i (,t = integer),

it follows that
                    x -rc-
.PceL-

 RL --' i. \i`f,iy,., cee y,-,f,die ,dthze (lny e-`X-"-'=S;' -iZe`")(l-e' -li'ft-Z.L )X

 + i, tti.2 f,ldy;., ceo y.-z J,'dX'& Aab,ze ((i- e- -XiixteZ`'i).. (i- e- XÅí':s:ei"' ))

         . e- 21a' k}s:L" }i-• <, -. d .X.t ei )

           lt K+ EZ•,//l3 J.i Y"s `sc yL-3f,Ee,ainze[(l- 6X{i/liZe"3)-(/.d-Ximurt"2`a))

        . e- X`"`Ii. t.,.'',"t'tZ"'t (/-- e. .X,mt,Zg )

 +--e             .                                                             (U.7)

Following the saJne process as in deriving Eq. (4.5), we obtain

P,2 -- P,, == tt"f'.,,E`" {l - P.(Ee-•r;-•)} H[-,.,

                 VL

 -t- I. `k i` (z ., { t --" P, (ze-z rt-2 )) - Zi-, ( l - Pc (zi" Vn ))) H3-2,t

 + 2'V.". `ili3i.'t [z,., {1 -- P. (z,-, r;-3)} - Z,-.{t-- Pc(Zt-zri-3)}] H.Z,.,.,

              2.where V          = Tr and H .                     . is the probability that a neutron emitted       j,t J,1
isotropieally from the outer boundary of the j-th region undergoes its
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first coLlision in the i-th region.

                                   o     In Bonalumi's approximation, Pii is identieal with Eq. (L.5).

                                             oBut he made the foUowing approximation for Pii -Pii:
Pcl - P"t == S, //, t'd"y uayf//exinze (/- e' Xin/ 2S-')(1.e .X,.,\Eg )2

                   -J-YLI -o
  + z2,rv', fYdLZg ce, yfio ,,,htze (l- e- X2'-attt',2X`"Z",' )(l-d ,"..V.Zg )2

          •v.yb3 Jo

  t"'

==

 i.ri, [ aft`'y ceo yf.die thie(/-e- Kii':'g"')(,- e- -l-ixj-=-'Z.")

  t J;,ay ceo yf,ieAzeLae(/- e- X2Z2i:2i',2X"'Z"' )(l- e-- ,X,.,` 7,`)

  -t •• • ) H ,. ,.,

     c-i=Z F>.. Hi-,.t . (4.g)
    ntt
It is seen that Bonalumi's approximation neglects the azirnuthal depen-

dence of Hi-l,i in addition to our approximation of replacing the

integrand by the product of eaeh average. The former approximation

will not be valid when the system contains a region of smaU thickness

or small neutron cross section.

                                                         (i< j), which     Next we introduce an approxirnate expression for P                                                     ij
is composed of two different probabilities P'.. and P".., where P'.. is
                                                      IJ                                             IJ                                                                 IJ
the first-flight collision probability for a neutron born in the i-th

region to coUide in the j-th region without passing the innerregions

of i, and P" ij is that for a neutron to collide in the j-th region after

passing the inner regions of i:
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        ' [ H t-2.- (2Z i-, ) - H t.,,} (2z,-,, zi. ))

t ztt'i." [z,., {/ -- P. (zt-ir;-j )} - 2i-s{l- P. (z,., r,.,))r)l

                        '       ' ( H e-3.l(2 Z"z, 2Z;-, ) - H i- 3. i (2 Zi- z. 2Z L-,. 2Zt ))

where Hi-.),j(2Zi) is the value of Hi.l,j when the neutron cross section

in the i-th region is 2Zi. and Hi-2,j(2Zi-1, 2Zi) is the value of Hi..2,j

when the neutron cross sections in the regions i-i and i are 2Z                                                                  and                                                               i-l
2Zi respeetively. [Dhe collision probabiLities Pji(j> i) are evaluated

with the aid of the reciprocity relation

7,'vT,Ra. == EG'Vi PiL.

     When we apply the isotropic reflection condition on the ceU boun-

                                               tdary, the first-flight collision probabilities P.                                                  in ].attice ce]-Ls                                               ij
                                             (22)
containing N annular regions acquire the form ,

PL; "-' Pet(i-;., Re) iP5illi,, ' (4 i2a)

                                "=1where

                         N P,e= 4// V' (t -' lli.ll, PtÅí), (u.i2b)

and S is the surface area of the cell boundary.

     In what follows, we have introduced the first-fiight coilision

probabiZities between annu2ar regions. To treat a c2uster system by

Leslie's formula, it is neeessary to obtain the coUision probabilities

between subregions (fuel, eladding or coolant) in a ring possessing an

internaL void. 1io calculate these probabilities we derive the first•-

flight collision probabilities between neighboring subcells and between

subceUs separated from one another by a void region between them.
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Firstly, we derive the probability Ala for a neutron emitted isotro-

picaliy from the surface of the fuel rod 1 to reaeh the fuel rod 2 (see

Fig. 4.2, where a means the radius of the rods). Here it is assumed

that the fue2 rods are black and the medtum between the rods is void.

                    AWThen a point A is on PBP', nameZy, idi < oc. , a neutron starting from

the point A with azimuthaL angle Y may strike the,fuel rod 2 if

Y,<Y< Yz ( Y is measured clockwise>. When A is outside f5iii5', i.e.

when ietl is between cte and T!2, only the neutron with the condition

Y,<Y<rc/z may enter the fuel rod 2. So we obtain

A`"=  s.sA'. ' (,L•.&) ' 2'se J,`.,,'.,r-.,,,e.., JIS,;.el7' ..;:'"tt/Åí2'vtat paaeet2)

   - .'. [""eq ,lldil; ceey,f3.kXJ;d[.9, (hay)

   == ili( J-:,a.y ceQy.:die ce6e ac,- .l<..,,-,.i,y)i

    = ,'. {2,ocht-' 2,a -"- lil( /-- .tsS -t)} ,

                                                             (U.I3)

                T
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where d is the distance between the centers of the subcells. Next

we evaluate the probability A2b for a neutron escaping from a subcell

to enter an adjacent subcell (b is the radius of subceUs).

A.s .. 4i. S-."d,' iy eecyJ-".!die ceQ & ta,.-b.b(,,th,-,da,)ii

      =" ftc (rc- -ZL +2,e,, 26'I[IEI,il -/;-:.-:-gef,t, )

                                                           .
                                                                (4.14)

Here it is assumed that a neutron starting from a subcell along the

path A-- i'; can reach the adjacent subcell by passing through the originai

subcell inwardly (path A't shown in Fig. 4.3).

     Applying Eqs. (4.13) and (h,14), we can obtain the probabilities

between subcells when tnere is coolant present between the rods.

Firstly, we caleulate the probability Q13 that a neutron escaping from

the fuel rod l undergoes its first collision in the fuel rod 3 in Fig.

U.4, T"1'e assume t] at a neutron born in the fueL rod 1 escapes from the

original subee)l with the probability {l- P,(z,q)} <t-M,z) . It

proceeds to the surface of the region 4 with the probability A                                                                 (b
                                                              2b
means the radius of the subeells) and has its first collision in the

fuel rod 3 with the probability <"z, v, ls,){l-• P, o,a)} (l-H,z). After

all we have

(6;,,, = 2 6Z' "Z  A,, {t - p.(E,a)>2 (/- H,, )= .

                                                                (U.I5)

In a similar manner we obtain Q14 and Q24:

G,. = 2 Zi 6( 6Z  '- a2) A. ,b { l -- R(E, a)>

                                                 '        ' <t- H,z )(/ '-- Pzz- Pz,), (4.l6)
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G., .. 2E2 ibZ-di) A. .b (/- p,, -• P., )2 .

                                                                (4.17)

Here Hl2, P21 and P22 have already been calculated.

     The first-flight collision probabilities between subcells separated

from one another by a void region between them are calculated by substi-

tuting Alb for A2b in 'll'qs. (4,l5),V (U.l7), and changing the distance d

to an appropriate one.

     Applying the eguations derived up to now, we calculate the fÅ}rst-

flight eollision probability in cluster systems.

     First, we derive collision probabUities in a cluster without

cladding. In a hexagonal eluster we choose a ring region that is

tangent, for example, to the six rods shown in Fig. U.5, Subregions

in tne ring are indexed by k as is marked in Fig. 4.5, where fuel rod

corresponds to k = odd and coolant to k = even. We consider the

      .o                         (2 ,k) that a neutron born in the subregioncollision probability P                       ii
2 of the ring i undergoes its first collision in the subregion k of

the sarne ring, in the case where the internal region of the ring i is

void. Here the suffixese and k are either f (fuel) or c (eooLant).

The macroscopie neutron cross sections of the fuel and the coolant are

denoted by Zf and Zc respectively, and the superseript O denotes that

all the inner regions are void. We assume also that Q(l,m) represents

the probability for a neutron born in the subregion l (fuel) to undergo

its first colLision in the subregion m in the saine ring when the inner

region of the ring is void. [[1ien we have

R7• (5, t) =- Z (Gx < i. crrt) ,

              JM= l. 3. --.M-t (4.l o')
where M-1 is the maximum odd number of subregions in the ring. In the
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caleulation of Q(l,m), Q(1,l) is the probabUity that a neutron born

in the fuel rod 1 undergoes its first collision within the same rod,

and may be calculated by using Eq, (4.1). The other Q(l,m)'s, for

example, in the 6-rod ring in a hexagonal eluster, are determined as

follows: Q(l,3) may be ealculated by using Eq. (4.15). But in the

eaZcuLations of Q(1,5) and Q(1,7), the intermediate medium between the

subregions 1 and 5 or 7 is assuned to be void, and simultaneously the

qUantity A2b is replaced by Ala, as it was previously done, furthermore

we choose a suitable length d and let Hx2 = e in Eg. (U.l5)•

     Next we write down the probability P?.(f,c) in the form
                                         u

PLO, (Sc) = {/ -- P. (a2s)) Gsc ,

                                                                (4.19)

where Gbc is the probability that a neutron eseaping from one of the

fuel rods in the ring collides in the coolant in the sane ring when the

internal region of the ring is void, and is evaluated as follows.

We replaee rod and eoolant areas in the ring by radial lines so as to

maintain the saine areas, and denote the angie of a fuel rod and coolant

rnedium by yl and y2 respectively (cf. Fig. U.5). The probability

 oPii,c that a neutron born in the ring i in the case where all

subregions of the ring are coolant has its first coUision in

the sanie ring may be written as follows:

          Mp,e,., = Z (E)Lc(l.tm)

         mtt

      =Z QC(t, ra) t{1 -- P. (azc))G6. , (4.2o)
       'rvL=t.3r'SH-t)

where the superscript c means that all the subregions are coolant.

Since P9.i,c can be calculated by Eq. (U.5) and Qe(l,m)'s by the simuar

way to the above Q(i,m)'s, we can now determine p9.i(f,c) by using
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Eqs. (U.l9) and (L.20). By using the reciproeity relation, we have

P,O, (c,f) -= =i!LXL'.Vv, P,Oi(Åíc) ,

                                                                (4.21)

ReL(c•c) = <l -- VV, ) P,e,..+ -:VilZl. Z GC(i, t,rt),

                                     t,vtet.s.••)M-, (U.22)

Thus the coZlision probabilities in one ring having internal void region

are obtained by Eqs. (U.18) through (4.22).

     Using P9.i(R,k), Lhe prQbability Pii(Q,k) in the presence of given

media in the internal regions of the ring i ean be calcuJ.ated by using
Leszie-Jonsson's approximation for a eeu containing two regions(4):
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Fig. 4.5 Ring region for hexagonal cluster
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P. , (2, ,EL )

In the

the ring

 O<Jt ==

 O<LCt `

P.L (P) k) = P, t• (e• Åí) h- P" ama. (2. ft c) Cn `;,"ut/v. ; v< Åí•

                                                                (4.23)

where P. . (.2 ,f+c) is the probability for a neutron born in the sub-
       1 s mner
region 2 of the ring i to have its first collision in the internal

Media of the ring i, Ginner,i is the probability for a neutron eseaping

from the internaZ rnedia outwards to undergo its first eoUision any-

where in the ring i, and "<ae is the ratio for the eollision to oceur

in the subregion k of the ring i; Pi,inner(2 ,f+c) is related to the

prObability Pi,inner that a neutron born uniformiy in the homogenized

ring i has its first coliision in the internaZ media of the ring i by

the relation:

P;.`;7un('Q'f""c> =: ll,Ill.ilX'gl.IiLV Pi,;,vnvv cr(L2t

                                                                (U.2U)

where V.. and Z are the volume and the total cross section in the sub-       Kz . ki
region k of the ring i. Homogenizing the ring i, we obtain

RL = Rec -Pc,iavrt2n.Guvwtov,t , (4.2s)
Using Eqs. (4.23) through (4.25), we obtain

                                   ZÅí'ETk,
  ,,. E ,O (.S! , J3, ) - O<, 2L O( S.L

above equation, P.. and
                 11
  is homogenized. We

         M Ht-t., (zt)

po
 ii

may

zg,v72, (R:' --

 are calculated

 assume for ofAt

dit H a-,,t ( 2f) + diz H i-i. c (2`)

/ -- ctfL .

