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CHAPTER 1

INTRODUCTION

The study of neutron behaviour in cell systems in nuclear reactors
is very important in the determination of the critical condition.
The equation which represents the neutron behaviour is the so-called
Boltzmann equation. The equation may be written in two forms; one
being the integro-differential equation and the other the integral
equation.

The integro-differential equation has been treated by many authors
both exactly and approximately. Exact treatments of the equation

1)

have been done by Case et al. using the singular eigenfunction
expansion method or the Fourier transform method, although they are
limited to slab systems and cannot be adopted in practical problems.

(2)

And on the other hand, approximation methods such as the Pn method s
the Sn method<3) and the Monte Carlo method(h) have been exploited

and used in the calculation of the neutron flux for several geometries.
The application of the Pn method to a highly heterogeneous systemn,
however, has some limitation because the method requires many terms

of the Legendre polynomials to express the neutron flux with strict
accuracy. The treatment of such a system on the basis of the S,n
method requires a large number of mesh points to express the fine

structure of spatial distribution of neutrons. In the Monte Carlo

method, the transport equation cannot be solved in a reasonable time
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even with a high-speed computer, because the cross section varies in
a complicate manner with neutron energy and the system itself is
very complex in the geometrical arrangement.

On the contrary, the integral transport equation yields a better
approximation in a highly heterogeneous system though it cannot be
solved exactly. This comes from the fact that in the integral
transport theory the boundary condition at interfaces between two
different materials is unnecessary. An approximation in the integral
transport theory has become known as the collision probability method.
In this approximation, there are two procedures of treatment, the
first-flight collision probability method and the multiple collision
probability method.

The first-flight collision probability was first introduced by

(5)

Chernick for calculating the resonance escape probability in 1955.
This method has since been used in reactor cell calculations, the
most successful application being found in the calculations of the
fast-fission factor(6) (7)

escape probability(S). In 1963, Leslie

, the thermal utilization

(8)

, and the resonance
combined the first-flight
collision'probability method and the diffusion theory to obtain the
thermal spectra in lattice cells with large moderator regions.

In 1964, the anisotropic diffusion coefficients in lattice cells were

calculated by means of the generalized first-flight collision probability
(9)

introduced by Benoist .

On the other hand, the multiple collision probability was first

(10)

derived by Stuart in 1957 to obtain the blackness of a fuel rod.

Since then the method has been extended to multi-region cell problems

(11),(12) (13)

by Amouyal et al. and Miller . It was also adopted to



calculate fast-fission factors in more heterogeneous cluster systems
by Rognon(lh). Mayer(lS), in 1968, improved the method so that
it could be applied to the neutron shielding problems.

The difference between the two collision probability methods cémes
from the use of different types of transport kernel of neutrons.

In the first-flight collision probability method, the system under
consideration is divided into some regions in which the neutron cross
sections are constant. Thus obtained is the probability that a
neutron born isotropically and uniformly in one region undergoes its
first collision in a given region. This 1s called the first-flight
collision probability. By using this probability, the average flux
in each region may be obtained from simultaneous equations. In the
multiple collision probability method, the neutron currents at each
interface are connected by the multiple collision probability.

This is the probability that a neutron injected in some region through
a boundary escapes from the region through one of the boundaries after
some collisions in the medium. In general, the multiple collision
probability can be expressed by means of the first-flight collision
probabilities.

The both collision probability methods are powerful in the
treatment of cell problems or shielding problems. In the collision
probability methods, however, several basic assumptions are included.
Some of them prevent the methods from being applied to the analysis
of fast neutron behaviour. In this thesis we will improve the
coliision probability method by removing the basic assumptions mainly
in the first-flight collision probability method, and extend the method

to apply to various problems. Since the energy deperdence of the



neutron flux may be treated by dividing the energy range into many
groups, the treatment in this paper is mainly concerned with one-speed
problems. The extension to the multigroup theory may be done

directly. The basic assumptions included in the first-flight collision
probability method are the isotropy of neutron scattering and of source
distribution and the flatness of neutron flux in each region.

In order to remove these assumptions, a new definition is proposed
for the first-flight collision probability in Chaptef 2 so that it
takes into account the effects of anisotropic scattering and of the
spatial change of flux distribution in each region in a cylindrical
cell, This probability is obtained by expanding the scattering
kernel, neutron angular flux and source term into spherical harmonics
series about the neutron direction and then the neutron flux into a
Legendre series about space coordinate, Making use of the new
reciprocity relation and the conservation law, we introduce the
probability applicable to a lattice system under the condition that
all neutrons impinging on the cell boundary should reflect, with
isotropic distribution, back into the original cell. In §2.3, the
effect of the linearly anisotropic scattering in 2-region cells is
studied particularly in detail under the assumption that all the
components of neutron angular flux (flux and current etc.) are constant
in each annular region. The assumption of the flat current, however,
is not so good as that of the flat flux. This is based on the fact
that the neutron current shows a large variation when it goes through
a lattice cell, because of the strong neutron absorption in the fuel
rod. In §2.k4, the approximation of the flat flux and flat current

in each region is improved by expanding the angular flux in a Legendre



series about the space coordinate.

Up to this point the cell boundary has been assumed to be circular
(according to the Wigner Seitz cell method). However, in practice,
the configuration of the cell boundary is polygonal (square, hexagonal
and so on). It will be possible to estimate the difference from
the exact boundary condition (effect of the lattice configuration)
if we divide a cell into a large number of two dimensional regions
and calculate the first-flight collision probabilitiés among the regions.
The evaluation of the probabilities in two dimensional system, however,
is very complicated. Moreover, the analytical expression of the
effect of the lattice configuration is impossible to make in such a
method.

In Chapter 3, the lattice configuration is treated analytically
by using the multiple and the first-flight collision probability methods.
In the first place derived is the analytic expression of the mono-
energetic disadvantage factor in polygonal cells containing 2 regions
(fuel and moderator). In view of the lattice configuration, an
extended Dancoff factor is newly introduced. This factor is defined
as the probability that a neutron escaping from a fuel rod makes its
first collision in other fuel rods when all the materials are replaced
by the moderator. In the fuel rod the blackness of the rod is used
to express the flux depression as in the paper by Amouyal et al.

Thus the effect of the lattice configuration is represented analytically
by two factors. Then, we extend the method to multi-region cell
proﬁlems by adopting the balance equations of neutron currents on the
boundaries of each region and by obtaining the multiple collision
probabilities through a variational technique. Finally a study is

made of the effeet of anisotropic scattering on the flux distribution
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in square cells whose moderator region is thin. In the study we
divide the cell into many mesh regions as in the THERMOS code(l6)
and calculate isotropic and anisotropic transition probabilities among
these mesh points.

In Chapter 4 we apply the first-flight collision probability to
the calculation of flux distribution in lattice cglls. In §4.2 the
first-flight collision probabilities in a cluster system are obtained
and the flux distribution in the system is calculated. The direct
calculation of the first-flight collision probabilities in highly
heterogeneous systems is very complicated and time-consuming, then
approximations are required. In the present method both the collision
probability in an annular system and the transition probability for a
neutron escaping from one subcell to the other are calculated and
combined. In §4.3 the effect of finiteneass of cell systems in the
axial direction on the flux distribution is studied. The modal expansion
method is adopted for the neutron distribution in the axial direction.
Then derived 1s a kind of first-flight collision probability which
includes the modes in the axial direction as a weighting function.
This probability is calculated in slab and cylindrical cells, from
which the flux components in the horizontal direction are obtained.
In §k.4 the neutron spectra and the resonance integral are obtained
analytically in a 2-region cell containing fuel and moderator.

In Chapter 5 the anisotropic diffusion coefficients are calculated
by the improved first-flight collision probability method for slab and
séuare lattice cells with use made of the Benoist formula. In'

utilizing the integral transport theory, only several collisions

suffered by a neutron have hitherto been considered. In this chapter



we take into consideration the effect of an infinite number of cocl-
lisions of a neutron by solving simultaneous equations. Further, we
consider the anisotropic scattering by means of the generalized first-
flight collision probability. Then we estimate the fundamental and
the additional terms in the Benoist formula. We will also discuss
the difference between the experimental and theoretical values of the
anisotropic @iffusion coefficients.

In Chapter 6, the summary of the previous chaptérs is presented.
Furthermore, we will discuss the possibilities of egtension of the
collision probability method to a complicated three-dimensional system,

a multigroup theory and time-dependent problems.
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CHAPTER 2

IMPROVEMENT OF THE FIRST-FLIGHT COLLISION PROBABILITY METHOD

§2.1 Introduction

Various characteristic factors of a cell have been calculated with
the use of the first-flight collision probability based on the assump-
tion of isotropic scattering in the system. In practice, however,
appreciable anisotropic scatterings occur in the moderator or coolant
composed of light nuclei. In addition, the heterogeneous structure
of a system causes an anisotropic neutron distribution. One of the
methods to take these effects into account is to use the usual transport
cross section instead of the neutron cross section included in the colli-
sion probability calculation. The adoption of the transport cross
section is, however, valid only when the anisotropic scattering is
repeated infinitely in a homcgeneous medium. The use of a generalized
first-flight collision probability that includes the effect of anisotropic

(1),(2)

scattering has already been introduced by Takahashi in a cylindri-

cal cell. In the method it was assumed that flux and current are
constant in each region in the system. Furthermore he assumed that
a neutron reaching the cell boundary undergoes perfect reflection as e

(3)

did for the problem of isotropic scattering For a lattice with a

rather large pitch, this assumption would appear to be quite wvalid,
but it is not the case for a closely packed lattice. In such a case

(L)

the isotropic return boundary condition is proved to be rather good .



Before we perform the improvement of the first-flight collision
probability method, in §2.2 the basis of the method is described briefly.
In §2.3 we will extend the problem to include the anisotropic scattering
and introduce a new type of first-flight collision probability with a
detailed example of a two-region cell. This probability can be
derived when we calculate the flux originating from a source with cosine
distribution in the radial direction instead of the Cartesian axis
directions used in Benoist’s theory(s). In the probability the finite-
ness of anisotropic collision number in some regions and the direction
of neutron path after anisotropic scattering were faken into account.
Moreover, it satisfies both the usual reciprocity relation and the usual
conservation law.

The assumption of the flat flux and the flat current may be improved
by the increment of the number of partition. Nevertheless the improve-
ment is very slow for the calculation of the effect of the anisotropic
scattering. This is due to the fact that, from Fick’s law, the assump-
tion of flat flux in a given region is contradictory to the assumption
of flat current in the region. Furthermore, different from the case
of calculating the average flux for isotropic scattering, it is difficult
to determine the way how to divide a cell for the case where we calculate
the effect of anisotropic scattering since the current shows appreciable
change through the cell. Brun and Kavenoky(6) studied the anisotropic
effect using the conservation law which relates the flux and current,
but their method was limited up to the linearly anisotropic scattering.

Therefore, in §2.4, we will take account of the spatial dependence of
the neutron angular flux in each annular region by expanding it into a
Legendre series. This is an extension of the method for a slab system

(7) (8)

by Corngold and Carlvik to a cylindrical cell.
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In §2.5 the effect of anisotropic scattering on the flux distri-
bution is evaluated numerically in cylindrical lattice cells both with

and without the assumption of flat flux and flat current.
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§2.2 Basis of the First-~Flight Collision Probability Method

In a steady state the neutron angular flux ¢(?,JK,E) at position
> along direction 5 with energy E satisfies the integral Boltzmann

equation:

(2.1)
>
where R is the distance between points * and ?', §¢ is the directional
. > » [ S . .
vector given by 3 = (r-r°’)/R, 2R 1s the optical distance between
. > > < > . . .
points r and r', Zs (Y, (’> < ESE) is the scattering kernel at point
' from direction 5’ at energy E' to direction 5 at energy E, and
> -4 . . > . . 2
S(r', 2, E) is the neutron source at point r' along the direction Q
and with energy E. In the above equation the induced fission by
neutron is neglected though it might be included in the scattering
kernel. At the beginning we assume that the scattering and the source

are isotropic in the laboratory system:

> ’ I >
3 (Y &3 ,E>E) = — 3 Y:E>E
: 2 ) (2.28)
I
S(H&, )= 4 S(HE).
(2.2b)
By integrating Eq. (2.1) over the whole angle of 5, we obtain
-> « —I’E ” ’ > ’
(Y s):J-ﬁ% faR € [S(F:E)Jrfdz'zs(?:ew)rﬁ(r:E)]
#x 6 o ’ (2.3)

where f(?,E) is the neutron flux at point T and with energy E, and

is defined by

gV E) =j¢ﬁ p(F &, E)

¥

(2.4)
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In the next step the system under consideration is divided into
several regions so as the neutron cross sections to be regarded as
constants in each region. There the neutron flux $(¥, E) is assumed
to be constant and in the i-th region, for example, it is expressed
by #.(E). Integration of Eq. (2.3) about 7 over the volume V, of the

J

J-th region making use of the relation A% = R*dRdA  1leads to the

equation

3

Z&(E)'V; #’&(5) = Z Pv& (E)V., {SL(E) +J‘dE} S (E>E) (#L(El)}
¢ ° (2.5)

where ZJ(E) is the total cross section in the j-th region and Pij(E)

is the first-flight collision probability defined by

2 (E) >, > / —;-T{
R.eE) = _L——jdr Jdr e .
¢ V. w Ji #1T R* (2.6)

In Eq. (2.6) the ranges of integration about ¥ and 7' are over the

volumes of the j-th and the i-th regions respectively. The energy
range is divided into multi-groups. The average flux in the energy
group g is denoted by ¢f . Then from Eq. (2.6) we obtain the

simultaneous equation
T - ¢ P &’»s}
B ZIV fF= ) R VVZAEa,{Sn, St+ g¥slt}
v ¥ (2.7)
where aEy and AEy are the energy widths of the groups g and g'
and Zig” is the scattering cross section in the i-th region from
group g' to g, and is defined by
jds’jas .5 (E2E) $(€)
3 3
f dE" §, (&) ' (2.8)
8/

Equation (2.7) is the basic equation in the first-flight collision

§ ¢
Zis =

probability method. In the following section we will show that the

assumption of isotropic scattering, Eq. (2.2a), can be removed by intro-

- 13 -



ducing a generalized first-flight collision probability.

§2.3 Effect of Anisotropic Scattering<ll)

The neutron angular flux ?(?,R,E) is considered in a cylindrical
cell with infinite axial length. The direction 1 1is expressed
by two angles 6 and o as shown in Fig. 2.1. |

We expand the angular flux 15(?..?1. E), angular source § (?.E..E)
and scattering kernel Zs(?,_&aﬁ)s'a g) into spherical harmonics series

about angles 6 and a(lg):

> _ = - n,m > m o>
$(F.3.E) = nZ ) PR EY Y (A) (2.9)
SFae =) > s"™Ee Y, (@, (2.10)
MNed m=-n

p

Fig. 2.1 Coordinate in a cylindrical cell



ZS(?’ _?):—)_?)_ EI'?E) =

’

M (RE-E) Y (R) Yo (&)

™e
™1

ket (2.11)
- m o, m m “m R
vhere Y M (&) = HY Bl(we) €7, (2.12a)
H™ = Gat+i)(n-m)!
n TR (nrmdl (2.12p)
The average cosine of scattering angle U 1s obtained by making use of
Eq. (2.11):
[la& 5 (F A- &, g7E) (X 4) s
~ 4R =
M= 58 ’

j 43 3, (VAR EE) (2.13)
#

Since we are dealing with an infinitely long cylindrical cell, there
remain in Egs. (2.9)~(2.11) only the terms of which n+m is an even
number. The transport equation (2.1) may be rewritten in the fol-

lowing form:

_ZR
S > e d >, >
(¥ 3R, E) =jdr*jdn’ R S(R-" S (-2

»
A S, e +JdE’JaFf BB (F A& E’->E)} ,
¢ T (2.14)
where ji*: (?~-F)/[?-?4, the vector along the neutron path.
Substituting Eqs. (2.9)~(2.11) into Eq. (2.1L4), multiplying by Yj‘*(?x),
and then integrating over the whole angle of J%. , we obtain the fol-

lowing equation for ¢n,m:

PR (T E) = iz jd?'

‘=0 Mm-w

éi} [ IS mo o
R Yoo (& Y,‘, (%)
{ ™) +JdE’ B (FEy IT(F, E’—»E)} _

0 (2.15)

In order to make the anisotropic mode of collisions at the both ends

of a neutron path explicit, we represent ii*’s in both spherical harmo-
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nics functions by the angles defined at ? and 7' respectively; azimuthal
angles o and o' are measured from the radial lines at the points T and
7' respectively (see Fig. 2.2), so that Y,"(A" at o and Y (@Mat o' have
not the same expression.

If we transform ¢n,m to

fiio

Hn > (2.16a)
m - n,-m
(L) ™™ 4 (=) P™
pramd = 2 T s (2.160)
(lm \ ¢fn,,lm_ (_/)m *ln,-'m
piomt o= L 2 A > | (2.16¢)

and use the correspondents for Sn’m, we obtain the following three

equations:

Fig. 2.2 Directions of a neutron motion at r and r'

- 16 -



P, (wo o) o
.<P%M(W49)Wmd\ Ho ){ <M)(r E)+jd§f(n)(?f)2 (r, E-»E)}

P (ced o) din md

?

«

F3Y g

Nn=o0 W=t

P (wae’) 2 a m's’

P, (wae) (l )
| PR (wo0) wo ma |(Ho ){ ST e + 4575 (re)z“(?s-ns)}

P (wa) .em md

t+ Zmi Jdr _ZR P“”,"'(cooe’)zmwek’

w0 wm'=y

AN : " L)
| P™ (e 0) oo mak (Hlfl)l{s(“"'g(?; e)+ﬁe’ P ey 2N e@e)}
P (c006) tin m& :
(2.17)
In this equation, )5(;") s _55("1"‘) and 75("1"") are real and have clear
physical meanings. For example, ¢(§°)(7.E) corresponds to the scalar

flux at point ?, ¢('A’)(?,E) to the radial current and ?5('2')(?15) to the
rotational current around the z-axis. The heterogeneous system is
divided into many regions and it is assumed that 75("89) . ¢("l"”‘) and
75(7%'”\) are constants in each region. In the i-th region, for exa.mplé,

° ! 2
they are expressed by 565(“) s 5'5L (nm) and 7%("""‘) respectively. We

introduce an operator }f;& defined by

M. v = —Zifd?’jd? o) y
o Voly, A R* ‘ (2.18)

Using this operator the following generalized collision probabilities

- 17 -



are defined:

0 3o ( (D (2)
Ul - i, B PE “(ano) (ma

s s (2.19)
) ? "‘; m &) n I |
"¢ ammd /(5 o0)
o) (3) o » °
P( é‘ (?x)3 = 2(He ). B (uoe) P(”)(oooo),w'\'m’w (to;'"ldx
¢ ¢ » A Mok (2.21)

By using Egs. (2.19)A(2.21), Eq. (2.17) is transformed to

5, ;é(n (J(E) _XZ [R‘“"’)"*(n)){sf:"’)ce)

b [e 460 53 e »Ed} + Z Pf“’”‘)"’( U) {5‘“"( >+ﬁs’ 4

LE Y]

’,

n' 2, (i’)' 2 » 2, ,
X (E,_)E>} + Z Pf;“bg (.;)5{50'(“)(:” dE ﬁ"‘l”zio 5 (e E)}]
m'=t A
(2.22)

where N is the total number of regions included in the system, and

’

I75 is the scattering cross section of order n' in the i-th region.
If we assume that the scattering as well as the angular distribution

of the source are isotropic, Eq. (2.22) reduces to the same equation
(:0) > (ooo)
i3
collision probability Pij'

as Eq. (2.5) since P corresponds to the usual first-flight

We now consider the case where the scattering is linearly aniso-
tropic (n = 0, 1 in Eq. (2.11)), and the rotational source is zero

2
(s{»m)= 0) in Eq. (2.22) within the limit of the one-velocity theory.

Since P (JW“) (ﬂO), (""’ ) ("‘ﬂ-) , ("l’ ) ('rvm) and P! () 2> CAm)

ij 11 1]

1
in a cylindrical system, only f}“)and ﬁ<”) remain in Eq. (2.22).

disappear

So we obtain

- 18 -



5T 93}((:’0)= ZN [R&(ﬁmcm (560 + 15 P )y,

+ R&‘(l'n)')(ooo) { S.‘,(”) + Z:S 9%’(”)}%] ’
(2.23)

Zc‘m t‘»(l'l) = i [ p‘(.&)‘)("l) { SL(&) + z:s‘ ﬁ‘.(&) }Vu

L

L=
! ! '
R&(u)a(ll){ SL(”) + Z:$ 56{,("‘)} V«.] ' (2.24)
It can be concluded from the above equations that four kinds of proba-
bilities are necessary for the study of the effects of the forward
scattering in a cell.

For simplicity we treat a cylindrical cell composed of two media
under the assumption that scattering is isotropic in the inner region 1
while anisotropic (forward) scattering occurs in the external region 2.
An extension to the case of multi-region cells can easily be done.

If the distributions of sources are isotropic in the both regions

( SLU'J = 0 ), we obtain from Egs. (2.23) and (2.24)

(o) = ) o 2
2V i‘ = Z P::L ( So( T 2 55;( >>V¢

iz (2-253-)
where
(fo)> (D Z;-s P () ($o)
Pt - P(o"o)»(é’o) ‘2 Zis a2y
"¢ ‘¢ GO () 3
/| = PF. = (2.25b)
225

Thus, the problem of anisotropic scattering in the moderator can be
treated with use made of the new type probability Pig in place of the
usual probability Piggo"(&)for isotropic scattering. The second term
on the right-hand side of Egq. (2.25b) represents the probability with

wvhich a neutron born in the i-th region with an isotropic distribution

repeats its anisotropic scattering in region 2 and, after anisotropic
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escape from the region 2, collides isotropically in the j-th region.
The reciprocity relations for the four kinds of probabilities in

Eq. (2.25b) are as follows:

(o) > (o) ($0)> (fo)
Z'VVE i Z V
P Kl (2.268)
(D)2 (o) (@o)> (')
Z.V Pa;d'. =-32 Pdv 3
(2.26b)
(l'l)-’ (!ll) (|'|)9 (lll)
2.V P"} = z& V; P&.: .
(2.26c)

Here the minus sign appearing in Eq. (2.26b) denotes that the paths of
neutrons traveling from the i-th region to the j-th region and the

corresponding paths from the j-th region to the i-th region are mutually

inverse and a is replaced by m-a. The neutron conservation laws are
= (£0)~> (o) - |

Z P»J_ - g

Iy (2.27a)

Z R<..>—><o°> -0

The first is the usual conservation law and the second means that,

(2.27b)

once the summation is made over the whole volume, the directional compo-
nent of the probability no longer retains the source direction owing to

the isotropy of the first collision.

()
s

isotropic distribution enters into a cell through a unit area of the

We next define the probabilities P that a neutron with an

boundary to undergo the first collision of mode(iﬁn) in the j-th region:

X x .
(c0) & [as [ . [ & " -IR - R
Py = TJTJd0M0j49(ﬂ'3s)deC' ez,
]

(2.28a)

[}

(u) j‘dsvl‘le,um Gdef(’TL .Qs) dRC C WGQL Zd"
(2.28v)
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where B is the unit vector inwards normal to the cell boundary S, ji;
the unit vector along the neutron path, ffvn the optical distance from
the cell boundary to the j-th region, and Rj the distance of the neutron
path in the j-th region. The probability that a neutron starting |
isotropically from the cell boundary reaches again the cell boundary

without collision is

P = Z P

= (2.29)
; e s (&) ' .
The probabilities st and st defined above may be related to the
. o ()2 (de)
four genersalized probgbilities. FPirst, PJ may be transformed

as follows:

(:l)"(oo) 32
d’i’

jdr 4 T Me OG’JO(

> R; ~
3 (;.—QS > S . v —ZK;& - 4R STk
—ﬁJdSJzng_n (’TL'QS)MO od-Re c md& (I (& )’

(2.30)

where .ZR;} is the optical distance between the i-th region and the j-th

region, Summing the above equation over all i in a cell, we obtain

2 R; ~
(n)9(oo> . ¢ —(ZLR+ZRin)

Z = TJdS/*ﬂ- (ﬂns)me‘[j[{wﬂdd {,_e ] & }

= I GRG0 g,

= Zv (fnns),dmﬁ dR c c ¢

(2.31)

Using this equation, we may reduce Eq. (2.28b) to

)

(D=2 (%)
PS& - Z P.. (2.32)

In a similar manner, the following usual reciprocity relation can be

obtained:

(o) 2, TV, (o) (o)
e = —— Z . )

(2.33)

- 21 -



Here we assumed that all the neutrons in a cell with isotropic or
anisotropic source distributions are reflected back into the same cell
with an isotropic distribution on the boundary instead of leaking out

of the cell(l3)

Benoist used here a distribution proportional té
Llg as an anisotropic source on the inner boundary of a cell (k = x,
Vs 2). Though he used such a means as to take into account the
effect of angular distribution refered to Cartesian coordinates, his
procedure is not necessarily convenient to take into'consideration
the tendency of distribution characterized by the boundary condition.
There appears a difference between his method and ours in the details
of determining the anisotropy of neutron flux distribution.

From the conservation laws (2.27 a,b), we can assume that the
rate at which a neutron born in the i-th region is reflected on the

boundary back into the same cell is the same as the rate of leakage

from the cell:

Z P (s5)> (o)

[
(for an isotropic source in the i-th region)

u)"’ (ooo)
;?: FDt )
(for an anisotropic source in the i-th region).
To take into account the effect of neutron current from other cells,
we define P (“)"(oo), P,:(”)-) o)) P": ()2 (o) and R;UI)" () by adding the

probability increase based on the reflection on the surface:

+ (2> (&) (& (8 SRENTANEN Pf%)
d6)> (0o _ ca)> (& _ s0)?( o 5§
P&,& - Rd' + (., ;P&ﬁ I _ ‘DSS 4 (2.3)4)

P ("l)
t(%)> () _ ($o)> () _ (50> (o) S¢
Py = Py + U Z Pt ) |- B, =~ (2.35)

()

Pt )2 (L) _ )= (oo) & GO (H) PSJ»
; > e R

i T oled 2.36
t | — Pss ’ ( )
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)
t ()2 00D (D200 = M) (o0 Ps*
P 7R

§ ‘i - ‘& | — Pss (2.37)

Using the above equations, a new type of first-flight collision proba-
bility for the case of anisotropic scattering and of the isotropic

reflection boundary condition can be obtained:

t ()2 () Zz‘s. t (V)2 (5o
v t {g) (o) Pi,z 2 24

"¢ e T
/ - F>22. Z 0
as

In Appendix 24, we will show that Egs. (2.25b) and (2.38) satisfy

(2.38)

the usual reciprocity relation and the conservation law. The formu-

lations for higher order anisotropy are written in Appendix 2B.

