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Preface

About 80 years have passed since quantum mechanics was completed. For those days, quantum

mechanics not only has presented clear understanding of physical phenomena ranging from

particle physics to cosmology, but also has contributed to engineering through the design of

materials. However, these successes seem to be merely indirect evidence to ensure the validity of

quantum mechanics itself, because several principles of quantum mechanics – e.g., the back action

inevitably caused by the measurement – are not needed for the successes and are not sufficiently

tested. In other words, for giving the direct proof of the validity of quantum mechanics, we

have to list various phenomena that can be predictable solely by the combinations of the all the

principles of quantum mechanics, and we must test them. This kind of concepts has already

been taken by quantum information theory.

Quantum information theory is an area where, by constructively utilizing all the principles

of quantum mechanics and by borrowing the concept of information theory, it is tried to seek

striking quantum phenomena, the possibility of novel applications for information processing,

and the fundamental limits lying in the quantum world. This new approach has already re-

vealed many novel aspects of quantum mechanics ranging from the fundamentals to the novel

applications. In fact, the non-locality [1, 2, 3] of distant quantum systems – which is called

quantum entanglement – is featured as a fundamental property of the quantum world, and the

quantification and the operational characterizations have been successfully accomplished [4].

Moreover, quantum computation and communication – which are recognized as significant goals

of the development of quantum technologies – are shown to be applications that are consid-

ered intractable on conventional computers and communication. In fact, quantum computation

has the potential to efficiently solve several problems that seem to be beyond the active field

of classical computers, e.g., finding the prime factors of large integers [5], simulating the dy-

namics of quantum systems [6, 7], and searching marked data in a lot of data [8]. Quantum

communication promises to enable novel applications such as absolutely secure communication

[9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and distributed quantum computation [19]. However, at

present, merely primitive operations of quantum computation are realized [20, 21, 22, 23, 24, 25],

and quantum communication more than 300 km has not yet been reported [26, 27]. Hence, it has

become really important to seek feasible architectures for long-distance (∼ 1000 km) quantum

communication and quantum computation.

As the first step toward this goal, in this thesis, we quest a promising architecture to make

quantum communication possible over long distances. Quantum communication usually utilizes

optical pulses as the carrier of quantum information. However, the real transmission channel for

optical pulses suffers from the loss that increases exponentially with the channel length, which

4



Preface 5

makes it practically impossible to extend the distance of quantum communication based on the

direct distribution of optical pulses. Instead, for long-distance quantum communication, it is

known to be better to invoke quantum repeater protocols [28, 29], which need repeaters with

quantum memories between the two-end parties as the infrastructure. The protocols aim to

generate quantum entanglement between the two-end parties, relying on the quantum teleporta-

tion protocol [30] that enables quantum communication by consuming quantum entanglement.

Actually, there are several repeater protocols depending on the types of quantum memories

[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

One promising candidate of quantum repeaters is based on atomic-ensemble quantum mem-

ories [31, 32, 33, 34, 35, 36]. These protocols are composed of two primitive operations, ‘en-

tanglement generation between repeaters’ and ‘entanglement connection.’ Under the situation

where only photon losses are considered as error, the protocols enable the communication time

to scale sub-exponentially with the communication length. However, since the protocols have

difficulties to implement a scheme to recover quantum entanglement – entanglement distillation,

these protocols do not have countermeasures against the other types of noises.

Another candidate called ‘hybrid quantum repeater protocols’ [40, 41, 42, 43] is based on an

off-resonance coupling between an optical pulse and a qubit, which allows us to use various

qubit systems as the quantum memories. For example, individual Λ-type atoms, single electrons

trapped in quantum dots, and nitrogen-vacancy (NV) centers in a diamond with a nuclear spin

degree of freedom can be used as quantum memories. However, for achieving a sufficient coupling

between an optical pulse and a qubit, it may be needed to confine the qubit in a cavity. Differently

from the repeater protocols based on atomic-ensemble quantum memories, the hybrid quantum

repeater protocols are composed of all the primitive operations that are considered to be needed

for general settings, i.e., entanglement generation between repeaters, entanglement connection,

and entanglement distillation. Although it has been reported [40, 43] that the protocol shows

efficient communication times, the entanglement connection and the entanglement distillation

rely on hypothetically efficient local gates on two qubits (CZ gate) [44, 45]. In fact, the local

gates are too complicated to be accomplished with such high efficiencies [46].

In this thesis, we present a single module on two qubits – remote nondestructive parity mea-

surement (RNPM) – that promises to accomplish efficient long-distance quantum communication

under arbitrary types of noises. The RNPM is based on the same quantum memories and off-

resonance coupling that are used in the hybrid quantum repeater protocols, which implies the

applicability of the RNPM to various qubit systems. In particular, the RNPM is achieved by

application of off-resonance laser pulses to be reflected dependently on the state of qubits and

by manipulation on the pulses based on a simple combination of beam splitters and photon

detectors. Despite this simplicity, the RNPM allows us to implement all the operations needed

for long-distance quantum communication, namely, entanglement generation, entanglement con-

nection, and entanglement distillation. In addition, we prove that the entanglement generation

based on the RNPM achieves the theoretical limit of performance among arbitrary protocols to

generate entanglement with one type of error. Moreover, we show that the progressive improve-

ment of RNPM opens up the possibility of measurement-based quantum computation [47, 48, 49].

This thesis is organized as follows. Chapter 1 and Chapter 2 are brief reviews on quantum

mechanics and quantum communication. In Chapter 3, we provide an entanglement generation

protocol between distant qubits, and we show that it has higher efficiencies than known protocols

[31, 37, 38, 40, 41, 42, 43] found in the development of quantum repeaters. In Chapter 4, deriving

the theoretical limit of performance of protocols to generate entanglement with only one type
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of error, we prove that the proposed protocol achieves the upper limit. In Chapter 5, we show

that the proposed protocol actually plays the role of the RNPM, and we further clarify the

possibility of striking applications of the RNPM. In Chapter 6, we estimate the performance of

long-distance quantum communication based on the RNPM, and show that the communication

time scales sub-exponentially with the channel length. There, we further show that the nested-

purification repeater protocol [28, 29] is also achievable by the RNPM. Chapter 7 concludes this

thesis.

This thesis is based on three papers as follows:

Chapter 3: Koji Azuma, Naoya Sota, Ryo Namiki, Şahin Kaya Özdemir, Takashi Yamamoto,

Masato Koashi, and Nobuyuki Imoto, Optimal entanglement generation for efficient hy-

brid quantum repeaters. Phys. Rev. A 80, 060303 (R) (2009).

Chapter 4: Koji Azuma, Naoya Sota, Masato Koashi, and Nobuyuki Imoto, Tight bound

on coherent-state-based entanglement generation over lossy channels. arXiv:0908.2735

[Phys. Rev. A (to be published)].

Chapters 5 and 6: Koji Azuma, Hitoshi Takeda, Masato Koashi, and Nobuyuki Imoto, Quan-

tum repeaters built on a single module: Remote nondestructive parity measurement. In

preparation.
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1

Quantum mechanics

One of most successful theories in physics is the so-called quantum mechanics. This theory

features considering the back action of the measurement process as a law of nature. In this

chapter, we briefly review the principle of quantum mechanics†. In the last of this chapter, we

provide the no-cloning theorem clarifying a striking difference between our ordinary worldview

and the quantum world. This chapter contains the basic knowledge to understand the subsequent

chapters.

1.1 Properties for linear operators.

Quantum mechanics is based on the linear algebra. Without proofs‡, here we mention on several

properties of representative linear operators:

Normal operators: A linear operator Â satisfying Â†Â = ÂÂ† is called normal operator. For

a normal operator Â, we can always find an orthonormal basis {|i⟩} such that Â =∑
i ai|i⟩⟨i|. The form of Â =

∑
i ai|i⟩⟨i| is specifically called the spectral decomposition

of Â.

Hermitian operators: A linear operator Â satisfying Â† = Â is called Hermitian operator.

Since any Hermitian operator Â is normal, Â can be always represented by Â =
∑

i ai|i⟩⟨i|
with an orthonormal basis {|i⟩}. Note that Â† = Â means a∗i = ai. Thus, any Hermitian

operator Â can be always represented by Â =
∑

i ai|i⟩⟨i| with an orthonormal basis {|i⟩}
and real numbers {ai}.

Positive operators: A linear operator Â is called positive operator if and only if ⟨ϕ|Â|ϕ⟩ ≥ 0

holds for any vector |ϕ⟩. Since any positive operator Â is Hermitian§, the operator

Â can be always represented by Â =
∑

i ai|i⟩⟨i| with an orthonormal basis {|i⟩} and

nonnegative numbers {ai}.
Unitary operators: A linear operator Â satisfying Â†Â = ÂÂ† = Î is called unitary oper-

ator. Any unitary operator Â can be represented by Â =
∑

i |wi⟩⟨vi| with complete

orthonormal bases {|vi⟩} and {|wi⟩}.

We may use operator functions defined by the following: If we have a function f mapping

complex numbers to complex numbers, we can define the operator function on normal operators

† This chapter is based on the lectures of Koashi, on the text book of Nielsen and Chuang [50], and on the lecture note of
Preskill [51].

‡ For example, the proofs can be found in Ref. [52]

§ This fact is proved as follows. Note Â = B̂ + iĈ with B̂ := (Â + Â†)/2 and Ĉ := (Â − Â†)/(2i). Then, ⟨ϕ|Ĉ|ϕ⟩ =

Im[⟨ϕ|Â|ϕ⟩] holds but Ĉ is an Hermitian operator. This means ⟨ϕ|Ĉ|ϕ⟩ = 0, which concludes Â = Â†.

1



2 Quantum mechanics

as f(Â) :=
∑

i f(ai)|ai⟩⟨ai|, where Â is a normal operator with spectral decomposition Â =∑
i ai|ai⟩⟨ai|.
We may also use the following theorem†:

Theorem 1.1 (Simultaneous spectral decomposition for Hermitian operators) Sup-

pose that two Hermitian operators Â and B̂ commute, i.e., [Â, B̂] := ÂB̂ − B̂Â = 0. Then,

there exists an orthonormal basis {|a, b, k⟩}a,b,k such that Â =
∑

a,b,k a|a, b, k⟩⟨a, b, k| and B̂ =∑
a,b,k b|a, b, k⟩⟨a, b, k|.

1.2 The postulates of quantum mechanics

In the classical world, the measurement is merely a process of giving us an outcome to learn

the state of a physical system, and it is considered to be, in principle, performed without

disturbing the state of the system. That is, in the classical mechanics, the state of a system is, in

principle, determined by sequential measurements of various physical quantities on the system.

But, in the quantum world, the measurement is not such a simple process. In fact, there is a

measurement that not only returns such an outcome but also inevitably causes a back action on

the system. In order to describe phenomena including this complicated measurement process,

quantum mechanics divides the description of the state from that of the measurement process.

The quantum mechanics is formed by the following four postulates:

Postulate 1: A physical system corresponds to a Hilbert space H – a vector space with an

inner product (|v⟩, |w⟩) =: ⟨v|w⟩ that is also a complete metric space with respect to the

distance function induced by norm |||v⟩|| :=
√

⟨v|v⟩. The state of the system is described

by a ray |ψ⟩, which is |ψ⟩ ∈ {α|ψ⟩ | α ∈ C, |α| = 1, |ψ⟩ ∈ H}.
Postulate 2: The time evolution of a closed system is represented by a unitary operator. Let

|ψ(t)⟩ be a state of the system at time t. The time evolution from time ti to time tf
satisfies

|ψ(tf )⟩ = Û |ψ(ti)⟩, (1.1)

where Û is a unitary operator. Note that, by regarding Û = exp[−iĤ(tf−ti)/~], Eq. (1.1)
corresponds to the solution of the well-known Schrödinger equation:

i~
d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩, (1.2)

where Ĥ is an Hermitian operator called Hamiltonian, and ~ is defined as ~ := h/(2π)

with the Plank constant h.

Postulate 3: A physical quantity A corresponds to an Hermitian operator Â.‡ Since Â is an

Hermitian operator, Â is diagonalizable as follows:

Â =
∑
i

ai|ai⟩⟨ai|, (1.3)

where ai is an eigenvalue of Â and |ai⟩ is an eigenvector corresponding to the eigenvalue

ai. Then, we regard ai as a possible outcome given by the measurement of Â, and |ai⟩ as
a state always giving the measurement outcome ai. Such an operator Â is particularly

† For example, the proofs can be found in Ref. [50].

‡ More precisely, the operator Â is the so-called self-adjoint operator.



1.2 The postulates of quantum mechanics 3

called an observable. In addition, by making measurement of Â on an initial state |ψ⟩,
the state |ψ⟩ is found in state |ai⟩ with probability

p(ai) = |⟨ai|ψ⟩|2. (1.4)

This measurement is called projective measurement. From Eq. (1.4), the expectation

value ⟨Â⟩ of Â is given by

⟨Â⟩ =
∑
i

aip(ai) =
∑
i

ai⟨ψ|ai⟩⟨ai|ψ⟩ = ⟨ψ|Â|ψ⟩. (1.5)

Postulate 4: Suppose that HA and HB correspond to physical systems A and B, respectively.

Then, the composite system AB corresponds to HA ⊗HB. Moreover, if the systems A

and B are prepared in state |ψ⟩A and |ϕ⟩B respectively, the state of HA⊗HB corresponds

to |ψ⟩A ⊗ |ϕ⟩B(=: |ψ⟩A|ϕ⟩B).

Postulate 1 gives the description of a physical system and the state. Postulate 2 determines the

dynamics of the physical system. Postulate 3 defines the relation between the physical state

and the outcome obtained by the measurement. Postulate 4 specifies the stage to describe a

composite system.

As an example, we consider the so-called qubit system. This system corresponds to a two-

dimensional Hilbert space HA. Thus, the state of the system can be described by

|ψ⟩A = α|0⟩A + β|1⟩A, (1.6)

where |0⟩ and |1⟩ are a complete orthonormal basis, α, β ∈ C, and |α|2 + |β|2 = 1. The

basis {|0⟩, |1⟩} is specifically called computational basis in the context of quantum information

processing. The unitary operator of the system is generally represented by

ÛAn,φ = e−iφn·σ̂A/2 = cos
(φ
2

)
ÎA − i sin

(φ
2

)
(nxX̂

A + nyŶ
A + nzẐ

A), (1.7)

where φ ∈ R, n = (nx, ny, nz) ∈ R3 such that |n| = 1, ÎA = |0⟩⟨0|A + |1⟩⟨1|A, and σ̂A =

(X̂A, Ŷ A, ẐA) with

ẐA := σ̂Az :=|0⟩⟨0|A − |1⟩⟨1|A, (1.8)

X̂A := σ̂Ax :=|0⟩⟨1|A + |1⟩⟨0|A, (1.9)

Ŷ A := σ̂Ay :=− i(|0⟩⟨1|A − |1⟩⟨0|A). (1.10)

A well used and important unitary operator is the Hadamard gate defined by

ĤA := |0x⟩⟨0|A + |1x⟩⟨1|A, (1.11)

where |0x⟩A := |+⟩A := (|0⟩A + |1⟩A)/
√
2 and |1x⟩A := |−⟩A := (|0⟩A − |1⟩A)/

√
2. The operator

n · σ̂A is an Hermitian operator, and hence this is an observable of the qubit system. By defining

(nx, ny, nz) =: (sin θ cosϕ, sin θ sinϕ, cos θ), the observable n · σ̂A can be written as

n · σ̂A = nxX̂
A + nyŶ

A + nzẐ
A = |0n⟩⟨0n|A − |1n⟩⟨1n|A (1.12)

with

|0n⟩A =cos

(
θ

2

)
|0⟩A + eiϕ sin

(
θ

2

)
|1⟩A,

|1n⟩A =sin

(
θ

2

)
|0⟩A − eiϕ cos

(
θ

2

)
|1⟩A.

(1.13)
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UApplication of unitary operation A
U on systemA

jOutcome                   is obtained by Z -basis measurementj(=0,1)

U

A

or

time

time

or
j

A

B

A B

Application of CNOT gate on AB or

A

B

A B

Application of CZ gate on AB or

Fig. 1.1. The definition of the schematic descriptions of operations.

The projective measurement of the basis {|0n⟩A, |1n⟩A} is called n · σ̂A-basis measurement.

Eq. (1.12) reduces ÛAn,φ to a simple form

ÛAn,φ = e−iφ/2|0n⟩⟨0n|A + eiφ/2|1n⟩⟨1n|A. (1.14)

The combined system of qubit A and qubit B corresponds to the Hilbert space HA ⊗HB, and

hence the state of the system is described by

|ψ⟩AB = α|00⟩AB + β|01⟩AB + δ|10⟩AB + γ|11⟩AB (1.15)

with α, β, δ, γ ∈ C and |α|2 + |β|2 + |δ|2 + |γ|2 = 1. An important unitary operation of the two

qubits is the so-called CNOT gate defined by

ĈABX := |0⟩⟨0|A ⊗ ÎB + |1⟩⟨1|A ⊗ X̂B. (1.16)

Since CNOT gate is asymmetric under the change A↔ B, for clarity, A and B are called control

qubit and target qubit, respectively. A similar unitary operation on two qubits

ĈABZ := |0⟩⟨0|A ⊗ ÎB + |1⟩⟨1|A ⊗ ẐB (1.17)

is called CZ gate. In contrast to CNOT gate, CZ gate is symmetric under the change A ↔ B.

In this thesis, these operations are described as in Fig. 1.1.

1.3 The description of the measurement on a subsystem

Here we consider the description of the measurement process on a subsystem and of the state

of the subsystem. Let |Ψ⟩AB be a state of physical systems shared by Alice and Bob. Let us

consider a process where Alice and Bob make projective measurements represented by complete

orthonormal bases {|ai⟩A} and {|bj⟩B} on their systems. Then, the probability p(ai, bj) with

which Alice and Bob find their systems in state |ai⟩A|bj⟩B is given by

p(ai, bj) = |A⟨ai|B⟨bj ||Ψ⟩AB|2, (1.18)

from Postulate 3.

Suppose that the measurement process is actually done through the following two steps: (i)
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Alice first makes measurement {|ai⟩A} on her system, and finds the system A in state |ai⟩A; (ii)
Bob then makes measurement {|bj⟩B} on his system, and finds the system B in state |bj⟩B. Let
us assume that Bob’s system is described by a state |ψi⟩B after Alice’s measurement. Since Bob

makes the measurement on his system in state |ψi⟩B, the probability p(bj |ai) with which Bob

finds his system in state |bj⟩B is

p(bj |ai) = |B⟨bj |ψi⟩B|2. (1.19)

Substituting Eqs. (1.18) and (1.19) for a relation of probability theory, p(bj |ai)p(ai) = p(ai, bj),

we have

|A⟨ai|B⟨bj ||Ψ⟩AB| = |
√
p(ai)B⟨bj |ψi⟩B|. (1.20)

Since this relation should hold for any projective measurement {|bj⟩B}, we conclude

|ψi⟩B =
A⟨ai||Ψ⟩AB√

p(ai)
, (1.21)

where we used the fact that |⟨x|y⟩| = |⟨x|z⟩| for any ray |x⟩ means |y⟩ = |z⟩.
Now, what if Bob does not know what Alice does. More precisely, Bob knows the state

|Ψ⟩AB of a composite system AB, but he never communicate with Alice. Then, how should we

describe the state of Bob’s system? Probability p(bj) with which Bob gets result |bj⟩ from his

measurement is

p(bj) =
∑
i

p(ai, bj) =
∑
i

p(bj |ai)p(ai) =
∑
i

p(ai)|B⟨bj |ψi⟩B|2

=B⟨bj |

(∑
i

p(ai)|ψi⟩BB⟨ψi|

)
|bj⟩B

=:B⟨bj |ρ̂B|bj⟩B,

(1.22)

where we introduced density operator ρ̂B defined by

ρ̂B =
∑
i

p(ai)|ψi⟩BB⟨ψi|. (1.23)

Since density operator ρ̂B gives the correct probability distribution {p(bj)} of Bob’s measure-

ment, it is a good candidate for the description of the state of Bob’s system. From Eq. (1.21),

the density operator ρ̂B can be rewritten as

ρ̂B =
∑
i

A⟨ai||Ψ⟩ABAB⟨Ψ||ai⟩A (1.24)

:=TrA[|Ψ⟩ABAB⟨Ψ|], (1.25)

where TrA[·] is known as the partial trace over system A. Since the partial trace has a property

TrA[Ĉ
A|Ψ⟩ABAB⟨Ψ|] = TrA[|Ψ⟩ABAB⟨Ψ|ĈA] (1.26)

for any operator ĈA, we have

TrA[Û
A|Ψ⟩ABAB⟨Ψ|(ÛA)†] = TrA[|Ψ⟩ABAB⟨Ψ|] (1.27)

for any unitary operator ÛA, which implies that ρ̂B is invariant for Alice’s local unitary operation

ÛA. Thus, the density operator ρ̂B is determined independently of Alice’s measurement {|ai⟩A},
which is compatible with the assumption that Bob does not know what kind of measurement
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Alice makes on her system. Hence, it seems to be good to describe the state of system B by the

density operator ρ̂B. In the subsequent sections, one can also see why the density operator is a

good description of a subsystem.

In this section, we have seen how to describe the measurement process on a subsystem and

the state of a subsystem. These can be summarized as follows:

Theorem 1.2 (Projective measurement on a subsystem) Suppose that a party has system

AB in state |Ψ⟩AB, and makes projective measurement represented by a complete orthonormal

basis {|ai⟩A}. If the measurement indicates that the state |Ψ⟩AB is in state |ai⟩A, the state of

subsystem B is described by

|ψi⟩B =
A⟨ai||Ψ⟩AB√

p(ai)
, (1.28)

where p(ai) is probability with which the party finds the system A in state |ai⟩A, and is given by

p(ai) = ||A⟨ai||Ψ⟩AB||2 = Tr[A⟨ai||Ψ⟩ABAB⟨Ψ||ai⟩A]. (1.29)

Theorem 1.3 (The description of a subsystem) Suppose that a composite system AB is in

state |Ψ⟩AB. If a party holding subsystem B does not know how system A is manipulated, the

state of subsystem B can be described by

ρ̂B = TrA[|Ψ⟩ABAB⟨Ψ|]. (1.30)

Probability p(bi) with which state ρ̂B is found in a state |bi⟩B by projective measurement repre-

sented by a complete orthonormal basis {|bi⟩B} is

p(bi) = B⟨bi|ρ̂B|bi⟩B. (1.31)

1.4 The density operator

Here we introduce several properties of the density operator. We start with giving the formal

definition of the density operator.

Definition 1.1 For an ensemble {pi, |ψi⟩}, density operator ρ̂ is defined by

ρ̂ :=
∑
i

pi|ψi⟩⟨ψi|. (1.32)

This indicates that the operator ρ̂B of Eq. (1.23) is an example of the density operators. We

have an equivalent expression of the density operator:

Theorem 1.4 (Density operators) An operator ρ̂ is the density operator if and only if (i)

Tr[ρ̂] = 1, and (ii) ρ̂ is positive.

Proof. Suppose that ρ̂ satisfies conditions (i) and (ii). Since ρ̂ is positive, we can write ρ̂ =∑
i pi|i⟩⟨i| with an orthonormal basis {|i⟩} and pi ≥ 0. From condition (i), we have

∑
i pi = 1,

which concludes that ρ̂ has the form of the density operator defined by Eq. (1.32).

Conversely, suppose that ρ̂ is a density operator defined by Eq. (1.32). Then, for any vector

|x⟩, we have

⟨x|ρ̂|x⟩ =
∑
i

pi|⟨x|ψi⟩|2 ≥ 0, (1.33)
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which means that ρ̂ is positive. We can also check Tr[ρ̂] = 1.

From Theorem 1.4, it is shown that any density operator ρ̂A of the qubit system A can be

described by

ρ̂A =
ÎA + v · σ̂A

2
, (1.34)

where v ∈ R3 and |v| ≤ 1. v is called Bloch vector, and it uniquely corresponds to the density

operator ρ̂A.

We mention on several terms. Let ρ̂AB be a density operator for a composite system AB.

Then, an operator defined by ρ̂B := TrA[ρ̂
AB] is also a density operator on system B. The

density operator ρ̂B is particularly called a reduced density operator on system B. If a density

operator ρ̂ can be written as ρ̂ = |ψ⟩⟨ψ| with a normalized vector |ψ⟩, the density operator ρ̂ is

called a pure state; otherwise the density operator is called a mixed state, or a mixture of pure

states. Here we give a useful fact to judge whether a density operator ρ̂ is pure or mixed.

Theorem 1.5 (Pure or mixed?) Tr[ρ̂2] ≤ 1. The equality holds if and only if ρ̂ is a pure

state.

Proof. We represent ρ̂ as ρ̂ =
∑

i pi|i⟩⟨i| with an orthonormal basis {|i⟩}. Then, we have

Tr[ρ̂2] =
∑
i

p2i ≤ 1. (1.35)

Note that Tr[ρ̂2] = 1 means the existence of i satisfying pi = 1. Conversely, if ρ̂ = |ψ⟩⟨ψ| with a

state |ψ⟩, then Tr[ρ̂2] = 1. Thus, this theorem is proved.

The ensemble of density operators {pi, ρ̂i} is also a density operator:

Theorem 1.6 (The mixture of density operators) Suppose that {ρ̂i} is a set of density

operators, and {pi} is a probability distribution. Then, ρ̂ :=
∑

i piρ̂i is also a density operator.

Proof. ρ̂i can be written as ρ̂i =
∑

j qj|i|ψj,i⟩⟨ψj,i| with probability distribution {qj|i}j and pure

states {|ψj,i⟩}j . Thus, ρ̂ can be represented by

ρ̂ =
∑
i

piρ̂i =
∑
i

∑
j

piqj|i|ψj,i⟩⟨ψj,i|, (1.36)

which is a density operator.

Suppose that we are given a system in a state ρ̂i with probability pi. If we are interested in the

probability distribution to be obtained by a measurement on a system in an ensemble {pi, ρ̂i},
this theorem implies that the probability distribution is equivalent to one to be given by the

measurement on a system in state ρ̂ =
∑

i piρ̂i.

1.5 Schmidt decomposition and purification

In this section, we introduce two powerful tools called Schmidt decomposition and purification.
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Theorem 1.7 (Schmidt decomposition) Let |Ψ⟩AB be a pure state of a composite system

AB, and define ρ̂B := TrA[|Ψ⟩ABAB⟨Ψ|]. Then, using an eigenbasis {|bi⟩B} and the eigenvalues

{pi} of ρ̂B, we can write the state |Ψ⟩AB as

|Ψ⟩AB =
∑
i

√
pi|ai⟩A|bi⟩B, (1.37)

where {|ai⟩A} is an eigenbasis of ρ̂A := TrB[|Ψ⟩ABAB⟨Ψ|]. {pi} is called Schmidt co-efficients,

and the number of non-zero {pi} is called the Schmidt number.

Proof. From the assumption, the reduced density operator ρ̂B can be diagonalized as ρ̂B =∑
i pi|bi⟩BB⟨bi| with an orthonormal basis {|bi⟩B}. Then, we have

AB⟨Ψ||bj⟩BB⟨bi||Ψ⟩AB =
∑
k

AB⟨Ψ||ak⟩A|bj⟩BA⟨ak|B⟨bi||Ψ⟩AB

=
∑
k

⟨ak|B⟨bi||Ψ⟩ABAB⟨Ψ||ak⟩A|bj⟩B

=B⟨bi|ρ̂B|bj⟩B
=piδij ,

which indicates that |ai⟩A := B⟨bi||Ψ⟩AB/
√
pi composes an orthonormal basis {|ai⟩A}. For the

bases {|ai⟩A} and {|bi⟩B}, |Ψ⟩AB is expressed in the form of Eq. (1.37).

This theorem enables us to reduce a general description of a bipartite state,

|Ψ⟩AB =
∑
i,j

cij |ai⟩A|bj⟩B (1.38)

with co-efficients {cij} of the complex numbers, into a simple form of Eq. (1.37). The simple

form for any bipartite state |Ψ⟩AB is useful for proving many results.

We proceed to the relation between bipartite pure states |Ψ⟩AB and |Φ⟩AB with the same

Schmidt co-efficients.

Theorem 1.8 |Ψ⟩AB and |Φ⟩AB have the identical Schmidt co-efficients if and only if there are

unitary operators ÛA and V̂ B such that

|Φ⟩AB = (ÛA ⊗ V̂ B)|Ψ⟩AB. (1.39)

Proof. Suppose that the dimension of system A is dA, and that of system B is dB. From the

assumption, |Ψ⟩AB and |Φ⟩AB are written as

|Ψ⟩AB =
d∑
i=1

√
pi|ai⟩A|bi⟩B, (1.40)

|Φ⟩AB =

d∑
i=1

√
pi|a′i⟩A|b′i⟩B, (1.41)
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where {pi}i=1,...,d are Schmidt co-efficients with pi ̸= 0, and {|ai⟩A}, {|a′i⟩A}, {|bi⟩B}, and {|b′i⟩B}
are orthogonal states. Let us define ÛA and V̂ B as

ÛA =

dA∑
i=1

|a′i⟩AA⟨ai|, (1.42)

V̂ B =

dB∑
i=1

|b′i⟩BB⟨bi|, (1.43)

by adding extra bases {|ai⟩A}d+1,...,dA , {|a′i⟩A}d+1,...,dA , {|bi⟩B}d+1,...,dB , and {|b′i⟩B}d+1,...,dB if

they are necessary. These ÛA and V̂ B are unitary operations satisfying Eq. (1.39), and hence

the direct part is proved.

The converse part is trivial, because local unitary operations preserve the eigenvalues of ρ̂A =

TrB[|Ψ⟩ABAB⟨Ψ|] (and ρ̂B = TrA[|Ψ⟩ABAB⟨Ψ|]).

This theorem suggests a nontrivial fact as follows. Let a composite system AB be in state

|Ψ⟩AB. Suppose that Alice and Bob, who are separated parties, hold system A and system B,

respectively. According to the theorem, by their local unitary operation ÛA⊗V̂ B, Alice and Bob

can freely transform the state |Ψ⟩AB into a state |Φ⟩AB with the same Schmidt coefficients as

those of |Ψ⟩AB. Thus, |Ψ⟩AB and |Φ⟩AB should be regarded as equivalent states under situations

where Alice and Bob can freely use local unitary operations.

Let us proceed to another useful technique called purification, which relates a density operator

ρ̂B of a system B with a pure state |Ψ⟩AB of a composite system AB by introducing a fictitious

system A. The fictitious system A is called a reference system.

Theorem 1.9 (Purification) Let ρ̂B be a density operator of a system B. Then, there

exists a pure state |Ψ⟩AB of a composite system AB with a reference system A such that

ρ̂B = TrA[|Ψ⟩ABAB⟨Ψ|]. The pure state |Ψ⟩AB is called a purification of ρ̂B.

Proof. We write ρ̂B as ρ̂B :=
∑

i pi|bi⟩BB⟨bi| with an orthonormal basis {|bi⟩B}. Suppose that

{|ai⟩A} is an orthonormal basis of system A. Then, we define |Ψ⟩AB as

|Ψ⟩AB :=
∑
i

√
pi|ai⟩A|bi⟩B, (1.44)

which satisfies ρ̂B = TrA[|Ψ⟩ABAB⟨Ψ|]. Thus, the theorem is proved.

Note that the purification of a density operator is not unique as follows.

Theorem 1.10 (Freedom in purifications) Let |Ψ⟩AB and |Φ⟩AB be arbitrary purifications

of a density operator ρ̂B. Then, there is a unitary operation ÛA such that

|Φ⟩AB = (ÛA ⊗ ÎB)|Ψ⟩AB. (1.45)

Proof. From the assumption, we have

ρ̂B = TrA[|Ψ⟩ABAB⟨Ψ|] = TrA[|Φ⟩ABAB⟨Φ|]. (1.46)
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Then, from Theorem 1.7, by using an eigenbasis {|bi⟩B}i=1,...,d and the eigenvalues {pi}i=1,...,d

of the reduced density operator ρ̂B, we can represent the states |Ψ⟩AB and |Φ⟩AB as

|Ψ⟩AB =

d∑
i=1

√
pi|ai⟩A|bi⟩B, (1.47)

|Φ⟩AB =

d∑
i=1

√
pi|a′i⟩A|bi⟩B (1.48)

with orthonormal bases {|ai⟩A}i=1,...,d and {|a′i⟩A}i=1,...,d. Therefore, by defining

ÛA :=

dimHA∑
i=1

|a′i⟩⟨ai|A (1.49)

through adding extra bases {|ai⟩A}i=d+1,...,dimHA
and {|a′i⟩A}i=d+1,...,dimHA

if they are necessary,

we have Eq. (1.45).

This theorem indicates the following important fact. Suppose that a composite system AB is

in a purification |Ψ⟩AB of a density operator ρ̂B, and the systems A and B are held by Alice

and Bob, respectively. The theorem indicates that Alice can freely convert the state |Ψ⟩AB
into another purification |Φ⟩AB of the density operator ρ̂B by her local unitary operation ÛA.

This conversion is achievable by Alice alone, independently of the distance between Alice and

Bob. Here Bob must not have the ability to discriminate whether the conversion is executed by

Alice, without communicating with her, because, if it were possible, she could send him a signal

faster than light. Actually, signaling faster than light is prohibited even in quantum mechanics,

as represented by the fact that both of the reduced density operators of |Ψ⟩AB and |Φ⟩AB on

system B are the same. Thus, the theorem suggests not only that quantum mechanics satisfies

no-signaling , but also that we should describe the subsystem of quantum systems as a density

operator.

Let us imagine that two ensembles give the same density operator. Then, can we discriminate

the ensembles? The answer is given in the proof of the following theorem.

Theorem 1.11 (Freedom in ensembles for a density operator) Both {pi, |ψi⟩} and

{qi, |ϕi⟩} give an identical density operator ρ̂, namely {pi, |ψi⟩} and {qi, |ϕi⟩} satisfy

ρ̂ =
∑
i

pi|ψi⟩⟨ψi| =
∑
i

qi|ϕi⟩⟨ϕi|, (1.50)

if and only if

√
pi|ψi⟩ =

∑
j

uij
√
qj |ϕj⟩ (1.51)

holds for a unitary matrix uij.