'

R,) .
              (4.26)

for the case where

that

(U.27a)

(4,27b)
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In Eg. (4.25), when we homogenize the ring containing fuel rods and

coolant, the homogenized cross section is chosen so that the probability

for a neutron entering this ring inwards to undergo its first collision

in the homogenized ring is the same as that for an aetual heterogeneous

 'nng:

                                             r,                    C,Hi-t,;(Z,qnw)=: -y;,-;gl't ir H,-t."(2f) t er,tr. Hi'"(Ec).
                                                                  (4.28)

In the ealeul.ation of the collision probabUities Pij between rings

neither of whieh eontains any fuel rod, Pij may be evaZuated in the

scheme for an annuLar system, vith use made of homogenized cross seetions

in each region. For rings both of which contain fuel rods, Pij(n,k)

may also be evaluated by the relation

P,&(2, -2.) = Q<2; c)( g6

pthich was introduced by Leslie

     In a cluster system with

(4.22). So we divide the

constituents of fuel rod,

by indices m, m'. We assume

a neutron born in the subregion

subregion k in the subceU

of the ring is void. Then

                 M
P,O, (2,,gL) =:' Z (Gkt,,,,,

                'rvt '= l

     In t-he calculation of

in an annular system and can

and when mye m',

 zA,vrs,
ZÅív'vr2, Pie ,
                                       (4.29)

     and Jonsson(U),(23).

    cladding, we cannot use Eqs. (4.i8) and

  system into subceils containing the three

ciadding and coolant, and denote the subcells

     that Qtm,(2,k) is the probability for

      2 in the subcell m to eoUide in the

 m' in the same ring when the internal region

   we have

. (2, Åí)

         . . (L,L30)
 Qmm,(2 ,k), Cin,(2 ,k) is the probability

   be evaluated by the previous procedure,
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Qwt es' (P• {) = ( / -- 2 Pa a' ) A- m. as• Psk •

                       S• (U.31)                                              '
Here Pw is the probabiLity for a neutron born in asubregion2 to

coUide in asubregion .2' in the saine subeell. The sumtion of 2'

is performed over all the eonstituents of the subceli. Further,
                                                    '
A. ,,t)N. is the probability for a neutron Jeaving the subcell m to

reach the subceU m', and is equal to A2b for adjacent subcells, and

to Alb for other subcelZs; Psk is the probabiiity for a neutron impinging

on the surface S of the subceLl to eoUide in the subregion k in the

subeelZ, and is given by

PsE= s4` 2[tVÅí (i -' ;PLa,) . (u.32)
Using Eqs. (4.26) and (U.30), we obtain the probabiMties Pii(2 ,k)

for a cluster with cladding. The ratio a                                               for a neutron to coUide                                            ki

in the subregion k in the subeeU i is

             P, ft .

A homogenized cross section of the ring Zhomo is eva Luated to satisfy

the relation

 PsÅí(ZAeme)=4 Psk , (u.34)
where Psh is the probability for a neutron izmpinging on the surface

of the subceU to collide in the homogenized subeell, and is expressed

by

                                                       'Pst<Ese"te) =: i# Zite",e Vt (/ '-- Pc (627Ce•"e)} , (u.3s)

         is the volume of the subcell.where V       t
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Eq.

Thus

been

Using the homogenized cross

(4.29), the probabilities P
                           ij

 all the probabilities in the

 derived.

section and oki, we

(2 ,k) for a cluster

 cluster system with

obtain, by using

 with cZadding.

 cladding have

,

-- lo8 -.



g4.3 Effeet of Finiteness of Cell Systems on Mux
                                     (24)
                          Distribution

     !n this section, the effect of finiteness of systems under

eonsideration in the axial direetion brought upon the flux distribution

is investigated by deriving a new first--flight eoiZision probability.

     The neutron flux in three dimensional systerns ths expressed in

sine series:

         cos6(9> = Z si!),.(2) idLort B.z ,

where l is a vector in the horizontal plane and z is a coordinate along

-the axial direction, and B is given by
                         m
       (2',vt + t) 1(.
Bm =

where H is the axial height. [[The neutron source is also expressed

in sine series:

         coS('r)- Z S.(51) ,`tc;n B,.z .

     Substituting Eqs. (4.36) and (U.38) into the integral Boltzmann

eguation
                x'v               •- :Ks6()r)= Jrd r'"- ,.Sl ,. { zs (7') J6 (7') + S (7' )} , (u. 3g)

and integrating over OtvH about z after multiplying by sin Bkz, we

obtain the equation
                                r-..d ÅëQ(2) == f,dHz ,ath BkifdF' 4fi-RZ; #, ia`lyt Bgz' '

          •{ z, (x") f. (S') +Sg (I')) . (u.uo)

     Here the horizontal area is divided into some regions in each of
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which the neutron eross sections are eonstant. In each region it is

assumed that the neutron flux and source are eonstant and, for instance

in the i-th region and in mode k, they are denoted by fik and 5ik

respeetively. rntegration of the above equation over the surfaee

area V j of the horizontal j-th region produces the equation

                  raVeZe P" = Z, ;., P"e2 v" (zes Ai+S`t), ' (4,ui)

where pi2 is given by

                                           elfi
P.ae•Åí= #2;l;. J}ctVf.t 9' ,abt Bs"th BtE grcRi ' (u.42)

                                              gklf the first-flight eollision probabiZities P                                                 are obtained, the flux                                              ij
components "eA are eaZculated by solvÅ}ng the simuZtaneous equation

                                                                 oo(4.Ul). In what fol:ows, we will caleulate the probability P.                                                                    for                                                                 ij

the fundamental mode. Other probabilities would be simiiarly obtained

     First, we calculate the fundainentaL mode first-flight collision

probability in a slab system. Notations in the slab system are de•-

                                        oo                                           (iSj) takes the form:scribed in Fig.U.6. The probability Pij

                                                APY,O' = iid f,Åí"xJ,d"z' thBz'f,d" "'LBE 4eiiRRi ' cu.43)

where B is the abbreviation of Bo and IL is the thickness of the i-th

region. Owing to the relations

a9 --.- RzaRdjS., (u.u4a)
dft=th ot dot df, (4.U4b)
 z == z'+2 1Åílaort&daY, (4.b4c)
the above equation reduces to

RO}O
 --' .2,2i, ft)Uc'f,:z' ,`uhBz'f,,ii,\,A"'PV,d"gi` fi"et iaetq

      . e- ÅíZ/coed ,4inB(z't2 t2bnct ,din b) , (U•L5)

                                  - uo -
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    Fig. 4.6 Notations in a finite slab syseem

 where X* is given by the reiation

 E' t 1 tiz,rt af A`lyt " = H .

 !f we exchange the order of integration in Eq. (4.U5) by

f,1"'J,X'et `== f,`a"a<(A"""' "' f, X-:,tiX""pt" ,

 and perform the integration about z', we can reduce Eq. (U.

 form:

P;O
; = iRZt. Sgk'Jtll,iS'ii'D'f,Xny,st(2""iMz,,' 'a e-zfit/e`toK A ,

 where
     A : C-e<) (BA th•net ,ch"){ -.' (/- 'S' ifivrLgZ, i4h ")

  -t- -.isH ,60rL <2B2 ttv,taL iath,t)} + .gH ,dth'(B2 i2v. o(, pm v6) .
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                     ooIn a similar manner, Pii is expressed in the form:

pio- ft J,kf.lx" J,:i; J,t2tk(2ft'"ievxdZ"!"OqA , o.so)

where2= x - x'. In Eqs. (U.48) and CU.50), the double integral

about x' and x ean be reduced to a single integraL about 2. [Phus we

                           , ooobtain the following expression for Pii:
                                                ,p:: .. fii f,gd", ,p,-,,f,Xd/; f,tiria< Elk")ta.,pt eZ2i`"eXA . (4.s,)

                      oo                      ij we first eonsider the ease Zt= k.In the calculation of P                                                             When

 2e=1} and Zi= Ze,we obtain ' '
p,:.o : kit f,li'h'ntc2-2,,)J,:';f,t:i'i-iZ-fin" c

              `t
     , iiet. f,i?:''g:eL(,,,,a,-2)f,liZ" f,tV"a((-]2i-pmi2 -'c , (,.,,,

                                 '
where                       -tz!rui=2uLkzP+z2
      C=A Ca•7v ec e c.a ec ,

and 2;d and Zr[>el are the real and optieal distanees from the right side

of the i-th region to the left side of the j--th region. When 2`>2e

and ZL -- Z+,

R•o
 == i/t',f,?'i2?`2-2,,)fiiZgf,iitfk(2];'"'c '

       '       + iitili,l'2i 2, J,"d/Z" f,`aii'(,2,A"rvt• " ) c

       ti2. J:,/X2i'R`(2v+QLf"+'2)f,d";,l,t '"2Sk'i"'C . ,,.,,,

When 2i >2t and ZL = Zi ,
                                    H
p,o

; --• 2Zft. Ll/7'J;g(,d,,,,f,,"/Sf,tr',(23e"")c
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t -i2t-iit,}, f,,l a'l 2'2, f,crB f, ti7a( iii•; " )c

' ft• J:M)'('pt,.2Ltp,-A)f,d"Z, J,itrik(2;k'")c ,

                                                    C4,s4)

     Next we eonsider the ease Et ;E Z}. When 2L= 2" Emd ZLI E+, we

 obtain
  ROg - iZii•,,! ,, J,,//'i2LJ,XZ"f,tiL'a2 iL• •) D

       . ,(, / - e- ( Ze `' Ze )( Åí-R ;a )/ ce(i d, >

      ' iit' ' Ev!k f,ll.`l'i,12"f,cr; f,ti'" ti'i'"XiF" D

      . i e' C i;- 2i )(2-Åí`' P•a )/ceo et - e- C2t' Z+)2tl ceo sk } )

                                                    (U.55)

 where rN                   -:EE!i,L:-2222t2s
       D= A,aA;,v ec e toe sk
                                .
 when At>R} and ;LtEe, H
 RX'O == ilipt'' E,Iz, ltI,;'2'J,i9Z f,ii'i'(AA'"'2e<, D

       . { / -. e <Ev' E} )C a- 1,i )l c-ea a< }

      + k}t, -• ,k ki/1 ,':` f,1/SJ,tae;'i kpm"' p) D

       ,. { e- CZt- Z")(2-2;G-2")/cedd - e'(tr El)(P-2li)lceeK}

      + iiel• ,,l,, tsC/1':t'i},fi,2/$ .Il,lrY[(2"-•,)D

       . { e- cz,-zi)cA-2;,•-R})lceaK - e-Ci"-ii)R`/`ee(} . cu.s6)
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When Ri>2L and 7Ll Ze,

pLo
; - 2i,t, • -,f. ,-,;. ,. L(./i"2LJ" f,\k(rkT'D

       . < / -. c5] C 7e '" Ei )(2v2`i)/cse ec, }

     + k}, • ,,j. -s2:" :.` .l,I) /SJ,: (1 `'Zits""D

      ' { l -- cl(Zb- Zi)S;/ ced ct }

      + 2.Z2t• ,,2,, f,ll'gl`'S'Jg"tS f,`it'&(.R"';"D

       . { d(Zt'ZJ)<2-2:J- Åíi )/Ceo ek - e(2L' 2e)eL/ cee d } .

                                                                CU.57)

The probabiiities p99 (i>j) are obtained from the reeiprocity relation
                   IJ

E, V7, P. e dO= 2!Q. -V; PeO,O . • (1,.s8)
From Eqs. (U.51)rtNvC4.58), all the probabilities necessary for the flux

determination in slab systems of finite dimension or in infinite slab

lattice eeils are obtained.

     Next, we calculate the collision probabiZity in a eylindrieal

system. In a cyZindrical lattiee system, unlike in the slab system,

the boundary condition on the ceil surface must be eonsidered.

                                                       too     We express the first-flight coUision probability P.                                                           in the                                                       zj

lattice system in the following form:

PliOe == PeOe? +' P"s 1.-/ p,, Pse, (U.'sg)
        '
where

      oo     Pij = the first-flight eoUision probability that a neutron born

in the i--th region with weight 2sinBz' makes its first collision in the

                                -u4-



j-th region in the original eell vith yeight si.n Bz.