§2.4 Space Dependency of the Collision Probability(lu)

In this section the assumption that all the components of neutron
angular flux are constant in each region is improved in the case of
cylindrical lattice cells. We divide a cell into N concentric annular
regions and express the inner and outer radii of the i-th region by

ro_, and r respectively. Then the neutron and source distributions

at radius r in the i-th region may be expanded using the Legendre

f‘ - Y: - Yi,}l

functions Py (=2 s
o T

) (k

I
(@)
-
—
-
\¥}
L

----- ). In practice, the
rotational source Si(:m) can be assumed to be zero in each region..
Then the flux ¢f:h) becomes zero. Therefore, from the beginning,
we can expand the neutron flux and source only by cos ma (m=0,1,2,-)

in Egs. (2.9) and (2.10). Namely we put the neutron angular distri-
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bution and the source distribution in the i~th region in the forms:

mn -]

f.(LR) = Z (Hn) &7™ b P™(wa6) o0 ma

(2.39)
S: (?) 3) = ZZZ(H: )z S:n,m,u Rm(m&) o A
n=0 me«0 A=0
BT (2= )
P& | el mess (2.40)

wnere 8m, is the Kronecker delts and Hg is defined by Eq. (2.12b).

As described in the last section, there remain in the above equations
only the terms of n+m= even number. The scattering kernel Z;,(ii?*ji)
has no spatial dependence in a given region (for example in the i-th
region) and has the same form as Eq. (2.11), which may be rewritten

in the form:

(AR Y Y (HIY 23 B (@) PCwo o)
N=0 MmM=0
e md—k) (2- §,,) (2.41)

We follow the similar procedure as in the preceding section;
inserting Egs. (2.39), (2.40) and (2.41) in the integral transport

equation (2.14), multiplying the resulting equation by P (®¢8) womd

and integrating over the whole direction about . . Then we obtain
©0 -]
m,m, R 2y =rr-r > -EK
E B P (2L e ) = (4R [dA P (wee) ceama ©
¢ Y- -Y.2,
h=0 ¢ ¢ o 4R

DR DUCHINCOPETENE s

- -1
n=p w=0 £'=0 " v

(”lll’ﬂ’, "/) -1\,’ (nl' M’) “.I )}
d 2— e N + Z' +l« .
(27 Sao) { S, ‘s (2.42)
-7,

We multiply the above equation by [ (& 7 5
—

) and integrate about
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T over the volume of the J-th region and obtain

AT S ST ST fur

n'=p m=0 &/=0 =1

Fn (W9 6) Lama

rt = Yf m’ ! s 2 2,"1__ Y;L'_Yifl
: P&(%;%%)(HW ) P (wap) oo om’s, Fe ( e )

-1 [t ]

(W, m; &) n (o, A7
( 2- mo { SL + ZLs ¢L } I
(2.43)

where Vj is the volume of the j-th region.

Here we define the following generalized first-flight collision

probability:
(Wym, RO (m,m, ) Z@, > 3 e“zR m N2 ym WO 6D Cod Mo’
P, = —T-rgfar’fdf — (Ho Y R ¢
A A
D 1 21°~ f____"Y,, 4
'a(————_—_yi’:._ﬂr;i ) (2 gm’e) Pm (WG)OOOMOK P* . “‘Y;..l )

(2.4k)

(n',m',k")>(n,m,k)

The explicit expression for Pij is given in Appendix

2C. In terms of the above equation, Eq. (2.43) reduces to

3.

5T ‘#‘(fn,'m,&)

noml &3 (m,m R Y , Y
¢ ¢ 1§ [CYE R O] " (m,m, )}
24+ i TY—Z R V\;{S& 'f'zts ¢,;

mis0 R=a =l (2.45)
In the case of isotropic scattering and isotropic source distribution
it is sufficient to take account of the contribution from the factor
with (n,m) = (0,0). In order to consider up to the linearly aniso-
troplic scattering, it will suffice to treat the contribution from the
factors with (n,m) = (0,0) and (1,1). In any case the contribution
from kK must be considered from k=0 to k=,

We calculate the generalized collision probability in lattice

1] ] 1 '
cells Pzén »m' k' )>(n,m,x)

, which is the probability that a neutron
starting with mode (n',m',x') from the i-th region undergoes the first

collision of mode (n,m,k) in the j-th region in any cell. At first
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we calculate the generalized first-flight collision probabiliﬁy for
a neutron born in a cell to make its first collision in the nearest
neighboring cell. As shown in Fig. 2.3, we divide a distance from
the i-th region to the j-th region into two parts Rl and R2; Rl being
the path length in the original cell 1 and R2 being the path length in
the neighboring cell 2. The optical distances along Rl and R2 are
denoted by fi. and le respectively. Then we obtain

Y . ~’ Y I’ }"Ycl“r;f
R -%Ja?jmjaﬁ(m ) P o) wamw’ R (L)

—’\I ',\a. m —Y'L- Tzl
.(2_&”)61&6:& R (me)oocrmekﬁ_( Sl Sl )

3 LS
W

(2.46)

_’
where dR is a line element in the j-th region along the direction L .
We describe the neutron direction measured from the interface of the

S
two cells by QY and the unit normal vector at the interface by 3.

Fig, 2.3 Geometry of a first-flight of a neutron in the nearest
neighboring cell
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In order to calculate the above equation by using gquantities
evaluated only in a cell, we make the following approximation.
Inserting an identical operator

! stjd?r“ (R-4&%)
S ar

S Jdﬁ* (-5

(2.47)
(S is the surface area of the cell per unit height) between the terms
Cf'fk' and Effi‘ in Eq. (2.46), the dependency of the latter tepyff on
7' and ji is neglected. This is based on the assumption that all
the neutrons impinging on the cell surface may return isotropically.
Then we obtain

(m,m, &)

(W,ym’ ') (m,m, £ (n,w, 4D
F%' " = FDLS FDS& ’

1 1 1]
where Pgn m' k')
is

(2.48)
is the probability that a neutron starting with mode
(n',m',k') in the i-th region in a cell escapes from the cell without

collision, and is given by

~ 2
o, m, &) | ~IR, w2 ’ , 27 =Y -T2
P e = VJ'J.?’ dﬁ. € (H:) R?(oece)mmd’ R/(—L?T:Ti) (2= Sme) s
- P . Pl
v Jen (2.49)
(n,m,k) . o .
and st is the probability that a neutron entering the cell 2

isotropically makes a collision of mode (n,m,k) in the j-th region,

and is expressed in the form:

(m,m, & I f >% . Xx -ﬂa‘ m
. - . S [dQ* (M- [dR € " P (wos)
Psd’ S jdfl* ('nﬁ.*) S 2n "

(2.50)

Equation (2.49) can be transformed into

), m’, & | R+ - m m’
PO = w48 (1 [z T R
V. Jen 0

747 l’}- ‘:"Tci
69 m sk Pﬁ-’( = Y.LY_Y.E'I )(2_ gm’o)
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= Seo Swo Swo — -.Jd fdr Z( c (H,,,) P (wae)

V. YVa¥ 1

© ted m'a’ F)ﬁ,' (ZY,Y—Y:_Y - )(2 gmo
i (2.51)

where the integration about ? is made over the volume of the cell 1.
1 1 tla
In terms of the definition of Pgn m' k") (0, k)

1]

‘the above equation

reduces to

(n,m/ 8) (n,m, &' )> (0.0,0)
FDLS = g'n’o §,,M Z R}

. (2.52)
. L (n,m,k) .
In the following the probability st is calculated. In a
circular cylinder
da* (R-&) = I | (2.53)

an
We denote the solid angle subtended by the surface area dS at the

point of collision ¥ in the j-th region by 44’ . Then using the
relations

R‘ LLEE: DRFPRNINY ¢ , (2.5%a)
REARAJ* = 4F (2.54p)

we have the relation

>, D>
(AR dA* dSdR = d dY | (2.55)
Adopting these relations we rewrite Eq. (2.50). At this point it

should be noticed that, if we express the azimuthal angle by o for a
neutron starting from the point T toward the cell surface, we must
replace a in equation (2.50) by m-a because the a in Eq. (2.50) is

measured for a neutron directing from the cell boundary to the point

>

r. Then Eq. (2.50) reduces to
m, &) > > ‘ﬁz m m zrz—Y-z'—Y~z:
=¥ = rf.m’ € TR (wee) (1) wamd PL(——_——_Y_:. =)
V¢ Jer ¢ ¢
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i

Rz
2.V _ Z+ > > ~Z’R
el S S S~ on Ldrfdnv[m Z(R) €

/s L8

2 _ y2 .yl
P (we6) wamdk (-0 R (2 er’ )

é - Yoa:,
'm N
_ LT S (’{) o, m, R 39 (0. 0,0)
= ———‘——'S = {Sna g'mo éio {LILH:)z(a—s”o) ‘; FD‘ ) )

(2.56)

(Q,m,k)

Considering P
Sd

in the case of n=m=k=0, the pgobability Pss defined

e}

in Eq. (2.29) mgy be rewritten in the form:

N . N
R.=/ - 42\{?‘, {’ _ ; P&;n,o,u-»(o,o,o)} .

=1

(2.57)
From Eqs. (2.52), (R.56) and (2.57), the generaljize$ first-flight

collision probability in lattice cells is given by

Pt('nﬂ RS (1, A P (R,m, RPN, M, R
ad n o', 4)>(0,0,0) I
(), J .Y,
+ { gwo S,,,/o Cg,yo - ; Pil } / - PSS
#3. V¢ g g S B (-1 )m ‘N (n,m, > (0, 0, 0}
S { no 9me Dfo ’LK(H"“")"(z— Sno) ; i . (2-58)

Using this probabiljty instead of Eq. (2.44) in Eq. (2.45), the range

of summation about i is reduced to 1~ N.
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§2.5 Numerical Results and Conclusions

In §2.3, flat flux and flat current in each region are assumed,
so that the method is suitable for a cell with a small fuel rod and thin
moderator region. Takahashi’s method is unsuitable for a highly
heterogeneous system because the probability that a neutron born in a
moderator makes its first collision in the same region is overestimated
by his adoption of the perfect reflection condition on the cell boundary.
We consider several cases of cylindrical cells composed of fuel and
moderator regions, whose neutron cross sections and geometries are
listed in Table 2.1. Suffixes 1 and 2 represent the fuel and the

moderator regions respectively.

Table 2.1 Input data for two-region cylindrical cells

Case 1 2 3 L 5(6) T
Inner radius (cm) | 0.3811{ 0.1 0.5 1.0 2.0 2.5
Outer radius (cm) | 0.645 3% 3.0 3.0 3.0 3.0 3.0

z, (em™) | 0.78 1.0 1.0 1.0 1.0 1.0
z, (em™) | 1.062| 2.0 2.0 2.0 2.0 2.0
Xy (em™) | 0.387| 0.5 0.5 0.5 0.5 0.5
Zis (em™) | 1.062] 2.0 2.0 2.0 2.0(1.5) 2.0

1 ¥

In Table 2.2, the probabilities P? for an isolated cell and Pij

J

for a lattice system evaluated from the present method are compared
with those based on the use of the transport cross section in place of
the total cross section. In each case, they are evaluated for three

values of W (0, 1/3, 2/3) where T is the average cosine of the scattering

*

130 the value of

angle in the moderator. Among the probabilities P
P;l for the transport approximation is independent of U because it contains
only the cross section of the fuel element, but in the present method the

¥
value of Pll decreases with 1.
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Table 22 Normalized new type collision probabilities

Probabilities for one cell 1 Probabilities for a lattice cell
Case : 7 ; ' , i ; 7 |
% o | P ‘i Py i Py ; P ! Pe 1 P | P
"o} 02816 | 02400 | 009450 | 03404 | 04011 | 05989 | 02357 | 07643
fe— ]
10 02709 | 02307 | 000082 | 03372 | 03981 | 06019 | 02369 | 07631
1 130 02816 | 01727 | 0.1020 02511 | 0.4630 | 0.5370 | 0.3170 l 0.6830
o | ‘ ;
5 0 02600 | 02212 | 0.08707 , 03339 | 03950 | 0.6050 | 0.2381 | 0.7619
3| 02816 | 009372 01107 | 0.1423 | 05920 | 0.4080 04818 0.5182
| 0| 01150 | 08800 | 0000489 | 0.9163 | 0.1150 | 0.8850 = 0.000492 | 0.9995
=== ; L
10 01147 | 0.8370 | 0000465 | 09132 | 01147 | 0.8853 | 0.000492 | 0.9995
9 3| 01150 | 08714 | 0000727 | 0.8754 & 01150 | 0.8850 | 0.000738 | .9993
50 0111 | 07675 | 0000427 | 0.9080 | 0.1141 | 0.8859 |  0.000493 ©0.9995
3| 01150 | 07877 | 0001331 | 07626 | 0.1150 | 0.8850 | 0.001477 | 0.9983
0| 04040 | 05934 | , 0.008477 | 09061 | 0.4041 | 0.5959 | 0.008514 | 09913
1 04004 | 05675 | 0.008108 | 0.9034 | 0.4004 | 0509 | 0.008565 | 0.9914
3 3. 04040 0583 | 001251 | 08604 | 04040 | 0.5959 | 0.01277 | 09872
2 03044 | 05249 | 0.007499 | 08991 | 0.3945 | 0.6055 | 0.008650 | 0.9913
3| 04040 | 05182 | 002221 | 07383 | 0.4051 | 05949 | 0.02550 : 0.9745
0| 05951 | 04042 | 0.02526 | 0.8815 | 0.5951 | 0.4049 | 0.02531 | 0.9747
1 05881 | 03809 | 0.02437 | 0.8796 | 05881 | 0.4119 | 002574  0.9742
4 3] 05051 | 03918 | 0.03673 | 0.8255 | 0.5952 | 0.4048 | 0.03795 , 0.9621
| -
“ 2 | 05766 | 0.3663 0.02289 0.8766 | 0.5766 | 0.4234 0.02646 | 0.9735
[ i
| 8| 05951 | 03320 | 0.06225 | 0.6861 | 05989 | 0.4011 | 007321 | 09248
0! 07641 | 02200 | 0.08799 | 07694 | 0.7648 | 02352 | 0.09409 | 0.9059
1 07527 | 02155 | 0.08620 | 07687 | 07547 | 02453 | 0.00812 | 0.9019
5 31 07641 | 01977 | 0.1186 0.6824 | 0.7680 | 0.2320 | 0.1392 0.8608
2| 07363 | 02000 | 0.08362 | 0.7676 | 0.7402 | 0.2498 | 0.1039 0.8961
3| o764 | 0143 | 01723 0.5123 | 0.7880 | 0.2119 | 0.2543 0.7457
o | 07641 | 0.2200 | 008799 | 07694 | 0.7648 | 02352 | 0.09409 | 0.9059
1| 07559 | 0.2168 | 0.08670 | 07688 | 07575 | 02425 | 0.09698 | 0.9030
6 3| 07641 | 0.2052 | 0.1094 0.7091 | 07666 | 02334 | 01245 | 0.5755
2| 07453 | 02126 | 008504 | 07682 | 07482 | 02518 | 01007 | 0.8993
3. 07641 | 01768 | 0.1414 06135 | 07737 | 02263 | 01811 | 0.8189
0| 6.8068 | 0.1474 | 0.1675 06137 | 08156 | 01844 | 02095 | 0.7905
1 07946 | 0.1457 | 0.1655 06134 | 08081 | 01918 | 02180 . 0.7820
1 , .
7 3| 08068 | 01209 |  0.2060 0.5141 | 0.8289 | 01711 | 0.2916 | 0.7084
2| 07800 | 0.1435 | 0.1631 0.6131 | 0.7992 | 0.2008 | 0.2282 | 0.7718
3 | o0soss | 0.07689 | 0.2621 03546 | 0.8659 | 01341 | 04570 | 0.5430

The values of upper rows are evaluated by the present method, lower rows
by the transport approximation.
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This decrease is based on the fact that a neutron which has
escaped from the fuel rod has much more chances of leaking towards the
void region outside the original cell by forward scattering in the
moderator than in the case of isotropic scattering. For a cell with
a large fuel rod, neutrons escaping from the fuel rod and suffering

few collisions in the moderator have a forward angular distribution,

*

so that the probability Pll

reduces with the increase of leakage.

For a cell with a large moderator region, a neutron which has suffered
many collisions in the moderator will no longer retain traces of the
original direction, so that the probability is nearly the same as in

the case of isotropic scattering. In respect of the probability le,
the present method yields results opposite to those based on the transport
approximation. A neutron born in the moderator with uniform and
isotropic distributions has much more chances (due to the larger solid
angle subtended by the moderator) of remaining in the same region than
proceeding towards the fuel rod, so that the anisotropic scattering

in the moderator may reduce the proportion of neutrons that enter the

fuel rod when the region outside the moderator is void. This is the

*

51 in the present method decreases with the

reason why the probability P

average cosine of the moderator. In the transport approximation,

nowever, the only assumption is that the cross section of the moderator
(13)

reduces to I -AZg . Thus, a larger proportion of neutrons than

in the case of isotropic scattering would enter the fuel rod, and the

*
value P2l in the transport agpproximation increases with the average
cosine of the moderator. This is a drawback of the transport approxi-

mation, especially for a moderator of small volume and large leakage

from the cell.

For a lattice system, on the other hand, the probability PZ;



of the present method has the same tendency as that of the transport
approximation, This is due to the increase of volume of the moderator.

*
The same is true for the probability Pz2' Comparing the values of

tx and Pt* of the present method with those of the transport approxi-

P11 12

mation, we may find opposing tendencies for a lattice cell.

Table 2.3  Flux ratio ( fa/ % )
. "wmw.“”‘. :
Average cosine 0 . 1/3 _ 2/3
Case 1 o ‘
Present method 1.1k05 1.1345 1.1286
Transport approx. 1.1k05 1.1372 1.3330
Case 2

Present method 1.0658 1.0650 1.0639

Transport approx. 1.0658 1.0656 1.06k9
Case 3

Present method 1.3590 1.3k402 1.3137

Transport approx. 1.3590 i 1.3515 1.3318
Case L

Present method 1.8005 1.7285 1.6335

Transport approx. 1.8005 1.7611 1.6841
Case 5

Present method 2.5855 2,388k 2.1759

Transport spprox. 2.5855 2.4392 2.2848
Case 6

Present method 2.5185 2.3953 2.2598

Transport approx. 2.5185 2.4300 2.3300
Case 7T »

Present method 2.7073 2.5410 2.3751

Transport approx. 2.7073 2.5999 2.5450

In Table 2.3, moderator-to-fuel flux ratios are shown for each
case in Table 1 assuming a uniform source in the moderator. In the
calculation the moderator region is divided into two regions with equal
volume. The results evaluated by the transport approximation are

in good agreement with those of the present method only for a cell with
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large moderator-to-fuel volume ratic (Case 2). With the increase of
the fuel radius, the flux ratio by the present method becomes smaller
than by the transport approximation for each average cosine of the
scattering angle. For Case T, this tendency is especially remarkable,
and the difference of the flux ratios between the two methods reaches
about 7 %. The transport approximation always underestimates the
decrease of the flux ratio caused from anisotropic scattering. This
approximation 1s equivalent to diluting the moderator with increasing
¥, and in the limit of 2,- 0, the fluxes in the fuel and the moderator

become

- S Vi 215 Vn

5 (P"‘:‘ + zj—t Zfa,vj )

j- h Zja, Vf—‘— ’

f =
where Fi: = bom —é%?i

S0

Thus it is proved that, in such a heterogeneous case or in g cell
surrounded by air, the adoption of the transport cross section is not
effective in taking into account the effect of anisotropic scattering.
From Cases 5 and 6, we can see that the values based on the transport
approximation approach to ours to some extent by the inclusion of

absorption in the moderator.

Table 2.4 Values of correction s(ﬂ\/ﬁ) by anisotropic
scattering in the moderator (Case 1)

Average cosine } 1/3 2/3
Method of #2.3 -0.00566 -0.0113
Method of §2.4 ' =0.00609 -0.0121
Benoistss theory -0.00675 -0.0135
Transport correction ~0.00191 -0.0028
Transport correction¥ ~-0.0022 -0.0033

% Values listed in Ref. (14)

In Table 2.4 are shown the values of the correction § (%n /¥f)
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to the disadvantage factor induced by anisotropic scattering in the
moderator. The results from the present method are in good agreement
with those by Benoist(lh).

Next we evaluate the effect off higher order anigotropy from the
method in Appendix 2B. From the discussion in Ref. (15), it is
sufficient to take into account the effect up to quadratic anisotropy
for the calculation of the disadvantage factor. The total cross sections
used for the fuel and the moderator are both 1 cm'. The scattering
cross sections used for the fuel and the moderator age 0.5537 cr’ and

0.99163 cm' respectively. The average cosine (P, component of

1
scattering angle) and P, component (sz/‘ils ) are assumed to be 2/3

and 1/k respectively. The outer radius of the moderator is taken to
be 3.0 cm. Using these data, the flux ratio (moderator-to-fuel flux

ratio) is shown for two different fuel radii. In the calculation

we divided a cell into 5 resions =2 in the fuel and 3 in the moderator.

Table 2.5 Flux ratio for different orders of anisotropy
of scattering angle

Case 1 Fuel radius 0.5 cm

‘ S ‘Method ,
Zigzztggp "7 Present ‘f3—approxi— ' P, -approxi-
TOBY | .. method mation mation
"0 T 1.3556 1.3360 1.2292
1 1.2680 1.2126 1.1053
2 1.2794 1.2249 *
Case 2 Fuel radius 2.0 cm
Method
gii:itigpy Present P_-approxi- P, -approxi-
method mation mation
0 . 2.2813 2.3285 1.9946
1 2.0269 2.0395 1.705k
2 ~2.0620 2.0999 *

™

¥p -approxigation cannot treat the second order anisotropy
of scattering angle.
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From Table 2.5 we can see that the linear anisotropy decreases the flux
ratio evaluated in the case of isotropic scattering, but that the quadratic
anisotropy acts to recover the flux ratio to some extent. These
results should be contrasted with the case of slab lattice cells.

In the following the effect of variation of flux in each region
is investigated. We calculate the flux &istributions for two different
lattice cells from the method in §2.k. The first cell (Case 1) is a
closely packed lattice cell and the second (Case 2) is that with a large
moderator. In both cases a cell is composed of a fuel rod and a
moderator. For Case 1 the outer radii of the fuel and the moderator
are 0.381 and 0.6LUBT cm respectively and the total and scattering cross
sections of the fuel are 0.78 and 0.387 cm’ and those of the moderator
are 1.0618 and 1.053 cm’. For Case 2 the outer radii of the fuel and
the moderator are 2.0 and 10.0 cm respectively and the total and scattering
cross sections of the fuel are 0.6 and 0.35 cm' and those of the moderator
are 0.3 and 0.3 cm'. The Case 1 corresponds to the Case 1 in Table 1.
The Case 2 corresponds to the cell adopted by Lewis(l6>. In the
calculation we divide the cell of Case 1 into 2-regions and that of
Case 2 into 3-regions (one fuel region and two moderator regions divided
by a circle of radius 6 cm). In calculating flux distribution we
assume a uniform and isotropic source per unit volume only in the
moderator.

In the case of isotropic scattering, the expansion coefficients
g %R oF the flux are given in Table 2.6 for each case where the
upper limit of k is taken to be 0, 1, 2 or 3. For the case where
the highest order of the Legendre polynomials is taken to be 3, the
coefficients $ ¢°%%) (x = 0, 1, 2, 3) can reproduce an almost continuous

flux curve at interfaces. The convergency of the coefficients
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Table 2.6 Legendre expansion coefficients of flux
for isotropic scattering

T 1

'
1

Upper limit | Expansion Case 1 ‘ Case 2
ozleie?diei coefficlent Fuel Moderator: Fuel Inner Outer
polynomials B ] moderator moderator_
0 ¢(U:U:O) L.5298 5.1556 96.0 161.66 177.95
X 0050500 1y so0n 5 1654 | 96.0 170.68  192.10
i J
5(05051) | 0.2546  0.1316 | 2L.3L 21.66 3.49
6 0000y o0 51679 1960 17252 193.75
. s(0:01) 5 oesn 51303 23.95  22.10 3.66
- !
60920 5 ouor -0.1120 | 3.85 -9.97 -2.26
S ; - ' o
300000y 5000 51681 | 96.0 17282 193.99
3 5l0s01) o sea 1300 23.88 21.87 3.62
| 5(05052) 10.0399  -0.1120 3.77  -10.11 -2.25
i
¢(O’O’3) 10.01323 0.0306 | 1.05 k.56 0.3k
Table 2.7 Moderator-to-fuel flux ratio
for isotropic scattering
Upper limit of e
Legendre polynomials Case 1 Case 2
0 ! 1.1382 1.7971
1 1.140k 1.9267
2 1.1410 1.9k45
3 1.1412 1.9h72
%(mo,ﬁ) is very fast for the Case 1 but not so rapid for the Case 2.

This shows that the deviation of the flux from the flat flux in each
region is very small for the Case 1, but is large .for the Case 2.
The moderator-to-fuel flux ratio is given in Table 2.7. From
this table it can be easily seen that the value of the flux ratio converges
very rapidly with the increase of the number of terms in the Legendre

expansion, For the ratio, it is sufficient Lo take into account only
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the first two terms (k = 0 and 1).

The Legendre expansion coefficients in the case of linearly
anisotropic scattering are presented in Tables 2.8 and 2.9 where
the average cosines of the scattering angle U are taken to be 1/3
and 2/3 respectively. Prom these tables it can be seen that the
convergency of the expansion coefficients #¢" %> (x = 0, 1, 2, 3)
is very slow for both cases compared with that of‘ g oo R
In particular the term geLL g nearly comparable with the term

g9 in each region. Then the flat current approximation fails
to express the tendency of the current over a cell. In the case of
anisotropic scattering, also, the inclusion up to the term k=1lyields
good results for the expansion coefficients ¢(O’O’O) and ¢(l,l,0).
The moderator-~to-fuel flux ratio for the case of anisotropic scattering
is presented in Tables 2.10 and 2.11, and shows that the error resulted
from the flat flux and flat current approximation decreases with the
increase of the average cosine of the scattering angle of the moderator.