1.6 The postulates of quantum mechanics for density operators 11

Proof. Suppose that {pi, |ψi⟩} and {qi, |ϕi⟩} satisfy Eq. (1.50). Let us define pure states |Ψ⟩AB
and |Φ⟩AB as follows:

|Ψ⟩AB :=
∑
i

√
pi|ai⟩A|ψi⟩B, (1.52)

|Φ⟩AB :=
∑
i

√
qi|ai⟩A|ϕi⟩B, (1.53)

where {|ai⟩A} is an orthonormal basis of a reference system A. Note that the states |Ψ⟩AB and

|Φ⟩AB are purifications of the density operators ρ̂B of Eq. (1.50). Then, from Theorem 1.10,

there is a unitary operation ÛA such that∑
i

√
pi|ai⟩A|ψi⟩B =

∑
i

√
qi(Û

A|ai⟩A)|ϕi⟩B. (1.54)

Applying A⟨ai| to this equation, we have

√
pi|ψi⟩B =

∑
j

uij
√
qj |ϕj⟩B, (1.55)

where uij := A⟨ai|ÛA|aj⟩A is a unitary matrix. This equation is equivalent to Eq. (1.51).

Conversely, suppose that Eq. (1.51) holds. Then, we have∑
i

pi|ψi⟩⟨ψi| =
∑
i

∑
j,j′

uiju
∗
ij′
√
qjqj′ |ϕj⟩⟨ϕj′ |

=
∑
j,j′

(∑
i

(u†)j′iuij

)
√
qjqj′ |ϕj⟩⟨ϕj′ |

=
∑
i

qi|ϕi⟩⟨ϕi|, (1.56)

which means that both {pi, |ψi⟩} and {qi, |ϕi⟩} give an identical density operator. Thus, the

theorem is proved.

This proof implies that we cannot discriminate between two ensembles {pi, |ψi⟩B} and {qi, |ϕi⟩B}
giving the same density operator. Suppose that systems A and B in state |Ψ⟩AB of Eq. (1.52)

are held by Alice and Bob, respectively. Then, Eq. (1.54) implies that Alice can give Bob

not only ensemble {pi, |ψi⟩B} by making measurement {|ai⟩A}, but also ensemble {qi, |ϕi⟩B} by

making measurement {Û †
A|ai⟩A}. Here, if Bob could discriminate between the two ensembles, he

could learn Alice’s choice between the two measurement procedures, which contradicts the no-

signaling. Thus, discrimination between the two ensembles should be impossible, and actually,

the impossibility is ensured by the fact that ensembles {pi, |ψi⟩B} and {qi, |ϕi⟩B} give the same

density operator.

1.6 The postulates of quantum mechanics for density operators

As seen above, the density operator is a good description of the state of a physical system.

Hence, it is better to rewrite the postulates of quantum mechanics for the density operator.

In terms of the density operators, the postulates of the quantum mechanics are rephrased as

follows:
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Postulate 1: A physical system corresponds to a Hilbert space H. The state is described by a

density operator ρ̂ on the Hilbert space H.

Postulate 2: The time evolution of a closed system is represented by a unitary operator Û .

Let ρ̂ and ρ̂′ be an initial state and the final state of the system, respectively. Then, the

relation between the states is described by

ρ̂′ = Û ρ̂Û †. (1.57)

Postulate 3: Suppose that Â is an observable described by Â =
∑

i ai|ai⟩⟨ai|. By the measure-

ment of Â on an initial state ρ̂, the state ρ̂ is found in state |ai⟩ with probability

p(ai) = ⟨ai|ρ̂|ai⟩. (1.58)

From Eq. (1.58), the expectation value ⟨Â⟩ of Â is given by

⟨Â⟩ =
∑
i

aip(ai) =
∑
i

ai⟨ai|ρ̂|ai⟩ = Tr[Âρ̂]. (1.59)

Postulate 4: Suppose that HA and HB correspond to physical systems A and B, respectively.

Then, the composite system AB corresponds to HA ⊗HB. Moreover, if the systems A

and B are prepared in state ρ̂A and σ̂B respectively, the state of HA ⊗HB corresponds

to ρ̂A ⊗ σ̂B.

Similarly, Theorem 1.2 and Theorem 1.3 can be rewritten as follows.

Theorem 1.12 (Projective measurement on a subsystem) Suppose that a party has system

AB in state ρ̂AB, and makes measurement represented by a complete orthonormal basis {|ai⟩A}.
If the measurement indicates that the subsystem A is in state |ai⟩A, the state of subsystem B is

described by

ρ̂Bi =
A⟨ai|ρ̂AB|ai⟩A

p(ai)
, (1.60)

where p(ai) is the probability with which such an event occurs and it is given by

p(ai) = Tr[A⟨ai|ρ̂AB|ai⟩A]. (1.61)

Theorem 1.13 (The description of a subsystem) Suppose that a composite system AB is

in state ρ̂AB. If a party holding subsystem B does not know how system A is manipulated, the

state of subsystem B is described by

ρ̂B = TrA[ρ̂
AB]. (1.62)

1.7 Generalized measurement

The most important process in physics is the measurement. In this section, we consider the

description of generalized measurement in quantum mechanics.

Without loss of generality, measurement on a physical system A can be regarded as the

following process (Fig. 1.2):

(i) We first prepare physical system E in a standard state |Σ⟩E , which is called an ancilla

or an auxiliary system;
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Fig. 1.2. A schematic picture of generalized measurement.

(ii) In order to extract information of system A, we make the physical system A interact with

ancilla E according to a unitary operation ÛAE on systems AE;

(iii) We make projective measurement represented by a complete orthonormal basis {|i⟩E′}
on ancilla E′ such that HA ⊗ HE = HA′ ⊗ HE′ , and we find that ancilla E′ is in state

|i⟩E′ .

Suppose that system A is initially in a state ρ̂A. Then, the state σ̂A
′E′

after the interaction ÛAE

is described by

σ̂A
′E′

= ÛAE(ρ̂A ⊗ |Σ⟩EE⟨Σ|)ÛAE†. (1.63)

Making measurement {|i⟩E′} on system E′, we find system E′ in state |i⟩E′ with probability

pi = Tr[E′⟨i|σ̂A′E′ |i⟩E′ ], (1.64)

where we have used Theorem 1.12. From Theorem 1.12, we also conclude that the state of

system A is in state

σ̂A
′

i =
E′⟨i|σ̂A′E′ |i⟩E′

pi
. (1.65)

By introducing a set of operators

M̂i := E′⟨i|ÛAE |Σ⟩E , (1.66)

pi and σ̂
A′
i are simply rewritten as follows:

pi = Tr[M̂ †
i M̂iρ̂

A], (1.67)

σ̂A
′

i =
M̂iρ̂

AM̂ †
i

pi
. (1.68)

Note that ∑
i

M̂ †
i M̂i = ÎA. (1.69)

The operators {M̂i} satisfying Eq. (1.69) are called Kraus operators. Therefore, any measure-

ment process can be represented by Kraus operators {M̂i}.
Conversely, the measurement corresponding to Kraus operators {M̂i} always exists. From
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Eq. (1.69), we have(∑
i

M̂i|ϕ⟩A|i⟩E′

)†(∑
i

M̂i|ψ⟩A|i⟩E′

)
= (|ϕ⟩A|Σ⟩E)†(|ψ⟩A|Σ⟩E) (1.70)

for arbitrary states |ψ⟩A and |ϕ⟩, a standard state |Σ⟩E , and an orthonormal basis {|i⟩E′} of a

system E′. This fact suggests that {
∑

i M̂i|k⟩A|i⟩E′}k=1,...,dimHA
with a complete orthonormal

basis {|k⟩A}k=1,...,dimHA
is an orthogonal basis of system HA′ ⊗HE′ . Thus,

Û :=

dimHA∑
k=1

(∑
i

M̂i|k⟩A|i⟩E′

)
A⟨k|E⟨Σ| (1.71)

is shown to be an isometry† from HA ⊗ |Σ⟩E to HA′ ⊗HE′ , and it satisfies

Û |ψ⟩A|Σ⟩E =
∑
i

M̂i|ψ⟩A|i⟩E′ . (1.72)

Since we can make a unitary operator ÛAE as an extension of the isometry Û , we can achieve the

measurement corresponding to given Kraus operators {M̂i} by applying the unitary operation

ÛAE on system A and system E in a standard state |Σ⟩E and by projective measurement {|i⟩E′}
on system E′.

The description of the generalized measurement is summarized as follows.

Theorem 1.14 (Generalized measurement) Any measurement on system A is described by

a set {M̂i} of operators, where M̂i is an operator mapping system A into system A′ and satisfying∑
i M̂

†
i M̂i = ÎA. If we make the measurement on system A in state ρ̂A, we receive an outcome

indicating that the left quantum system A′ is in state

σ̂A
′

i =
M̂iρ̂

AM̂ †
i

pi
, (1.73)

with probability

pi = Tr[M̂ †
i M̂iρ̂

A]. (1.74)

1.7.1 POVM measurement

In practice, there are cases where we are interested in only the probability distribution {pi}
obtained by a measurement {M̂i}. In such cases, it is better to use a set of operators {Êi} with

Êi := M̂ †
i M̂i, because pi is determined only by operator Êi as Eq. (1.74) indicates. The set {Êi}

is called a POVM (Positive Operator-Valued Measure). More formally, the POVM elements are

defined to be operators satisfying the following two properties: (i) Êi is positive; (ii)
∑

i Êi = Î.

In fact, the operators {Êi} with these properties are related with Kraus operators as follows.

From property (i), we can ensure the existence of operator
√
Êi. Combined this with property

(ii), Mi :=
√
Êi can be regarded as Kraus operators, which ensures the achievability of POVM

measurements.

† A linear operator Â from Cm to Cn is called an isometry if ⟨x|Â†Â|y⟩ = ⟨x|y⟩ for any |x⟩, |y⟩ ∈ Cm.
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Fig. 1.3. Completely-positive trace-preserving (CPTP) map.

1.7.2 CPTP map and CP map

As represented by Theorem 1.14, generalized measurement returns an outcome i and a quantum

system in the corresponding state σ̂A
′

i , with probability pi. Here, if we cannot get the measure-

ment outcome i or we forget the outcome i, we should consider that the measurement returns

only an ensemble {pi, σ̂A
′

i }. In this case, we should consider the left quantum system to be in

state

σ̂A
′
=
∑
i

piσ̂
A′
i =

∑
i

M̂iρ̂
AM̂ †

i , (1.75)

where we used Eq. (1.73). The right-hand side of this equation can be considered to be a

quantum operation mapping system A to system A′. This operation is called a deterministic

operation or a completely-positive trace-preserving (CPTP) map. Using the fact that {M̂i} is

executed through a unitary operator ÛAE satisfying Eq. (1.72) [or Eq.(1.66)], we obtain

σ̂A
′
=
∑
i

E′⟨i|ÛAE(ρ̂A ⊗ |Σ⟩EE⟨Σ|)ÛAE†|i⟩E′ = TrE′ [ÛAE(ρ̂A ⊗ |Σ⟩EE⟨Σ|)ÛAE†]. (1.76)

This equation implies that the CPTP map is implementable by unitary operation ÛAE on system

A and ancilla E followed by the partial trace over system E′ (see Fig.1.3).

More generally, by the generalized measurement {Mi}i∈S , we may receive an outcome µ only

ensuring that the outcome is included in a subset S ′ ⊂ S. In this case, we should consider

that the measurement returns ensemble {pi/(
∑

j∈S′ pj), σ̂
A′
i }i∈S′ . Thus, the left state can be

described by

σ̂A
′

µ =
1∑

j∈S′ pj

∑
j∈S′

piσ̂
A′
i =

1∑
j∈S′ pj

∑
j∈S′

M̂iρ̂
AM̂ †

i . (1.77)

This process is also considered to be a quantum operation mapping system A to system A′.

Unless
∑

j∈S′ pj = 1, the operation is called a probabilistic operation or a completely-positive

(CP) map.

Here we provide several examples of CPTP maps. An important CPTP map on qubit A is

the so-called bit-flip channel described by

EAr (ρ̂) =
1 + r

2
ρ̂+

1− r

2
X̂Aρ̂X̂A (1.78)

with −1 ≤ r ≤ 1, where the factor (1− r)/2 is called bit error rate. A similar CPTP map

ΛAr (ρ̂) =
1 + r

2
ρ̂+

1− r

2
ẐAρ̂ẐA (1.79)
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is called phase-flip channel, and the factor (1 − r)/2 is called phase error rate. These CPTP

maps are known as the simplest models of noisy channels.

1.8 The description of general processes

Here we consider to describe an arbitrary process E . Suppose that E is a map transforming

density operator ρ̂ of system HA into density operator ρ̂′ of an output system HA′ . For the map,

we require the following three axioms:

Axiom 1: 0 ≤ Tr[E(ρ̂)] ≤ 1 holds for any input ρ̂.

Axiom 2: E is a linear map for any input.

Axiom 3: E is a completely positive map.

Axiom 1 is required so that E(ρ̂) corresponds to an (unnormalized) density operator. Axiom 2

is a sufficient condition for reconciling with any ensemble interpretation. In fact, Axiom 2 gives

E(pρ̂1 + (1− p)ρ̂2) = pE(ρ̂1) + (1− p)E(ρ̂2) (1.80)

for any 0 ≤ p ≤ 1. The completely positive map in Axiom 3 is defined as follows: E is called a

completely positive map, if (E⊗IE)(σ̂AE) is positive for any positive operator σ̂AE of a composite

system HA ⊗HE , where I
E is the identity map on system HE . Axiom 3 should hold, because,

even if a system AE in a state σ̂AE passes through a physical process E for system A, the output

(E ⊗ IE)(σ̂AE) must be in a physically plausible state.

Here we derive the representation of the general process E :

Theorem 1.15 (The description of a general process) A map E satisfies the above three

axioms if and only if

E(ρ̂) =
∑
i

M̂iρ̂M̂
†
i , (1.81)

where {Mi} is a set of linear operators transforming a state of input system HA into a state of

output system HA′ and satisfies
∑

i M̂
†
i M̂i ≤ ÎA.

Proof. Suppose that E satisfies the above three axioms. Let |ψ⟩ =
∑

µ cµ|µ⟩A be a state of HA,

where {|µ⟩A} is an orthonormal basis of HA. Let us introduce a vector |Φ⟩AE of a composite

system HA ⊗HE as follows:

|Φ⟩AE =
∑
µ

|µ⟩A|µ⟩E , (1.82)

where {|µ⟩E} is an orthonormal basis of HE . Let |ψ∗⟩E :=
∑

µ c
∗
µ|µ⟩E . Then, from Axiom 2, we

obtain

E⟨ψ∗|
(
E ⊗ IE

)
(|Φ⟩AEAE⟨Φ|)|ψ∗⟩E = E(|ψ⟩AA⟨ψ|). (1.83)

On the other hand, since
(
E ⊗ IE

)
(|Φ⟩AEAE⟨Φ|) is positive from Axiom 3, it can be diagonalized

as follows:

(E ⊗ IE)(|Φ⟩AEAE⟨Φ|) =
∑
i

|vi⟩A′EA′E⟨vi|. (1.84)
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Let us define a map M̂i(|ψ⟩A) as M̂i(|ψ⟩A) := E⟨ψ∗||vi⟩A′E , which is a linear map. Combined

with Eqs. (1.84) and (1.83), this shows∑
i

M̂i|ψ⟩AA⟨ψ|M̂ †
i =

∑
i

E⟨ψ∗||vi⟩A′EA′E⟨vi||ψ∗⟩E (1.85)

=E⟨ψ∗|
(
E ⊗ IE

)
(|Φ⟩AEAE⟨Φ|)|ψ∗⟩E (1.86)

=E(|ψ⟩AA⟨ψ|). (1.87)

In addition, from Axiom 2 and the linearity of M̂i, we can show∑
i

M̂iρ̂M̂
†
i = E(ρ̂), (1.88)

for any state ρ̂ of HA. We can also show
∑

i M̂
†
i M̂i ≤ ÎA from Axiom 1. Thus, the the direct

part of the theorem is proved.

On the other hand, the converse part is trivial, and hence the theorem is proved.

This theorem indicates that the general operation E is equivalent to a CP map or a CPTP map.

Therefore, general operations can be always represented by a CP map or a CPTP map. In what

follows, we give several basic theorems as examples of the application of this result.

1.8.1 The no-cloning theorem

The description of general processes enables us to clarify many features of the quantum world.

One of the most important features is the no-cloning theorem [53, 54, 55]. Before getting down

to the no-cloning theorem, we give a useful lemma:

Lemma 1.1 (The existence of a unitary operator) Let {|Φi⟩}i=1,...,n and {|Ψi⟩}i=1,...,n be

sets of pure states. Then, there is a unitary operator Û such that |Ψi⟩ = Û |Φi⟩ if and only if

⟨Φi|Φj⟩ = ⟨Ψi|Ψj⟩ holds for any i and j.

Proof. Suppose that ⟨Φi|Φj⟩ = ⟨Ψi|Ψj⟩ holds for any i and j. We introduce states

|α⟩AB :=
1√
n

n∑
i=1

|Φi⟩A|i⟩B,

|β⟩AB :=
1√
n

n∑
i=1

|Ψi⟩A|i⟩B,

where {|i⟩B} is an orthonormal basis of system B. Then, from the assumption, we have

TrA[|α⟩⟨α|AB] = TrA[|β⟩⟨β|AB].

Since this equation means that the reduced density operator of |α⟩AB on system B is the same

as that of |β⟩AB, from Theorem 1.10, there is a unitary operator ÛA on HA such that

|α⟩AB = (ÛA ⊗ 1̂B)|β⟩AB. (1.89)

This indicates the existence of ÛA such that |Ψi⟩ = ÛA|Φi⟩.
Converse part of the proof is trivial, and the lemma is thus proved.

This lemma gives the no-cloning theorem:

Azuma
取り消し線
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Theorem 1.16 (No-cloning theorem for a set of quantum states) Suppose that we are

given a state |ψi⟩ secretly chosen from a set {|ψi⟩}i=1,...,n of states. Then, it is impossible to

deterministically make the copies |ψi⟩|ψi⟩ from one copy |ψi⟩ if and only if the set {|ψi⟩}i=1,...,n

includes a nonorthogonal (and nonidentical) pair.

Proof. Recall that any deterministic map (CPTP map) can be expressed by unitary operation

ÛAE acting on the combined space HA⊗HE , where HE represents an auxiliary system initially

prepared in a standard state |Σ⟩E . Hence, any cloning process is described by

ÛAE(|ψi⟩A|Σ⟩E) = |ψi⟩A|ψi⟩B|Σi⟩E′ (1.90)

for all i, where HA⊗HE = HA⊗HB⊗HE′ . Thus, we can make the copies |ψi⟩|ψi⟩ if and only if

there exist a unitary operator ÛAE and states {|Σi⟩E′} satisfying Eq. (1.90). From Lemma 1.1,

such a unitary operation ÛAE exists if and only if

⟨ψi|ψj⟩ = ⟨ψi|ψj⟩2⟨Σi|Σj⟩ (1.91)

holds for any i and j. Eq. (1.91) holds for any i and j if and only if |ψi⟩ is orthogonal to |ψj⟩ or
the same as |ψj⟩. Hence, we cannot make the copies |ψi⟩|ψi⟩ if and only if the set {|ψi⟩}i=1,...,n

includes a nonorthogonal (and nonidentical) pair.

The no-cloning theorem can be considered to be the basis to determine whether a physical state

|ψi⟩ has classical or quantum information. For clarifying this statement, let us consider a game.

Suppose that Alice wants to send a message i ∈ {1, . . . , n} to Bob. The communication is easily

achievable by sending a memorandum in which the message i is written. Moreover, even if Alice

encodes the message i into a quantum system in state |i⟩ of orthogonal states {|i⟩}i=1,...,n and

sends it to Bob, they can achieve the communication. In fact, Bob can discriminate |i⟩ from

the other candidates by making projective measurement {|i⟩}i=1,...,n on the received quantum

system. Thus, the state |i⟩ essentially plays the same role as the message i, and hence we should

consider that the state |i⟩ includes only classical information. In this sense, we call the states

classical states.

Now, what if Alice encodes the message i into state |ψi⟩ of nonorthogonal states {|ψi⟩}i=1,...,n?

In this case, the no-cloning theorem prohibits Bob from cloning the state |ψi⟩. The impossibility

of the cloning implies that Bob cannot discriminate |ψi⟩ from the other states. Hence, Bob

cannot receive complete message i from Alice. Therefore, we should consider that the state

|ψi⟩ includes non-classical information, i.e., quantum information. In what follows, a state that

cannot be cloned is called quantum state.

As is represented by this consideration, the no-cloning theorem shows an essential difference

between classical information and quantum information. By giving a well-known form of the

no-cloning theorem as a corollary of Theorem 1.16, we close this section:

Corollary 1.1 (No-cloning theorem for a completely unknown quantum state) Sup-

pose that we receive a quantum state |ψ⟩ =
∑

i ci|i⟩ with unknown parameters, ci ∈ C. We cannot

clone the state deterministically.

1.8.2 Probabilistic cloning and unambiguous state discrimination

The no-cloning theorem states that we cannot generate the copies |ψi⟩|ψi⟩ from an unknown

quantum state |ψi⟩ via deterministic ways. Then, one might naturally ask: Can we make
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the copies |ψi⟩⊗k from one copy |ψi⟩ even if we permit probabilistic failure. Here we consider

probabilistic cloning [56], which is a probabilistic process to make the copies of an unknown input

state. We also consider a process that probabilistically discriminates a given quantum state |ψi⟩
from the other candidates, which is called unambiguous state discrimination [57, 58, 59, 60].

1.8.2.1 Probabilistic cloning

Here we consider whether we can generate the copies from an unknown quantum state by a

probabilistic way. We begin with noting an important fact about positive matrices.

Lemma 1.2 (Positive matrices) For an n × n matrix A, there exists a set of unnormalized

states {|χi⟩}i=1,...,n satisfying A = [⟨χi|χj⟩] if and only if A is positive.

Proof. Suppose that A is positive. Then, since A can be diagonalized, A can be written as

Aij =[UDU †]ij =
∑
µ

UiµdµU
∗
jµ

=

(∑
µ

√
dµUiµ⟨µ|

)(∑
ν

√
dνU

∗
jν |ν⟩

)
,

where U is a unitary matrix, D is a diagonal matrix, and {|µ⟩}µ=1,...,n is a complete orthonormal

basis. Thus, defining |χi⟩ as

|χi⟩ :=
∑
ν

√
dνU

∗
iν |ν⟩,

we have A = [⟨χi|χj⟩], which concludes the direct part of the proof.

Conversely, suppose that A can be written as A = [⟨χi|χj⟩]. Then, for any vector x =

(x1, . . . , xn)
T , we have

x†Ax =
∑
i,j

x∗i ⟨χi|χj⟩xj =
∣∣∣∣∣∣∑

i

xi|χi⟩
∣∣∣∣∣∣2 ≥ 0,

which concludes that A is positive. Therefore, the lemma is proved.

Using this lemma, we can easily derive the necessary and sufficient condition for the existence

of probabilistic cloning processes [56] as follows.

Theorem 1.17 (Probabilistic cloning) Suppose that |ψi⟩ is a state secretly chosen from a set

{|ψi⟩}i=1,...,n of quantum states. There exists a process that succeeds in generating |ψi⟩⊗k from

state |ψi⟩ with probability γi, if and only if there are normalized states {|Pi⟩E′}i=1,...,n such that

the matrix X −
√
ΓY

√
Γ is positive, where

X := [⟨ψi|ψj⟩],
Y := [⟨ψi|ψj⟩k⟨Pi|Pj⟩],
Γ := diag(γ1, γ2, . . . , γn)

(1.92)

are n× n matrices.

Proof. Without loss of generality, probabilistic cloning can be regarded as a unitary operation

ÛAE on a given system A in state |ψi⟩A and on an ancilla E in a standard state |Σ⟩E followed by

a projective measurement on system E′ to learn an outcome, ‘success’ or ‘failure.’ Thus, there
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exists a process that succeeds in generating |ψi⟩⊗k from state |ψi⟩ with probability γi, if and

only if there are a unitary operation ÛAE , normalized states {|Pi⟩E′}i=1,...,n, and unnormalized

states {|Ωi⟩AE}i=1,...,n such that

ÛAE(|ψi⟩A|Σ⟩E) =
√
γi|ψi⟩⊗k|Pi⟩E′ + |Ωi⟩A′E′ , (1.93)

and

E′⟨Pi||Ωj⟩A′E′ = 0 (1.94)

for any i and j. From Lemma 1.1 and Eqs. (1.93) and (1.94), there exists the unitary operation

ÛAE if and only if

X −
√
ΓY

√
Γ = Ω (1.95)

holds, where Ω := [⟨Ωi|Ωj⟩].
From Lemma 1.2, the right-hand side of Eq. (1.95) is positive, and hence X−

√
ΓY

√
Γ should

be positive. Conversely, if X −
√
ΓY

√
Γ is positive, from Lemma 1.2, there exist (possibly

unnormalized) states {|Ωi⟩}i=1,...,n satisfying Eq. (1.95). This ensures the existence of the wished

probabilistic cloning. Thus, this theorem is proved.

It is instructive to derive the optimal success probability for the cloning by using this theorem.

Suppose that we want to clone a state |ψi⟩ chosen randomly from a set {|ψi⟩}i=1,2. Then, the

matrix X −
√
ΓY

√
Γ is

X −
√
ΓY

√
Γ =

(
1− γ1 ⟨ψ1|ψ2⟩ −

√
γ1γ2⟨ψ1|ψ2⟩k⟨P1|P2⟩

⟨ψ2|ψ1⟩ −
√
γ1γ2⟨ψ2|ψ1⟩k⟨P2|P1⟩ 1− γ2

)
.

(1.96)

For a probabilistic cloning process to exist, X −
√
ΓY

√
Γ should be positive, which is equivalent

to γi ≤ 1 and det(X −
√
ΓY

√
Γ) ≥ 0. From γi ≤ 1, det(X −

√
ΓY

√
Γ) ≥ 0 is equivalent to

0 ≤
√

(1− γ1)(1− γ2)− |⟨ψ1|ψ2⟩ −
√
γ1γ2⟨ψ1|ψ2⟩k⟨P1|P2⟩|. (1.97)

By noting that

|⟨ψ1|ψ2⟩ −
√
γ1γ2⟨ψ1|ψ2⟩k⟨P1|P2⟩| ≥ |⟨ψ1|ψ2⟩| −

γ1 + γ2
2

|⟨ψ1|ψ2⟩|k (1.98)√
(1− γ1)(1− γ2) ≤ 1− γ1 + γ2

2
, (1.99)

Eq. (1.97) is reduced to

γ1 + γ2
2

≤ 1− |⟨ψ1|ψ2⟩|
1− |⟨ψ1|ψ2⟩|k

, (1.100)

where the equality holds when ⟨P1|P2⟩⟨ψ1|ψ2⟩ = |⟨ψ1|ψ2⟩| and γ1 = γ2. Since the left-hand

side of this equation indicates the success probability of the probabilistic cloning, the right-hand

side of this equation gives an upper bound on the success probability. Noting that we can set

parameters {|Pi⟩}i=1,2 and {γi}i=1,2 so that ⟨P1|P2⟩⟨ψ1|ψ2⟩ = |⟨ψ1|ψ2⟩| and γ1 = γ2, we conclude

that the optimal success probability popt is

popt =
1− |⟨ψ1|ψ2⟩|
1− |⟨ψ1|ψ2⟩|k

. (1.101)
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The optimal success probability popt monotonically decreases with |⟨ψ1|ψ2⟩| and k. This

implies reasonable conclusions: (i) |⟨ψ1|ψ2⟩| represents the difficulty of cloning; (ii) the increase

of the number k of copies incurs the decrease of the efficiency of the cloning.

As can be seen here, the evaluation of success probabilities of quantum cloning can be expected

to lead to quantitative understanding of quantum information the state has. However, actually,

such an evaluation seems to be difficult if the number of possible states {|ψi⟩} is three or more.

1.8.2.2 Unambiguous state discrimination

There is a fundamental process that has been considered [57, 58, 59, 60] before the probabilistic

cloning. The process is called unambiguous state discrimination, where one tries to probabilis-

tically identify a state |ψi⟩ secretly chosen from states {|ψi⟩}. Actually, this process can be

regarded as a kind of probabilistic cloning from the following intuition: if we had infinite copies

of a quantum state |ψi⟩ secretly chosen from the set {|ψi⟩}, we could discriminate the state |ψi⟩
from the other candidates. In fact, similarly for probabilistic cloning, we can obtain a formula

to derive the efficiency of unambiguous state discrimination:

Theorem 1.18 (Unambiguous discrimination) Suppose that |ψi⟩ is secretly chosen from

a set {|ψi⟩}i=1,...,n of quantum states. There exists a process that succeeds in unambiguously

discriminating state |ψi⟩ with probability γi, if and only if the matrix X − Γ is positive, where

X := [⟨ψi|ψj⟩] and Γ := diag(γ1, γ2, . . . , γn) are n× n matrices.

Proof. We can unambiguously discriminate |ψi⟩ from the other candidates with probability γi
if and only if there exist a unitary operation ÛAE and unnormalized states {|Ωi⟩AE} such that

ÛAE(|ψi⟩A|Σ⟩E) =
√
γi|i⟩AE + |Ωi⟩AE , (1.102)

where {|i⟩AE} is an orthonormal basis. By this fact, the theorem can be proved by a similar

manner to the proof of Theorem 1.17.

This theorem suggests the validity of the above intuition. In fact, if we take the limit of

k → ∞ in Theorem 1.17 under the condition |⟨ψi|ψj⟩| < 1 for any i ̸= j, the theorem is reduced

into Theorem 1.18. Thus, we conclude that, if a set {|ψi⟩} is composed of different quantum

states, making infinite copies of an input |ψi⟩ probabilistically is equivalent to unambiguous state

discrimination of the quantum states {|ψi⟩}.
By using this fact, we can easily derive the optimal success probability of unambiguous dis-

crimination of quantum states {|ψi⟩}i=1,2. Suppose that |ψi⟩ is randomly chosen from states

{|ψi⟩}i=1,2. Then, since the optimal success probability popt of the unambiguous discrimination

is equivalent to the limit k → ∞ of Eq. (1.101), it is concluded to be

popt = 1− |⟨ψ1|ψ2⟩|. (1.103)

1.9 Fidelity

As seen in Sections 1.8.2.1 and 1.8.2.2, the magnitude of the inner product between states is a

measure representing the difficulty of distinguishing the states, namely a closeness of the states.

As such a measure indicating a ‘distance’ between the states ρ̂ and σ̂, we use fidelity [61]

F (ρ̂, σ̂) := ||
√
ρ̂
√
σ̂||2 (1.104)
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with ||X̂|| := Tr
√
X̂†X̂. Note that the fidelity satisfies

0 ≤ F (ρ̂, σ̂) ≤ 1, (1.105)

and F (ρ̂, σ̂) = 1 implies ρ̂ = σ̂.

In the case of σ̂ = |ψ⟩⟨ψ|, the fidelity is reduced to

F (ρ̂, |ψ⟩) = ⟨ψ|ρ̂|ψ⟩, (1.106)

which implies F (|ϕ⟩, |ψ⟩) = |⟨ϕ|ψ⟩|2. Therefore, the fidelity may be regarded as a natural

generalization of the magnitude of the inner product between states.



2

Quantum communication

Quantum communication is the basic technique to enable faithful transmission of unknown quan-

tum states, which is shown to enable important applications such as the distribution of uncon-

ditionally secure key and the distributed quantum computation. The ideal quantum channel is

described by a single Kraus operator

1̂A→B = |0⟩BA⟨0|+ |1⟩BA⟨1|. (2.1)

In fact, it enables us to transmit an unknown quantum state |ψ⟩A = α|0⟩A + β|1⟩A of system A

to system B according to

1̂A→B|ψ⟩A = α|0⟩B + β|1⟩B = |ψ⟩B. (2.2)

One way to achieve the quantum communication is the direct transmission of quantum systems

through a channel. However, this way is not necessarily the best solution, because the practical

channel inevitably causes errors on the transmitted state. Instead, here we introduce a scenario

to accomplish quantum communication in an indirect manner based on the so-called quantum

teleportation protocol [30]. The goal of this manner is to share Bell states between the sender

and the receiver through a practical channel. The Bell states are defined by

|Φ+⟩AB := |B00⟩AB :=
1√
2
(|00⟩AB + |11⟩AB),

|Ψ+⟩AB := |B01⟩AB :=
1√
2
(|01⟩AB + |10⟩AB) = X̂A|Φ+⟩ = X̂B|Φ+⟩,

|Φ−⟩AB := |B10⟩AB :=
1√
2
(|00⟩AB − |11⟩AB) = ẐA|Φ+⟩ = ẐB|Φ+⟩,

|Ψ−⟩AB := |B11⟩AB :=
1√
2
(|01⟩AB − |10⟩AB) = ẐAX̂A|Φ+⟩ = X̂BẐB|Φ+⟩.

(2.3)

In order to see why sharing Bell states is sufficient for achieving quantum communication, we

begin with clarifying the role of the quantum teleportation protocol.

2.1 Quantum teleportation and entanglement swapping

Suppose that Alice wants to transmit a quantum state |ψ⟩A1 = α|0⟩A1 + β|1⟩A1 with unknown

parameters α, β ∈ C. Then, from the no-cloning theorem (Corollary 1.1), Alice cannot clone the

state |ψ⟩A1 , let alone knowing parameters α and β. This implies that Alice cannot send Bob the

state |ψ⟩A1 only by classical communication channels between them.

23
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Fig. 2.2. Quantum teleportation (QT) protocol. CC (QC) indicates classical channel (quantum channel).

However, the transmission of the quantum state |ψ⟩A1 is achievable if Alice and Bob share

system A2B in Bell state |Φ+⟩A2B in advance and they can use classical communication. In fact,

Alice and Bob can accomplish the transmission through the following protocol:

(i) Alice first makes the so-called Bell measurement {B̂A1A2
jk }j,k=0,1 on system A1A2;

(ii) Alice sends the outcome jk to Bob by using classical communication;

(iii) On receiving the outcome jk, Bob applies unitary operation (ẐB)j(X̂B)k.

Here Bell measurement is defined by Kraus operators

B̂A1A2
00 := A1A2⟨Φ+|,

B̂A1A2
01 := A1A2⟨Ψ+|,

B̂A1A2
10 := A1A2⟨Φ−|,

B̂A1A2
11 := −A1A2⟨Ψ−|,

(2.4)

and it is achievable in a manner in Fig. 2.1. This protocol is called quantum teleportation [30].

The protocol indicates that the consumption of a Bell state and two-bit classical communication

has the same power as the ideal quantum channel (see Fig. 2.2).

