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Abstract
The Fourier–Jacobi coefficients of vector valued Siegel modular forms of degree

n are more general functions than vector valued Jacobi forms defined by Ziegler [9]
even whenn D 2. We define generalized vector valued Jacobi forms corresponding
to the above coefficients whenn D 2 and prove that such a space is isomorphic to a
certain product of spaces of usual scalar valued Jacobi forms of various weights. This
isomorphism is realized by certain linear holomorphic differential operators. The
half-integral weight case is also treated.

1. Introduction

The usual scalar valued Jacobi forms are defined as functionswhich have the nat-
ural automorphic properties that the Fourier–Jacobi coefficients of scalar valued Siegel
modular forms have. When we take a vector valued Siegel modular form F instead,
then each Fourier–Jacobi coefficient ofF is a vector of holomorphic functions which
satisfies more complicated relations. Here we call this kindof functionsvector valued
Jacobi forms. In this paper, we restrict ourselves to the case of functions onH � C
whereH is the complex upper half plane, and we study their relation to the usual
scalar valued Jacobi forms. Main results are Theorem 1.1 and 1.2 in §1.

By the way, some general definition of vector valued Jacobi forms of general de-
gree was given in Ziegler [9]. But his definition is fairly different from ours. His def-
inition is obtained by changing the action of the semi-simple part of the Jacobi group
to the one using vector valued automorphy factor of the symplectic group. This is
of course interesting object since it has a good connection with vector valued Siegel
modular forms of “half-integral” weight (i.e. the determinant part has a half-integral
power). But in the present context, a Jacobi form defined by him can give only some
components of our general vector valued Jacobi forms. For example, for functions onH � C, his definition can give only scalar valued automorphy factors but ours give
vector valued functions even in this case.

Although we confine ourselves to the case of functions onH � C in this paper,
some of definitions have obvious generalization to the general degree, which will be
omitted here.

2000 Mathematics Subject Classification. 11F50, 11F46.�The first author was partially supported by JSPS Grant-in-Aid No. 21244001.
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Now we give a precise definition of the vector valued Jacobi forms in this paper.
The half-integral weight case will be shortly explained in the last section and here we
explain only the case when the weight is integral. LetHn be the Siegel upper half
space of degreen defined as usual by

Hn D {Z D tZ 2 Mn(C)I Im(Z) > 0}.

We write H D H1. For any non-negative integers, we denote by�s the symmetric
tensor representation ofGL2(C) of degrees. For any integerk, we write �k,s D detk
�s. This exhausts all the rational irreducible representations of GL2(C). Let Sp(2, R)
be the usual symplectic group of size 4, i.e.

Sp(2,R) D {g 2 M4(R)I tgJgD J},

where J D � 0 �12
12 0

�
and we put02 D Sp(2,Z) D Sp(2,R) \ M4(Z). For anyCsC1-

valued functionF(Z) of Z 2 H2 and M D � A B
C D

� 2 Sp(2,R) we write

(F j(k,s)M)(Z) D �k,s(C ZC D)�1F(M Z).

For anyk 2 Z, we say that aCsC1-valued holomorphic functionF is a Siegel modular
forms of weight�k,s of 02 if F jk,sM D F for all M 2 02. We denote byAk,s(02) the

vector space of these Siegel modular forms. For anyZ 2 H2, we write Z D � � z
z � 0

�
and F(Z) D F(� , z, � 0). If F 2 Ak,s(02), then we haveF(� , z, � 0) D F(� , z, � 0C l ) for
any integerl , so we have the following Fourier expansion

F(Z) D 1X
mD0

8m(� , z) e(m� 0),
where we writee(x) D exp(2� imx) for any x 2 C and we also writeem(x) D e(mx)
sometimes. This is called the Fourier–Jacobi expansion ofF and eachCsC1-valued
function 8m(� , z) is called a Fourier–Jacobi coefficient ofF . The real Jacobi group
J(R) is (isomorphic to) the subgroup ofSp(2,R) generated by the matrices0

BB�
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

1
CCA,

0
BB�

1 0 0 �� 1 � �
0 0 1 ��
0 0 0 1

1
CCA

where
�

a b
c d

� 2 SL2(R) and �, �, � 2 R. For any subgroup0 of SL2(Z) with finite

index, we define the Jacobi modular group0 J by a subgroup generated by the above
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two kinds of matrices with
�

a b
c d

� 2 0 and �, �, � 2 Z. By the action ofSL2(Z)J

on Siegel modular formsF 2 Ak,s(02), we obtain the action ofSL2(Z) andZ2 on the
Fourier–Jacobi coefficients8m(� ,z) of F . For any integerk, for anyCsC1 valued func-

tion 8 on H � C and for anyM D �
a b
c d

� 2 SL2(R) and (X, �) D ([�, �], �) 2 R3,

we write

(8j(k,s),mM)(� , z) D �k,s

�
c� C d cz

0 1

��1

em

�� cz2

c� C d

�8�a� C b

c� C d
,

z

c� C d

�
,(1)

(8js,m(X, �))(� , z) D �s

�
1 ��
0 1

��1

em(�2� C 2�zC ��C �)8(� , zC �� C �).(2)

Then this is a group action ofJ(R). When� 2 Z, we sometimes write8js,m(X, �) D8js,mX. Also if s D 0, we write 8j(k,0),mM D 8jk,mM and 8j0,mX D 8jmX. The
Fourier–Jacobi coefficients8m of a Siegel modular form inAk,s(02) satisfy

(8mj(k,s),mM)(� , z) D 8m(� , z),

(8mjm,sX)(� , z) D 8m(� , z)

for any M 2 SL2(Z) and X 2 Z2. Therefore more generally we give the definition
below. Let m be a non-negative integer and�k,s D detk 
 �s be the irreducible rep-
resentation ofGL2(C) of dimensionsC 1 defined as before. Let0 be a subgroup of
SL2(Z) with finite index.

DEFINITION 1.1. A Jacobi form of weight�k,s and indexm belonging to0 is a
holomorphic function8 W H � C ! CsC1 satisfying
(1) 8j(k,s),mM D 8 for all M 2 0,
(2) 8js,mX D 8 for all X 2 Z2,
(3) for eachM 2 SL2(Z), the function8j(k,s),mM has the Fourier expansion of the form

(8j(k,s),mM)(� , z) D X
r 2�4nm

n,r2N�1
M Z

CM (n, r )qn� r ,

where we writeq D e(� ), � D e(z) for � 2 H and z 2 C, and NM is a rational number
depending onM.

We denote byJ(k,s),m(0 J) the set of all such functions. If8j(k,s),mM has the Fourier
expansion as above withCM (n, r ) D 0 unlessr 2 < 4nm for every M 2 SL2(Z), then8 is called a vector valued Jacobicusp form. We denote byJcusp

(k,s),m(0 J) the subspace

of all cusp forms inJ(k,s),m(0 J). Our main theorem of this paper is that this space is
essentially described by using only scalar valued Jacobi forms. Indeed, we prove the
following theorem in Section 2.
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Theorem 1.1. For any integer m with m� 1, there exists a linear isomorphism
between vector valued Jacobi forms and a direct sum of scalarvalued Jacobi forms
given by

J(k,s),m(0 J) � Jk,m(0 J) � JkC1,m(0 J) � � � � � JkCs,m(0 J),

Jcusp
(k,s),m(0 J) � Jcusp

k,m (0 J) � Jcusp
kC1,m(0 J) � � � � � Jcusp

kCs,m(0 J),

where JkC�,m(0 J) is a space of scalar valued Jacobi forms of weight kC � and index
m and Jcusp

kC�,m(0 J) is the subspace of cusp forms.

