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0. Introduction

Let m be a positive integer and let
D ={(X,t);X = (1,22, - ,z,) ER",0<t < T}

be a strip domain in the (n + 1)-dimensional Euclidean space R"*!. We consider
supersolutions of the m-th iterates of the heat operator

0
on D. A lower semi-continuous and locally integrable function u on D is called a poly-
supertemperature of degree m, if (—H)™u > 0 on D in the sense of distributions.
If v and —u are both poly-supertemperatures of degree m, then u is called a poly-
temperature of degree m.
In our previous paper [2] (see also [1]), we have shown the following super-mean-
value property for poly-supertemperatures.

Theorem A ([2, Theorem 2]). Let u be a C*™2-function on D satisfying the
growth condition

(1) |Hku(X1t)|SMea,X|2a k=O917"'7m_17

with some constants M > 0 and a > 0 (here Hu means u). If u is a poly-
supertemperature of degree m on D, then

(2) u(XO)tO) 2 A[U/,Cl,CQ,“‘ ,Cm](X(),t())

whenever (Xo,t0) € D and 0 < ¢; < ¢a- -+ < ¢ < min{1/4a, to}.(For notation, see
(5) below.)
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In the present note, we first point out that the above mean Afu,ci, - ,cm] is a
decreasing function of each ¢, - -+ , ¢, and converges to u(Xo,tp) as c1,- - ,Cn, tend
to 0 under the condition 0 < ¢; < -+ < ¢, (Theorem 1). Secondly, in section 2, we
show that the lower-regularization ¥ of a Borel measurable function v having the super-
mean-value property (2) is a poly-supertemperature (Theorem 2). In the final section,
we derive a minimum principle for poly-supertemperatures, from the super-mean-value
property (Theorem 3). As its corollary, we have some uniqueness results for poly-
temperatures. Especially, we obtain the existence and uniqueness of poly-temperatures
satisfying the boundary conditions.

1. Monotonicity of the mean

Let W denote the fundamental solution for the heat equation on R"t! that is,

(4nt)~% exp(—XL) ift >0,
W(X,t)={
0 if t <0.

We set W' := W and Wk := Wk=1 x W for k > 2, inductively, where * denotes the
convolution in R™*1. Then

tm_l

(3) W™ (X,t) = W (X, 1)

(m—1)

and this is the fundamental solution of the equation (—H)™wu = 0, that is,

(4) (—H)"(W™x¢) =W ((-H)"¢) = ¢
for all ¢ € C§°(D) (cf. [2, Proposition 2]).
Now we recall the definition of the mean values A[u,ci,ca, -, Cm]:
(5) A[ua C1,C2,° ", Cm](XOa tO) = Z AkW[u, ck](XO, tO)a
k=1
where

Wlu, ck](Xo, to) :=/ u(X — Xo,to — ckp)W(X, cx)dX

n

and the coefficients Ag,k = 1,2,--- ,m, are given by
— Am . - . Cj _ _
A = AP (c1, 0 yem) = H - (A1 =1 when m = 1).

o —
i=1,j#k 7
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Note that

(-1)* 14, >0, k=1,2,---,m.

For integers m,p with 0 < p < m and real numbers c¢;,- -, ¢, With 0 = ¢ <
€1 <+ < Cm < Cm41 = 00, we consider the following functions:

4
(6) %n(t) = "/’;n(cl’ e 7cm;t) =™ - ZAL”(CI, T ’cm)(t - Ck)m—l
k=1

and
1 m—1
(7) \I,m(t) = ‘Ilm(clv T 7cm;t) = (171,——1)' pz:% w;’n(t)x(cpvcp+1](t)’

where ¢7*(t) = t™~1 and X(cp,cp41] denotes the characteristic function of the interval
(¢p, cp+1]. We remark that the above functions were already introduced in our previous
paper [2] as ¢,(t) = Y5 (to — t) and P, (t) = (m — 1)!¥,,(t). We have already
obtained the following ([2, Lemma 1], for the proof see [1, Lemma 8]): for all integers
pwith0<p<m-1,

(8) ) = S Alt—c)™
k=p+1

9) Yp'(t) >0 forc, <t < cpya,

and

(10) Y™ (t) = 0.

The function ¥,,, has the following properties.