Thus a remarkable improvement is obtained when we include the term

k=1.
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Table 2.8 Legendre expansion coefficients of angular flux for

linearly anisotropic scattering (W = 1/3)

]

Upper liﬁ{%v Expansion‘ Case 1 Caée 2
of Legendme | coefficient| Fuel Moderator | Fuel Inner Outer
polynomial; moderator moderator
0000 1y 5305 5.1367 | 96.0  157.37  169.70
° ¢(1,1,o) -0.2067 -0.13Lk3 | -12.43°  -8.2bL -1.65
$(020:0) | ) 5306 5.1362 | 96.0  161.95  177.30
{0:0:1) 1§ osus g.1101 | 2h22 15.98 2.17
: $(1>10) | o 101 _0.1390 | -13.86  -10.18  -2.17
¢(l’l’l) -0.1k22  0.159L4 | -10.70 6.27 2.h2
¢(O=O’O) 4,5305 5.1382 96.0 162.97 178.18
¢(0,0,l> 0.2533  0.1135 28.886  16.5k 2.3k
6(0:052) |5 ouo1 -0.1027 3.80 -7.93 -1.58
° o100 1 5 0110 ~0.1392 | -13.84  -10.26 -2.11
g1 g 0ue7  o0.1621 | -10.89  T.02 2.55
s112) | g 0261 —0.0287 1.37  -2.91 ~0.46
80000 1 4 5305 5.1383 | 96.0  163.15  178.33
5(0:0,1) ? 0.2532  0.1132 | 23.81  16.39 2.31
¢(O’O’2) 0.0399 -0.1029 3.73  -8.1k4 -1.57
| 8(0:0:3) 1 5 0130 0.0087 E 1.05 3.96 0.15
’ - 4(1,1,0) | -0.2110 -0.1392 = -13.8k  -10.26 2,16
oL o et o.1601 - -10.88 7.08 2.55
o112) | o 0psg 0.0203 | 1.33  -3.19 -0. k7
${1s13) | 00136 0.0068 | -0.88  1.k8 0..10
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Table 2.9 Legendre expansion coefficients of angular flux for

linearly snisotropic scattering (¥ = 2/3)

Upper limit Expansion Case 1 Case 2
of Legendre coefficient] Fuel Moderator| Fuel Inner Outer
polynomials moderator moderator
9(0:0:0) 1) 5393 50176 | 96.0  152.38  160.07
’ s(1:1:0) | 5 0068 —0.1352 |-12.51  -8.90 ~2.03
¢(O’O’O) 4,5318 5.1069 96.0 152.88 162,01
| $(0501) 1o oeus 0,005 | 2b.10  10.12 0.81
" C10) 5 o113 _0.1302 | -13.94  -10.32 =2.20
o110 12 0.1597 | -10.61 6.52 2.k9
40050500 1y sa 51083 | 96.0  153.18  162.2L
(0:0:1) 15 o533 g.0gu6 | 23.79  10.85 0.99
2- | ¢(O’O’2) 0.0401 =-0.0934 3.76 -5.84 -0.89
¢(1’l’0) -0.2112 -0.139% |-13.92 -10.39 -2.20
o(111) 15 o7 o.1621 | -10.79 7.10 2.57
o{1:12) 1o 0061 _0.0288 | 1.35  -2.96 0,47
0050500 | 5317 51084 | 96.0  153.27  162.31
| 005010 g st glogu3 | 23.73 10.77 0.97
6005020 0300 0,093 | 3.68  -6.12 ~0.89
¢(O’O’3) 0.0132  0.0268 1.0k 3.36 -0.0k4
’ §(11150) -0.2112 -0.1394 |-13.93 -10.39 -2.19
¢(l’l’l) 1—O.lh26 0.1622 |-10.78 7.15 2.57
¢(l’l’2) 0.0259 -0.0292 1.31 ~3.20 -0.47
s(123) | o 0137 0.0068 | -0.87 1.47 0111
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Table 2.10 Moderator-to-fuel flux ratioc for linearly

anisotropic scattering (W = 1/3)

: |
Egz:;diim;zl;rfomials | Case 1 L Case 2

0 I 1.1338 ’ 1.72k49

* % 1.1337 ; 1.7936

e | 1.1341 § 1.8032

3 | 1.13k2 j 1.60k9
Table 2.11 Moderator-to-fuel flux ratio for linearly

anisotropic scattering (U = 2/3)

ggzz;dizmgzl;iomials Case 1 Case 2
0 1.1294 1.6407 —
1 1.1269 1.6559
2 1.1272 1.6585
3 1.1273 1.6593
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Appendix 2A

Reciprocity Relation and Conservation Law for Eqs. (2.25b) and (2.38)

Here we verify that the new type of first-flight collision

probabilities (2.25b) and (2.38) satisfy the usual reciprocity relation

and the usual conservation law.

T

law for Pij’ Using the relations

First we verify the conservation

Z Pt(om(oo) i (80) (80
= . F{é
=1
Zz P (&)
[ = S*-
+ / _ i (oo)"(oo) i )
( Pa ) Z sé” ? (2a.1)
o
and
S t(u)"(vo) _ = (l'l)"(q”o)
Z— - Z Pzd'.
i~ Y
2 (%)
Zl P (n'l)"(ooo) ; P — 0
- at ( ) 3
& Z Pse (24.2)
we obtain the conservation relation
2
tx t (%) > ()
Z P"d’ Z Pb
4= ¢=1!
t ()2 () Z;', 2
P&z P "-‘(-'x)"(ooo) _
+ [ - P"d’ - l .
t(u‘l)"(l‘l) Z;s 4=1
/ - Pz_; z° (2-A-3)
28
ext we will derive the reciprocity relation for P:j:
@G> Zas g (0D ()
* ()= (00) + Fia z:s Pz
Pa& - PL,} ()= ) zzs
/ a2 Zzs
IV, c..>+<o.) 2 Zi W )
LV @0 ) % =% 0 55~ R
2LV e )2 G Z::;
[ - R v
DI
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(D)2 () 2;5 ()2 (o)

R () (¢) + P&’- _Z—ls 2 }
- LW { P.L _ G2 () Za.s
P:2 =,
2% %
= 3.v, M

(2a.4)

In a similar manner, we can verify that P:: also satisfies the same

reciprocity relation as Pi"

Appendix 2B

Formula for Higher Order Anisotropic Scattering(lT)

The equations which determine the neutron flux in the case of

quadratically anisotropic scattering are

¢ ‘r F (00) Z [ P(oo)"(oo) { S(ao) + st #(oa) }.V,
+ R&(»'s)'?(:o){ Sén'l) + z:s 75‘.’(,'.)‘}% + Ré(xo)"?(eo){ Sb(z°)+z§5 '#;,(“)}Vo

+ R.(z'z)"(&){ S;,(zl")‘l” Zi,zs 7‘:«(1‘1)}7}'] s

ooo M 5o (ob) .
57 90 = 5 [ RV {542 p P )

=1

° z?o .
N P.(‘a'.)-)(u'i) { Sd('l.) + 3. %("')}Vi, + R&(’?o)-)(“){ S;,(zo) + X% i)&( )}V"
‘¢

(2B.1)

+ R;z‘m(ub { 5.3 4 32, $,(0) V.
(2B.2)

0 o
ZJ'V; ﬁ-_("%) [ R(oo)#(zo) { (oo)+ >3 *L(ao)} V.

= l
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‘ 1 ! ' y 20 1 20 o
+ P%(,.)#(u) {5"(-') + Xl é.‘,( ))Vv +PL¢',( o)"(zo){sb( )_‘_ Z-Lzs éb( )}Vp

+ Pcd_-(:.'z)"(fa){ Sb(z'l) + z:s #s&(z‘z)}v‘,_] ,
(2B.3)

I o o) > l.':. do 2 ooo
2,V fé(zz) = Z [ P;:M) ( ){ 56( >4 bl *’( ))VL

=y

' R;":)#(z‘z){ Si,("‘)-*— Z:S f’.‘,('.')}va + PL&'(zoo)“)(z‘.z){ szo)+ Zfs A',(“)}V,;

+ F)‘(zlz)#(z':,){ Sv(z‘.x) + Zts %52‘.1)} VU]

(2B.4)

In the calculation of Pi(f")_’("g"') we can use the reciprocity relations
3V P;&(«?o)*'(:e) - 17, P&_(o%)-’(o"o) ’ (255,
Z V. PL&("')’("O") = -3%4V, P&(Zo")a("') ; (2B.6)
IV P D) = 5y P;;("')—)("') ) (2B.7)
5.V P%({’o)e(:,) = 535V P“(o"o)»(;.’o) , (25.8)
5V ) < -,—f— 2,V Ff-»g&)-)(;n, (2B.9)
3.V P;é(fo)"’(l'l) - _35: 37, F;E.'nh(z%) ’ (5.10)
3.V, R}(fo_)" Gy /2 Z@V}Ba("‘)’(’%) ) (25.11)
A AT (25.12)
ST R}(zoo)" (o) _ b R’L(fo)" (L) } s 13)
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3T, P;&(::z.)"(::z.) - 3.V P (22) > (22)

Y ' ' (2B.1h4)

The conservation relations are given by

® (00) > (%)

Z—. P | =1 (2B.15)
o ' 0

Z PL(.”)-> (On) - O ,

oy & (2B.16)
Z"’ SN CYRICA N

e ’ (2B.17)
= 22) ™ (&o)

Y RS <0

ey (2B.18)

2
The probabilities PSJ("‘“) that a neutron entering a cell isotropically

from its surface undergoes its first collision in the j-th region with

modes @fﬂ) are given by

Pj;é’o)= %& (I 3 i-‘ F?;c('.o)—)(m) , (55.10)
Psiz%): - _‘L}Z‘g—‘@ i P&‘(:O)—’(O%) ) (eB.21)
Rfjb = = 'Hf—zgn Z: P}Sz‘z)—)(:‘)) . (2B.22)

Using the asbove equations all the probabilities in a cylindrical cell

are calculated for quadratically anisotropic scattering.

- 45 -



Appendix 2C

Calculstion of the Generalized Collision Probability; Eq. (2.L4k)

We evaluate the generaiized first-flight collision probsbility
for a cylindrical cell using the same technique as Kavenoky’s one(lB)
adopted for the calculation of the usual first-flight collision proba-
bility. First we calculate P§§',m',k')—+(n,m,k) for i< j. The
region number is enumerated from the inner side of the cylindrical cell,
The variables h, y and y' are taken as in Fig. 2.L, In the integra-
tion about y' over the i-th region, we concurrently sum up the values
at two points A and A' located symmetrically about the h-axis.

Further we express the optical distances along the paths AB and A'B on

the x-y plane by f}, and 5}1 respectively. Then we obtain

Fig. 2.4 Notations in a concentric cylindrical cell
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(w,m, I>(n,m,R) . ZJ’.
P, - u &s‘j ﬁte{wf(— e

o2 P R (2t

m - 'Z‘,
'(2‘84\50)9‘ (o) cd md Pﬁ(zl' % zﬂ ) ’

A
¢ ]
¢ (2¢.1)
where Y and yj are given by Jyi- 4%t and Jyf- ¢ respectively.
For the case m' = 0 the integrations about dy' and dy can be achieved

since the quantities r'2 and r2 are expressed by h2 + y'2 and h2 + y2
respectively. The integration about the polar angle 6 is expressed

by the Bickley function. The rational expression for the function

is presented by Ma,kino(lg) .

(n*,m",k')—>(n,m,k)
iJ

reciprocity relation can be used

In the calculation of P for 1> j, the following

(He )(2 ) L.V, P("“D*(n,m &)

(v, m RY> (M, m, R)
. (2c.2)

= -(H™Y (2- Sard LV P
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CHAPTER 3

EFFECT OF LATTICE CONFIGURATION

§3.1 Introduction

In this chapter the effect of lattice configuration on the mono-
energetic disadvantage factor for closely packed lattice cell is studied.

Toe Sn method(l), the collision probability method(e), the method of

(3) (L)

Amouyal and Benoist , the spherical harmonics method » and the

diffusion approximation method(S) are general procedures established
for obtaining the flux ratio in different lattice cells. There are
drawbacks of the existing methods; the Sn and the collision probability
methods usually require a large number of mesh points. On the other
hand, in order to take into account the azimuthal dependence of a flux
in the moderator, many higher harmonics components should be taken in
the spherical harmonics.

Though this azimuthal dependence of a flux is not considered in the
Amouyal-Benoist method, it still gives fairly accurate results, and has
been utilized in the case of criticality calculations for several kind

(6)

of lattices The accuracy of the method comes from its embodying

the quantity representing the blackness of the fuel rod. Inside the
moderator it utilizes the diffusion equation with boundary conditiqn

of no net current at the equivalent outer cell boundary and of the extrapo-

lation distance for a black rod at the surface of the fuel rod. This

condition in the moderator becomes useless for closely packed lattice cells.
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Therefore we use the multiple collision probability in the moderator
and derive an extended Dancoff factor which includes the effect of
configuration of the lattice. Thus we correlate all the probabilities
in the moderator to the extended Dancoff factor.

In §3.2 an analytic expression of the disadvantage factor is
introduced in two-region cell consisting of a fuel rod and a surrounding
moderator. The disadvantage factor obtained is similar to that obtained
by the collision probability method, if the blackness of the fuel rod
is expressed in a simplified form. The result of the present method
differs from that of Amouyal and Benoist in the point that the flux ratio
between the moderator and the fuel for a cell with a thin moderator
includes not only a factor inversely proportional to the blackness of
the fuel rod but also an additional factor proportional to the extended
Dancoff factor. It would appear reasonable to assume that, for a cell
including a thin moderator, the flux ratio depends directly on the
extended Dancoff factor.

An extension to multi-region cell problems is done in §3.3.

In this section the neutron currents on both sides of each interface are
connected by the multiple collision probability. In the multiple
collision probability method, it is usually assumed that the neutron
angular distribution on each interface is angular independent in each
half range; u>0 or u<o0. Therefore too many increase of the number
of division makes the assumption worse. In general the multiple
collision probability is evaluated by assuming the flat flux in each
region. This assumption is not good for a region with thickness' larger
than the neutron mean free path, because the neutron density shows
appreciable change through the region. Therefore the usual multiple

collision probability is unsatisfactory to use under the above assumption.
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Then we adopt a variational technigue to obtain a better estimation of
the multiple collision probability. The neutron flux within each
annular region is expanded into a Legendre series as done in §2.L and
the first two terms are retained in a functional. At the outermost
moderator region we use the extended Dancoff factor instead of the perfect
reflection condition.

In §3.4 the effect of the anisotropic scattering in a square cell
with a thin moderator is investigated to estimate the accuracy of the
isotropic return boundary condition. In this section we divide a cell
into many square regions and calculate the flux and current at each
mid-point of the square regions by using the first-flight collision
probability.

In 83.5 flux distributions in both cases of two~ and three-region
polygonal cells are obtained and compared with the results of Amouyal-
Benoist and Fukai. The effect of the anisotropic scattering in a
square cell on the flux distribution is also evaluated, and is compared

with the method in the preceding chapter.
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§3.2 Disadvantage Factor in Two-Region Polygonal Cells(T)

In this section an analytic expression for the disadvantage factor
in two-region cell system that includes the effect of lattice configu-
ration is derived by improving the Amouyal-Benoist method.

To begin with, the fundamentals of the Amouyal-Benoist method
are described here briefly. We utilize notations originally used:
Z.n is a cross section of type n which is one of t, s, ¢ denoting
total, scattering and capture respectively in the i~th region (0 = fuel
rod, 1 = moderator); Vi and Si are the volume and outer surface aresa
of the i-th region per unit height along the axial direction. We
assume that the neutron source is uniformly distributed only in the
moderator and scattering is isotropic in the laboratory system,

In terms of the flux distribution ¥ (?.,?“.) created at a point;b in
the fuel by a unit source at a point ;l in the moderator, the thermal

utilization factor can be written

Zee (47 [db ¥ (7,7
f = .___v__l._jv‘:,ro'f;;drn I(ro:r‘) . (3.1)
(8)

Using the reciprocity relation » This reduces to

Vo Zo
i = mh/gy,

Here /;% is the probability that a neutron born uniformly in the fuel

(3.2)

rod escapes from the rod directly or after some collisions in the rod,
and ¢ is the probability that a neutron which has escgped from the
fuel rod isotropically is captured in the moderator after suffering a
number of scatterings.

If ¥, represents % in the case where the fuel rod is replaced

by a black body, ¥ 1is related to ¥, by
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$ = S+ (/-8 8

(3.3)
Therefore we have
= ?o

| = (1= 8)(I=p) (3.4)

where ﬁ, is the blackness of the fuel rod, and is related to 61 by

o = V}‘ZOC’;H .
# f (3.5)

we assume that /?, is the probability for a neutron born uniformly
in the moderator to be captured in the fuel rods in the case where
the fuel is black. Then /P, is related to ¥ by
V. 2
3: = '—-Er——- ’73, .
-] (3-6)

From Egs. (3.2) through (3.6) we obtain

! - = V. 2. + ,—@n _ 4'V|Zu
b NI ?, S,
(3.7)
From the above equation and the definition
5= fo Vo e
#ov;zoc,*- ?l‘V‘IZIO (3-8)

( ?; is the average flux in the i-th region), the flux ratio is given

by

%, _ { _ {f-VoZ,o + Vo Zoc ; I_f,)‘

-3 00 SO -V'i'c @‘ ) (3.9)
dguation (3.9) is the result of the Amouyal-Benoist method. In their

paper /G% is calculated by taking into account the first and second

collisions exactly and by approximating the subsequent collisions by
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uniform source distributions, and /P, is calculated by making use of
the diffusion equation in the moderator.

In the following, we calculate Ga or ¥ by the multiple col-
lision probability method. It is seen from Eq. (3.2) that, in order
to obtain the flux ratic, two probabilities ‘3% and ¥ are necessary.

First we calculate ¥ by considering a homogeneous limit of the

lattice cell. Equation (3.4) may be rewritten in the form:

(/_ ?o)ﬁo
/ - (l"' yo)(’—po)

[— % =

(3.10)
When the fuel is replaced by the moderator, the above equation transforms

to

(/_ ?o)ﬁ“*
[ = ()= $(1=B)

|- 9% =
(3.11)

where ¥* indicates that the medium of the fuel rod is replaced by the

moderator. From Egs. (3.10) and (3.11), we obtain
/= 9*
[— % = e ; P .
rARAGEAR Gl (3.12)

Since this relation shows that the heterogeneous value ¥ can be
represented by the homogeneous values $* and F: s 1t 1s sufficient

that, from now on, we treat these probabilities in a homogeneous system.

We introduce an extended Dancoff factor C*¥ which is the sum of the
probabilities for a neutron escaping from the surface of a fuel rod with
isotropic distribution to make its first collision in any other fuel

rod which has the same cross section as the moderator. For a neighboring

(9),(10)

fuel rod, c¥* is given by
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3 3
* a‘ « 2
* = 2 de wo & j}_? an” Y
- ;‘"’“"*’L" T ot Camo_antrJ,
Ze{d dF = a* (wmo-omgIP - W9y - 006 )
[ e— Mw
202wt (O G

(- €=V )
(3.13)

where a is the fuel radius and d is the distance between the two fuel
rods considered. If we assume that a uniform neutron distribution
throughout the cell is created by the first collision due to a source

at the surface, we have

' 2
X __ Zic el ) _I___ L1
Y - Zn;(l c ) + Vo*V. Zl‘t
Vi Zic Vo _ E 3
T A S W A7 ¢ ) ‘ (3.14)
More rigorously, we can proceed as follows. If we represent

the average fluxes in the fuel and the moderator by i‘;‘ and 9".*
respectively, and if there is a unit isotropic source directed outward
at the surface of the fuel rod, #* and ¢* satisfy the following
equations of neutron conservation:

Vo2t 1’0* = C* + Vo 25 7‘0‘ Po: TV Zis ?'* P‘: s (3.15a)

Vet = -t RIgHR t VI8P,

(3.150b)
where P;j is the first-flight collision probability for a neutron
born in the i-th region to undergo its first collision in the j-th region
in the case of homogeneous limit. Eliminating f‘,* from the above

two equations, we have
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R e AL

* = 2 .
v 3. - 2P - Zh P PO
* B zn "zlspo*o
(3.16)
Then, making use of the conservation laws:
Po: + PD*I = l 3 (3.1'-(&)
x *  _
Pe. + P =1, (3.170)

and the reciprocity relation:

v PJ =V Pl: (3.10)

3

the absorption ratio in the moderator is given by

Zus x
[ =+ Fa—z.px C P

3,* =7 ?'* Z'c B Z: Ve P*
' * Va(Z,t~Z|;Po'f;) °!
R
oW I~ T8
- VotV Vo 2 )

Vot Vo I P*
is Po) (3.19)

In the case of a small absorption cross section in the moderator
(Zwe/Zis< | ), we have
Vi A 2ic
9*=W{'+(W"C*)W} . (3.20)
Equation (3.20) reduces to Eq. (3.1L4) if we assume Pél = Vl/(VO-}-Vl).
WNamely Eq. (3.20) embodies a more heterogeneous effect than Eq. (3.1L4).
Using Egs. (3.12) and (3.19) and a relation obtained from Egs.

(3.2) and (3.8):
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.75! — | _ VO Zoc
?o /PO y vl ZH‘. ’

(3.21)
we can obtain the flux ratio
%. (= g* foy | ToZe
4 A Vi Zi
ZsYV,
c* it lS'V P"' )__ Vo Zoc
Zn—C*Zn‘leR, F‘ VZ,C
(3.22)

The blackness /3: of the fuel rod with the same cross section as in the

moderator is expressed in the form (see Appendix 3 A):

x 203, (1= P)
—

(3.23)
where Y* is the gquantity that represents the deviation of the wvalue of
the blackness obtained by the flat flux approximation from the exact
value, and P: is the probability that a neutron born uniformly in the
fuel rod makes its first collision within the same rod when the medium
of the fuel rod is replaced by the moderator. Using Eqs. (3.5) and

(3.23), Eq. (3.22) reduces to

ZIc VI ZIC ZlCR’,

b TeZe (I~ 5 7 v;z.,P*)("” Tell-pm) (UFYH)
$o “Po Vi e | 5. X . . Pt
Zﬁtfﬁf zrtF%f
_ VeZe
VZe (3.24)

When the absorption cross section in the moderator is negligibly

small, the above equation reduces to
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b b, WeZe ( VotV ct
¢° B ?o Vi Ze ( Vo Po“:
Pc* Po: *
- —~ +
b [— PX Pa T ) ' (3.25)

*

Here the probability POl

can be assumed to be a product of two proba-
bilities; one is a probability that a neutron bornYuniformly in the
fuel rod with the same cross section as the moderator escapes from
the rod, and the other is that & neutron which has escaped from the

rod makes its first collision in the moderator. Namely it can be

written in the form

PY = (I-P*)(I-c*). (3.26)

Then Eq. (3.25) is written in the form

| voz.,c{ C*V. +Y*~l},

= + m
?o '?o V2w Pon Vo (3.27)
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§3.3 Application to Multi-Region Polygonal Cell System(ll)

The method in the preceding section is applied to polygonal cell
system in which each cell is divided into several concentric annular
regions except an outermost moderator region. Each annular region
is denoted by an integer n (1¢< n< N) numbered from the center outwardly
and the outermost moderator by M (ef. Fig. 3.1). Let us consider
the n-tn region and express the incomming and outgoing neutron total
currents on the outer boundary by J; and JZ respectively and those on

the inner boundary by J;_l and J;-l' The inner and outer radii of

the region are denoted by Tl and T respectively, and the surface

area of the outer boundary is denoted by o, The total neutron source

Fig. 3.1 Notations in a square cell
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(source

density x volume) in the n-th region is expressed by Sn'

(12)

Then there are relations among the neutron currents:

J;T

T

+ SaPu

+ SﬂKP:L,

+ 0 -
3-'I:l /P'IL + J—q\, ?:&o

(3.28a)

o Pol ot TP

(3.28b)

where all the probabilities //;;’s defined below are to be calculated

in the case where all the inner regions than the n-th region are black,

and

14

“Pn

P

P

Another

the probability that a neutron entering the n-th region
isotropically from the inner boundary escapes from the region
through the outer boundary directly or after suffering some
collisions in it,

the probability that a neutron entering the n-th region
isotropically from the outer boundary escapes from the region
through the outer boundary again directly or after some
collisions in it,

the probability that a neutron born uniformly in the n-th region

escapes from the region through the outer boundary.

three probabilities will easily be conjectured from the suffixes.

Though the probabilities {Fa’s include the effect of multiple collisions,

we define similar probabilities P’s with the same suffixes as /3D,’s,

by taking account of the first-flight effect only.

Equation (3.28) may be written in the matrix form:

)
Jn

iy

oo Pn P
n mn

R J
P

P i
7pg T

- S
S .
e

+ "V‘O

Ja-, g

I -

-y

(3.29)
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J. +
J-|~

of the above equation. Then if there are two boundary conditions

+
Thus, (iﬁ) may be connected with ( ) by successive application

n
on the inner- and outermost boundaries all the currents are evaluated.
The average neutron flux ¢n in the n-th region is determined from the
conservation law:
Vlacty = Sa + (Tn *+ Tl - Ta- Tl ), (3.30)
where Vn and ch are the volume and the capture cross section of the
n-th region.

In what follows, the six probabilities ;o, ,:o, /7%?i

/fp:é, /7%?'and /7urbare calculated to determine the neutron
currents.

First, we calculate the probability /GQ:f Let the flux be ﬁ(?)
which is produced at position T in the n-th region due to an isotropically
injected neutron source from the outer boundary. Here we assume that
all regions except the n-th region are black, namely the mean free path
is zero elsewhere, The uncollided flux due to the source is denoted

by no(?), then

> [ J‘dg (’?1'5.*) “ﬁs
V) = —
Tro( ) G‘nm . Rg 6 B (3.31)

where B is the inward normal vector on the outer boundary of the n-th
region, 5* the unit directional vector along a neutron flight, and

RS and fﬁs the real and optical distances from the boundary to the
point T respectively. The integral about o means the surface integ-
ration on the outer boundary of the n-th region. The neutron flux
satisfies the integral Boltzmann equation

- IR
¢(?)==¥fd?’——£3~; Sas Gy + TL(H

*nR (3.32)

Vn

We consider the functional T of the form(l3)

- 61 -



-5k
T =2 $HT® +ﬂ? BOO[HF g Zas $ ) -ﬁ? )
T T.