This linear isomorphism is given by a holomorphic differential operator with con-
stant coefficients. This operator is compatible with the action of J(R) to the both sides
of the isomorphism, where the action ofJ(R) to the right hand side is defined as a nat-
ural componentwise action. This fact is given in the following theorem and the above
theorem is its corollary. We denote byW the vector space ofsC 1 numbers of holo-
morphic functions onH � C. For 8 2 W, we write the l -th component by'sC1�l ,
namely8 D t('s, 's�1, : : : , '0).

Theorem 1.2. There exists a linear holomorphic differential operator D(k,s),m with
constant coefficients from W to W such that

�
D(k,s),m(8j(k,s),mg)

�� D (D(k,s),m8)�jkC�,mg.

for any g2 J(R).

Here for anyv 2 W, we denote byv� the (s C 1 � �)-th component ofv. In
Section 2, we prove this theorem. In Section 3 we give a short remark on Eisenstein
series and inner metric. In Section 4, we give an analogous result for the half-integral
weight case.

2. Vector valued Jacobi forms and scalar valued Jacobi forms

In this section we prove Theorem 1.1 and 1.2. Most part of the proof is devoted
to the explicit construction ofD(k,s),m in Theorem 1.2.

In order to fix the coordinate, first we review the definition ofthe symmetric tensor
representation. For variablesu1, u2, we definev1, v2 by

(v1, v2) D (u1, u2)A

where A2 GL2(C). We put

(vs
1, vs�1

1 v2, : : : , v1vs�1
2 , vs

2) D (us
1, us�1

1 u2, : : : , u1us�1
2 , us

2)�s(A).
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We write the component of8(� , z) 2 J(k,s),m(0 J) as

8(� , z) D
0
B�
's(� , z)

...'0(� , z)

1
CA 2 J(k,s),m(0 J).

The automorphic property with respect to the action of0 andZ2 is described explicitly
as follows.

(c�Cd)�kem

�� cz2

c�Cd

�
0
BBBBBBBBB�

's

�
a�Cb

c�Cd
,

z

c�Cd

�
...

'1

�
a�Cb

c�Cd
,

z

c�Cd

�

'0

�
a�Cb

c�Cd
,

z

c�Cd

�

1
CCCCCCCCCA

D

0
BBBBBBBBBBBBBBBB�

(c�Cd)s ��� �s�2

s�2

�
(c�Cd)2(cz)s�2

�
s�1

s�1

�
(c�Cd)(cz)s�1

�
s

s

�
(cz)s

...
...

...
...

0 ��� �
s�2

1

�
(c�Cd)2(cz)

�
s�1

2

�
(c�Cd)(cz)2

�
s

3

�
(cz)3

0 ��� (c�Cd)2

�
s�1

1

�
(c�Cd)(cz)

�
s

2

�
(cz)2

0 ��� 0 (c�Cd)

�
s

1

�
(cz)

0 ��� 0 0 1

1
CCCCCCCCCCCCCCCCA

0
BBB�
's(� ,z)

...'1(� ,z)'0(� ,z)

1
CCCA,

em(�2� C2�z)

0
BBB�
's(� , zC�� C�)

...'1(� , zC�� C�)'0(� , zC�� C�)

1
CCCA

D

0
BBBBBBBBBBBBBBBB�

1 � � � �
s�2

s�2

�
(��)s�2

�
s�1

s�1

�
(��)s�1

�
s

s

�
(��)s

...
...

...
...

0 � � � �
s�2

1

�
(��)

�
s�1

2

�
(��)2

�
s

3

�
(��)3

0 � � � 1

�
s�1

1

�
(��)

�
s

2

�
(��)2

0 � � � 0 1

�
s

1

�
(��)

0 � � � 0 0 1

1
CCCCCCCCCCCCCCCCA

0
BBB�
's(� , z)

...'1(� , z)'0(� , z)

1
CCCA,
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where
��

r

�
are the usual binomial coefficients.

More generally, for any function8 D t('�) D t('s, 's�1, : : : , '0) 2 W, we have

('�jk,mM)(� , z) D �X
�D0

�
s� �� � �

�
(c� C d)�(cz)���(8j(k,s),mM)�(� , z),(3)

('�jmX)(� , z) D �X
�D0

�
s� �� � �

�
(��)���(8js,mX)�(� , z),(4)

where M D � a b
c d

� 2 SL2(R) and X D [�,�] 2 R2. By dividing the first expression (3)

by (c� C d)�, we get

(5) ('�jkC�,mM)(� , z) D �X
�D0

�
s� �� � �

��
cz

c� C d

����
(8j(k,s),mM)�(� , z).

First we construct some operator fromW to W compatible with the action ofR2,
since this is easier than the action ofSL2(R).

Lemma 2.1. We fix XD [�,�] 2 R2 and put�zD (1=(2� i ))�=�z. For any pair of
scalar valued functions' and on H�C such that'jmX D  , and any non-negative
integer t, we have

((� t
z')jmX)(� , z) D tX

jD0

�
t

j

�
(2m) j (��) j � t� j

z  (� , z).

Proof. We prove this by induction ont . By operating�z on both sides of the
definition of 'jmX, we have

�z('jmX) D 2�m('jmX)C (�z')jmX.

This is nothing but the relation fort D 1. Now assume that the lemma is true fort .
By operating�z on both sides of the relation in the lemma fort , we have

�z(� t
z'jmX) D tX

jD0

�
t

j

�
(2m) j (��) j � tC1� j

z  .

Replacing' by � t
z' in the relation fort D 1, we get

�z(� t
z'jmX) D 2�m((� t

z')jmX)C (� tC1
z ')jmX.

Since
� t

j

�
(�2m�) j � (2�m)

� t
j�1

�
(�2m�) j�1 D �tC1

j

�
(�2m�) j , we get the relation for

t C 1.
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We fix m and s. For any vector8 D t('s, 's�1, : : : , '0) 2 W and any integert
with 0� t � s, we define a holomorphic functiongt (8) on H � C by

gt (8)(� , z) D tX
�D0

(�2m)��t

�
s� �
t � �

�
(� t��

z '�)(� , z).

Lemma 2.2. Notation being as above, we have

gt (8)jmX D gt (8js,mX)

for any X2 R2.

Proof. We fix t throughout the proof. We fixX 2 R2 and put � D '�jmX. Then
by Lemma 2.1, we have

(� t��
z '�)jmX D t��X

jD0

�
t � �

j

�
(�2m�) j � t��� j

z  �.