Lemma 1. (A) U, (c1, - ,cm;t) is a continuous (for m > 2) and nonnegative
function of t > 0. Moreover U,,(c1,- -+ ,cm;t) > 0if 0 <t < cp.
(B) Y (e1, -+ ,cm;t) is an increasing function of each variable c;, j = 1,2, -,
m, and
limp<c, <. <cpm—0 \I/m(clv 5y Cmy t) =0.

Cm Ci-C
© / U(cr, o s Cmst) d = =— .
0 m!
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Proof. (A) The continuity of ¥,, follows from the facts ¢7*(c,) = ¥ptq(cp),
p=1,2,--- ,m. Inequalities (9) show the nonnegativity of ¥,,. The positivity of ¥,,
is obtained immediately in the case of ¢,,,—; < t < ¢, because

\Ilm(cl,...,cm;t) = ( ! ‘l)m—lAm(cm —t)m_l

m—l)!(

and (—1)™71A4,, > 0. As will be seen in the below, the proof of (B) is independent
of the positivity of ¥,,. Therefore the general case follows from the case of c¢,,,—1 <
t < ¢, because of (B).

(B) For the proof, we use the following fact: Let m > 2. We define

P
P () = p(er, s emit) == 3 ckAR(er, )t — )™ 2
k=1

where p{* := 0. Then we have

(11) Pp Ly yem;t) 20 for ¢ <t <cpp
and
(12) Pmlciy -+ cm;t) = 0.

This can be proved by the quite same manner as in [1, Lemma 8], so we omit the
proof.
Now we consider the first part of (B). Though the method of the proof is also sim-
ilar to that of [1, lemma 8], we give the proof, because it is a little more complicated.
In the case m = 1, assertion (B) is clear, because ¥y (c1;t) = X(0,c,](t). Since for

m > 2, ¥, (c1, -+ ,cm;t) is a continuous function of t, it is sufficient to show that for
p:0,1,~-- 7mandj:11"" , N,
oYm
(13) ac”_ (e1, ++ yem;t) >0 if ¢y <t <cpya.
i)

In the sequel, for m > 1,0 < p < mand 1 < j < m, we say that the assertion
(m, p, 7) holds if we have (13) for all real numbers 0 < ¢; < ¢y < -+ < ¢, We shall
prove the assertions (m, p,j) for all m,p,j by the induction on m, and at each step
we consider the induction with respect to p. First remark that assertions (m, 0, j) and
(m,m, j) hold for all m and j, because 0v*/0c; = Oy /Oc; = 0. In particular, the
assertions (1,0,1) and (1,1, 1) hold, and hence the step m = 1 is obtained. Let m > 2
and assume that the assertions at the step m — 1 is valid. Since
0 —Cgk

— AT e Cp) = ——————— m e Cm
acj k(ch , C ) Cj(Cj—Ck)Ak (Cl, » C )
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for k # j, it follows from (6) and (8) that

oy

5 1y et
/4
Z—Ck—AZl(cl"" ,C‘m)(t_ck)m—l fOI'p:O,---
k=1 Cj(cj - ck)

- m
—Ck _ .
m—_c—k)AZn(Ch'“ yCm)(t— k)™t forp=j,--

k=p+1 7V

543

7j_]-7

Now let j be fixed. First we deal with the case of 0 < p < j — 1. The assertion
(m,0,7) has been obtained in the above. Assume 1 < p < j — 1. We shall show that
the assertion (m, p, j) follows from induction assumptions (m,p—1,j),(m—1,p,j—1)
and (m —1,p—1,j — 1). Assume that the function f(t) := (0¢5*/0c;)(c1,- -, Cm;t)
attains its minimum on [cp, cp41] at 7o. It is sufficient to show f(79) > 0. If 79 = ¢,

then
oym
f(m) = acj- (Cl,"WCm?Cp)

p o

= ——AT(c1, -, em)(cp — i)™t
;:jlcj(cj_ck) o )(ep = ck)
oy,

= az] (01,"',Cm;cp)20

by the assumption (m,p — 1, j). Next, if 70 = cp41, then

oy
f(TO) = 6; (cl"" ’cm;cp+1)
J
14 Ck
= oo —ay (e em)(epr = i) (epa cx)™ 2
k=1 AN
2 Ck * Cp+1
= > mA?_l(Cl,"' s Ept1s e Cm)(Cpr1 — k)™ T2
A

acj_l

Cpr1 PR(C1s " Cmi Cpy1) ifp=j-1

>

k=

Oym—1 . .
{ Cp+1 u (cla""ép+1""7cm;cp+l) lfp<.7—1
0

by the assumption (m — 1,p,j — 1) and (11); here by ¢,41 we indicate that the factor
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Cp+1 is missing. Finally, if 79 € (cp, cp41), then f'(79) = 0, that is,