A T n

(3.33)
This functional is stationary with respect to the variation of ¢(?).

We expand the flux in the n-th annular region into a Legendre

series:
K 2 e Tz.
2= Tpn = Ty
=)
#(r) - 751 P ( Y2 - yi, ) s (3.34)

where & is the upper limit of kK after which terms are truncated.

By substituting Eq. (3.34) into Eq. (3.33) and using the stationary

condition
dT
®* o= 0 p— O_, l’ e K)
d fa , (% (3.35)
we have
2R
> > C Vn
¢.& [Jdr P"(r")fdr T s P‘(T,#) YT ]
n Vo
e—ik
v % 3, .
+ Y f [ PR )fir i Zns Pe(r)]
Fri n ~
+jd? T (r) Pa(r*) = o,
Y. (3.36)
where we used
r* _ 21’1— Y'nz - r':—l
Y'ft - Y:-l g
and the orthogonal relation of the Legendre polynomials:
Vo
—ea ﬁ-_— ﬁ’
2t
[ ROV =
T ,
0 s RER (3.37)

If we put K = 1 in Eq. (3.36), it follows that



*o(c'n :v_ /) + ¢‘C“®'\r“v+ ﬂao =0 9

(Cm “—)+¢Cm ";\""_‘_77'0‘:0,

where <, is the scattering ratio in the n-th region and

Mo = v,\ oLr T, (F) |
Trm = un d.Y TT (r P (T*)
Pr= 2= (af [d¥ €
o Vo e 47 R? s
v Z'n. d.» d?« ~ =R P %
Co= wZTIT e RO,
d Zn 2 ?4 —ZK /X
Ndyn YV,

(3.38a)

(3.38b)

(3.39)

(3.k0)

(3.41)

(3.42)

(3.43)

Using the solution of Eg. (3.38) the functional T may be reduced to

the form

T= T{ WGP -2k G QT+ 24 T

t e (GRY - £) + 28T}

_ oy U-ca TVTE+ 2 Cp QL T, + (5 = CaR%Y) T

(= Ca P (- R = (RY)

The stationary value of T is given by
I~
- ZR;

€
X
T = :ﬁr ¢ (r) Gﬂ jd«('n o) R

¢ (2 dd -k _ 4 ovo
Sn Zns JdT Y‘(T)me we © - Tn Z s /P'n ’

Vo
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where the integration about .?). is performed over the domain £1,

corresponding to the whole angle Lr minus the solid angle subtended

by the outer surface of the (n-1)-th region at each point 7. The
ovo

probability /Pn is defined as that for a neutron entering the n-th

region isotropically from its outer surface to escape from the region

through the outer boundary after suffering some collisions in it.

In the same manner as in deriving Eq. (3.145), we obtain

4 1 [s [ 4R _-7R, £ o
ma- bl [ [ 4R ™ £
Cﬂ. -V:"' 'v"“ 04‘71 Gq\ n 2 (3,&6)
e ~
¢ | (2 [ 42 3R _ # o
770 = = fdrj\ PI(Y*) = oy (am_ .
I VA " (3.47)

By equating Eq. (3.44) to Eq. (3.45) and meking use of Egs. (3.46) and

(3.47) we get the equation

PO FEinsTy (P 3 (4 = caRY )+ 2P0 @y Ca G + U= Ca PYV)(RY)
" Tn (1- CmP:v)(BL"C'nR:V)" C;(@v:)z (3.148)

The probability /9. is obtained by adding to /Pn  the probability for
a neutron entering the n-th region from the outer boundary to escape
from the region directly through the outer boundary:
00 oo o0
P P P (3.49)
This expression reduces to the well-known formula by the flat flux
approximation if the quantity Q = 0 in Eq. (3.48). The quantity Q
expresses the deviation of the flux from the flat one.
Using the same technique as in obtaining /)):Vo, we get
DL 2T (PIF (4 - GRY)+2 P R Ca @ + (1= S PETI(@Y)
" S (1= CaPIE-GRT) - CH(AYTY (5o,
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Since there is no neutron which leasks directly through the inner boun-

dary due to a source emitted from the inner boundary,

(3.51)
In the following, we calculate the probabilities (blacknesses)
ﬁo and (G;, respectively that a neutron entering the n-th region
from the outer or inner boundary 1s absorbed in they region when all the

internal media are black. Since there are conservation laws

P+ Pe t B =1, (3.52a)

P+ Py fe= L (3.52b)
f)),,.,:' and /P,,io are easily evaluated if f, and B; ae known.
Substitution of Eq. (3.34) (K = 1) into Eq. (3.32) and integration

over the volume of the n-th region after multiplying by Pk(r*) (k =0, 1)

lead to the equations

%Z,\ = z'n Troo T fsozﬂs F)’;’"" + ¢|st @";V, (3-53)
jlisg—’)L =2Za 0l + 7‘"Z'ns(f;\‘u:r * éz"‘s R:v . (3.54)

The solution of these equations is

b= oo (L - caRY) + € Q% Ty
(1= e PI" (4 - caRET) = € (AT

(3.55)
Then the blackness /&, is calculated from the definition
Bo -_—-_fd}) sté(r) = Vn Za #’o
Tn
_ Tl (5= CaRW) + G QW T
- -V—w ZI\\C v / o 2 Ay \2
(/" C'np'n. )(—3—— C"‘van )_ C'" (@'ﬂ )

(3.56)
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In terms of Egs. (3.46) and (3.47) and the reciprocity relations

Ca
nLRP = 2R, (3.57)
e G\Q\, oV
I @ = % Qa (3.58)

Eq. (3.56) is transformed to

B (E-caRI )t Ca QL QY
(- Ca P E - R )~ (RY)

FO = (/—' Clu)
(3.59)

In a similar manner, Bi may be calculated as follows:
o v LV N T
Pﬁn (E—Cm R'n ) + CM- @'u B:n

B.=(I-¢x) vy '
(1= Ca P I(E - caREYY - c2 (R%) (3.60)

R .
The probabilities zﬁ%f and /GDZW are evaluated from the relations

Sn °

Zhe = VaZacPn, (3.61)
Gﬂ-l _ i

T ﬁ& - Vn Z‘nC ?,n . (3,62)

Thus all the probabilities necessary to determine the neutron currents
have been calculated.

In the following, the boundary condition in the outermost moderator
region is considered, To take into account the effect of the lattice
configuration we adopt the concept of the extended Dancoff factor.

For the present case the extended Dancoff factor C¥ is defined as the
probability that a neutron emitted outwardly from the outer boundary of
the N-th region undergoes its first collision at any of the regions 1~AN
in another cells composed of the moderator material replaced With'real
media. Notations adopted in the preceding section are redefined by

fo = the probability that a neutron emitted outwards from the
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boundary oy is captured in the moderator in the case where the
media of 1l~vN regions become black,

¥ * = the similar probability to ¥, in the meaning that the media
in the regions 1~ N are replaced by the moderator,

/3: = the blackness of the regions 1~N for a neutron inwardly

entering the regions from the boundary o under the assumption

N
of the isotropic distribution, to be captured n the regions
1~N when they have the same medium as the moderator.

Using these gquantities we calculate the probabilities /Pn and /7>:°,

which are necessary to relate J% and JN

- + R + S v
TN J”—N /PH ] ?M . (3.63)

From the definition of ¥, ,

Pu =] =% . (3.6L)

Making use of Eq. (3.11) in the case wherelﬂz is very small, the
probablility /;%:breduces to

o I P
@M / /_9* ﬁO

’ (3.65)
Here, for the calculation of ﬂ: , 1t will be sufficient to use the
flat flux approximation:

2 Y'N ch(’— Pc*)

pr =
j— Zepr (3.66)

where Pg is the probability for a neutron born uniformly in the regions

1~ N having the same property as the moderator to undergo its first

collision in the regions 1~N. The quantity ¥* has already been
given in Eq. (3.20). Then Eq. (3.65) can be evaluated.
ri e q vi,
Next we calculate M. The probability /;% is related to
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50° by

R
% Vu Zhe (3.67)

Using Egs. (3.11) and (3.66) the above equation is reduced to the form
P 2k W o, mfv S

Py = |~ - P,'E—TP (%rv ~ %) s (I-R5HU-CY)
| (3.68)

where subscript O corresponds to all inner regions than M and subscript
1l to the region M. Thus the boundary condition of the outermost
moderator region, Eq. (3.63), is established.

The neutron flux in the moderator is determined by

Zne Vu ?Sn = Sp /PW.‘*’ Jv M

, (3.69)
whereupon using the relations
P = Ef’** 2V Zn U= R ,
=3t - =gt (3.70)
and
*
Ta- /_F:é * Zz': * '%ﬁ: v.,%v. (v.v:v: -¢) Zns(:;})(l—c*)
(3.71)
we nave
v 2n(-RY NtV
f = v" /_p* ZN Vo |_ %Pf Yo
T « / TEoex an (U-RY)
'(VH-V.—C)ZHS(I—R')(/-C*)}-‘-?;‘. e ZHSPC
(3.72)

One more boundary condition is given in the innermost region by

T P70+ s, P (3.73)
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Here faaocorresponds to 1 minus the blackness for a neutron impinging
upon the innermost region inwardly to be captured; the blackness for
the central fuel rod being evaluated in Appendix 3A. Thus all the
multiple collision probabilities and the boundary conditions have been

obtained and the neutron currents and fluxes can be evaluated.
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§3.4 Effect of Anisotropic Scattering in a Square Lattice(lh)

In this section we will study the effect of anisotropic scattering
on the flux ratio in a square cell containing a thin moderator.

In the preceding chapter we introduced the anisotropic collision proba-
bility under the isotropic reflection condition on the laftice cell
boundary. In the case of large fuel rod, however, there is no
aséurance of the validity of isotropic reflection condition on the cell
surface. Then we divide a cell into meshes as in the THERMOS code
and investigate the effect of anisotropic scattering.

We make use of the Boltzmann integral equation (2.1k). Since,
in this section, we take into account up to the anisotropic scattering
proportional to u (cosine of the scattering angle) and the current
along the z-axis is zero for infinitely long fuel rods, the scattering

kernel, flux and source are expanded as follows:

S &0 = #{ ZEEY+3ZL(F) (Qeie + L n,wn,n,_,)}

T (3.7h)
> > I 0,2 [P & i
P By= = {Fh+3s(Lda+ b Ha,)),
(3.75)
> > I >
S(r,a)= —— S°(¥)
k1 (3.76)

Three equaticns for flux components ¢° ’ ¢i and f; are obtained
by the integration over 43 , and £y or {14 multiplied integrations

after the substitution of Egs. (3.74)~ (3.76) into Eq. (2.1k):

¢(Y)—f&7" [S(r)-l-Z(r’)?‘(r)

+ 3 I { fdal + §dhah)]
(3.77)
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' 2 ')l C x o, 2. [ P [} "’
b, () =jdr e ol [ SU(F) + I () (P

+ 3 z;(?’){ ¢ (FHral + ‘#;(F’)n’;}] ’

(3.78)
b2y L >, c—ﬁ _()_* [So(?/) + Zo(?,) %o(',?,)
#3 (Y)-—\IAT 7:;35; 7 s .
+3zi(Pr{ b (rak + #d0A, )] .
(3.79)

We can perform the integration over dz' in the volume integral dr':
o , 7 ? L] " ° ’ e 0 / ’ .&. .
P = g [ferdy [{Sad s i@ §r a0} F KL

! ’ ' Y, 2
t3 n @ {ex et (-0 hE N} F Ke @],

(3.80)
4’; x,4) = T;E‘[fd.x'd/a’ (x=x*) [{ Sew, gy + 30k 4 (X 7)) ;,. Kiz(T)
+ 332, & fa’){a—x’D ﬂ' &, ) + (4-3D ﬁ x, a’)} —;? Kis CT)] A

(3.81)

t / [
f ) = g [locdy - [{swan+ e Fe ) K

+ 33 O {@ R+ (3 , ¢ 90} —;;"3- Kas('C)] ,
(3.82)
where Kin is the Bickley function of order n (15), £ the length
between ¥ and T projected onto the x~-y plane, and T the optical
distance along the projected length.
In the case of dividing the surface integral over dx'dy' into
meshes, we concisely express the mesh having the center point x = X5

y = yJ. by 1ij; A;& is the area of the mesh ij. Thereupon we have
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By 2y 75“. = Z Ay [( Su}» + zs,;} ¢;& ) P‘}*ﬁl

C,d‘,

5°¢( +:")¢-P’ﬁl 304» v&‘)il« )]

!
Aﬁlzit #’x,-u. = Z Ay [(S“d' t Zs L ¢ )P i he

o7

+ 3 ZS s id ( ¢x“’d’ bdl,_:ﬂ'!’ + ¢‘U_ﬂ,* |.+-3 e )]

Dgg Ty Pyyy = Z AV<yl:(5de t Z:,‘fﬁb )P¢e££

]
T3 Zs " ( ?‘l)bd— v;: AL + 75';..; u*“" 4 )]

where Pij -~ k] S are defined by
00 Ago Zgg K
5 = ———F— K (Tegotn)
P"d"—” L ZE-P.'.&,Q‘Q . ¢
10 Dy Zpp (La-X
P{,‘—)ﬁ — ! aa LX) Ku(‘ct,},u),
20 Agg 23y (
Pﬂd‘»u - 2o < 8p (a4 Ku("‘:»&,u)
CR N Y
ts
S Agy Zao (Xg-Xi) K., (T
S T 2-75f?¢, i3 f-@,ill),
1z Agg Zgy (h- ’3)
P‘J"M = Kis (Tig, 42)
me"q)tﬂ ?

-T2 -

(3.
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.89)

.90)



12 Ay Ty (Xa-Xi)(J2- 44)
PL'-»M = KL! (tt,} il)
¢
ZK f"d’)‘,l
21 12
P‘@"iﬂ = Pc&»u, .
Pij*ﬁ kl’s have the following properties

Z P“r’“ = | ’

Z RQL*LQ "d’"gﬂ = 0 >

%,4
) ) Piia= ¥
o Pbd-)-ﬁj_ 1 °¢‘>ﬂl - 3 ?
; P°¢->ﬁ,1 ) »¢—>£2 = 0 .
These relations have been used to obtain P, ’s for 1

ij = k1

]
Furthermore, since there are symmetries for @,, , Pz as

shown in Table 3.1, the number of variables in a cell can

' !
Table 3.1 Symmetries about ¢£l ,fLﬂnand *1,&2

Quadrant
1 2 3 Y
<]
55“. + + + +
i
Pr, s + - - +
]
¢'3l‘£ + + - -

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

=k and jJ =4.
and ¢;,51 as

be reduced.

o 1 \
All the wvalues of 7‘&2 s 751,“ and 953,31 are taken positive in

the first guadrant.
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§3.5 iiumerical Results and Conclusions

In Table 3.2 the blackness of a cylindrical rod in the cases of
scattering ratio e/ 3= 0.2, 0.5 and 0.8 is presented as a function
of x (= aZ, , a is the fuel radius, Zo. the total neutron cross section).
The value Y¥, the difference between the exact value of the blackness
and that of the flat flux approximation, increases with X especially
in the case of large scattering ratio. when the scattering ratio
is zero, the values evaluated from Eg. (34.9) of the present method and

from Eq.(3A.10) of the flat flux approximation are identical since

Tahle22 Values of blackness for different x (radiusXtotal cross section)

[ 20,/20;7—0.2 | 20,/20[-:0.5 24},/20(:0.8
* Black-| Black-] v “EﬁEET‘"Bﬁii-}”ﬂ'”;I*'_”-EEEﬁf'iﬁﬁﬁC_F“"_‘;X o
ness! | ness' | ness! ness'! ness' | ness't | -

0.1 | 0.1449 ; 0.1449 | 0.3730x107* | 0.09389 | 0.09390 | 0.6068x107¢ | 0.03899 0.03899 | 0.4048X107*
0.2 | 0.2647 | 0.2647 | 0.1305x107 | 0.1769 | 0.1769 0.2204% 107 | 0.07602] 0.07603 | 0.1532x107°
0.3 | 0.3644 | 0.3545 ) 0.3109K10°* | 0.2503 0.2504 | 0.5449%107* | 0.1112 | 01112 0.3952x10°°
0.4 | 0.4481 | 0.4483 | 0.5801x 107 | 0.3153 | 0.3157 0.1053%10°° | 0.1444 | 0.1446 | 0.7970X107°
05 | 0.5182 | 0.5187 | 0.9693x10-* | 0.3727 | 0.3734 0.1821x1072 | 0.1759 | 0.1761 | 0.1437X107*
0.6 | 0.5758 | 0.5767 | 0.1587x107* | 0.4226 | 0.4239 0.3087x1077 | 0.2053 | 0.2058 | 0.2547X107°
0.7 | 0.6249 | 0.6264 | 0.2267x107% | 0.4669 0.4690 | 0.4552x10°* | 0.2330 | 0.2339 | 0.3917x10°*
0.8 | 0.6665 | 0.6685 | 0.3035x107* | 0.5058 | 0.5090 0.6277x107% | 0.2590 | 0.2604 | 0.5625X107°
0.6 | 0.7018 | 0.7045 | 0.3870x1072 | 0.5402 | 0.5446 0.8228%X 107 | 0.2833 | 0.2855 | 0.7667X107*
10 | 0.7319 | 0.7353 | 0.4753x107% | 0.5705 | 0.5764 0.1037x10-* | 0.3061 | 0.3091 | 0.1003Xx107
11 ! 0.7576 | 0.7619 | 0.5667x107* | 0.5973 | 0.6048 0.1266%107* | 0.3273 | 0.3315 | 0.1270Xx107!
1.2 | 0.7798 | 0.7849 | 0.6598x107* | 0.6210 | 0.6303 0.1508 % 107! | 0.3471 | 0.3525 | 0.1565X107
13 | 0.7989 | 0.8249 | 0.7534x107* | 0.6420 | 0.6532 0.1758x 107 | 0.3656 | 0.3725 | 0.1887X107"
14 | 0.8154 | 0.8223 | 0.8465x107* | 0.6606 | 0.6739 0.2015x 10~ | 0.3828 | 0.3913 | 0.2232X107"
15 | 0.8208 | 0.8376 | 0.9385x107* | 0.6772 | 0.6926 | 0. 2275x10™* | 0.3988 0.4092 | 0.2599x107
1.6 | 0.8424 | 0.8511 | 0.1029X107* | 0.6920 | 0.7095 0.2537% 107t | 0.4137 | 0.4261 | 0.2985X107"
1.7 | 0.8534 | 0.8629 | 0.1117x107" 0.7052 | 0.7249 | 0.2800x107! | 0.4276 | 0.4421 0.3389X107"
1.8 | 0.8630 | 0.8734 | 0.1202x107* | 0.7170 | 0.7389 | 0.3061X 107 | 0.4406 | 0.4573 | 0.3807x107!
19 | 0.8715 | 0.8827 | 0.1285x107* | 0.7276 | 0.7518 0.3320x 107 | 0.4526 | 0.4718 | 0.4240<107
20 | 0.8700 | 0.8910 | 0.1365x107! | 0.7371 | 0.7635 | 0.3576X 10-! | 0.4638 | 0.4855 | 0.4684X107}
2.2 | 0.8016 | 0.9051 | 0.1516x10* | 0.7534 | 0.7842 0.4076%10-! | 0.4839 | 0.5110 | 0.5604X10™
24 | 0.9016 | 0.9166 | 0.1655x10™ | 0.7668 | 0.8017 0.4557 %107 | 0.5012 | 0.5341 | 0.6558>10"!
26 | 09006 | 09250 | 0.1783%x10™ | 0.7778 | 0.8168 0.5020x10-* | 0.5162 | 0.5552 | 0.7546 X107
2.8 | 0.0162 | 0.9336 | 0.1900X107! | 0.7869 | 0.8299 | 0.5462X% 107t | 0.5292 | 0.5745 | 0.85G2X107"
30 | 0.9216 | 0.9401 | 0.2008xX10* | 0.7945 | 0.8412 | 0.5886X 107t | 0.5402 | 0.5922 | 0.9609x107!
32§ 0.9260 1 0.9455 | 0.2110:X107! | 0.8006 3 0.8511 | 0.6316107 0.5492 | 0.6084 | 0.1079X1Y"
3.4 | 09297 | 0.9501 | 0.2199x10~* | 0.8061 | 0.8600 | 0.6685Xx107" 0.5576 | 0.6235 | 0.1181X1¢°
3.6 | 0.0328 | 0.9541 | 0.2280x10"* | 0.8108 | 0.8678 | 0.7033x107* 0.5648 | 0.6374 | 0.1284X10"
3.8 1 0.9355 | 0.9575 | 0.2355x107* | 0.8149 | 0.8749 | 0.7363X107 0.5710 | 0.6503 | 0.1383%1¢°
4.0 | 0.9378 | 0.9605 | 0.2423x10"' | 0.8184 | 0.8812 | 0.7674X107* 0.5764 | 0.6623 | 0.1491x10°

1 based on the present method
ft based on the flat flux approximation
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a neutron that suffers one collision is captured and does not contribute
to the neutron distribution. The comparison of the values from Eq.
(3A.9) with those from curves obtained in Ref. (13) attests to the
accuracy of Eq. (3A.9)

The form of Eq. (3.27) is very similar to that of Eq. (3B.7)
obtained from the collision probability method. The main difference
is that the effect of the deviation from the constént flux is taken
into account in Eq. (3.27). Thus we can apply Eq. (3.27) to closely
packed lattices where accuracy of the Amouyal-Benoist method can be
considered to be poor. The form of Eq. (3.27) also verifies Fukai’s
result(g) by the collision probability method that the absorption
ratio of the moderator has little effect on the flux ratio in a lattice
if the absorption is small.

The extended Dancoff factor depends directly on the flux ratio,
which was not contained in the Amouyal-Benoist theory. The extended

Dancoff factor C¥, necessary to evaluate the flux ratio, is easily

Table 3.3 Convergency of the extended Dancoff factor in
square lattices

Fuel radius: 1.0 cm, Pitch: 2.50663 cm

g% Total crg;s section of the moderator
0.5 em’ 1.0 cm’
1 0.04o8YL 0.0uLk50
J2 0.01778 0.00880
) 0.00523 0.00118
J5 0.00332 0.00055
2/2 0.0011k 0.00009
3 0.00085 0.00005
J10 0.0006k 0.00003
/13 0.00031 0.00001
3/2 0.00011 0.00000
C* 0.33401 0.22324

d¥: Distance between the original rod and the rod
considered in unit of pitch
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calculated since the shadowing effect by intermediate fuel rods need
not be considered. In Table 3.3 is given the convergency of the
extended Dancoff factor. These values indicate that, in the calcu-
lation of the extended Dancoff factor for a square lattice, it will
suffice to take into account the 48 fuel rods immediately surrounding
a fuel rod.

In Table 3.4 are given the values of the flux ratio in two-region
square cells for the input data used in Ref. (2) (here Lo= 2a 2, ,
L,=2aZ V/V,), The absorption in the moderator is neglected.

The values by Fukal can ve considered to be rather correct since he
divided a cell into many shells. The results obtained by the present

method (Eq. (3.27)) are in good agreement with Fukai’s values. They

Table 3.4 Calculated results of flux ratios in square lattices

E ¢l/¢0
Case Vil Vo A by Zoi/ Zos ——
; Present method Fukait ‘ Amouyal'
1| 1 1.0 0.5 0.1 1.224 1240 | 1219
2 | . 0.2 1.199 1.213 1.195
3 0.5 1.125 113¢ 1122
4 0.75 1.062 1.067 1.061
5 0.9 1.025 1.027 1.025
6 1 2.0 0.5 0.1 1.229 1239 | 1207
7 0.2 1.204 1.213 1.184
8 0.5 1.128 1.133 1115
9 0.75 1.064 1.067 1.058
10 0.9 1.026 1.027 1.023
TR 1 1.0 1.0 0.1 1.468 1.502 1.459
12 0.2 1.417 1.447 1.408
13 0.5 1.262 1.282 1.256
14 0.75 1.132 1.142 1.129
15 | 0.9 1.053 1.057 | 1.052
16 1 2.0 1.0 0.1 1.479 1.493 1.434
17 0.2 1.426 1.:39 1.386
18 0.5 1.268 1.277 1.242
19 0.75 1.135 1.139 1.122
20 0.9 1.054 1.056 1.049
T Values based on muliishell collision probabilities
Tt Values listed in Ref.(2)
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represent an improvement over the Amouyal-Benoist method. Since tre
contribution of Y* in Eq. (3.27) is very small (Y* = 0.000021 for cases
(1) ~ (5) and (11) ~ (15) and Y* = 0.000088 for cases (6)~~ (10) and

(16)~ (20)), we can calculate the flux ratio from the equation

#. I vo Zoc C* v‘ - ’
P, /I)o * Vi Zic { (/— P~ c*)V, ) :

This equation is simpler than the result by the collision probability
method, zg. (33.7), which requires taking account of the shadowing

effect in the calculation of PO Moreover, the effect of difference

1
in lattice configuration is easily taken into account by the factor C¥*.
The above equation is very suitavle for a series of flux calculations
where it is only the cross section of the fuel rod that changes, since
only one calculation of C%* is required. Tnus the present method

should be particularly suitable for calculating the resonance absorption.

in Table 3.5 are presented the flux ratios evaluated oy the above

Table 3.5 Flux ratios for various lattice pitches
in square lattices

Ze: 0.7221 em’, Zo: 0.3230 cm’
St 0.3721 cm’, 3.t 0.3118x 10’3 cni!
Fuel radius: 1.5 cm
Pitch (em) 3.2 3.5 L 5 10 20
¢/ 9, | 1.6k2 1.606 1.592 1.60h 1.684 1.727
eguation Ior sguare lattices of various pitches. The ratio does not

increase monotonously with lattice pitch, but has a minimum point, as

(16)

pointed by Fukai . The ratic rises in level with decreasing
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moderator thickness. This is attributed to the increase brought
thereby to the coefficient C*V./(/-R')(/-C*)V, in the above equation.

