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0. Introduction

Let m be a positive integer and let

D = {(X,t)',X = (xux2, ,xn) 6 R n , 0 < K T }

be a strip domain in the (n + 1)-dimensional Euclidean space R n + 1 . We consider

supersolutions of the ra-th iterates of the heat operator

on D. A lower semi-continuous and locally integrable function u on D is called a poly-

supertemperature of degree m, if (—H)mu > 0 on D in the sense of distributions.

If u and — u are both poly-supertemperatures of degree m, then u is called a poly-

temperature of degree m.

In our previous paper [2] (see also [1]), we have shown the following super-mean-

value property for poly-supertemperatures.

Theorem A ([2, Theorem 2]). Let u be a C2rn~2-function on D satisfying the

growth condition

(1) \Hku(X,t)\ <MeaW\ jfc = θ,l, , m - l ,

with some constants M > 0 and a > 0 {here H°u means u). If u is a poly-

supertemperature of degree m on D, then

(2). u(Xo,to) > A[u,c1,c2,-' ,cm](Xo,£o)

whenever (Xo,to) G D and 0 < c\ < C2 < c m < min{l/4α, to} (F°r notation, see

(5) below.)
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In the present note, we first point out that the above mean A[u, ci, , cm] is a

decreasing function of each ci, , c m and converges to u(X0, t0) as ci, , c m tend

to 0 under the condition 0 < c\ < < c m (Theorem 1). Secondly, in section 2, we

show that the lower-regularization ϋ of a Borel measurable function υ having the super-

mean-value property (2) is a poly-supertemperature (Theorem 2). In the final section,

we derive a minimum principle for poly-supertemperatures, from the super-mean-value

property (Theorem 3). As its corollary, we have some uniqueness results for poly-

temperatures. Especially, we obtain the existence and uniqueness of poly-temperatures

satisfying the boundary conditions.

1. Monotonicity of the mean

Let W denote the fundamental solution for the heat equation on R n + 1 , that is,

0 if t < 0.

We set W1 := W and Wk := Wk~λ * W for k > 2, inductively, where * denotes the

convolution in R n + 1 . Then

4.ΎΠ— 1

(3) W r m ( X ) t )

and this is the fundamental solution of the equation (—H)mu = 0, that is,

(4) (-#)m(Wm * φ) = Wm* ((-H)mφ) = φ

for all φ e CS°(D) (cf. [2, Proposition 2]).

Now we recall the definition of the mean values A[u, c±, c2, , c m ] :

(5) A[u,cuc2,'"

where

W[u,ck](Xo,to):= f u(X-Xo,to-ck)W(X,ck)dX

and the coefficients Aki k = 1,2, , m, are given by

—^— U i = 1 when m = 1).
C C
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Note that

For integers m,p with 0 < p < m and real numbers ci, , c m with 0 =

c\ < - < c m < cm_(-i := oo, we consider the following functions:

k=l

and

- τn—1

(7)
ι> P=o

where φ^it) = t171 ι and X(Cp,Cp+1] denotes the characteristic function of the interval

(cp, Cp+i]. We remark that the above functions were already introduced in our previous

paper [2] as φp(t) = ψ™(t0 - t) and ψm(t) = (m - l ) ! Φ m ( t ) . We have already

obtained the following ([2, Lemma 1], for the proof see [1, Lemma 8]): for all integers

p with 0 < p < m — 1,

m

k=p+l

(9) Ψp^it) ^ 0 f°Γ cp 5? ^ -

and

(10) ?/CW = o.

The function Φ m has the following properties.

Lemma 1. (A) Φ m (c i , , c m ; ί) w α continuous (for m > 2) and nonnegative

function oft > 0. Moreover Φ m (c i , , c m ; ί ) > 0 Ϊ / 0 < t < c m .