Since we have

 � D '�jmX D �X
�D0

�
s� �� � �

�
(��)���(8js,mX)� ,

we get

gt (8)jmX D tX
�D0

t��X
jD0

�X
�D0

(�1)t��(��) jC���
(2m)t��� j

�
s� �
t � �

��
t � �

j

��
s� �� � �

� � t��� j
z (8js,mX)� .

We fix � C j and put l D � C j . We also fix�. Then 0� j � l � �. In the above
expression the coefficient of� t��� j

z '� for fixed t , � and t � l is given by

(�1)t�l (��)l��
(2m)t�l

� (�1) j

�
s� l C j

t � l C j

��
t � l C j

j

��
s� �

l � � � j

�
.

We have �
s� l C j

t � l C j

��
t � l C j

j

��
s� �

l � � � j

� D �s� �
t � �

��
l � �

j

��
t � �
l � �

�

and
l��X
jD0

(�1) j

�
l � �

j

� D �1 if l D �,
0 otherwise.

If l D � then j D 0 and� D �. So the right hand side becomesgt (8js,mX).
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As a corollary of this lemma we see that if8js,mX D 8 for any X 2 Z2, then
gt (8) is also invariant by the action ofZ2. But this is not invariant by the action of0 even if 8j(k,s),mM D 8 for M 2 0. So we consider the behaviour under the action
of SL2(R) next.

We prepare some notation. We write (2n � 1)!! D 1 � 3 � � � (2n � 1) D (2n)!=2nn!
and 0!D (�1)!! D 1. We define a heat operatorLm by

Lm D 4m �� � �2
z ,

where we put�� D (1=(2� i )) �=�� .

Lemma 2.3. We fix a holomorphic function' on H � C, a matrix M 2 SL2(R),
and put D 'jk,mM. Notation being as above, we have

(6)

(� t
z')jkCt,mM

D [t=2]X
lD0

�
t

2l

��
1

2� i

2mc

c� C d

�l

(2l � 1)!!
t�2lX
�D0

�
t � 2l�

��
2mcz

c� C d

��
(� t�2l��

z  ).

Proof. We prove this by induction ont . When t D 0 the relation is just the defin-
ition of  . We assume that the relation holds fort . First by differentiating both sides
of the definition� t

z'jkCt,mM of the action ofM on � t
z', we see

�z(� t
z'jkCt,mM) D (� tC1

z ')jkCtC1,mM � � 2mcz

c� C d

�
(� t

z'jkCt,mM).

In this equality we evaluate� t
z'jkCt,mM by the inductive assumption and calculate the

action of �z on that. We note that

�z

�
(� t�2l��

z  )

�
2mcz

c� C d

���

D (� tC1�2l��
z  )

�
2mcz

c� C d

�� C �� 1

2� i

2mc

c� C d

��
2mcz

c� C d

���1

(� t�2l��
z  ).

We calculate the coefficient of��z (2mcz=(c� C d))� in (� tC1
z ')jkCtC1,mM. The coefficient

is zero unless� C � � t C 1 mod 2. We put 2� D t C 1 � � � �. Then the co-
efficient is a sum of three terms corresponding ((1=2� i )(2mc=(c�Cd)))� times the follow-
ing quantities.

(2� � 1)!!

�
t

2�
��

t � 2��
�

, if � D �, t C 1� 2l � � D t C 1� � � 2� (� D l ),

(2� � 1)!!

�
t

2�
��

t � 2�� � 1

�
, if � C 1D �, t � 2l � � D t C 1� � � 2� (� D l ),



GENERALIZATION OF VECTOR VALUED JACOBI FORMS 791

(2� � 3)!!

�
t

2� � 2

�
(�C 1)

�
t � 2� C 2�C 1

�
,

if � � 1D �, t � 2l � � D t C 1� � � 2� (� D l C 1).

We have

(2� � 3)!!

�
t

2� � 2

��
t � 2� C 2�C 1

�
(�C 1)D (2� � 1)!!

�
t

2� � 1

��
t � 2� C 1�

�

and �
t

2�
��

t � 2��
�C � t

2� � 1

��
t � 2� C 1�

�C � t

2�
��

t � 2�� � 1

�

D � t

2�
��

t � 2� C 1�
�C � t

2� � 1

��
t � 2� C 1�

�

D �t C 1

2�
��

t C 1� 2��
�

.

Hence we get

(� tC1
z ')jkCtC1,mM

D [(tC1)=2]X
�D0

tC1�2�X
�D0

(2��1)!!

�
tC1

2�
��

1

2� i

2mc

c�Cd

���tC1�2��
��

2mcz

c�Cd

�� � tC1�2���
z  .

This is nothing but the formula fort C 1.

For Lm D 4m�� � �2
z , we haveLm('jmX) D (Lm')jmX for any X 2 R2. Indeed by

definition we have'jmX D em(�2� C 2�z)'(� , zC �� C�), and if we put D 'jmX,
then we get

(�z')jmX D �z � 2m� ,

(�2
z')jmX D �2

z � 4m��z C (2m�)2 ,

�� D m�2 C (��')jmX C �(�z')jmX.

So we get ((4m�� � �2
z )')jmX D Lm .

Next we see the relation of the action ofLm and M 2 SL2(R).

Lemma 2.4. We fix M2 SL2(R) and a holomorphic function' on H � C. We
put  D 'jk,mM. Then we have

(7) (L t
m')jkC2t,mM D tX

lD0

�
t

l

�
(2kC 2t � 3)!!

(2kC 2t � 2l � 3)!!

�
1

2� i

2mc

c� C d

�l

(L t�l
m  ).
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Proof. We prove this by induction ont . When t D 0 this is just the definition of . When t D 1 by direct calculation we see

(Lm')jkC2,mM D Lm('jk,mM)C (2k � 1)2mc

2� i (c� C d)
('jk,mM).(8)

So we have

Lm((L t
m')jkC2t,mM) D (L tC1

m ')jkC2tC2,mM � 2mc(2kC 4t � 1)

2� i (c� C d)
(L t

m')jkC2t,mM.

Now we assume that the lemma is true fort . We see

4m��
��

1

2� i

2mc

c� C d

�l

(L t�l
m  )

�

D �2l

�
1

2� i

2mc

c� C d

�lC1

(L t�l
m  )C � 1

2� i

2mc

c� C d

�l

(4m�� L t�l
m  ),

�2
z

��
1

2� i

2mc

c� C d

�l

(L t�l
m  )

� D � 1

2� i

2mc

c� C d

�l

(�2
z L t�l

m  ).

Since we have�
t

l

�
(2kC4t�1)(2kC2t�3)!!

(2kC2t�2l �3)!!
��t

l

�
2l (2kC2t�3)!!

(2kC2t�2l �3)!!
C� t

lC1

�
(2kC2t�3)!!

(2kC2t�2l �5)!!

D �� t

lC1

�
(2kC2t�2l �3)C�t

l

�
(2kC4t�1)��t

l

�
(2l )

�
(2kC2t�3)!!

(2kC2t�2l �3)!!

D �tC1

lC1

�
(2kC2(tC1)�3)!!

(2kC2(tC1)�2(lC1)�3)!!
,

we get the relation fort C 1. (When l D t , we understand that
� t
lC1

� D 0.)