Let us proceed to showing why the quantum teleportation succeeds in the transmission of the

unknown quantum state |ψ⟩ = α|0⟩+ β|1⟩. By the Bell measurement at step (i), Alice receives

outcome jk with probability

pjk := A1⟨ψ|A2B⟨Φ+|((B̂A1A2
jk )†B̂A1A2

jk ⊗ 1̂B)|ψ⟩A1 |Φ+⟩A2B, (2.5)

and the left state is described by |ϕjk⟩B := (B̂A1A2
jk |ψ⟩A1 |Φ+⟩A2B)/

√
pjk. Through the com-

munication at step (ii), Bob also knows the outcome jk. Since Bob applies unitary operation

(ẐB)j(X̂B)k on system B in state |ϕjk⟩B as step (iii), the final state |ϕ′jk⟩B is described by

|ϕ′jk⟩B :=
1

√
pjk

(ẐB)j(X̂B)kB̂A1A2
jk |ψ⟩A1 |Φ+⟩A2B. (2.6)

Thus, for proving |ϕ′jk⟩B = |ψ⟩B, it is sufficient to show

1
√
pjk

(ẐB)j(X̂B)kB̂A1A2
jk |Φ+⟩A2B = |0⟩BA1⟨0|+ |1⟩BA1⟨1|. (2.7)
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Fig. 2.3. Entanglement swapping.

Note that the right-hand side of this equation is equivalent to the description of the ideal quantum

channel A1 → B.

To show Eq. (2.7), we start with noting

|0⟩A1 |Φ+⟩A2B =
1√
2
(|00⟩A1A2 |0⟩B + |01⟩A1A2 |1⟩B)

=
1

2
[(|Φ+⟩A1A2 + |Φ−⟩A1A2)|0⟩B + (|Ψ+⟩A1A2 + |Ψ−⟩A1A2)|1⟩B],

|1⟩A1 |Φ+⟩A2B =
1√
2
(|10⟩A1A2 |0⟩B + |11⟩A1A2 |1⟩B)

=
1

2
[(|Ψ+⟩A1A2 − |Ψ−⟩A1A2)|0⟩B + (|Φ+⟩A1A2 − |Φ−⟩A1A2)|1⟩B].

This indicates

B̂A1A2
jk |0⟩A1 |Φ+⟩A2B =

1

2
(ẐB)j(X̂B)k|0⟩B,

B̂A1A2
jk |1⟩A1 |Φ+⟩A2B =

1

2
(ẐB)j(X̂B)k|1⟩B,

and thus we have pjk = 1/4 and

B̂A1A2
jk |Φ+⟩A2B =

1

2
(ẐB)j(X̂B)k(|0⟩BA1⟨0|+ |1⟩BA1⟨1|).

These relations conclude Eq. (2.7).

As an application of the quantum teleportation, we introduce a way to connect two entangled

pairs. Suppose that, in addition to the Bell pair |Φ+⟩A2B, Alice shares a Bell pair |Φ+⟩CA1 with

another party, Claire (see Fig. 2.3). Here we consider that Alice transmits the state of system

A1 to Bob by using the teleportation. As can be convinced by Eq. (2.7), the teleportation acts

as the ideal channel A1 → B at the expense of system A1A2. Hence, it transforms two Bell

pairs |Φ+⟩CA1 |Φ+⟩A2B to a Bell pair |Φ+⟩BC . This teleportation process is particularly called

entanglement swapping [62]. The entanglement swapping suggests that the Bell pairs connecting

Bob with Claire through the intermediary of Alice are sufficient for presenting a Bell pair between

Bob and Claire. Thus, the entanglement swapping is regarded as the connection of Bell pairs.

Note that quantum teleportation and entanglement swapping work independently of positions

of the users, as long as they share Bell pairs in advance and can use classical communication.

Therefore, the working principle of these protocols is independent of the physical distances

between the users.

2.2 Entanglement-based quantum key distribution protocol

As seen in the previous section, if Alice and Bob share a Bell pair, they can simulate the ideal

quantum channel. Here we show that the Bell pair also provides them an unconditionally secure
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bit [10, 11]. The secret bit is in the form of

ρ̂ABEkey =
1

2

∑
i=0,1

|ii⟩⟨ii|AB ⊗ σ̂E , (2.8)

where E is assumed to be held by an eavesdropper, Eve. In fact, from the state ρ̂ABEkey , Alice

and Bob can obtain a complete correlated bit by their local projective measurement {|ij⟩AB}ij ,
whereas the state σ̂E of Eve’s system cannot have any correlation with their bit. Thus, state

ρ̂ABEkey corresponds to a situation where Alice and Bob can share an unconditionally secure bit.

Suppose that Alice and Bob share qubits AB in a Bell pair |Φ+⟩AB. Then, from Theorem 1.9

and 1.10, the arbitrary purification of state |Φ+⟩AB is expressed as |Φ+⟩AB⊗|χ⟩E′ with a reference

E′. Since a part or the entire of reference system E′ corresponds to the system E, without loss

of generality, the state of Alice, Bob, and Eve is described by ρ̂ABEmes := |Φ+⟩⟨Φ+|AB ⊗ σ̂E with

state σ̂E := TrĒ [|χ⟩⟨χ|E′ ], where HE′ = HE ⊗ HĒ . Thus, by applying CPTP map PA(ρ̂) =

|0⟩AA⟨0|(A⟨0|ρ̂|0⟩A) + |1⟩AA⟨1|(A⟨1|ρ̂|1⟩A) on Alice’s system, Alice and Bob obtain state

PA(ρ̂ABEmes ) = ρ̂ABEkey , (2.9)

which is the secret bit. Hence, Alice and Bob can generate an unconditionally secure bit from a

Bell pair.

In practice, Alice and Bob should check whether the state ρ̂AB of their shared qubits is the

Bell state |Φ+⟩AB or not. This is achievable if they share additional check qubits that can be

considered to be in the same state ρ̂AB. Suppose that Alice and Bob make local measurements

{|ij⟩AB}i,j=0,1 and {|kxlx⟩AB}k,l=0,1 on the check qubits†. Noting

|00⟩AB =
1√
2
(|Φ+⟩AB + |Φ−⟩AB), |01⟩AB =

1√
2
(|Ψ+⟩AB + |Ψ−⟩AB),

|10⟩AB =
1√
2
(|Ψ+⟩AB − |Ψ−⟩AB), |11⟩AB =

1√
2
(|Φ+⟩AB − |Φ−⟩AB),

(2.10)

and Eq. (A2.1)‡, if the measurements {|ij⟩AB}i,j=0,1 and {|kxlx⟩AB}k,l=0,1 always return out-

comes (i, j, k, l) satisfying i⊕j = 0 and k⊕l = 0, then the state ρ̂AB must be |Φ+⟩AB. Therefore,
Alice and Bob can check whether their shared pair is in the Bell state or not.

2.3 Quantum entanglement

As represented by the quantum teleportation protocol, Bell states are the resource of quantum

communication. Then, naturally arising question is what kind of the property of the Bell state

enables quantum communication? The property is considered to be quantum entanglement,

which is a correlation that is essentially different from classical one.

For grasping the nature of quantum entanglement, it is better to consider what we can do under

the situations where we can freely use classical correlation. Such a situation can be obtained in a

paradigm called local operations and classical communication (LOCC). Suppose that separated

parties, Alice and Bob, share a state ρ̂AB. In the class of LOCC, Alice and Bob are allowed to

use local operations (LO) and classical communication (CC) between them. In particular, under

LOCC, Alice and Bob can take the following tactics: (i) Alice makes generalized measurement

† Note that the check qubits are used only for the identification of the state ρ̂AB , and it will be discarded after the
measurement.

‡ Eq. (A∗) means equation (∗) in Appendix.
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on her system, and sends the output i1 to Bob by CC; (ii) Depending on the data i1, Bob selects

quantum operations to be applied to his system, executes them, and sends the output j1 to

Alice; (iii) Depending on the previous data (i1, j1), Alice selects · · · , and vice versa. Thus, the

net LOCC is the map from a density operator ρ̂AB into an unnormalized state

(A(i1,j1,...,in,jn)
in+1

⊗ B(i1,j1,...,in,jn,in+1)
jn+1

) · · · (A(i1,j1)
i2

⊗ B(i1,j1,i2)
j2

)(Ai1 ⊗ B(i1)
j1

)(ρ̂AB), (2.11)

where {A(x)
y }y ({B(x)

y }y) is the set of quantum operations that might depends on the previous

outcomes x, and A(x)
y (B(x)

y ) is the operation corresponding to outcome y. Thus, LOCC can be

described by a stochastic map composed of separable operators.

Similarly, we can define LOCC between multi-party. However, for simplicity, here we focus

on LOCC between two parties, Alice and Bob.

Through LOCC, we define entanglement as follows:

Definition 2.1 (Entanglement) Quantum entanglement or entanglement is a class of corre-

lations that cannot be freely strengthened by LOCC.

From this definition, states in the form of

ρ̂ABsep =
∑
i

piρ̂
A
i ⊗ σ̂Bi (2.12)

are not entangled states, because this state can be always generated by LOCC. These states

are particularly called separable states. In contrast, it seems that Bell states cannot be freely

generated by LOCC. Is it true? To answer this question, we proceed to finding monotonicity of

LOCC.

2.3.1 Entanglement monotones

Here we clarify monotonicity of LOCC. More precisely, we show the existence of quantities that

do not increase on average under LOCC. Such quantities are called entanglement monotones.

The formal definition of the entanglement monotones is the following [63]:

Definition 2.2 (Entanglement monotones) Suppose that µ(ρ̂AB) is a function on bipartite

density operators ρ̂AB. If magnitude µ(ρ̂AB) does not, on average, increase under LOCC between

Alice and Bob, we call it entanglement monotone.

In other words, entanglement monotones µ(ρ̂AB) are quantities satisfying the following two

conditions:

Condition 1: For any local quantum operation EXk on a subsystem X = A,B in a state ρ̂AB,

µ(ρ̂AB) satisfies

µ(ρ̂AB) ≥
∑
k

pkµ(ρ̂
AB
k ), (2.13)

where pk := Tr[EXk (ρ̂AB)] and ρ̂ABk := EXk (ρ̂AB)/pk.

Condition 2: For any ensemble {pk, ρ̂ABk }, µ(ρ̂AB) satisfies∑
k

pkµ(ρ̂
AB
k ) ≥ µ(ρ̂AB), (2.14)

where ρ̂AB :=
∑

k pkρ̂
AB
k .

Azuma
取り消し線
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Under LOCC, Alice and Bob are allowed to implement generalized measurements locally. Con-

dition 1 indicates that µ does not increase on average under such local operations. In addition,

under LOCC, there are cases where Alice and Bob forget outcomes k of the previous measure-

ments and describe their state as ρ̂AB :=
∑

k pkρ̂
AB
k . Condition 2 implies that µ does not increase

under such discard of the outcomes.

Let us proceed to showing that entanglement monotones exist. Before giving such monotones,

we introduce a manner to compose an entanglement monotone.

Theorem 2.1 (Composition of an entanglement monotone) Let f be an operator function

mapping an operator of a Hilbert space H to a real number. The function is assumed to satisfy the

following two properties: (i) function f is invariant under unitary operations, namely satisfies

f(Û ρ̂Û †) = f(ρ̂) (2.15)

for any density operator ρ̂ of system H and any unitary operation Û ; (ii) function f is concave

for any density operator, namely it satisfies

f(pρ̂1 + (1− p)ρ̂2) ≥ pf(ρ̂1) + (1− p)f(ρ̂2) (2.16)

for any density operators ρ̂1, ρ̂2 of system H and any p such that 0 ≤ p ≤ 1.

By using function f , we define magnitude µ(ρ) as the following: for pure states of a system

AB, µ is defined by

µ(|ψ⟩AB) := f(TrB[|ψ⟩⟨ψ|AB]) (= f (TrA[|ψ⟩⟨ψ|AB])) ; (2.17)

for mixed states of the system AB, µ is defined by

µ(ρ̂AB) := min
{pi, |ψi⟩AB}

∑
j

pjµ(|ψj⟩AB), (2.18)

where the minimum is taken over all ensembles {pi, |ψi⟩AB} satisfying ρ̂AB =
∑

i pi|ψi⟩⟨ψi|AB.
Then, the function µ is an entanglement monotone for the system AB, namely it satisfies Con-

dition 1 and Condition 2.

Proof. First we show the convexity of the function µ, which is equivalent to Condition 2. Let

us consider any ensemble {pk, ρ̂ABk } such that
∑

k pkρ̂
AB
k = ρ̂AB. For each state ρ̂ABk , let us

introduce an ensemble {ql|k, |ψkl⟩AB} satisfying

µ(ρ̂ABk ) =
∑
l

ql|kµ(|ψkl⟩AB), (2.19)

ρ̂ABk =
∑
l

ql|k|ψkl⟩⟨ψkl|AB. (2.20)

Combined with Eq. (2.18) and ρ̂AB =
∑

k pkρ̂
AB
k =

∑
k,l pkql|k|ψkl⟩⟨ψkl|AB, these imply

µ(ρ̂AB) ≤
∑
k

pk
∑
l

qklµ(|ψkl⟩AB) =
∑
k

pkµ(ρ̂
AB
k ). (2.21)

Hence, the function µ is convex.

Let us show that the function µ satisfies Condition 1. Assume that system A and system B

in a state ρ̂AB are held by Alice and Bob, respectively. For density operator ρ̂AB, we introduce
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an ensemble {qi, |ϕi⟩AB} such that

µ(ρ̂AB) =
∑
i

qiµ(|ϕi⟩AB), (2.22)

ρ̂AB =
∑
i

qi|ϕi⟩⟨ϕi|AB. (2.23)

By quantum operation EXk (·) (X = A,B), ρ̂AB and |ϕi⟩AB are converted to normalized states

ρ̂ABk :=
EXk (ρ̂AB)

pk
, (2.24)

ρ̂ABik :=
EXk (|ϕi⟩⟨ϕi|AB)

pk|i
. (2.25)

From the latter equation and the fact that
∑

k EXk (·) is a CPTP map on system X, we have∑
k

pk|iTrX [ρ̂
AB
ik ] = TrX

[∑
k

EXk (|ϕi⟩⟨ϕi|AB)

]
= TrX(|ϕi⟩⟨ϕi|AB). (2.26)

In addition, from the linearity of EXk , ρ̂ABki and ρ̂ABk have a relation

pkρ̂
AB
k =

∑
i

qipk|iρ̂
AB
ik . (2.27)

We further note that, for any density operator σ̂AB =
∑

i ri|ηi⟩⟨ηi|AB, we have

µ(σ̂) ≤
∑
i

riµ(|ηi⟩AB) =
∑
i

rif(TrX [|ηi⟩⟨ηi|AB]) ≤ f

(∑
i

riTrX [|ηi⟩⟨ηi|AB]

)
= f(TrX [σ

AB])

(2.28)

from the concavity of f . Eq. (2.22), Eqs. (2.26)-(2.28), the concavity of f , and the convexity of

µ indicate

µ(ρ̂) =
∑
i

qiµ(|ϕi⟩AB) =
∑
i

qif(TrX [|ϕi⟩⟨ϕi|AB]) =
∑
i

qif

(∑
k

pk|iTrX [ρ̂
AB
ik ]

)
≥
∑
i,k

qipk|if(TrX [ρ̂
AB
ik ]) ≥

∑
i,k

qipk|iµ(ρ̂
AB
ik ) =

∑
i,k

pk
qipk|i

pk
µ(ρ̂ABik )

≥
∑
k

pkµ

(∑
i

qipk|i

pk
ρ̂ABik

)
=
∑
k

pkµ(ρ̂
AB
k ), (2.29)

which means that function µ satisfies Condition 2. Therefore, the theorem is proved.

This theorem implies that all the functions µ based on the operator functions f are entanglement

monotones. Thus, it is expected that many entanglement monotones exist. In the next section,

we give an explicit example among such entanglement monotones. The example clarifies that

LOCC has a fundamental limit of its performance.

2.3.2 Entanglement formation

Here we present an example of entanglement monotones by using Theorem 2.1. We first give a

lemma.
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Lemma 2.1 Let f(x) be a concave function from real numbers to real numbers, and let Â, B̂ be

Hermitian operators. Then, for any 0 ≤ p ≤ 1,

Tr[f(pÂ+ (1− p)B̂)] ≥ pTr[f(Â)] + (1− p)Tr[f(B̂)], (2.30)

where f(Â) is the operator function based on f(x). This inequality indicates the concavity of

function Tr[f(Â)].

Proof. For any Hermitian operator Â to be diagonalized as Â =
∑

i ai|ai⟩⟨ai| and any state |ϕ⟩,
we have

f(⟨ϕ|Â|ϕ⟩) = f

(∑
i

|⟨ϕ|ai⟩|2ai

)
≥
∑
i

|⟨ϕ|ai⟩|2f(ai) = ⟨ϕ|

(∑
i

f(ai)|ai⟩⟨ai|

)
|ϕ⟩ = ⟨ϕ|f(Â)|ϕ⟩.

(2.31)

Let us define Hermitian operator Ĉ := pÂ + (1 − p)B̂. We can write the operator Ĉ as

Ĉ =
∑

i ci|i⟩⟨i| with an orthonormal basis {|i⟩}. Then, from Eq. (2.31) and the concavity of f ,

we have

Tr[f(Ĉ)] =Tr

[∑
i

f(ci)|i⟩⟨i|

]
=
∑
i

f(ci) =
∑
i

f(⟨i|Ĉ|i⟩) =
∑
i

f(p⟨i|Â|i⟩+ (1− p)⟨i|B̂|i⟩)

≥p
∑
i

f(⟨i|Â|i⟩) + (1− p)
∑
i

f(⟨i|B̂|i⟩) ≥ p
∑
i

⟨i|f(Â)|i⟩+ (1− p)
∑
i

⟨i|f(B̂)|i⟩

=pTr[f(Â)] + (1− p)Tr[f(B̂)], (2.32)

which is equivalent to Eq. (2.30).

Let us introduce a concave function f(x) := −x log2 x for x ≥ 0. Then, we define an operator

function S(ρ̂) with a density operator ρ̂ as

S(ρ̂) := Tr[f(ρ̂)] = −Tr[ρ̂ log2 ρ̂], (2.33)

where f(ρ̂) is the operator function defined by f . This function S is called von Neumann entropy.

For the spectral decomposition ρ̂ =
∑

i pi|i⟩⟨i|, von Neumann entropy S is reduce to

S(ρ̂) = −
∑
i

pi log2 pi =: H({pi}), (2.34)

where the function H({pi}) is called Shannon entropy. Since this equation indicates that S(ρ̂)

is determined only by the eigenvalues of ρ̂,

S(ρ̂) = S(Û ρ̂Û †) (2.35)

holds for any unitary operator Û . In addition, Lemma 2.1 ensures that S is concave. Hence, from

Theorem 2.1, von Neumann entropy S generates an entanglement monotone Ef for bipartite

states by definitions:

E(|ψ⟩) := S(TrB[|ψ⟩⟨ψ|]); (2.36)

Ef (ρ̂) := min
{pi,|ψi⟩}

∑
j

pjE(|ψj⟩). (2.37)

E is called entropy of entanglement, and Ef is called entanglement formation [64]. Note that

Ef (|ψ⟩) = E(|ψ⟩).
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We mention on several simple properties of the entanglement formation.

Corollary 2.1

Ef (ρ̂
AB
sep ) = 0, (2.38)

Ef (ρ̂
AB) ≤ min{S(ρ̂A), S(ρ̂B)}, (2.39)

where ρ̂ABsep is a separable state in the form of Eq. (2.12).

Proof. Since ρ̂ABsep =
∑

i piqj|irk|i|ψij⟩⟨ψij |A ⊗ |ϕik⟩⟨ϕik|B, we have

Ef (ρ̂
AB
sep ) ≤

∑
i

piqj|irk|iE(|ψij⟩A|ϕik⟩B) = 0.

Combining this with Ef ≥ 0, we obtain Eq. (2.38).

For X = A,B and ρ̂AB =
∑

i pi|ψi⟩⟨ψi|AB, we can show

Ef (ρ̂
AB) ≤

∑
i

piE(|ψi⟩AB) =
∑
i

piS(TrX [|ψi⟩⟨ψi|AB]) ≤ S

(∑
i

piTrX [|ψi⟩⟨ψi|AB]

)
= S(ρ̂X̄),

(2.40)

where Ā = B and B̄ = A. This is equivalent to Eq. (2.39).

For example, let us evaluate the entanglement of state

|Ψd
mes⟩AB =

1√
d

d∑
i=1

|ii⟩AB (2.41)

defined by an orthonormal basis {|i⟩A|j⟩B} on the Hilbert space HA ⊗ HB with dimHA =

dimHB = d. The state with d = 2 is equivalent to Bell state |Φ+⟩AB. From

TrB[|Ψd
mes⟩⟨Ψd

mes|AB] = ÎA/d, (2.42)

we have

Ef (|Ψd
mes⟩AB) = E(|Ψd

mes⟩AB) = S(ÎA/d) = log2 d. (2.43)

Combined this with Eq. (2.39), for any density operator ρ̂AB, we have

Ef (ρ̂
AB) ≤ S(ρ̂A) ≤ log2 d = Ef (|Ψd

mes⟩AB). (2.44)

Therefore, |Ψd
mes⟩AB is called a maximally entangled state. In addition, the monotonicity of

the entanglement formation provides an operational meaning of the maximally entangled state:

Alice and Bob cannot transform state ρ̂AB with Ef (ρ̂
AB) < Ef (|Ψd

mes⟩AB) to the maximally

entangled state by LOCC. Thus, the state |Ψd
mes⟩AB should be considered to be a state with

maximal entanglement.

2.4 Entanglement distillation: recurrence method

Thanks to quantum teleportation protocol introduced in Sec. 2.1, for achieving quantum com-

munication, it is sufficient to share Bell pairs. However, in Sec. 2.3, we see that separated

parties, Alice and Bob, cannot increase entanglement by LOCC, let alone generating Bell pairs

from scratch. Thus, in order to share a Bell pair, Alice and Bob have no choice but to use a
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practical channel that can convey quantum systems. Such a channel inevitably causes noise on

the quantum systems, and hence it will return mixed state ρ̂AB. Therefore, we need a way to

regain entanglement from the mixed state by LOCC. Such a way is called entanglement distil-

lation. Although there are several methods to achieve entanglement distillation actually, in this

section, we focus on the most realistic distillation called recurrence method [64, 65, 66].

In what follows, we consider a system composed of qubits. We begin with introducing a

measurement called parity check measurement, which is known to be a key operation not only

for the recurrence method but also for the other quantum operations such as a fusion gate of

cluster states. The measurement is CNOT gate followed by Ẑ-basis measurement {|k⟩}k=0,1 on

the target qubit (see Fig. 2.4). In particular, the measurement is described by Kraus operators

R̂AB→B
0 :=A⟨0|ĈBAX = |0⟩BAB⟨00|+ |1⟩BAB⟨11| = |+⟩BAB⟨Φ+|+ |−⟩BAB⟨Φ−|,

R̂AB→B
1 :=A⟨1|ĈBAX = |0⟩BAB⟨10|+ |1⟩BAB⟨01| = |+⟩BAB⟨Ψ+| − |−⟩BAB⟨Ψ−|,

(2.45)

where ĈCTX represents CNOT gate.

The goal of the recurrence method is to transform two entangled pairs into a more entangle

pair. Suppose that the two pairs of qubits are shared by Alice and Bob, and called A1B1 and

A2B2, respectively. In the recurrence method, Alice (Bob) executes parity check measurement

{R̂A1A2→A2
k }k=0,1 ({R̂B1B2→B2

k }k=0,1). Then, they exchange the outcomes of the measurement by

classical communication, and they declare the success of the recurrence method if their outcomes

are the same. From Eqs. (2.45), (A2.1), and (A2.2), the successful measurement of Alice and

Bob can be described by Kraus operators

R̂A1A2→A2
0 ⊗ R̂B1B2→B2

0 =
1√
2
|Φ+⟩A2B2(A1B1⟨Φ+|A2B2⟨Φ+|+ A1B1⟨Φ−|A2B2⟨Φ−|)

+
1√
2
|Ψ+⟩A2B2(A1B1⟨Ψ+|A2B2⟨Ψ+|+ A1B1⟨Ψ−|A2B2⟨Ψ−|)

+
1√
2
|Φ−⟩A2B2(A1B1⟨Φ+|A2B2⟨Φ−|+ A1B1⟨Φ−|A2B2⟨Φ+|)

+
1√
2
|Ψ−⟩A2B2(A1B1⟨Ψ+|A2B2⟨Ψ−|+ A1B1⟨Ψ−|A2B2⟨Ψ+|),

R̂A1A2→A2
1 ⊗ R̂B1B2→B2

1 =
1√
2
|Φ+⟩A2B2(A1B1⟨Φ+|A2B2⟨Φ+| − A1B1⟨Φ−|A2B2⟨Φ−|)

+
1√
2
|Ψ+⟩A2B2(A1B1⟨Ψ+|A2B2⟨Ψ+| − A1B1⟨Ψ−|A2B2⟨Ψ−|)

+
1√
2
|Φ−⟩A2B2(A1B1⟨Φ+|A2B2⟨Φ−| − A1B1⟨Φ−|A2B2⟨Φ+|)

+
1√
2
|Ψ−⟩A2B2(A1B1⟨Ψ+|A2B2⟨Ψ−| − A1B1⟨Ψ−|A2B2⟨Ψ+|).

(2.46)

Leaving the pair A2B2, these Kraus operators announce that the pairs A1B1 and A2B2 have

been in a state living in the Hilbert subspace spanned by |Φ±⟩A1B1 |Φ±⟩A2B2 , |Φ±⟩A1B1 |Φ∓⟩A2B2 ,

|Ψ±⟩A1B1 |Ψ±⟩A2B2 , and |Ψ±⟩A1B1 |Ψ∓⟩A2B2 . In what follows, we demonstrate how the recurrence

method works.
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k
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Fig. 2.4. The parity check measurement {R̂AB→B
k }k=0,1, which is CNOT gate followed by Ẑ-basis mea-

surement on the target qubit.

2.4.1 On Bell-diagonal states

Suppose that Alice and Bob apply a unitary operation randomly chosen from {1̂A ⊗ 1̂B, ẐA ⊗
ẐB, X̂A⊗ X̂B, Ŷ A⊗ Ŷ B} on the pairs A1B1 and A2B2. Then, their system A1B1A2B2 becomes

in a Bell-diagonal state ρ̂1
A1B1 ⊗ ρ̂2

A2B2 satisfying

ρ̂AkBk
k =

∑
i,j=0,1

⟨Bij |ρ̂A1B1
k |Bij⟩|Bij⟩⟨Bij |AkBk

(2.47)

for k = 1, 2 [64, 65, 66]. If Alice and Bob succeed in performing the recurrence method on the

system, from Eq. (2.46), the state σ̂A2B2 of the left system A2B2 is

⟨Φ+|σ̂A2B2 |Φ+⟩ =⟨Φ+|ρ̂A1B1
1 |Φ+⟩⟨Φ+|ρ̂A2B2

2 |Φ+⟩+ ⟨Φ−|ρ̂A1B1
1 |Φ−⟩⟨Φ−|ρ̂A2B2

2 |Φ−⟩
P ds

,

⟨Ψ+|σ̂A2B2 |Ψ+⟩ =⟨Ψ+|ρ̂A1B1
1 |Ψ+⟩⟨Ψ+|ρ̂A2B2

2 |Ψ+⟩+ ⟨Ψ−|ρ̂A1B1
1 |Ψ−⟩⟨Ψ−|ρ̂A2B2

2 |Ψ−⟩
P ds

,

⟨Φ−|σ̂A2B2 |Φ−⟩ =⟨Φ+|ρ̂A1B1
1 |Φ+⟩⟨Φ−|ρ̂A2B2

2 |Φ−⟩+ ⟨Φ−|ρ̂A1B1
1 |Φ−⟩⟨Φ+|ρ̂A2B2

2 |Φ+⟩
P ds

,

⟨Ψ−|σ̂A2B2 |Ψ−⟩ =⟨Ψ+|ρ̂A1B1
1 |Ψ+⟩⟨Ψ−|ρ̂A2B2

2 |Ψ−⟩+ ⟨Ψ−|ρ̂A1B1
1 |Ψ−⟩⟨Ψ+|ρ̂A2B2

2 |Ψ+⟩
P ds

,

(2.48)

where P ds is the success probability described by

P ds =(⟨Φ+|ρ̂A1B1
1 |Φ+⟩+ ⟨Φ−|ρ̂A1B1

1 |Φ−⟩)(⟨Φ+|ρ̂A2B2
2 |Φ+⟩+ ⟨Φ−|ρ̂A2B2

2 |Φ−⟩)
+ (⟨Ψ+|ρ̂A1B1

1 |Ψ+⟩+ ⟨Ψ−|ρ̂A1B1
1 |Ψ−⟩)(⟨Ψ+|ρ̂A2B2

2 |Ψ+⟩+ ⟨Ψ−|ρ̂A2B2
2 |Ψ−⟩).

(2.49)

Note that state σ̂A2B2 is still Bell-diagonal, and it is thus uniquely determined by Eq. (2.48).

In Ref. [67], Macchiavello has considered the performance of this recurrence method in the case

of ρ̂1 = ρ̂2, and has shown that the iteration of this method will asymptotically produce a Bell

pair if one of four components {⟨Bij |ρ̂A1B1
1 |Bij⟩}i,j=0,1 is greater than 1/2.

As an example of Bell-diagonal states, here we consider a case where the states ρ̂A1B1
1 and

ρ̂A2B2
2 are the copies of a state described by

ρ̂O = F |Φ+⟩⟨Φ+|+ (1− F )|Ψ+⟩⟨Ψ+|. (2.50)

This state includes only one type of error, i.e., bit-error. In fact, this state can be expressed as

ρ̂O = EA2F−1(|Φ+⟩AB⟨Φ+|AB) (2.51)
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with bit-flip channel EA2F−1 of Eq. (1.78). Then, Eqs. (2.48) and (2.49) are reduced to

⟨Φ+|σ̂A2B2
O |Φ+⟩ = F 2

P ds,O
,

⟨Ψ+|σ̂A2B2
O |Ψ+⟩ = (1− F )2

P ds,O
,

⟨Φ−|σ̂A2B2
O |Φ−⟩ = 0,

⟨Ψ−|σ̂A2B2
O |Ψ−⟩ = 0,

P ds,O = F 2 + (1− F )2.

(2.52)

Clearly, ⟨Φ+|σ̂A2B2
O |Φ+⟩ is larger than ⟨Φ+|ρ̂A2B2

O |Φ+⟩ for any 1/2 < F < 1. In addition, the out-

put state σ̂A2B2
O also includes only one-type of error, suggesting that the subsequent distillation

from the states σ̂A2B2
O works similarly. Hence, the iteration of this recurrence method on entan-

gled states ρ̂O will asymptotically give a Bell pair. Curve (i) in Fig. 2.5 indicates ⟨Φ+|σ̂A2B2
O |Φ+⟩

as a function of ⟨Φ+|ρ̂A2B2
O |Φ+⟩.

2.4.2 On Werner states

As another important examples of Bell-diagonal states, we consider the cases where the two

pairs A1B1 and A2B2 are the copies of a so-called Werner state

ρ̂W := F |Φ+⟩⟨Φ+|+ 1− F

3
(|Ψ+⟩⟨Ψ+|+ |Φ−⟩⟨Φ−|+ |Ψ−⟩⟨Ψ−|). (2.53)

This state is always obtained by applying a unitary operation randomly chosen from {ẐAπ/2 ⊗
ẐBπ/2, X̂

A
π/2⊗ X̂

B
π/2, Ŷ

A
π/2⊗ Ŷ

B
π/2} and a unitary operation ẐBX̂B on a Bell-diagonal state [64, 65].

Then, from Eqs. (2.48) and (2.49), the recurrence method returns a state σ̂A2B2
W parametrized

as

⟨Φ+|σ̂A2B2
W |Φ+⟩ =10F 2 − 2F + 1

9P ds,W
,

⟨Ψ+|σ̂A2B2
W |Ψ+⟩ =2(1− F )2

9P ds,W
,

⟨Φ−|σ̂A2B2
W |Φ−⟩ =2F (1− F )

3P ds,W
,

⟨Ψ−|σ̂A2B2
W |Ψ−⟩ =2(1− F )2

9P ds,W
,

(2.54)

with success probability

P ds,W =
1

9
(8F 2 − 4F + 5). (2.55)

Thus, ⟨Φ+|σ̂A2B2
W |Φ+⟩ is larger than ⟨Φ+|ρ̂A2B2

W |Φ+⟩ for any 1/2 < F < 1. Therefore, combining

the fact that any pair with a fidelity F to a Bell state can be transformed to a Werner state with

the same F by LOCC, we can always generate an almost perfect Bell pair from many entangled

pairs with F > 1/2 by recursively using this recurrence method. Curve (ii) in Fig. 2.5 indicates

⟨Φ+|σ̂A2B2
W |Φ+⟩ as a function of ⟨Φ+|ρ̂A2B2

W |Φ+⟩.
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Fig. 2.5. The efficiencies of the recurrence method. F is the fidelity of initial entangled pairs to a Bell
state, and F ′ is the fidelity of a returned pair to a Bell state. The curve (i) is the case where the initial
entangled pairs are the copies of ρ̂O. The curve (ii) is the case where the initial entangled pairs are the
copies of ρ̂W .

2.5 Apparatuses for quantum communication

As seen in the previous section, entanglement distillation enables us to obtain an almost perfect

Bell pair from (possibly many) noisy entangled pairs. To share noisy entangled pairs, we have

no choice but to transmit quantum systems through a practical channel. A promising candidate

of the transmittable quantum systems is the photons. In this section, we briefly review available

operations on the photons† and properties of the photons as the carrier of quantum information.

On the other hand, it is known that the interaction among photons are too weak to perform

global operations, e.g., CNOT gate. In addition, it is difficult to stop the motion of the photons,

which implies that the photons are not appropriate to be used as a kind of memories. Hence,

quantum information held by the photons must be transferred to another quantum systems that

allow us to use global operations and that can store up the quantum information. Such quantum

systems should be called a quantum memory. In this section, we also give an example of the

quantum memories that can interact with photons.

2.5.1 Photons and those manipulation

In this section, we briefly review the description of the photons and those manipulations. In

the last of this section, we show a protocol to realize quantum communication based only on

photons.