62¢;n E Ck m—2
—(cla' . acm;TO) = (m — 1) z .—kA;cn(Cl,- .o ,cm)(TO —_ Ck) = 0.

otoc; = cj(c; — k)
Hence we have
o™
flro) = P (e, em;T0)
aCj ymy
p—1 c
k _
= mel?(chm , em) (10 = cx)™ (10 — ck)
k=1 JI\7J
C —_
e A en s sem) (1o = &)™ (o = )
I\
p—1 c
k m m—
= Zm wer, - em)(mo — ek)™ 2 (cp — )
k=1 I\
p-! C, C
k- _ . _
- ZT._IJCIC_)AT 1(017”"61’"" yem)(T0 — cx)™ 2
k=1 I\
oyt
= ©Cp 81/:, ]1-(01,"',0},,"',67”;7'0)20
-

by the assumption (m — 1,p — 1,5 — 1). Therefore we have the assertions (m,p, j)
for 0 < p < j — 1 by the induction with respect to p. Next we deal with the case of
j < p < m. In this case, likewise remarking that for j <p <m —1,

oy oy
c‘)cz; (1, sCmiCpy1) = _b.%i_(cl,...  Cm Cot1)
7]
oyt
811);"(01 CmiCp) = Cp apc] (cl,---,gp,..,,cm;cp) if p>
dc; L™ TP | |
J e emicy) tp=
and that if
0%y ™ »
o(e1, oy emiTo) = (m—1) — = _AT(e1, sy em)(To— k)™ 2 =0,
8tacj ™m kgl o (cj - Ck) .
then
61/)17771 6w;n—1

acj (Cla"‘ 7Cm;7-0) = Cp+1 Bcj (Clv'” 1y Cpt1y o vcm;TO)v
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we can obtain the assertion (m,p, j) from induction assumptions (m,p + 1,7), (m —
1,p—1,7) and (m — 1,p,j). Here we note that the induction on p goes downward
from (m,m, j).
In the end, we have the assertion (m,p,j) forallm > 1,0<p <m,1<j<m.
Clearly limg<c, <...<c,,—0 ¥m(t) = 0 for ¢ > 0, and thus we achieve the proof of (B).
(C) By a direct calculation, we have

/m\Ilm(cl,--- ,Cm;t) dt
0
1 Cm m—1 Cp+1 p
= — m-—1 —E E' mie .. _ )l
- (m‘l)!(/o ¢ dt =/c k—1Ak (c1, - sem)(t — ck) dt)

P

= — Ak (Cl, ,Cm Z/ t_Ckm 1dt)
(m—l ( — —~
m—1
= ( = AR(er, s em)(em —ck '")
k=1
Since for 1 <k <m —1, AP*(c1, " ,em)(Cm — Ck) = Cm A;"’l(cl,'-- ,Cm—1), and

since ¥, ~ 1(cl, -+ ,Cm-1;t) = 0 by (10), we have

m—1

Cm c _ _ _
/ Upler, - emit)dt = Hm'(c,'z =Y AR e, eme1)(Cm — k)™ 1)
0 ’ k=1
c

= —m((m—l)/ ey s Cme1;t) dt

m—1

S

m—1
1= D AT e, emet)(Cme1 — Ck)m_l)
k=1

Cm—1
Cm
= — Upo1(c1, 0y em—1;t) dt,
m Jo

C1

which shows (C), because / WU, (c1;t) dt = c¢;. This completes the proof of Lemma
0

L.

Theorem 1. Let u be the same as in Theorem A and let (Xo,t0) € D. Sup-
pose that u is a poly-supertemperature of degree m on D and 0 < c; < -+ < ¢y <
min{1/4a,to}. Then the mean value Alu,cy,ca, - ,cm](Xo,to) is a decreasing func-
tion of each c; (1 < j < m) and converges to u(Xo, to) as cp, tends to 0.