Lemma 2.5. For any 8 D t('s, 's�1, : : : , '0) 2 W, any M 2 SL2(R) and any
integer t with0� t � s, we have

gt (8)jkCt,mM

D [t=2]X
�D0

(�1)� (2m)�2�� 1

2� i

2mc

c� C d

��
(2� � 1)!!

�
s� t C 2�

2�
�

gt�2� (8j(k,s),mM).

Proof. We fix M 2 SL2(R). For the sake of simplicity, we write8j(k,s),mM D
t( fs, fs�1,:::, f0) and for anyt with 0� t �s, we writegtDgt (8) andht Dgt (8j(k,s),mM).
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We put � D '�jkC�,mM. We have

gt jkCt,mM D tX
�D0

(�2m)��t

�
s� �
t � �

�
(� t��

z '�)jkCt,mM.

Since

(� t��
z '�)jkCt,mM D (� t��

z '�)jkC�C(t��),mM,

we have

(� t��
z '�)jkCt,mM D [(t��)=2]X

lD0

�
t � �

2l

��
1

2� i

2mc

c� C d

�l

(2l � 1)!!

� t���2lX
�D0

�
t � � � 2l�

��
2mcz

c� C d

��
(� t�2l����

z  �)

by Lemma 2.3. By (5), we get

� t�2l����
z  � D �X

jD0

�
s� j�� j

�� t�2l����
z

��
cz

c�Cd

��� j

f j

�

D �X
jD0

�
s� j�� j

��
 

t�2l����X
D0

�
c

c�Cd

��� j�t�2l ����
�

�� 1

2� i

���� j
�

( )! z�� j� � t�2l�����
z f j

!
,

where we put
��� j � D 0 if  > � � j . As a whole, we have

gt jkCt,mM

D tX
�D0

[(t��)=2]X
lD0

t���2lX
�D0

�X
jD0

t�2l����X
D0

(�1)��t (2m) j�t

�
1

2� i

2mc

c� C d

�lC� 2mcz

c� C d

��C�� j�

� (2l � 1)!!

�
s� �
t � �

��
t � �

2l

��
t � � � 2l�

�

� �s� j� � j

��
t � 2l � � � �

��� � j
�

�  ! (� t�2l�����
z f j ).

We evaluate the coefficient ofz���z f j for fixed integers�, �, j � 0. If we put � D�C�� j � and� D t�2l ����� for the abovel ,�,�, j , in the summation, then
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we have�C � C j D t � 2l � 2 . Hence if we put� D (t � � � � � j )=2, then 0� �
and � is an integer. Also we havel C  D � and �C� D � C �C j � l . If  > �� j
the above sum for this is zero, so we may assume� D � C (� � j �  ) � �. Here
we checked a kind of necessary condition for parameters. Nowwe start from any fixed
non-negative integers�, �, j such that�C �C j � t and t � �C �C j mod 2. Then
we put � D (t � � � � � j )=2. We fix any integer� and l such that 0� � � � and
0� l � �. We put� D j C (� � l )C (� � �) and  D � � l . We now check that�, �,
l ,  appears in the above summation. It is obvious that 0� �. We see� C �C 2l D
j C l C �C� � j C2�C� D t �� � t . This also implies� � t and l � (t ��)=2. We
have 0� �� l D  . We also have�� j � D ( jC�� lC���)� j �(�� l )D ��� � 0
and t �2l ����� D t �2l � ( j C�C�� l )� (�� l )D � � 0. Under the assumption � � � j , we see�

s� �
t � �

��
t � �

2l

��
t � � � 2l�

��
s� j� � j

��
t � 2l � � � �

��� � j
� !

D (s� j )!

(s� t)! �!
� 1

(2l )! �! (� � j �  )!  !

D (s� j )!

(s� t)! �!
� 1

(2l )! (� � l )! �!(� � �)!
.

Since we have (�1)� D (�1)�C�C j (�1)l (�1)� , the coefficient ofz���z f j in gt jkCt,mM
is given by

(s� j )!

(s� t)!�!

� X
l ,�,�, (2m) j�t (�1)�C jC��t

�
1

2� i

2mc

c� C d

��� 1

2� i

2mc

c� C d

�� (�1)l

2l l ! (� � l )!
� (�1)��!(� � �)!

.

If � ¤ 0, then �X
�D0

(�1)��!(� � �)!
D �X

�D0

(�1)����
�

(�!)�1 D 0.

So we can assume� D 0. We also have

�X
lD0

(�1)l

2l l ! (� � l )!
D (�!)�1

�
1� 1

2

�� D 1

2��!
D (2� � 1)!!

(2�)!
.

By definition we have

h�C j D ht�2� D t�2�X
jD0

(�1) j�t�2� (2m) j�tC2�� s� j

t � 2� � j

�
(��z f j ).
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Since�D0, we have�D0, t�2�� j D�, (�1)�C�C j�tD (�1)� (�1) j�tC2� , (2m) j�tC2�D
(2m) j�t (2m)2� and �

s� t C 2�
2�

��
s� j

t � 2� � j

� D (s� j )!

(2�)! (s� t)! �!
.

Hence we get our relation.

For any function8 D t('s, 's�1, : : : , '0) 2 W and any integer� with 0� � � s,
we define a scalar-valued function��(8) on H � C by

(9) ��(8) D [�=2]X
tD0

�
s� �C 2t

2t

�
(2kC 2� � 2t � 5)!! (2t � 1)!!

(2m)2t (2kC 2� � 5)!!
L t

m(g��2t (8))

and a linear differential operatorD(k,s),m from W to W by D(k,s),m(8)D t(�s(8),�s�1(8),:::,�0(8)). We note that��(8) depends only on'0, : : : , '� and not on'� with � > �. By
using the definition ofg��2t , we can rewrite the definition of��(8) more simply as

��(8)

D [�=2]X
tD0

��2tX
�D0

�
s����2t��

��
s��C2t

2t

�
(�2m)���(2kC2��2t�5)!! (2t�1)!!

(2kC2��5)!!
���2t��

z L t
m'�

D �X
�D0

[(���)=2]X
tD0

(�2m)����s�����
�����

2t

�
(2kC2��2t�5)!! (2t�1)!!

(2kC2��5)!!
�����2t

z L t
m'� .

Theorem 2.1. For any8D t('s,'s�1, : : : ,'0) 2W and any elements M2 SL2(R),
we have

(��(8))jkC�,mM D ��(8j(k,s),mM).

In particular, if 8 2 J(k,s),m(0 J), then we have��(8) 2 JkC�,m(0 J).

Proof. As before we putgt D gt (8) and ht D gt (8j(k,s),mM). First we calculate
(L t

mg��2t )jkC�,mM. We have

Lemma 2.6.

(L t
mg��2t )jkC�,mM

D tX
lD0

�
t

l

� [�=2�t ]X
�D0

(�1)� (2��1)!!

�
s��C2tC2�

2�
�

� (2kC2��2t�2��3)!!