(B) Φ m (c i , , c m ; t) is an increasing function of each variable Cj, j = 1, 2, ,

m, and

limo<Cl<...<cm-^o Φm(ci, , c m ; ί) = 0.

rcm . .. c

(C) / Φ m ( c i , , c m ; ί ) Λ = - — r - ^ .
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Proof. (A) The continuity of Φ m follows from the facts ψ™(cp) = V ^

p = 1,2, , ra. Inequalities (9) show the nonnegativity of Φ m . The positivity of

is obtained immediately in the case of c m _i < t < cm because

m ^ " ' ^ ' v (ra-l)!v J

and (— l ) r n ~ 1 A m > 0. As will be seen in the below, the proof of (B) is independent

of the positivity of Φ m . Therefore the general case follows from the case of c m _i <

t < Cm because of (B).

(B) For the proof, we use the following fact: Let ra > 2. We define

v

ΓΌ V / i Ό V 1 ' ' fTl Ί ) ' — / k~^^k \ 1 ? * * * 5 Cγn J I £ Cfc J

k=l

where p™ :— 0 Then we have

(11) P?(cu ',Cm\t)>0 for cp<t<cp+1

and

(12) p™(ci, >cm;£) = 0.

This can be proved by the quite same manner as in [1, Lemma 8], so we omit the

proof.

Now we consider the first part of (B). Though the method of the proof is also sim-

ilar to that of [1, lemma 8], we give the proof, because it is a little more complicated.

In the case ra = 1, assertion (B) is clear, because Ψi(ci t) = X(o,ci]W Since for

ra > 2, Φ m (c i , , c m ; t) is a continuous function of t, it is sufficient to show that for

p = 0,1, , ra and j = 1, , ra,

(13) — — ( c i , , c m ; t) > 0 if c p < ί < Cp+i.

In the sequel, f o r r a > l , 0 < p < r a and 1 < j < ra, we say that the assertion

(ra,p, j ) holds if we have (13) for all real numbers 0 < c\ < c2 < < c m . We shall

prove the assertions {m,p,j) for all ra,p, j by the induction on ra, and at each step

we consider the induction with respect to p. First remark that assertions (ra, 0, j ) and

(ra, ra, j ) hold for all ra and j , because dφ^/dcj = dψ™/dcj — 0. In particular, the

assertions (1,0,1) and (1,1,1) hold, and hence the step ra = 1 is obtained. Let ra > 2

and assume that the assertions at the step ra — 1 is valid. Since
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for k φ j , it follows from (6) and (8) that

— (ci, , c m ; t )

543

dc

Cfc

Σ
fc=p+l

Now let j be fixed. First we deal with the case of 0 < p < j — 1. The assertion

(m, 0,j) has been obtained in the above. Assume 1 < p < j — 1. We shall show that

the assertion (m,p, j) follows from induction assumptions (m,p—l,j), (m — l ,p, j — 1)

and (m — l ,p — 1, j — 1). Assume that the function /(ί) := ( 9 ^ / 9 c j ) ( c χ , , c m ; t)

attains its minimum on [cp,cp +i] at τo It is sufficient to show /(TO) > 0. If To = cp,

then

\m— 1

by the assumption (m,p— 1, j ) . Next, if τ 0 = Cp+i, then

f(τ0) =

= Σ
fc=l

V

= Σ

-A£{cu - , c m ) ( c p + i - Cfc)(cp+i - Cfc)m 2

-A^-^ci ,--- ,Cp+i, - , c m ) ( c p + i - C f c ) m " 2

fc=l

(ci, ,Cp+i, , c m ; c p + i ) if p < j - 1

if p = j — 1

> 0

by the assumption (m - l,p,j — 1) and (11); here by cp+ι we indicate that the factor
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C P + I is missing. Finally, if τ 0 E (c p ,c p + i ) , then f(r0) = 0, that is,

Hence we have

/(τ0) = - ^ - ( c i , ,c m ;r 0 )

= Σ ( C - ^Γ(ci

= Σ

p - l
_ V ^ Ck'Cp λm-1/ . . . - . . .
~~ Z ^ ^ (~ \ k VCl5 ? c p 5

k=1

 C3\C3 ~ Ck)