Proof. Put p:= (—H)™u. Then by [2, Theorems 1 and 2] and their proofs, we
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have

u(X07 tO) - A[ua C1,C2," " ,Cm](Xo, tO)
= Wm*)u’(XOatO) _A[Wm*;uaclac2"“ ,Cm](X(),tO)

= // Vel yemito — )W (Xo — X, t0 — t) du(X, t).
Rn+1

Hence Theorem 1 follows from Lemma 1 (B).

2. Lower-regularization

For a Borel measurable function v on D, its lower-regularization ¢ is defined by

(X, 1) —mm{ lﬁ“i,‘(n,g v(Y, s), (X,t)}.

Remark that ¢ is lower semi-continuous on D. Our result is the following

Theorem 2. Let v be a Borel measurable function on D satisfying the growth
condition

(14) (X, t)] < Me®XI* | v(X,t)e D

with some constants M > 0 and a > 0. Suppose that v has the super-mean-value
property, that is,

(15) v(X,t) > Av,e1, - ,em](X, 1)

for all (X,t) € Dand 0 < ¢; < -+ < ¢y < min{l/4a,t}. Then ¥ is a poly-
supertemperature of degree m and is equal to v a.e. on D.

We make some preparations for the proof of Theorem 2. The following assertion
was noted in [2, Theorem 4] without proof. It can be shown by the similar manner to
[1, Lemma 6], but we here give the proof for the sake of completeness.

Proposition 1. Let v be a Borel measurable function on D satisfying the growth
condition (14). Then

. m!
lim —(v — Alv,cy,c0,¢ - ,cm]) =(-H)™v
0<ec1<:<em C1 *** Cmp

Cm —

in the sense of distributions.
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Proof. Let ¢ € C§°(D) be fixed. Then for sufficiently small ¢, > 0, we have

/ /D (0(X,8) = Ao, e, em] (X, )}6(X, ) dX dt
- / /D (X, ){B(X, 1) — A%[d,c1, - e (X, 1)} dX db,

where
A*[¢7 Ciy- - ,Cm](X7 t) = ZAkW*[¢,Ck](X,t)
k=1
and
W* o, c)(X,t) = W(Y,c)p(X —Y,t+c)dY.
Rn

Put ¢(X,t) = ¢(X,T —t). Then ¥ € C§°(D) and hence ¥y = W™ x ((—H)™1)) by
(4). Since A*[p,c1, -+ ,em](X,t) = A, e1,- - ,em](X, T — t), an argument in [2,
Proof of Theorem 2] gives

¢(Xat) _A*[¢7cla"' ,Cm](X,t)
= (X, T—t)— Al,c1,- ,en)(X, T — 1)
= W™ ((-H)")(X,T —t) — AIW™ x (-H)™),c1, - ,em|(X, T — t)
T—t
= / (\Ilm(cl,--~,cm;T—t—s)
T—t—cm

x | WX -Y,T~t—s)((~H)™$)(Y,s) dY) ds

R'n.
T—t
= / (\I/m(Ch“‘,Cm;T—t—S)

T—t—cm

x | W(X-Y,T—t=s)(~H")"$)(Y,T - 5)dY ) ds
e

/ T W(er, - s oms 7 / W(X — Y, 7)(—H*)")(Y, t + 1) dY dr,
0 R™

where H* = Ax + 0/0t is the adjoint operator of H. Remarking the growth condition
(14), Lemma 1 (C) and

lim [ W(X -Y,7)(-H")"¢)(Y,t +7)dY = (-H")"¢(X, 1),

70 Jrn
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we obtain

lim o / (X,t) — Alv,e1,02, - ,em](X,1)o(X, t) dX dt

o<c1< <cm cl
/ / o(X, O)((~H")"$)(X, ) dX d
D
by the Lebesgue dominated convergence theorem. This completes the proof.

The following lemma is the key in our argument.