In Table 3.6 the flux ratio by the present method in a two-region
square cell is compared with values of the collision probability method
and of Carlvik’s numerical method(lY). Good agreement is seen
between the present method and the Carlvik’s method. The first-
flight collision probability method with the perfect reflection
condition overestimates the value appreciably.,

Next as an application of the method in §3.3 we calculate the flux
distribution in a three-region square cell, Outer radii of the
central region (region 1) and the intermediate region (region 2) are
taken to be 1.0 ana 1.5 cm respectively. The outermost region 3 is
a moderator and arranged in a square lattice with a lattice pitch 4.0

cm., In the system we adopt two cases of neutron cross sections in

Table 3.6 Disadvantage factor in a square lattice cell
with two regions

volume ratio 1.865

fuel radius 0.381 cm

distance between adjacent fuel rods 1.143 cm

total cross section of the fuel 0.78 cno'

scattering cross section of the fuel 0.387 cm'
total cross section of the moderator 1.0618 cm'
scattering cross section of the moderator 1.053 cm'

Methods ﬁm / 133‘
Present method 1.1498
Carlvik’s method 1.150 £ 0.005
Two-region collision probability
method (isotropic reflection 1.1ho07
condition)

Two-region collision probability
method (perfect reflection 1.28L43
condition)
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each region. For both cases the total cross sections of the both
regions 1 and 3 are 1.0 cm and the scattering cross sections of these
regions are 0.5 and 0.9999 cm' respectively. In the first case, the
total and scattering cross sections of the region 2 are taken to be 1.0
and 0.5 cm'. In the second case, those of the region 2 are taken to
be 1.0 and 0.8 cm' respectively. In the calculation of the flux
distributions for both cases we consider a uniform and isotropic source
per unit volume only in the moderator. Values of the currents at
interfaces of each region are presented in Table 3.7 for both cases.
The neutron currents for the case 1 show strong anisotropy, large
difference between inward and outward currents, at each interface.

This is due to the strong absorption in the regions 1 and 2, For
such a heterogeneous system the present method is powerful since it
takes into account the spatial change of neutron flux in each region.
Comparing the currents for both cases it can be seen that, in the case

+  _+
2, the outward neutron currents J., J

5 show larger increase than those

in the case 1. This is based on the fact that neutrons which have
arrived at the inner regions from the moderator will have more chances

to escape from the inner regions outwardly in the case 2 than in the

Table 3.7 Neutron currents at each interface
Currents Case 1 Case 2
37 2.6660 b, 2246
3] 6.2069 9.8355
3 3.1409 6.3459
J; 12.0682 15.2720
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Case 1. Therefore the neutron flux for the case 2 approaches to flat
one, This is easily seen from Table 3.8 where the neutron average
flux in each region is shown. Since the effect of the lattice
configuration is taken into account by the extended Dancoff factor,
this method can be used to calculate neutron flux distributions for
closely packed lattices. The flux distributions based on the flat
flux approximation are shown in Table 3.9. Comparing Tables 3.8 and

3.9, it can be seen that the flat flux approximation leads to flatter

Table 3.8 Heutron flux in each region
Region number Case 1 Case 2
1 2.2542 3.5720
2 2.7L33 L.2210
3 | L.5997 5.9600
Table 3.9 deutron flux in each region based on the

flat flux approximation

Region number Case 1 Case 2
1 2.2973 3.6262
2 2.7088 h.1127
3 L.5629 5.84k41
Table 3.10 Moderator-to-fuel flux ratio in a square cell
for anisotropic scattering
Zyo : 1.0 cm’, Zoes : 0.5 cm’
2 ¢ 2.0 com’, Tt 2.0 cm?!
Pitch : 3.5 cm
K Present method Method in Chap. 2
0 1.6651 1.6734
1/3 1.,5446 1.5654
2/3 1.4ko1 1.4578
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flux distribution.

Next we evaluate the effect of anisotropic scattering in a square
cell by the method in §3.k, We take 36 mesh points in 1/8 of a cell.
Thus direct flights of neutrons among the meshes in the original and
the first and second nearest neighboring cells have been taken into
consideration, The ratios of average flux in the moderator to that
in the fuel are shown in Table 3.10 for three val;es of the average
cosine of the scattering angle‘i in the moderator. The average
cosine for the fuel is zero in all cases. Good agreement is obtained
between the results of the present method and those in the preceding
chapter, which proves the validity of the "white" or isotropic return

condition on the cell boundary in the case of anisotropic scattering.
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Appendix 3A

Determination of the Blackness of a Fuel Rod

In Ref. (13), the blackness was calculated by Stuart based on a
variational method. Here we use his method by choosing & trial
function of the fuel flux in & form of a quadratic function about r.
We now describe it briefly.

From Eq. (3.33) we obtain a functional

( fv. d¥ T, h ¥ (?))1

= Z C-I"R .
> 5 2. 08

dr P — [dF (4 PO P M) —oe—

\Ln j% = ¥ (34.1)
The stationary value of T is given by

6‘ #vo Zot

T = { =R = f)
T SeZos Se ( Fe o). (3A.2)
If we choose a trial function of the flux in the fuel such as
() =1 tbhrt (3a.3)

and eliminate the constant b by the relation dT/db = O about T in

Eq. (3A.1), we obtain

ZOtf zoc 205'" Zoc

Ias Zas
(I-?o—tR‘)_ (/—®°)('+—f;e(a°ﬁ_ Zoy k- Zot Q‘)
Zos 2o Zos 2
(1- 5=R)I- 5 R)— (/-5,8)

S—p

(=R

&
T=(5w =

wi

(3A.4)
Here Qc is the probability that a neutron born in the fuel rod with a
source distribution proportional to r2 undergoes its first collision
in the same rod; RC is the probability that a neutron born in the fuel
rod with r2 source distribution undergoes its first collision in the

same rod with a weight proportional to r2, which is normalized by
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dividing with the rl‘l integral:

~znk
Q, = J:lr Y fdr —_— .,
$mR
fvj” v (3.5)
- ZotR
/ 2 20t €
R, = —-—-——fd? r‘fd?‘ Y’ T
¥ r+ v A TR
(3A.6)

L

The behaviours of Q, and R, versus x (= fuel radiusx cross section)
are shown in Fig. 3.2 together with that of Pc' Approximate expres-

sions for them are given by
l
| +1.19968x -0.03822(385x*+ 0.0013/3x?
[ - (&c = /

| +1.16635X —0.02895 4432+ 0.0007802x3

for o0<x<§

for S<x <0

L £ 4 3 for /o<x
X 3x* 213
(34.7)
/

|+ 0.8494%85x~0.0992/05x* + 0.0/140285x3

for 0<x<3

- /
[ - R.= for 34x< /0

1293217 + 0.5150 179X + 0,00578532 91"~ 0.000 554032

3 2 3 ey
.Z__;-f.zﬂ.f—z;—; for /0<X
(34.8)
The error of each expression is smaller than 0.1 %.
From Egs. (3A.2) and (3A.4), we obtain
Zoc zo\s 2
-~ SR~ S =R~ EE (- RS
Fo =2aX, % > 5
$ (- ER- R - (- F6)
(34.9)

If we let Pc =Q = Rc, we have
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Pc

~ Qe

Re

O

Fig. 3.2

S

Curves for P, Q_ and R, vs. x (= radius x total @oss section)



Y /- R
ﬁo = 2082, Zc
as

Iot Pc

(34.10)
and this is the form which could be obtained easily by the flat flux
approximation.

From the definition of ¥Y¥ we obtain
4
vt = Lo

el

(34.11)

Appendix 3B
Flux Ratio Based on the Collision Probability Method

In the case where the moderator contains a uniform source Q, the

Yo S b

neutron conservation in each region may be expressed by

Vit P * T2t Pet FR@,
v.l zlt %I

(38.1)
T.35.5P, tVbd R+ PR Q.

From the above equations, flux ratio is given by

(3B.2)
P Zs W3, N 3 o
¢o 2ot T zlt z—ot Pol

(3B.3)
We introduce the quantity
= L

)7 =

Zos

ot Pc,

(3B.4)
where ' denotes that the quantity is eXpressed in terms of the first-
flight collision probability.

Then £q. (3B.3) becomes
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_ ZOC ' _ VO ZOC
¢o——/§—‘+z°t<Poi [ —

Pc)_ V3w O

(38.5)
where PC is the probability for a neutron born uniformly in the fuel

rod to undergo its first collision in the same rod. We put

Fo= (/- RXI-C) | (38.6)

where C' is the sum of the probabilities for a neutron emitted isotro-

pically from a fuel rod to collide in any fuel rod other than the

original rod. Then Eq. (3B.5) reduces to
¢| ’ Z’C CI v‘ ZOC
L - 4 —_ .
#’o /’30 Zot‘ oi Vi 2 (3B-7>

This corresponds to Eq. (3.27) in the case where Y¥ = 0, C*/POl*Zlt =

] \ - /
C'/Py,L,, and o= .
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CHAPTER L

FLUX CALCULATION IN LATTICE CELLS

§4,1 Introduction

In this chapter the usual first-flight collision probability
method is applied to the calculation of the neutron distributions in
various cell systems. In a highly heterogeneous system such as
pressurized heavy water reactor, the calculation method based on the
first-flight collision probability is very useful. In such a
heterogeneous system, however, it is very hard to take into account
the deviation from the flat flux (see §2.4), and we are obliged to
assume flat flux within each region. Thus it is necessary to divide
the system into the largest number of regions by possibly diminishing
the size of each region. It takes very long to evaluate numerically
the exact collision probabilities between many regions.

In §4.2, therefore, we introduce a new approximate expression
for the first-flight collision probability for cluster systems.

First, we obtain an approximation of the probability in an annular
system. This corresponds to an improvement of the Bonalumi

(1) ~(3)

approximation , and the numerical results are compared with
those of Bonalumi’s, though our expression coincides with his result
in a system containing only two regions.

In a cluster system, we must divide the system into many ring

regions 1in each of which several fuel rods are included. By using
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Leslie’s method(h), collision probabilities between different rings

are calculated by replacing the heterogeneous rings by annular domains
having equivalent homogeneous cross sections. His method requires

a knowledge of the collision probabilities among fuel, cladding and
coolant in the same ring when the inner domain is void. But he did
not take rigorous account of the existence of the void region.

Tob remedy this shortcoming, we introduce the transition probability

for a neutron escaping from one subcell to collide in another subcell
when the internal medium is void. The transition probability between
tweo adjacent subcells corresponds to a principal constituent of the

(5)~(T7)

Dancoff factor in the case where the medium between the subcells
is empty. Combining the collision probability in an annular system
with the transition probability between subcells and using Leslie’s
method, we obtain the collision probability in a cluster system.

As an application of this method, we treat a hexagonal cluster
containing 7 fuel rods without cladding and a square cluster containing
28 fuel rods with cladding. Our numerical results for collision
probabilities in annular and cluster systems show good agreement with
the results obtained by the exact method.

In this section, we assume the infinite extension of the system
in the axial direction. Usually the buckling approximation is used
to take into account the finiteness of the system. This approximation
comes from the fundamental diffusion theory; the flux distribution in
the axial direction is assumed to be sin Bz, then the pseudo absorption
in the system increases by DB2. This approximation, however, ihplies
the use of the P, theory in the whole three dimensions; there is no

1

theoretical justification that the pseudo absorption may be applied to
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the first-flight collision probability method in reduced two dimensional
systems.

In §4.3 we calculate the first-flight collision probability for
finite slab and cylindrical systems directly, assuming the flux distri-
bution in the axial direction of the type sin Bmz(a). Generally the
integral included in the calculation of the first-flight collision
probability is sixfold. In such a case the numerical evaluation of
the probability is impossible and the Monte Carlo method is usually
adopted(g). In the present method the integral is reduced to threefold.
Then the first-flight collision probability is evaluated directly from
the expression obtained. In a slab system the first-flight collision
probability that a neutron born in a region mskes its first collision

in a given region in the lattice cells is obtained by summing the proba-

bilities that the neutron undergoes its first collision in the original

cell and in the next neighboring cell and so on. In the cylindrical
cell, however, this is not the case. The first-flight collision
probabilities in one cell are calculated directly. Next it is assumed

that the spatial distribution of an escaping neutron from the original
cell is proportional to sin Bz and isotropic. Under the above as-
sumption with the isotropic return condition on the cell boundary, the
first-flight collision probabilities in the lattice cells are obtained.
The methods described up to now could be extended to the multi-
group theory. But the resonance region need to be particularly treated
because of the rapid change of neutron cross section with energy.
Then, in §4.4, the neutron spectra ana the resonance integral for
an isolated wide rescnance are calculated analytically for a two-region
cell. The resonance integrals in homogeneous system have been calcu-

lated by many aythors through various analytic treatments (for example,
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(14)

, Chernick’s improved W.R. approximation ,

(15))

Goldstein’s X method(lo)~(13)

and Spinney’s N.R. approximation . They have alsc improved the
methods in order to treat the resonance integral in heterogeneous
systems. The usual treatment of the resonance absorption, however,
involves the assumption that the spectrum is symmetric about the energy

of the resonance peak. This assumption of flux recovery is proved

to be incorrect for a large wide resonance. Even if we take into

account the flux depression the moderator correction

by
repeating iteratively Goldstein’s method, the improvement is very slow(l6).
Furthermore the neutron spectra far below the resonance energy cannot
be expressed correctly in the method.

Therefore, in the equation of neutron balance in a cell, we use

(17)

the Greuling-Goertzel approximation for the slowing down kernel in
the moderator by assuming the known flux in the fuel. After two
iterations about the neutron fluxes, we obtain the resonance integral
and analytic expressions for fluxes in the fuel and the moderator. The
neutron spectra obtained show the exact neutron behaviour far below the

resonance, The correction to the constant flux in the fuel rod could

easily be taken into account by the method in §2.k,
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(18)

§L,2 Flux Distribution in Cluster Systems

In this section we derive a new calculational method of the first-
flight collision probability in cluster systems. To begin with, we
will derive an approximate expression for the collision probability in
an annular system. The collision probability that a neutron born

uniformly and isotropically in a cylindrical rod makes its first col-

lision within the same rod has been evaluated by Case et al.(l9), ana
may be written in the following form:
X
R(ez) = | - —— + 7o [49 w09 Kis @az o )
< - 2a % 7(.@.2.0 ©3 2 (h-l)

where a and I are the radius and the total cross section of the rod,
and Ki3(x) is the Bickley function, and is given in terms of the polar
angle 0 between the axis of the cylinder and the direction of the

neutron path:

7_2': 2
Kis ) =jae a6 € A8

0

(L.2)

We calculate the probability Pii in an annular region for a neutron
born in the i-th region, and having a uniform and isotropic distribution,
(20),(21)

to undergo its first collision in the same region . Using

the notations in Fig. 4.1, we obtain

z z ¢ LT
P, = _%Y_ do,@}ne[ jow oeas'f:w. {1—- € )
[o]

g. Xi _ A= _X-A)
+ | dy ced‘ffdl{(/*@”“ )+ (- € e )
. g 0
g it T RI2.
e MR (- o)

g2 Xi B (K-
+st°w49’fu{(/—cma)+(/—c ane )
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Fig. 4.1

B

Weutron path in an annular system
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where Xi is the projection of a chord length in the i-th region onto

the radial plane, along which a neutron starting from the outer boundary
of the i-th region travels till it reaches the inner boundary of the
region. And Xi' is the similar length along which a neutron starting
from the outer boundary of the i-th region travels till it reaches

again the outer boundary of the same region without passing any internal

region, We denote the Pii for the case where Zi-l = Zi_2 = .0 =0
by Pig. When we let ZJ = 0 for j4€i-1 in Eq. (4.3), and use the
relation

el

H
YLJd’i’Lm’j’a = Y'.-: d?;-,w" 9;—;
[}

[}

we have the expression

E 2V, w9 ¥,
P;°-=/—~;“fd9coo‘fj wis ([~ € ame )
0

z 2T X,

2Yi,
t % Jd? ceo?L,Jdemoe “ant
0

[

2T {a d ..,
(- €T ) (4.1)

ow we adopt an approximation by which we replace the integrand of the

last term of Eq. (4.4) by the product of each average using Eq. (4.1):

0 /
Pi= 1 - = [/ - R

- o {/ - Pc(Yc-.Za))(/" Hc-:,a)z]

(k.5)

where a, = ri_l/ri and ﬂi-l,i is the probability for a neutron emitted

isotropically from the outer boundary of the region i-1 to undergo. its

first collision in the region i:
x

xz
e e frass (- D).
° (4.6)
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Substituting £q. (L4.5) into Eq. (L4.3) and transforming the range

of integrals about ¥ from 0 to 7/2 by using the relation

h 3 I
YLJ d?; g0 So;, = Y,;-gfd,?;-ﬁ o9 S)L-‘,

%i.ﬂ 0
T
- YL—*,—IJ& Prp-r @9 Py , (R = integer),
° .
it follows that
x x
T ‘ 3 X X
° Zn_ . - cl i i 2
Pii. - P&.:, = Z;V'Jd.yb’ MY&-.ﬁOM‘G (/—'e “am® )(’_e Ame )
) ]

2 7. ':‘ l: - X:-,, Z&-; - X:'i- z“l
¢ 2 [ v Jaw aie [- €5 - 6 )
0 0

3 z~a X.:'-,Z;-;

2.)" _
+————ZV Jw,sm&.jdeme[(/—ew’ -(/-€ &%)

Xig Zoop t K2 2oz _ Xi2:

. C_ Aim® (/—— € ame )
+ L v .
(4.7)
Following the same process as in deriving Eq. (L.5), we obtain
0 .V:'-I,f Z.‘.-: 2
PLL - P.‘,L = TVL_— { [ — E (Z.:-/Y;-;)} Hi.-/,.-,
‘ 2 t [Z‘ 2 {’ I - i-z Y.'.-z)} - z;-; { P (z "rl’_")}] L’Z H
+ z..vs.t [Zss - B(ZL-;Yé-J)} - Z.v.z{l— PC(ZL-:.Y.:-_;)}] st
Tt (4.8)
where V = nr2 and H, . is the probability that a neutron emitted

Jst dsl
isotropically from the outer boundary of the j-th region undergoes its
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first collision in the i-th region.
In Bonalumi’s approximation, Pgi is identical with Eq. (L4.5).

But he made the following approximation for Pqi =P, .:

ii
° 27, H Xioy 2 x%z; :
P;;— PH = 2,7V, dtfm? JGMG (/—e m& )(/— """9)
b 0
¢ n XeaTia 2 Xer iy X
2y, _ Keadia 2
t Iy Jd?m'fjdbmﬁ(l— wnB )/“C"“e)
$3 0
+ e s e
7[

K’L-I it X(,Z;,
= [Jd&"m?fdeme(/— s (/- € @ )

X»:.Z.',-z*'ZXa-:ZL-: Xi I,

Jd?m&?fd&m‘&(/— a6 )(/—é"f“”)
%3

) Hewe
- Z PomHee (4.9)

It i;u;een that Bonalumi’s approximation neglects the azimuthal depen-
dence of Hi—l,i in addition to our approximation of replacing the
integrand by the product of each average. The former approximation
will not be valid when the system contains a region of small thickness
or small neutron cross section.

Next we introduce an approximate expression for Pij (i< j), which
is composed of two different probabilities P'ij and P"ij’ where P'ij is
the first-flight collision probability for a neutron born in the i-th
region to collide in the j-th region without passing the inner rgions

of i, and P"ij is that for a neutron to collide in the j-th region after

passing the inner regions of 1i:
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P/ * X &
T jdem‘e(l—e"“)
0
Xin Z; X zz.,fz l&ge {t o
e_ it ML +- +X¢ Zt| (/‘ e_ ,:}nzo )
‘I * X X, X T+t X, 3, Xz
fJ\oW W $ A6 an*e ([~ & me ) € PRy (/_ems)}
0 [

= d\z { / - (Y Z )} H J'ﬁv-& {Hi-l,}— Hc‘.—l,} (ZZ‘-_)}

ol
T 7mar {17 RmIYHu e
(L.10)

4

9, 43
Py = T { [or s ftowwe (1- ¢ F)
8!

X T X Xt et Xy Z4, Xé 24

ah e (,_em)

2 X i Lomt +X IRIEE D HIETERS {

fdfm?fdemﬁ(l— )C_ A § e

Xs Z;
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% 5 Xz
fdsowo?fdeme (1— e =6 )

+
[

X Ty 2 X i t XE-, Zoog + XeZotrr t Xi-1 Z4-4 Xt- Z!
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= L[
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' [H“a}(zz“’) - Ha-z,é(zz"’lzz‘)]
T g—% [ 2 {_/"' R (zi-ar;-z)} - 2is {/—' R (Zi-_,}*‘-j)}}

) [H¢-3,@(2Z¢'z,zzi~') - Ha-a,;(zza-z,ZZL-u 22&)\_‘
TR (4.11)

J

where H, (2z.) is the value of H, , when the neutron cross section
i-1,J i i-1,]

in the i-th region is QZi and H, (2x

-2, 2Zi) is the value of H,

i-1° i-2,]

when the neutron cross sections in the regions i-1 and i are 22i 1 and

2Zi respectively. The collision probabilities Pji(J> i) are evaluated
with the aid of the reciprocity relation
When we apply the isotropic reflection condition on the cell boun-

dary, the first-flight collision probabilities PEJ in lattice cells

containing N annular regions acquire the form(gg),

. ! P,
P.:é, = P‘j. T (I - ; P’d> i PS} 3 (4.12a)

=1
where

N
42,V
Ps;,z S"*(/—ZPH), (L.12v)

f=1

and S is the surface area of the cell boundary.

In what follows, we have introduced the first~-flight collision
probabilities between annular regions. To treat a cluster system by
Leslie’s formula, it is necessary to obtain the collision probabilities
between subregions (fuel, cladding or coolant) in a ring possessing an
internal void. To calculate these probabilities we derive the first-
flight collision probabilities between neighboring subcells and between

subcells separated from one another by a void region between them.

- 98 =



Firstly, we derive the probability Ala for a neutron emitted isotro-
pically from the surface of the fuel rod 1 to reach the fuel rod 2 (see
Fig. 4.2, where a means the radius of the rods). Here it is assumed
that the fuel rods are black and the medium between the rods is wveid.
When a point A is on EBP! , namely, jd}j < ., , & neutron starting from
the point A with azimuthal angle ¥ may strike the fuel rod 2 if
$.<¥9<¥ (¥ is measured clockwise). When A is outside PBB' , i.e.

when («| is between oo and ©/2, only the neutron with the condition

$ <¥<n/2 may enter the fuel rod 2. So we obtain
| r
Al°~= > N : Q_IS jd.S,, Jd,.?l (?\?‘L)
J4& (-2 © mi- asnfoct ) ) aclid amgle lomiing e fud ol 2>

| Y () X/ p“-lz
= 4= j jdfwo?-rfdo( dy @y
(k) do Vy,(d)

= a
= Ix d&’wo‘f d&woe

-®/2 -Tf2

ks s AT - 0)

J 45 = @ (ainb - an9)?

(L,13)

T

i}

-
-

—— e - —
—— Q.-.’
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Fig. L.2 Transition of neutron between two adjacent rods
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where 4 is the distance between the centers of the subcells. Next

we evaluate the probability A., for a neutron escaping from a subcell

2b

to enter an adjacent subcell (b is the radius of subcells).

R/2 /2 b
= — | d9 do w0 &
Aa w3 J1d* = b (amo ~ an 9|

-x/2 -n/2

d
- (- prak

2btVeb -4  —
d / b‘)

(h.1L)
Here it 1s assumed that a neutron starting from a subcell along the
path EE can reach the adjacent subcell by passing through the original
subcell inwardly (path AC shown in Fig. 4.3).

Applying Egs. (4.13) and (L4.1L4), we can obtain the probabilities
between subcells when tnere is coolant present between the rods.
Firstly, we calculate the probability Q13 that a neutron escaping from
the fuel rod 1 undergoes its first collision in the fuel rod 3 in Fig.
L.k, We assume that a neutron born in the fuel rod 1 escapes from the
original subcell with the probability {/- P (za)} (/-Hn) . It
proceeds to the surface of the region L4 with the probability I, (o
means the radius of the subcells) and has its first collision in the
fuel rod 3 with the probability (4I,7V,/s,){/- Rz} (I~ Hi). After
all we have

Q= 225N, {1 - REOY U= Ha )
(4,15)

In a similar manner we obtain th and th:

Q. = iizT(‘_’“_“l N {1 - Rz
((=HOU-R,-P.)), (4.16)
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Fig. 4.4 Two adjacent subcells
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2%, (b=d) 2
(&zq.-: _b_—_ /\-zb (/— Faz _FDZ.I)

(k.27)

Here H P, and P have already been calculated.

12’ "21 22
The first-flight collision probabilities between subcells separated
from one another by a void region between them are calculated by substi-

tuting A, for A2b in Eqs. (4.15)~ (L4.17), and chénging the distance 4@

1b
to an appropriate one.

Applying the equations derived up to now, we calculate the first-
flight collision probability in cluster systems.

First, we derive collision probabilities in a cluster without
cladding. In a hexagonal cluster we choose a ring region that is
tangent, for example, to the six rods shown in Fig. U4.5. Subregions
in the ring are indexed by k as is marked in Fig. 4.5, where fuel rod
corresponds to k = oda and coolant to kK = even, We consider the
collision probability Pgi(l,,k) that a neutron born in the subregion
AL  of the ring i undergoes its first collision in the subregion k of
the same ring, in the case where the internal region of the ring i is
void., Here the suffixes £ and k are either f (fuel) or c (coolant}.
The macroscopic neutron cross sections of the fuel and the coolant are

denoted by I_ and ZC respectively, and the superscript O denotes that

hi
all the inner regions are void. We assume also that Q(l,m) represents
the probability for a neutron born in the subregion 1 (fuel) to undergo
its first collision in the subregion m in the same ring when the inner
region of the ring is void. Then we have

Pai(j)j')z (S\(l,/m) )

M=, 3, me (L,18)

where M-1 is the maximum odd number of subregions in the ring. In the
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calculation of Q(1,m), Q(1,1) is the probability that a neutron born

in the fuel rod 1 undergoes its first collision within the same rod,
and may be calculated by using Eq. (L.1). The other Q(1l,m)’s, for
example, in the 6-rod ring in a hexagonal cluster, are determined as
follows: Q(1,3) may be calculated by using Eq. (4.15). But in the
calculations of Q(1,5) and Q(1,7), the intermediate medium between the
subregions 1 and 5 or 7 is assumed to be void, and simultaneously the
quantity A2b is replaced by Ala’ as it was previously done, furthermore

we choose a suitable length d and let H . = 0 in Eq. (L.15).