= c p — (ci , ,Cp, , c m ; r 0 ) > 0
CCj _ i

by the assumption (m — l,p — l,j — 1). Therefore we have the assertions ( m , p , j )

for 0 < p < j — 1 by the induction with respect to p. Next we deal with the case of

j < p < m. In this case, likewise remarking that for j < p < m — 1,

dcj

h™ r p ~ x (r, ... r ••• r r λ i f - n " >
~(ci, , c m ; c p ) = ^ ^ p dcj

and that if

m

" ~ni ~ = o,

then

^ ? / ; m fill)™-1

-^ (Ci, , C p + i , jCmJTo),
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we can obtain the assertion (m,p,j) from induction assumptions {m,p+ l,j), (m —

l,p — l,j) and (m — l,p,j). Here we note that the induction on p goes downward

from (m, m,j).

In the end, we have the assertion (m,p, j) for all m > 1,0 < p < m, 1 < j < m.

Clearly limo<Cl<. <cm->o Φ m ( ί ) = 0 for ί > 0, and thus we achieve the proof of (B).

(C) By a direct calculation, we have

Jo
)dt

y c p

m—1

fc=i

Since for 1 < k < m - 1, ^ ( c i , • , c m ) ( c m - ck) = cmA^~x{cx, • • • , c m _ i ) , and

since rpZ-\ici, •'' ,cm-V,t) = 0 by (10), we have

m. fc=i

m - 1

ίcl

which shows (C), because / ^ι(cι t) dt = c\. This completes the proof of Lemma
J o

1.

Theorem 1. Let u be the same as in Theorem A and let (Xo,to) E D. Sup-

pose that u is a poly-supertemperature of degree m on D and 0 < C\ < < c m <

min{l/4α, to}. Then the mean value A[u, ci, C2, , cm](Xo, to) is a decreasing func-

tion of each Cj (1 < j < m) and converges to u(Xo, to) as Cm tends to 0.

Proof. Put μ := (-H^u. Then by [2, Theorems 1 and 2] and their proofs, we
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have

= W m * μ(XQ,t0) - A[Wm * μ, Cl,C2, ,cm](Xo,*o)

= /7 Φm(ci, ,cm;to-ί)W(Xo-^ίo

Hence Theorem 1 follows from Lemma 1 (B).

2. Lower-regularization

For a Borel measurable function v on D, its lower-regularization ϋ is defined by

ί(X,ί) : = m i n ( liminf υ(Y,s),υ(X,t)\.

Remark that i) is lower semi-continuous on D. Our result is the following

Theorem 2. Let v be a Borel measurable function on D satisfying the growth

condition

(14) \v{X,t)\<MeaW\ V(X,ί)6D

with some constants M > 0 and a > 0. Suppose that v has the super-mean-value

property, that is,

(15) υ(X,t) > A[υ,clr- ,cm](X,£)

for all (X,t) G D and 0 < c\ < < c m < min{l/4α, t}. Then v is a poly-

supertemperature of degree m and is equal to υ a.e. on D.

We make some preparations for the proof of Theorem 2. The following assertion

was noted in [2, Theorem 4] without proof. It can be shown by the similar manner to

[1, Lemma 6], but we here give the proof for the sake of completeness.

Proposition 1. Let v be a Borel measurable function on D satisfying the growth

condition (14). Then

m\
lim

o < c i < < c m C\ CΊ

in the sense of distributions.



POLY-SUPERTEMPERATURES 547

Proof. Let φ G CQ°(D) be fixed. Then for sufficiently small c m > 0, we have

fj {v(X,t)-A[υ,cir 9Cm](X,t)}φ(X,t)dXdt

= / / υ(X,t){φ(X,t)-A*[φ,ci,'- ,Cm](X,t)}dXdt,
JJD

where

m

A* [φ, Cl, , cm] (X, t) := Σ AkW* [φ, ck] (X, t)

and

W*[φ,c](X,t)= f W(Y,c)φ{X~Y,t + c)dY.