Lemma 2. Let v be a Borel measurable function on D satisfying (14) and (15).
(A) If (Xo,t0) EDand0<cog<cy <--<cm<min{l/4a,to}, then

A[Ua Coy Cm-—l](X07t0) 2 A[Ua Cly: - ’Cm](XO7 tO)

B) If (Xo,to) €D and 0<dy <+ <dm <c1 < -+ < ¢y < min{1/4a,tp},
then

A[v?dh e 7dm](X03t0) > A[’U, C1y ’Cm](XOvtO)'

Proof.  Before giving the proof, we remark that Theorem 1 is not applicable to
this case directly, because we do not assume the condition (1) for v

Integrating both sides of v(Y,to—co) > Alv,c1—co,+*+ , cm — co](Y, to — co) with
respect to W (Xy — Y, cp)dY, we have

Wlv, co](Xo,to) > Z (c1=co, s em — co)W (v, cx](Xo, to)-
k=1

Hence the fact AT*(co,- - ,Cm—1) > 0 implies

A[U? Coy Cm—-l](XOa tO)

m—1
= A’in(c(h tet ,Cm_l)W['l), CO](X()v to) + Z A/;Cn+1(co’ e ,Cm_l)W['U, Ck](Xo, tO)
k=1

%

AT"(co, "+ s Cm—1) ZA;;”(CI — o, yem — o)Wy, cx](Xo, to)
k=1
+ Z AZL—Q—I(COy e ,Cm_l)W['U, Ck](XO, tO)

= D AP(cr, s em)W v, ek)(Xo, to),

k=1
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because AT*(co, * ,cm—1)Am(c1 —co, -+ yCm — co) = A% (c1, -+ ,em) and for k =
1,--,m—1,

AT(co, "+ s em—1)AF (c1 — o, -+ s Cm — o) + A1 (co, "+, Cm—1)

m-—1 m m—1
_ H Cj . H Cj —Co + Co . H Cj
321 G TR G Tk QT G STk
md c; Ck Cm — Co co
= H . + )
i=1guk € T Ck Ck—=Co Cm—Ck  Co—Ck

= A;cn(cl’... ,Cm)-
This shows the assertion (A). The assertion (B) follows from (A) immediately.
Now we shall prove Theorem 2.
Proof of Theorem 2. Letl1 <d;y <dy < -+ <dp < 2be fixed and p €

C§°(0, 00) satisfy p > 0, supp[p] C [1,2] and ff p(t) dt = 1. For each integer j > 1,
we put

Then for t > 4179,
Ao 03,0 = [ Al 473, 473X, () b

Next we consider the function Rv defined by

Ru(X,t):= sup Alv,c1, - ,cm](X, ).
0<c1<<cm

Then Lemma 2 (B) shows

Ru(X,t) = lim A; *xv(X,t) <= o lim Alv,e1, -+ em](X, t))
j—o0 c1< - <em
cm—0

Since {A; * u} is an increasing sequence of continuous functions, Rv is lower semi-
continuous on D, so that

v(X,t) > (X, t) > Ru(X,t) on D.
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Moreover Proposition 1 gives v = Rv a.e. and (—H)™v > 0 in the sense of distribu-
tions. These mean that v = ¥ a.e. and ¥ is poly-supertemperature of degree m, which
completes the proof.

REMARK 1. In the theorem, if v is continuous, then we see Rv = v without
difficulty. But unfortunately, in case that v is lower semi-continuous (that is, v = ),
we do not know whether Rv = v everywhere or not.

3. Minimum principle
From the super-mean-value property, we obtain the following minimum principle.

Theorem 3. Let u be a C*™~2_function on D satisfying the growth condition (1).
We assume further

1 <.
(16) C>qT

Let p be an integer with 1 < p < m and {t;}%_, be real numbers such that T > t; >
<o+ >ty > 0. If u is a poly-supertemperature of degree m on D and if u satisfies

(17) (—1)k—1’u(Y, ty) >0, YVk=1,--- ,pand VY € R",

(18) (-1)P~Y(—-H)*u(Y,t,) >0, Vk=1,---,m —pand VY € R™,

then u(Z,7) > 0 for (E,7) € R® x (t1,T).
In addition, if u(Xo,to) = 0 for some (Xo,t0) € R™ x (t1,T), then u = 0 on
R™ x (tp,t()).

Corollary 1. Let T > t; >ty > --- > t, > 0 and let u be a poly-temperature of
degree m on D satisfying (1), (16), (17) and (18) in Theorem 3. If u(Xo,to) = 0 for
some (Xo,to) € R" x (t1,T), then u =0 on D.

Proof. Let u be a poly-temperature of degree m on D satisfying (1). First we
remark that u is real analytic on D. In fact, for T >t >t; > --- > t,,, > 0, applying

the mean value property [2, Theorem 1] to the case ¢y =t — tg(k = 1,--- ,m), we
have
19  wx,)=>_1 ]I J W (X —Y,t —tp)u(Y, t) dY.