2.5.1.1 The state of photons

Here we provide a method to describe the state of photons. In quantum mechanics, the free

electromagnetic field {Ê(r), Ĥ(r)} in a cubic cavity with volume L3 can be described by

Ê(r) =
∑
ks

ϵksEk(âkseik·r + â†kse
−ik·r), (2.56)

Ĥ(r) =
1

µ0

∑
ks

k × ϵks
νk

Ek(âkseik·r + â†kse
−ik·r), (2.57)

where Ê(r) is the electric field, Ĥ(r) is the magnetic field, s is the freedom of the polarization,

k is defined by (kx, ky, kz) = (2πnx/L, 2πny/L, 2πnz/L) with integers nx, ny, nz = 0,±1,±2, . . .,

νk := c|k| is the frequency of a plane wave, Ek := [(~νk)/(2ϵ0L3)]1/2, ϵ0 is the free space

† This review is based on a text book of Mandel and Wolf [68].
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permittivity, µ0 is the free space permeability, ϵks is the unit vector satisfying k · ϵks = 0 and

ϵ∗ks · ϵks′ = δss′ , and âks is the bosonic operator defined by

[âks, âk′s′ ] = 0,

[â†ks, â
†
k′s′ ] = 0,

[âks, â
†
k′s′ ] = δkk′δss′ .

(2.58)

The Hamiltonian of the free electromagnetic field is described by

Ĥ =
∑
ks

~νk
(
â†ksâks +

1

2

)
. (2.59)

Hence, in the Heisenberg picture, the electromagnetic field {Ê(r, t), Ĥ(r, t)} is

Ê(r, t) = eiĤt/~Ê(r)e−iĤt/~ =
∑
ks

ϵksEk(âkseik·r−iνkt + â†kse
−ik·r+iνkt), (2.60)

Ĥ(r, t) = eiĤt/~Ĥ(r)e−iĤt/~ =
1

µ0

∑
ks

k × ϵks
νk

Ek(âkseik·r−iνkt + â†kse
−ik·r+iνkt), (2.61)

where we used relation

eiâ
†
ksâksνktâks(r)e

−iâ†ksâksνkt = âkse
−iνkt (2.62)

derived from formula

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + . . . . (2.63)

Therefore, the state of the electromagnetic field lives in the Hilbert space the bosonic operators

{âks}ks act on.
In what follows, for the simplicity, we omit ks of operator âks, and denote it as â. Let us

consider how to describe the state of the Hilbert space â acts on. Since n̂ := â†â is a positive

operator, we can diagonalize it as follows

n̂ =
∑
n

n|n⟩⟨n| (2.64)

with

n ≥ 0. (2.65)

The operator n̂ is called the number operator. Noting [n̂, â] = −â, i.e., n̂â = ân̂− â, we have

n̂(â|n⟩) = (n− 1)â|n⟩, (2.66)

which implies that â|n⟩ is the eigenstate of n̂ with eigenvalue n−1. This indicates that âk|n⟩ is the
eigenstate of n̂ with eigenvalue n−k for any k, but this fact must be compatible with Eq. (2.65).

Hence, n should be a non-negative integer and â|0⟩ = 0. The state |n⟩ with n = 0, 1, . . . is called

a number state, and |0⟩ is specifically called the vacuum state. The normalization of state â|n⟩
implies

â|n⟩ =
√
n|n− 1⟩ (2.67)

for any n. By applying â† to this equation, we have

â†|n⟩ =
√
n+ 1|n+ 1⟩, (2.68)
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which implies

|n⟩ = (â†)n√
n!

|0⟩. (2.69)

Since this indicates that |n⟩ is generated by applying â† to the vacuum state |0⟩, â† is called

creation operator. Conversely, â is called annihilation operator.

Since {|n⟩}n=0,1,... is an complete orthonormal basis, we have
∑∞

n=0 |n⟩⟨n| = Î. This implies

that any state |ψ⟩ of a single-mode electromagnetic field can be described by

|ψ⟩ = Î|ψ⟩ =
∞∑
n=0

⟨n|ψ⟩|n⟩. (2.70)

Similarly, the state of general electromagnetic fields is described by

|ψ⟩ =
⊗
ks

 ∞∑
nks=0

|nks⟩⟨nks|

 |ψ⟩. (2.71)

Let us introduce the so-called coherent state. This state is the description of an output pulse

of the laser. A coherent state |α⟩ is defined as

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!
|n⟩ = e−|α|2/2eαâ

† |0⟩ (2.72)

with a complex number α. From Eq. (2.67), we can show

â|α⟩ = e−|α|2/2
∞∑
n=1

αn√
n!

√
n|n− 1⟩ = α|α⟩, (2.73)

which means that this state is an eigenstate of annihilation operator â. The coherent state can

be also considered as a displaced vacuum state. In particular, the state |α⟩ can be described by

|α⟩ = D̂α|0⟩ (2.74)

with the displacement operator

D̂α := eαâ
†−α∗â. (2.75)

Eq. (2.74) can be ensured from

D̂α = eαâ
†−α∗â = e−|α|2/2eαâ

†
e−α

∗â, (2.76)

where we used the Campbell-Baker-Hausdorff relation for two operators Â, B̂, i.e.,

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2, (2.77)

provided that

[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0. (2.78)

The displacement operators have properties

D̂†
αD̂α = D̂αD̂

†
α = Î , (2.79)

D̂†
α = D̂−α, (2.80)

D̂αD̂β = eiIm[αβ∗]D̂α+β. (2.81)
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Eqs. (2.79) and (2.80) are confirmed from Eq. (2.76), and Eq. (2.81) is shown from the Campbell-

Baker-Hausdorff relation.

2.5.1.2 Linear optical elements

Let us introduce unitary operations obtained by basic linear optical elements, phase shifters and

beam splitters. The phase shifter can be considered to be a gate on a single-mode optical field as

in Fig. 2.6 (a). The time evolution given by the phase shifter corresponds to a unitary operator

P̂θ relating an input bosonic operator â1 with an output operator â2 as

â2 = eiθP̂θâ1P̂
†
θ , (2.82)

where θ is a real number. Noting

[Û ÂÛ †, Û B̂Û †] = Û [Â, B̂]Û † (2.83)

for any unitary operator Û and arbitrary operators Â and B̂, we have

[â2, â
†
2] = P̂θ[â1, â

†
1]P̂

†
θ = 1 (2.84)

which implies that â2 is also a bosonic operator. The number operator â†1â1 satisfies

P̂θâ
†
1â1P̂

†
θ = â†2â2. (2.85)

Combined with the fact that a state |ψ⟩ evolves into P̂θ|ψ⟩, this indicates

⟨ϕ|P̂ †
θ â

†
2â2P̂θ|ψ⟩ = ⟨ϕ|â†1â1|ψ⟩ (2.86)

for arbitrary states |ψ⟩ and |ϕ⟩. Thus, the role of number operator â†1â1 on a system is replaced

with that of number operator â†2â2 on the system outputted by the phase shifter P̂θ. This implies

P̂θ|0⟩ = |0⟩. (2.87)

Actually, this equation and Eq. (2.82) are sufficient for determining the effect of the unitary

operator P̂θ.

The beam splitter can be considered to be a gate on two single-mode optical fields as in Fig. 2.6

(b). The time evolution given by the beam splitter corresponds to a unitary operator B̂t,r,t′,r′

relating input bosonic operators {â1, â2} with output operators {â3, â4} as

â3 =B̂t,r,t′,r′(t
′â1 + râ2)B̂

†
t,r,t′,r′ ,

â4 =B̂t,r,t′,r′(r
′â1 + tâ2)B̂

†
t,r,t′,r′ ,

(2.88)

where t, r, t′, r′ are parameters satisfying

|r′| = |r|, (2.89)

|t′| = |t|, (2.90)

|r|2 + |t|2 = 1, (2.91)

r∗t′ + r′t∗ = 0, (2.92)

r∗t+ r′t′∗ = 0. (2.93)

Note that Eq. (2.88) can be also described by(
â3
â4

)
= B

(
B̂t,r,t′,r′ â1B̂

†
t,r,t′,r′

B̂t,r,t′,r′ â2B̂
†
t,r,t′,r′

)
(2.94)
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Fig. 2.6. Linear optical elements. (a) Phase shifter. (b) Beam splitter.

with a matrix

B :=

(
t′ r

r′ t

)
. (2.95)

Then, Eqs. (2.89)-(2.93) are equivalent to the unitarity of matrix B, i.e., B†B = BB† = I. From

Eqs. (2.89)-(2.91) and (2.83), we have

[â3, â
†
3] = B̂t,r,t′,r′ [t

′â1 + râ2, t
′∗â†1 + r∗â†2]B̂

†
t,r,t′,r′ = 1, (2.96)

[â4, â
†
4] = B̂t,r,t′,r′ [r

′â1 + tâ2, r
′∗â†1 + t∗â†2]B̂

†
t,r,t′,r′ = 1, (2.97)

which indicates that operators {â3, â4} are also bosonic operators. From Eq. (2.93) and (2.83),

we obtain

[â3, â
†
4] = B̂t,r,t′,r′ [t

′â1 + râ2, r
′∗â†1 + t∗â†2]B̂

†
t,r,t′,r′ = 0, (2.98)

which concludes that the mode of â3 is different from that of â4. From Eq. (2.92), the total

number operator of â†1â1 + â†2â2 satisfies

B̂t,r,t′,r′(â
†
1â1 + â†2â2)B̂

†
t,r,t′,r′ = â†3â3 + â†4â4. (2.99)

This implies that the role of number operator â†1â1 + â†2â2 on a system is replaced with that

of number operator â†3â3 + â†4â4 on the system outputted by the beam splitter B̂t,r,t′,r′ . This

indicates

B̂t,r,t′,r′ |0⟩ = |0⟩. (2.100)

Similarly to the phase shifter, this equation and Eq. (2.88) are sufficient for determining the

action of the unitary operator B̂t,r,t′,r′ .

As an example, let us apply the phase shifter and the beam splitter to a system in a coherent

state. If we perform phase shifter P̂θ on a system in coherent state |α⟩1, we will obtain state

P̂θ|α⟩1 = e−|α|2/2P̂θe
αâ†1P̂ †

θ P̂θ|0⟩ = e−|α|2/2eαP̂θ â
†
1P̂

†
θ |0⟩ = e−|α|2/2eαe

iθ â†2 |0⟩ = |αeiθ⟩2, (2.101)

where we used Eqs. (2.82) and (2.87). On the other hand, if we apply beam splitter B̂t,r,t′,r′ to

a system in a coherent state |α⟩1|β⟩2, we will obtain state

B̂t,r,t′,r′ |α⟩1|β⟩2 =e−(|α|2+|β|2)/2B̂t,r,t′,r′e
αâ†1+βâ

†
2B̂†

t,r,t′,r′B̂t,r,t′,r′ |0⟩

=e−(|α|2+|β|2)/2e
B̂t,r,t′,r′ (αâ

†
1+βâ

†
2)B̂

†
t,r,t′,r′ |0⟩

=e−(|α|2+|β|2)/2eα(t
′∗â†3+r

′∗â†4)+β(r
∗â†3+t

∗â†4)|0⟩
=|t′∗α+ r∗β⟩3|r′∗α+ t∗β⟩4,

(2.102)
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where we used Eqs. (2.88) and (2.100).

For simplicity, we may define a beam splitter as

B̂T := B̂√
T ,

√
1−T ,

√
T ,−

√
1−T (2.103)

with real parameter 0 ≤ T ≤ 1, because the combination of this beam splitter and proper

phase shifters can simulate arbitrary beam splitters represented by Eq. (2.88). T is called the

transmittance. In this case, Eq. (2.102) is reduced to

B̂T |α⟩1|β⟩2 = |
√
Tα+

√
1− Tβ⟩3| −

√
1− Tα+

√
Tβ⟩4. (2.104)

The beam splitter plays important roles in manipulation of photons. As an example of appli-

cations of the beam splitter, we show that the displacement operator D̂γ is implementable by

the combination of a beam splitter and an additional pulse in a coherent state. Let us assume

β = (
√
T/

√
1− T )γ in Eq. (2.104). Then, the equation is altered to

B̂T |α⟩1|(
√
T/

√
1− T )γ⟩2 = |

√
T (α+ γ)⟩3| −

√
1− Tα+ (T/

√
1− T )γ⟩4. (2.105)

From ⟨α|β⟩ = e−(|α|2+|β|2)/2eα
∗β for coherent states |α⟩ and |β⟩, we have

4⟨(T/
√
1− T )γ| −

√
1− Tα+ (T/

√
1− T )γ⟩4

= e−[T 2/(1−T )|γ|2+(1−T )|α|2+(T 2/1−T )|γ|2−T (α∗γ+αγ∗)]/2e−Tαγ
∗+(T 2/1−T )|γ|2

= e(1−T )|α|
2/2eT (α

∗γ−αγ∗)/2 = e(1−T )|α|
2/2eiT Im[γα∗], (2.106)

which means

| −
√
1− Tα+ (T/

√
1− T )γ⟩4

T→1−→ eiIm[γα∗]|ϕ(γ)⟩4 (2.107)

for a state |ϕ(γ)⟩4 := limT→1 |(T/
√
1− T )γ⟩4 depending only on γ. Hence, in the limit of T → 1,

Eq. (2.105) is reduced to

lim
T→1

B̂T |α⟩1|(
√
T/

√
1− T )γ⟩2 = eiIm[γα∗]|α+ γ⟩3|ϕ(γ)⟩4 = (D̂γ |α⟩3)⊗ |ϕ(γ)⟩4. (2.108)

Therefore, the displacement operation is implementable by a beam splitter and an optical pulse

in a coherent state.

2.5.1.3 Transmission channel

Transmission channels of the photons such as optical fibers are useful for quantum communica-

tion. An ideal transmission channel will enable us to faithfully send an unknown state |ψ⟩ of

the input bosonic mode to the output bosonic mode. However, practical channels are not such

an ideal one. In particular, the practical channels inevitably leak a fraction of the transmitted

photons into the environment e. This noise is specifically called photon loss. To describe the

practical channels with such an imperfection, we conventionally use the beam splitter B̂t,r,t′,r′ .

As noted in the previous section, the beam splitter B̂t,r,t′,r′ relates the two bosonic operators

{â1, â2} to the two output operators {â3, â4} according to Eq. (2.88). Here, for the description

of the practical channel, we regard the bosonic mode â1 as the input mode âin of the channel, the

bosonic mode â2 as the input mode âe of the environment, the bosonic mode â3 as the output

mode âout of the channel, and the bosonic mode â4 as the output mode âe of the environment.

We further assume that the initial state of the environment e is the vacuum state |0⟩e. These

assumptions define an isometry N̂t,r,t′,r′ as a theoretical model of the practical channel.
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Fig. 2.7. Transmission channel.

Let us consider that a boson in state |n⟩in is inputted into such a practical channel. Then,

the channel returns state

N̂t,r,t′,r′ |n⟩in :=B̂t,r,t′,r′ |n⟩in|0⟩e = B̂t,r,t′,r′
(â†in)

n

√
n!

|0⟩ = 1√
n!
B̂t,r,t′,r′(â

†
in)

nB̂†
t,r,t′,r′B̂t,r,t′,r′ |0⟩

=
1√
n!
(B̂t,r,t′,r′ â

†
inB̂

†
t,r,t′,r′)

n|0⟩ = 1√
n!
(t′∗â†out + r′∗â†e)

n|0⟩

=
1√
n!

n∑
k=0

(
n

k

)
(t′∗â†out)

k(r′∗â†e)
n−k|0⟩

=

n∑
k=0

√(
n

k

)
(t′∗)k(r′∗)n−k|k⟩out|n− k⟩e

(2.109)

as the output, where we define

N̂t,r,t′,r′ := B̂t,r,t′,r′ |0⟩e. (2.110)

Since we cannot access the state of the environment e, the partial trace over system e is ap-

plied after the isometry N̂t,r,t′,r′ , implying that the practical channel corresponds to a channel

depicted in Fig. 2.7. Combining these with the fact that any state |ψ⟩in can be described by

the superposition of the state |n⟩in, we can uniquely determine the output state of the practical

channel for any input state.

For example, if we input a pulse in coherent state |α⟩ to the practical channel, we receive

N̂t,r,t′,r′ |α⟩in = B̂t,r,t′,r′ |α⟩in|0⟩e = |t′∗α⟩out|r′∗α⟩e, (2.111)

as the output state. Here we used Eq. (2.102).

In practice, we use a transmission channel whose parameters t, r, t′, r′ are estimated in advance.

In such a case, up to the freedom of phase shifters on the input/output modes, the channel can

be characterized only by the transmittance T such that

N̂T := B̂√
T ,−

√
1−T ,

√
T ,

√
1−T |0⟩e. (2.112)

In practical setups, the parameters of the channel may fluctuate because of noises such as thermal

noises, but even in this situation, there are cases where the model of Eq. (2.112) becomes valid

by utilizing an additional optical pulse as the reference of the fluctuations.

Actually, the transmittance T of the channel N̂T is related with the channel distance L. The

relation is described by

T = e−L/Latt (2.113)
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with an attenuation length Latt†. That is, the transmittance of the channel decreases exponen-

tially with the channel length, which makes long-distance quantum communication difficult to

be achieved as shown later.

2.5.1.4 Photon detectors

A photon detector is a device to count photons. The most ideal photon detector is called the

ideal photon-number-resolving detector, whose POVM elements {Ê(∞)
m }m=0,1,... are described by

Ê
(∞)
m = |m⟩⟨m| with the number state |m⟩. In general, the photon detectors cannot necessarily

count photons up to infinite numbers, namely, there are possibilities such that they can count

photons up to N(≥ 0). More precisely, the photon detector returns outcome m if it catches

m(≤ N) photons, but it gives outcome N + 1 if it receives photons more than N . The (N + 2)

POVM elements of the detector are described by

Ê(N)
m =

{
|m⟩⟨m|, (0 ≤ m ≤ N),∑∞

n=N+1 |n⟩⟨n|, (m = N + 1).
(2.114)

This POVM is described as in Fig. 2.8 (a). The detector with N = 1 is called single photon

detector, and the detector with N = 0 is called threshold detector.

In practice, there are various imperfections of the detectors. For example, not all the incident

photons are caught by the detector. This imperfection can be modeled as a transmission channel

N̂η in front of the detector (see Fig. 2.8 (b)). The transmittance η is specifically called the

quantum efficiency. The POVM elements of the detector with quantum efficiency η are described

by {E(N,η)
m }m=0,...,N+1 in Fig. 2.8 (b).

Another type of the imperfections is the so-called dark counts. The dark counts are caused

by an event where the photons from the environment are mixed with the signal mode. The

redundant photons are effectively described by

ρ̂ν :=

∞∑
m=0

e−ννm

m!
|m⟩⟨m|, (2.115)

where ν ≥ 0 indicates mean dark count. This implies that m additional photons are appended to

the signal mode with probability (e−ννm)/(m!). Thus, the probability with which the number

of the signal photons is k but the photon detector announces the arrival of m(≥ k) photons is

(e−ννm−k)/[(m− k)!]. This indicates that the POVM elements Ê
(N,1,ν)
m of the photon detector

with threshold N and mean dark count ν are described by

Ê(N,1,ν)
m =

{∑m
k=0

e−ννm−k

(m−k)! |k⟩⟨k|, (0 ≤ m ≤ N),∑∞
n=N+1

∑n
k=0

e−ννn−k

(n−k)! |k⟩⟨k|, (m = N + 1).
(2.116)

This POVM is described as in Fig. 2.8 (c).

More generally, there are detectors with threshold N , quantum efficiency η, and mean dark

count ν. The POVM are described by {E(N,η,ν)
m }m=0,...,N+1 in Fig. 2.8 (d).

2.5.1.5 Quantum communication based on the direct transmission of photons

As an example, we introduce a way to share entanglement between separated parties, Alice and

Bob. Suppose that they are distance 2L apart, and Claire is located in the middle point between

† The attenuation length is determined by the physical properties of the channel.
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Fig. 2.8. Photon detectors. (a) Ideal photon detector with threshold N . (b) Photon detector with
threshold N and quantum efficiency η. (c) Photon detector with threshold N and mean dark count ν.
(d) Photon detector with threshold N , quantum efficiency η, and mean dark count ν.

Alice and Bob. Alice prepares a bosonic Bell state described by

|Ψ+
boson⟩aac :=

1√
2
(â†ac + â†a)|0⟩ =

1√
2
(|01⟩aac + |10⟩aac), (2.117)

and she sends the photon in mode ac to Claire through transmission channel N̂ac→ca
T . Bob

also prepares the same state |Ψ+
boson⟩bbc , and sends the photon in mode bc to Claire through

transmission channel N̂ bc→cb
T . At this point, from Eq. (2.109), the total state |ψ⟩in is described

by

|ψin⟩ =N̂ac→ca
T N̂ bc→cb

T

1

2
(â†ac + â†a)(â

†
bc
+ â†b)|0⟩

=
1

2
(
√
T â†ca +

√
1− T â†ea + â†a)(

√
T â†cb +

√
1− T â†eb + â†b)|0⟩

=
1

2
[T â†ca â

†
cb
+ (1− T )â†ea â

†
eb
+ â†aâ

†
b +

√
T (1− T )(â†ca â

†
eb
+ â†cb â

†
ea)

+
√
T (â†ca â

†
b + â†cb â

†
a) +

√
1− T (â†ea â

†
b + â†eb â

†
a)]|0⟩

=
1

2
[T |00⟩ab|11⟩cacb |00⟩eaeb + (1− T )|00⟩ab|00⟩cacb |11⟩eaeb + |11⟩ab|00⟩cacb |00⟩eaeb

+
√
T (1− T )(|00⟩ab|10⟩cacb |01⟩eaeb + |00⟩ab|01⟩cacb |10⟩eaeb)

+
√
T (|01⟩ab|10⟩cacb |00⟩eaeb + |10⟩ab|01⟩cacb |00⟩eaeb)

+
√
1− T (|01⟩ab|00⟩cacb |10⟩eaeb + |10⟩ab|00⟩cacb |01⟩eaeb)]

(2.118)

where ea and eb are modes in the environment.

On receiving the bosons, Claire applies a beam splitter B̂cacb→dadb
T with T = 1/2, and she

counts photons of the output modes dadb. If she detects a single photon at either mode da or

db, she declares the success. The Kraus operators in the success cases are described by

dadb⟨10|(B̂
cacb→dadb
1/2 )† =

1√
2
(cacb⟨10|+ cacb⟨01|), (2.119)

dadb⟨01|(B̂
cacb→dadb
1/2 )† =

1√
2
(cacb⟨10| − cacb⟨01|). (2.120)

Hence, we have

dadb⟨10|(B̂
cacb→dadb
1/2 )†|ψin⟩ =

√
T

2
(|Ψ+⟩ab|00⟩eaeb +

√
1− T |00⟩ab|Ψ+⟩eaeb), (2.121)

dadb⟨01|(B̂
cacb→dadb
1/2 )†|ψin⟩ =

√
T

2
(|Ψ−⟩ab|00⟩eaeb +

√
1− T |00⟩ab|Ψ−⟩eaeb), (2.122)
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where |Ψ−⟩ := (|01⟩ − |10⟩)/
√
2. Assuming that Alice applies phase shifter P̂ aπ if detector db

announces the arrival of a single photon, Alice and Bob will share state

ρ̂ab =
1

2− T
|Ψ+⟩⟨Ψ+|ab +

1− T

2− T
|00⟩⟨00|ab (2.123)

with probability Ps := T (2 − T )/2. Since T decreases exponentially with distance L of the

channel, from Eq. (2.113), for large L, the success probability Ps becomes

Ps ∼ T = e−L/Latt . (2.124)

Therefore, quantum communication is achievable by the direct transmission of photons, but the

efficiency decreases exponentially with the channel length.

2.5.2 Λ-type system and the interaction with photons

As shown in Sec. 2.5.1.5, we can achieve entanglement distribution by the direct transmission of

photons through a transmission channel such as an optical fiber. But, because of the exponen-

tial increase of the photon loss, the efficiency decreases exponentially with the channel length,

which will strongly restrict the achievable distances of quantum communication. To avoid the

exponential increase of the photon loss, we have no choice but to give up the direct transmission

of photons over long distances. Instead, actually, we have two protocols to achieve long-distance

quantum communication against the photon loss: one way is the so-called quantum repeater pro-

tocol; the other way is the so-called satellite-based quantum communication. Either way needs

quantum memories that can interact with photons, and is based on entanglement generation

between moderately distant quantum memories by utilizing photons. In this section, we intro-

duce a quantum memory that can be realizable by various two-level quantum systems, and we

show how the quantum memory interacts with photons. We further show that the interaction is

achievable even by Λ-type systems. An entanglement generation protocol and several methods

to achieve long-distance quantum communication based on this quantum memory will be shown

in the subsequent chapters.

2.5.2.1 The interaction of a single two-level system with a single-mode optical field

Let us consider the interaction between a single two-level system and a single-mode optical field

with frequency νk. Suppose that the two-level system has the parity symmetry. In the dipole

approximation (k · r ≪ 1), the Hamiltonian of the combined system is [69, 70] described by

Ĥ = Ĥfield + Ĥtwo−level + Ĥint, (2.125)

Ĥfield = ~νk
(
â†ksâks +

1

2

)
, (2.126)

Ĥtwo−level = Ee|e⟩⟨e|+ Eg|g⟩⟨g|, (2.127)

Ĥint = −qr̂ · Êks(0), (2.128)

where Êks(0) is the electric field at the origin, qr̂ is the dipole moment, Ee and Eg(< Ee) are

the eigenvalues of Ĥtwo−level, and |e⟩ and |g⟩ are the eigenstates of Ĥtwo−level. From Eq. (2.56),

Ĥint can be rewritten as

Ĥint =(|e⟩⟨e|+ |g⟩⟨g|)(−qr̂ · ϵksEk)(|e⟩⟨e|+ |g⟩⟨g|)(âks + â†ks)

=[(−qEk⟨e|r̂|g⟩ · ϵks)σ̂+ + (−qEk⟨g|r̂|e⟩ · ϵks)σ̂−](âks + â†ks)
(2.129)
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Fig. 2.9. A single two-level system. ν is the frequency of a single-mode optical field and ~ω is the difference
between energies of |e⟩ and |g⟩.

where we define σ̂+ := |e⟩⟨g| and σ̂− := |g⟩⟨e|, and we used ⟨g|r̂|g⟩ = ⟨e|r̂|e⟩ = 0 from the parity

symmetry of the eigenstates {|e⟩, |g⟩}. Since the terms σ̂+â
†
ks and σ̂−âks represent processes

that do not conserve energy, they are eliminated in the rotating wave approximation. Thus, the

interaction Hamiltonian Ĥint can be approximately reduced to

Ĥint ≃[(−qEk⟨e|r̂|g⟩ · ϵks)âksσ̂+ + (−qEk⟨g|r̂|e⟩ · ϵks)â†ksσ̂−]

=
~Ω
2
(âkse

iϕσ̂+ + â†kse
−iϕσ̂−),

(2.130)

where ~Ω/2 := | − qEk⟨e|r̂|g⟩ · ϵks| and ϕ := arg[−qEk⟨e|r̂|g⟩ · ϵks]. The frequency Ω is called

Rabi frequency. By defining â =: âkse
iϕ, ν := νk, and ~ω := Ee−Eg for the simplicity, the total

Hamiltonian Ĥ is reduced into Jaynes-Cummings Hamiltonian ĤJC such that

Ĥ − Ee + Eg
2

− ~ν
2

≃ ĤJC := ~νâ†â+
~ω
2
σ̂z +

~Ω
2
(âσ̂+ + â†σ̂−) =: Ĥ0 + Ĥ1, (2.131)

Ĥ0 =
~ν
2
σ̂z + ~νâ†â, (2.132)

Ĥ1 =
~∆
2
σ̂z +

~Ω
2
(âσ̂+ + â†σ̂−), (2.133)

where σ̂z := |e⟩⟨e| − |g⟩⟨g| and ∆ := ω − ν.

Let us consider the spectral decomposition of the Jaynes-Cummings Hamiltonian ĤJC. Let

{|e⟩|m⟩, |g⟩|n⟩}m,n=0,1,... be the eigenbasis of Ĥ0. Since

Ĥ0|e⟩|m⟩ = ~ν
(
1

2
+m

)
|e⟩|m⟩, (2.134)

Ĥ0|g⟩|n⟩ = ~ν
(
−1

2
+ n

)
|g⟩|n⟩, (2.135)

states |e⟩|m⟩ and |g⟩|m + 1⟩ with m ≥ 0 have the same eigenvalue of Hamiltonian Ĥ0. On the

other hand, noting [σ̂z, σ̂±] = ±2σ̂±, [â
†â, â†] = â† and [â†â, â] = −â, we have [Ĥ0, Ĥ1] = 0. This

implies that, from Theorem 1.1, Ĥ0 and Ĥ1 are simultaneously diagonalizable. Hence, defining

a projector P̂m := |e⟩⟨e| ⊗ |m⟩⟨m| + |g⟩⟨g| ⊗ |m + 1⟩⟨m + 1| (m ≥ 0) – the projector on the

eigenspace of eigenvalue ~ν(1/2 +m) of Ĥ0, we can decompose Ĥ0 and Ĥ1 as

Ĥ0 =

∞∑
m=0

~ν
(
1

2
+m

)
P̂m − ~ν

2
|g⟩⟨g| ⊗ |0⟩⟨0|, (2.136)

Ĥ1 =

∞∑
m=0

P̂mĤ1P̂m + (|g⟩⟨g| ⊗ |0⟩⟨0|)Ĥ1(|g⟩⟨g| ⊗ |0⟩⟨0|). (2.137)
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Note ⟨g|⟨0|Ĥ1|g⟩|0⟩ = −~∆/2. Let us further diagonalize P̂mĤ1P̂m. From

Ĥ1|e⟩|m⟩ = ~∆
2

|e⟩|m⟩+ ~Ω
√
m+ 1

2
|g⟩|m+ 1⟩, (2.138)

Ĥ1|g⟩|m+ 1⟩ = −~∆
2

|g⟩|m+ 1⟩+ ~Ω
√
m+ 1

2
|e⟩|m⟩, (2.139)

P̂mĤ1P̂m can be viewed as a matrix described by(
⟨e|⟨m|Ĥ1|e⟩|m⟩ ⟨e|⟨m|Ĥ1|g⟩|m+ 1⟩

⟨g|⟨m+ 1|Ĥ1|e⟩|m⟩ ⟨g|⟨m+ 1|Ĥ1|g⟩|m+ 1⟩

)
= λm

[
cos θm

(
1 0

0 −1

)
+ sin θm

(
0 1

1 0

)]
, (2.140)

where

λm :=

√(
~∆
2

)2

+

(
~Ω

√
m+ 1

2

)2

,

cos θm :=
~∆
2λm

,

sin θm :=
~Ω

√
m+ 1

2λm
.

(2.141)

Hence, the eigenvalues of P̂mĤ1P̂m are ±λm(=: λm,±), and the corresponding eigenvectors are

|λm,+⟩ := cos

(
θm
2

)
|e⟩|m⟩+ sin

(
θm
2

)
|g⟩|m+ 1⟩, (2.142)

|λm,−⟩ := sin

(
θm
2

)
|e⟩|m⟩ − cos

(
θm
2

)
|g⟩|m+ 1⟩, (2.143)

which implies

P̂mĤ1P̂m = λm(|λm,+⟩⟨λm,+| − |λm,−⟩⟨λm,−|). (2.144)

Therefore, the spectral decomposition of the total Hamiltonian Ĥ is

ĤJC = Ĥ0 + Ĥ1,

Ĥ0 =

∞∑
m=0

~ν
(
1

2
+m

)
(|λm,+⟩⟨λm,+|+ |λm,−⟩⟨λm,−|)−

~ν
2
|g⟩⟨g| ⊗ |0⟩⟨0|,

Ĥ1 =

∞∑
m=0

λm(|λm,+⟩⟨λm,+| − |λm,−⟩⟨λm,−|)−
~∆
2

|g⟩⟨g| ⊗ |0⟩⟨0|.

(2.145)

Time evolution of the system with the Hamiltonian Ĥ is determined by

|ψ(t)⟩ = e−iĤJCt/~|ψ(0)⟩, (2.146)

where |ψ(0)⟩ is the initial state of the system, and |ψ(t)⟩ is the final state of the system. From
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the decomposition in Eq. (2.145), the final state |ψ(t)⟩ is described by

|ψ(t)⟩ =e−iĤJCt/~|ψ(0)⟩

=

∞∑
m=0

e−i(~ν/2+m~ν+λm)t/~⟨λm,+|ψ(0)⟩|λm,+⟩+
∞∑
m=0

e−i(~ν/2+m~ν−λm)t/~⟨λm,−|ψ(0)⟩|λm,−⟩

+ e−iωt/2⟨g|⟨0||ψ(0)⟩|g⟩|0⟩.
(2.147)

This is the solution of the Schrödinger equation.

Let us consider the solution of the off-resonant case, i.e., |∆| ≫ Ω. In this case, since

λm ≃ ~|∆|
2

+
~Ω2(m+ 1)

4|∆|
,

|λm,+⟩ ≃

{
|e⟩|m⟩, (∆ ≥ 0),

|g⟩|m+ 1⟩, (∆ < 0),

|λm,−⟩ ≃

{
|g⟩|m+ 1⟩, (∆ ≥ 0),

|e⟩|m⟩, (∆ < 0),

(2.148)

hold, we have

Ĥ1 ≃
∞∑
m=0

(
~∆
2

+
~Ω2(m+ 1)

4∆

)
(|e⟩⟨e| ⊗ |m⟩⟨m| − |g⟩⟨g| ⊗ |m+ 1⟩⟨m+ 1|)− ~∆

2
|g⟩⟨g| ⊗ |0⟩⟨0|

=
~Ω2

8∆
+

(
~∆
2

+
~Ω2

8∆

)
σ̂z +

~Ω2

4∆
â†âσ̂z. (2.149)

This indicates

ĤJC ≃ ~Ω2

8∆
+ ~νâ†â+

(
~ω
2

+
~Ω2

8∆

)
σ̂z +

~Ω2

4∆
â†âσ̂z. (2.150)

Therefore, the solution of the Schrödinger equation is

|ψ(t)⟩ = e−iνâ
†âte−i(

ω
2
+Ω2

8∆
)σ̂zte−i

Ω2

4∆
â†âσ̂zt|ψ(0)⟩. (2.151)

In the following chapters, one can see that this interaction plays a central role of long-distance

quantum communication.

In contrast to the on-resonant interaction (∆ = 0), the off-resonant interaction (|∆| ≫ Ω)

does not restrict the frequency ν of the single-mode electromagnetic field. This implies that the

off-resonant interaction can be observed in various two-level quantum systems [40, 41, 42, 44, 45].