     Pis = the probability that a neutron born in the i-th region

with weight 2 sin Bz' escapes from the original eeU without eollision

through the side surfaee S.

     Pss = the probability that a neutron entering a celi through the

                                           '
side surface S with an isotropie distribution and with an axiaZ distri-
                                                 ,
bution sin Bzs escapes from the eell through the side surfaee S again.

     P . = the probability that a neutron entering a eell through the
      sJ
side surfaee S with isotropic and sin Bz distributions undergoes its
                                        s
first eollision in the j-th region in the eell with weight sin Bz.

They are expressed as follows:

P`s= HZv, J.d9'.donBzVt.st' e-Z'"Ris.

              u (L.6o)Pss == z2s J.X zs J`h B z, Jd sJd s, (a•ft,) e- z'NR ss,

                                                               (U.61)

P,d - i.Zg J,"d z, poi 6zsfdsJdfts (a'fts )J,dR c'fieS,4eit Bz ,

                                                               (L.62)

where 2r)?L, is the optical distance from the point 3 in the i-th region

                                                 `) tvto the cell boundary along the neutron direction A. , and 2Ks, the

opticaL distance from the side surface S to S aZong fts, and fi the

inward normal vector at S (S is the eircumference of the side surface

of each ceU). [Vhe integration about R is performed over the line

element in the j-th region along the direction as.

                                                 oo     To begin with, we calculate the probability P.                                                    in a cell.                                                 zj
                                                                 '      'Notations used in the calculation are described in Fig. 4.7. [[he

teehnique adopted is similar to that by Kavenoky who evaluated the

first-flight collision probability in an infinitely long cyXindrical

system. !n his method, aU the neutron paths are taken to be
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parallel to the x-axis and the di.stanee from the original point to the

neutron path is denoted by y, and the positions of starting and end

points aiong the neutron path are denoted by 2' and 2 respectively.

p99 (j>o is expressed in the form (ef. Fig. U•7)
 IJ

p,e
de- :`iLii{ki?'L"vTi. J,S'dr'JlgHz'f,aKe tl2,l,.e fircEpJdR e'ZfR AO"Bi''•""BE , (u.63)

where ri and ri-l are the outer and inner radii of the i-th annuZar

region, respectively. We introduee the relation

 r'd y'dy =-d} d2', (4.6u)
in the above equation to obtain

pto" ---- ,".ZgL  Js'"vL,e,.2,J,,,,J,l12, f,tt'flill/i ,,,t.,e',-tRhatBz" •4thBZ • ,,.,,)

where .eL and .ec-, are the distances from the point O in Fig. U.7 to

the inner and outer surfaces of the i-th region aLong the neutron path

respectively. If we change the order of integration about z and

on the basis of the relation

f,Xz'fkZa .,, - fS6:,, f,X`h"e, ,,.,,,

where s = 2- 2' , and perform the integration about z' in the use of
                 '
the relation

 z= z' 't' A/tiz,ns, (4•67)
we have

RIO= ii'f,E`crf,l,-4'lt,/kfaci,,e-fi/'""eA'

       , `.l,f,k',f"`;'f/i/} fde:,left,e- ZrV`i`in'eA', ,,.,,,

where A' is given by

                                            '
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A' = cea ( B4/tatn e){ 1 (l - H 2L[, ) t -g H ,6`;n (2 BA/ tict,n e))

     .t. I ,abM'(B.d/tit•nbe)

                              • C4.6g)        2BH

In Eq. (4.68) the first term expresses the eontribution of neutron

current from the right si'de of the i-th annuLar region to the right

side of the j-th annular region, and the second term expresses that
                                                i
from the left side of the i-th region to the right side of the j-th

   .reglon.

     In a simiZar manner we obtain the expression
p,oe--- \,"f,//7f,/l2)•J,/L21 fi#,i,,,g- Jii':g A'

     , ,.2,Lf,//,f""i'Li.vl fals.,,,e- S'•V"e A', ,,.,,,

where s = JÅí- Åí'l. After the reduction of the doubie integraL about

2' and 2 into a single integral about s, we obtain

ROI = ?,"f,d'"?f,i`2""'L(2,-R,-,-jo)fza/,Z,.e,,dZthi'O"seA'

       "'mZ, L f,E` of.1;,i,2"(A - 22,-, )falie,, ,e`i`A'2 Åí2 "" '2:i'`'•)/'`""e A'

       t 4vZ,t S,//}11d,2/t,., (2R,-n )fal1(2d,.g,, e`Z`"'Zfi"`-'"ZZ"2`"'!""e Alu..7,)

     Next, we calcul-ate the probabiiity p9. 9. (i<j) from Eq. (ll.68) in

the use of the same teehnique as adopted in deriving Eq. (4.71) from

Eq. (4.70). When 2L= 2i ,

p, x•o -'
 -.,E.} J),ra, [H (),-2;){J,14./7" i`,d -2,,,,ltPl'i.l"2;

                    Pe+Po-fle                 tLtt,A.p, (Ao+ 2o' t 2Lt - -4 ))
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                                 P"e+Åíg                 2;a+ 2e
-tb

 H (.stg-- 2,) { J21 gf ( x2 -- •e ;a ) + fE,, ce ,, 2e

              + f i'Aie'2i ( 2, + 2i + s,e -A ))

    x/a urEr)tzÅí+zA ,S"te.,,, e- i`'"" A', ' (4.72)
where •Po :fid-PG.` and Pi=j2;-S;v , and HCx) is given by

                       t for x>o
           Hcx)=
                      tl2 for .)c=o

                       O for x<e . (U.73)
               oo                 , the evaluated results of Eq. (4.72) for two possi-In evaLuating P               ij
bilities of 2>"d and 2`e are added; the one corresponding to the

neutron eurrent from the right side of the i-Vh region to the right

side of the j-th region, and the other corresponding to the neutron

current from the left side of the i-th region to the right side of the

j-th region.

     When EL f Ze ,

pie
; - ., ,"Ei":,•)Jl,:'7 [H (po-2g){ .I,]i/""Åí`JII!1(ls,e,, D'

      • {/ --- ecit- ie)(A-2iG)/Athte} •t- J,lle,(l,all.OJ):(i2,,d.,e,,D' {/- ec2w 7j)g3IAzhve}

              '     +Llut`lillr"'Pll[llilliei.,H?i { d(ie':J)(D"aiJ-pe)/n-;•e-. ecze-k)p,iiie`hve)}

    + H (R;-2,) {Jl:9,("gei[jl#i.,,p' { / - e(:c'- tp(D-Ali)/•4one}

    + JA(:i i'l,2gfjlii,?' { c' cit- re)(A-g•i-se)/hvke- e(x;- fj)"-R,,)iA,,,}
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+J/." ,/Tls'ie'2:fatl2e,.,,) Di { e(2L-ZJ)`D-2e'-ie'ZAine - e(Z"-Z`'ll;/pme}) , (4.74)

                         t'Y                       ...wE222+ZA
where D' = A' ,ahvee A`,ve .

The evaluation of the above equation must be performed in the seme way

as in evaLuating Eq. C4.72). From Eqs, (ij,71) tN• (U.7U), and the

reciprocity relation (U.58), aLl the probabiiities ,in the cylindrieal

eell can be obtained. Next, in order to extend the probabiLity

to iattice systems, we caleuLate the probabilities Pis, Psj and Pss,

The probability Pis reduees to

P,,-."v,fgr`vJAZAf,,",d,ie.,tlee-rf)!the{i+ceQ(BP/fa'Le)}. (4.7s)

where s is the distance from the ceil surfaee to the starting point in

the i-th region (see Fig. 4.8). In terms of the relation

.

1

s
R"5

fi

   5N s

F

Fig. 4.8 Neutron injection from the ceil boundary
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dR dsd5, ( ft•ft,)dR = dft d-r ,
                                                             (U.76)

the quantity P                is given by             sj
    'p,, == `g2` J,ravS,"d,Zklfk!ei.tl, eeZAAi'`"e A'. c4,77)

P is transformed into the form
 ss
 Pss == t - ..Bs J,2zs ,dvnBz,fdsfdft,(a fts)J,dKk zefR

     .. / . \ ssEL J,l'?Ji2fk'".4itl) e e:>1"`"eced (B4/bue), (4.7s)

where Rs is the chord length in the cell aiong the neutron direction

 ft, . In terms of Eqs. (U.75)t"v (U.78), the first-fiight eollision

probability in Eq. (4.59) in the case of cylindrical lattiee ean be ob-

tained.
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                                       (25) g4.U Neutron Speetra in a Resonanee

     In this section we derive an improved expression of the correetion

of the moderator flux for an isolated wide resonance with use made of

the Greuiing-Goertzei approximation(i7). An anaiytic expression of

the resonance integral is also obtained, which takes into aecount the

flux decrement in the moderator. We treat a two-region eell, of
                                                 '
which the moderator is not very large compared with the neutron mean

free path in the region. In sueh a system we can use the flat flux

approximation in both fuel and moderator regions. For a eell with

large moderator, we can use the eoneept in g2.4, or the effective

                                           (26)
volume of the moderator, as shown by Iijima .

     The neutron balance equations are written in terms of the first-

flight collision probabilities P.. in the forms
                                IJ
ff(q)zf(")'vf = Pti(w)ikfff zf, vJ t P.i <K)yLt ,,, ". Zwts -V. + S(a) , (4,7g)

9.(a)2.c")Tros = Pf,., (")7LCi gJ ZJ, 'Vf t P.., (u)7LC. ÅëptZwtsVwt • (4.so)

The leading suffixes f and m in Z stand for fuel and moderator, and

the tail suffixes s and a stand for scattering and absorption, res-

peetively; Vf and Vm are the volumes of the fuel rod and the moderator

in a eell; K. is an integral operator of the slowing down in the i-th
            ]-
region, and is given by

XL9 == f.ldsee1 1-/ ck, ehC"-"" "(ut) • (u,so

We use the Greuling--Goertzel approximation for the kernel of the mode-

rator,• and the wide resonance approximation for the kernel of the fue!:

7Etc,., s6 :.L:",ufx{ ,:)}.;,;,i}, e- "d-;•'p!"' +(/ -- il'i'i)6(q'-K)]p SS(K') . (4,s,,)
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Adding Eqs. (U.79) and (h.80), we have

 S5f (K) zi vs -t- s6., cK) z,. vT.

 = Nf "J zs, vJ + N. 9. 2,n Vpm + 8("), . (4.s3)

where we assume that absorption in the moderator is negiigible, and

that the scattering cross section in the moderator is eonstant.

The lattice system considered is assumed to be so large that the leakage

of neutrons from the system can be neg)ected.

     Applying Eq. (U.82) to Eq. (4.83), we obtain

 "m(W)Ze" Ve,t = }1., {t -' act•L EIJa(") tt <ec) Vt}

                   a                -J,du' Zta("') f}(U') Vf . (4.su)

     Under the assumption of constant flux in the moderator, tt(ec) is

expressed by the first order approximation of Eq. (U.79):

 9f(")= },,,ivf• Efc,) -P"tiSliil)(,)2f,(,) ' (u•ss)

Thus Eq. (4.8U) becomes

f.(a)E•mvT,rL == }. C/-'il.Ti-!lil;i!Xir!Z:Zi;#iil?a;i}izt.[il,,t(az)sivigj")c.)}

     -i,d"u'l.:-zsi;r2XtÅíi}:iitli-illiii'?IFJ-T{2s.e,t,.(z)s,ia,)Cac(uo} ) . (L.s6)

A rational approxirnation for collision probabilities is introduced,

                                   (IO)as in the paper by Goldstein et aZ. :

            si cut)                                      SPtJ(")F-sttstils [Jcu) ' Ptpt(")= fft(") '
                                                               (4.87)

                                                                     (27)
Neutron cross sections are also expressed by the Breit-Wigner formula

which neglects the interference between potential and resonance

seatterings:
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        rr Åë,
 cr"= fu'' tt x2 ' (U.88a)
        P. Co  (S5 = 7" l-t. .x.. -" (SSfe .
                                                             (4.88b)

where .x = r2 (E-Er).