=1 \y=1jwn Tk 0 ) Jre
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This representation implies that u is real analytic on D. Since u = 0 on R™ x (tp,%0)
by Theorem 3, from the real analyticity it follows that « = 0 on D.

For the proof of Theorem 3, we prepare the following

Lemma 3. Let n > 1 be an integer, 0 < ¢cg < c¢; < -+ < ¢, and f be a
C"™—function on a neighborhood of [cy, c,]. Then we have an estimate

—C ...cn_cn n
ZA;C(CL -+ ¢n)f(ck) Z 0) FOeo)| < TO sup |f™(2)].
k=1 ’

co<t<cn

In particular,

|
—

n

llrn ZAk C1y° ,Cn)f(Ck) =

1,""",Cn—Co 7

— )
o) 1) (cy).

Il
o

Proof. We first remark that

n n _]_ k—lc ...Ek..-c o Ci — Ci
S = Yt Ty spalcs — )

k=1 Hi<j(cj - Ci)
— -1 -
1 ¢ ! g ¢ - ot
1 ¢ crt cd ¢y cnt

_ 1, ¢=0,
N 0, ¢g=1,...,n—1.

By using the above, (8), (10) and the Taylor formula

e ACL.

=0 co

we obtain

n n—1 n
S = 3 (Sad) ($(1) S0 0w
k=1

e / e




552 M. NisHIO, K. SHIMOMURA AND N. SUZUKI
n—1
2\ (—co)t
= Z( 0 ) (—[‘)—f(e)(cﬂ)
£=0 :

/cp+1 (t — )™ 1f(n) (t) dt)

Cn

= Y5 @)+ 07 [ el O

Since ¥, (c1,...,cn;t) =t""1/(n—1)! for 0 < t < ¢;, Lemma 1 (C) gives

c1-Cp—Ch
/c U, (c1,. .. Cn5t)dt = </ /) nlct, .- ,cn;t)dt=—1—n!——0.

This and the nonnegativity of ¥,, lead to Lemma 3.

Proof of Theorem 3. Let (E,7) be fixed in R™ x (¢1,T). For sufficiently small
¢ >0, set

ck::’r—tk fork=1,~-,p,
Cpre =Cppe(c) =T —tp+cl forl=1,--- ,m—p.

Fork=1,--- ,p—1, we put

(20) ok = AR (Cly -y Cpo1,Cpy e, Cp).
For k=0,.---,m — p, we put
m—p—k ke 2
mo._ 2 k+¢ _i P
(21) ok = ; (k+£)!< N 5e] AB(cy, ..., cp).

Here recall that Ab(cy, -+ ,¢p) = Hg’;} ¢j/(cj — ¢p). Then by definition,
(22) (-D)F'47, >0 fork=1,---,p—1,

and moreover
o \*
(23) (—1)p-? (——) AZ(cr, - cp) >0 for Vk 0.

In fact, (—1)P~1AB(c1, -+ ,¢p) > 0 by (5), and

0

1 1
— AP e - .
7, Ab(c1,- -+ 5 cp) (

ot ) AB(c1, o )

Cp —C1 Cp — Cp—1
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shows the assertion for £ = 1. For k > 2, the Leibniz rule gives

o \*

k-1 ¢
BB (R e
from which (23) follows inductively. In consequence of (23), we see easily that
(24) (-1)*'Bj% >0 fork=0,---,m—p.

Now we shall show u(Z,7) > 0. It is sufficient to show that

ICIEJIA[uv Cly CP’CP+1(C)7 ) cm(c)]

25) P mop

= ZAZTICW[U: ck) + Z B;TkW[("H)kUa Cp]
k=1 k=0

in the sense of distribution. In fact, since both functions u(X,t) and

m-—p

pZ—:A m W u, ) (X, 8) + Y BR WI((—H)* u, cp) (X, t)
= k=0

are continuous on R™ x (c1,7T), it follows from (2), (17), (18), (22), (24) and (25) that

-1 m—
uw(B, 1) > ZA Wi, c](E,7) + Z By, (—H)*u, c,) (2, )
k=1 k=
p—1
= ZA W E-Y, 7 —t) u(Y,tg)dY
m—p
gk/ W(E-Y,7—t,) (—H)*u(Y,t,)dY
Rn
>