12

Next we write down the probability Pgi(f,c) in the form

P:L (f,e) = { [ — Pc(“zj)} Gbe
(4.19)

where GbC is the probability that a neutron escaping from one of the
fuel rods in the ring collides in the coolant in the same ring when the
internal region of the ring is void, and is evaluated as follows.

We replace rod and cooclant areas in the ring by radial lines so as to

maintain the same areas, and denote the angle of a fuel rod and coolant

medium by y, and y, respectively (cf. Fig. L.5). The probability

0
ii,c

P that a neutron born in the ring i in the case where all

subregions of the ring are coolant————has its first collision in

the same ring may be written as follows:

P:L,c = Z @f(‘)'m)

m={

= Z QL m) ‘r{/— Pc(azc)}Gu,c , (k.20)

m=1,3, \H-1)
where the superscript c means that all the subregions are coolant.
. 0
Since P,.  can be calculated by Eq. (4.5) and @%(1,m)’s by the similar
2

0
way to the above Q(1,m)’s, we can now determine Pii(f,c) by using
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Egs. (4.19) and (L4.20). By using the reciprocity relation, we have

0 2V, 0
Pu(c*f) = 'E%#; PLL(iC)

5

(k.21)

o V.
F{‘ (¢, c) = ( | = 'ﬁ% ) inoc + égi Ey:(';”n) .
© mels N (4.22)

Thus the collision probabilities in one ring having internal void region

are obtained by Egqs. (4.18) through (k4.22).

Using Pgi(ﬁ,k), the probability Pii(ﬂ,k) in the presence of given

media in the internal regions of the ring i can be calculated by using

(4),

Leslie-Jonsson’s approximation for a cell containing two regions
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P8 = PI(LAE) — Pyl (L.54) G immn,; A4
(k,23)

wnere P. (L ,f+c) is the probability for a neutron born in the sub-
i,inner

region 4 of the ring i to have its first collision in the internal

media of the ring i, G is the probability for a neutron escaping

inner,i

from the internal media outwards to undergo its first collision any-
where in the ring i, and W®4; is the ratio for the collision to occur

in the subregion k of the ring i; P (£ ,f+c) is related to the

i,inner

probabilify Pi that a neutron born uniformly in the homogenized

,inner
ring i has its first collision in the internal media of the ring i by
the relation:

Z; 2V,
P;,:,,WL(,Q,)‘H) = 00— Pm A 2e

2o Va (k.28)

where VKi and Zki are the volume and the total cross section in the sub-

region k of the ring i. Homogenizing the ring i, we obtain

F{' = Fbic - Fjgammw G;immn,a . (4.25)
Using BEgs. (4.23) through (4.25), we obtain

zi. VRL

R.(L4a) =P 0, 4) — oy, ds. g
;D”( ) d\.ﬂudﬁ,b ZRLVQL (P,_b P“,)

(L.26)

In the above equation, Pii and Pgi are calculated for the case where

the ring is homogenizeaq. We may assume for s, that
afl Hi'l,.‘_ (Zj»)
ijé = s
SiHL Gt B He, (O (4.27a)

(*.c.', = / - ij‘, (}4.27,0)
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In Eq. (4.25), when we homogenize the ring containing fuel rods and
coolant, the homogenized cross section is chosen so that the probability
for a neutron entering this ring inwards to undergo its first collision
in the homogenized ring is the same as that for an actual heterogeneous
ring:

Ha-:,;(zfnu)= T%_E_Hp-r.;(zt) + }:’%‘E’H&-:,a(zc) . (4.28)

In the calculation of the collision probabilities Pi between rings

J
neither of which contains any fuel rod, Pij may be evaluated in the
scheme for an annular system, with use made of homogenized cross sections

in each region. For rings both of which contain fuel rods, PiJ(ﬂ,k)

may also be evaluated by the relation

ZuVZ;
Pc&('e»‘%) = O(,ecdid; ;—“—-

LuVie ¢ (k.29)
(4),(23)

which was introduced by Leslie and Jonsson .

In a cluster system with cladding, we cannot use Egqs. (4.18) and
(Lk,22). So we divide the system into subcells containing the three
constituents of fuel rod, cladding and coolant, and denote the subcells
by indices m, m'. We assume that Qmm,(ﬁ,k) is the probability for
a neutron born in the subregion £ in the subcell m to collide in the
subregion k in the subcell m' in the same ring when the internal region
of the ring is void. Then we have

M
P = ) Quam (4B |
. vy {4.30)

In the calculation of Q‘mm'(‘e WK, Qmm( 4 ,k) is the probability

in an annular system and can be evaluated by the previous procedure,

and when m#mnm',
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Qo (L) = (/[ — Z Pe) M P -

(4.31)
Here P,,. is the probability for a neutron born in a subregion £ to
collide in a subregion 4’ in the same subcell. The summation of &’
is performed over all the constituents of the subcell. Further,

/A m>m is the probability for a neutron leaving the subcell m to
reach the subcell m', and is equal to A2b for adjacent subcells, and
to A,, for other subcells; P

1b

on the surface S of the subcell to collide in the subregion k in the

sk is the probability for a neutron impinging

subcell, and is given by

&

P’ = _S-Z‘-V‘(/_Z;Puf) ;

Using Eqs. (4.26) and (4.30), we obtain the probabilities Pii(ﬂ k)

(4.32)

for a cluster with cladding. The ratio a i for a neutron to collide

k

in the subregion k in the subcell i is

dy = —
Z_ Pre (4.33)

A homogenized cross section of the ring Zhomo is evaluated to satisfy

the relstion

Pt (S tom) = Z Pie -

where PSh is the probability for a neutron impinging on the surface

of the subcell to collide in the homogenized subcell, and is expressed

by

¢
Stome) = — -
P_m( feme ) S Z fome Vi { / R (LZM)} ’ (L.35)

where Vt is the volume of the subcell.
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Using the homogenized cross section and X WE obtain, by using

Eq. (4.29), the probabilities P, (4 ,k) for a cluster with cladding.

J
Thus all the probabilities in the cluster system with cladding have

been derived.
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§4.3 Effect of Finiteness of Cell Systems on Flux
(24)

Distribution

In this section, the effect of finiteness of systems under
consideration in the axial direction brought upon the flux distribution
is investigated by deriving a new first-flight collision probability.

The neutron flux in three dimensional systems is expressed in
Sine series:

> 3
- .
B = > fa (D) Bz,
n=o (L.36)
where X is a vector in the horizontal plane and z is a coordinate along

the axial direction, and Bm is given by

(am+1)w
Bn= ——7q—’—— ,
(4.37)
where H is the axial height. The neutron source is also expressed

in sine series:

S(H=3 Su(® MinBuz |
m=o (4.38)

Substituting Eqs. (4.36) and (4.38) into the integral Boltzmann

equation
N
- IR

> > C > 3 -,
¢>(Y)=fdr’ ey { zor gy + 5] ,

(4.39)
and integrating over O~H about z after multiplying by sin Bkz, we
obtain the equation

H ~IR  _w
H ¢ I . >, c . 7
- P (X =fdz,dm812fdr YTy Z Aam By2
o $RY £
>
A L@@ + 5,
{zomn ! (4.%0)

Here the horizontal area is divided into some regions in each of
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which the neutron cross sections are constant. In each region it is

assumed that the neutron flux and source are constant and, for instance
in the i-th region and in mode k, they are denoted by ?ﬂ-k and S 4

respectively. Integration of the sbove equation over the surface

area V, of the horizontal J-th region produces the equation

J

VI b, = }:Z P Vo (Zs By + Su), (4.b1)

i 4=

L
where P." is given by

1

Lk 22 . . c—:’fE

= —t 212, ‘, =
Ry Hv-.j‘“jf” AnBarham Bad e (.42)

If the first-flight collision probabilities P are obtained, the flux

id
4 are calculated by solving the simultaneous equation

(h.Lb1), In what follows, we will calculate the probability POO for

1l

the fundamental mode. Other probabilities would be similarly obtained.

components f‘&

First, we calculate the fundamental mode first-flight collision
probability in a slab system. Notations in the slab system are de-

scribed in Fig.h4.6.  The probability P (1;&3) takes the form:

0 M N e-ff\(

Ry = 'f“’ """‘Bz'f” AmBE IRRE (4.13)
. .

where B is the abbreviation of B; and f. is the thickness of the i-th

region, Owing to the relations

it = REdR4D (4.4ka)

A3 = and dot df, (4. blp)

2 = 2 + ) tamdan ¢, (4. hke)

the above equation reduces to

P +4, + 0 ¥
P.°.°= falz ,AmBzfdx Jd?f o Tand
0

‘& TLH,Q 4+l

, C—-ﬁ/w ain B (& + 4 b anf) (b.45)
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Fig. 4.6 Notations in a finite slab system

where &*f is given by the relation
2+ ) and*unp = H . (4.46)
If we exchange the order of integration in Eg. (4.45) by

H <F ﬂz&'(ﬁ—:‘m-f’) H-9 fah m f
fda’fd«x = j ddi dz’
0 ° 0 4

and perform the integration about z', we can reduce Eq. (4.45) in the

) (b.hT)

form:
Lo g+, +0, pn/2 M'(-——”—-——)
00 3. §TILT My 2 amd -
P;}=7[L—fjdx’jdx jd#’fdrk Tand CQ/W*A ,
‘ ° ﬂcé_‘f.ﬂ;, [ 0 ()4-)"'8)
where '
I
A = 00 (BA tand ain$){ £ (/= 7 Tand ain )
S 2 tamdk win ) L e :
t zgq ~m (28 wnt) + 2w A (BLGndk st ) (4.%9)
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In a similar manner, PSS is expressed in the form:

Ton’ (ﬂm¢ ) z
s TALL
L= dx’ dl OL
L 0 3 ? A ) (4.50)
wheref = x - x'. In Eqs. (4.48) and (4.50), the double integral
about x' and x can be reduced to a single integral about L. Thus we

obtain the following expression for PC.)(?:

00 “""(T——) -1 /wad
P.‘.;,=—_' dﬂ(ﬁ l)jd‘fj tanth € A
(k.51)
In the calculstion of P, g we first consider the case I, Z&. When
2, =4, and Z.= X, , we obtain
o0 2z, [Hath Mt ()
Qp /] [}
Logr 240, L%} bm(
> +
+fufu (2025 4) “’J C
Lyt 0, 0 ’ (k.52)
where

I RS ey
A tansd € “@ad

b
and f;& and Z/I% are the real and optical distances from the right side
of the i-th region to the left side of the j-th region. When f£:? Qd"

a_nd_ zL:ZJ”

.¢+Q‘ 0 [+

) (4.53)
A +ﬂ— uﬂ(‘z )
oo 22, Am
P, = =1 Ldn (8- L,)fowf
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1“—# di f. d‘f’j

2‘$+1L
N
2 3, yrliety 3 f""‘(sz )
t XL ) (9 +dit 8- 2) ot? C
é+g *
Next we consider the case Z,# Z,.
obtain

00 22,
PL& = g, z -, jdl
. { | - é(fc-!@)(l-lzé)/wdd\ }

Lytag, pn/z2 ‘W»(m)
t 5. -3, f fd?jd_ok
l ] )

. { C—(Z;-z‘-)(‘a_za-y%)/mo\ _ e—(ZrZ;)JZa/m« }

/2 T‘”‘(,mea)
j D

3

where

~

5Tyt
Aand € wo %

When L)JZ& and I, # I,
vo 23, L ” "" “’”(zm»)
Py = f“

{/ L g s Lip/eeas }

ﬁ‘l’lj ml(lmr)
‘- d?J
Tl Z- ot L+l
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The probabilities P . (i >J) are obtained from the reciprocity relation

LVRY = 4T, P{-f . (4.58)
From Eqs. (4.51)~(4.58), all the probabilities necessary for the flux
determination in slab systems of finite dimension or in infinite slab
lattice cells are obtained.

Next, we calculate the collision probability in a cylindrical
system. In a cylindrical lattice system, unlike in the slab system,

the boundary condition on the cell surface must be considered.

We express the first-flight collision probability PFOO in the

1J

lattice system in the following form:

t 00 0o
Pu-, = Pc& + Py ——— Psd P

/— Pss (4.59)

where

00

P
1d

= the first-flight collision probability that a neutron born

in the i-th region with weight 2sinBz' makes its first collision in the
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J-th region in the original cell with weight sin Bz.

Pis = the probability that a neutron born in the i-th region
with weight 2 sin Bz' escapes from the original cell without collision
through the side surface S.

PSS = the probability that a neutron entering a cell through the
side surface S with an isotropiec distribution and yith an axial distri-
bution sin st escapes from the cell through the side surface S again.

st = the probability that a neutron entering a cell through the
side surface S with isotropic and sin st distributions undergoes its

first collision in the j-th region in the cell with weight sin Bz.

They are expressed as follows:

_ 2 >, . , d?l ‘ﬁt.s
Pos = gy Jafr e [ 52 €7,
. (4.60)
B " . 2,2 2 3 - R
Pss= 2m s deSMBZ’ 4§ |40, (n-a € P
o (k.61)
B b H . > > > _ﬁés N
R& = ng jdzsmsis dSJd.Q._, (n-525) [dR € Am B 2 ,
0 ¢ (4.62)

where fRLS is the optical distance from the point ? in the i-th region
to the cell boundary along the neutron direction .?i , and fﬁ,,the
optical distance from the side surface S to S along j;,, and R the
inward normal vector at S (S is the circumference of the side surface
of each cell). The integration about R is performed over the line
element in the j-th region along the direction Ji,.

To begin with, we calculate the probability ng in a cell.
Notations used in the calculation are described in Fig. L4.7. The
technique adopted is similar to that by Kavenoky who evaluated the
first-flight collision probability in an infinitely long cylindrical

system. In his method, all the neutron paths are taken to be
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parallel to the x-axis and the distance from the original point to the
neutron path is denoted by y, and the positions of starting and end
points along the neutron path are denoted by £ and § respectively.

PSS (3J>1i) is expressed in the form (ef. Fig. 4.7)

X
PL& rdrjdzjde 4«7r.

where ri and ry are the outer and inner radii of the i-th annular

JdRCARMB?— . pmB 2
(4.63)

-1
region, respectively. We introduce the relation
rdy'dy = - d4de’ (4.6h)

in the above equation to obtain

fu[ FKMBZ-MBZ ,
Lo, << gy ﬂ‘, (H y (4.65)

where f. and f., are the distances from the point O in Fig. 4.7 to

00

‘&zuv

the inner and outer surfaces of the i-th region along the neutron path
respectively. If we change the order of integration about z and

on the basis of the relation

7t/1 K- A/ﬁmo
[iefdo, = fu [
24 (L.66)

where s = £- 2’ , and perform the integration about z' in the use of

the relation

2 =2+ 4/famb | (L.67)
we have
n/2 2’3/,4«‘-;0
R¢ = j j jde L C A
?¢-—0 -l(“H_)

‘494'

, - T4 /ains 5,
fdl fwja'le C A ’ (4.68)

(%2

where A' 1s given by
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Notations in a finite cylinder

Fig. bL.7
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AN = e (84/tm0) {5 (1= 7o) T gay A (284/tm o))

[ r
el (B4/tmo) (s.69)

In Eq. (4.68) the first term expresses the contribution of neutron

current from the right side of the i-th annular region to the right
side of the j-th annular region, and the second te;m expresgses that
from the left side of the i-th region to the right side of the j-th
region.

In a similar manner we obtain the expression

oo 4‘2 il 24
= ow doe € * A
= 1=' ta! (/1)
7‘2,; = - z,; 7
+ _ﬁ?‘J\ ~[d£\[¢2‘/. C wno A ,
9
w (A1) (L.70)
where s = |4-47]. After the reduction of the double integral about

£’ and f into a single integral sbout s, we obtain

., pli-fen x/2 ~Z.4/Mmb 5o
Ju z(fz;-m-.-»)fao e A
/] ]

faw (4/7H)
9.2 R /2 5 24 )Mo
quj‘u “4-24.)] 46 &' 4280y - 25 L)/ M0 N
2be tan (/1)

d6

dA (20,-40) .
las' (A/H) (b.71)

n/2 -(Z;A-rzﬁm-:"lzaﬂw)/"“‘e /
¢ A
L.+,

Next, we calculate the probability ng (i< J) from Eq. (4.68) in

the use of the same technique as adopted in deriving Eq. (L.71) from

Eq. (4.70). When 2L=z& )
, : g+£. Lyt 4o
Qo0 Z rv /
poe - £k m[Huou{fuu n>+fu I
¢ [ ,qu"-,o

L +05t 4o
+Jou (Lot 12;1-2&&-/4))

1;&"'9.
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)“'.*'le 9.‘,*‘2:
T H (1;"20) { d4 (A“ﬂ&d-) +fdA 1,
ﬁ;‘- -acé'f'ﬂa
Lyt Lot 44
+f do (£.+1;+£.v&—,o)]
-ca",'fio’
J‘u/z ﬂ-‘.‘,‘z§¢cl«&,+’££4 A/
¢ € A ¥
B’ (4/1) ’ (k.72)
where f, =4.-4,, and f§/=4:-4., , and H(x) is given by
{ for x>0
H(.x) = /2 for x=o0
0 for x <0 . (.73)

In evaluating ng, the evaluated results of Eq. (L4.72) for two possi-
bilities of 52%} and EQ are added; the one corresponding to the
neutron current from the right side of the i-th region to the right
side of the j-th region, and the other corresponding to the neutron
current from the left side of the i-th region to the right side of the
Jj~th region.

When 2. # Z; ,

9 "’I. 1(/1

Pi= va- I)Jd%[H(}’. 24 f de D’

" Gw (9/H)

{l _ - 5044y )/M&) ‘Jjwhfm do D {I - (3;- Ia)fo/M&}

\2 73 "o/ )

qu.ﬂo‘fﬁo R/2 (I : S 1 9 / 6 j’/
Q- > /e~ ~(Z;- ) A &
+D°

fan (/)
i 9;&1’29 x/2 _
+Hu.’—1°){ da b D'{/-€
by bkl (o)

(- r;)(,a—ﬂ.@)/me}

ﬂ +£°
t= I - Lo/ ame (- T2 ) fans
fdo D ¢ i 4o/ € ! i/ }

1 ”' W (4/H)
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Y +hot ) nR12 _ )
+jM Jde [ { @B Wt timtosmme é(l;-Z,pﬂ./Am&}

bl e " (1)
I PeE A MLSY
where D = A/MG € Adw & .

The evaluation of the above equation must be performed in the same way

as in evaluating Eq. (4.72). From Eqs. (4.71) ~ (L.74), and the

reciprocity relation (4.58), all the probabilities in the cylindrical
cell can be obtained. Next, in order to extend the probability

to lattice systems, we calculate the probabilities Pis’ P and Pss‘

sJ
The probability PiS reduces to

T. Ay /2 , _/2 \
R = n‘}jﬂjufao wint € | + oa (BafHans))
Jo Ja (A/H)

(4.75)
where s is the distance from the cell surface to the starting point in

the i-th region (see Fig. L4.8). In terms of the relation

Fig. 4.8 Neutron injection from the cell boundary
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d2 dSdd, (A-3HdR = dd dF,

(k.76)
the quantity st is given by
4‘7C Z; LO Az 'K/z ' - Z’\A/MO /’
Ri= 3 jdw dAfdeMGC A
* A Jtazt(arm) (&.77)
PSS is transformed into the form
B H s a2 Rs _2R
P, =/ - Jazsmszsfasjm,m- D[R 2 €
RS J, 0
. A pM2 _Q/MO
= | - Z iff—quju de ang € 3 (B4/tamb)
B S Jdy o (4/0) > (L.78)

where RS is the chord length in the cell along the neutron direction
ji,. In terms of Egs. (4.75)~ (4.78), the first-flight collision
probability in Eq. (4.59) in the case of cylindrical lattice can be ob-

tained.
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§h. k4 Neutron Spectra in a Resonance

In this section we derive an improved expression of the correction
of the moderator flux for an isolated wide resonance with use made of
the Greuling-Goertzel approximation(lY). An analytic expression of
the resonance integral is alsoc obtained, which takes into account the
flux decrement in the moderator. We treat a twq-region cell, of
which the moderator is not very large compared with the neutron mean
free path in the region. In such a system we can use the flat flux
approximation in both fuel and moderator regions. For a cell with
large moderator, we can use the concept in §2.4, or the effective
volume of the moderator, as shown by Iijima(26).

The neutron balance equations are written in terms of the first-

flight collision probabilities Pij in the forms

RWZ W = RH S G t PN, faZas Vo + §W, (4.79)

20T = B M 4 2%t Ra K fuZms T (4.80)

The leading suffixes f and m in I stand for fuel and moderator, and
the tail suffixes s and a stand for scattering and absorption, res-
pectively; Vf and Vm are the volumes of the fuel rod and the moderator
in a cell; Ki is an integral operator of the slowing down in the i-th
region, and is given by

‘o / —(U-w) ,
Kot =f:; = €W

We use the Greuling-Goertzel approximation for the kernel of the mode-

(L.81)

rator, and the wide resonance approximation for the kernel of the fuel:

}(5 ? — ¢ ’ (L.82a)
“o3, o Mow 3. . ,
Ko $ =fdu {7 e7m +U-2)suvffw | (4.820)

-0
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Adding Eqs. (4.79) and (4.80), we have

f; w 5V + Pl LnVa

= /‘dj ¢j zjs‘-vj + M«m fm szm T S(K) » ()4,83)

where we assume that absorption in the moderator is negligible, and
that the scattering cross section in the moderator is constant.

The lattice system considered is assumed to be so large that the leakage
of neutrons from the system can be neglected.

Applying Eq. (4.82) to Eq. (L4.83), we obtain

5T = {1 Rrehe )

u
— | dw Z) BV
L 00 OO T (4.8k)
Under the assumption of constant flux in the moderator, ﬁ(“) is
expressed by the first order approximation of Eq. (4.79):
‘ Fif(u)
LY Gw - Bw3m (4.85)

‘ff W =

Thus Eq. (4.84) becomes

/ m g (W) 2
P35, V, = 3 [/ - En Py (0 240 ()
m 3. { Za0 t g0 am(u)}

u W) Z4a (W)
_ Jdu’ Pmi( ila / ]
o Fa{ Tt Zp ) B} .

(4.86)
A rational approximation for collision probabilities is introduced,

as in the paper by Goldstein et aZ.(lO):

G\j (®)

Bw= STw 2 Be® Tigw

(4.87)

Neutron cross sections are also expressed by the Breit-Wigner formula(27)
which neglects the interference between potential and resonance

scatterings:
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I %
Ca = I3

[ [+ x? (L.88a)
@5 = 5“—5‘("— + 6\fo 3
ror s (L.86Db)

where 1:—;;—([5—5,)_

Using the relations (4.87) and (4.88) and the reciprocity relation

for the collision probabilities, Eq. (4.86) may be reduced to

Tnlr6 !
F 2T = 52 { ! = T o TR
__L (_/_ - L -'_’C_)}
R S R
(4.89)

DI N P _ r@ o _ RS Py
where GM—NjW— ,,Ko—l'f‘sr,,IO—I/ﬁa,I 2E, ’
and IO is the resonance integral in the W.R. limit; Nf is the number
density of the fuel element. From Eq. (4.79), we obtain

S
b = - X, P

.S+¢j.q(x) . (h.90>

Inserting Eq. (4.89) into Eq. (4.90) and using the approximation
| X+t Sm
Ho b = —— |dx #(0 (§,= F U-4)

SN ’

(4.91)
which was used by Goldstein et al., we obtain the second order approxi-

mation of the flux in the fuel:

{3(1)= I . "f'l:. {I_j(l)}

3 5.V Bat+ x>

’ (4.92)

where
L, / I Xt &§m 4 -t X+ Sm
f“"snm[2'm{ 5.
1 T B+ (x+ 8,y }
S, fo j"‘ pt+ x* }
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o'_[jr_‘ l (M,J('f;sm_faﬂ;l_x_)

(4.93)
Eqs. (4.92) and (4.89), which express the fluxes in the fuel and the
moderator in second order approximetion, tend to the exact limit when
X > -, In other words, the asymptotic distribution far below the
resonance is equal to the resonance escape probabiiity. Using these
expressions for the fluxes, we obtain the resonance integral.

This is given from Eq. (4.90) by

[

/
Iﬁo = FYGO fdx /{“ ¢'m .