     Using the relations (4.87) and (4,88) and the reciprocity relation

for the coUision probabiiities, Eq. (U.86) may be redueed to

",,,(w) z.,, 'vT•,, == g,,, { t - ,ac.n ,r.',,`S,:i ..IF ,,

                - ,.X&. (f -k tafi' f, )} ,

                                                             (4.89)
where 8wt = Jilttlwt.v'V::tza , te,:= t + s(SrOrfir , T, == ICe'/A,, ICe'= rc2Åëili;r ,

and Io is the resonance integral in the W.R. Iimit; Nf is the number

density of the fuel element. From Eq. (4.79), we obtain

 Åët(X)= --'s' +St'--tt-.cx) Mwt f'•'v . (4.go)

     Inserting Eq. (4,89) into Eq. (U.90) and using the approximation

hf..6 = si. J:d'.S; "cxi), (s,,,- Zj-:E•'(t-ot-)) (4.go

which was used by Goldstein et aZ., we obtain the second order approxi-

mation of the flux in the fuel:

"f (x) == 3. !. v.' k;. ,X.=z {J '-' SCX )} s (u,g2)

                '
where •
       Jfcx) = 3.iGO,. [ l•I- - t{ Cli,,S,on tda' -] l;,S'n

            -rv-s(-. iSctn{'LillT, - .flg., ,e. tee2i. iX.'.S-)Z }]
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          t }ec.zacsCr,,O,' ;''A,is. (1fui" `i8pm "- t2z41' i ) .

                                                               (U.93)

Eqs. (U.92) and (4.89), whieh express the fluxes in the fuel and the

moderator in seeond order approximation, tend to the exact limit when

x + -co. In other words, the asyrnptotic distribution far beZow the

resonance is equal to the resonance escape probability. Using these

expressions for the fluxes, we obtain the resonance integral.

This is given from Eq. (U.90) by

Z,,= g'ESi f-iX p,z/+xz iZCza "n• (4.g4)

Fro!n Eq. (U.83), 7\. e.. is also given by

Nen Åë-L= f- + -i21 ilE..i.Q "s .

                                                                (4.95)

Substituting Eq. (U.92) (for f(x) i O) and Eq. (U.89) into the right-

hand side of the above eguation, we get

 Nra "- = }.,,k.,,. {1- j.IOs. (t-- 'ilt- tia'"' p"C, ) ,

                                                '
          t :'.8.o'7}i,;k-ir..z <!'- g,". '} •

                                                                (4.g6)

Using this equation, Eq. (4.9U) reduces to

                          ,
I,, = I, il/-' ,.jl.,.Orr., t- lll'rs<S'.e,'2ts,K (/ -" -{l: )l) . (4.g7)

The seeond and ghird terms of this equation show the deviation of the

resonanc,e integral from the W.R. approximation. The correction for

f(x)itE O to this expression is very small. Although we assurned the

flat flux in the whole cell, the effect of flux change in each region is

easUy taken into account by introducing the probabilities Q and R defined

in chapter 3.

                                 - l25 -



g4.5 Numerical Results and Conelusions

     First we calculate the first-flight collision probabilitie$ in

cluster systems by the method in Sb.2. It requires a large amount

of cornputer time to evaluate collision probabilities in a complex

system with the true geometry, Using the present method, the

probabilities in a eluster may be calculated in a/short time. For

exarnple, making use of a NEAC-2200 (model 500), it takes 15 see by the

present method, IO sec by Bonalumi's, and 3 min by the exaet method

for an annular system containing 4 different media. The present

method eoineides precisely with Bonalumi's for dn annular system

eontaining only two media, and is superior to his result Åíor a system

  Table-•i Colli$ion probabilities for a cell Table4.i Collision probabilities between
        contnining four annular regions two adjacent rods
        t-i=iL5cni r2=CL61cni                                 • a: Radius of fuel rod        r"=().8cni r4 := ,S,55 cm                                                 b: E'quivalent raa]iu.h of s.uL•c'nll        Sl == 2,O cm-1 2-2 =: o.s cm-t                                                SJ: Total crotis section of fuel rod'        L"3=1.5cm-i 2-4=L5cm-r                                                .Ere: Total cross section of cool"nt
-!ILiYll,'llit'tl,-'teia,gCg,li,-//-Oi,il,",,11tlll/BOgl3vii'S-i Si:,'ei'l/-`t:,'l,,'Ll,/11-S`'t61i,i'ii/`C'lli,i'l'iX.pl,111i>iEo,?///"a•liiil'

,li,//1111,,//ill"i,,///1iiii,//lil,/111:',/11'/lli,,//ln',.,///1111i,///iOi,///11i//11',,//l'//111i,//1119,1/111i./li'i/Iill//lii7/lii,/111?,, ii'/iillll/1111]111•1[illiilllllliiill/,111//iilillllll,lioliiiiSllllll/;IZili/illii/IIIOIIIIIIIIII'

                                         /ii6 'll !gl:-i 11 l•iZ6 Liii li k•i•6i•ii9ii` i' /i,ii,l•l•ilii

                                                    LO l                                         1.0I 3.0 [ i 1.0 lO.OO02 1• O,oOOI
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eontaining more media, as it may be seen from Table 4.l. [Dhe proba-

bility for a neutron born in a rod to undergo its first eoUision in

an adjacent fuel rod is shown in Table 4.2 for variovts geometries and

eross seetions. rt is apparent that Eg. (4.15) is a good approximation,

     ln the ease of a hexagonal cZuster eontaining 7 fuel rods without

cladding (see Fig. U.9), the heterogeneity around the outer rods may be

estimated in more detail sinee we did not divide the system into subcells.

The results evaluated by the present method are in good agreement with
those of exaet ealculation and plJE code(28) (see Table U.3) except the

probability that a neutron born in the outer fuel rods undergoes its
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Table-.3 Collision probabilities for hexagonal
      cluster containing 7 fuel rods (c.f.
      Fist. -.R)
   Total cro.ss section of t'uel: 2.63cni-i
   Total cross section of coolant: 1.52cni-i
   Sc;itiering cross section of fuel• O.3637cm"'t
   Scattering crog,s section of cooiant: 1,48cm-i

P43 O.0472

P" O.8377

P4s

Psl O,OOOI

Ps2 O.OO02

Ps3 O.O023

Ps4

Pss

O.0455
IlO.9517i

                  -Pr io
t?.,a,b"'i .9tuhr,d e Exact 1. puE

;lt, i8i:,i:i il 8i]ig"•8i7,gg:

ili, i ilgoi!•3g, ?ois::g6i g,i•iig•11

  P2i l, O.0450 i O.0458 l O.0459
      j, O.7835 ! O.7809 1 O,7805  P22
  P23 l O.O034 l o.O03g F o,ee36

;il i gi6g:? 1i O•i666 gi5ggg,

              !      t  P,, O,OOOII O,OOOII O.OOO07
 p,, i o.oo33                O.O038 O,O035 I),, i O.7180 1 O.7108 O.7108

      :ri•l•1 li Figgg2l,gi'l,l,;,!, isi•,E,ilg

                        O.0473
                        O.8460
                        O.0778
                        o.oooo
                        O.OOO04
                        O.OOIO
                        O.0472
                        O.9518
   t The me(!cratof Tfgiofi 5 is not tak"fi ""e a"ceunt
    in the cxact method.
   tt The coelant region 4 is divided in merc detail in
    our method.

 first eollision in the coolant around the

 calculation is performed by dividing the

 obtainihg coUision probabilities between

      !n Fig. 4.iO is shown the one-group
        +
 sources within coolant and moderator.

 consists of 7 fuel rods with radius O.5

                                ' equivalent outer radius of 2 cm, and an

Table4.lt Collision probabilities for a cluste.r
      containing 28 fuel rods (c.f. Fig. +•ts)

  Total cross section of fuel: O.3COt;cm-i
  Total cross section of claclding: O,2067ern-L
  Total cross section of coolant

   and moderator: O,4316cm-i
  Scattering cross section of fuel: O.2c:n-i
  Scattering cress section of ct"clding: O,15,rtn-t
  Scattering cro$s section of cooiant

   and moderator: O.4c:n't
Pl•2R•,a,bii'l .9,"h',d CLUP i

     1/
PIJE

PL,t

Pi•s

?t,3

Pl,4

?i,5

Pi,e

Pt,7

Pi,e

Pl,O

Pi,io

Pi,n

Pi,n

Pt,2a

Pl,;4

Pkh
IP7,7

i)7,e

P7,o

P},l

P7,4

}

E

O.2430 1

gigggg l

     :O,0470 i
o.o2s6 l

O.O160 I
O.1775

O.1240 i
o,o77s l
     lO,O139 ,
     iO.0249 i
o,o244 I
O.0249 i

     'O.0267

O.0311

O.2619

O.1323

O.0820

O.1341

O.04ss
i

O.2349 1 O.25•)1
O,0936 i O.09)5
     'O.0601 i O.05i2
     'O.0425 i O.0457
O.0273 i O.0258
     /iO.O172 O.Oli6
o.14ss I o,171g
     iO.1409 ii O.13)1
     1O.097i l O,08)9
     IO.O143 , O.O133
O.0251 11 O.0234
o.o23s l o.o2]4

si,oe,if l giszi•?

     tO.0266 1 O.0259
     iO.2737 l O.23B2
O.2044 i O.14ZO
o.1211 l o.osB3
      l O.1314O.113S
O.0359 i O.0443

  fuel rods. The exact

 system into subeells and

  subcells numerically.

 flux distribution with constant

 The hexagonal cluster adopted
  '
cm, 7 coolant regions with

outermost moderator region of
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2.71 em thiek. It may be seen that there is asuddenchange of flux

through the coolant region 4 in the outer ring. Inner regions, from

region 2 to region 4, however, the change is quite gradual . This

is due to the faet that neutrons starting from the moderator are

                                                           'shielded by the outer fuel region 3.

     Next we treat a square cluster containing 28 fuel rods of O.5 cm
                                                  J
radius, 28 sheathes of O.61 em external radius, 28 eoolant media of

O.8 cm equivalent outer radius, and a pressure tube of O.3 em thickness

(see Fig. U.l)). The coZlision probabilities evaluated from the

present method that a neutron born in the fuel rods in the central ring

undergoes its first coUisÅ}on in the external moderator region are in
                                     (29)                                          as we wiU show in Table U.U.          with those by the CLUP codeagreemen
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The probabilities for a neutron born in the eentral fuel rods to have

its first collision in the coolant media are in agreernent with those

by the PIJE code. The flux distribution is shown in Fig, U.12.

The curves from the two methods show the saine tendency in the mode-

rator, but different tendeney in the inner region of the pressure tube.

     In what foZlows, we evaluate the effect of finiteness of the

systems based on the method in gU.3. Since the 'finiteness of a cell

system in the axial direction is assumed to have the saine effect as

in a bare system, we evaluate the flux distributions in finite systems

both in the axial and radia: direetions,

     At first a sZab sysVem has been treated. The slab is divided

into 4 regions, in all of whieh the total and scattering eross sections

and the thickness are 1.0 cm" , 1.0 cm" and l.O em, respectively.

These regions are numbered by lrNU from the right side to the left.

In calculating the flux distribution, the uniform souree is assumed

over the system. The flux distribution by the present method is

presented in Table 4.5 for various axial lengths, together with that

by the buckling approximation. As is seen from the table, the

difference between the present method and the buckling approximation

becomes apparent for a system with smaller axial length than IO cm.

        Aecording to the discussion in Ref. (8), the assumption

              Table U.5 Flux distribution in a finite slab
                           for various axial lengths

Axial Flux distribution
length Present method Buckling approximation
(cni) tp1 Åë2 Åël 02

5 3.8g61 5 .368o 3.2637 u. 4532
IO 5.3992 7 .5U8U 5.20oi; 7. 2571
20 6.1598 8 -,6503 6.1221 8. 5942
4o 6.4124 9 .o16o 6.4o71 9. o078

IOO 6.U911 9 .I299 6.4g18 9. 1308
500 6.so63 9 ,l518 6.5075 9• l536
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of the flux form sin Bz is justified in the case of 10 cm axial length.

Therefore the present method is considered to be still aceurate for

such a case. For a system with axial length larger than 20 cm, the

difference of the flux distributions between both methods is within

l %. For a fast reactor sueh as JEZEBEL, whieh is onZy of the order

                                                                    'of 2 mean free path in diaJneter, the buekZing approximation eannot

          (30)
be adopted .

     In Table 4.6 are shown the vaZues of the first-fiight collision

probabilities for the systems corresponding to the cases in Table U.5.

                                       between both methods is seenA large difference of the values of P                                     u
in the case of small axial length.

     Next, a eylindrical system has been treated. The cylinder is

divided into 3 regions. Then each region is numbered from the center

to the outermost side by lnv3. The outer radii of the regions l, 2

and 3 are taken to be l.O, l.5 and 2.0 cm respeetively. The total

and scattering eross sections are all 1.0 cm't. As in the slab system,

a large differenee between the flux distributions based on both methods

is seen from Table U.7 in the case of small axial length.

   Lastly, as an example of the wide resonance problem, we calculate
                                                         238the resonance integral and neutron spectra for a 6.68 eV                                                           U' resonance.