We thus devote ourselves to the proof of (25). Let ¢ € Cg°(R™). Write out

m

A*[p, e, em](Y,8) E (1, s em) W[, k(Y 5)

m-—p+1

-
YoATC )W bRl (Yos) + Y AP (e em) f(cpm14e),
£=1
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where f(t) := Ab(c1, -+ ,cp-1,t)W*[0,t|(Y, s). Applying Lemma 3 to this function
f,nm=m—p+1and cg = c,, we see that

limA*[qS,cl,...,c,,,cp.,_l(c),-'- ,em(0)] (Y, 8)

-1
ZA W9, ck](Y,s) +

3
|
i~
—
|
'GQ
~
_

Hence observing

m—p k
Z( o joe,) = 3 By, (~i) W*[é, cpl(Y; )

q=0 k=0 c')c,,
m—p
= B W*[(=H) ¢, ¢p)(Y, ),
k=0

we get

hm // Alu,cr,-+  ¢pycpr1(e), -+ em(0)|(Y, )oY, s)dY ds

= i / / w(Y, $)A*[B,c1, - CprCpa1(0)s -+ s em()](Y, 8)dY ds

-1 m
= //u(Y,s)(pz kW0, ck(Y; s) + z:pB W (—H)* 9, cp) (Y, s))des
k=1

k=0
p—1 m—
= / / <Z AT W u, ci] (Y, ) + Z B W((—H)*u, cp)(Y, s)) #(Y, s)dY ds,
k=1 k=0

which implies (25).

By the above argument, we know that if u is poly-temperature of degree m on
R" X (tp,T), then

p—1 m—
(26) w(E,7) =) AT Wlu,cl(E, 1)+ Z B, Y*u, ¢p)(E,7), V= € R™.
k=1

We use this fact in the proof of second assertion of Theorem 3.
Now we assume that u(Xo,to) = 0 for some point (Xo,t9) € R™ x (¢1,T). Since

p—1 m—p

u(Xo,t0) > Y Ay Wiu, ck)(Xo, to) + Y By WI{(—H)*u, ¢p)(Xo, t0) > 0,
k=1 k=0
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where ¢y = t9 — tg, kK =1,---,p, we conclude by (17), (18), (22) and (24),

(27) u(Y,t,) =0, Vk=1,--- ,pand VY € R"

and

(28) (—H)*u(Y,t,) =0, YVk=1,---,m—p and VY € R".

Moreover as in the proof of Theorem 1, putting p := (—H)™u and ¥, ,(t) =

U plcr, ooy cpit) i=limejo Wm(er, -+ 5 Cpy cpri(c), -+, em(c); t), we have
p—1 m—p

u(Xo,to) — 3 AW u, ck)(Xo, to) — > B WI{(—H)Fu, cp](Xo, to)

k=1 k=0

N /R Ui plcr,  Cpito — $)W (Xo — Yyto — 5) du(Y, 5) 2 0.

Since U, p(c1, -+, Cpsto—8)W (Xo—Y,tog—s) > 0 for (Y, s) € Dy := R" x(tp,t0) by
Lemma 1(A), we also conclude that ;1 vanishes there, that is, u is a poly-temperature
of degree m on Dgy. Thus (26), (27) and (28) give u(E,7) = 0 for = € R" and
t1 < 7 < tg. Since u is real analytic on Dy (see (19)), it vanishes there, as desired.
This completes the proof of Theorem 3.

In particular, we see

Corollary 2. (A) Assume that w € C*™~2(D). Under the conditions (1) and (16),
if u is a poly-supertemperature of degree m on D and if (—H)*u(X,0) > 0, VX € R"
for k =0,---m —1, then uw > 0 on D. Moreover, discussing (—H)ku in place of u,
we also see that (—H)*u>0on D fork=1,--- ,m — 1.

(B) Let fx, k = 0,1,--- ,m — 1, be continuous functions on R" satisfying the
growth condition | f(X)| < Me®lX * with (16). Then the boundary value problem

(29) { (—H)™h =0 on D

(~H)*h(-,0)=fx onR™, k=0,1,---,m—1

has a unique solution on D, which is given by
m—1 tk

(30) WX t)=> = | WX-Y,t)fi(Y)dY
= k! Jpn

(cf. [3, p.266 or French summary p.328]).
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