Hence, the off-resonant interaction of Eq. (2.151) can be considered to be a universal interaction

between a two-level system and a single-mode optical field.

2.5.2.2 The interaction between Λ-type system and a single-mode optical field

As seen in the previous section, we see the interaction between a single two-level system composed

of states {|e⟩, |g⟩} and a single-mode optical field. Actually, it is not good to use the two-level

system as a quantum memory, because the system suffers from the spontaneous emission turning

state |e⟩ into state |g⟩. Instead of the two-level system, it is known to be better to use a three-level

system called Λ-type system as a quantum memory.

The Λ-type system is composed of three states {|0⟩, |1⟩, |e⟩} as in Fig. 2.10. This system is
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supposed to have a selection rule that prohibits the dipole transition |0⟩ ↔ |1⟩. But the system

allows us to induce dipole transitions |0⟩ ↔ |e⟩ and |1⟩ ↔ |e⟩ by proper electromagnetic fields.

The selection rule releases the states |0⟩ and |1⟩ from the noise caused by the spontaneous emis-

sion, which implies that the states |0⟩ and |1⟩ are stable enough to be used as the computational

basis of a quantum memory. In addition, we can apply unitary operations on the qubit by

Raman processes [69, 70, 71]. The Raman processes are induced by two electromagnetic fields

whose frequency difference ν0−v1 matches the separation of the two ground states, (E1−E0)/~
(see Fig. 2.10), and whose frequencies ν0 and ν1 are sufficiently detuned from the resonances of

the transitions |0⟩ ↔ |e⟩ and |1⟩ ↔ |e⟩, respectively. Therefore, the Λ-type systems are good

candidates for quantum memories.

Moreover, such a quantum memory based on the Λ-type system can couple with a single-mode

optical field [40, 41, 42, 44]. For coupling a single-mode optical field with the quantum memory,

it is sufficient to apply a single-mode optical field with an off-resonance frequency ν0. In this case,

since the field can activate only the transition |0⟩ ↔ |e⟩, this process is essentially considered

to be the off-resonant interaction between two levels of |0⟩ and |e⟩ and the field. Thus, from

the consideration in the previous section (e.g., from Eq. (2.150)), the total Hamiltonian of the

system is approximately described by

Ĥ − ~ν
2

≃ Ĥ0 + ĤJC, (2.152)

Ĥ0 = E1|1⟩⟨1|+
Ee + E0

2
(|e⟩⟨e|+ |0⟩⟨0|), (2.153)

ĤJC ≃ ~Ω2

8∆
(|e⟩⟨e|+ |0⟩⟨0|) + ~νâ†â+

(
~ω
2

+
~Ω2

8∆

)
σ̂z +

~Ω2

4∆
â†âσ̂z, (2.154)

where

ω := (Ee − E0)/~, (2.155)

∆ := ω − ν0, (2.156)

σ̂z := |e⟩⟨e| − |0⟩⟨0|. (2.157)

Note that Ĥ0 and ĤJC are commute. We further note

Ĥ0P̂qubit =E1|1⟩⟨1|+
Ee + E0

2
|0⟩⟨0|,

ĤJCP̂qubit ≃
~Ω2

8∆
|0⟩⟨0|+ ~ν0â†â−

(
~ω
2

+
~Ω2

8∆

)
|0⟩⟨0| − ~Ω2

4∆
â†â|0⟩⟨0|

=~ν0â†â−
~ω
2
|0⟩⟨0| − ~Ω2

4∆
â†â|0⟩⟨0|

for projector P̂qubit := |0⟩⟨0| + |1⟩⟨1|. Thus, the unitary operator Û(t) at time t on the qubit

represented by {|0⟩, |1⟩} and on the single-mode optical field is given by

Û(t) := P̂qubite
−i(Ĥ0+ĤJC)t/~P̂qubit = e−iν0â

†âte−i(E0|0⟩⟨0|+E1|1⟩⟨1|)t/~ei
Ω2

4∆
â†â|0⟩⟨0|t. (2.158)

The operators e−iν0â
†ât and e−i(E0|0⟩⟨0|+E1|1⟩⟨1|)t/~ can be offset by proper local unitary operations

on the qubit and on the single-mode optical fields, which means that they cannot make coherent

coupling between the systems. In contrast, ei
Ω2

4∆
â†â|0⟩⟨0|t is an essential unitary operation to
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Fig. 2.10. Λ-type system. ν0 and ν1 are the frequencies of single-mode optical fields.

couple the systems. In fact, the unitary operation works as

eiθâ
†â|0⟩⟨0||0⟩|α⟩ = |0⟩|αeiθ⟩,

eiθâ
†â|0⟩⟨0||1⟩|α⟩ = |1⟩|α⟩,

(2.159)

where |α⟩ is a coherent state of the optical field and θ := (Ω2t)/(4∆), and hence, we can easily

generate an entangled state in the form of

eiθâ
†â|0⟩⟨0|(

√
q0|0⟩+

√
q1|1⟩)|α⟩ =

√
q0|0⟩|αeiθ⟩+

√
q1|1⟩|α⟩ (2.160)

with q0+ q1 = 1 and 0 < q0 < 1. Hence, we can expect the unitary operator ei
Ω2

4∆
â†â|0⟩⟨0|t to play

an important role in the coherent manipulation of the qubit. The importance of this unitary

operation will be ensured in the subsequent chapters.



3

Entanglement generation based on a two-probe protocol

As seen in Sec. 2.5.1.5, the communication efficiency of quantum communication based on the di-

rect transmission of photons decreases exponentially with the channel length. The goal in what

follows is to avoid the exponential decrease of the communication efficiency, and to compose

alternative architectures to achieve long-distance quantum communication efficiently. Although

there are candidates of such architectures, e.g., quantum-repeater-based or satellite-based quan-

tum communication, either ways are based on entanglement generation between distant quantum

memories, and further execute entanglement distillation and entanglement swapping if necessary.

In this chapter, we provide an entanglement generation protocol between quantum memories

by utilizing the off-resonant interaction in the form of†

Ûθ(|0⟩M |α⟩c) =|0⟩M |αeiθ/2⟩c,

Ûθ(|1⟩M |α⟩c) =|1⟩M |αe−iθ/2⟩c,
(3.1)

where Ûθ is the unitary operator, {|j⟩M}j=0,1 is the computational basis of the quantum memory

M , |α⟩c is a coherent state, and the parameter θ depends on the strength of the interaction‡. The
entanglement generation protocol is composed of a simple combination of linear optical elements

and photon detectors, and it can generate entanglement with only one type of error, which is a

favorable property that makes subsequent entanglement distillation efficient (see Fig. 2.5). In the

case where ideal photon-number-resolving detectors are used, the performance of the protocol

in terms of fidelity and efficiency exceeds all known protocols [37, 38, 40, 41, 42, 43] including a

protocol generating entanglement with two types of errors [40, 41]. In fact, it is shown that the

protocol achieves the theoretical limit of performance among the protocols with the single-error-

type property. In addition, even if realistic photon detectors are used, the protocol shows higher

performance than known realistic protocols. Thus, the protocol introduced here is a promising

protocol for efficient production of entanglement.

3.1 Two-probe protocol

Let us consider the entanglement generation protocol illustrated in Fig. 3.1. In what follows,

we call the sender and the receiver as Alice and Bob, respectively, who are connected via an

optical fiber with transmittance T = e−l/l0 , where l is the distance between the nodes. Alice

first prepares a probe pulse in a coherent state |α⟩a with α ≥ 0 and a quantum memory A in

† Note that this unitary Ûθ is equivalent to the unitary operation of Eq. (2.159) up to a phase shifter on the optical field.
‡ According to Ref. [40], θ ∼ 0.01 is achievable.
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Fig. 3.1. Schematic diagram of the two-probe protocol.

state (e−i(ξ+ζ)|0⟩A + ei(ξ+ζ)|1⟩A)/
√
2 with

ζ :=(1/2)Tα2 sin θ,

ξ :=(1/2)(1− T )α2 sin θ,
(3.2)

where phase factors ξ and ζ are chosen to offset irrelevant phases appearing later. Alice then

makes the probe pulse interact with her memory by Ûθ, and sends the output probe pulse to Bob

through the fiber together with the local oscillator (LO). Optical loss in the fiber is effectively

described by

N̂ |α⟩a = |
√
Tα⟩b1 |

√
1− Tα⟩E , (3.3)

where N̂ is an isometry from input mode a into output mode b1 and the environment E. Then,

the state of Alice’s memory A, the received probe pulse in mode b1, and the environment E is

described by

|ψ⟩Ab1E =
1√
2
(|0⟩A|u0⟩b1 |v0⟩E + |1⟩A|u1⟩b1 |v1⟩E) (3.4)

with

|uj⟩b1 := e−i(−1)jζ |
√
Tαei(−1)jθ/2⟩b1

|vj⟩E := e−i(−1)jξ|
√
1− Tαei(−1)jθ/2⟩E .

(3.5)

The above recipe for Alice is also shared by the protocols in Refs. [40, 41, 42], while that for

Bob is not. In these protocols, Bob first interacts the received probe pulse with his memory,

and then he either performs homodyne measurement on the probe pulse (protocol I) [40, 41]

or displaces the probe pulse and conducts photon counting (protocol II) [42]. As seen below,

the protocol introduced here differs from these in the sense that it uses two probe pulses, which

inherits the approach adopted by Duan et al. [31, 32, 33, 34, 37, 38]. Hence, in what follows,

we call it two-probe protocol.

In the two-probe protocol, upon receiving the probe pulse and the LO pulse, Bob first generates

a second probe pulse in state |
√
Tα⟩b2 from the LO with a beam splitter (BS2), and then makes

it interact with his memory initialized in state (e−iζ |0⟩B + eiζ |1⟩B)/
√
2. Then, his memory and

the second probe pulse are in state |ϕ⟩Bb2 = (|0⟩B|u0⟩b2 + |1⟩B|u1⟩b2)/
√
2. Bob further applies a

50/50 BS (BS3) described by |α1⟩b1 |α2⟩b2 → |(α2 − α1)/
√
2⟩b3 |(α2 + α1)/

√
2⟩b4 to the pulses in

modes b1 and b2, which is followed by a phase-space displacement D̂−
√
2Tα cos(θ/2) to the pulse

in mode b4. Note that the displacement operation is achieved by the combination of LO and a
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beam splitter, as shown in Sec. 2.5.1.2. These operations correspond to the following isometry:

|u0⟩b1 |u0⟩b2 →|0⟩b3 |β⟩b5 ,
|u0⟩b1 |u1⟩b2 →| − β⟩b3 |0⟩b5 ,
|u1⟩b1 |u0⟩b2 →|β⟩b3 |0⟩b5 ,
|u1⟩b1 |u1⟩b2 →|0⟩b3 | − β⟩b5 ,

(3.6)

where β := i
√
2Tα sin (θ/2). Then, the state of the total system is described by

|χ⟩ABb3b5E =|0⟩b3(|00⟩AB|β⟩b5 |v0⟩E + |11⟩AB| − β⟩b5 |v1⟩E)/2
+ |0⟩b5(|01⟩AB| − β⟩b3 |v0⟩E + |10⟩AB|β⟩b3 |v1⟩E)/2.

(3.7)

The pulses in b3 and b5 go to photon detectors D1 and D2, respectively, and Bob announces the

success of the protocol when either photon detector D1 or D2, but not both, reports the arrival

of nonzero photons.

Let us consider the case where D1 and D2 are ideal photon number-resolving detectors. Since

the detectors have no dark counts, the output state |χ⟩ABb3b5E never provokes an event where

both detectors receive photons. Hence the two-probe protocol fails only when the pulses in

modes b3 and b5 are in the vacuum state |0⟩b3 |0⟩b5 , which leads to the success probability of

Ps(α) = 1− ||b3⟨0|b5⟨0||χ⟩ABb3b5E ||2 = 1− e−2Tα2 sin2(θ/2). (3.8)

The type of the generated entanglement in qubits AB depends on which detector informs how

many photons have arrived. If detector D1 announces that the number of arriving photons is

odd (even but nonzero), the generated entangled state has fidelity

F (α) = (1 + e−2(1−T )α2 sin2(θ/2))/2 (3.9)

to the nearest Bell state |Ψ−⟩AB := (|01⟩AB − |10⟩AB)/
√
2 (|Ψ+⟩AB := (|01⟩AB + |10⟩AB)/

√
2),

and it is diagonalized by Bell states {|Ψ±⟩AB}. Similarly, detector D2 informs whether the near-

est Bell state to the obtained entanglement is |Φ−⟩AB := (|00⟩AB − |11⟩AB)/
√
2 or |Φ+⟩AB :=

(|00⟩AB+|11⟩AB)/
√
2. These facts can be confirmed by simple calculations, e.g., b3⟨n||χ⟩ABb3b5E =

|0⟩b5(⟨n| − β⟩|01⟩AB|v0⟩E + ⟨n|β⟩|10⟩AB|v1⟩E)/2 for the number state |n⟩b3 (n > 0), ⟨n|β⟩ =

(−1)n⟨n| − β⟩, and ⟨v1|v0⟩ = e−2(1−T )α2 sin2(θ/2). Then, using a local unitary operation depend-

ing on the outcome of the detectors, Alice and Bob can transform the generated entangled state

into the standard state,

F (α)|Φ+⟩⟨Φ+|AB + (1− F (α))|Φ−⟩⟨Φ−|AB. (3.10)

Since this standard state includes only one type of error, from these states, we can efficiently

distill a Bell pair according to Fig. 2.5. This property is also shared by protocol II [42] and by

another protocol [43].

In order to evaluate the potential of the two-probe protocol, we compare its performance

with protocols I and II in Fig. 3.2, assuming ideal photon number-resolving detectors and ideal

homodyne detectors. The figure suggests that the two-probe protocol has the best performance

among the protocols. In addition, the figure shows that, in the vicinity of zero success probability,

protocol II and the two-probe protocol achieve a fidelity close to unity, while protocol I does

not unless T = 1 (l = 0). This difference comes from the choice of different types of detectors,

and it is further amplified with the increase of distance l: In fact, for l ≥ 40 km, protocol I can

generate almost separable states at best [42], but the two-probe protocol and protocol II can
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Fig. 3.2. The performance of protocols with ideal detectors: fidelity of the obtained entanglement to a
Bell state as a function of the success probability when l0 = 25 km (corresponding to ∼ 0.17 dB/km
attenuation) and θ = 0.01, for (i) protocol I [40, 41], (ii) protocol II [42], and (iii) the two-probe protocol.

generate acceptable entanglement. The better performance of the two-probe protocol was also

supported by numerical simulations for various values of T .

3.2 Optimality of the two-probe protocol

Actually, the high potential of the two-probe protocol is not accidental, because it can be shown

to have the maximal performance among a wide range of protocols, which generate entangled

states with only one type of error. The complete proof of this fact is somewhat complicated,

and hence it is given in Chap. 4. Instead, in this section, we provide a preliminary result of

it, namely we derive the upper bound of entanglement generation in qubits AB among all the

protocols that satisfy the following two conditions:

(i) Alice prepares qubit A and pulse a in a state (
∑

j=0,1 e
iφj |j⟩A|αj⟩a)/

√
2 with {|αj⟩a}j=0,1

being arbitrary coherent states, and sends the pulse a to Bob;

(ii) Upon receiving the pulse (in mode b1), Bob may perform arbitrary operations and mea-

surements on b1, the LO, and his memory qubit B, but whenever he declares success,

Alice and Bob must be able to apply a local unitary operation ÛA ⊗ ÛB such that the

final state of AB is represented only by {|Φ±⟩} (contained in the subspace spanned by

{|Φ±⟩}).

Condition (i) is satisfied by protocol I-III, and the others [37, 38, 40, 41, 42, 43]. In the proof

to be given in Chap. 4, this condition will be omitted as an unnecessary assumption. Condition

(ii) suggests that considered protocols generate entanglement with only one type of error, and

it is met by protocols II and III.

Let us proceed to the proof. From condition (i), we see that the state of the system Ab1E

when the pulse arrives at Bob is written by

|ψ⟩Ab1E =
∑
j=0,1

|j⟩A|uj⟩b1 |vj⟩E/
√
2 (3.11)

with

(1− T ) ln |⟨u1|u0⟩| = T ln |⟨v1|v0⟩|, (3.12)

where T is the transmittance of the fiber. Since the cases with |⟨v1|v0⟩| = 1 are trivial, we

assume |⟨v1|v0⟩| < 1 in what follows, and we use condition (ii) and Eq. (3.11) to derive bounds

on the success probability Ps and the fidelity F in terms of |⟨u1|u0⟩| and |⟨v1|v0⟩|. Then we use

Eq. (3.12) to determine the achievable region of (Ps, F ) for given T .
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Let us define a phase flip channel ΛA on qubit A by

ΛA(ρ̂) := qρ̂+ (1− q)σ̂Az ρ̂σ̂
A
z (3.13)

with σ̂Az := |0⟩⟨0|A − |1⟩⟨1|A and

q :=
1 + |⟨v1|v0⟩|

2
. (3.14)

From Eq. (3.11), we have

TrE [|ψ⟩⟨ψ|Ab1E ] = ΛA(|ψ′⟩⟨ψ′|Ab1),

where |ψ′⟩Ab1 :=
∑

j=0,1 e
i(−1)jφ|j⟩A|uj⟩b1/

√
2 with 2φ := arg[⟨v1|v0⟩]. The effect of the lossy

channel is thus equivalently described as preparation of |ψ′⟩Ab1 followed by ΛA. Since any

operation of Bob commutes with ΛA, the protocol is equivalent to the following sequence: (a)

System Ab1 is prepared in |ψ′⟩Ab1 ; (b) Bob does his operations and measurements, and leaves

system AB in a state ρ̂AB; (c) ΛA is applied on qubit A.

Now condition (ii) requires that, whenever Bob declares success, there exists a unitary ÛA⊗ÛB
such that ⟨Ψ′±|ΛA(ρ̂AB)|Ψ′±⟩ = 0 with |Ψ′±⟩AB := Û †

A ⊗ Û †
B|Ψ±⟩AB. Since ρ̂AB is positive and

0 < q < 1, we have √
ρ̂AB|Ψ′±⟩ = 0,√

ρ̂ABσ̂
A
z |Ψ′±⟩ = 0

(3.15)

for both ±. Adding and subtracting these equations, we obtain√
ρ̂AB|xj⟩A|yj⊕1⟩B =

√
ρ̂ABσ̂

A
z |xj⟩A|yj⊕1⟩B = 0 (3.16)

for j = 0, 1, where

|xj⟩A :=Û †
A|j⟩A

|yj⟩B :=Û †
B|j⟩B.

(3.17)

Since ρ̂AB ̸= 0, the set {|xj⟩A|yj⊕1⟩B, σ̂Az |xj⟩A|yj⊕1⟩B}j=0,1 must be linearly dependent, which

only happens when {|xj⟩A}j=0,1 is an eigenbasis of σ̂Az .

Without loss of generality, the fidelity F of the final state is given by

F = ⟨Φ′+|ΛA(ρ̂AB)|Φ′+⟩, (3.18)

where |Φ′±⟩AB := Û †
A ⊗ Û †

B|Φ±⟩AB = (|x0⟩A|y0⟩B ± |x1⟩A|y1⟩B)/
√
2. Since {|xj⟩A}j=0,1 is an

eigenbasis of σ̂Az , we have σ̂
A
z |Φ′+⟩ = ±|Φ′−⟩. Hence F = q⟨Φ′+|ρ̂AB|Φ′+⟩+(1−q)⟨Φ′−|ρ̂AB|Φ′−⟩,

leading to

F ≤ (1 + |⟨v1|v0⟩|)/2 (3.19)

from Eq. (3.14).

In order to find a bound on Ps, imagine a situation where, after the steps (a)–(c) above, Alice

and Bob proceeds as follows: (d) Bob measures qubit B on basis {|yk⟩B}k=0,1; (e) Alice measures

qubit A on basis {|j⟩A}j=0,1. Whenever Bob has declared success, we see from Eq. (3.16) that

the state of qubit A after step (d) should be |xk⟩A, which is an eigenvector of σ̂Az . Hence Bob

can certainly predict Alice’s outcome j in step (e). Now if we look at the whole sequence (a)–(e),

we notice that Alice’s measurement (e) can be equivalently done just after (a), and (c) becomes

redundant. Then, when Alice finishes steps (a) and (e), Bob is provided with {|uj⟩b1}j=0,1 with
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equal a priori probabilities, from which he proceeds with steps (b) and (d). At this point, he

can determine the value of j precisely whenever he declares success. Thus, the total success

probability Ps is not larger than that of the unambiguous state discrimination (USD), which is

1− |⟨u1|u0⟩| from Eq. (1.103). Hence we have

Ps ≤ 1− |⟨u1|u0⟩|. (3.20)

Combining Eqs. (3.12), (3.19), and (3.20), we conclude that, for given T < 1, the performance

(Ps, F ) of any protocol satisfying conditions (i) and (ii) must lie within the boundary {(1 −
t, (1+ t(1−T )/T )/2) | 0 ≤ t ≤ 1}. Conversely, as Eqs. (3.8)-(3.9) suggest, this boundary is always

achievable by the two-probe protocol with the choice of amplitude α satisfying t = e−2Tα2 sin2(θ/2).

3.3 The performance of the two-probe protocol with realistic photon detectors

Here we show that the two-probe protocol shows high performance even if we replace the photon

number-resolving detectors with threshold detectors (TDs) that just report the arrival of photons

and do not tell how many of them have arrived. We represent quantum efficiency and mean

dark count of the detector as η and ν, respectively. From Sec. 2.5.1.4, the function of a TD is

represented by the following POVM elements:

Ênc =
∞∑
m=0

e−ν(1− η)m|m⟩⟨m|,

Êc =Î − Ênc,

(3.21)

where Êc (Ênc) corresponds to an event reporting the arrival (non-arrival) of photons. When

the used TDs are ideal (η = 1, ν = 0), the generated state has only one type of error and has

fidelity (1 + e−2α2 sin2(θ/2))/2 to the nearest Bell state. The success probability is the same as

that with ideal photon number-resolving detectors. For the realistic values of (η, ν), the success

probability and the fidelity are described by

Ps(η, ν, α) =e
−ν−2Tηα2 sin2(θ/2)[1− 2e−ν + e2Tηα

2 sin2(θ/2)],

F (η, ν, α) =
e−2νe−2Tα2 sin2(θ/2)

2Ps(η, ν, α)
[e2T (1−η)α

2 sin2(θ/2)(eνe2Tηα
2 sin2(θ/2) − 1)

− e−2(1−T )α2 sin2(θ/2)e−2T (1−η)α2 sin2(θ/2)(eνe−2Tηα2 sin2(θ/2) − 1)].

(3.22)

We show numerically estimated performance (Ps(η, ν, α), F (η, ν, α)) of the two-probe protocol

in Fig. 3.3. Note that the chosen values (η, ν) are typical for currently available detectors, e.g.,

TES (superconducting transition-edge sensors) [72] and APD (avalanche photodiode) [73]. The

dark counts of such detectors increase the types of errors occurring in generated entanglement.

However, such additional errors occur with a small probability ∼ ν(P−1
s −1)+O(ν2), and hence

can be neglected. To evaluate the performance of the two-probe protocol, we also plotted the

performance of protocol I with an ideal homodyne detector, and that of protocol II with its

photon number-resolving detector replaced by TD1 and TD2. The figure shows that the two-

probe protocol has higher efficiency than protocol II. We see that there is a region where the

performance of protocol I exceeds that of ours, but this region decreases with the increase of

distance l. Hence, we can safely say that the two-probe protocol outperforms the other protocols

in the cases where long-distance and/or high quality entanglement generation is required. It is
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Fig. 3.3. The performance of protocols with realistic detectors: (i) protocol I with an ideal homodyne
detector, (ii) protocol II with a TD1 (η = 0.89, ν = 1.4 × 10−6), (ii’) protocol II with a TD2 (η =
0.12, ν = 3.2× 10−7), (iii) the two-probe protocol with TD1s, (iii’) the two-probe protocol with TD2s.

also worth to mention that entanglement generated by protocol I always includes two types of

non-negligible errors, which will affect its performance in the entanglement distillation stage.

3.4 Summary

In conclusion, we have proposed a two-probe entanglement generation scheme, which outper-

forms the generation schemes proposed so far. More importantly, as shown in this chapter,

the two-probe protocol can achieve the optimal performance among all the schemes satisfying a

couple of plausible conditions [(i) and (ii) above]. Actually, the optimality can be ensured even

if we omit physically meaningless condition (i) (see the next chapter). Therefore, the two-probe

protocol is not only a feasible and efficient entanglement generation protocol but also a funda-

mental protocol enlightening us a quantum mechanical limit of single-error-type entanglement

generation. The distinguished importance of the protocol will be also authenticated with its

striking applications given in Chapters 5 and 6.



4

Tight bound on coherent-state-based entanglement generation
over lossy channels

In Chapter 3, we have provided a protocol that can generate entanglement with only one type

of error by using a unitary operator V̂ in the form of

V̂ |0⟩A|α⟩a = |0⟩A|α0⟩a,
V̂ |1⟩A|α⟩a = |1⟩A|α1⟩a,

(4.1)

where A is a qubit, a is a single-mode optical field, and |α⟩a and {|αj⟩a}j=0,1 are coherent

states. As in Fig. 2.5, we can efficiently distill an almost maximally entangled pair from the

single-error-type entangled states. Thus, protocols producing entanglement with only one type

of error are favorable for rendering the total performance of quantum communication efficient.

In this chapter, considering a general paradigm of single-error-type entanglement generation

in which, through a lossy channel, a sender sends the receiver an optical field entangled with

sender’s qubit by interaction V̂ , we derive the tight upper bound on the performances of these

protocols stated in terms of the average singlet fraction of generated entanglement and the

success probability. This derived bound is determined only by the channel loss, i.e., the length

of the channel, which clarifies how the loss in the channel affects the entanglement generation in a

quantitative way. In order to derive the bound, we require no additional assumption, differently

from Sec. 3.2, where the quantum memory of the sender is additionally assumed to start from

a symmetric state (|0⟩A + |1⟩A)/
√
2. Moreover, the general bound is shown to be achievable

by utilizing the symmetric protocol† in Sec. 3.1 that is realizable by linear optical elements and

photon-number-resolving detectors, and starts with the symmetric state (|0⟩A + |1⟩A)/
√
2.

This chapter is organized as follows. In Sec. 4.1, we define protocols to generate entanglement

with only one type of error, and the measure of the performance. We derive an upper bound

on those performances in Sec. 4.2, which is the main theorem in this chapter. In Sec. 4.3, we

show that the upper bound is achievable by convex combination of the symmetric protocol and

a trivial protocol. In Sec. 4.4, we derive an explicit expression of the tight upper bound as a

function of the transmittance of the channel loss.

4.1 Single-error-type entanglement generation and the measure of its performance

Let us define the family of single-error-type entanglement generation protocols. We require Alice

and Bob to make an entangled state with only one type of error. More precisely, Alice and Bob

† In fact, the symmetric protocol was dubbed the two-probe protocol in Chapter 3 in order to distinguish it from the
other entanglement generation protocols based on a single probe. But, in this chapter, because we do not care about the
number of the used probe pulses, we rename the protocol in order to clarify the initial state of the memory of the sender.

57
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are required to make qubits AB in an entangled state that can be transformed into a state

contained in the subspace spanned by Bell states {|Φ±⟩AB} via local unitary operations, where

|Φ±⟩AB := (|00⟩AB ± |11⟩AB)/
√
2.

To generate such an entangled state, Alice and Bob execute the following steps (Fig. 4.1):

(i) Alice prepares qubit A in her desired state |ϕ⟩A =
∑

j=0,1 e
iΘj

√
qj |j⟩A with real parameters

Θj , qj ≥ 0, and
∑

j qj = 1, and she makes it interact with a pulse in a coherent state |α⟩a =

e−|α|2/2eαâ
† |0⟩a via a unitary operation V̂ of Eq. (4.1). (ii) Alice sends the pulse a to Bob,

through a lossy channel described by an isometry

N̂ |α⟩a = |
√
Tα⟩b|

√
1− Tα⟩E , (4.2)

where 0 < T < 1 is the transmittance of the channel and system E is the environment. (iii)

Upon receiving the pulse in mode b, Bob may perform arbitrary operations and measurements

involving pulse b and his memory qubit B, and declare success outcome k occurring with a

probability pk or failure. (iv) If Step (iii) succeeds, depending on the outcome k, Alice and Bob

apply a local unitary operation ÛAk ⊗ ÛBk to the obtained state, in order to satisfy that the final

state τ̂ABk is contained in the subspace spanned by {|Φ±⟩AB}, and also that the nearest Bell

state to the state τ̂ABk is |Φ+⟩AB.
We evaluate the performance of the protocols by the total success probability,

Ps =
∑
k

pk, (4.3)

and the averaged fidelity of the obtained entangled states

F =
1

Ps

∑
k

pkFk, (4.4)

Lossy channel

kk

Lo
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Fig. 4.1. The scenario of entanglement generation protocols. |ϕ⟩A :=
∑

j=0,1

√
qje

iΘj |j⟩A. Bob’s quantum
operation returns qubit B in the state depending on outcome k, and he shares the outcome with Alice
by using classical communication.
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where Fk is

Fk := ⟨Φ+|τ̂ABk |Φ+⟩. (4.5)

Thanks to the choice of the unitary operation in Step (iv), Fk is equivalent to so-called singlet

fraction [64]. Since τ̂ABk is contained in the subspace spanned by {|Φ±⟩AB}, Fk ≥ 1/2 holds.

This means

F ≥ 1/2. (4.6)

We also allow Alice and Bob to switch among two or more protocols probabilistically. The

performance of such a mixed protocol is determined as follows. Suppose that Alice and Bob can

execute a protocol with performance (P
(1)
s , F (1)) and a protocol with performance (P

(2)
s , F (2)).

Then, by choosing these protocols with probabilities {r, 1 − r}, Alice and Bob can achieve

performance (P ′
s, F

′) determined by(
P ′
s

P ′
sF

′

)
= r

(
P

(1)
s

P
(1)
s F (1)

)
+ (1− r)

(
P

(2)
s

P
(2)
s F (2)

)
. (4.7)

It is thus convenient to describe the performance of a protocol by point (Ps, PsF ). Then, the

set of achievable points (Ps, PsF ) forms a convex set.

4.2 An upper bound on the performance of a single-error-type entanglement

generation protocol

We first introduce a protocol equivalent to the single-error-type entanglement generation proto-

col. Steps (i) and (ii) indicate that, when the pulse arrives at Bob, the state of the total system

AbE is written in the form of

|ψ⟩AbE =
∑
j=0,1

√
qj |j⟩A|uj⟩b|vj⟩E (4.8)

with 0 ≤ q0 ≤ 1, q0 + q1 = 1, and

|⟨u1|u0⟩|1−T = |⟨v1|v0⟩|T > 0. (4.9)

Let us define a phase flip channel ΛA on qubit A by

ΛA(ρ̂) := fρ̂+ (1− f)σ̂Az ρ̂σ̂
A
z (4.10)

with

f :=
1 + |⟨v1|v0⟩|

2
=

1 + |⟨u1|u0⟩|
1−T
T

2
(4.11)

and σ̂Az := |0⟩⟨0|A − |1⟩⟨1|A. From Eqs. (4.8), (4.10), and (4.11), we have

TrE [|ψ⟩⟨ψ|AbE ] = ΛA(|ψ′⟩⟨ψ′|Ab), (4.12)

where

|ψ′⟩Ab :=
∑
j=0,1

√
qje

i(−1)jφ|j⟩A|uj⟩b (4.13)

with 2φ := arg[⟨v1|v0⟩]. The effect of the lossy channel is thus equivalently described as prepa-

ration of |ψ′⟩Ab followed by ΛA. Since any operation of Bob commutes with ΛA, the protocol is
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equivalent to the following sequence (Fig. 4.2): (1) System Ab is prepared in |ψ′⟩Ab; (2) Bob’s

successful measurement leaves system AB in a state ρ̂ABk ; (3) ΛA is applied on qubit A.

In what follows, according to the equivalent protocol of Fig. 4.2, we show that, for fixed T

and |⟨u1|u0⟩|, the performance (Ps, PsF ) of an arbitrary protocol must be in the triangle with

the apexes,

X0 :=(0, 0),

X1 :=

(
1− |⟨u1|u0⟩|, (1− |⟨u1|u0⟩|)

1 + |⟨u1|u0⟩|
1−T
T

2

)
,

X2 := (1, 1/2) .

(4.14)

a) |q0 − q1| = 1 or |⟨u1|u0⟩| = 1. In these cases, from Eq. (4.13), |ψ′⟩Ab is a product state

between system A and b. This implies that τ̂ABk is a separable state, which means Fk ≤ 1/2.

From Eq. (4.6), F = 1/2. Thus, in this case, the performance (Ps, PsF ) of protocols must be on

the segment X0X2.

b) |q0 − q1| < 1 and |⟨u1|u0⟩| < 1. As stated in Step (iv), whenever Bob declares success

outcome k, the state τ̂ABk of their qubits satisfies

⟨Ψ±|τ̂ABk |Ψ±⟩ = ⟨Ψ′±
k |ΛA(ρ̂ABk )|Ψ′±

k ⟩ = 0 (4.15)

with |Ψ′±
k ⟩AB := ÛA†k ⊗ ÛB†

k |Ψ±⟩AB = (|x0k⟩A|y1k⟩B ± |x1k⟩A|y0k⟩B)/
√
2, |Ψ±⟩AB := (|01⟩AB ±

|10⟩AB)/
√
2, |xjk⟩A := ÛA†k |j⟩A, and |yjk⟩B := ÛB†

k |j⟩B (j = 0, 1). Since ρ̂ABk is positive and
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Fig. 4.2. An imaginary protocol equivalent to the real protocol in Fig. 1. |ϕ′⟩A :=∑
j=0,1

√
qje

iΘj+i(−1)jφ|j⟩A. Channel a→ b becomes ideal at the expense of the application of a phase-flip
channel ΛA.
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0 < f < 1, Eq. (4.15) indicates √
ρ̂ABk |Ψ′±

k ⟩AB = 0, (4.16)√
ρ̂ABk σ̂Az |Ψ′±

k ⟩AB = 0, (4.17)

for both ±. Note that Eq. (4.16) implies

ρ̂ABk =
1 + ak

2
|Φ′+
k ⟩⟨Φ′+

k |AB +
1− ak

2
|Φ′−
k ⟩⟨Φ′−

k |AB +
bk
2
|Φ′+
k ⟩⟨Φ′−

k |AB +
b∗k
2
|Φ′−
k ⟩⟨Φ′+

k |AB,
(4.18)

where |Φ′±
k ⟩AB := ÛA†k ⊗ ÛB†

k |Φ±⟩AB = (|x0k⟩A|y0k⟩B±|x1k⟩A|y1k⟩B)/
√
2, and the positivity of ρ̂ABk

implies

a2k + |bk|2 ≤ 1. (4.19)

Note that 0 ≤ ak ≤ 1 is satisfied by the choice of the unitary operation ÛAk ⊗ ÛBk in Step (iv).