26 S AR (4.94)

From BEq. (4.83), Km $m is also given by

20 Vo
Kb = ¢. + L2 ¢
2V S (4.95)

Substituting Eq. (4.92) (for f(z) = 0) and Eq. (4.89) into the right-

hand side of the above equation, we get

! - Io _I___/_fa”-\l X
ot = e (1 e (b
r’rGo ! _ d“m }
f e R (T '
(4.96)
Using this equation, Eq. (4.94) reduces to
I e ] T
= - ° e, | — =—
L I"{/ 23,9, T Po. 28 ( 3 )} ‘ (k.97

The second and third terms of this equation show the deviation of the
resonance integral from the W.R. approximation. The correction for
f(x)# 0 to this expression is very small. Although we assumed the

flat flux in the whole cell, the effect of flux change in each region is
easily taken into account by introducing the probabilities Q and R defined
in chapter 3.
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§h.5 Numerical Results and Conclusions

First we calculate the first-flight collision probabilities in
cluster systems by the method in §h.2. It requires a large amount
of computer time to evaluate collision probabilities in a complex
system with the true geometry. Using the present method, the
probabilities in a cluster may be calculated in a short time. For
example, making use of a NEAC-2200 (model 500), it takes 15 sec by the
present method, 10 sec by Bonalumi’s, and 3 min by the exact method
for an annular system containing 4 different media. The present
method coincides precisely with Bonalumi’s for an annular system

containing only two media, and is superior to his result for a system

Table# | Collisi_or_l probabilities for a cell Table42 Collision probabilitics between
containing four annular regions two adjacent rods
ry=0.5cm re={.61 cm @ Radi f fuel )
LonNaaius o uel 7o

E?,ik;j)cc‘:f‘ :\;,4"::4‘:)'555(:::! b: Equivalent radius of subcell
Yo 1.5 emel E;=1.50m" 2s: Total cross section of fuel rad
: 2.: Total cross section of coolant
Probabil- Our | .
S Exact Bonalumi a | ‘ 5.

ities method ! | i 4 e >
. e ——ee ?—-—fe--'-r(?-—« —— (em) | (em) | (cm")! (cm")! Exact Eq. (415
P 05951 1 05938 | 05938 B e e e v
! ! ; 2 0 0. ; N 28 ¢ I

Pie 00336 | 0.0336 | 00336 gz | 021 § 28 | :128 | gfgij 00;5‘
Poso 01200 1 01173 | 01173 05 | 06l 50 | 20 | ‘(1:' o
Pia . 02535 ,  0.2553 |  0.2553 S 08180 20y 00157 ) 0015
I ; 0.5749 \ 0.2743 i 0.2748 0.5 | 061 i 2.0 | 1.0 | 0.0378 ' 0.0384

2. : . 3 ‘ 3 , :

e | oorss | oers 05 | 061 10 1.0 ¢ 0.0402 ! 0.0410
E e | ' ' 0.5 | ! j ©0.0320 . 0.032%
me | vam | omer | om0 (Oo | 8?1 i (1)2 ; 1.0 10,0320 0.0328
| ! R . . . C0.0429 4

Pes L0383 | 03956 | 03013 0; : 06;1 ‘ 1o g: f 8(0)19) g.or\j
Poy 0485 | 01460 | 01459 05 | o6l | 10 | o4 o g S
Py . 0038 | 00390 |  0.0396 05 | o6l | ;'0 | 0'3 0o 0%
Pus . 03455 | 03369 | 0.3350 05 | o6l os | o3 | 005 2? oo
Pss Q4781 | 04780 |  0.4794 ool oer | R Rt one
Pey | 0.0042 5 0.0042 |  0.0042 0'? | O'Zi | gé 1 g.s | O‘Oéz': G012
\ ‘ ! 5 0611 005; 05 @ 0.0065 0.006¢

P 0.00079 | 0.00080 ' 0.00079 05 | 061 002! 05 | 00027 0002
Pys © 0.00638. | 0.00638 |  0.00640 05 | 0611 1.0 | 05 | 0.0475 1 0045
Pos . 09886 | 0.9886 |  0.9886 0 | osl | 20! olf ‘ O‘g“,.f 8'04?i
: . . i . ; .5 0.0440 ¢ 453

| | : > 440 045

05 | 061, 30 05 | 00369 0.0375

05 | 061, 50 |05 00284 0.0256

100 15 | 10 ; 10 . 00l13.0.0105

1.0 1 2.0 | 1.0+ 1.0 | 0.0027 0.0023

10 | 3.0 | 10 | 10 ' 00002 0.0
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containing more media, as it may be seen from Table k4.l. The proba-
bility for a neutron born in a rod to undergo its first collision in
an adjacent fuel rod is shown in Table 4.2 for various geometries and
cross sections. It is apparent thet Eq. (4.15) is a good approximation.
In the case of a hexagonal cluster containing 7 fuel rods without
cladding (see Fig. 4.9), the heterogeneity around the outer rods may be
estimated in more detail since we did not divide the system into subcells.
The results evaluated by the present method are in good agreement with

(28) (

those of exact calculation and PIJE code see Table 4.3) except the

probability that a neutron born in the outer fuel rods undergoes its

Fig. L.9 Cluster geometry containing T fuel rods
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Table4. 3 Collision probabilities for hexagonal Table4.%4 Collision probabilities for a cluster

cluster containing 7 fuel rods (c.f. containing 28 fuel rods (c.f. Fig. &1
Fig. #2) ) Total cross section of fuel: 0.3604 cin~t
Total cross section of fuel: 2.63cm™! Total cross section of cladding: 0.2067 cin™
Total cross section of coolant: 1.52cem™! Total cross section of coolant
Scattering cross section of fuel: 0.3637 cm™ and moderator: 0.4316 cin™!
Scattering cross section of coolant: 1.48 cm™ Scattering cross section of fuel: 0.2 cm-!
oy i Scattering creoss section of cladding: 0.15em™
Probabil- Ot\ar 4 Exact ‘ PIJE Scattering cross section of coolant
ties ‘ metne | and moderator: 0.4 cm™*
Pu 07104 | 07104 | 0.7106 — \
P ‘ 0.2627 0.2681 0.2682 Probabil- | Our CLUP | PIE
12 | : . . ities method f
.00 00066 0.00043 7 -
Proy 000069 40 Puy 0.2430 0.2349 | 0.250
Py 0.0204 0.0230 0.0207 5 0.093 | 0.09%
P ’ 0.0057 ' 0.00005 Pia 0.088 : o G095
' Pis 0.0553 0.0601 @ 0.0532
Py, ] 0.0450 1 0.0458 0.0459 ; . R
P 0.0470 | 0.0425 °  0.0457
P, | 0.7835 0.7809 0.7805 { : n
! ! Py 0.0256 0.0273 , 0.0238
Pas , 0.0034 0.0039 0.0036 | i R
I Py 0.0160 | 0.0172 0.0136
Py 0.1659 0.1666 0.1696 !
I i Pi.q 0.1775 0.1488 0.1719
Po 00021 0.00039 P 0.1240 0.1409 | 0.132
! i 1,8 . . i .
Py, | 0.00011 0.00011 0.00007 ;
I P 0.0775 0.0971 ! 0.08)
Py 0.0033 0.0038 0.0035 i
| Piw 0.0133 | 0.0143 | 00133
Py 0.7180 ! 0.7108 0.7108 : . 9
| P 0.0249 ] 0.0251 i 0.0234
Py ] 0.2560 0.2759 0.2762 i 0,023 | 0.0224
P 0.0224 0.0095 P 0.0244 .02 .022
) ' ' Piu 0.0249 0.0234 0.0222
Pq tt 0.00065 0.00059 ' 0e1 ‘ 0.0231
Pu 0.0277 0.0283 Puu 0.0267 | 0.0zl 0.923
P 0.0472 0.0473 Piy 0.0311 0.0266 1 0.0259
Pu 0.8377 0.8460 Pyq 0.2619 0.2737 , 0.2332
Pus 0.0778 P 0.1323 0.2044 | 0.1420
P 0.0001 0.0000 Pro 0.0820 0.1211 | 0.0833
y ' ' P 0.1341 01138 | 0.1314
P 00002 0-00004 P 0.0453 0.0359 | 0.0443
Py 0.0023 0.0010 T4 . . : )
Py ; 0.0455 0.0472
Py | 0.9517 V 0.9518

1 The moderator region 5 is not taken indo account
in the cxact method.

1t The coolant region 4 is divided in more detail in
our method.

first collision in the coolant around the fuel rods. The exact
calculation is performed by dividing the system into subcells and
obtaining collision probabilities between subcells numericallyf

In Fig. 4.10 is shown the one-group flux distribution with constant
sources'within coolant and moderator. The hexagonal cluster adopted
consists of 7 fuel rods with radius 0.5 cﬁ, T coolant regions with

equivalent outer radius of 2 cm, and an outermost moderator region of
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Fig. 4.10 Flux distribution for cluster containing 7 fuel rods
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2,71 cm thick. It may be seen that there is a suddenchange of flux
through the coolant region 4 in the outer ring. Inner regions, from
region 2 to region 4, however, the change is quite gradual . This
is due to the fact that neutrons starting from the moderator are
shielded by the outer fuel region 3.

Next we treat a square cluster containing 28 fuel rods of 0.5 cm
radius, 28 sheathes of 0.6l cm external radius, 28 coolant media of
0.8 cm equivalent outer radius, and s pressure tube of 0.3 cm thickness
(see Fig. u4.11). The collision probabilities evaluated from the
present method that a neutron born in the fuel rods in the central ring
undergoes its first collision in the external moderator region are in

agreement] with those by the CLUP code(gg) as we will show in Table L.4.

Fig. 4.11 Cluster geometry containing 28 fuel rods
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The probabilities for a neutron born in the central fuel rods to have
its first collision in the coolant media are in agreement with those
by the PIJE code, The flux distribution is shown in Fig. L.12.

The curves from the two methods show the same tendency in the mode-
rator, but different tendency in the inner region of the pressure tube.
In what follows, we evaluate the effect of finiteness of the
systems based on the method in §k.3. Since the finiteness of a cell

system in the axial direction is assumed to have the same effect as
in a bare system, we evaluate the flux distributions in finite systems
both in the axial and radial directions.

At first a slab system has been treated. The slab is divided
into 4 regions, in all of which the total and scattering cross sections
and the thickness are 1.0 cm', 1.0 em' and 1.0 cm, respectively.

These regions are numbered by 1~U4 from the right side to the left.
In calculating the flux distribution, the uniform source is assumed
over the system. The flux distribution by the present method is
presented in Table 4.5 for various axial lengths, together with that
by the buckling approximation. As is seen from the table, the
difference between the present method and the buckling approximation
becomes apparent for a system with smaller axial length than 10 cm.

According to the discussion in Ref. (8), the assumption

Table L.5 Flux distribution in a finite slab
for various axial lengths

Axial Flux distribution 7
length Present method Buckling approximation
(cm) ¢l ¢ ¢ ¢2
5 3.8961 5.3680 3.2637 L.4532

10 5.3992 7.5484 5.2004 T.2571

20 6.1598 8.6503 6.1221 8.59k42

Lo 6.4124 9.0160 6.L071 9.0078
100 6.4911 9.1299 6.4918 9.1308

500 6.5063 9.1518 6.5075 9.1536
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of the flux form sin Bz is justified in the case of 10 cm axial length.
Therefore the present method is considered to be still accurate for
such a case. For a system with axial length larger than 20 cm, the
difference of the flux distributions between both methods is within
1%. For a fast reactor such as JEZEBEL, which is only of the order
of 2 mean free path in diameter, the buckling approximation cannot
be adopted(So). |

In Table 4.6 are shown the values of the first-flight collision

probabilities for the systems corresponding to the cases in Table L4.5.

A large difference of the values of P__ between both methods is seen

11
in the case of small axial length.

Next, a cylindrical system has been treated. The cylinder is
divided into 3 regions. Then each region is numbered from the center
to the outermost side by 1~.3. The outer radii of the regions 1, 2
and 3 are taken to be 1.0, 1.5 and é.O cm respectively. The total
and scattering cross sections are all 1.0 cm’. As in the slab system

a large difference between the flux distributions based on both methods
is seen from Table 4.7 in the case of small axial length.

Lastly, as an example of the wide resonance problem, we calculate
the resonance integral and neutron spectra for a 6.68 eV 238U'resonance
The system considered is a square lattice, which is composed of a

Table 4.6 First-flight collision probabilities
in a finite slab

b

Axial (cm) First-flight collision probabilities
length Present method Buckling approximation
' P11 P12 P13 Py P11 Pilp Py P1y

5 0.580Lk 0.1384 0.0230 0.005L | 0.639L 0.1L493 0.0239 0.0053
10 0.6007 0.1499 0.0270 0.0067 | 0.6175 0.1539 0.0277 0.0069
20 0.6072 0.1539 0.0286 0.0073| 0.6117 0.1550 0.0288 0.007kL
Lo 0.6090 0.1550 0.0290 0.0075 | 0.6102 0.1553 0.0291 0.0075
100 0.6096 0.1553 0.0292 0.0075| 0.6098 0.1554 0.0292 0.0075
500 0.6097 0.1553 0.0292 0.0075| 0.6097 0.1554 0.0292 0.0075
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Table 4.7 Flux distribution in a finite cylinder
for various axial lengths

Axial Flux distribution _
length (cm) Present method Buckling approximation
¢y ¢ b3 1 ¢ 93

5 3.6241 3,037T4 2.1295 | 3.2324 2.72h7 1.8911

10 4.3732 3.6305 2.5256 | L4.3074 3.5779 2.L4513

20 L.6680 3.86h42 2,.6822 | L4.6899 3.8807 2.6500

50 L.7673 3.9431 2.7352 | L4.8089 3.9748 2.7118
100 4,7827 3.9553 2.7h3Lk | L4.8263 3.9886 2,7208
500 L.7878 3.9594 2,746l | 4.8320 3.9931 2.7238

238

U metal fuel rod with a radius 0.5 cm, and a graphite moderator
with an equivalent external radius of 2 cm. Then the second and
third terms in the brackets of Eq. (4.97) become -0.09752 and 0.01959,
respectively. Therefore the usual W.R. approximation overestimates
the resonance integral by a factor asbout 0.078. The neutron spectra
in the fuel and the moderator are ;hown in Fig. 4.13. From the
figure large asymmetry about the resonance energy is seen. Far
below the resonance the curves based on the present method approach

to the value which corresponds to the resonance escape probability.
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CHAPTER 5

APPLICATION TO THE CALCULATION OF THE ANISOTROPIC DIFFUSION

COEFFICIENTS

§5.1 Introduction

In this chapter the anisotropic diffusion coefficients in slab

and square lattice cells are calculated by the integral transport

(1)

theory with use made of Benoist’s formula . In his theory, the

quantity P? appears in the principal term of the diffusion coef-

Jsk

ficient, This quantity is expanded into the Neumann series in which
the n-th term corresponds to the n-fold collision processes suffered
by a neutron in the course of flight from the region i to the regionj.
As he pointed out, the convergency of the series is very slow for slab
lattice systems and also for cylindrical lattice systems though the
latter converges a little faster than the former. On the basis of
the integral transport theory, Benoist calculated only the first two
terms in the expansion of Pig,k in the case of cylindrical éells(Q).
In his calculation the scattering has, in almost every time, been
assumed to be isotropic.

Leslie derived a formula of the diffusion coefficient in a cylindri-
cal lattice cell starting from the calculation of the mean square

(3),(h),(5)_

displacement of neutron His formula exactly corresponds
to the principal term of the Benoist formula. His calculation,

however, was limited to the P_-approximation.

1
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In this chapter we introduce a new calculational method of the
anisotropic diffusion coefficient defined by Benoist which is based
on the integral transport theory. This method can be applied to
slab and square lattices composed of many heterogeneous regions.
Because of the effect of anisotropic scattering we adopted the gener-
alized first-flight collision probability which contains an anisotropy
of scattering. The contributions of all the exﬁansion terms of P?j,k
are taken into consideration by solving simultaneous equations in
which the generalized collision probability is included.

We will also discuss on the origin of the difference between
theoretical and experimental values of the anisotropic diffusion

(6),(7)

coefficients. Most experiments for determining the aniso-
tropic diffusion coefficients have been based on the pulsed neutron
technique. However, there is theoretically no reason why the
experimental value of the diffusidn coefficient thus determined should
be identical with the theoretical one which appears in the neutron
leakage factor from the system.

(8)

Deniz derived the expression of the anisotropic diffusion
coefficient which corresponds to the experimental results in the pulsed
source measurement. This formula corresponds to the principal term

of Benoist’s formula except the weighting function in the case where

the flux is decreasing with the asymptotic mode 65 in time.

The difference between Benoist’s and Deniz’s diffusion coefficients

has never been evaluated. Especially the evaluation of the additional
term of Benoist’s formula in time dependent problem is supposed to be

of much interest. Then we will evaluate the perpendicular diffusion

coefficient in slab cells, adopting the formulae by Benoist and Deniz
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in time dependent problem on the basis of the method in §5.3.
The difference of the values D1 between the two methods is also investi-
gated. In the following section, we will try to introduce the Benoist

formula more concisely than he originally derived.
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§5.2 Derivation of the Benoist Formula of Anisotropic

Diffusion Coefficient

Here the Benoist formula of the anisotropic diffusion coefficient
will be derived by a technique which differs from the original Benoist
method.

In the first step, the anisotropic diffusion coefficient in steady
state is introduced. Here the diffusion coefficient is defined in
the expression which represents the neutron leakage from the whole
system under consideration. Namely the neutron leakage ¥ is written
in the form:

= {es (A3 = DB‘fd? bty
¥ 2 Desg it

Cwactin saface ) 3 ( (5.1)

-)
where #(f) and J are the neutron flux and current, and Dk and Bk are
the anisotropic diffusion coefficient and the buckling in the k-axis
respectively. The neutron angular flux f(?“a) satisfies the integro-

differential transport equation

MNPy 3 = S(?,a), (5.2)
where
4 > 5,
MAACHR) = & gud ¢<?,ﬁ>+z¢(?,ﬁ>—fdffzs<t?r»mr‘(r,ﬁ>,
(5.3)
Here we assume that the source distribution is written in the form:
37
3 S5 3N
ShayY=S,(nx e,
(5.4)
where sO(%,é) is the source for an infinite lattice. If we denote

(},5) by ﬂ (?,Ei), the
(9)

real angular flux ?(?,ji) is expressed in the form :

the neutron angular flux due to the source SO

- 1k -



- >
tB'r

-1 5 S "3'* >
s$L3r=B(rare N iR et A A

(5.5)

From the above equation, the neutron current becomes as follows:

> > .,3}) > L B LEF > >
T = ¢ € -faui AN (Ba)e T AMA), 5 6)
5.

where

s 3> > >

W= iR AG R )
Since the leakage F is rewritten in the form

->
F = [dF dv TP
(rsachin) (5.8)

we need to calculate the integrand b 3 (P, Replacing the inverse

operator M ™' by the Green function G(% & ; 7. &) , which is the
angular flux at the position S and-along the direction _3_ , produced
by a neutron born at the position ¥' and along the direction _3.’ , We

obtain

div T(F) = div ( (P> e‘g'r)

-jm a-wﬁ?’fm caaramchmetTh R |

(5.9)
B ¥
Approximating € in the second term in the right-hand side of the
above equation by
2 2 2.2 > >
et = et e i F)-8 )
(5.10)
3.7 |
and €° in Eq. (5.10) by
> > >
et = e‘g fo { I+ c(F-V) B}
(5.11)

(;O is the center of the cell in which? is included), we obtain
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(5.12)
If we integrate the above equation over the cell in which the point T is
included, the first and the fifth terms vanish since the integrands
become zero at the cell boundary through the integration about 3. The

third term also vanishes because of the symmetries about the x- and

y-axes. Furthermore, only the terms with k = k' in the terms BkBk'
remain in the second and the fourth terms in Eq. (5.12). Then we
obtain

Jd? div T ¥y = Z B, " { ja?fda Qo fa (B2
11 Wil

+jd?j¢3 (e-ro) B pad o (B RO}
o | (5.13)

where

}g?,a):ﬁ?'ja&m?,&;?z A 2 f (D o
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From the definition of D, in Eq. (5.1), we obtain

fﬁjaﬁ {Qe b (B R+ (- 1) B §82 44 (7. B0)

Li?jdﬁ 8 (7 3)

Dy

(5.15)
This corresponds to the well-known Benoist’s formu}a.

In the next step, we consider the time dependent behaviour of the
anisotropic diffusion coefficient in the case where a pulsed source is
injected into the heterogeneous lattice, Here we treat an asymptotic
time region where the flux is decreasing by a factor e-)‘t . The

neutron angular flux satisfies the equation

(T'F%*?l'm +2) P(LA ) = §(LAY S

-fda S(RLA-8) (R e) |
(5.16)
where v is the neutron velocity. Under the above assumption, we ex-
pand the flux in the form:
> o -At LB'?’ > » -
i =¢ et {rri 4 Z B $,, (7. 3)
> 9>
+ZBA.8£’ ﬁzkﬁ’(r'n)-'- Tl } 3 ’
Yy (5.17)
where
M=t S INB S N BuBe kL (530
[ Ry

Inserting the above equation into Eq. (5.16) and equating the same order

B" terms (m<2) in both sides of the resulting equation, we obtain

M 4(T.3)= 0 |

(5.19)
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AP (P Ry = i Qp $(F. )
N Pap (B 2R = = N KA

= ((Qufe T iqePd(2- Swd/2

where Jo}’ is defined by

Ao

NEGFR) =3 g bR+ (- F)H(GF A

- i A ),

and eigenvalue A2 is given by

kk
Azts jd?jd-& A5 (F 2 LQ.Q‘AA (¥ 2
L P SR XSO ’

where #*(F2)is the adjoint flux; the eigenvalues Mk

become zero owing to the symmetries about the x- and y-axes:

A JorJad B2 F 2 cand (7R C .
v - > > - ,
j”’fdi $X ¢, a0 #, (7. A

dage | JEfR G D {0 GD F o h R

Vv >
jd?fd?m $X(E A A (T A
The neutron leakage at time t is given by

F = & (47 M{fdﬂﬁ%(?,?l)} ,
(mactn )

(x

(5

Substituting Eq. (5.17) possessing the B" terms for m£2 into the

equation, we have

3= e[ (¢ wi{ctiadian

(readdn)

+ |47 aww{e'“g';fdﬁ ZBk %,Q(?,?u}

(acler)
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s (o diw {27 [IRA S B8, bup(B A
mZm { f tZﬂ ‘ ”4“, )}] ) (5.27)

The first term in the above equation vanishes because the term in the
bracket expresses the neutron current in infinite lattice. The third
term becomes also zero because the term in the bracket vanishes on the
cell boundary after the integration about 3. From the remaining
term we obtain the equation:
F = Z C—M [ch'ﬁjﬁ{Mi‘B’-(?— F,)}dt'arjd?l 2 Z Befu (7.2
w0

S T e S B b (7. 20]

(5.28)
Since the first term of the above equation vanishes, Eq. (5.28) reduces

to

3 =5 & e b Z ¢8:<{fa?faa Qe P (B0

+fd7 (Y~ o) div (fdﬁﬁ 76"('3’3»} - (5.29)

This is equal to

At DE? > 3 >
- . 1
3-3y et DB [4F 43 AT (5.30)
wif o .
From this we obtain the same expression for the anisotropic diffusion
coefficient as Eq. (5.15) in the case of steady state, except that, in
the pulse problems, the equation determing the flux is homogeneous and
the usual total cross section must be replaced by I - a/v.
In what follows, we consider the anisotropic diffusion coefficient

obtained from the pulsed neutron technique. In this case, D

K is
obtained from the relation
— b3
A= (X, + Z Dy B ) vV | (5.31)
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Then from Eq. (5.23), we obtain
[az iz #2200 a0 fu(F 2D
jd?jaﬁ pr (2. 2> (L&)

De

(5.32)
This expression was first introduced by Deniz, and corresponds to the

principal term of the Benoist formula except the weighting function.
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§5.3 Calculation of the Diffusion CoeffiCients(lO)

First we calculate the anisotropic diffusion coefficient in a
slab lattice system. In order to evaluate Eq. (5.15), we calculate
the quantity jk(?,ﬁ). In slab system a phase point (%,8) is expressed
by (x,u); X being the spatial coordinate in the axis which is perpen-
dicular to the slab surface, and u being the projettion of ? onto the
x-axis. Since the diffusion coefficient parallel to the slab surface
is easily calculated(3)’(ll)’(le)’(l3)’(lh), we treat only the perpen-
dicular diffusion coefficient D_, namely ve put k = x in Eq. (5.15).

We expand jx(x,u), ¢(x,u) and the scattering cross section Zs(x, §1-0)

into the Legendre series as follows:

)

&x (X, p) = Z __f_'n__*'_‘_ d’x (x)Pn(/.)

M=o (5-33)
= 2m |
(x, u) = e PR W
f ,Z b I (5.34)
» = + m ,
B Ae ) = > e e {RORM
ne=o
n (f ’"l)' ”m ’ -m - ’
123 D Rz )
m=] (5.35)
where ¥ is the azimuthal angle. From the definition of jg(?,ﬁ) in
Eq. (5.14), this quantity satisfies the equation:
¢ (8 2 de e {rt n)*j«m Zo(hdoR) e (F) ,ﬁ)},
(5.36)

In order to obtain the coefficients in Eq. (5.33), we divide a slab
cell into many regions, and assume that jz(x) and ¢n(x) are constant
in each region, and, in the j-th region, express them by'j;: and f;

respectively. Here we retain the terms with n<1l in Egs.(5.33)~
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(5.35). Namely we limit our treatment up to the anisotropic scattering
of the first order about cosine of the scattering angle. When we
substitute Egs. (5.33)~(5.35) into Eq. (5.36) and perform the integ-
ration about the azimuthal angle ¥ in the scattering term, there remains
only the term with m = 0. And then integrating the resulting equation
about { over the whole solid angle Ln aﬁd about x over the volume Vj

of the j-th region, we obtain

0 'y 00 . ' (K]
Z&v@ d’&x = Z {ZLVLJ'&L Cco Rd + Zqud':xC~ P;&

.

/ ° ° / ' 20
t ?VL?S-,P;'& + ';Wﬁf’?-&} s

(5.37)
0 1 .
where ci and ci are defined by
Co _ ZSS C. _ ZLIS
[ 2 [ .
Z. 2 (5.38)

Next, we multiply Eq. (5.36) by u and integrate about § and x over

the whole solid angle U4m and V,, respectively. Then we obtain

3
LV e =y {nminc P +3%du P

! ° " e ! 2t
+3T‘.¢;E& +3VV¢LPL&}.
(5.39)
In Egs.(5.37) and (5.39) we adopted the generalized first—flight

collision probabilities. If an operator )#;* is defined by

~
- IR

X, > 2 c n
n ¢ -
H"&}" = T JdY Jdr 4R /" ,

(5.40)
the generalized.first-flight collision probabilities are expressed

in the forms

P:; =Nc&/’"°:
PLI; = 3/‘{;&/‘/‘,
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Pl = 9 My 4,
P = 5 PY,
Py= 3R
P = 9 M &

vé
(5.41)
Explicit expressions for them are presented in Appendix 5A.
If we put
° Vide , %i=357¢;
3} =3 Vd , I3 = i % dix (5.42)

Egs. (5.37) and (5.39) reduce to

§ = 5 (KaR] Rl SIRY + SIPY), (5.43)

_‘fv}l - E: (j?fcg a:}‘ Y c P-‘—'.,'»| + 87 P‘: t S P:f’ ), (5.44)
where “
SE=TW¥, S,=T¢ . (5.45)

We express Eq. (5.15) by the sum of D, and D2, where D. and D, corre-

1 1 2

spond to the first and second terms in the brackets in the equation,

respectively. Then the principal term Dl of the diffusion coefficient

Dx is obtained from the definition in the form

Nl
5 2 &Y, 2 %/
= o& = —_— . .
1
>, > BT (5.16)
d. v
The well-known formula by Benoist is derived as follows. If we put
o _ . 1 _ . . . .
Si = 8 Si =0 (Gik being the Kronecker delta function) in Egs.