Put ^(X,ί) = φ(X,T- t). Then ^ G C^°(D) and hence φ = Wn * ((-iί)m '0) by
(4). Since A* [φ, c\, , cm](X, ί) = A[ψ, ci, , cm](X, T — £), an argument in [2,
Proof of Theorem 2] gives

W™ * ((-#)mV>)(X, Γ - t) - A[Wm * ((-H)mψ), ci, , cm](X, Γ - t)

/ f\I/ Γri r T — t — ςϊ
JT-t-Cm V

fT-t

= / (Φ t n(ci, , c m ; Γ - t - s )
JT-t-cm

 V

where /ί* = Δx + 9/9ί is the adjoint operator of H. Remarking the growth condition
(14), Lemma 1 (C) and

lim / W{X - Y, τ)((-H*)mφ)(Y, t + τ)dY= (-H*)mφ(X, t),
τ^0 J
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we obtain

• // (v(X, t) — A[v, c\, C2, , cm](X,
JJD

lim
o < c 1 < . < c m C i -

Cm—• U

= ίί v(X,t)((-H*)mφ)(X,t)dX dt

by the Lebesgue dominated convergence theorem. This completes the proof.

The following lemma is the key in our argument.

Lemma 2. Let v be a Borel measurable function on D satisfying (14) and (15).

(A) If (Xo, to) G D and 0 < c0 < cx < < c m < min{l/4α, t0}, then

o,to) > A[υ,clr- ,

(B) If (Xo, t0) e D and 0 < dλ < < dm < cx < < c m < min{l/4α, t0},

then

,to) >A[v,cι,-> ,

Proof. Before giving the proof, we remark that Theorem 1 is not applicable to

this case directly, because we do not assume the condition (1) for v.

Integrating both sides of υ(Y, to — Co) > A[v, c\ — Co, , c m — Co](Y, to — Co) with

respect to W(Xo — Y,co)dY, we have

Hence the fact A™(co, , c m _i) > 0 implies

m - l

j C m _i) J Γ A Π c i - co, , c m - co)W[v,cfc](-Yo,ίo)

m - l

fc=l
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because Aψ{c0, , cm_i).A™(ci - c0, , c m - c0) = A%(cx, , c m ) and for A: =

1, , r a - 1,

Ά\ (cCh ' ' " 5 Cm—ljAfc (Ci — Co, * ' * , Cm Co) τ~ A^_j_-^(Co, * * * , Cm—\)

m—1 m m—1
cj T T CΊ ~ Co Co

£ . I I Ί _ι_ .
» . pp. 1 1 p . pj pn p j

m-1
TT CJ / ck Cm -Cp Cp

{ 4 • Cj - Cfe Cfc - Co Cm - Ck Co - Cfc

This shows the assertion (A). The assertion (B) follows from (A) immediately.

Now we shall prove Theorem 2.

Proof of Theorem 2. Let 1 < dι < d2 < < dm < 2 be fixed and p G

C£°(0, oo) satisfy p > 0, supp[p] c [1,2] and f* ρ(i)dt = 1. For each integer j > 1,

we put

Then for t > 41"-7,

^ * υ(X, t) = J A[v, 4-^dir, , 4^"dmr](X, ί)p(r) dr.

Next we consider the function Rv defined by

Rv{X,t) := sup A[v,ci, ,cm](X,ί).
0<ci< <c m

Then Lemma 2 (B) shows

Rυ(X, t) = lim A * v(X, t) f = lim A[υ, cu , cm](X,
J — ) OO \ 0< C l < < c m

Since {̂ 4j * u} is an increasing sequence of continuous functions, Rv is lower semi-

continuous on D, so that

v(X, t) > ϋ(X, t) > Rv(X, t) on D.



550 M. NISHIO, K. SHIMOMURA AND N. SUZUKI

Moreover Proposition 1 gives v = Rv a.e. and (—H^υ > 0 in the sense of distribu-

tions. These mean that v = v a.e. and ϋ is poly-supertemperature of degree m, which

completes the proof.