Adding and subtracting Eqs. (4.16) and (4.17), we obtain√
ρ̂ABk |x0k⟩A|y1k⟩B =

√
ρ̂ABk σ̂Az |x0k⟩A|y1k⟩B

=
√
ρ̂ABk |x1k⟩A|y0k⟩B =

√
ρ̂ABk σ̂Az |x1k⟩A|y0k⟩B = 0. (4.20)

Since ρ̂ABk ̸= 0, the four states, |x0k⟩A|y1k⟩B, σ̂Az |x0k⟩A|y1k⟩B, |x1k⟩A|y0k⟩B, and σ̂Az |x1k⟩A|y0k⟩B, must

be linearly dependent, which only happens when {|xjk⟩A}j=0,1 is a set of eigenvectors of σ̂Az .

Combining this fact with Eq. (4.18), we obtain

ρ̂Ak := TrB[ρ̂
AB
k ] =

1̂A + zkσ̂
A
z

2
, (4.21)

where zk := ±Re(bk).

The fidelity Fk of the final state is given by Fk = ⟨Φ+|τ̂ABk |Φ+⟩ = ⟨Φ′+
k |ΛA(ρ̂ABk )|Φ′+

k ⟩.
Since {|xjk⟩A}j=0,1 is an eigenbasis of σ̂Az , we have σ̂Az |Φ′+

k ⟩ = ±|Φ′−
k ⟩, which means Fk =

f⟨Φ′+
k |ρ̂ABk |Φ′+

k ⟩+(1−f)⟨Φ′−
k |ρ̂ABk |Φ′−

k ⟩. From Eqs. (4.18) and (4.11), the fidelity Fk is rewritten

as

Fk =
1

2
(1 + |⟨v1|v0⟩|ak). (4.22)

Combining this equation, Eq. (4.19), and the definition of zk, we have(
2Fk − 1

|⟨v1|v0⟩|

)2

+ z2k ≤ 1. (4.23)

Let us consider the success probability of the protocol. Suppose that Bob’s failure measure-

ment returns a state ρ̂ABf with probability 1 − Ps. Since Alice does nothing until the end of

Bob’s generalized measurement, Alice’s averaged density operator is unchanged through the

measurement, i.e.,

ψ̂′A = Psρ̂
A
s + (1− Ps)ρ̂f

A, (4.24)

where ψ̂′A := Trb[|ψ′⟩⟨ψ′|Ab], ρ̂As := (
∑

k pkρ̂
A
k )/Ps and ρ̂f

A := TrB[ρ̂f
AB]. Eq. (4.13) indicates

that ψ̂′A is in the form of

ψ̂′A =
1̂A + x0σ̂

A
x + y0σ̂

A
y + z0σ̂

A
z

2
, (4.25)
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where σ̂Ax := |0⟩⟨1|A + |1⟩⟨0|A, σ̂Ay := −i|0⟩⟨1|A + i|1⟩⟨0|A, and x0, y0 and z0 satisfy

z0 = q0 − q1,

x20 + y20 = 4q0q1|⟨u1|u0⟩|2 = (1− z20)|⟨u1|u0⟩|2.
(4.26)

On the other hand, ρ̂As is written as

ρ̂As =
1

Ps

∑
k

pkρ̂
A
k =

1̂ + zsσ̂
A
z

2
, (4.27)

where zs := (
∑

k pkzk)/Ps, and it satisfies(
2F − 1

|⟨v1|v0⟩|

)2

+ z2s ≤ 1 (4.28)

from Eq. (4.23) and the convexity of function x2. Note that this inequality implies

F ≤ 1 + |⟨v1|v0⟩|
2

=
1 + |⟨u1|u0⟩|

1−T
T

2
, (4.29)

where we used Eq. (4.9). We also decompose ρ̂Af as

ρ̂Af =
1̂A + xf σ̂

A
x + yf σ̂

A
y + zf σ̂

A
z

2
(4.30)

with real numbers xf , yf , zf satisfying

x2f + y2f + z2f ≤ 1. (4.31)

From Eq. (4.24), we have

x0 = (1− Ps)xf ,

y0 = (1− Ps)yf ,

z0 = Pszs + (1− Ps)zf .

(4.32)

From these equations, Eq. (4.26) and Eq. (4.31), we obtain

g(Ps) := P 2
s (1− z2s )− 2Ps(1− z0zs) + (1− |⟨u1|u0⟩|2)(1− z20) ≥ 0, (4.33)

or equivalently, we have[
(1− |⟨u1|u0⟩|2)z0 − Pszs

]2
≤ [1− (1− z2s )|⟨u1|u0⟩|2]

(
Ps −

1− |⟨u1|u0⟩|2

1− |⟨u1|u0⟩|
√

1− z2s

)(
Ps −

1− |⟨u1|u0⟩|2

1 + |⟨u1|u0⟩|
√

1− z2s

)
. (4.34)

Since z20 < 1 and 0 < |⟨u1|u0⟩| < 1, we have

g(1− |⟨u1|u0⟩|2) = −
(
1− |⟨u1|u0⟩|2

)
[
(
1− z2s

)
|⟨u1|u0⟩|2 + (z0 − zs)

2] < 0, (4.35)

and

g(1) = −
(
1− z20

)
|⟨u1|u0⟩|2 − (z0 − zs)

2 < 0, (4.36)
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which mean g(Ps) < 0 for Ps ≥ 1−|⟨u1|u0⟩|2 because g(Ps) is linear or convex. Thus, Eq. (4.33)

implies

Ps < 1− |⟨u1|u0⟩|2. (4.37)

To satisfy inequality (4.34), the right-hand side of the inequality should be nonnegative, which

occurs only when

Ps ≤
1− |⟨u1|u0⟩|2

1 + |⟨u1|u0⟩|
√

1− z2s
(4.38)

under the condition of Eq. (4.37). Combining Eq. (4.28), we have

Ps ≤
1− |⟨u1|u0⟩|2

1 + |⟨u1|u0⟩|
(

2F−1
|⟨v1|v0⟩|

) , (4.39)

which can be rewritten as

PsF ≤1

2

(
1− |⟨v1|v0⟩|

|⟨u1|u0⟩|

)
Ps +

1

2
(1− |⟨u1|u0⟩|2)

|⟨v1|v0⟩|
|⟨u1|u0⟩|

(4.40)

=
1

2

(
1− |⟨u1|u0⟩|

1−2T
T

)
Ps +

1

2
(1− |⟨u1|u0⟩|2)|⟨u1|u0⟩|

1−2T
T , (4.41)

where we used Eq. (4.9).

Since Eq. (4.6), Eq. (4.29), and Eq. (4.41) must be satisfied at the same time, the performance

(Ps, PsF ) of an arbitrary protocol must be in the triangle with the apexes X0, X1, and

X3 :=

(
1− |⟨u1|u0⟩|2,

1

2
(1− |⟨u1|u0⟩|2)

)
, (4.42)

which is included in the triangle X0X1X2. This completes the proof.

4.3 Simulatability of an arbitrary protocol via symmetric protocols

Here we show that the performance of an arbitrary protocol, which is in the triangle defined

by Eq. (4.14) with fixed T and |⟨u1|u0⟩|, is simulatable by utilizing the symmetric protocol in

Sec. 3.1. In the protocol, Alice starts with preparing system A in a symmetric state |ϕ⟩A =

(|0⟩A + |1⟩A)/
√
2, and, upon receiving pulses from Alice, Bob carries out a measurement that

is composed of a simple combination of linear optical elements and photon-number-resolving

detectors. With a proper choice of the intensity of pulse a, the symmetric protocol can achieve

(Ps, PsF ) with

Ps =1− u,

F =
1 + u

1−T
T

2
,

(4.43)

for any u with 0 < u ≤ 1 (see Sec. 3.1). This indicates that the symmetric protocol can achieve

performances (Ps, PsF ) = X0 by choosing u = 1, and (Ps, PsF ) = X1 by choosing u = |⟨u1|u0⟩|.
On the other hand, the performance (Ps, PsF ) = X2 is also achievable by a trivial protocol in

which Alice and Bob prepare their memories in state |00⟩AB and declare success all the time.

The achievability of points X0, X1, and X2 indicates that all the points in the triangle X0X1X2

are achievable by mixing. Since this fact holds for any |⟨u1|u0⟩|, we conclude that, for given T ,



64 Tight bound on coherent-state-based entanglement generation over lossy channels

the performance of an arbitrary protocol is simulatable by combining symmetric protocols and

the trivial protocol.

4.4 Optimal performance of single-error-type entanglement generation

Here we calculate the optimal performance of the mixture of arbitrary single-error-type entan-

glement generation protocols for given T . As shown in the preceding section, for any T , the

performance (Ps, PsF ) of an arbitrary protocol is achievable by mixing symmetric protocols and

the trivial protocol. Since the performance achieved by a symmetric protocol or the trivial

protocol can be described by a point (Ps, PsF ) = (Ps, PsF
sym(Ps)) with

F sym(Ps) :=
1 + (1− Ps)

1−T
T

2
, (0 ≤ Ps ≤ 1), (4.44)

the performance of the mixture of arbitrary protocols must be in the convex hull of the region

S := {(Ps, PsF ) | 0 ≤ Ps ≤ 1, 1/2 ≤ F ≤ F sym(Ps)}. In what follows, we show that the convex

hull, Conv(S), is given by the region CS := {(Ps, PsF ) | 0 ≤ Ps ≤ 1, 1/2 ≤ F ≤ F opt(Ps)} with

F opt(Ps) defined by

F opt(Ps) :=


1+(1−Ps)

1−T
T

2 , (Ps ≤ T
1−T ),

1
2 + 1−Ps

2Ps

T
1−2T

(
1−2T
1−T

) 1−T
T
, (Ps >

T
1−T ).

(4.45)

Note that Ps > T/(1−T ) holds only when T < 1/2. The tight upper bound F opt(Ps) is depicted

in Fig. 4.3.

Let us proceed to the proof of CS = Conv(S). From Eq. (4.44), we have

dPsF
sym(Ps)

dPs
=
1

2

[
1 +

(
1− Ps

T

)
(1− Ps)

1−2T
T

]
, (4.46)

d2PsF
sym(Ps)

dPs
2 =

1

2

1− T

T

(
Ps
T

− 2

)
(1− Ps)

1−3T
T . (4.47)

The latter equation indicates

d2PsF
sym(Ps)

dPs
2 >0, (Ps > 2T ),

d2PsF
sym(Ps)

dPs
2 ≤0, (Ps ≤ 2T ).

(4.48)

a) T ≥ 1/2. In this case, F opt(Ps) = F sym(Ps), and hence S = CS . In addition, Eq. (4.48)

indicates that PsF
sym(Ps) is concave for 0 ≤ Ps ≤ 1. These facts imply that Conv(S) is

equivalent to S, namely, to CS .
b) T < 1/2. Let P ∗

s be P ∗
s := T/(1−T ). The proof begins with noting the following facts: (i)

F opt(Ps) = F sym(Ps) for 0 ≤ Ps < P ∗
s ; (ii) F

opt(P ∗
s ) = F sym(P ∗

s ); (iii) F
opt(1) = F sym(1); (iv)

PsF
opt(Ps) and (dPsF

opt(Ps))/(dPs) are continuous at Ps = P ∗
s ; (v)

d2PsF
opt(Ps)

dPs
2

{
< 0, (0 ≤ Ps < P ∗

s ),

= 0, (P ∗
s < Ps);

(4.49)
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Fig. 4.3. The optimal performances of single-error-type entanglement generation for 10 ≤ l ≤ 100 km
at intervals of 10 km, where we assume T = e−l/l0 and l0 = 25 km (corresponding to ∼ 0.17 dB/km
attenuation).

(vi) F opt(Ps) > F sym(Ps) for P
∗
s < Ps < 1. Facts (i)-(v) are easily confirmed from Eqs. (4.44)-

(4.45). Fact (vi) is proven by facts (ii)-(iii),

dPsF
opt(P ∗

s )

dPs
=

dPsF
sym(P ∗

s )

dPs
, (4.50)

and by Eqs. (4.48)-(4.49). Facts (iv)-(v) show that CS is convex. Facts (i)-(iii) and (vi) imply

S ⊂ CS . From facts (i)-(v), we have CS ⊂ Conv(S). Therefore, we conclude Conv(S) = CS .

4.5 Summary

In conclusion, we have provided the tight upper bound on the performances of protocols that

generate entanglement with only one type of error by transmitting pulses in coherent states

through a lossy channel. As represented by Eq. (4.45), the tight upper bound is stated in terms

of the success probability Ps and the average singlet fraction F of generated entanglement, and

is determined only by the transmittance T of the channel. In addition, we have shown that

the upper bound is achievable without large-scale quantum operations, namely by utilizing the

symmetric protocol composed of linear optical elements and photon-number-resolving detectors.

The arts enabling us to derive such a general bound can be summarized as follows. The proof

begins with replacing the real protocol in Fig. 4.1 by an equivalent (virtual) protocol in Fig. 4.2.

Thanks to the replacement, the effect of the optical loss in the practical channel is reduced

to a local phase-flip channel acting on Alice’s memory, and the quality of final entanglement

is bounded by the form of the local density operator of the memory A fed to the phase-flip

channel (see Eqs. (4.21) and (4.23)). Since the local density operator can only be altered by Bob

remotely at the expense of a failure probability, we are led to Eq. (4.24) relating the change in

Alice’s local density operator and the success probability. This relation enables us to derive a

trade-off relation Eq. (4.41) between the success probability Ps and the average singlet fraction

F , which leads to the tight upper bound of arbitrary protocols.

Throughout this chapter, we have focused on the entanglement generation protocols with

only one type of error, based on the fact that the known simple distillation protocols work more

efficiently against such a restricted type of errors. This has allowed us to treat the entanglement

generation protocols separately from distillation protocols. If we look into the properties of the

distillation protocols in more detail, there is a possibility that accepting multiple types of errors

for higher success probability in the generation protocol could lead to a better result if there
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exists a distillation protocol with a less penalty on the multiple types of errors. Pursuing such

a possibility is important for implementation of quantum repeaters, and is also interesting in

connection to the fundamental question of what is the best way of distributing entanglement

against an optical loss in the channel. We expect that the arts introduced here may be also

useful in solving such general problems in the search of good entanglement generation protocols.



5

Remote nondestructive parity measurement

As shown in Chapters 3 and 4, the two-probe protocol (or the symmetric protocol) is an efficient,

feasible, and fundamental tool to generate entanglement between distant quantum memories. In

this chapter, we open up the possibility of more striking applications of the two-probe protocol.

This chapter starts with showing that the two-probe protocol actually corresponds to the non-

destructive parity measurement on qubits AB. The nondestructive measurement is defined by

Kraus operators

P̂ABΦ :=|Φ+⟩⟨Φ+|AB + |Φ−⟩⟨Φ−|AB = |00⟩⟨00|AB + |11⟩⟨11|AB,
P̂ABΨ :=|Ψ+⟩⟨Ψ+|AB + |Ψ−⟩⟨Ψ−|AB = |01⟩⟨01|AB + |10⟩⟨10|AB.

(5.1)

Since the protocol allows us to implement the nondestructive parity measurement even if the

qubits AB are distant, we call it remote nondestructive parity measurement (RNPM) protocol.

We further show that the RNPM protocol can act as a single module for accomplishing quantum

information processing.

5.1 Apparatuses for RNPM protocol

First of all, we summarize physical systems and operations required for the implementation of

the RNPM protocol. We assign capital letters to quantum memories, and small letters to optical

pulses. The number states of optical pulses are denoted by small letters, e.g., |m⟩a, whereas the
coherent states are denoted by the Greek alphabets, e.g., |α⟩a.

The quantum memory A used here is assumed to interact with an optical pulse a in coherent

state |α⟩a with amplitude α ≥ 0 according to

ÛAaθ |0⟩A|α⟩a = |0⟩A|αeiθ/2⟩a,

ÛAaθ |1⟩A|α⟩a = |1⟩A|αe−iθ/2⟩a,
(5.2)

where ÛAaθ is a unitary operator, the parameter θ is determined by the strength of the interaction

(e.g. θ ∼ 0.01 [40]). Note that this unitary operation is achievable by applying a phase shifter

after the unitary operation of Eq. (2.159). We assume that the quantum memory allows us to

use the following unitary operations:

ẐA := |0⟩⟨0|A − |1⟩⟨1|A,
ĤA := |+⟩⟨0|A + |−⟩⟨1|A,

ẐAξ := e−iξσ
A
z /2 = e−iξ/2|0⟩⟨0|A + eiξ/2|1⟩⟨1|A,

(5.3)

67
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Fig. 5.1. RNPM protocol with complete photon-number-resolving detectors. The operation is represented
by Kraus operators {Q̂AB

α,mn}m,n=0,1,.... If photon-number-resolving detectors announce m > 0 (n > 0),

this operation acts as the nondestructive parity measurement P̂AB
Ψ (P̂AB

Φ ). If the detectors inform of

m = n = 0, the gate does not work, but the system AB receives no disturbance, i.e., Q̂AB
α,00 ∝ 1̂AB .

where |±⟩A := (|0⟩A ± |1⟩A)/
√
2. We also suppose that Ẑ-basis measurement on the quantum

memory is also implementable.

Optical pulses can be transmitted from mode a to mode b through a lossy channel described

by

N̂a→b
T |α⟩a = |

√
Tα⟩b|

√
1− Tα⟩e, (5.4)

where N̂a→b
T is an isometry, 0 ≤ T ≤ 1 represents the transmittance of the channel, and system

e is the environment. We use beam splitter B̂ab→a′b′
T defined by

B̂ab→a′b′
T |α⟩a|β⟩b = | −

√
Tα+

√
1− Tβ⟩a′ |

√
Tα+

√
1− Tβ⟩b′ (5.5)

for coherent states |α⟩a and |β⟩b. By utilizing a beam splitter and a pulse in a coherent state,

we can achieve a displacement operation D̂a→b′
α described by

D̂a→b′
α |β⟩a = eiIm[αβ∗]|α+ β⟩b′ (5.6)

as shown in Sec. 2.5.1.2. We also use a photon detector in Sec. 2.5.1.4 to make the projective

measurement on the number states {|m⟩a}m=0,1,....

5.2 RNPM protocol

In Section 5.2.1, we consider the RNPM protocol using ideal optical channels and photon detec-

tors. In practice, the optical channel are lossy and photon detectors are imperfect, and thus, in

Section 5.2.2, we also consider the effect of the imperfections on the RNPM.

5.2.1 RNPM protocol with ideal channels

Throughout Section 5.2.1, we assume that the used optical channels are ideal. Section 5.2.1.1

gives the working principle of the RNPM protocol with perfect detectors. In Sec. 5.2.1.2, we

consider cases where photon detectors can count up to N(≥ 0). In Appendix 1, we also consider

cases where the detectors have dark counts.
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5.2.1.1 RNPM protocol with complete photon-number-resolving detector

As the first step, we show that the nondestructive parity measurement {P̂Φ, P̂Ψ} is achievable by

RNPM protocol (Fig. 5.1) using interaction ÛAaθ , the ideal photon-number-resolving detectors,

and beam splitters. The RNPM protocol starts with making measurement described by Kraus

operators,

M̂AB
α,mn := a⟨m|b⟨n|ẐAϕ(α)Ẑ

B
ϕ(α)V̂

ab
α ÛAaθ ÛBbθ |α⟩a|α⟩b, (5.7)

where α ≥ 0, and V̂ ab
α and ϕ(α) are defined as

V̂ ab
α := D̂b→b

−
√
2α cos(θ/2)

B̂ab→ab
1/2 , (5.8)

ϕ(α) := arg⟨αe−iθ/2|αeiθ/2⟩ = α2 sin θ. (5.9)

Kraus operator M̂AB
α,mn corresponds to an event where the ideal photon-number-resolving detector

on mode a (on mode b) announces the arrival of m photons (n photons). By noting relations

V̂ ab
α |αeiθ/2⟩a|αeiθ/2⟩b = eiϕ(α)|0⟩a|β(α)⟩b,

V̂ ab
α |αeiθ/2⟩a|αe−iθ/2⟩b = | − β(α)⟩a|0⟩b,

V̂ ab
α |αe−iθ/2⟩a|αeiθ/2⟩b = |β(α)⟩a|0⟩b,

V̂ ab
α |αe−iθ/2⟩a|αe−iθ/2⟩b = e−iϕ(α)|0⟩a| − β(α)⟩b,

(5.10)

with

β(α) := i
√
2α sin(θ/2), (5.11)

we can show that measurement M̂AB
α,mn acts on qubits AB as

M̂AB
α,mn|00⟩AB = δm0⟨n|β(α)⟩|00⟩AB,

M̂AB
α,mn|01⟩AB = δn0(−1)m⟨m|β(α)⟩|01⟩AB,

M̂AB
α,mn|10⟩AB = δn0⟨m|β(α)⟩|10⟩AB,

M̂AB
α,mn|11⟩AB = δm0(−1)n⟨n|β(α)⟩|11⟩AB.

(5.12)

This implies

M̂AB
α,mn =


⟨n|β(α)⟩[|00⟩⟨00|AB + (−1)n|11⟩⟨11|AB], (m = 0, n > 0),

⟨m|β(α)⟩[(−1)m|01⟩⟨01|AB + |10⟩⟨10|AB], (m > 0, n = 0),

⟨0|β(α)⟩1̂AB, (m = n = 0),

0, (m > 0, n > 0).

(5.13)

By applying (ẐB)m+n after the measurement M̂AB
α,mn, the net Kraus operator (ẐB)m+nM̂AB

α,mn is

shown to be

Q̂ABα,mn := (ẐB)m+nM̂AB
α,mn =


⟨n|β(α)⟩P̂ABΦ , (m = 0, n > 0),

⟨m|β(α)⟩P̂ABΨ , (m > 0, n = 0),

⟨0|β(α)⟩1̂AB, (m = n = 0),

0, (m > 0, n > 0).

(5.14)
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Therefore, the RNPM protocol in Fig. 5.1 implements the nondestructive parity measurement

with success probability 1− r(α) with

r(α) := |⟨αe−iθ/2|αeiθ/2⟩| = |⟨0|β(α)⟩|2 = e−2α2 sin2(θ/2) = e−α
2(1−cos θ). (5.15)

Note that, even if the measurement outcome is m + n = 0, the system AB receives no distur-

bance, implying that one can freely repeat this measurement until getting a success event (m,n)

satisfying m+n > 0. We also note that, if we use coherent states with α→ ∞, Q̂ABα,mn is reduced

to

Q̂AB∞,mn =

{
P̂ABΦ , (m = 0, n > 0),

P̂ABΨ , (m > 0, n = 0),
(5.16)

which implies that the nondestructive parity measurement {P̂ABΦ , P̂ABΨ } is achievable without

failure.

5.2.1.2 RNPM protocol with photon detector with a threshold

Let us consider how the RNPM protocol works in the case where the photon detectors can count

up to N(≥ 0) photons (see Fig. 5.2). More precisely, the detector gives outcome m(≤ N) if the

number of arrival photons is m(≤ N), but it returns outcome N + 1 if the number of arrival

photons exceeds N . Note that the detector with N = 1 is called the single-photon detector, and

the detector with N = 0 is called the threshold detector.

Let us see the equivalence of Fig. 5.2, namely the fact that the measurement with outcome

(m,n) in Fig. 5.2 is equivalent to the ideal nondestructive parity measurement followed by a

phase-flip channel Λm+n
2t(N,α)−1, where

te(N,α) :=

∑
m∈{2n|n∈Z,2n≥N+1} |⟨m|β(α)⟩|2∑∞

m=N+1 |⟨m|β(α)⟩|2
, (5.17)

t(N,α) :=max{te(N,α), 1− te(N,α)}, (5.18)

Λr(ρ̂) :=
1 + r

2
ρ̂+

1− r

2
Ẑρ̂Ẑ, (5.19)

Λk2t(N,α)−1 :=

{
I, (0 ≤ k ≤ N),

Λ2t(N,α)−1, (k = N + 1).
(5.20)

To show the equivalence, we first note∑N
k=1(Ẑ

B)kM̂AB
α,0kρ̂

AB[(ẐB)kM̂AB
α,0k]

†∑N
k=1 |⟨k|β(α)⟩|2

= P̂ABΦ ρ̂ABP̂ABΦ ,

ẐBN,α,0(N+1)

(∑
k>N M̂

AB
α,0kρ̂

AB(M̂AB
α,0k)

†
)
ẐBN,α,0(N+1)∑

k>N |⟨k|β(α)⟩|2
= ΛB2t(N,α)−1(P̂

AB
Φ ρ̂ABP̂ABΦ ),∑N

k=1(Ẑ
B)kM̂AB

α,k0ρ̂
AB[(ẐB)kM̂AB

α,k0]
†∑N

k=1 |⟨k|β(α)⟩|2
= P̂ABΨ ρ̂ABP̂ABΨ ,

ẐBN,α,(N+1)0

(∑
k>N M̂

AB
α,k0ρ̂

AB(M̂AB
α,k0)

†
)
ẐBN,α,(N+1)0∑

k>N |⟨k|β(α)⟩|2
= ΛB2t(N,α)−1(P̂

AB
Ψ ρ̂ABP̂ABΨ ),

(5.21)
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Fig. 5.2. RNPM protocol with photon detectors with threshold N . This operation is denoted as quan-
tum operations {PAB

N,α,mn}m,n=0,...,N+1. {Q̂AB
N,α,mn}m,n=0,...,N+1 works as the ideal nondestructive parity

measurement for m+ n > 0 and as the identity channel for m+ n = 0.

where ẐN,α,mn is defined as

ẐN,α,mn :=


Ẑm+n, (0 ≤ m+ n ≤ N),

1̂, (m+ n = N + 1, te(N,α) ≥ 1/2),

Ẑ, (m+ n = N + 1, te(N,α) < 1/2).

(5.22)

Eq. (5.21) indicates that the measurement transforms an input state ρ̂AB into unnormalized

states according to

ρ̂AB
PN,α,mn−→



(
∑N

k=1 |⟨k|β(α)⟩|2)P̂ABΦ ρ̂ABP̂ABΦ , (m = 0, 0 < n ≤ N),

(
∑∞

k=N+1 |⟨k|β(α)⟩|2)ΛB2t(N,α)−1(P̂
AB
Φ ρ̂ABP̂ABΦ ), (m = 0, n = N + 1),

(
∑N

k=1 |⟨k|β(α)⟩|2)P̂ABΨ ρ̂ABP̂ABΨ , (0 < m ≤ N,n = 0),

(
∑∞

k=N+1 |⟨k|β(α)⟩|2)ΛB2t(N,α)−1(P̂
AB
Ψ ρ̂ABP̂ABΨ ), (m = N + 1, n = 0),

|⟨0|β(α)⟩|2ρ̂AB, (m = n = 0),

0, (m > 0, n > 0).

(5.23)

With Kraus operators

Q̂N,α,mn :=



|⟨n|β(α)⟩|P̂ABΦ , (m = 0, 0 < n ≤ N),√∑∞
k=N+1 |⟨k|β(α)⟩|2P̂ABΦ , (m = 0, n = N + 1),

|⟨m|β(α)⟩|P̂ABΨ , (0 < m ≤ N,n = 0),√∑∞
k=N+1 |⟨k|β(α)⟩|2P̂ABΨ , (m = N + 1, n = 0),

|⟨0|β(α)⟩|ÎAB, (m = n = 0),

0, (m > 0, n > 0),

(5.24)

we can summarize the working principle of the RNPM protocol as in Fig. 5.2. Therefore, the

RNPM protocol based on photon detectors with threshold N works as the ideal channel for out-

come m+n = 0 occurring with probability |⟨0|β(α)⟩|2 = r(α), as the ideal nondestructive parity

measurement for outcomes 0 < m + n ≤ N occurring with probability
∑N

k=1 |⟨k|β(α)⟩|2, and
as the ideal nondestructive parity measurement with phase flip channel ΛB2t(N,α)−1 for outcomes

m+ n = N + 1 occurring with probability
∑

k>N |⟨k|β(α)⟩|2. Hence, allowing the mixture of a
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Fig. 5.3. Ps,N (α) :=
∑N

k=1 |⟨k|β(α)⟩|2 with N = 1, 2 . . . , 7 for Ps,∞(α) = 1− r(α).

phase-flip channel, we can regard all the outcomes (m,n) with m+n > 0 as the success events of

the RNPM protocol. Thus, the success probability of this protocol is 1− |⟨0|β(α)⟩|2 = 1− r(α).

However, in the RNPM protocol with photon detectors with N > 0, one can regard events

satisfying m+ n = N +1 as failure events, in order to prevent the mixture of phase flip channel

ΛB2t(N,α)−1. In this case, the success probability is Ps,N (α) :=
∑N

k=1 |⟨k|β(α)⟩|2. We describe

the relation between this success probability and the ideal one Ps,∞(α) in Fig. 5.3. This figure

suggests that Ps,N (α) with N & 5 are comparable with Ps,∞(α). Thus, the power of the

RNPM protocol with detectors with moderate threshold N & 5 is approximately equal to the

ideal RNPM protocol. In addition, Fig. 5.3 suggests that the penalty of discarding events with

m + n = N + 1, i.e., Ps,∞(α) − Ps,N (α), is very small for small α. From these facts, there will

be cases where it is better to consider events satisfying m+ n = N + 1 to be failure.

5.2.2 Realistic RNPM protocol

In the previous section, we have shown that the nondestructive parity measurement is imple-

mentable by ideal optical channels, beam splitters, and photon detectors. Actually, the loss of

photons is inevitably caused by practical devices, e.g., optical channels, quantum memories, and

photon detectors. Here we clarify the effect of such losses for the RNPM protocol, which is based

on several equivalences on quantum operations. We begin with showing the equivalences.

5.2.2.1 A channel equivalent to the discard of a pulse entangled with qubit-state

We consider the effect of the discard of pulse a entangled with quantum memory A by interaction

ÛAaθ (Fig. 5.4). More precisely, we seek an effect equivalent to ÛAaθ |α⟩a followed by the partial

trace over pulse a. We note

|j⟩⟨k|A ⊗ |α⟩⟨α|a
ÛAa
θ−→ |j⟩⟨k|A ⊗ |αei(−1)jθ/2⟩⟨αei(−1)kθ/2|a

Tra−→ ⟨αei(−1)kθ/2|αei(−1)jθ/2⟩|j⟩⟨k|A

= |⟨αei(−1)kθ/2|αei(−1)jθ/2⟩|eiarg⟨αei(−1)kθ/2|αei(−1)jθ/2⟩|j⟩⟨k|A
= ΛAr(α)(Ẑ

A
−ϕ(α)|j⟩⟨k|A(Ẑ

A
−ϕ(α))

†). (5.25)

Since the map consisting of ÛAaθ |α⟩a and the partial trace over system a are linear, Eq. (5.25)

indicates the equivalence in Fig. 5.4.
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rotation ẐA
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5.2.2.2 A channel equivalent to the loss for a pulse entangled with qubit-state

We consider the effect of the loss occurring on the morrow of the interaction Ûθ (Fig. 5.5). We

begin with showing

|j⟩⟨k|A ⊗ |α⟩⟨α|a
ÛAa
θ−→ |j⟩⟨k|A ⊗ |αei(−1)jθ/2⟩⟨αei(−1)kθ/2|a

N̂a→b
T−→ |j⟩⟨k|A ⊗ |

√
Tαei(−1)jθ/2⟩⟨

√
Tαei(−1)kθ/2|b ⊗ |

√
1− Tαei(−1)jθ/2⟩⟨

√
1− Tαei(−1)kθ/2|e

= ÛAeθ ÛAbθ (|j⟩⟨k|A ⊗ |
√
Tα⟩⟨

√
Tα|b ⊗ |

√
1− Tα⟩⟨

√
1− Tα|e)(ÛAbθ )†(ÛAeθ )†, (5.26)

where T represents the net transmittance of the optical channel. This shows the first equivalence

in Fig. 5.5. The second equivalence in Fig. 5.5 is shown from the equivalence in Fig. 5.4.

5.2.2.3 A channel equivalent to the loss in photon detectors

Practical detectors do not necessarily announce the arrival of photons even if the detectors

actually receive photons, namely their quantum efficiencies η can be non-unity. Such a practical

detector can be regarded as an ideal detector following a lossy optical channel with transmittance

η (see Fig. 2.8 (b)). Because the photon detectors are used after unitary operation V̂ ab
γ in the

RNPM protocol, for clarifying the imperfection coming from the non-unity quantum efficiency,

it is sufficient to consider the effect of the lossy channels after unitary operation V̂ ab
γ (Fig. 5.6).

Here we show that the effect of the lossy channels can be regarded as lossy channels before

unitary operation V̂ ab√
ηγ .
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Fig. 5.6. Equivalence between unitary operator V̂ ab
γ followed by lossy channels N̂a→a

η ⊗ N̂ b→b
η and lossy

channels N̂a→a
η ⊗ N̂ b→b

η followed by unitary operator V̂ ab√
ηγ .

By comparing process

|α⟩a|β⟩b
V̂ ab
γ−→eiIm[−γ cos(θ/2)(α∗+β∗)]|(−α+ β)/

√
2⟩a|(α+ β)/

√
2−

√
2γ cos(θ/2)⟩b (5.27)

N̂a→a
η ⊗N̂b→b

η−→ eiIm[−γ cos(θ/2)(α∗+β∗)]|√η(−α+ β)/
√
2⟩a|

√
η(α+ β)/

√
2−

√
2ηγ cos(θ/2)⟩b

⊗ |
√

1− η(−α+ β)/
√
2⟩e1 |

√
1− η(α+ β)/

√
2−

√
2(1− η)γ cos(θ/2)⟩e2 (5.28)

and process

|α⟩a|β⟩b
N̂a→a

η ⊗N̂b→b
η−→ |√ηα⟩a|

√
ηβ⟩b|

√
1− ηα⟩e1 |

√
1− ηβ⟩e2 (5.29)

V̂ ab√
ηγ−→ eiIm[−γ cos(θ/2)η(α∗+β∗)]|√η(−α+ β)/

√
2⟩a|

√
η(α+ β)/

√
2−

√
2ηγ cos(θ/2)⟩b

⊗ |
√

1− ηα⟩e1 |
√

1− ηβ⟩e2 (5.30)

V̂
e1e2√
1−ηγ−→ eiIm[−γ cos(θ/2)(α∗+β∗)]|√η(−α+ β)/

√
2⟩a|

√
η(α+ β)/

√
2−

√
2ηγ cos(θ/2)⟩b

⊗ |
√

1− η(−α+ β)/
√
2⟩e1 |

√
1− η(α+ β)/

√
2−

√
2(1− η)γ cos(θ/2)⟩e2 ,

(5.31)

we see that these processes are equivalent. Even if one adds the partial trace over system e1e2
to these processes, the total operations are equivalent. On the other hand, the partial trace

over system e1e2 following the process of Eq. (5.31) is equivalent to one following the process of

Eq. (5.30), because the partial trace over system e1e2 is invariant under unitary operator V̂ e1e2√
1−ηγ

on system e1e2. Therefore, the equivalence in Fig. 5.6 holds.