The system considered is a square lattice, whieh is composed of a

          1]able 4.6 First-flight collision probabilities
                              in a finite slab

Axial First-fli ht collision robabilities
length

(cm)
Present method Buckling approximaVion

' pu P P P P P P PIL
5 o.58o o .I38 O.0230 O.O05 O.39 O.193 O.0239 o .O053

10 o.6oo7 o .I499 O.0270 o.oo67 o.6175 O.I539 O.0277 o .oo6g
20 o.6072 o .1539 o.o286 O.O073 o.6Zl7 O.l550 o.o288 o .O07U
4o o.6ogo o .1550 O.0290 O.O075 O.6102 O.I553 O.0291 o .O075

IOO o.6og6 o .l553 O.0292 O.O075 o.6og8 O.I55U O.0292 o ,O075
500 o.6097 o .l553 O.0292 O.O075 o.6097 o.is54 O.0292 o ,O075
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TabZe 4.7 Flux distribution in a finite cylinder
for various axial lengths

Axial muxdistribution
length (cm) Present method Buekling approximation

Åël Åë2 Åë3 Åë1 Åë2 Åë3

5 3.62Ul 3.0374 2.I295 3.232U2.72U7l .
89!l

10 4.3732 3.6305 2.5256 4.307U3•57792 .
4513

20 4.668o 3.86U2 2.6822 4.68993 .88072 ,
6soo

50 4.7673 3.9431 2.7352 4.8o893 .97U82.
7118

IOO 4.7827 3.9553 2.7U34 4.82633 .g8862 .
7208

500 U.7878 3.959U 2.7461 4.83203 '.99312
.
7238

238
   U metal fuel rod with a radius O.5 cm, and a graphite moderator

with an equivalent external radius of 2 cm. Then the second and

third terms in the braekets of Eq. (4.97) become -O.09752 and O.OZ959,

respeetiveZy. Therefore the usual W.R. approximation overestimates

the resonanee integral by a factor about O.078. The neutron spectra

in the fuel and the moderator are shown in Fig. U.l3. From the

figure large asyTnmetry about the resonanee energy is seen. Far

below the resonance the curves based on the present method approach

to the value which eorresponds to the resonance escape probability.
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                         CHAPTER 5

APPLICA[I]ION [I]O [I?HIE CALCULA[I]ION OF THE ANISO[I]ROPIC DIFFUSION

                       COEFFICIENTS

g5.l Introduetion

     In this ehapter the anisotropic diffusion coefficients in sZab

and square Zattice eells are ealeuZated by the integral transport

theory with use rnade of Benoist's formula(1). In his theory, the

quantity P:.j,k appears in the principal term of the diffusion coef-

ficient. [Phis quantity is expanded into the Neumann series in whieh

the n-th term corresponds to the n-fold eollision processes suffered

by a neutron in the course of flight from the region i to the regionj.

As he pointed out, the convergency of the series is very slow for slab

lattice systems and also for cylindrical lattice systems though the

latter converges a little faster than the former. On the basis of

the integral transport theory, Benoist caleulated only the first two
                                                           'terms in the expansion of PiS,k in Åíhe case of cylindrical ceus(2).

In his calculation the scattering has, in almost every time, been

assumed to be isotropic.

     Leslie derived a formula of the diffusion eoeÅíficient in a cylindri-

cal lattice ce' 11 starting from the calculation of the mean square
      Gdispiacement of neutron(3)'(U)'(5). His formuJLa exactiy corresponds

to the principaL term of the Benoist formula. His calculation,

however, was limited to the Pz-approximation.

                               - 138 --



     In this chapter we introduce a new ealculational method of the

anisotropic diffusion coefficient defined by Benoist which is based

                                           'on the integraZ transport theory. [Dhis method can be applied to

slab and square lattices composed of many heterogeneous regions.

Because of the effect of anisotropic seattering we adopted the gener-

alized first--fiight collision probability which eontains an anisotropy
                                                 t
of seattering. The eontributions of all the expansion terms of P:.j,k

are taken into consideration by solving simultaneous equations in

which the generalized eollision probability is ineluded.

     We will also discuss on the origin of the differenee between

theoretical and experimental values .of the anisotropie diffusion

                                 (6),(7)
                                         for determining the aniso-coeffieients. Most experiments

tropic diffusion coefficients have been based on the pulsed neutron

teehnique. However, there is theoretically no reason why the

experimental value of the diffusion coeffieient thus determined should

be identical with the theoretieal one which appears in the neutron

leakage factor from the system.
          (8)
              derived the expression of the anisotropic diffusion     Deniz

coeffieient which corresponds to the experimental resuJLts in the pulsed

souree measurement. [Phis formula corresponds to the prinedpal term

of Benoist's formuia except the weighting function in the case where

                                                 -Ktthe flux is decreasing with the asymptotic mode e in time.

The differenee bet•ween Benoist's and Deniz's diffusion coefficients

has never been evaluated. EspeciaUy the evaluation of the additional

term of Benoist's formula in time dependent problem is suppo$ed to be

of much interest. Then we will evaluate the perpendicular diffusion

coefficient in slab cells, adopting the formulLae by Benoist and Deniz
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in time dependent problem on the basis of the method in g5.3.

The difference of the values Di between the two methods is also

gated. In the foUowing section, we will try to introduce the

formuLa more coneisely than he originally derived.

investi-

 Benoist
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 g5•2 Derivation of the Benoist Formula of Anisotropic

                    Diffusion Coeffieient

     Here the Benoist formula of the anisotropic diffusion eoefficient

wÅ}Zl be derived by a teehnique whieh differs from the originaZ Benoist

method.

     In the first step, the anisotropic diffusion e6effieient in steady

state is introduced. Here the diffusion coefficient is defined in

the expression which represents the neutron leakage from the whole

system under consideration. Namely the neutron leakage 9; is written

in the form:

f); -- Jlldmb, ,s,k,ltn',3)=Zl] DkB;Jls,,"nd.,Åë(')• ,,..

where "(F) and l are the neutron flux and eurrent, and Dk and Bk are

the anisotropie diffusion coefficient and the buekling in the k-axis

respectively. The neutron angular flux P("r,.K) satisfies the integro-

                                                         'difÅíerential transport equation

 ik>P 9('r. ft)- S(9• &), (s.2)
where
1\ g<". lt) - .-> • eEZot "(9, ft)+ z f(Åë, ft)-fdft' Zs(r• lt. ft) 4,l•.gl) .

Here we assume that the souree distribution is written in the form:

                          )" S ( 9. ft ) = s, (9. a) e` B'r ,

                                                               (5.4)

where So,("r,ft) is the source for an infinite lattice. If we denotb

the neutron angu2ar flux due to the source so('r,es) by S, (9J K), the

real angular flux Y(r•. ft) is expressed in the form(9):
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g5 ('r. .6. ) - f6, < 7, ?s. ) ee e'7 - 7i( -' ( rB .a) e` i9 6, (". ft ) .

                                                            (5.5)

From the above equation, the neutron current beeomes as foUows:

                                          "-e (g) = i eL S'9 - fas a N" (iE•a) ei B'' ", ('r• ft) , , (s.6)

where

  ;',('r)-5daafo (9• ft)• (s.7)
Since the leakage G is rewritten in the form

Y- f,x?},,,da S(•r), ,,.,,
we need to calcuJ.ate the integrand dWv' :}('r). Repiaeing the inverse

operator )hf" by the Green function Gc9.a; 7: ft'), which is the

angular flux at the position )r and'along the direction .i)S. , produced

by a neutron born at the position ÅÄr' and along the direetion -Zit' , we

obtain

do S('r) - ou>,-( 3,cp) eie'!)

                                               )t- Jaft a• iJiiiibc Jd'r•J)daL- G, (i. .?s., y.t fr)(cg•.i{-; ) eCB"' ft5, ( 9; .?sL/.) .

                                                            (5,9)
               t5B,g.
                   in the second term in the right-hand side of theApproxirnating e

above eguation by

 eLg-?• . ece'e {t+d(9'-9)•'B) (s.,,)

and ee`B't in Eq. (5.10) by

 eig•9 . e`k' 7o {ttL(9' 9o )' "B) (s. ii)

(fo is the center of the eell in which I is included), we obtain

                                                      '
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 aWv` 3(9) - oLcar ( E,(7) eLg'9)

                                                     '

         t etE'?o JdK (g•.a.)Jdig•fd& G, (9, a; 9t ft•) (g•.nL•)

                             ' ", (•r; ?S'L )

         - e`g'"o Jd.?L ft• t?iibt ("'r'J"dft' G ('r, .?L; 'r, ; A')(cE•fr) 9, d; 5')}

         . evg 9e fdft (g.g- 9,)-&•eJi2bt {fd9'Jdft- G(ÅÄr, 21.;9t ?L')

                            •(g• .KL') f, &: .6L' )}

         + e"E' ?e Jda ft. i7Eint { fd 'r -fd 5' G("y'. ft; 9; ft' ) (g' fr)

                             • g•(9' -- 9) f,('r; .i'L')} .

                                                            (5.12)

rf we integrate the above eguation.over the cell in which the point 'r ts

included, the first and the fifth terms vanish since the integrands

                                                            .becorne zero at the cell boundary through the integration about st. The

third term also vanishes because of the syrnmetries about the x- and

y-axes. Furthermore, only the terms with k = k' in the terms BkBk,

remain in the second and the fourth terms in Eq. (5.12). Then we

obtain

                             -ÅÄJa9 oLilvtr S(g) - 2I Bz eCB''o { Jthg fd& st,&(g. ft)

'isi Jdft (rk -- rek) ft• g]iaa dÅí('r. a)} .

              ' (5.13)       '
where

l.<g. -a).fdgJdft' G(7, &; 'r'• ft')Q'k Po (?: ilir) • (s.,4)
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From

Ds =

This

     In

  .

time

neutron

<-si=a

--
 JdA

where v

pand

 Åë('Y.

+2
   s. s'

where

x == x,

BM

,tst(i f,

the definition of Dk ln Eq•

  f.Ei'rJaK {Ak l, ('r. ft) +

(5.1), we obtain

(yk- reL) ft• 2JE a (iÅí('r', ft)}

                    JstJda p, a, a) '
                                                            (5.15)
                                   '
     eorresponds to the weii-known Benoist's formula.
                                                '
        the next step, we consider the time dependent behaviour of the

amsotropic diffusion eoeffieient in the case where a pulsed soixrce is

injeeted into the heterogeneous lattice. Here we treat an asyrnptotic

     region where the fZux is deereasing by a faetor e-At . The

        anguJ.ar flux satisfies the equatÅ}on
                                                     '
     ,t + ft• pm + E ) P(9• a,t) = s(g, a) 6 ct)

     " 2,('r. ft'•a) 9<9. fr. t) ,
                                                            (5,16)

        is the neutron veloeity. Under the above assurnption, we ex-

     the flux in the form:

      ft . t) .. eXt eOg'9 { 76, (9, .?i. ) + \ Bk f,k ( 7) 5)

       B. B,• fi6., A• ('r"• -&) + ''' ) '

                                                            (5.I7)

        +\ Xik Bk + {. {, 7N 2s Åí• BÅí B`t +''' . (s.ls)

Inserting the qbove equation into Eq, (5.16) and equating the same order

   terms (ms2) in both $ides of the resulting equation, we obtain

      ("r,3)= o
                     ' (5.19)
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)At!t' Åë,, (9. ft ) = -- C -s ').A 9. ( 'r. •?i. ) ,

     '2N' so. ft ki <V, ft) = '"-' >v 2kk' 9o <9• ft)

--
 <C Ak 9, L• t L s> a• ", k> (2- S "t )/ 2. ,

where N' is defined by

N'9,<9, ft) - ft• S]i2Z- 9,(9. &>+<2- X.O)",('y. ft)

-Sda' Z,<7, ft-"ft) f,(9. ft),

and eigenvalue X2kk is given by

 Xak . -id'rJdft f,'(•r.ft)Lak",k<9. s').)

  'V - Sd'rSda 1,'(•r,ft) t,("r,IK) '

where f,#(?,rt)is the adjoint flux; the eigenvalues

become zero owing to the symmetrie.s about the x-
X.,k - Jd •rfcta 9,` (9, ft) (i nÅí) 9, ( •rJ ft) .. o

                                             '

(5.20)

(5,21)

Jd'rJdift f,'(9) ft) Y, <"J a) '

Jd'rJaft i,'<•r. a) {cLak) f,.(g, a) + t

(5.22)

             (5.23)

             (k = k')    and Xx
        2kk, lk

and y-axes:

 )Vz{{'

 Vv Jd'rfd3

The neutron leakage at

y = e'Xt ldg
           v(nh)

Substituting Eq. (5•

equation, we have

      tt           -AtY =- e

As• 6,k('r, ft)}

=o

(5.2U)

fo,`('r. ft) Y$, <'r. .?L)

   time t is given by

oLcar < JdK a " <'r. a)> .