(5.43) and (5.44), and represent the solutions jy by Eq. (5.46)

*
P kj°

may be rewritten in the form
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_ _Z: Z: T % P"; /3%,

D, s
-]
> T (5.47)
[3
which is Benoist’s formula. As easily seen from Eq. (5.kbk), Pi?

*.. Since we

corresponds to the first order contribution to PkJ

divide the cell system into many regions, which are denoted by
suffixes i and j in Egs. (5.43) and (5.4L4), the contribution of
infinite number of collisions of a neutron traveling from the k-th

region to the J-th region is taken into account for the calculation
f P* .,

o] ij

In what follows, we calculate the additional term D The

5

quantity J;(?,ji) satisfies the integro-differential equation
. . 4 - N a ”
EN NS SER FRA SN LS NCE S SENCED

+ (Y, 8
~ 1 (5.48)

Integration of the above equation about the solid angle 5 leads to

d8 &-gad . (FR) = (P = 2. 42 (D),
o (5.49)

Then, from the definition of D,, we obtain

2

D = Z é(rLt!—r;_’-)(¢;‘zL4d‘.:")

Z V. ¢ (5.50)

¢

where ri+l and ri are distances from the center of a cell to the outer
and inner surfaces of the i-th region.
Next, we calculate the anisotropic diffusion coefficient DX in a

square lattice. In the system, we choose the z-axis in the axial

direction and assume that 6 is the polar angle between the neutron
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direction 5 and the z-axis, and a is the azimuthal angle between the
projection of @ on the x~y plane and the x-axis. Then we expand

&,;(?,_?1) , P(Y. 3) and ZS(F, A+>2) into the spherical harmonics series:

ds (FR) = Zm (M)P(CA‘NB) + 222(H )

n=0 1=y mel
|('nm) (‘l\m)
{o”i wamd t ¢g ,dmmd} Pr (wae) |

(5.51)
$ (¥ 3 Z F R P (wag) + ZZZ (Hr Y

N=| mag
|fh\ 2
'{75(" )coormou- ?5<”‘)m'nm¢} Pl (was) |,

(5.52)
SRR = ) (MY I Pu(ews ) P(wae)

n=o
‘f‘ZZ}j(H:)KZ:P,:\(WG’)P,,‘M(@G)OGO/m(d\—OV) ,
n=1 M=)

(5.53)
where Hi has been defined in Eq. (2.12b). We calculate the quantity
4« (¥ e , which satisfies the equation

.5 2 =de< e {acf (A + U L (B a2 d (P 30)
° (5.54)
where @ = sinfcosa. Substituting Egs. (5.51) ~ (5.53) into the above

equation, retaining only the terms with n = 0 and 1, and using the

similar means to that used in deriving Egs. (5.37) and (5.39), as well

as the definitions

o (OD

Sf.'x-'-’—‘ 3 Z V (}\ll)

v

i (A
$f= 32V ¢,

v

1

(5.55)
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we obtain the three equations

Z {socPl + 57 Rt e Ry
PSIRS + SR e STPET Y

1¢,0

(5.56)
e (R SRR s e Pl
1, 0 lx, lx 1 L, x 13 lzfn, 1X
SL Pv& S P + S P"d» } s
(5.57)
13 e o o, 1% e 1,13 T 14,13
ifd=Z{§°vCLR¢ +y.,Cqud TK C"PL&
PSRN SIS SYRSYT Y
(5.58)
where
si-Tw e, st sP- WA
' (5.59)

Here we used the following generalized first-flight collision proba-

bilities:

a0 x,0
FDL& = %¥L& [ F%; = 3 )¥i&'£11 )
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14,19

o — 3 i Qz , Ekc Nk ¢
Pud, Hd 4 P"d’ 7 /“{.,¢ Qx_ﬂzg

22, 1% LAk PRE4

Pc(} - Ptg .
(5.60)

Their approximate expressions are given in Appendix 5B. They have

also the properties:

Z P:){: = , s
O T

¢=! =1

ZP& Y P SR -0,

= 12, 1x ,1,3 B
Z Z L (5.61)

F=
These relations can be used in order to calculate the probabilities
that a neutron born in a region undergoes its first collision within
the same region.

Since the quantities ¥, £ and %'% have some symmetries

about the x- and y- axes as shown in Table 5.1, it will suffice to

Table 5.1 Symmetries about ¢ , ¥~ and %7

; Quadrant
1 2 3 b
¥ + - - +
b2 + + + +
& + - + -

TAll the values of ¥. , 9" and $'* are taken positive
in the first quadrant
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treat the quantities only in the first quadrant. Then Egs. (5.56)

~ (5.58) reduce to

° ¢ ° 0,0 2 SRS w,e . 19,0
8}&‘ = Z {?LI C, F?‘J' T YLI C. J?‘a' + S’:? C. p

3!
s
4 ¢

0 I ax,0 3 iy, 0
PSL RN STRY HSIRLY
(5.62)
B9 ° o 0, 1x x , 11, ix 1% , 13,1x
(fd'l = Z { 56;1 o ,o;,“ + 50“ C. Lt A\ S)U C: R)dn
o 12,1x 1% 2, ix 3 1x|g ., ix
FSL RN SER s R
,¢ )
(5.63)
K ._ o 0 o1 1 .t 1, 1% N 1. 1%
&d - Z' { Y C“' Y + SOH C‘: gt t Sau CL %?‘d"
° 1,14 37 2%, 13 K} =i, (3
1’ 5“ p“’d‘ + \S&l i)él + S“ R}d’ } )
(5.64)

Here il is a point in the first quadrant and i2, i3 and il are the
symmetric points to il in the second, third and fourth guadrants,

respectively. Purthermore, in the above equations, the following

probabilities are used:

ot ot ) ‘ "
R, = Poy = Pos =R+ P (5.65)

L4 i3, 4t 3
Ix,t X, t 1x.t 14,8 12, v
/?,p = F{ugr + iz, 40 + 03,41 + T ' (5.66)
"t 1.t 1t TR it
/Qc,&‘ - Pu,&. - FD“,“ + R-‘,J' gl o (5.67)
Xt ax,t ax,t a0, t 2x,t
/D'»,d‘n = Pu,,‘a - Ra,d‘l T 'Dw,g,n s (5.68)
iy, t 1zlg,t et 2%t it
R =P + R P P
e g 2,44 L340 i# g0 > (5.69)
where t denotes 0 or 1lx or ly.
In terms of the solution of Egs. (5.62)~ (5.6k4), the principal
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term Dl of the diffusion coefficient Dx is calculated:
) § /32,
(o)
> vt

where region i is taken only over the first quadrant. And the

(5.70)

additional term D2 becomes

Z X {'V'L 7&.‘,("‘)" 2 50.;0/3 Z.;}
) WA , (5.71)

v

where X, is the x-coordinate of the center of the i-th region.
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§5.4 Numerical Results and Conclusions

In Table 5.2 the principal terms of the perpendicular diffusion
coefficient D. are presented for slab lattice cells consisting of a
moderator and a void channel. They are calculated for various total
cross sections I of the moderator and for various c (the number of
secondary neutrons per collision in the moderator). In the calcu-
lation we divided a moderator in a cell into TO regions for the case

of isotropic scattering and 50 regions for the case of anisotropic

Table 5.2 Diffusion coefficient in slab cell with void channel

D.
A‘W\.
3

Values of

Isotropic scattering (mesh 70)

s~ 0.98 0.999° 0.9999 0.99999
0.05 1.1000 1.1000 1.1000 1.1000

0.1 1.1000 ‘ 1.1000 1.1000 1.1000

0.5 1.1003 : 1.1000 1.1000 1.1000

1.0 1.1011 1.1001 1.1000 1.1000

2.0 1.1041 1.1003 1.1000 1.1000

5.0 1.1191 1.1017 1.100k 1.1003

D.
Values of —
3Ci=epd
Anisotropic scattering (mesh 50) po=1/3

b3 < 0.98 0.999 0.9999 0.95999
0.05 1.1002 1.1017 1.1036 1.1041

0.1 1.1004 1.1030 1.10h1 1.1042

0.5 1.1036 1.1060 1.1061 1.1062

1.0 1.1088 1.1112 1.1125 1.1125

2.0 1.1219 1.1295 1.1305 1.1305

5.0 1.1613 1.1769 1.1819 1.1825

Thickness of void channel: 0.5 cm
Thickness of moderator: 5.0 cm

c: scattering ratio in moderator

Z: total cross section of moderator
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scattering in the moderator. The thickness of the void channel and

the moderator are taken to be 0.5 and 5.0 cm respectively.

D.

/3 2P

proaches 1.1 as c approaches 1 (xm is the mean free path in the modera-

For the case of isotropic scattering, the value

tor). For the case where ¢ = 1, the value of Dy can be calculated

(11)

analytically, and corresponds to the homogeneous limit exactly

D
In this case the homogeneous limit of ~ ;3 becomes 1.1 and this
Justifies the present results. When there is absorption in the
D
moderator, the values of x ;3 become larger than 1.1 and this
"

tendency is appreciable for large I.

For the case of anisotropic scattering in the moderator, the

—m
/= cM
the average cosine of the scattering angle and is now assumed to be

Am
/- cp

transport mean free path in the moderator is , where u is

1/3. The value Dl/(%—‘ }does not approach 1.1 (value of homo-
geneous 1imit) when ¢ approaches i unlike the case of isotropic
scattering. And this discrepancy from 1.1 becomes larger for cwe 1,
In Table 5.3 the principal and the additional terms Dl and D2 of
the perpendicular diffusion coefficient in slab cells are shown to-
gether with those calculated by the usual approximate methods. They
are evaluated for various scattering cross sections in a fuel Zfs and
in a moderator st and for various thicknesses of the fuel ﬂf and of
the moderator Q,L. The average cosine of the scattering angle in
the moderator um is taken as 1/3 and that in the fuel uf is taken as
0 or 1/3. The total cross sections in the fuel and the moderator are
assumed to be 1.0 and 2.0 ci', respectively. In calculating Dl and
D2’ we divided all lattice cells into 20 regions (4 regions in the fuel

and 16 regions in the moderator). The quantity Do is evaluated
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Table 5.3

Diffusion coefficient in slab cells

Total cross section in fuel: 1.0 cm'
Total cross section in moderator: 2.0 co'

T}-‘s} Zom ﬁf fm My D, D. DM D'lde D;no
0.3 2.0 2 8 0 0.2665 -0.1126  0.2600 0.1706 0.2529
0.5 2.0 2 8 © 0.2671 -0.107T4  0.2607 0.1717 0.2537
0.8 2.0 2 8 0 0.2673 -0.08171 0.2621 0.1756 0.2565
0.3 1.5 2 8 0 0.2358 0.0409Lk 0.2328 0.1722 0.2271
0,5 1.5 2 8 0 0.2366 0.03393 0.2338 0.1735 0.2283
0.8 1.5 2 8 0 0.2386 0.0141k 0.2367 0.17T77 0.2318
0.3 2.0 1 k4 o 0.2672 -0.07301 0.2625 0.17k42 0.2555
0.5 2.0 1 4 o0 0.2669 -0.0627L4 0.2627 0.1758 0.2567
0.8 2.0 1 L4 o 0.2655 -0.03561 0.2631 0.1798 0.2594
0.3 1.5 1 L4 o 0.2395 0.00k05 0.2362 0.175k 0.2299
0.5 1.5 1 L4 o0 0.2396 0.00091 0.2369 0.1770 0.2312
0.8 1.5 1 kL o0 0.2397 -0.00581 0.2382 0.1807 0.23kh
0.3 2.0 1 Lk 1/3 0.2731 -0.07418 0.2667 0.17k2 0.2572
0.5 2.0 1 L4 1/3 0.276k -0.06420 0.2699 0.1758 0.2601
0.8 2.0 1 Lk 1/3 0.2795 -0.03651 0.2751 0.1798 0.2675
0.3 1.5 1 L4 1/3 0.2k438 0.00058 0.2397 0.1754 0.2315
0.5 1.5 1 Lk 1/3 0.2471 -0.00497 0.2431 0.1770 0.2344
0.8 1.5 1 4 1/3 | 0.2519 -0.01516 0.2493 0.1807 0.2k41k
f z £ z are scattering cross sections in fuel and moderator
1? , gi? are thicknesses of fuel and moderator
Mo is average cosine of the scattering angle in fuel

by the calculation of Dl assuming that y = 0 and adopting the transport

cross section instead of the total cross section.

are evaluated by

Dieme = | / (3Z¢)

Do =

1/ (334)

And D

1

homo and

homo

where I, and Z, are the homogenized total and transport cross sections

t tr

averaged over a cell by weighting with the product of volume and flux.

From the table, we can see that, in so far as the principal terr

D, is concerned, D,
1 , iso

underestimates the value a little.

additional term D however, the diffusion coefficient D, =D

25

shows a great change

is a good approximation for Dl and that D

homo

When we take into account the

1

2

especially for a cell containing a fuel with
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large absorption ratio (ratio of absorption cross section to total

cross section). In such a system, Dl + D2 approaches the value of
D L instead of D 2 . For a cell with small absorption ratio and
homo homo

with small lattice pitch, the additional term D, is usually small.

2

This is especially the case for a system containing a moderator with
absorption. This is based on the fact that, for such a system, the
neutron flux approaches flat over a cell and the current becomes small

and the D, evaluated from Eq. (5.50) becomes small.

In Table 5.4 the principal and the additional terms of the radial

2

diffusion coefficient are presented together with the values of Dhomo

for a square lattice. In a square cell containing a fuel and a
moderator, the additional term has a significant contribution to the
diffusion coefficient especially for u = 0O (p = average cosine of the
scattering angle in the moderator). But the ratio of D2 to Dl is not
so large as in the slab cell. Though the additional term dces not

vary appreciably with u, this term decreases a little for large u.

The homogeneous transport approximation for the diffusion coefficient

Table 5.4 Diffusion coefficient in a square cell

Total cross section in fuel : 1.0 cm"

Total cross section in moderator : 2.0 cm'
Scattering cross section in fuel : 0.5 cm™
Scattering cross section in moderator : 2.0 cm'
Fuel radius : 1.0 cm

Lattice pitch : 3.5 cm

Average cosine of é D D D2
scattering angle | 1 2 homo
!
0 : 0.1936 -0.03617 0.181%
1/3 0.2648 -0.03309 0.2620
2/3 0.LL46ES -0.02839 0.4559
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becomes good for the square cell.

In the next place(ls), we treat the anisotropic diffusion coef-
ficient in slab systems in a time dependent problem. In Table 5.5
are presented the values of the perpendicular diffusion coefficient in
a slab lattice with absorbing fuel in the cell center. A cell is
composed of a central fuel region with thickness 1.0 cm and the sur-
rounding left and right moderator regions with thickness 2.0 cm re-
spectively. The total cross section in the fuel is taken to be 1.0 cm b,
In the first 5 cases the total cross section in the moderator is

assumed to be 1.33333 cm' and the absorption in the moderator is taken

to be zero and the scattering cross section in the fuel is changed

from 0.3 to 0.99 cm?. In the following 5 cases the absorption in
the moderator is taken into consideration. The total and scattering
Table 5.5 Diffusion coefficient Di in slab cells
] Benoist Homogeneous
T e Iys 2w D D D, Peniz | 1imit
1 2

1.33333 0.3 1.33333 | 0.2838 -0.1082 0.1756 | 0.2347 | 0.2702
1.33333 0.5 1.33333  0.2804 -0.08492 0.1955 | 0.2466 | 0.2692
1.33333 0.8 1.33333 | 0.2722 ~0.03779 0.234L | 0.2634 | 0.2666
1.33333 0.9 1.33333 ' 0.2682 ~0.01907 0.2491 | 0.2656 | 0.2652
1.33333  0.99 1.33333 = 0.2638 -0.00188 0.2619 | 0.2637 | 0.263k
1.5 0.3 1.0 ' 0.3890 -0.03542 0.3535 | 0.3803 ] 0.3753
1.5 0.5 1.0 0.3705 ~0.10Lxié* 0.3705 | 0.3705 | 0.3703
1.5 0.8 1.0 0.3305 0.04oL6 0.3710 | 0.2994 | 0.3538
1.5 0.9 1.0 0.3148 0.04182 0.3566 | 0.2618 | 0.3L4L46
1.5 0.99 1.0 0.3003 0.03566 0.3360 | 0.2278 | 0.3346

Total cross section in the fuel: 1.0 cm’”

L.4° Total cross section in the moderator (cm™)

L. Scattering cross section in the fuel (em')

stz Scattering cross section in the moderator (cm™)
Fuel thickness in a cell: 1.0 cm

Moderator thickness in a cell: 4.0 cm
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cross sections in the moderator are taken to be 1.5 and 1.0 cmﬁ,

respectively. The scattering cross section in the fuel is changed
from 0.3 to 0.99 cm?. For these 10 cases, values of the perpendicular
diffusion coefficients Di by Benoist are compared with those by Deniz
and homogeneous approximation in the 4~8 columns. It is seen from
this table that if the absorption both in the moderator and the fuel
are small, the value of D, from the Benoist formula is similar to
that from the Deniz formula. When the absorption in the fuel
increases, the difference between the values from Benoist’s and Deniz’s
increases even if the absorption cross section in the moderator is
zero. Even in these cases, the values from the Deniz formula are
closer to those from the Benoist formula than those of homogeneous
limit. If only the principal term of the Benoist formula is taken
into account for the calculation of Di , the values based on the Deniz
formula are superior to those based on the principal term of Benoist
in order to express the leakage rate of neutrons. When there is
absorption in the moderator (last 5 cases), there can be seen a large
difference between the values of Di from the Benoist formula and those
from the Deniz formula even if the absorption in the fuel is negligible.
In these cases, the homogeneous limit of Di. is much closer to the values
from the Benoist formula than those from the Deniz formula. Then
the values from the Deniz formula are not desirable to adopt for the
calculation of D: in such a case,

In Tables 5.6 and 5.7 are shown the eigenvalues o/v for various
scattering cross sections in the fuel, which are adopted in the calcu-
lation of Dy in Table 5.5. The self-shielding effect on o/v by the

fuel is seen when the absorption in the fuel becomes large.
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Table 5.6 Values of the decay constant

Total cross section in the fuel: 1.0 cm’

Total cross section in the moderator: 1.33333 cni
Scattering cross section in the moderator: 1.33333 cm
Thickness of the fuel in a cell: 1.0 cm

Thickness of the moderator in a cell: 4.0 cm

?;ati:r;gilcross section Decay constant (a/v)
0.1 0.07480
0.2 0.071h1
0.3 0.06745
0.4 0.06276
0.5 0.05713
0.6 0.05028
0.7 0.04181
0.8 0.03117
0.9 0.01758
0.99 0.00197

Table 5.7 Values of the decay constant

Total cross section in the fuel: 1.0 cm’

Total cross section in the moderator: 1.5 cm’
Scattering cross section in the moderator: 1.0 cm'
Thickness of the fuel in a cell: 1.0 cm

Thickness of the moderator in a cell: L.0 cm

Z;aiizr;iilcross section Decay constant (a/v)
0.1 0.5519
0.2 0.5423
0.3 0.5311
0.k 0.5170
0.5 0.5000
0.6 0.4782
0.7 0.k4hod
0.8 0.4138
0.9 0.3700
0.99 0.3239
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In Table 5.8 the values of D. from these three methods are
presented for slab cells with central void region instead of the fuel.
The geometrical arrangement and the cross sections in the moderator
are the same as those in Table 5.5. In these cases, the additional
term of Benoist’s formula is very small and the very good agreement
between the values by Benoist and Deniz can be seen. The values by
the homogenized method slightly overestimates the value of D,

In conclusion, the value from the Deniz formula(experimentally
determined anisotropic diffusion coefficient from the pulsed neutron
technique) approaches to the value from the Benoist formula if the

absorption cross sections in the fuel and the moderator are small.

Table 5.8 Diffusion coefficient D1 in slab cells with
void region

Benoist . Homogeneous
Zys D D Dy T Deniz limit
1 2 |
0.0003 0.3100 -0.1113x¢6* 0.3100 | 0.3101 0.3123
0.0005 0.3103 -0.8012x16*  0.3102 0.3103 0.3124
0.0008 0.3106 ~0.2929 x 0 0.3105 0.3106 0.3124
0.0009 0.3106 -0.1618 = io* 0.3106 0.3106 0.3124
0.00099 0.3107 0.7989 »16¢  0.3107 0.3107 0.3124

I, i Scattering cross section in the void region (cmt)
Total cross section in the void region: 0.001 cm'!
Total cross section in the moderator: 1.33333 cm’
Scattering cross section in the moderator: 1.33333 cm'!
Void thickness in a cell: 1.0 cm

Moderator thickness in a cell: L4.,0 cm
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Appendix 5A

Generalized Collision Probabilities in & Slab Cell

We use the following symbols:
L. : thickness of the i-th region
3., optical thickness from the i-th region to the j-th region,
including the both end regions i and j
N : number of regions in a cell
Then PS? which corresponds to the usual first-flight collision proba-

bility is expressed by

_ I ,0;

. Y ]
Py = o Jor (- €7 0-€7)

_ ﬂl‘-ﬂ,(y“l _ ﬂl,&’l'f‘gﬂé,rl,n — ﬂbN
€ A t ¢ x }/(1* e ),
(for 3> 1) (54.1)

"4 o be
(for j<1i) (54.3)
. 10
The quantity Pij becomes
4
. ! I, Zedy
~|0—_ 1 o SkE _ S M
R&—zpif“”(“ A e
[’
ﬂlu

g\m,a-l i + £ i
-{e—~§z—~.—@ﬁ & }/(/— =),

(for j>1i) (54.4)

(for j = 1i) (54.5)

(for 3<1i) (54.6)
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The quantity P?? becomes

20 q L 5/2 e
P;& EYRH fo*/*/“ </ c Y(1-€7)
i\j . _ ﬂl,m T ﬂq‘-ﬂ.N - _I;QJ,L'.‘J
P e S VIS abY
(for j>1i) (54.7)
20 3 t . _ R I éZQ‘}:-ML
Pi& = 3 (/- -’/»2‘L,QL> P 2o Ld/‘/“ {C # *(/'6 # )“‘/‘“‘é__im““} )
(for j = i) (54.8)
LD— _2{_:@1’ 20
F{A 2k Fzﬁ
(for j<i) (54.9)
And the quantity Pi' beconmes
2 C] | _Z»_Q_ _Ij‘ﬂ,
& _ -
iy 243, fd/l/“ (-ex0-e*)
o5 00, et Tgh,n __%J)'i
{éziﬂ“—é A }/(/_e}" >;
(for 3> 1i) (5A.10)
P::; = 0
(for j = i) (54.11)
21 2, & 2l
Py = har R
(for j< i) (54.12)

Other quantities P?? and P}% are calculated by the relations in
id

Bg. (5.41).
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Appendix 5B

Generalized Collision Probabilities in a Square Cell

In the calculation of the probabilities Pij (i#3), for conveni-

ence, we assume that the neutron starts from the center of the i-th

region and reaches the center of the j-th region.

13,0 37 3, (3-90)
N Kiz (T,

3V, 5 (x-x )
sl LT

2 £

-l i
Pl

Iy 1x 3V &, (X -X i~ 4 .
Py e AERZUETR) K (),

21 £

2

1,1 3V, 3 (3 %
Ry = ST Kateo,
4
2, 1 9V, 2, (- X )
P;& = "”“i’;}z‘ﬁ; K ia Ty) ,
“¢
11, 13 . ? 'V¢ 2_‘* <1¢"1,‘)2()a'*

“9;) K .
L P Lu(Lﬁa),
¢ 21 S

REE T T L (0 1)

t 2 £

KM (Ti&)
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The purpose of this thesis is to improve the collision probability
method and to apply it to various lattice systems. The fundamental
assumptions included in the usual first-flight collision probability

method are as follows:

(1) isotropic scattering in the laboratory system,
(2) isotropic source distribution,
(3) flat flux in each region.

All these assumptions were removed in Chap. 2 by introducing a general-
ized first-flight collision probabiiity. Thus the method has been
made to permit the treatment of the neutron behaviour in a fast energy
region, where scattering shows remarkable anisotropy.

Usually it is assumed that the real boundary may be replaced by

a circular one

Wigner Seitz cell method. This assumption,
however, becomes inadequate for tightly packed lattice cells. -
The improvement on this assumption was performed in Chap. 3 by extending
the multiple collision probability method. Thereby the effect of
the cell boundary for arbitrary polygonal cells upon the flux distri-
bution could concisely been taken into account through an extended
Dancoff ‘factor.

Chap. L4 was devoted to the applications of the usual first-flight

collision probability method to the flux calculations in cluster
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systems, in finite systems and in an isolated resonance energy region.
In Chap. 5 the anisotropic diffusion coefficients were calculated
by using the generalized first-flight collision probability.

Concerning the integral transport theory, there remain some

problems. Some important problems are
(1) the treatment of complicated three-dimensional systems,
(2) the calculation of the neutron spectra in terms of appropriate

group constants,

(3) time dependent problems.

The calculation of the first-flight collision probability in
three dimensional systems requires a large amount of computer time.
In more complicated systems than the finite systems treated in §4.3,
the synthesis method seems to be most promising. Usually the
synthesis method is used for the integro-differential transport
equation. Its application to tﬁe integral transport theory will make
it possible to treat a highly heterogeneous three-dimensional system.

The extension of the methods included in this thesis to the
multi-group theory is easily done if the group constants or the neutron
cross sections are known. These constants are, however, still
dependent on the neutron spectra. Usually they are obtained itera-
tively; first, the neutron spectra are calculated by using approximately
chosen group constants, and then, group constants are recalculated
from the spectra obtained and so on. This process is very trouble-
some. Therefore, appropriate choice of cross sections, for example
by a variational method for the integral transport theory, is needed,

Treatments of the time dependent problems are necessary for the

study of the pulsed neutrons as well as the fuel burn-up. If only
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the asymptotic mode of neutron behaviour in time is needed, the
problem is reduced to that of obtaining the eigenvalue in homogeneous
equations in which the first-flight collision probability is included
as in §5.2. If the neutron cross sections change with time, the
problem becomes very complicated and some approximations, such as the

synthesis method, are required.
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