5.2.2.4 Realistic RNPM protocol

Considering the effect of photon losses, we reconstruct nondestructive parity measurement as

in Fig. 5.7, which is denoted by the measurement {PABTA,TB ,η,N,α,mn}m,n=0,...,N+1. In the figure,

TA (TB) represents the net transmittance of the optical channel a → c1 (b → c2), and η is

the quantum efficiency of the photon detector. The first equivalence in Fig. 5.7 is proved by

equivalences of Fig. 5.5 and Fig. 5.6, by commutability of Λr and Ẑξ for any r, ξ, and by equation

ΛrΛs = Λrs (5.32)

for any r and s. The second and the third equivalences in Fig. 5.7 are shown from Fig. 5.2. Hence,

the realistic nondestructive parity measurement PABTA,TB ,η,N,α,mn is effectively the same as the non-

destructive parity measurement PABN,α,mn followed by the phase flip channel ΛA
r(
√

(1−TAη)/(TAη)α)
⊗

ΛB
r(
√

(1−TBη)/(TBη)α)
. This implies that a phase flip channel is added to the nondestructive parity
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Fig. 5.7. Realistic RNPM protocol {PAB
TA,TB ,η,N,α,mn}m,n=0,...,N+1. This operation is equiva-

lent to nondestructive parity measurement {PAB
N,α,mn}m,n=0,...,N+1 followed by phase-flip channels

ΛA

r(
√

(1−TAη)/(TAη)α)
⊗ ΛB

r(
√

(1−TBη)/(TBη)α)
.

measurement PABN,α,mn as the penalty of the photon losses. Moreover, the phase error rates show

a trade-off relation to the success probability through amplitude α of the used pulses. In fact,

the phase error rates [1 − r(
√

(1− TXη)/(TXη)α)]/2 (X = A,B) and the success probability

1 − r(α) monotonically increase with α. Therefore, the realistic RNPM protocol performs as

RNPM with a trade-off between the success probability and the phase error rates.

5.2.2.5 Realistic RNPM protocol on distant quantum memories

Here we show that the realistic nondestructive parity measurement {PABTA,TB ,η,N,α,mn}m,n=0,...,N+1

is applicable even if quantum memories AB are distant. Suppose that the memory A (B) is held

by Alice (Bob), and they locate over distance L0. Alice (Bob) is connected to a station C by an

optical channel a1 → c1 with length lA (b1 → c2 with length L0 − lA), where 0 ≤ lA ≤ L0. In

this case, we should assume

TA =τe−lA/Latt ,

TB =τe−(L0−lA)/Latt ,
(5.33)

where τ is the transmittance of the local optical channel, and Latt is the attenuation length

of the used channels. For accomplishing the realistic nondestructive parity measurement, Alice

(Bob) should send the local oscillators (LOs) to station C through the same channel a1 → c1
(b1 → c2) with the signal pulses so that the party in station C can offset unwished phase shifts

occurring in the channel. By these modifications, distant parties, Alice and Bob, can achieve

the realistic nondestructive parity measurement {PABTA,TB ,η,N,α,mn}m,n=0,...,N+1 with Eq. (5.33).

5.3 Applications of RNPM protocol

In this section, we show several striking applications of the RNPM protocol. In particular, the

RNPM protocol enables parity check measurement, Bell measurement, isometry ĈABZ |+⟩A, and
CZ gate ĈABZ . These operations play the primary role for implementing long-distance quantum

communication and quantum computation.
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5.3.1 Parity check measurement

The parity check measurement {R̂k}k=0,1 was introduced in Sec. 2.4. The measurement is CNOT

gate followed by Ẑ-basis measurement {|k⟩}k=0,1 on the target qubit (see Fig. 5.8), and the Kraus

operators are

R̂AB→B
0 :=A⟨0|ĈBAX = |0⟩BAB⟨00|+ |1⟩BAB⟨11| = |+⟩BAB⟨Φ+|+ |−⟩BAB⟨Φ−|,

R̂AB→B
1 :=A⟨1|ĈBAX = |0⟩BAB⟨10|+ |1⟩BAB⟨01| = |+⟩BAB⟨Ψ+| − |−⟩BAB⟨Ψ−|,

(5.34)

where ĈCTX represents CNOT gate defined by

ĈCTX := |0⟩⟨0|C ⊗ 1̂T + |1⟩⟨1|C ⊗ X̂T . (5.35)

As seen in Sec. 2.4, the measurement is essential for implementing the recurrence method. In

addition, the measurement is also utilized as a fusion gate of cluster states [74, 75]. In this

section, we show that the parity check measurement is implementable by the RNPM protocol.

5.3.1.1 Ideal parity check measurement

We begin with showing that the parity check measurement is achievable by utilizing the ideal

nondestructive parity measurement {Q̂AB∞,ij}i,j=0,1,.... From Eq. (5.16) and

A⟨m|ĤA|Φ±⟩AB =
1

2
(|0⟩B ± (−1)m|1⟩B)

(ZB)m−→ 1√
2
|±⟩B,

A⟨m|ĤA|Ψ±⟩AB =
1

2
(|1⟩B ± (−1)m|0⟩B)

(ZB)m−→ ±(−1)m√
2

|±⟩B,
(5.36)

we have

(ẐB)mA⟨m|ĤAQ̂AB∞,0j =
1√
2
(|+⟩BAB⟨Φ+|+ |−⟩BAB⟨Φ−|) = 1√

2
R̂AB→B

0 , (5.37)

(ẐB)mA⟨m|ĤAQ̂AB∞,i0 =
(−1)m√

2
(|+⟩BAB⟨Ψ+| − |−⟩BAB⟨Ψ−|) = (−1)m√

2
R̂AB→B

1 , (5.38)
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for i, j > 0. This fact implies the equivalence in Fig. 5.8, where

k(ij) :=

{
0, (i = 0, j > 0),

1, (i > 0, j = 0).
(5.39)

Hence we conclude that the parity check measurement {R̂k}k=0,1 is achievable by using the

nondestructive parity measurement {Q̂AB∞,ij}i,j=0,1,....

5.3.1.2 Realistic parity check measurement

Here we consider a parity check measurement based on the realistic RNPM protocol. The realis-

tic parity measurement is defined as in Fig. 5.9, and it is denoted by {RABTA,TB ,η,N,α,ij}i,j=0,...,N+1.

In order to clarify the property of the realistic parity check measurement, we show several equiva-

lences in Fig. 5.9. The first equivalence in the figure is shown from Fig. 5.7. The last arrow in the

figure indicates the equivalence holding only when i+j > 0, which is shown from the equivalence

in Fig. A2.1 (b). The last figure in Fig. 5.9 and Fig. 5.8 imply that, for i + j > 0, the realistic

parity check measurement RAB→B
TA,TB ,η,N,α,ij

is the same as the ideal parity check R̂k(ij) followed by

phase-flip channel ΛB
r(
√

(1−TAη)/(TAη)α)r(
√

(1−TBη)/(TBη)α)
Λi+j,B2t(N,α)−1. Therefore, by the realistic

RNPM protocol, we can perform the parity check measurement with a phase flip channel. The

failure outcome (i+ j = 0) of the parity check measurement {RABTA,TB ,η,N,α,ij}i,j=0,...,N+1 occurs

with probability r(α).

5.3.2 Bell measurement

As represented in Sec. 2.1, Bell measurement is defined by Kraus operators

B̂AB
00 := AB⟨Φ+|,

B̂AB
01 := AB⟨Ψ+|,

B̂AB
10 := AB⟨Φ−|,

B̂AB
11 := −AB⟨Ψ−|.

(5.40)

The measurement is essential for executing the quantum teleportation protocol and the entan-

glement swapping. In this section, we show that the Bell measurement is implementable by the

RNPM protocol.

5.3.2.1 Ideal Bell measurement

Here we start with noting that Bell measurement is achievable by the ideal parity check mea-

surement {R̂AB→B
k }k=0,1 and X̂-basis measurement on system B. This fact is easily confirmed

by

B⟨0|ĤBR̂AB→B
0 = AB⟨Φ+| = B̂AB

00 ,

B⟨0|ĤBR̂AB→B
1 = AB⟨Ψ+| = B̂AB

01 ,

B⟨1|ĤBR̂AB→B
0 = AB⟨Φ−| = B̂AB

10 ,

B⟨1|ĤBR̂AB→B
1 = −AB⟨Ψ−| = B̂AB

11 .

(5.41)

Since the measurement {R̂AB→B
k }k=0,1 is achievable by ideal nondestructive parity measure-

ment {Q̂AB∞,ij}i,j=0,1,..., the ideal Bell measurement {B̂lk}k,l=0,1,... is also achievable by utilizing

{Q̂AB∞,ij}i,j=0,1,.... This equivalence is described in Fig. 5.10.
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5.3.2.2 Realistic Bell measurement

Here we introduce Bell measurement based on the realistic RNPM protocol. The realistic Bell

measurement {BAB
TA,TB ,η,N,α,lij

}i,j=0,...,N+1; l=0,1 is executed by the realistic parity check measure-

ment {RAB→B
TA,TB ,η,N,α,ij

}i,j=0,...,N+1 and X̂-basis measurement on system B, as in Fig. 5.11. The

equivalence in Fig. 5.11 is derived from the equivalence in Fig. A2.1 (a). This equivalence and

Fig. 5.10 imply that, when i+j > 0, the realistic Bell measurement BAB
TA,TB ,η,N,α,lij

is the same as

the ideal Bell measurement B̂lk(ij) following ΛA
r(
√

(1−TAη)/(TAη)α)
⊗ΛB

r(
√

(1−TBη)/(TBη)α)
Λi+j,B2t(N,α)−1.

Hence, by the realistic RNPM protocol, we can accomplish the Bell measurement with a phase

error. The failure outcome (i+ j = 0) of the Bell measurement {BAB
TA,TB ,η,N,α,lij

}i,j=0,...,N+1; l=0,1

occurs with probability r(α). For simplicity, we describe this working principle by the last figure

of 5.11, where B̂AB
N,α,lk(mn) are (partial) Kraus operators

B̂AB
N,α,lk(mn) :=



|⟨n|β(α)⟩|B̂AB
l0 , (m = 0, 0 < n ≤ N),√∑∞

k=N+1 |⟨k|β(α)⟩|2B̂AB
l0 , (m = 0, n = N + 1),

|⟨m|β(α)⟩|B̂AB
l1 , (0 < m ≤ N,n = 0),√∑∞

k=N+1 |⟨k|β(α)⟩|2B̂AB
l1 , (m = N + 1, n = 0),

0, (m > 0, n > 0).

(5.42)

5.3.3 Isometry ĈABZ |+⟩A
The CZ gate defined by

ĈABZ := |0⟩⟨0|A ⊗ 1̂B + |1⟩⟨1|A ⊗ ẐB (5.43)

is essential for generating the so-called graph state [47, 48, 49]. The graph state is known [48, 49]

as an entangled state enabling universal quantum computation through sequential one-qubit

projective measurements. Actually, for connecting a qubit A in state |+⟩A with a qubit B in a

graph state through a single bond, isometry ĈABZ |+⟩A is sufficient [49]. The isometry ĈABZ |+⟩A
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Fig. 5.13. The operation to add a qubit to a graph state based on the realistic nondestructive parity
measurement.

is described by

ĈABZ |+⟩A =
1√
2
(|0⟩A ⊗ 1̂B + |1⟩A ⊗ ẐB). (5.44)

Here we show that this operation is achieved by the RNPM protocol.

5.3.3.1 Isometry ĈABZ |+⟩A based on the ideal nondestructive parity measurement

Here we begin with showing that the isometry ĈABZ |+⟩A is achieved by the ideal nondestructive

parity measurement {Q̂AB∞,ij}i,j=0,1,.... This fact is easily confirmed by noting

ĤAQ̂AB∞,0j |+⟩A = (|+ 0⟩⟨00|AB + | − 1⟩⟨11|AB)|+⟩A =
1√
2
ĈABZ |+⟩A,

ẐAĤAQ̂AB∞,i0|+⟩A = (| − 1⟩⟨01|AB + |+ 0⟩⟨10|AB)|+⟩A =
1√
2
ĈABZ |+⟩A,

(5.45)

for i, j > 0. This equivalence is shown in Fig. 5.12.

5.3.3.2 Isometry ĈABZ |+⟩A based on the realistic nondestructive parity measurement

Let us consider the operation {C+,B→AB
Z,TA,TB ,η,N,α,ij

}i,j=0,...,N+1 in Fig. 5.13. From the equivalences in

Figs. 5.7 and A2.1 (b), one can confirm the equivalence in Fig. 5.13. The last figure in Fig. 5.13

and Fig, 5.12 indicate that, in the case of i+j > 0, the net operation is equivalent to the isometry

ĈABZ |+⟩A followed by phase-flip channel ΛB
r(
√

(1−TAη)/(TAη)α)r(
√

(1−TBη)/(TBη)α)
Λi+j,B2t(N,α)−1. Thus,

by the RNPM protocol, we can achieve the isometry ĈABZ |+⟩A with a phase error. The failure

outcome (i+ j = 0) of the operation {C+,B→AB
Z,TA,TB ,η,N,α,ij

}i,j=0,...,N+1 occurs with probability r(α).

5.3.4 CZ gate ĈABZ

CZ gate is essential for implementing quantum computing. In fact, universal quantum compu-

tation is achievable by the combination of CZ gates and one-qubit unitary operations [50]. In

addition, even for generating closed loops in a graph state, CZ gate is required to connect qubits

AB in a graph C. In this section, we show that CZ gate is achievable by the RNPM protocol.
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5.3.4.1 CZ gate by the ideal nondestructive parity measurement

Here we show that CZ gate is achievable by the ideal nondestructive parity measurement

{Q̂∞,ij}i,j=0,1,.... The relations

R̂AC→A
0 ĈBCZ |+⟩C =(|0⟩AAC⟨00|+ |1⟩AAC⟨11|)

1√
2
(1̂B ⊗ |0⟩C + ẐB ⊗ |1⟩C) =

1√
2
ĈABZ

(5.46)

ẐBR̂AC→A
1 ĈBCZ |+⟩C =(|0⟩AAC⟨01|+ |1⟩AAC⟨10|)

1√
2
(ẐB ⊗ |0⟩C + 1̂B ⊗ |1⟩C) =

1√
2
ĈABZ ,

(5.47)

imply the first equivalence in Fig. 5.14. The second equivalence is shown from the equivalences in

Figs. 5.8 and 5.12. The last figure indicates that CZ gate can be accomplished by the combination

of the two ideal nondestructive parity measurements.

5.3.4.2 CZ gate by the realistic nondestructive parity measurement

Let us consider the operation {CABZ,TA,TB ,TC ,η,N,α,ijlm}i,j,l,m=0,...,N+1 in Fig. 5.15. From Figs. 5.7

and A2.1 (b), one can show the validity of the arrow in Fig. 5.15. The last figure in Fig. 5.15 and

Fig. 5.14 indicate that, for i+ j > 0 and l+m > 0, the operation CABZ,TA,TB ,TC ,η,N,α,ijlm is equiva-

lent to CZ gate followed by phase-flip channel ΛA
r(
√

(1−TAη)/(TAη)α)r(
√

(1−TCη)/(TCη)α)
Λl+m,A2t(N,α)−1⊗

ΛB
r(
√

(1−TBη)/(TBη)α)r(
√

(1−TCη)/(TCη)α)
Λi+j,B2t(N,α)−1. Hence, by the RNPM protocols, we can achieve

the CZ gate with a phase error with probability [1− r(α)]2.

5.3.5 Summary

In this section, we have shown that several primitive quantum operations for implementing long-

distance quantum communication and universal quantum computation are realizable by using
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only the RNPM protocols and single-qubit operations. This implies that the RNPM protocols

and single-qubit operations can be a universal set for arbitrary quantum operations. However,

because the practical RNPM protocol has noises such as photon losses, the RNPM protocol

inevitably has a trade-off between the success probability and the received phase error rate.

Therefore, it should be clarified whether, against such a trade-off, the RNPM protocol really

works as a useful gate. In the next chapter, as the first step of this trial, we show that the RNPM

protocol properly works for accomplishing efficient long-distance quantum communication.



6

Quantum repeaters with remote nondestructive parity
measurement

If two distant parties, Alice and Bob, hold quantum memories in a maximally entangled state

(Bell state), they can accomplish quantum communication by quantum teleportation. In order

to prepare their memories in a Bell state, optical pulses are used as the carrier of quantum

information of the memories. However, the real transmission channel for optical pulses suffers

from photon losses that increase exponentially with the length of the channel, and furthermore

there are inevitable residual imperfections in physical systems. The way out of the photon losses

will be the combination of entanglement generation between quantum memories of quantum

repeaters and entanglement swapping at the repeaters [31]. The residual imperfections will

be compensated by entanglement distillation [28, 29]. In this chapter, we show that a single

protocol – RNPM protocol – is sufficient for efficient implementation of long-distance quantum

communication through accomplishing entanglement generation, entanglement swapping, and

entanglement distillation.

6.1 Basic operations for quantum repeater protocols

In this section, we show that the three basic operations needed for efficient long-distance quantum

communication – entanglement generation, entanglement swapping, and entanglement distilla-

tion – are implementable by the realistic RNPM protocol.

6.1.1 Entanglement generation based on the realistic RNPM protocol

We show that the entanglement generation is achieved by the realistic RNPM protocol, using

the fact that the RNPM protocol on qubits AB is implementable even if the qubits AB are

distant (see Sec. 5.2.2.5). According to the conclusion in Sec. 5.2.2.5, Alice (Bob) is connected

to a station C by an optical channel a1 → c1 with length lA (b1 → c2 with length L0 − lA), and

the net transmittances of the channels are described by

TA =τe−lA/Latt ,

TB =τe−(L0−lA)/Latt ,
(6.1)

where τ is the transmittance of the local optical channel, and Latt is the attenuation length

of the used channels. Based on these facts, entanglement generation is accomplished by the

RNPM {PABTA,TB ,η,N,α,mn}m,n=0,...,N+1 on distant quantum memories AB in state | + +⟩AB =

(|Φ+⟩AB + |Ψ+⟩AB)/
√
2. In fact, from Fig. 5.7, the measurement PABTA,TB ,η,N,α,mn transforms

82
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state |++⟩AB into unnormalized states according to

|++⟩AB
PAB
TA,TB,η,N,α,mn−→

(1/2)(
∑N

n=1 |⟨n|β(α)⟩|2)ΛBr(√(1−TAη)/(TAη)α)r(
√

(1−TBη)/(TBη)α)
(|Φ+⟩⟨Φ+|AB),

(m = 0, 0 < n ≤ N),

(1/2)(
∑∞

n=N+1 |⟨n|β(α)⟩|2)ΛBr(√(1−TAη)/(TAη)α)r(
√

(1−TBη)/(TBη)α)[2t(N,α)−1]
(|Φ+⟩⟨Φ+|AB),

(m = 0, n = N + 1),

(1/2)(
∑N

m=1 |⟨m|β(α)⟩|2)ΛB
r(
√

(1−TAη)/(TAη)α)r(
√

(1−TBη)/(TBη)α)
(|Ψ+⟩⟨Ψ+|AB),

(0 < m ≤ N,n = 0),

(1/2)(
∑∞

m=N+1 |⟨m|β(α)⟩|2)ΛB
r(
√

(1−TAη)/(TAη)α)r(
√

(1−TBη)/(TBη)α)[2t(N,α)−1]
(|Ψ+⟩⟨Ψ+|AB),

(m = N + 1, n = 0),

|⟨0|β(α)⟩|2[ΛA
r(
√

(1−TAη)/(TAη)α)
⊗ ΛB

r(
√

(1−TBη)/(TBη)α)
(|++⟩⟨++ |AB)],

(m = n = 0),

(6.2)

where β(α) = i
√
2α sin(θ/2). Therefore, the RNPM protocol fails in generating entanglement for

outcome m = n = 0 occurring with probability |⟨0|β(α)⟩|2 = r(α), and succeeds in producing

entanglement for the other outcomes occurring with probability 1 − |⟨0|β(α)⟩|2 = 1 − r(α).

Actually, the obtained entangled states are divided into two types, dependently on the received

phase error rate: Compared with entanglement generated in the cases of 0 < m + n ≤ N ,

entanglement obtained in the cases of m + n = N + 1 receives an additional phase error with

rate 1− t(N,α) coming from finite threshold N of the photon detectors.

For a fixed L0, the choice of lA = L0/2 gives the best performance of this entanglement

generation protocol. On the other hand, the entanglement generation with lA = L0 is equivalent

to the two-probe protocol in Fig. 3.1, and hence it has a technical merit in stabilizing the relative

phase between pulses c1 and c2. Moreover, the optimality proof in Chapter 4 can be generalized to

be applicable for any 0 ≤ lA ≤ L0, which will show that the entanglement generation introduced

here achieves the theoretical limit of performance of single-error-type entanglement generation

protocols.

6.1.2 Entanglement connection based on the realistic RNPM protocol

As represented by entanglement swapping, we can transform the state |Φ+⟩AC1 |Φ+⟩C2B into a

Bell state |Φ+⟩AB by making Bell measurement on system C1C2. However, in practice, there are

cases where the initial state of the systemAC1C2B is not the complete Bell state |Φ+⟩AC1 |Φ+⟩C2B

but an entangled state described by ρ̂AC1
1 ⊗ρ̂C2B

2 . Here we consider the effect of Bell measurement

on system in such a state ρ̂AC1
1 ⊗ ρ̂C2B

2 . Let us call this operation entanglement connection.

6.1.2.1 Entanglement connection by the ideal Bell measurement

Let us consider to connect two Bell diagonal states ρ̂AC1
1 ⊗ ρ̂C2B

2 by the ideal Bell measurement

{B̂C1C2
lk }k,l=0,1. Then, from Eqs. (A2.3)-(A2.6), when the Bell measurement returns outcome
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lk = 00, the state σ̂AB00 := 4C1C2⟨Φ+|ρ̂AC1
1 ⊗ ρ̂C2B

2 |Φ+⟩C1C2 is represented by

σ̂AB00 = |Φ+⟩⟨Φ+|AB(⟨Φ+|ρ̂AC1
1 |Φ+⟩⟨Φ+|ρ̂C2B

2 |Φ+⟩+ ⟨Φ−|ρ̂AC1
1 |Φ−⟩⟨Φ−|ρ̂C2B

2 |Φ−⟩
+⟨Ψ+|ρ̂AC1

1 |Ψ+⟩⟨Ψ+|ρ̂C2B
2 |Ψ+⟩+ ⟨Ψ−|ρ̂AC1

1 |Ψ−⟩⟨Ψ−|ρ̂C2B
2 |Ψ−⟩)

+|Ψ+⟩⟨Ψ+|AB(⟨Φ+|ρ̂AC1
1 |Φ+⟩⟨Ψ+|ρ̂C2B

2 |Ψ+⟩+ ⟨Φ−|ρ̂AC1
1 |Φ−⟩⟨Ψ−|ρ̂C2B

2 |Ψ−⟩
+⟨Ψ+|ρ̂AC1

1 |Ψ+⟩⟨Φ+|ρ̂C2B
2 |Φ+⟩+ ⟨Ψ−|ρ̂AC1

1 |Ψ−⟩⟨Φ−|ρ̂C2B
2 |Φ−⟩)

+|Φ−⟩⟨Φ−|AB(⟨Φ+|ρ̂AC1
1 |Φ+⟩⟨Φ−|ρ̂C2B

2 |Φ−⟩+ ⟨Φ−|ρ̂AC1
1 |Φ−⟩⟨Φ+|ρ̂C2B

2 |Φ+⟩
+⟨Ψ+|ρ̂AC1

1 |Ψ+⟩⟨Ψ−|ρ̂C2B
2 |Ψ−⟩+ ⟨Ψ−|ρ̂AC1

1 |Ψ−⟩⟨Ψ+|ρ̂C2B
2 |Ψ+⟩)

+|Ψ−⟩⟨Ψ−|AB(⟨Φ+|ρ̂AC1
1 |Φ+⟩⟨Ψ−|ρ̂C2B

2 |Ψ−⟩+ ⟨Φ−|ρ̂AC1
1 |Φ−⟩⟨Ψ+|ρ̂C2B

2 |Ψ+⟩
+⟨Ψ+|ρ̂AC1

1 |Ψ+⟩⟨Φ−|ρ̂C2B
2 |Φ−⟩+ ⟨Ψ−|ρ̂AC1

1 |Ψ−⟩⟨Φ+|ρ̂C2B
2 |Φ+⟩).

(6.3)

Note that this state is also a Bell diagonal state. In the other cases, the left states are determined

by

σ̂AB01 := 4C1C2⟨Ψ+|ρ̂AC1
1 ⊗ ρ̂C2B

2 |Ψ+⟩C1C2 =X̂B
C1C2⟨Φ+|ρ̂AC1

1 ⊗ ρ̂C2B
2 |Φ+⟩C1C2X̂

B,

σ̂AB10 := 4C1C2⟨Φ−|ρ̂AC1
1 ⊗ ρ̂C2B

2 |Φ−⟩C1C2 =ẐBC1C2⟨Φ+|ρ̂AC1
1 ⊗ ρ̂C2B

2 |Φ+⟩C1C2Ẑ
B,

σ̂AB11 := 4C1C2⟨Ψ−|ρ̂AC1
1 ⊗ ρ̂C2B

2 |Ψ−⟩C1C2 =ẐBX̂B
C1C2⟨Φ+|ρ̂AC1

1 ⊗ ρ̂C2B
2 |Φ+⟩C1C2X̂

BẐB.

(6.4)

Therefore, the entanglement connection on Bell-diagonal states ρ̂1 ⊗ ρ̂2 returns σ̂ABlk according

to outcome lk.

6.1.2.2 Entanglement connection by Bell measurement based on the realistic RNPM protocol

Let us consider to connect two Bell diagonal states ρ̂AC1
1 ⊗ρ̂C2B

2 by the realistic Bell measurement

{BC1C2
τ,τ,η,N,α,lij}i,j=0,...,N+1; l=0,1. Here τ represents the net transmittance of the local optical

channel. As can be seen from Figs. 5.10 and 5.11, when i+ j > 0, the realistic Bell measurement

BC1C2
τ,τ,η,N,α,lij is the same as the ideal Bell measurement B̂C1C2

lk(ij) following ΛA
r(
√

(1−τη)/(τη)α)
⊗

ΛB
r(
√

(1−τη)/(τη)α)
Λi+j,B2t(N,α)−1. Hence, in the case of the success of the Bell measurement (i+j > 0),

from the equivalence in Fig. A2.2, the remaining state is ΛA
r2(

√
(1−τη)/(τη)α)

Λi+j,A2t(N,α)−1(σ̂
AB
lk(ij)),

where states {σ̂ABlk }k,l=0,1 are defined by Eqs. (6.3) and (6.4). Therefore, the successful operation

works as the entanglement connection having a phase error. The phase error rate changes,

dependently on whether outcome ij satisfies i + j = N + 1, because Λi+j,A2t(N,α)−1 = I for 0 <

i+ j ≤ N and Λi+j,A2t(N,α)−1 = ΛA2t(N,α)−1 for i+ j = N + 1. Here, the failure outcome (i+ j = 0)

of the Bell measurement {BC1C2
τ,τ,η,N,α,lij}i,j=0,...,N+1; l=0,1 occurs with probability |⟨0|β(α)⟩|2 =

r(α) = e−2α2 sin2(θ/2).

6.1.3 Entanglement distillation based on the realistic RNPM protocol

Suppose that, in the recurrence method for Bell-diagonal state ρ̂1
A1B1 ⊗ ρ̂2

A2B2 , Alice (Bob)

uses the realistic parity check measurement {R̂A1A2→A2
τ,τ,η,N,α,ij}i,j=0,...,N+1 ({R̂B1B2→B2

τ,τ,η,N,α,lm}l,m=0,...,N+1).

Here τ represents the net transmittance of the local optical channel. Then, from Figs. 5.8 and

5.9, the recurrence method succeeds with probability

[1− r(α)]2P ds , (6.5)
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and the remaining state is

ΛA2

r2(
√

(1−τη)/(τη)α)
Λi+j,A2

2t(N,α)−1 ⊗ ΛB2

r2(
√

(1−τη)/(τη)α)
Λl+m,B2

2t(N,α)−1(σ̂
A2B2), (6.6)

where i + j > 0, l +m > 0, P ds is defined by Eq. (2.49), and σ̂A2B2 is the Bell-diagonal state

defined by Eq. (2.48). Therefore, the distillation from Bell-diagonal state ρ̂1
A1B1⊗ ρ̂2A2B2 can be

achievable even by the realistic Bell measurement {BC1C2
τ,τ,η,N,α,lij}i,j=0,...,N+1; l=0,1, if one allows

the mixture of a phase error. The phase error rates depend on outcomes ij and lm, because

Λk2t(N,α)−1 = I for 0 ≤ k ≤ N and Λk2t(N,α)−1 = Λ2t(N,α)−1 for k = N + 1.

6.2 Quantum repeaters with entanglement generation and entanglement

connection

We consider a quantum repeater protocol [31] composed of entanglement generation and entan-

glement connection. Suppose that Alice and Bob want to communicate over distance L = 2nL0.

In the protocol, 2n − 1 nodes with a repeater are set at intervals L0 between Alice and Bob,

and they begin with entanglement generation between quantum memories at neighboring nodes.

Once the generation protocols make neighboring entangled pairs with length L0, by implement-

ing entanglement connection of the pairs, they try to generate an entangled pair with length

2L0. Similarly, the jth (j = 1, 2, 3, . . . , n) entanglement connection receives two neighboring

entangled pairs with length 2j−1L0, and returns an entangled pair with 2jL0. Hence, at the end

of the nth entanglement connection, they will obtain an entangle pair between A and B.

Let us estimate the time needed to generate the entangled pair AB. Considering that the

entanglement generation protocol succeeds with probability P
(0)
s , the average time needed to

make the entanglement generation protocol succeed is proportional to 1/P
(0)
s . Similarly, by

assuming that the jth entanglement connection succeeds with probability P
(j)
s , the average time

needed to make the jth entanglement connection succeed is proportional to 1/P
(j)
s . Since the first

entanglement connection (jth entanglement connection) can start after the success of neighboring

entanglement generation protocols (after the success of (j−1)th entanglement connections), the

total time needed to make entanglement between AB will scale as 1/(
∏
j=0,...,n P

(j)
s ). In fact,

the total time T tot is approximately described [36] by

T tot ≃ L0

c

(
3

2

)n 1∏
j=0,...,n P

(j)
s

=: T, (6.7)

where L0/c is the communication time in the entanglement generation, and the operation time

of local manipulations is ignored.

In what follows, we consider a protocol parametrized by Fig, 6.1. In this protocol, we use the

RNPM protocols {PTA,TB ,η,N,αg ,ij}i,j=0,...,N+1 for entanglement generation, and the realistic Bell

measurements {Bτ,τ,η,N,αs,lij}i,j=0,...,N+1; l=0,1 for entanglement connection, where τ represents

the transmittance of the local optical channel, and TA and TB are defined by Eq. (6.1). In what

follows, we estimate the time T by allowing the use of photon detectors with N = ∞, N = 1,

and N = 0. From Figs. 5.7, 5.11 and A2.1, this protocol is shown to be equivalent to the Fig. 6.2

in the case of i1 + j1, . . . , i2n + j2n , i
′
1 + j′1, . . . , i

′
2n−1 + j′2n−1 > 0.
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A BC1 C2 C3 C4 C5 C2n-11 2L0
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
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j P ,TBTA ,h,N,  ,i ag 2 2

j P ,TBTA ,h,N,  ,i ag 3 3
j P ,TBTA ,h,N,  ,i ag 4 4

j P ,TBTA ,h,N,  ,i ag 5 5
j P ,TBTA ,h,N,  ,i ag 5 5

jP ,TBTA ,h,N,  ,i ag j2n-1 2n-1
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3’ ’ B ,t ,h,N,  ,l ast ’ ’ i j2n-1 2n-12n-1
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jt i
1’ ’

Fig. 6.1. Quantum repeaters based on the entanglement generation and the entanglement connec-
tion. k := (k(i1, j1), k(i2, j2), . . . , k(i2n , j2n)), k′ := (k(i′1, j

′
1), k(i

′
2, j

′
2), . . . , k(i

′
2n−1, j

′
2n−1)), and l :=

(l1, l2, . . . , l2n−1), where k(i, j) is one defined by Eq. (5.39). V̂k,k′,l is a unitary operation to transform
the state obtained in the success cases into a standard state F |Φ+⟩⟨Φ+|AB + (1− F )|Φ−⟩⟨Φ−|AB.

6.2.1 The repeaters with photon-number-resolving detectors (N = ∞)

Here we suppose that the RNPM protocols use photon-number-resolving detectors, i.e., N = ∞.

In this case, entanglement generation succeeds with P
(0)
s = 1− r(αg), and the jth entanglement

connection succeeds with P
(j)
s = 1− r(αs). Hence, we have

1∏
j=0,...,n P

(j)
s

=
1

[1− r(αg)][1− r(αs)]n
=

1

[1− r(αg)][1− r(αs)]n
. (6.8)

On the other hand, since N = ∞ implies Λk2t(N,αg)−1 = Λk2t(N,αs)−1 = I for any k, Fig. 6.2 shows

that, by a suitable choice of the unitary operation V̂k′,k,l, the protocol returns an entangled state

in the form of

F |Φ+⟩⟨Φ+|AB + (1− F )|Φ−⟩⟨Φ−|AB, (6.9)

with

F =
1 + r2

n
(
√

(1− TAη)/(TAη)αg)r
2n(
√

(1− TBη)/(TBη)αg)r
2(2n−1)(

√
(1− τη)/(τη)αs)

2

=
1 + r

2n
(

TA+TB−2TATBη

TATBη

)
(αg)r

(2n−1)
(

2−2τη
τη

)
(αs)

2
.