(2kC2��2t�2��2l�3)!!
(2m)��Cl

�
1

2� i

c

c�Cd

��Cl

(L t�l
m h��2t�2� ).
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Proof. We prove this lemma by induction on�. When t D 0, the lemma is noth-
ing but Lemma 2.5. In particular, when� D 0, this is just the definition. We assume
that the relation is true for��2 and anyt with ��2� 2t and under this assumption
we show that the relation holds for� and t C 1. By (8), we have

(L tC1
m g��2t�2)jkC�,mM

D Lm(L t
mg��2t�2jkC��2,mM)C (2kC 2� � 5)

2mc

2� i (c� C d)
(L t

mg��2t�2)jkC��2,mM.

For any function f on H � C, we have

Lm((c� C d)���l f ) D (�� � l )

�
4mc

c� C d

�
(c� C d)���l f C (c� C d)���l Lm f .

By the inductive assumption we have

2mc(2kC 2� � 5)

2� i (c� C d)
(L t

mg��2�2t )jkC��2,mM

D (2kC 2� � 5)
tX

lD0

�
t

l

� [�=2�(tC1)]X
�D0

(�1)� (2� � 1)!!

�
s� �C 2(t C 1)C 2�

2�
�

� (2kC 2� � 2(t C 1)� 2� � 5)!!

(2kC 2� � 2(t C 1)� 2� � 2l � 5)!!

� (2m)�kClC1

�
1

2� i

c

c� C d

�lC1C�
� (L tC1�(lC1)

m h��2(tC1)�2�),

and

Lm(L t
mg��2�2t jkC��2,mM)

D tX
lD0

�
t

l

� [�=2�(tC1)]X
�D0

(�2� � 2l )(�1)� (2� � 1)!!

�
s� �C 2(t C 1)C 2�

2�
�

� (2kC 2� � 2(t C 1)� 2� � 5)!!

(2kC 2� � 2(t C 1)� 2� � 2l � 5)!!

� (2m)�kClC1

�
1

2� i

c

c� C d

�lC1C�
(L tC1�(lC1)

m h��2(tC1)�2� )

C tX
lD0

�
t

l

� [�=2�(tC1)]X
�D0

(�1)� (2� � 1)!!

�
s� �C 2(t C 1)C 2�

2�
�

� (2kC 2� � 2(t C 1)� 2� � 5)!!

(2kC 2� � 2(t C 1)� 2� � 2l � 5)!!
(2m)�kCl

� � 1

2� i

c

c� C d

�lC�
(L tC1�l

m h��2(tC1)�2�).
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Now we see the coefficient ofL tC1�(lC1)
m h��2(tC1)�2� for 0� l � t . Since

�
t

l

� D l C 1

t C 1

�
t C 1

l C 1

�
, and

�
t

l C 1

� D t � l

t C 1

�
t C l

l C 1

�
,

we get

(lC1)(2kC2��5)

(tC1)(2kC2��2(tC1)�2��2l�5)
C (lC1)(�2��2l )

(tC1)(2kC2��2(tC1)�2��2l�5)
C (t�l )

tC1

D 2kC2��2(tC1)�2��3

2kC2��2(tC1)�2��2l�5
,

and we see that the coefficient is as desired. This is the same for L tC1
m h��2(tC1)�2� .

Hence we proved Lemma 2.6.

Proof of Theorem 2.1. By the above lemma, we have

��(8)jkC�,mM

D [�=2]X
tD0

�
s��C2t

2t

�
(2kC2��2t �5)!! (2t �1)!!

(2m)2t (2kC2��5)!!

� tX
lD0

�
t

l

� [�=2�t ]X
�D0

(�1)� (2m)��Cl

�
1

2� i

c

c� Cd

��Cl

(2� �1)!!

�
s��C2t C2�

2�
�

� (2kC2��2t �2� �3)!!

(2kC2��2t �2� �2l �3)!!
L t�l

m h��2t�2� .

We rewrite this. Since we have

(2t � 1)!! (2� � 1)!! D (2t)! (2�)! (2t C 2� � 1)!! (t C �)!�! t ! (2t C 2�)!
,

we have

(2t � 1)!! (2� � 1)!!

�
s� �C 2t

2t

��
s� �C 2(t C �)

2�
�

D (2t C 2� � 1)!!

�
s� �C 2t C 2�

2t C 2�
��

t C ��
�

.

Now we fix non-negative integers�, � with 0 � � � � � [�=2] and calculate the
coefficient of L�

mh��2� in the above. For anyl with 0� l � � � �, we put � D � � t
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and t D � C l . Then the coefficient ofL�
mh��2� for fixed �, �, � is given by

(2m)����� 1

2� i

c

c� C d

���� � (2� � 1)!!

�
s� �C 2�

2�
�

(2kC 2� � 2� � 3)!!

(2kC 2� � 5)!!

���
�

� (�1)��� ���X
lD0

�� � �
l

�
(�1)l

(2kC 2� � 2� � 2l � 5)!!

(2kC 2� � 2� � 2l � 3)!!
.

The last term is 0 for� > �. We see this as follows. For any fixed enough big odd
integer A, we put f (x) DPt

lD0(�1)l
�t

l

�
xA=2Ct�l . Then we have

dt�1 f

dxt�1
(1)D tX

lD0

(�1)l
�

t

l

��
A=2C t � l

t � 1

�
(t � 1)!

D 1

2t�1

tX
lD0

(�1)l
�

t

l

�
(AC 2t � 2l )!!

(A� 2l C 2)!!
.

On the other hand, sincef (x) D xA=2(x � 1)t , the (t � 1)-th derivative f (t�1)(x) is
divisible by x � 1 and hencef (t�1)(1)D 0. Thus we can assume� D � and then we
have� D l D 0, � D � D t , and the last sum is given by (2kC 2�� 2�� 3)�1. So the
coefficient of L�

mg��2� is given by

�
s� �C 2�

2�
�

(2kC 2� � 2� � 5)!!(2� � 1)!!

(2kC 2� � 5)!!
.

This is exactly the same as the coefficient ofL�
mg��2� in the definition of��(8). Sum-

ming up over�, we have��(8)jkC�,mM D ��(8j(k,s),mM).

For any integerl , we denote byMl (0) the space of holomorphic modular forms
on H of weight k w.r.t. 0.

Theorem 2.2. (1) The mapping D(k,s),m is a bijection from W to W. For any
natural integers k, s and m� 1, this induces an linear isomorphism of J(k,s),m(0 J)
onto JkCs,m(0 J) � JkCs�1,m(0 J) � � � � � Jk,m(0 J) � W.
(2) For mD 0, we have J(k,s),0(0 J) � MkCs(0).
In particular, J(k,s),m(0 J) is always finite dimensional.