REMARK 1. In the theorem, if υ is continuous, then we see Rv = v without

difficulty. But unfortunately, in case that υ is lower semi-continuous (that is, v = ϋ),

we do not know whether Rv = υ everywhere or not.

3. Minimum principle

From the super-mean-value property, we obtain the following minimum principle.

Theorem 3. Let u be a C2rn~2-function on D satisfying the growth condition (1).

We assume further

(16) «<^

Let p be an integer with 1 < p < m and {tj}^=1 be real numbers such that T > t\>

'- >tp>0.Ifuisa poly-supertemperature of degree m on D and if u satisfies

(17) ( - l ) * - 1 ^ ^ ) > 0, VJfe = !,••• ,pandVY G Γ ,

(18) (-lf-^-H^uiY^tp) >0, VJb = 1, - - - ,m-pandVY e Γ ,

then u(Ξ,τ) > 0 for (Ξ,τ) e Rn x (tuT).

In addition, if u(X0,t0) = 0 for some (Xo,to) G Rn x (ίi,T), then u = 0 on

Rnx(tp,t0).

Corollary 1. Let T > tλ > t2 > > tp > 0 and let u be a poly-temperature of

degree m on D satisfying (1), (16), (17) and (18) in Theorem 3. Ifu(X0,t0) = 0 for

some (Xo,to) G Rn x (ίi,T), then u = 0 on D.

Proof. Let u be a poly-temperature of degree m on D satisfying (1). First we

remark that u is real analytic on D. In fact, for T > t > t\ > > tm > 0, applying

the mean value property [2, Theorem 1] to the case c& = t — tk(k = 1, , m), we

have
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This representation implies that u is real analytic on D. Since u = 0 on R n x (ί p,ίo)

by Theorem 3, from the real analyticity it follows that u = 0 on D.

For the proof of Theorem 3, we prepare the following

Lemma 3. Let n > I be an integer, 0 < c0 < c\ < < cn and f be a

Cn-function on a neighborhood of [c0, cn]. Then we have an estimate

n - l

k=l

In particular,

1=0

(-co)'
n!

• sup |/(»)(t)|.
c o <ί<c n

,Σ-
n - l

Σ ^

Proof. We first remark that

k=l

1
- 1

c ? c i •••

— 1

ί 1, 9 = 0,
- i θ , « = l , . . . ,n-L

By using the above, (8), (10) and the Taylor formula

n - l /
f( \ — V ^ (Cfc ~ C Q

jκck) - 2 ^ /ι

we obtain

n-l / n

k=l q=0 \k=l

^n-l

Σ

fc=l

~ιf(n\t)dt

f{e)(c0)
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- Σ (J) ψ
ΣΣ/

)' \P=0k=p+lJcP

Since Φ n (ci , . . . , cn; t) = tn~λ/(n - 1)! for 0 < t < cu Lemma 1 (C) gives

This and the nonnegativity of Φ n lead to Lemma 3.

Proof of Theorem 3. Let (Ξ,τ) be fixed in Rn x (*i,T). For sufficiently small
c > 0, set

ί ck:=r -tk

\ c p + ^ = Cp+i(c) := T —
for fc = 1, ,p,

c ί for ^ = 1, , m — p.

For fc = 1, ,p — 1, we put

(20) A™k :=

For k = 0, , m — p, we put

(21) B171 := \ Λ

Here recall that A?(cι, , cp) = Π^=i c j /( c j ~ C P ) Then by definition,

(22) ( - 1 ) f c ~ 1 ^ f c > 0 for ife = 1, , p - l ,

and moreover

(23) (-1) (-ΊΓ-) Ag(ci, . ,cp) > 0 forVA:>0.

In fact, ( - 1 ) P - 1 ^ ( C I , , cp) > 0 by (5), and
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shows the assertion for k = 1. For k > 2, the Leibniz rule gives

k

from which (23) follows inductively. In consequence of (23), we see easily that

(24) (-l)p-1B^k>0 forfc = 0, , r a - p .