 I7) possessing the Brn terms

Uex )do

'J,dwh7 ,aLC•Lh{

 .

(5.25)

              (5.26)

for mfC2 into the above

{ eLg• 'r fdft a f, (7, a)

"feLB''  d5. il Bkf,Q(7• i)i-)}
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       tJ,st?L,.,oLea. { e"E'9fdft a X.. BsBi' f2sf(9)a)}] . (s.,7)

The first term in the above equation vanishes because the term in the

bracket expr'esses the neutron current in infinite lattiee. The third

term beeomes aiso zero because the term in the bracket vanishes on the

cell boundary after the integration about it. FJrorn the remaining

term we obtain the equation:

(}p = z e- xt [e`E "" fd9 { t + e 6• ('r •- Fe )) oUivJd il 5 211 Bk s6tk ('r. A)

       "2t o

 + dg eee' Fe • Jd 'r:Jld fi. a EF B, P,,( 9• 3))l .

                                                            (5.28)

Since the first term of the above equation vanishes, Eq. (5.28) reduees

to

                   --Y = Z.,,, eXt e"B''O \eB;J{fd'rfdankf,,(9.ft)

 + fdg (r,- r,,) otev (fda5 9iL( Fi 3))} . (s. 2g)

This is equal to

3 = ,Z,,,,ZII ci Xt e`g' 9o DÅí Bi JTd 'rJ)da f, ('r• &) . . (s. ,,)

From this we obtain the saine expression for the anisotropic diffusion

coefficient as Eq. (5.l5) in the case of steady state, except that, in

the pulse problems, the equatÅ}on determing the flux is homogeneous and

the usual total cross section must be replaeed by Z - a/v.

     In what follows, we consider the anisotropic diffusion coefficient

obtained from the pulsed neutron technique. !n this case, Dk is

obtained from the relation

)y=()to+21 DÅíBi)i'b. (5•3i)
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Then from Eq• (5

JdeJd .a

.23), we obtain

Y,'(7. ft)nk egc;, a)

Dk -'-  Jdg Jdft f,* (g. a) ", (9• a) '

                                       '
This expression was first introdueed by Deniz

prineipal term of the Benoist formula exeept

                 (5.32)

, and corresponds to the

the weighting function.
    '
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  S5.3 Calculation of the Diffusion coeffieients(10)

      First we calculate the anisotropic diffusion eoefficient in a

  slab lattice system. In order to evaluate Eq. (5.i5), we calculate

 the quantity g'k(F,es). In slab system a phase point (?,es) is expressed

 by (x,p); x being the spatial eoordinate in the axis whieh is perpen-

 dicular to the slab surface, and u being the projebtion of fi onto the

 x--axis. Sinee the diffusion coefficient paraUeL to the slab surface
                     (3),(IZ),(12),(13),(14)
 is easily calcuiated                                           , we treat only the perpen-

 dicular diffusion eoefficient D , namely we put k = x in Eq. (5.15).
                               x
 We expand g'x(x,u), Åë(x,u) and the seattering cross seetion Åís(x, S'•'9)

 into the Legendre series as follows:

               oo  6. (x.i)=Z 2fi` a." (x) Pn (/), (s.33)
             n ucoo

  g(x•7a) :llll.Il, Z2il' ""<x) Pr (y"), (s.34)

                     co  z. (x. a•.ft) - Z 2?it r                                 Z (x){ P. (f') P. (/)

                    n=o

  + 2 21i ig2 -. '.M ,) ,,! p.wt (-') p."L <f) cee on <y- y')) ,

 where S' is the azimuthal angle. Frorn the definition of "'x(-r',tt) in

 Eq• (5.Å}ij), this quantity satisfies the equation:

t.(", .?s.)-f,dcoR eÅíR {lc 9(9; -<•").),JjiL-({i' Es("f-ft'`'`?L)(i'` ("`" ft')) ' (s.36)

 In order to obVain the coefficients in Eq. (5.33), we divide a slab

 ceu inLo many regions, and assume that "'n(x) and Åën(x) are eonstant
                                        x
 in each region, and, in the j-th region, express them by o'd.". and 9e"

 respectively. Here we retain the terms with n<-l in Eqs.(5.33)rs-
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(5,35). Namely we limit our treatment up to the anisotropic scattering

of the first order about cosine of the seattering angle. When we

substitute Eqs. (5.33)rv(5.35) into Eq. (5.36) and perform the integ-

ration about the azimuthal angle Y' in the seattering term, there remains

onZy the term with m = O. And then integrating the resulting equation

about ft over the whole solid angle 4T and about x over the volume Vj

of the j-th region, we obtain ]
 zdv, d-;•,, =- z { 2,v,a!.. c,o Re,.o -t• xvT,el•.c: pYdO

              t
t -g- v, ": p,3.e + -g- vF, ab,i R:.o) ,

                                                             (5.37)

       Olwhere c. and c. are defined by
       11
 o :[ e's , Et`s
CL= 2e , Cc= z, '                                                             (5.38)

     Next, we multiply Eq. (5.36) by p and integrate about 5 and x over

the whole solid angle 4T and Vj, respectively. [Vhen we obtain

Z,i Ve d'gx - Z { Euv. ,i-1,, cs R]' + av;. (i-1•,, ct PJ,1

              v
+tV;L 95eO P.3•.` + 'il- VL Y!lv' P.ae.i} .

                                                             (5.39)

In Eqs,(5.37) and (5.39) we adopted the generalized first-flight

collision probabilities, lf an operator 2V;l is defined by
                             t'L                            -;R,ts(,,/n == ie' Se.V'Je,9 SrcRz A", (,.,,)

the generalized first-flight coilision probabilities are expressed

in the forms

P,O;. - 7e>g,e /a.e,

PY;• "= 3Nie],

                               . 149 -



 Pt2,l = 9 i(>tCta i,t4•i ,

 p,e; - -iili-- PY;• •

 R's - -:i-- p,}.o ,

  P3i = 9Nte /3.
                                                             (5.41)

Explieit expressions for them are presented in Appendix 5A.

If we put

 EpS ---3z"vi dti. , YJ =3Ei Vi dix, (s.42)

Eqs• (5.37) and (5.39) reduee to

yde = z (y,o ce p,:e . s7J c: p.g.o+ sl p,:•o +s;• p"; ), (s.43)

       .-       u
Ef'6I -- Z (.IR.O C9 ROel '.Sflv' CJ Pc',i 4' SLO Rii + S; PcZe' ), (s.i,L)

       "
where

 s:= Vl, ",O, sl= 'Vl" VSJ. (s.LLs)
We express Eq. (5.l5) by the sum of Dl and D2, where Dl and D2 corre-

spond to the first and seeond terms in the brackets in the eguation,

respeetively. Then the principal terrn Dl of the diffusion coeffieient

D is obtained from the definition in the form
 x

D,==-
lllf/l;ifl}di,,x.IItle. -{-itX<Jl-i!"J:/v3;,Ev'• (s.46)

        euThe well-known formula by Benoist is derived as follows. If we put
S9. = 6Eik, Sl = O (6ik being the Kroneeker dezta function) in Eqs.'

(5.43) and (5.44), and represent the solutions S'a' by Peekj, Eq. (5.46)

may be rewritten in the form
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D, = Z Vk PftO Pi;• /3ze ,

            ZVk 9i (s.47)
            k
                                                               llwhich is Benoist's formula, As easUy seen from Eq. (5.44), P
                                                               kj

                                                ee . Since wecorresponds to the first order contribution to P                                               kj

divide the cell system into many regions, which are denoted by

suffixes i and j in Eqs. (5.43) and (5.UU), the contribution of

infinite number of collisions of a neutron traveling from the k-th

region to the j-th region is taken into account for the calculation

of Pee ,
    kj

     In what follows, we calculate the additional term D2. The

quantity ex(F. n) satisfies the integro-differential equation

 ft• ?iat d.('r. &) tz e.(F, a) - fd&' z,(t a•.ft) e.(9. 5•)

                                             '  +." 9<"r. -?s'.) .
                                                                (5,U8)

                                                        .Integration of the above equation about the solid angle 9 leads to

Js .-b 6.gE2taL e.('r. a) - "'(F) -Zec dxe (9). (,,L,)

                                we obtainThen, from the definition of D                              2'

       Zl f( r,:, - re )( f; - z,. ai.)

                Zvr, g6,O (s.so)
                 .

Where ri+1 and ri are distanees from the center of a cell to the outpr

and inner surfaces of the i-th region.

     Next, we calculate the anisotropic difÅíusion coefficient D in a
                                                               x
square lattice. In the system, we ehoose the z-axis in the axial

direction and assume that e is the polar angle between the neutron
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  direction 9- and the z-axis, and ct is the azimuthal angle between the

  projection of es on the x-y plane and the x-axis. Then we expand

  d fu (", -3. ) , f('9. ft ) and Zs (F) ft' -> ft ) into the spherie al harmonics series:

  da (9,K)== 21I (HX )2 &,("OO) P.(cece) + 2 Eiil llSiL(H: )2

               n=O rt=t net
              .< aian),., .,t iiTZwt)da'• .ct} p.wt(cee e) ,

                                                                  (5.51)

  Åë( "r, a) - 2co (Hg )z yt CnOo) p. (cee e) 'f 2 Eil Ei (HT )Z

               ft=O 'rL=l M"f
             - { g(n''m)oe,) ,,. .c, + srS("2m)ha ,,,ot} P,,,"'t( ce<, e) ,

                                                                  (5.52)
                     co 2. ( 7. a' .a) = Z (HÅí )2 2," P. ( cee e') P. ( ceQ e)

                    nto

      oo xtL f 2 l2I >.'i ( H: )Z X," P.,,M ( csc e') P.n ( ceo e) cee xrn (ok - et ') ,

     n=1 wt=l
                                                                  (5,53)

  where HM has been defined in Eq. (2.12b). We calculate the quantity
         n
   - -) •t  dx(r,Sv , which satisfies the equation

e.<'r, a)=i,codR e- inVR{a. f(?: a) +JdftJ 2, ('x ft-.a)e.(7-. a•)} ,

                                                                  (5.5L)

  where stx = sinecosct. Substituting Eqs. (5.51)Av (5.53) into the above

  equation, retaining only the terms with n = O and l, and using the

  similar means to that used in deriving Eqs. (5.37) and (5.39), as well

  as the definitions

    o t(oOo)   Ef), ---•3 2i],V, (r, ,

                 : C:lt)   SpJ`' =: 3 ;I, 'Vl, <it, ,

   .seJ 'e == 3 i, v, e5 i') ,

                                                                   (5.55)
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we obtain the three equations

Yi -- Z { Y8 c8 P,eU,e t YVXc: P,';e t S?J}cL P.?'e

       L
          t s: py:.•o t st,x p,aJ.Jo + sie p,ixd,teJo} ,

if' e``= \. ( Sf'e cS Pe,1"+ Se;'ct R':,"` + ts'"cs p"e'"

          t S:. PY,X.'k t 5'.X. P,:,•k t sl? plidtN•iX} ,

tS',l• e = Z { Ef): c,O RO,1 '' i- s?,'t cJ R'`,.' i" t- .sf?Y' ci p !1' `}

       t
         -t- Sl R,"!'" -t- S5 R:.l•tt -t- s',i p,Et`i•t? } ,

where

sl . v;. stl,kOo) , slx ,. v, s15,("'), sle= 'v;, Åë,('Z').

                                '

Here we used the foUowing generalized first-flight collision

bilities:

   eeP"ci. :!tsY'ccit 1 ,

p,' g.'O .. 3 ,a"(,eAcr ,

P:i'O == 9 /,ts(Le nl ,

PY:,•iX = zl- p,2,.I.xJO

  txlT.1-(.Pce J == 97("(Le -Q:l `)-;,

P,OE•`" == -il- R?•O ,

P!el'O= 3 yA"(Le Ax .

  i`ci•1.0PtG =9ikhl`eAL-Q•tr

  OJ tX l              "-oPLe = ir Re ,

P3S'X == g pytdtuo,

  2X. tJCLPee == 9N;en3x,

P,' /•''?= p,tS,•i•X•,

)

(5.56)

(5.57)

(5.58)

  (5.59)

proba-

- 153 -



   1•u.j? PLi ri- 3Ncd -C>-%, PYI•"'i}= 9 7Yce -Q. ftZ7 ,

                i]C icr) I-Z    2x. I alRe ==L F)te ,

                                                                (s.6o)

Their approximate expressions are given in Appendix 5B. They have

also the properties:

  co
2 P,O'; - l ,

 i='

 #,., PIX}•O == ;., l)[,Xie = ]ll.il#., piZ:'O. ;,., pJeX.tl-t`

     ca oo be =Z Rill.''X = Z. RiX,.J'?= Z p,t;.'?Ji? == o ,

                               e"t    t't e=t
  ee coE P,'I.''K=: Z P,'j'`? =: i .