Proof. First we prove (1). By definition, we see thatL t
mg��2t D L t

m'��2t C (terms
determined by'� with 0� � < � � 2t). So ��(8) D '�C (terms determined by'� with
0� � < ��1). This means that the transformation matrix fromW 38 to D(k,s),m(8) 2W
is “upper triangular” whose diagonal components are 1, and hence the mapping is bijec-
tive on W. If 8 2 J(k,s),m(0 J), then��(8) 2 JkC�,m(0 J) by Theorem 2.1 since the con-
ditions on Fourier coefficients are obviously satisfied. Therestriction of this mapping on
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J(k,s),m(0 J) is of course also injective. We see that this is surjective to JkCs,m(0 J)� � � � �
Jk,m(0 J). Take fl 2 JkCl ,m(0 J) for l with 0 � l � s. Then sinceD(k,s),m is surjective on
W, there exists8 2W such thatD(k,s),m(8)D t( fs, fs�1, : : : , f0). By Theorem 2.1, for any
M 2 0 J , we have��(8j(k,s),mM) D ��(8)jkC�,mM D f�jkC�M D f� D ��(8). By inject-
ivity of D(k,s),m on W, we have8j(k,s),m D 8. The conditions on the Fourier coefficients
are also easily seen. Hence this mapping is surjective. Now we show the assertion (2) for
index zero. When8 D t('s, 's�1, : : : , '0) 2 J(k,s),0(0 J), we now show that'l D 0 for
any l < s by induction onl . We assume that' j D 0 for any j � l � 1. Then we have'l (� ,zC��C�)D 'l (� ,z) for any integers� and�. Hence for a fixed� , the holomorphic
function'l (� , z) is a bounded forz 2 C and consequently'l is independent ofz and we
write 'l (� ) D 'l (� , z). Next we show that'l D 0. Since

'lC1(� , zC ��C �) D 'lC1(� , z) � �(s� l )'l (� ),

we have �'lC1�z
(� , zC ��C �) D �'lC1�z

(� , z)

and hence�'lC1=�z is also bounded and independent ofz. This means that there exist
holomorphic functionsc1(� ) and c2(� ) of � 2 H such that'lC1(� , z) D c1(� )zC c2(� ).
Hence we havec1(� )(��C�) D ��(s� l )'l (� ) for any �, � 2 Z. By taking � D 1 and� D 0, 1, we see thatc1(� ) D 'l (� ) D 0. By the same reason,'s(� , z) is independent
of z and 'sjkCs,mM D 's for any M 2 0. Hence's(� , z) 2 MkCs(0).

REMARK . The Fourier–Jacobi coefficient of index 0 of Siegel modularforms F
of Sp(2,Z) of weight �k,s is t( f, 0, : : : , 0) where f 2 SkCs(SL2(Z)): the space of cusp
forms of weightkC s. (cf. Arakawa [1]). Hence an element ofJ(k,s),m(SL2(Z)J) is not
necessarily the Fourier–Jacobi coefficient of Siegel modular forms.

EXAMPLES. If we write simply as D(k,s),m(8) D t( Q's, Q's�1, : : : , Q'0) for 8 D
t('s, : : : ,'0), then by definitionQ'� depends only on'0, : : : ,'� and not on'�C1, : : : ,'s.
For first few�, they are given explicitly as

Q'0 D '0,

Q'1 D '1 � (2m)�1

�
s

1

��z'0,

Q'2 D '2 � (2m)�1

�
s� 1

1

��z'1C (2m)�2

�
s

2

���2
z'0C 1

2k � 1
Lm'0

�
,

Q'3 D '3 � (2m)�1

�
s� 2

1

��z'2C (2m)�2

�
s� 1

2

���2
z'1C 1

2kC 1
Lm'1

�

� (2m)�3

�
s

3

���3
z'0C 3

2kC 1
�zLm'0

�
,
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Q'4 D '4 � (2m)�1

�
s� 3

1

��z'3C (2m)�2

�
s� 2

2

���2
z'2C 1

2kC 3
Lm'2

�

� (2m)�3

�
s� 1

3

���3
z'1C 3

2kC 3
�zLm'1

�

C (2m)�4

�
s

4

���4
z'0C 6

2kC 3
�2

z Lm'0C 3

(2kC 1)(2kC 3)
L2

m'0

�
.

Next we give the inverse linear mapping ofD(k,s),m explicitly. First we note that
if 8 D t('s, 's�1, : : : , '� , 0, : : : , 0), then we can show that

D(k,s),m(8) D (D(kC�,s��),m('s, 's�1, : : : , '�), 0, : : : , 0)

by comparing the definition of the both sides. If8 2 J(k,s),m(0 J) besides, then
t('s, 's�1, : : : , '�) 2 J(kC�,s��),m(0 J). Indeed, if8j(k,s),mM D 8 and8js,mX D 8 for
every M 2 0 and X 2 Z2, then by the conditions (3) and (4), we have

('�jk,mM) D �X
�D0

�
s� �� � �

�
(c� C d)� (cz)���'� ,

'�jmX D �X
�D0

�
s� �� � �

�
(��)���'� .

Since we are assuming that'� D 0 for � < �, we replace� by �C � in the above and
the right hand sides become

���X
�D0

�
(s� �) � �
(� � �) � �

�
(c� C d)�C� (cz)(���)��'�C�

and ���X
�D0

�
(s� �) � �
(� � �) � �

�
(��)(���)��'�C� .

So we get the assertion. For any holomorphic functionf on H � C and any integers
l , �, s with 0� l � � � s we define a holomorphic function�(s)

l ,�( f ) on H � C by

�(s)
l ,�( f ) D (2m)��Cl

�
s� l� � l

� [(��l )=2]X
jD0

(�1) j

�� � l

2 j

�
(2 j � 1)!! (2k � 3)!!

(2kC 2 j � 3)!!
���l�2 j

z L j
m f,

and if 0� � < l we define�(s)
l ,�( f ) D 0. We write

�(s)
l ( f ) D t(�(s)

l ,s( f ), �(s)
l ,s�1( f ), : : : : : : : : : : : , �(s)

l ,0( f ))

D t(�(s)
l ,s( f ), �(s)

l ,s�1( f ), : : : , �(s)
l ,l ( f ), 0, : : : , 0).

If l � �, then we have�(s)
l ,� D �(s�l )

0,��l .
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Theorem 2.3. Notation being as above, the mapping W3 F D ( fs, : : : , f0) !�(s)(F) D �(s)
0 ( f0)C � � � C �(s)

l ( fl )C � � � C �(s)
s ( fs) 2 W gives the inverse of D(k,s),m. In

particular, if f l 2 JkCl ,m(0 J), then �( fl ) 2 J(k,s),m(0 J), and the above mapping gives a
linear isomorphism of JkCs,m(0 J) � � � � � Jk,m(0 J) onto J(k,s),m(0 J).

Proof. First we prove thatD(k,s),m(�0( f0)) D (0, : : : , 0, f0). We put'� D �0,�( f0)
and8 D t('s, : : : ,'0). We have to show that�0(8) D f0 and ��(8) D 0 for any� > 0.

By definition (9), we have�0(8) D '0 D �(s)
0,0( f0) D f0. Now we assume that� > 0.

We have

��(8)

D �X
�D0

[(���)=2]X
tD0

(�2m)����s� �� � �
��� � �

2t

�
(2kC 2� � 2t � 5)!! (2t � 1)!!

(2kC 2� � 5)!!
�����2t

z L t
m'�

D �X
�D0

[(���)=2]X
tD0

(�2m)����s� �� � �
��� � �

2t

�
(2kC 2� � 2t � 5)!! (2t � 1)!!