Now we shall show u(Ξ, τ) > 0. It is sufficient to show that

limA[u,cu-" ,Cp,Cp+i(c), .c^c)]

ciO
(25) p-1 m~p

k=l k=0

in the sense of distribution. In fact, since both functions u(X, t) and

p— 1 m—p

are continuous on R n x (ci,Γ), it follows from (2), (17), (18), (22), (24) and (25) that

p—1 m—p

W W(Ξ-Y,τ-tk)u(Y,tk)dY
fc=i ^ R n

> o.

We thus devote ourselves to the proof of (25). Let φ e C£°(R n + 1 ) . Write out

p-l

k=0
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where f{t) := A?(cι, ••• , Cp_i, £)W* [<£,£] (y,s). Applying Lemma 3 to this function

f9 n = m — p -\-1 and CQ = cp, we see that

lim A*[φ,ci,..., Cp, Cp+i(c), , cm(c)](Y, s)
cJ,0

k=l q=0

Hence observing

m-p

ψ>

m—p

Σ̂
k=0

we get

lim / / A[u,c\,' ,c

= lim // u(Y,s)A*[φ,cι,'" ,cp,cp+i(c), , cm(c)l(y, s)dYds

clO JJ

) H- Y^ B^kW*[{-HY"Φ,cP](y, s) )dYds
\fc=l

p-1 m-p

which implies (25).

By the above argument, we know that if u is poly-temperature of degree m on

R n x (tp,τ), then

p — 1 771—p

(26) u(Ξ,r) = X)^fcW[«,cfc](Ξ,r) + £ £™fcW[(-//)'χcί,](Ξ,τ), VΞ € R".
fc=l fc=O

We use this fact in the proof of second assertion of Theorem 3.
Now we assume that u(Xo,to) — 0 for some point (X0,t0) G Rn x ( ί i ,T). Since

p — 1 771 — p

Σ ^ o . t o ) > 0,
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where ck = t0 -tk, fc = 1, ,p, we conclude by (17), (18), (22) and (24),

(27) u(Y, tk) = 0, Vfc = 1, ,p and VY G R n

and

(28) (-H)ku(Y, tp) = 0, VA: = 1, , m - p and VF G R n .

Moreover as in the proof of Theorem 1, putting μ := (—H)mu and Φ m j P ( t ) =

Φm,p(cir ,Cp;ί) := limcχ0Φm(ci, 5 c p ,c p + i (c) , ,c m (c); ί ) , we have

p—l m—p

u(XQ,to) - ΣA™kW\u,ck]{XQM) ~ Σ B™ίkW[(-H)ku,cp}(X0,t0)
k=l k=0

= ί ΦmϊP(ci, , Cp ίo - 5)W(X0 - V, to - 5) dμ(r, 5) > 0.

Since Φm,p(ci, )cp;to-s)W(Xo-Y,to-s) > 0 for (Y,s) G D o := Rnx(tp,t0) by

Lemma 1(A), we also conclude that μ vanishes there, that is, u is a poly-temperature

of degree m on D o . Thus (26), (27) and (28) give u(Ξ,τ) = 0 for Ξ G R n and

ίi < r < t0. Since w is real analytic on Do (see (19)), it vanishes there, as desired.

This completes the proof of Theorem 3.

In particular, we see

Corollary 2. (A) Assume that u G C2rn~2(D). Under the conditions (1) and (16),

ifu is a poly-supertemperature of degree m on D and if (—H)ku(X, 0) > 0, MX G Rn

for k = 0, ra — 1, ί/*£w u > 0 on D. Moreover, discussing {—H)ku in place of u,

we also see that (—H)ku > 0 on D for k = 1, , m — 1.

(B) Let /&, fc = 0,1, ,7n — l, fee continuous functions on Rn satisfying the

growth condition |/^(X)| < Mea\χ\ with (16). Then the boundary value problem

[ {-H)mh = 0 on D
(29) { ,

\ (-iϊ)fc/ι( , 0 ) = / f c onRn, k =

has a unique solution on D, which is given by

m - l k .

(30) h(X^=Έ^JRn

(cf. [3, p.266 or French summary p.328]).
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