These relations can be used in order to calculate the probabilities

that a neutron born in a region undergoes its first collision within

the same region.

     Since the quantities Yce , YL'` and YY? have some symetries

about the x-- and y- axes as shown in Table 5.l, it will suffice to

           Table 5.l Symmetries about Yte , Y,nc and YL'V

--.• Quadrant
lt 2 3 u

S),e
+ - - +

yt,., + + + +

y3 + - + -

tAll the values of Y: , 9J` and YL'} are taken positive
 in the first quadrant
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treat the quantities only in the first quadrant. Then Eqs. (5.56)

xNv (5.58) reduce to

Es)60, - ;,, { s?,o, c,e Jp,,e,Ir -i- sf?,'f cs d:,?.,",ie t sl? ," cs vc?,`,1IO

          + S8, dCl.ej;.',e + Sl.f vt?.i,.:"O + sif dr 1,1`,'3•O} ,

                                                               (5.62)

Yil - Z < y,2 cei ?.?1.IX + y,fct re.it''X, yg: cs RJ;.:'x

        tl

           t S:i Rc,':'I` t Slf P..i]lk + Sti R',X,,`a''" } ,

                                                               (5.63)

 Yd'i" == 2 < Yc? Ct" Cli,l,,11'} + 9L`,`CJ 7Ill,I:.",''i t YY3 cl 2(?,',."i'}

         ;t

           ts:., ,p.xl'e+slf ,p,ll'e +slr ,p,,:.lvv} . ,g,,,,,

Here il is a point in the first quadrant and i2, i3 and i4 are the

syrnmetric points to il in the second, third and fourth quadrants,

respectively. Furthermore, in the above equations, the following

probabilities are used:

,"iL';i•'r- R7j,?, -- P,,:',', -- Rl';, +R:i,f, , (s.6s)

1(?Illt=: R`:1,1+RIX.1.?+R;.Xi.r+R;r;•7, • (s.66)

Al;•','= Pelti -- Pil?ir 'R;rei; ta RL3ei:, (s•67)

dA l.,U ,•'
,t  == P,lf,i: -- R:,:.)f -R,V.tl.: . R,i.")L,'7 ,

                                                                (5.68)

    ptlr,t txtvt                                       plvt                               lxie. t                      tX ltJt irCl.I,ii' = R,. d, + Ra.a, - Pu•tt - P" '• a, , (s. 6g)

where t denotes O or lx or ly.

     In terms of the solution of Eqs. (5.62)t"N• (5.64), the principal
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term D of the diffusion1

IIII]

   v

Ef)J`/3 2E L

D,
        lili VL

          v

where region i

additional term

        Z XL
          L

coefficient D
x

is calculated:

Dz nt

where x

  (oOo) J9u

is taken only over the first

 D beeomes  2
         '
 { v7c A("')- 2i. Y'LO/3 2L}

guadrant.

i is the

 Z vl. g!IL(oOe)

  "

x-eoordinate of the center

'

of the i-th

And the

   .reglon.

(5.70)

(5.71)
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g5.4 Numerieal Results and Conclusions

     In TabÅ}= S,2 the principal terms of the perpendicular diffusion

coefficient DL are presented for slab lattice cells eonsisting of a

moderator and a void channel. They are calculated for various total

cross seetions Z of the moderator and for various c (the number of
                      '
sec'ondary neutrons per coUision in the moderator). In the calcu-

lation we divided a moderator in a cell into 70 regions for the case

of isotropie scattering and 50 regions for the case of anisotropic

Table 5.2 Diffusion coefficient in slab ceU with void channel

                D,   Values of
                tseq
                 3

Isotropie scattering (mesh 70)

Åí
c o •98 o •999' o .9999 o •99999.....u.t-.-J

o .05 1 ,IOOOi 1 .IOOOI 1 .IOOO l .IOOO
o .l 1 ,IOOOi l .1000I l .IOOO l .1000
o .5 1 .1003ii l .IOOOl, l .IOOO l .IOOO
l.O
2.0
5.0

h
d

l.IOII
1.IOUI
l.Il91

d

;

1.1001
1.1003
l.IOI7

l.IOOO
1.IOOO
l.IO04

l.1000
l.IOOO
1.Å}O03

   Values of

Anisotropie

     D,
     A.
    3 <t- er>

scattering (mesh 50) v = l/3

zc O.g8 O,999 O.9999 O.99999

O.05 l.IO02 l.IOI7 l.I036 l.10Ul
O.1 l.Iooh l.1030 1.I042
O.5 l.1036 1.I060 Il.1061 l.1062
LO l.I088 1.IU2 l.I125 l.Il25
2.0 1.I219 l.I295 i1.l305 l.I305
5,O l.I613 1,1769 l.I819 l.I825

Thickness of void channel: O.5 cm
Thickness of moderator: 5.0 cm
c: scattering ratio in moderator
Z: total cross section of moderator
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seattering in the moderator. The thickness of the void ehannel and

the rnoderator are taken to be O.5 and 5.0 cm respectively.

                                                       D.     For the case of isotropic scattering, the ValUe )L./3 aP-

proaches 1.l as c approaches l (X is the mean free path in the modera-
                                 m
tor). For the case where c = l, the value of Di can be caleulated

                                                              (ll)
analytically, and corresponds to the homogeneous limit exactly .
                                        D,
!n this case the homogeneous limit of .)y./3 becomes l.l and this

justifies the present results. When there is absorption in the
                           Dimoderator, the values of ?t.13 become larger than 1.l and this

tendency is appreciable for large Z.

     For the case of anlsotropic scattering in the moderator, the

                                                )Y .
                                                      , where p istransport mean free path in the moderator is                                              /- c2a

the average cosine of the scattering angle and is now assumed to be

                      l >Ln1/3. The value D./(-y'1- .I)does not approach 1.l (value of homo-

geneous limit) when c approaches 1 unlike the case of isotropic

scattering. And this discrepancy from 1.l becomes larger for cAvl.

     In [Dahle 5.3 the principal and the additional terms D                                                           and D                                                                  of                                                         12
the perpendicular diffusion coefficient in slab cells are shown to-

gether with those ealculated by the usual approximate methods. They

are evaluated for various seattering cross sections in a fuel E                                                                 and                                                              fs
in a moderator Zms and for various thieknesses of the fuel 2t and of

the rnoderator 2.,. The average cosine of the scattering angle in

the moderator pm is taken as 1/3 and that in the fuel vf is taken as

O or 1/3. The total cross sections in Lhe fuel and the moderator are

assumed to be l.O and 2.0 cm-', respectively. In calcuiating Dl and

D2, we divided all latt.S.ee cells into 20 regions (U regions in the fuel

and 16 regions in the moderator). The quantity D. is evaluated
                                                  ISO
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      Table

"Å} ot al cross

Total cross

5.3

section
section

Diffusion coefficient in slab cells

 in fuel: 1.0 cm'i
 in moderator: 2.0 cm-'

+

i2 sl
2sza RÅ} a. Is

o.?,•

O.5
o.8
O.3
O,5
O,8
O.3
O.5
o,8
O.3
O.5
o,8
O,3
O.5
o.8
O.3
O.5
o.8

2.0
2.0
2.0
L5
L5
1.5
2.0
2.0
2.0
L5
L5
l.5
2.0
2.0
2.0
l.5

L5
I,5

2
2

2
2
2
2
l
l
l
l
l
1
1
l

l
Å}

l
l

8
8
8
8
8
8
4

4

4
u

4

4

u
u
u
u

u
4

o
o
o
o
o
o
o
o
o
o
o
o

1/3
l/3
1/3
l/3
1/3
1/3

D, Da D "ei Dlten• DZ,to,`e

1
L

o.266s
O.2671
o.2673
O.2358
o.2366
o.2386
O.2672
o.266g
o.2655
O.2395
o.2396
O.2397
O.2731
o.2764
O.2795
o.2438
O.2U71
O.2519

-O.l126 O.26oo
-O.I07U O.2607
-O.08171 O.2621
 o.o4og4 o.2328
 O.03393 O.23,38
 O.OIUIU O.2367
-O.073Ql O.2625
-O.o627U O.2627
-O.03561 O,2631
 O.OOU05 O.2362
 O.OO091 O.2369
-O.O0581 O.2382
-O.07Ul8 O.2667
-o.o6U2o O.2699
-O.03651 O.2751
 o.OO058 O.2397
-O.OOU97 O.2431
-O.O1516 O.2493

o.I706
O.I717
o.1756
O.I722
O.1735
O.I777
o.1742
O.I758
o.I798
O.l754
O.I770
o.I807
o.i742
O.I758
O.1798
O.I754
O.I770
o.I807

o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,

o,
o.
o,
o.
o.
o.
o.

2529
2537
2565
2271
2283
2318
2555
2567
2594
2299
2312
2344
2572
2601
2675
2315
2344
2414

     tZsf, Zsm are scattering cross seetions in fuel and moderator
                                          moderator                                 fuel                                      and      2J , 2.. are thicknesses of,
      uf is average cosine of the scattering angle in fuel

                         assuming that y = O and adopting the transportby the calculation of D                       1
                                                         l2cross section instead of the total cross section. And D                                                             and                                                                 D                                                        homo                                                                  homo

are evaluated by

Dha == i/<3it) , D,l),. = 1/(3Str)

where Z and Z                 are the homogenized total and transport cross sections       t              tr

averaged over a cell by weighting with the product of volume and flux.

     From the table, we can see that, in so far as the principal ternn

                                                              2Dl is goncerned, Diso is a good approximation for Dl and that Dhomo

underestimates the value a little. When we take into account the

additional term D2, however, the diffusion coeffÅ}cient DL = Dl + D2

shows a great change especially for a cell containing a fuel with
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large absorption ratio (ratio of absorption cross section to total

cross section). In such a system, Dl + D2 approaches the value of

                      . For a cell with small absorption ratio andD instead of D homo                  homo

with small lattice pitch, the additional term D2 is usuaUy smaU.

This is especially the case for a sy'stem containing a moderator with

absorption. This is based on the fact that, for such a system, the

neutron flux approaches flat over a cell and the current becomes small

and the D2 evaluated from Eq. (5.50) becomes smali.

     In Table 5.U the principal and the additional terms of the radial

                                                                 2diffusion coefficient are presented together with the values of D                                                                homo
for a square lattice. In a square ceU containing a fuel and a

moderator, the additional term has a significant contribution to the

diffusion coefficient espeeially for p = O (v = average cosine of the

scattering angle in the moderator). But the ratio of D2 to Dl is not

so large as in the slab cell. `Vhough the additional term does not

vary appreciably with v, this term decreases a little for large p.

The homogeneous transport approximation for the diffusion coefficient

      Table 5.U Diffusion coefficient in a square eell

        Total eross section in fuel : 1.0 cm'`
        1]otal eross section in moderator : 2.0 cm"i
        Scattering eross section in fuel : O.5 cm"
        Scattering cross section in moderator : 2.0 cmL`
        Fuel radius : 1.0 cm
        Lattiee pitch : 3,5 em

Average cosine of
scattering angle

1

l
1

Dl D
Li=::r:::E2-JiE!=.- "ny

 o
1/3
2/3

2•
D2
 homo

j o.
o.
o.

1936
26U8
4468

-o.
.- O'

-- o.

o3617
03309
o2839

o.
o.
o.

l814
2620
U559
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becomes good for the square cell.

                       (l5)                           , we treat the anisotropic diffusion coef-     In the next place

ficient in slab systems in a time dependent problem. In Table 5,5

are presented the values of the perpendicular dtffusion coefficient in

a slab lattice with absorbing fuel in the cell eenter. A ceLl is

composed of a central fuel region with thickness 1.0 em and the sur-

rounding left and right moderator regions with thiekness 2.0 cm re-

spectively. The total cross section in the fuel is taken to be 1.0

In the first 5 eases the total cross section in the moderator is

assumed to be 1.33333 cm-Å} and the absorption in the moderator is taken

to be zero and the scattering cross section in the fuel is changed

from O.3 to O.99 cnfS. In the foUowing 5 cases the absorption in

the moderator is taken into consideration. The total and scattering

         Table 5.5 Diffusion coefficient D` in slab cells

 -icm .