(2kC 2� � 5)!!

� [�=2]X
jD0

(2m)���s�
�

(�1) j

� �
2 j

�
(2 j � 1)!! (2k � 3)!!

(2kC 2 j � 3)!!
���2t�2 j

z L tC j
m f0.

We put � D t C j and calculate the coefficient of���2�
z L�

m f0. We have

�
s� �� � �

��� � �
2t

��
s�
�� �

2 j

� D �s�
��� � 2�� � 2 j

�� �
2�
�

(2�)!

(2t)! (2 j )!
.

We also have
(2t � 1)!! (2 j � 1)!! (2�)!

(2t)! (2 j )!
D (2� � 1)!!

��
j

�
.

Hence, fixing� and �, the coefficient of���2�
z L�

m f0 is given by

(�2m)��� �
2�
��

s�
�

(2k � 3)!! (2� � 1)!!

(2kC 2� � 5)!!

� �X
jD0

(�1) j

��
j

�
(2kC 2� � 2� C 2 j � 5)!!

(2kC 2 j � 3)!!

��2�C2 jX
�D2 j

(�1)��� � 2�� � 2 j

�
.

We have
P��2�C2 j�D2 j (�1)����2���2 j

� D 0 unless� D 2�. If � D 2�, then we can show as

before by differentiatingxkC��5=2(x � 1)� by x � � 1 times that

�X
jD0

(�1) j

��
j

�
(2kC 2� C 2 j � 5)!!

(2kC 2 j � 3)!!
D 0
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unless� D 0. But if � D 0 then� D 0, so we have��(8) D 0 unless� D 0. So�0( f0) gives an inverse image of (0,: : : , 0, f0) by D(k,s),m. Hence by Theorem 2.2 (2),

if f0 2 Jk,m(0 J) besides, then we have�(s)
0 ( f0) 2 J(k,s),m(0 J). We have

D(s,k),m(�(s)
l ( fl )) D (D(kCl ,s�l ),m(�(s)

l ,s( fl ), : : : , �(s)
l ,l ( fl )), 0, : : : , 0)

D (D(kCl ,s�l ),m(�(s�l )
0,s�l ( fl ), : : : , �(s�l )

0,0 ( fl )), 0, : : : , 0)

D (D(kCl ,s�l ),m(�(s�l )
0 ( fl )), 0, : : : , 0).

By the result for�(s)
0 ( f0), the last expression is equal to (0,: : : , 0, fl , 0, : : : , 0). So

summing up the result for eachl , we have

sX
lD0

D(k,s),m(�(s)
l ( fl )) D ( fs, : : : , f0).

Since D(k,s),m gives a bijection between Jacobi forms by Theorem 2.2 (1), iffl 2
JkCl ,m(0J), then�(s)

l ( fl ) 2 J(k,s),m(0 J).

EXAMPLES. We assume thatf0 2 Jk,m(0 J).

�(s)
0,0( f0) D f0,

�(s)
0,1( f0) D (2m)�1

�
s

1

� �z f0,

�(s)
0,2( f0) D (2m)�2

�
s

2

���2
z f0 � 1

2k � 1
Lm f0

�
,

�(s)
0,3( f0) D (2m)�3

�
s

3

���3
z f0 � 3

2k � 1
�zLm f0

�
,

�(s)
0,4( f0) D (2m)�4

�
s

4

���4
z f0 � 6

2k � 1
�2

z Lm f0C 3

(2kC 1)(2k � 1)
L2

m f0

�
.

3. Eisenstein series

As in the case of scalar valued Jacobi forms, we define Eisenstein series of the
vector valued Jacobi forms. From now on, for the sake of simplicity we assume that0 D 01 D SL2(Z) and0 J

1 D SL2(Z) Ë Z2. We define a subgroup0 J1 of 0 J
1 by

0 J1 WD { 2 0 J
1 I 1jk,m D 1} D ��� 1 n

0 1

�
, (0,�)

�I n, � 2 Z�.

For any good function8 2 W invariant by 0 J1 and any natural numbersk, s, and
m� 1, we define an Eisenstein seriesE(k,s),m(� , zI8) 2 J(k,s),m(0 J) by

E(k,s),m(� , zI8) D X
20 J1n0 J

1

8j(k,s),m .
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For example, if8 is a vector of constant functions, then this is written as

E(k,s),m(� , zI8)

D 1

2

X
(c,d)D1

X
�2Z �k,s

�
c� C d cz� �

0 1

��1

em

��2 a� C b

c� C d
C 2� z

c� C d
� cz2

c� C d

�8.

We denote byej the unit vector of lengthsC1 whose j -th component is 1 and the oth-
ers are zero. If8D qn� r esC1� j for integersn� 0 andr , then the seriesE(k,s),m(� ,zI8)
is convergent fork � 4. For a function� on H � C such that�jk,mM D � for all
M 2 0 J1, we also put

Ek,m(� , zI �) D X
20 J1n0 J

1

�jk,m .

By Theorem 2.1, we see

D(k,s),m(E(k,s),m(� , zI �esC1� j )) D
0
� X

20 J1n0 J
1

��(�esC1� j )jkC�,m
1
A

0���s

.

If we assume thatLm� D 0 for any m� 1, then by definition of��, we have

��(�esC1� j ) D
8<
:

0 if 0 � � < j ,

(�2m) j���s� j� � j

���� j
z � if j � � � s.

Now as in Eichler–Zagier [2], letb be the largest integer such thatb2 j m and put
mD ab2. For any integert , we put�t D qat2� 2abt. Then this is invariant by0 J1 and

we haveLm�t D (4mat2 � (2abt)2)� D 0 and��� j
z �t D (2abt)�� j�t . So we have

��(E(k,s),m(� , z, �tesC1� j ))

D
8<
:

0 if 0 � � < j ,

(�m�1abt)�� j

�
s� j� � j

�
EkC�,m(� , z, �t ) if j � � � s.

Then for a fixed�, the seriesEkC�,m,t D EkC�,m(� ,z,�t ) are nothing but the Eisenstein
series defined in [2] p. 25, which spanJEis

kC�,m.

We assume thatk � 4. We denote byJEis
(k,s),m(0 J

1 ) the linear space spanned by

E(k,s),m(� , z, qat2� 2abtej ) for any j with 0 � j � s, a, b with m D ab2 as above and
t D 0,: : : , [b=2] if k is even andt D 0,: : : , [(b�1)=2] if k is odd. By the above consider-
ation, we haveD(k,s),m(JEis

(k,s),m(0 J
1 )) D Qs

jD0 JEis
kC�,m(0 J

1 ) and also the spaceJEis
(k,s),m(0 J

1 )

is the space spanned by�(s)(JEis
kC j ,m(0 J

1 ))) for all integer j with 0� j � s.
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The Petersson inner product ofF D ( fs,: : : , f0) and GD (gs,: : : ,g0) 2 JkCs,m(0 J
1 )�� � � � Jk,m(0 J

1 ) is defined as the sum of the usual inner product of the direct summands
and given by

hF, Gi D sX
jD0

Z
0 JnH�C exp

��4�my2

v
�vkC j�3 f j (� , z) g j (� , z) dx dy du dv

where� D xC iy 2 H and zD uC i v 2 C. We define the inner product ofJ(k,s),m(0 J
1 )

by this through the isomorphism in Theorem 2.2.