Znt Zfs z"sli Benoist

DlD2 Dl Deniz limit
Hornogeneous

l.33333 O.3 1O.2838-o.lo82 o.1756 o .23U7 o
. 2702

l.33333 O.5 l,33333 IO.2804-o.o84g2 O.I955 o .2U66 o
.
2692

l.33333 o.8 l.33333 l•O.2722-O.03779 O.234U o .263U o
.
2666

1.33333 O.9 1.33333 ;o.2682•-O.Ol907 O.2U91 o .26s6 o
.
2652

1.33333 O.99 l.33333 o.2619 o .2637 o
.
263U

1.5 O.3 LO O.3535 o .3803 o
. 3753

l.5 O.5 LO O.37os--o.r.oLxt6' O.3705 o .3705 o
. 3703

l.5 o.8 LO O.3305O.o4o46 O.3710 o .299U o
.
3538

1.5 O.9 LO O.31U8O.o4182 o.3s66 o .2618 o
.
3L46

L5 O.99 LO O.3003O.o3s66 o.336o o .2278 o
.

334•6

Total cross section in the fuel: l.O emL'

   : Total cross section in the moderator (cm'DE
 mt '
Zfs: Seattering cross seetion in the fuel (cni')

Zms: Seattering cross section in the moderator (cm-')

Fuel thiekness in a eell: l.O em
Moderator thiekness in a cell: U.O cm
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cross sections in the moderator are taken to be 1.5 and l,O cm-t,

respectively. The scattering cross section in the fuel is changed

from O.3 to O.99 cm-i. For these 10 cases, values of the perpendicular

diffusion eoefficients Da by Benoist are eompared with those by Deniz

and homogeneous approximation in the U'x"8 columns, It is seen from

this table that if the absorption both in the moderator and the fuel

are small, the value of Di frorn the Benoist formula is similar to

that from the Deniz formula. When the absorption in the fuel

increases, the difference between the values from Benoist's and Deniz's

inereases even if the absorption cross section in the moderator is

zero. Even in these cases, the values from the Deniz formula are

closer to those from the Benoist formula than those of homogeneous

limit. If only the prineipal term of the Benoist formula is taken

into account for the calculation of DL , the values based on the Deniz

formula are superior to those based on the principal term of Benoist

in order to express the leakage rate of neutrons. When there is

absorption Å}n the moderator (last 5 cases), there can be seen a large

differenee between the values of Di from the Benoist forrnula and those

from the Deniz formula even if the absorption in the fuel is negligible.

In these cases, the homogeneous limit of Dt is much closer to the values

from the Benoist formula than those t'rom the Deniz forrnula. Then

the values from the Deniz formula are not desirable to adopt for the

calculation of Di in such a case.

     In Tables 5.6 and 5.7 are shown the eigenvalues ct/v for various

scattering cross seetions in the fuel, which are adopted in the ealcu-

lation of Da. i-n [Pable 5.5. Mihe self-shielding effect on ct/v by the

fuel is seen when the absorption in the fuel becomes large.
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Iiable 5.6 Values of the decay eonstant

Total cross section in the
Total cross seetion in the
Scattering cross section in
"Lhiekness of the fuel in a
Thickness of the moderator

fuel: 1.0 cm"
moderato] : 1.33333
 the moderator: 1.
cell: l.O cm
in a celi: 4.o cm

 cnfi

33333 em

Scattering
inthe fuel

cross section Decay eonstant (ct/v)

o .l o .o748o
o 2 o .07141
o .3 o .o67U5
o .4 o .o6276
o ,5 o .05713
o .6 o ,05028
o .7 o .o4181
o .8 o .03117
o .9 o ,Ol758
o .99 o .OO197

Table 5.7 Values of the decay constant

[VotaL/ eross seetion in the
Total eross section in the
Ecattering cross section in
Th•iekness o.f the fuel in a
"ihickness of the moderator

           -Jfuel: l,O cm
moderator: l.5 cm-f
 the moderator: 1.0 cm"
eell: 1.0 cm
in a cell: U.O cm

Seatteringcross
inthefuel

section Deeay eonstant (ct/v)

0.1 o. 5519
O.2
O.3
o.4
O.5
o.6
O.7
o.8
O.9
O.99.

l
i

/

I

i

O.5U23
O.5311
O.5]70
O.5000
o.4782
o.Uzag6
o.4138
O.3700
O.3239
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     In Table 5.8 the values of DL from these three methods are

presented for slab cells with central void region instead of the fuel.

The geometrieal arrangement and the cross sections in the moderator

are the same as those in Table 5.5. In these cases, the additional

term of Benoist's formula is very small and the very good agreement

between the values by Benoist and Deniz can be seen. The values by

the homogenized method slightly overestimates the value of Di .

     In eonÅëlusion, the value from the Deniz formula(experimentally

determined anisotropic diffusion coefficient from the pulsed neutron

technique) approaches to the value from the Benoist formula if the

absorption cross seetions in the fuel and the moderator are small,

Table 5.8 Diffusion coefficient DL in slab cells with
       void regi,on

ZV5 Dl
Benoist

D2 Di Deniz Homogeneous
limit

o .OO03 O.3100 -o -3.Ill3xlo o .3100 o .3101 o .3123
o .OO05 iO.3103 -o .8012xto-" o .3102 o .3103 o .312U
o .ooo8 'O.31o6 -o •2929kto" o .3105 o .31o6 o .3124
o .OO09 O.3106 -o .1618xld' o .3106 o .3106 o .312U
o .OO099 O.3107 o •7989,to'` o .3107 o .3107 o ,3124

Z : Scattering cross seetion in the void region (cm't)
 vs
Total cross section in the void region: O.OOI cm-t

Total cross section in the moderator: l,33333 cm-i

Scattering eross section in the moderator: l.33333 cm-i

Void thickness in a cell: 1.0 cm
Moderator thickness in a cell: U,O cm
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                         Appendix 5A

        Generatized Collision Probabllities in a Slab Cell

    We use the foUowing symbols:

 L: thickness of the i-th region

 A iS.s; opticaZ thiekness from the i-th region to the j--th region,

      including the both end regions i and j

  N : number of regions in a ceU

      ooThen P.. whieh eorresponds to the usual first-flight aollision proba-
      IJ

bility is expressed by

ROe'O
 == ',sl, g, f,idA ]x (im e- 2;e" )(l fi e tte')

                         "Y tV i"Y      . { c- zA2'ptLtt.d-i t e Z2i,L-it i2ert.N } / (t .. {{ii• Zi"N ) ,

                                             (for j> i) (5A,1)

RF'O == t - -iii + g,',, f,a,#," { e- ES2tt <i v e- ii2" )i eH ifi'.',,N:2`eL/(/-e\tJ" )} ,

P,eeo

.

The

Ru,e

  LoPc6

Pv3D

 = il, 92", Pe2•a ,

          IOquantity P..            becomes
          IJ

='

 -2'S'ttT. f,aMz (i-

          l'N.         ZLeti.6-"1 -  '{em-'"7'a" -e

         '

== o
      )

.,.
 - E z- e: j2.-f,." PSLO ,

e-ffT xCL)<i

S)9. i,t., t ÅíSL +.l.N

   -

   -{,A

-e-
)/(/

)

e

(for

(for

zliz.t,N

 *

(for

(for

(for

.J=

'J<

),

j>

j=

j<

i

i)

)
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(5A.2)

(5A.3)

(5A.4)

(5A.5)

(5A.6)



             20 The guantity P..                beeomes
             IJ
                t EL aL E,F I} P.2•GO =- i-29,z, Iai .`t3 (/- e-"Ja'- )(i-                                     e pt )

               OA       .{ e- iN",2tt-`'Ld-' -t. e 2f][''`',iat Åí2+"'N} /(/- e- i.,a,!"N ),

                                          (for j> i) (5A
                                                   A                                                   ZÅíb" - 2tPL
P,Z60- 3 (l- "ip,)+ ,,9., I,aF "3 (e- -tt2Lt(l. e- :;'L )z -tr..L+8F

                                          (for j= i) (5A

p,t.o--s-11-,g'-tt. p,zs,

                                          (for j< i) (5A
                 21And the quantity P                   becomes                 ij

RZ
i :'- -,- ,9il,- P-g <i - e- -tt2L)(1 -- e- \+ )

               OAA      . ( e-- ttttt)}- . e- tti "`')' Z"""'N }/(/-e-i-.g,.=i'r"- ) ,

                                          (for j> i) (5A

PiGi = o ,

                                          (for j= i) (5A

p,k.`---:,li.-S--,2-.-- P,i! .

                                          (for j< i) (5A
other quantities p91 and p- are calculated by the relations in

                 IJ iJ
Eq.. (5,Ul).

7)
1
>
,8j

•9)

.10)

.11)

.12)
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                      Appendix 5B

        Generalized Collision Probabilities in a Square Cell

                                             (i -j), for conveni-    In the ealculation of the probabilities P..
                                          IJ
ence, we assume that the neutron starts from the center of the i-th
                                                             (6)
region and reaches the center of the j-th region. Then we obtain

PvO: -- -itt"'//,a KLi(-{i;}), (5Ls'.1)

p:Xe,'O  .,. -i-Vdi' i-2-
,,s ,t- .>

s(li;,GNX") KL2<-Ct6), (sB.2)

p:,vro= .E'i.mtti-tr-ri(--1Åí)\.{Il- 'ti•) Ki2 <z•ti), (sB.3)

                      zp,' ,Xf,'iX  .. S--tt--i,.'--diieg-i{-s-ii.-'`L) KL3(-ULa),

                                                          (5B.4)
                              '
 P,je,cr''X= 3Vti1 2'`' (i/' E;s(.,ie.)(Ze-Vi) KL3(T"ei)' (sB.s)

 p.is•t'e ., i..IY-ltr/.//,e.ill...ls• ?U-l//-'- 'i}`)2 KL3(ria), (sB.6)

                       3 p,ll,)it= E.r..I.Yi.,-'ni..aN,-,g-//di.1-//X") KLkCT-a), • (sB.7)

 pex,Jiif .. 9Ve Ee.z<]X,};,(tlii)2(e}-'8;) Kt"(C`e), (sB.s)

                              z p,'stt`e•'e= --..m9anIYglk(-.i.T//S-JJ-?-I,///)(tie"V;) Ktg('Z"td) • (sB.g)
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(l)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(l2)

(13)

(IU)

(l5)
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SumIARY

cHAp!rER 6

 A[ND CONCLUSIONS

     ']"he purpose of this thesis is to improve the collision probability

metihod and to apply it to various lattice systems. The fundamental

assumptions included in the usual first-flight collision probability

method are as follows:

    (l) isotropic scattering in the laboratory system,

    (2) isotropie source distribution,

    (3) flat flux in each region.

All these assumptions were removed in Chap. 2 by introducing a general--

ized first--flight collision probability. Thus the method has been

made to permit the treatment of the neutron behaviour in a fast energy

region, where scattering shows remarkable anisotropy.

     Usually it js assumed that the real boundary may be replaced by

a circular one Wigner Sei.tz ceU method. I]his assumption,

however, beeornes inadequate for tightly packed lattice cells.

The improvement on this assumption was performed in Chap. 3 by extending

the multiple coUision probability method. Thereby the effect of

the cell boundary for arbitrary polygonal cells upon the flux distri--

bution could concisely been taken into account through an extended

                                                                  'Dancoff sfactor.

     Chap. L was devoted to the applications of the usual first-flight

collision probability method to the flux calculations in eluster
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systems, in finite systems and in an isolated resonance energy region.

     In Chap. 5 the anisotropic diffusion coefficients were calculated

by using the generalized first-flight eollision probability.

     Concerning the integral transport theory, there remain some

problems, Some important problems are

     (1) the treatment of complicated three-dimensionai systems,

                                                 '     (2)            the calculation of the neutron spectra in terms of appropriate

            group constants,

     (3) time dependent problems.
                                                 '
     The calculatien of the first-f]ight collision probability in

three dimensional systems requires a iarge amount of eomputer time.

In more complieated systems than the finite systems treated in gU.3,

the synthesis method seems to be most promising. Usually the

synthesis method is used for the integro-differential transport

equation. Its application to the integral transport theory will make

it possible to treat a highly heterogeneous three--dimensional system.

     The extension of the methods included in this thesis to the

multi-group theory is easily done if the group constants or the neutron

cross sections are known. [Vhese constants are, however, still

dependent on the neutron spectra. Usually they are obtained itera-

tively; first, the neutron speetra are caleulated by using approximately

ehosen group constants, and then, group constants are recalculated

from the spectra obtained and so on. This proeess is very trouble-

some. Therefore, appropriate choiee of cross sections, for example•

by a variational method for the integral transport theory, is needed.

     Treatments of the time dependent problems are necessary for the

study of the pulsed neutrons as well as the fuel burn-up. If only
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the asymptotic mode of neutron behaviour in time is needed, the

problem is reduced to that of obtaining the eigenvalue in homogeneous

equations in which the first-flight collision probability is included

as in g5.2. If the neutron cross sections change with time, the

problem beeomes very complicated and some approximations, such as the

synthesis method, are required.
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