Proposition 3.1. We assume that k� 4. We have

J(k,s),m(0 J
1 ) D Jcusp

(k,s),m(0 J
1 )� JEis

(k,s),m(0 J
1 ).

This follows directly from [2] p. 25 Theorem 2.3.
Finally we give a little remark. Imitating [2], we define an operator Vl which

shifts the index, mappingJ(k,s),m(0 J
1 ) to J(k,s),ml(0 J

1 ). First we generalize the action
of SL2(R) to the groupGLC2 (R) of 2� 2 matrices with positive determinants. For any

M D � a b
c d

� 2 GLC2 (R) with det(M) D l and any8 2 W, we write

8j(k,s),mM D (c� C d)�keml

�� cz2

c� C d

� �s

�
c� C d cz

0 1

��18�a� C b

c� C d
,

lz

c� C d

�
.

Then for M1, M2 2 GLC2 (R) with det(M1) D l , we have

8j(k,s),mM1M2 D (8j(k,s),mM1)j(k,s),ml M2.

Lemma 3.1. For M 2 GLC2 (R) with det(M) D l , we have

D(k,s),ml(8j(k,s),mM) D (D(k,s),m8)jkCsM,

where we write kC sD (kC s, kC s� 1, : : : , k).

Now the operatorVl is defined by

8j(k,s),mVl

D l k�1
X

�
a b
c d

�2SL2(Z)nM(l )

�k,s

�
c� C d cz

0 1

��1

eml

�� cz2

c� C d

�8�a� C b

c� C d
,

lz

c� C d

�
,
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where we putM(l ) D {M 2 M2(Z)I detM D l }. We put

QD(k,s),m D �s

�
m 0
0 1

�
D(k,s),m.

For anym, we put E(k,s),m D E(k,s),m(� , zI esC1).

Proposition 3.2. We have

QD(k,s),ml(8j(k,s),mVl ) D ( QD(k,s),m8)jkCsVl

and E(k,s),m D �k�1(m)E(k,s),1jVm.

Proof. By Eichler–Zagier [2] p. 46 Theorem 4.3, it is known that Ek,m D�k�1(m)Ek,1jVm. Since QD(k,s),1(E(k,s),1) D (0, : : : , 0, Ek,1) 2Qs�D0 JkC�,1(0 J
1 ), we have

�k�1(l ) QD(k,s),l (Ek,l (� , zI esC1)jVl ) D �k�1(l )( QD(k,s),l (E(k,s),1))jkCs,1Vl ) D (0, : : : , 0, Ek,l )

D QD(k,s),l (E(k,s),l (� , zI esC1)).

Since QD(k,s),l is injective, we have the result.

4. Half-integral weight case

Here we explain how we can modify our results also for half-integral weight case.
We put

0(n)
0 (4)D �g D � A B

C D

� 2 Sp(n, Z)I C � 0 mod 4

�
,

and put00(4)J D J(R)\0(2)
0 (4). For the sake of simplicity, we write00(4)D 0(1)

0 (4).
In order to define automorphy factors of half-integral weight, we put

�n(Z) DX
p2Zn

e(2� i t pZp)

for Z 2 Hn. For any k 2 Z, we write �kC1=2,s(C Z C D) D (�2(M Z)=�2(Z))2kC1��s(C Z C D). We define F jkC1=2,sM for M 2 00(4) similarly as in the case of in-
tegral weight in the introduction by replacing�k,s by �kC1=2,s. We say that a holo-

morphic function F on H2 is a Siegel modular form of weight�kC1=2,s of 0(2)
0 (4),

if F jkC1=2,sM D F for any M 2 0(2)
0 (4). We denote byAkC1=2,s(0(2)

0 (4)) the vector
space of such functions. SinceF is translation invariant, we have the Fourier–Jacobi
expansionF(Z) D P1

mD0 8m(� , z)e(m� 0) as before. We denote by� a character of00(4). Now we define a vector valued Jacobi form of half-integral weight of 00(4)J
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with character� . The action8j(kC1=2,s),m of M 2 00(4) is defined similarly as in the
introduction by replacing�k,s by �kC1=2,s and the action ofF js,m(X,�) for (X,�) 2 Z3

is just the same as in the introduction. Then a vector valued Jacobi form of weight�kC1=2,s is defined to be aCsC1-valued function such that8j(kC1=2,s),mM D �(M)8 for
all M 2 00(4), 8js,m(X, �) D 8 for all (X, �) 2 Z3 and thatF satisfies the following

condition at each cusps of00(4). For anyM D � a b
c d

� 2 SL2(Z), we put

8M D (c� C d)�k�1=2�s

�
c� C d cz

0 1

��1

em

� �cz2

c� C d

�8�a� C b

c� C d
,

z

c� C d

�

where the branch of (c� C d)1=2 is fixed for eachM. Then the Fourier expansion of
the function8M is given by the following form

8M D X
n,r2N�1

M Z, r 2�4nm

CM (n, r )qn� r

where NM is a suitably chosen integer for eachM. This condition does not depend on
the choice of the branch. We denote byJ(kC1=2,s),m(00(4),�) the vector space of all such
Jacobi forms. When� is trivial, we write J(kC1=2,s),m(00(4),�) D J(kC1=2,s),m(00(4)) and
whensD 0, we write J(kC1=2,s),m D JkC1=2,m.

Theorem 4.1. We have the following linear isomorphism.

J(kC1=2,s),m(00(4)J) � sY
lD0

JkC1=2Cl ,m(00(4)J , � l ).

Here the isomorphism is given by the differential operatorD(kC1=2,s),m on 8 D
t('s, 's�1, : : : , '0) 2 Ws given by

(D(kC1=2,s),m8)� D [�=2]X
tD0

�
s� �C 2t

2t

�
2�t (kC � � t � 2)! (2t � 1)!!

(2m)2t (kC � � 2)!
L t

m(g��2t (8)),

where g��2t is defined as in Section 2 for a fixedm and s. In particular, for any 2 00(4) and X 2 Z2 and a function8 2 Ws, we have

(D(kC1=2,s),m8)�jmX D (D(kC1=2,s),m(8js,mX))�,

(D(kC1=2,s),m8)�jkC�C1=2,m D �( )��(D(kC1=2,s),m(8j(kC1=2,s),m ))�.
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We do not give here the details of the proof. Instead we explain which points differ

from the case of integral weight. First for D � a b
c d

� 2 00(4) we put

M D
0
BB�

a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

1
CCA.

Then we note that�2(M Z)=�2(Z) D �1( � )=�1(� ). So the automorphy factor defined
by �kC1=2,s is compatible with the usual automorphy factor of degree one. We also have

��
��( � )�(� )

��2k�1 D �(2kC 1)

2

�
d

2� i (c� C d)

���( � )�(� )

��2k�1

.

So the most of the formulas in the previous sections are satisfied in the same way and
we have our theorem.
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