(6.10)

In order to clarify the relation between T and F , we introduce parameters defined by

fg :=r
2n

(
TA+TB−2TATBη

TATBη

)
(αg),

fs :=r
(2n−1)

(
2−2τη

τη

)
(αs).

(6.11)

By these parameters, Eqs. (6.10) and (6.14) are rewritten as

2F − 1 = fgfs, (6.12)
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Fig. 6.2. An imaginary protocol equivalent to Fig. 6.1 in the case of i1+j1, . . . , i2n+j2n , i
′
1+j

′
1, . . . , i

′
2n−1+

j′2n−1 > 0.

and

T =
L0

c

(
3

2

)n 1(
1− f

1
2n

TATBη

TA+TB−2TATBη
g

)(
1− f

1
2n−1

(
τη

2−2τη

)
s

)n
=
L0

c

(
3

2

)n 1[
1− exp

(
ln fg
2n

TATBη
TA+TB−2TATBη

)] [
1− exp

(
ln fs
2n−1

(
τη

2−2τη

))]n
=
L0

c

(
3

2

)n 2n

ln fg

TA + TB − 2TATBη

TATBη
g

(
ln fg
2n

TATBη

TA + TB − 2TATBη

)
×
[
2n − 1

ln fs

(
2− 2τη

τη

)
g

(
ln fs
2n − 1

(
τη

2− 2τη

))]n
=
L0

c

(
3

2

)log2(L/L0) (L/L0)

ln fg

TA + TB − 2TATBη

TATBη
g

(
ln fg

(L/L0)

TATBη

TA + TB − 2TATBη

)
×
[
(L/L0)− 1

ln fs

(
2− 2τη

τη

)
g

(
ln fs

(L/L0)− 1

(
τη

2− 2τη

))]log2(L/L0)

,

(6.13)

with g(x) := x/(1 − ex). Because g(x) → 1 in the limit of x → 0, Eq. (6.13) shows that T

increases sub-exponentially with L. In fact, the minimum time to generate entanglement of

Eq. (6.9) over distance L is determined by minimizing T of Eq. (6.13) for parameters fg and fs
satisfying Eq. (6.12) and for parameter n. Figure 6.3 indicates the minimum time T for given

distance L and fidelity F .
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Fig. 6.3. The minimum time T needed to generate entanglement with 0.60 ≤ F ≤ 0.90 in increments of
0.05 over distance L under the use of detectors with N = ∞; (a) lA = L0/2, τ = 0.98, and η = 0.95;
(b) lA = L0/2, τ = 0.98, and η = 0.90; (c) lA = L0/2, τ = 0.95, and η = 0.90; (d) lA = L0, τ = 0.98,
and η = 0.95; (e) lA = L0, τ = 0.98, and η = 0.90; (f) lA = L0, τ = 0.95, and η = 0.90. We assume
c = 2× 108 m/s, Latt = 22 km. The dashed line indicates 1/(fηe−L/Latt) with f = 10 GHz, which is the
direct transmission time of the photon from 10 GHz single photon source.

6.2.2 The repeaters with single photon detectors (N = 1)

Here we suppose that the RNPM protocols use single-photon detectors, i.e., N = 1. For simplic-

ity, we regard, as the success cases, only the events where one of single photon detectors in the

RNPM protocol announces the arrival of a single photon. Then, entanglement generation suc-

ceeds with P
(0)
s = |⟨1|β(αg)⟩|2 = −r(αg) ln r(αg), and the jth entanglement connection succeeds

with P
(j)
s = −r(αs) ln r(αs). Hence, we have

1∏
j=0,...,n P

(j)
s

=
1

[−r(αg) ln r(αg)][−r(αs) ln r(αs)]n
. (6.14)

On the other hand, since Λ1
2t(1,αg)−1 = I and Λ1

2t(1,αs)−1 = I, Fig. 6.2 shows that, by a suitable

choice of the unitary operation V̂k′,k,l, the protocol returns an entangled state in the form of

F |Φ+⟩⟨Φ+|AB + (1− F )|Φ−⟩⟨Φ−|AB, (6.15)

with

F =
1 + r2

n
(
√

(1− TAη)/(TAη)αg)r
2n(
√

(1− TBη)/(TBη)αg)r
2(2n−1)(

√
(1− τη)/(τη)αs)

2

=
1 + r

2n
(

TA+TB−2TATBη

TATBη

)
(αg)r

(2n−1)
(

2−2τη
τη

)
(αs)

2
.

(6.16)
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Fig. 6.4. The minimum time T needed to generate entanglement with 0.60 ≤ F ≤ 0.90 in increments of
0.05 over distance L under the use of detectors with N = 1; (a) lA = L0/2, τ = 0.98, and η = 0.95;
(b) lA = L0/2, τ = 0.98, and η = 0.90; (c) lA = L0/2, τ = 0.95, and η = 0.90; (d) lA = L0, τ = 0.98,
and η = 0.95; (e) lA = L0, τ = 0.98, and η = 0.90; (f) lA = L0, τ = 0.95, and η = 0.90. We assume
c = 2× 108 m/s, Latt = 22 km. The dashed line indicates 1/(fηe−L/Latt) with f = 10 GHz, which is the
direct transmission time of the photon from 10 GHz single photon source.

In order to clarify the relation between T and F , we introduce parameters defined by

fg :=r
2n

(
TA+TB−2TATBη

TATBη

)
(αg),

fs :=r
(2n−1)

(
2−2τη

τη

)
(αs).

(6.17)

By these parameters, Eqs. (6.16) and (6.14) are rewritten as

2F − 1 = fgfs, (6.18)

and

T =
L0

c

(
3

2

)n 1(
−1
2n

TATBη
TA+TB−2TATBη

f
1
2n

TATBη

TA+TB−2TATBη
g ln fg

)(
−1

2n−1

(
τη

2−2τη

)
f

1
2n−1

(
τη

2−2τη

)
s ln fs

)n

=
L0

c

(
3

2

)n 2n

(− ln fg)

TA + TB − 2TATBη

TATBη
f
− 1

2n
TATBη

TA+TB−2TATBη
g

×

[
2n − 1

(− ln fs)

(
2− 2τη

τη

)
f
− 1

2n−1

(
τη

2−2τη

)
s

]n

=
L0

c

(
3

2

)log2(L/L0) (L/L0)

(− ln fg)

TA + TB − 2TATBη

TATBη
f
− 1

(L/L0)

TATBη

TA+TB−2TATBη
g

×

[
(L/L0)− 1

(− ln fs)

(
2− 2τη

τη

)
f
− 1

(L/L0)−1

(
τη

2−2τη

)
s

]log2(L/L0)

.

(6.19)
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Fig. 6.5. The minimum time T needed to generate entanglement with 0.60 ≤ F ≤ 0.90 in increments of
0.05 over distance L under the use of detectors with N = 0; (a) lA = L0/2, τ = 0.98, and η = 0.95;
(b) lA = L0/2, τ = 0.98, and η = 0.90; (c) lA = L0/2, τ = 0.95, and η = 0.90; (d) lA = L0, τ = 0.98,
and η = 0.95; (e) lA = L0, τ = 0.98, and η = 0.90; (f) lA = L0, τ = 0.95, and η = 0.90. We assume
c = 2× 108 m/s, Latt = 22 km. The dashed line indicates 1/(fηe−L/Latt) with f = 10 GHz, which is the
direct transmission time of the photon from 10 GHz single photon source.

Since f
− 1

(L/L0)

TATBη

TA+TB−2TATBη
g → 1 and f

− 1
(L/L0)−1

(
τη

2−2τη

)
s → 1 in the limit of L → ∞, Eq. (6.19)

shows that T increases sub-exponentially with L. In practice, the minimum time to generate

entanglement of Eq. (6.15) over distance L is determined by minimizing T of Eq. (6.19) for

parameters fg and fs satisfying Eq. (6.18) and for parameter n. Figure 6.4 indicates the minimum

time T for given distance L and fidelity F .

6.2.3 The repeaters with threshold detectors (N = 0)

Here we suppose that the RNPM protocols use threshold detectors, i.e., N = 0. In this case,

entanglement generation succeeds with P
(0)
s = 1 − r(αg), and the jth entanglement connection

succeeds with P
(j)
s = 1− r(αs). Hence, we have

1∏
j=0,...,n P

(j)
s

=
1

[1− r(αg)][1− r(αs)]n
=

1

[1− r(αg)][1− r(αs)]n
. (6.20)

From te(0, α) = (1− e−|β(α)|2)/2, we have

2t(0, α)− 1 = 2[1− te(0, α)]− 1 = e−|β(α)|2 = r(α). (6.21)

Hence, Λk2t(0,αg)−1 = Λr(αg) and Λk2t(0,αs)−1 = Λr(αs) hold for k ≥ 1, implying that the protocol

returns an entangled state in the form of

F |Φ+⟩⟨Φ+|AB + (1− F )|Φ−⟩⟨Φ−|AB, (6.22)
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with

F =
1 + r

2n
(

TA+TB−TATBη

TATBη

)
(αg)r

(2n−1)
(

2−τη
τη

)
(αs)

2
. (6.23)

In order to clarify the relation between T and F , we introduce parameters defined by

fg :=r
2n

(
TA+TB−TATBη

TATBη

)
(αg),

fs :=r
(2n−1)

(
2−τη
τη

)
(αs).

(6.24)

By these parameters, Eqs. (6.23) and (6.20) are rewritten as

2F − 1 = fgfs, (6.25)

and

T =
L0

c

(
3

2

)n 1(
1− f

1
2n

TATBη

TA+TB−TATBη
g

)(
1− f

1
2n−1

(
τη

2−τη

)
s

)n
=
L0

c

(
3

2

)n 1[
1− exp

(
ln fg
2n

TATBη
TA+TB−TATBη

)] [
1− exp

(
ln fs
2n−1

(
τη

2−τη

))]n
=
L0

c

(
3

2

)n 2n

ln fg

TA + TB − TATBη

TATBη
g

(
ln fg
2n

TATBη

TA + TB − TATBη

)
×
[
2n − 1

ln fs

(
2− τη

τη

)
g

(
ln fs
2n − 1

(
τη

2− τη

))]n
=
L0

c

(
3

2

)log2(L/L0) (L/L0)

ln fg

TA + TB − TATBη

TATBη
g

(
ln fg

(L/L0)

TATBη

TA + TB − TATBη

)
×
[
(L/L0)− 1

ln fs

(
2− τη

τη

)
g

(
ln fs

(L/L0)− 1

(
τη

2− τη

))]log2(L/L0)

,

(6.26)

with g(x) := x/(1 − ex). Because g(x) → 1 in the limit of x → 0, Eq. (6.26) shows that T

increases sub-exponentially with L. Actually, the minimum time to generate entanglement of

Eq. (6.22) over distance L is determined by minimizing T of Eq. (6.26) for parameters fg and fs
satisfying Eq. (6.25) and for parameter n. Figure 6.5 indicates the minimum time T for given

distance L and fidelity F .

6.2.4 Summary

In this section, we have shown that long-distance quantum communication is efficiently imple-

mentable only by the RNPM protocols. In particular, the time needed to generate an entangled

pair increases only sub-exponentially with the distance, irrespectively of the types of the used

photon detectors. This sub-exponential increase of the time ensures that the quantum repeater

protocols are more efficient than quantum communication based on the direct transmission of

photons for long distances. These facts can be also represented by Figs. 6.3-6.5†. As can be seen

by comparing Fig. 6.3 with Fig. 6.4, the protocol based on single photon detectors (N = 1) has

† Note that the repetition rate of the single photon source assumed in those figures, i.e., 10 GHz, is a very ambitious value
[36].
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the performance comparable with one based on photon-number-resolving detectors (N = ∞).

On the other hand, from Figs. 6.4 and 6.5, the protocol based on threshold detectors (N = 0)

is rather inferior to one based on single photon detectors, but even the protocol with N = 0

exceeds quantum communication based on the direct transmission of photons in efficiencies for

distances L & 900 km. In addition, from Figs. 6.3-6.5, the performance of the repeater protocol

with lA = L0/2 is rather superior to one with lA = L0.

The repeater protocol used here has two favorable properties: (i) It is sufficient that each

repeater at a node has two quantum memories at least; (ii) As long as the error of the detectors

comes from non-unity quantum efficiencies, the generated entanglement includes only one type

of error (see Eqs. (6.9), (6.15), and (6.22)). Property (ii) implies that the obtained entanglement

is of good quality. In fact, for the state with fidelity F , the formula of unconditionally secure key

rate of the entanglement-based quantum key distribution protocol is proportional to 1 − h(F )

with the binary entropy function h(x) := −x log2 x− (1− x) log2(1− x), which implies that the

secret key is distillable for any F > 1/2. Therefore, the quantum repeater protocol presented

here is realistic and efficient for achieving long-distance quantum communication.

6.3 Quantum repeaters based on the nested purification protocol

As seen in the previous section, by a quantum repeater protocol that utilizes only entanglement

generation and entanglement connection, we can overcome the photon loss of the transmission

channel. However, in practice, other types of noises may be caused by imperfection of physical

devices such as quantum memories. To beat such additional errors, we will need entanglement

distillation. Actually, entanglement distillation will be also useful for the satellite-based quan-

tum communication. In the satellite-based quantum communication, a ground station tries to

accomplish quantum communication with another ground station by exchanging photons be-

tween a satellite and the ground stations in the night. If one of the ground stations is in the day,

the satellite needs to store quantum information of the photons in quantum memories until the

station becomes in the night, but, in general, quantum memories have several types of noises,

which implies that such satellite-based quantum communication will also need entanglement

distillation.

In this section, we show that the recurrence method based on the RNPM protocols works.

In addition, by the recurrence method, we can also implement the nested-purification repeater

protocol [28, 29] whose cost scales as the distance only polynomially.

6.3.1 The realistic recurrence method on Werner states

Here we show that the recurrence method based on the RNPM protocols can work for Werner

states. This fact ensures that the method has the possibility to recover entangled states with

multiple types of error, because any bipartite state can be converted into a Werner state.

Suppose that Alice and Bob share a system in Werner states ρ̂A1B1
W ⊗ ρ̂A2B2

W of Eq. (2.53), and

apply the realistic parity check measurements {R̂A1A2→A2
τ,τ,η,N,αd,ij

⊗ R̂B1B2→B2
τ,τ,η,N,αd,lm

}i,j,l,m=0,...,N+1 on it.

According to Sec. 6.1.3, in the case of i + j > 0 and l +m > 0, the left state has the fidelity
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Fig. 6.6. The efficiencies of the recurrence method based on the RNPM protocols with N = ∞ as a
function of fidelity F of the Werner state to Bell state |Φ+⟩: (a) the fidelity F ′ of the left qubits to a Bell
state and (d) the success probability Ps, for η = 0.98, τ = 0.95, and r(αd) = 0.96, 0.92, 0.88, 0.84, 0.80;
(b) the fidelity F ′ of the left qubits to Bell state |Φ+⟩ and (e) the success probability Ps, for η = 0.98,
τ = 0.90, and r(αd) = 0.98, 0.96, 0.94, 0.92, 0.90; (c) the fidelity F ′ of the left qubits to Bell state |Φ+⟩
and (f) the success probability Ps, for η = 0.95, τ = 0.90, and r(αd) = 0.98, 0.96, 0.94, 0.92, 0.90.

described by

F ′(F ) := ⟨Φ+|ΛA2

r2(
√

(1−τη)/(τη)αd)
Λi+j,A2

2t(N,αd)−1 ⊗ ΛB2

r2(
√

(1−τη)/(τη)αd)
Λl+m,B2

2t(N,αd)−1(σ̂
A2B2
W )|Φ+⟩

=



1+r
4( 1−τη

τη )(αd)
2

10F 2−2F+1
8F 2−4F+5

+ 1−r4(
1−τη
τη )(αd)
2

6F (1−F )
8F 2−4F+5

,

(0 < i+ j ≤ N, 0 < l +m ≤ N),

1+r
4( 1−τη

τη )(αd)(2t(N,αd)−1)
2

10F 2−2F+1
8F 2−4F+5

+ 1−r4(
1−τη
τη )(αd)(2t(N,αd)−1)

2
6F (1−F )

8F 2−4F+5
,

(i+ j = N + 1, 0 < l +m ≤ N),

1+r
4( 1−τη

τη )(αd)(2t(N,αd)−1)
2

10F 2−2F+1
8F 2−4F+5

+ 1−r4(
1−τη
τη )(αd)(2t(N,αd)−1)

2
6F (1−F )

8F 2−4F+5
,

(0 < i+ j ≤ N, l +m = N + 1),

1+r
4( 1−τη

τη )(αd)(2t(N,αd)−1)2

2
10F 2−2F+1
8F 2−4F+5

+ 1−r4(
1−τη
τη )(αd)(2t(N,αd)−1)2

2
6F (1−F )

8F 2−4F+5
,

(i+ j = N + 1, l +m = N + 1),

(6.27)

where σ̂A2B2
W is the state defined by Eq. (2.54). This state may be converted to a Werner state

with the fidelity F ′ before being fed to the subsequent operations such as the entanglement

distillation or the entanglement connection. In Fig. 6.6 (Fig. 6.8), assuming the use of photon

detectors with N = ∞ (N = 0), we depict the efficiencies of this recurrence method. In these

cases, the success probability is described by Eq. (6.5), namely by

[1− r(αd)]
2P ds,W =

[1− r(αd)]
2(8F 2 − 4F + 5)

9
, (6.28)

where we used Eq. (2.55). In Fig. 6.7, we show the efficiencies of the recurrence method based
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Fig. 6.7. The efficiencies of the recurrence method based on the RNPM protocols with N = 1 as a function
of fidelity F of the Werner state to Bell state |Φ+⟩: (a) the fidelity F ′ of the left qubits to a Bell state
and (d) the success probability Ps, for η = 0.98, τ = 0.95, and r(αd) = 0.96, 0.92, 0.88, 0.84, 0.80; (b) the
fidelity F ′ of the left qubits to Bell state |Φ+⟩ and (e) the success probability Ps, for η = 0.98, τ = 0.90,
and r(αd) = 0.98, 0.96, 0.94, 0.92, 0.90; (c) the fidelity F ′ of the left qubits to Bell state |Φ+⟩ and (f) the
success probability Ps, for η = 0.95, τ = 0.90, and r(αd) = 0.98, 0.96, 0.94, 0.92, 0.90.

on photon detectors with N = 1, regarding the event of i + j = 1 and l +m = 1 as the only

success case. In this case, the success probability is

[−r(αd) ln r(αd)]2P ds,W =
[−r(αd) ln r(αd)]2(8F 2 − 4F + 5)

9
. (6.29)

Figures 6.6, 6.7, and 6.8 suggest the existence of two threshold fidelities Fmin and Fmax such

that

F ′(Fmin) = Fmin,

F ′(Fmax) = Fmax,

F ′(F ) > F, (Fmin < F < Fmax).

(6.30)

The threshold fidelities are controllable by choosing amplitude αd. In particular, for sufficiently

small αd, i.e., r(αd) ≃ 1, F ′(F ) comes closer to the ideal relation of Fig. 2.5. Therefore, by

properly selecting amplitude αd, the recurrence method based on the realistic RNPM protocol

can distill an almost Bell pair.

6.3.2 Entanglement connection of Werner states by the realistic RNPM protocol

In order to see that a longer entangled pair can be obtained by connecting entangled states

with multiple types of error, here we consider entanglement connections of Werner states by the

realistic RNPM protocols. Let us consider the protocol of Fig. 6.9 (a) to connect 2n pairs in

Werner states of Eq. (2.53). We start with noting an equivalence in Fig. 6.9 that is similar to the

equivalence between Figs. 6.1 and 6.2. The equivalence is shown by the combination of Fig. A2.2

and the fact that entanglement connection of Bell diagonal states returns a Bell diagonal state

(see Sec. 6.1.2.1). Fig. 6.9 (b) suggests that the success of all the realistic Bell measurements
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Fig. 6.8. The efficiencies of the recurrence method based on the RNPM protocols with N = 0 as a function
of fidelity F of the Werner state to Bell state |Φ+⟩: (a) the fidelity F ′ of the left qubits to Bell state |Φ+⟩
and (d) the success probability Ps, for η = 0.98, τ = 0.95, and r(αd) = 0.99, 0.98, 0.97, 0.96, 0.95; (b) the
fidelity F ′ of the left qubits to Bell state |Φ+⟩ and (e) the success probability Ps, for η = 0.98, τ = 0.90,
and r(αd) = 0.99, 0.98, 0.97, 0.96, 0.95; (c) the fidelity F ′ of the left qubits to Bell state |Φ+⟩ and (f) the
success probability Ps, for η = 0.95, τ = 0.90, and r(αd) = 0.99, 0.98, 0.97, 0.96, 0.95.

means the connections of Werner states by ideal Bell measurements followed by a phase-flip

channel on system B. The state connected by the ideal Bell measurement is Werner state

σ̂ABW =
1

4

[
1 + 3

(
4F − 1

3

)2n
]
|Φ+⟩⟨Φ+|AB

+
1

4

[
1−

(
4F − 1

3

)2n
]
(|Ψ+⟩⟨Ψ+|AB + |Φ−⟩⟨Φ−|AB + |Ψ−⟩⟨Ψ−|AB).

(6.31)

Since this state receives the phase-flip channel as the penalty of imperfections of RNPM proto-

cols, the final state is described by

ΛB
r2(2

n−1)(
√

(1−τη)/(τη)αs)
Λ
i′1+j

′
1,B

2t(N,αs)−1 · · ·Λ
i′2n−1+j

′
2n−1,B

2t(N,αs)−1 (σ̂ABW ). (6.32)

On being transformed into a Werner state, this state will be sent to the distillation stage.

6.3.3 Nested-purification repeater protocol

Here we provide the idea of the nested-purification repeater protocol [28, 29]. Since this protocol

relies on entanglement distillation, it requires a lot of quantum memories. But, the protocol has

an advantage that the protocol can enable long-distance quantum communication even if physical

apparatuses have various types of error.

We use an entanglement distillation protocol with thresholds {Fmax, Fmin} satisfying Eq. (6.30).
Suppose that the channel with distance L is divided to N = kl (k, l ∈ N) smaller segments,

and the segments have entangled pairs with high fidelity Fin(< Fmax) to a Bell state. j × k

adjacent entangled pairs with distance L/km (m = l, l − 1, . . . , 2, 1) are regarded as a bundle
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Fig. 6.9. Entanglement connection of Bell diagonal states. k′ := (k(i′1, j
′
1), k(i

′
2, j

′
2), . . . , k(i

′
2n−1, j

′
2n−1)),

and l := (l1, l2, . . . , l2n−1), where k(i, j) is one defined by Eq. (5.39). V̂k′,l is a unitary operation to
transform the state obtained in the success cases into a standard state of Eq. (6.32). The equivalence
between (a) and (b) holds when all the realistic Bell measurements succeed.

(see Fig. 6.10). The pairs of a bundle are converted to entangled pairs with fidelity Fout(> Fmin)

and with distance L/km−1 by the entanglement connections, and are further converted to an

entangled pair with fidelity Fin and with distance L/km−1 by the entanglement distillations. j

is chosen to be large enough to make this two-step process succeed with almost unity proba-

bility. In other words, the working principle of this strategy is based on a ‘purification loop’

transforming the bundle into a pair according to

(L/km, Fin)
Connection−→ (L/km−1, Fout)

Distillation−→ (L/km−1, Fin). (6.33)

The purification loop is repeated l times, namely it is continued until generating an entangled

pair with distance L and fidelity Fin. Then, the total number R of elementary entangled pairs

is described as (kj)l, namely

R = (kj)l = klklogk j
l
= N1+logk j . (6.34)

Here note that j depends only on the efficiencies of the entanglement distillation and the entan-

glement connection of k neighboring pairs. This implies that j is independent of l. On the other
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Fig. 6.10. Nested purification with an array of elementary Bell pairs.

hand, N can be changed by selecting parameter l with k fixed. Therefore, Eq. (6.34) shows that

the total number R of elementary entangled pairs grows polynomially with the number N of the

segments.

Since this repeater protocol is based on recursive use of a purification loop, we need to show

that a purification loop is constructible. In Fig. 6.11, as examples, we show that such a purifi-

cation loop can be made by entanglement distillation and entanglement connection in Sec. 6.3.1

and 6.3.2. There, we assume the RNPM protocols with photon detectors with N = ∞ or N = 1

in (a)-(c) of Fig. 6.11, and ones with photon detectors with N = 0 in (d)-(f) of Fig. 6.11. With-

out taking optimization, we chose parameters, αd, αs, and k, but, in practice, we will need to

optimize the parameters for minimizing the cost j.

6.3.4 Summary

In this section, we showed that the recurrence method based on the realistic RNPM protocol

works against Werner states. This enables us to distill an almost Bell pair even from entan-

gled states with multiple types of errors. Moreover, the achievability of such an entanglement

distillation makes it possible to implement the nested purification repeater protocol. Since the

resources needed to this protocol increase with the communication distance only polynomially,

the protocol would achieve efficient long-distance quantum communication even in the cases

where the entanglement obtained by an entanglement generation protocol inevitably receives

multiple types of errors.
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Fig. 6.11. The purification loop for entanglement connection and entanglement distillation based on the
realistic RNPM protocols, which are described in Secs. 6.3.1 and 6.3.2. In the case where the single
photon detectors (N = 1) are used, the detections of single photons are regarded as only success cases of
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7

Conclusion

In this thesis, we have provided a two-probe entanglement generation protocol, and we have

shown that the two-probe protocol can achieve the theoretical limit of performance among all

the protocols to generate entanglement with only one type of error by exchanging photons over

a lossy channel. We further show that the two-probe protocol acts not only as an entanglement

generation scheme but also as the remote nondestructive parity measurement (RNPM). Since the

RNPM plays the role of a module for accomplishing the Bell measurement and the parity check

measurement, the RNPM has the possibility to accomplish all the primitive operations needed

for quantum repeater protocols, namely, entanglement generation, entanglement connection,

and entanglement distillation. Actually, because of the loss of photons used as the carrier of

quantum information, the protocol merely probabilistically implements RNPM with phase error,

and hence, it was unclear whether the protocol dubbed ‘RNPM protocol’ is powerful enough

to achieve long-distance quantum communication efficiently. However, as shown in Chapter 6,

the RNPM protocol enables long-distance quantum communication with communication time

increasing only sub-exponentially with the channel length. Therefore, the RNPM protocol is a

promising candidate of a single module for long-distance quantum communication.

We mention several possibilities of future developments of the RNPM protocol. As shown in

Chapter 5, the RNPM further acts as a module for isometry ĈABZ |+⟩A and CZ gate ĈABZ . These

operations are known to be essential for generating graph states that are the resources for the

measurement-based quantum computation. Hence, it is clear that the ideal RNPM protocol can

efficiently generate graph states. However, the realistic RNPM protocols will inevitably receive

phase error because of the photon loss. Therefore, we will need to clarify how efficient RNPM

protocols are required for efficiently composing the graph states. Even for experimentalists,

the finding of the RNPM protocol is important. In fact, as noted in Preface or Sec. 2.5.2, the

interaction with an optical pulse can be realizable by various quantum memories. Hence, the

RNPM protocol can be also achievable by them. We expect that experimental efforts on the

development of the RNPM protocol will be reported. Finally, we stress that this thesis has only

just begun to grasp the full implications of the RNPM protocol: unexpected progresses of the

RNPM protocol would appear in near future.
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Appendix 1

RNPM protocol with photon detectors with a threshold and dark
counts

We consider the effect of the dark counts occurring in the detectors. The POVM elements of a

detector with mean dark count ν can be described by

Êm =

m∑
k=0

e−ννm−k

(m− k)!
|k⟩⟨k|. (1.1)

Suppose that the used two detectors show dark counts rates νa and νb. Then, for an input state

ρ̂AB, we have

Γmn,α(ρ̂
AB)

:= Trab

{
Êa
mÊ

b
n

[
ẐAϕ(α)Ẑ

B
ϕ(α)V̂

ab
α ÛAaθ ÛBbθ (ρ̂AB ⊗ |α⟩⟨α|a ⊗ |α⟩⟨α|b)ÛBb†θ ÛAa†θ V̂ ab†

α ẐB†
ϕ(α)Ẑ

A†
ϕ(α)

]}
=

m∑
k=0

n∑
l=0

e−νaνm−k
a

(m− k)!

e−νbνn−lb

(n− l)!
M̂AB
α,klρ̂

ABM̂AB†
α,kl , (1.2)

where note that

M̂α,mn =δm0⟨n|β(α)⟩(|00⟩⟨00|AB + (−1)n|11⟩⟨11|AB)
+ δn0⟨m|β(α)⟩((−1)m|01⟩⟨01|AB + |10⟩⟨10|AB)

=δm0⟨n|β(α)⟩(ẐB)nP̂ABΦ + δn0⟨m|β(α)⟩(ẐB)mP̂ABΨ .

(1.3)

A

a

a

Uq Uq

a
b

B

m

Zf(a) Zf(a)Va

n

Z a,mnN,

N,nbN,na

Fig. A1.1. RNPM protocol with photon detectors with threshold N and mean dark count ν.
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For m,n > 0, this means

Γ0n,α(ρ̂
AB) = e−νa−νb

(
νnb
n!

|⟨0|β(α)⟩|2ρ̂AB +

n∑
l=1

νn−lb

(n− l)!
|⟨l|β(α)⟩|2(ẐB)lP̂ABΦ ρ̂ABP̂ABΦ (ẐB)l

)
,

= e−νa−νb

[
νnb
n!

|⟨0|β(α)⟩|2ρ̂AB +

(⌈n−1
2

⌉∑
l=1

νn−2l
b

(n− 2l)!
|⟨2l|β(α)⟩|2

)
P̂ABΦ ρ̂ABP̂ABΦ

+

(⌈n
2
⌉∑

l=1

νn−2l+1
b

(n− 2l + 1)!
|⟨2l − 1|β(α)⟩|2

)
ẐBP̂ABΦ ρ̂ABP̂ABΦ ẐB

]

Γm0,α(ρ̂
AB) = e−νa−νb

(
νma
m!

|⟨0|β(α)⟩|2ρ̂AB +

m∑
k=1

νm−k
a

(m− k)!
|⟨k|β(α)⟩|2(ẐB)kP̂ABΨ ρ̂ABP̂ABΨ (ẐB)k

)

= e−νa−νb

[
νma
m!

|⟨0|β(α)⟩|2ρ̂AB +

(⌈m−1
2

⌉∑
k=1

νm−2k
a

(m− 2k)!
|⟨2k|β(α)⟩|2

)
P̂ABΨ ρ̂ABP̂ABΨ

+

(⌈m
2
⌉∑

k=1

νm−2k+1
a

(m− 2k + 1)!
|⟨2k − 1|β(α)⟩|2

)
ẐBP̂ABΨ ρ̂ABP̂ABΨ ẐB

]
Γ00,α(ρ̂

AB) = e−νa−νb |⟨0|β(α)⟩|2ρ̂AB,
(1.4)

where ⌈x⌉ is the smallest integer ≥ x. These relations are reduced to

Γ0n,α(ρ̂
AB) =

e−νa−νb−|β(α)|2

n!

[
νnb ρ̂

AB +
(νb + |β(α)|2)n + (νb − |β(α)|2)n − 2νnb

2
P̂ABΦ ρ̂ABP̂ABΦ

+
(νb + |β(α)|2)n − (νb − |β(α)|2)n

2
ẐBP̂ABΦ ρ̂ABP̂ABΦ ẐB

]
,

Γm0,α(ρ̂
AB) =

e−νa−νb−|β(α)|2

m!

[
νma ρ̂

AB +
(νa + |β(α)|2)m + (νa − |β(α)|2)m − 2νma

2
P̂ABΨ ρ̂ABP̂ABΨ

+
(νa + |β(α)|2)m − (νa − |β(α)|2)m

2
ẐBP̂ABΨ ρ̂ABP̂ABΨ ẐB

]
,

Γ00,α(ρ̂
AB) = e−νa−νb−|β(α)|2 ρ̂AB,

(1.5)

because(⌈n−1
2

⌉∑
l=1

νn−2l
b

(n− 2l)!
|⟨2l|β(α)⟩|2

)
±

(⌈n
2
⌉∑

l=1

νn−2l+1
b

(n− 2l + 1)!
|⟨2l − 1|β(α)⟩|2

)

= e−|β(α)|2
(⌈n−1

2
⌉∑

l=1

νn−2l
b

(n− 2l)!

|β(α)|4l

(2l)!

)
+ e−|β(α)|2

(⌈n
2
⌉∑

l=1

νn−2l+1
b

(n− 2l + 1)!

(±|β(α)|2)(2l−1)

(2l − 1)!

)

= e−|β(α)|2
(

n∑
l=1

νn−lb

(n− l)!

(±|β(α)|2)l

l!

)
=
e−|β(α)|2

n!

[
(νb ± |β(α)|2)n − νnb

]
, (1.6)
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and |⟨n|β(α)⟩|2 = (e−|β(α)|2 |β(α)|2n)/(n!). These equations give

P0n,α(ρ̂
AB) :=Tr[Γ0n,α(ρ̂

AB)] =
e−νa−νb−|β(α)|2

n!

{
νnb +

[
(νb + |β(α)|2)n − νnb

]
Tr[P̂ABΦ ρ̂AB]

}
,

P0n,α(ρ̂
AB) :=Tr[Γ0n,α(ρ̂

AB)] =
e−νa−νb−|β(α)|2

m!

{
νma +

[
(νa + |β(α)|2)m − νma

]
Tr[P̂ABΨ ρ̂AB]

}
,

P00,α(ρ̂
AB) :=Tr[Γ00,α(ρ̂

AB)] = e−νa−νb−|β(α)|2 .

(1.7)

Thus, the measurement transforms state ρ̂AB into unnormalized states according to

ρ̂AB −→



(ẐB)nΓ0n,α(ρ̂
AB)(ẐB)n, (m = 0, 0 < n ≤ N),

ẐBN,α,0n
(∑

n>N Γ0n,α(ρ̂
AB)

)
ẐBN,α,0n, (m = 0, n = N + 1),

(ẐB)mΓm0,α(ρ̂
AB)(ẐB)m, (0 < m ≤ N,n = 0),

ẐBN,α,m0

(∑
m>N Γm0,α(ρ̂

AB)
)
ẐBN,α,m0, (m = N + 1, n = 0),

Γ00,α(ρ̂
AB), (m = n = 0),

states to be discarded, (m > 0, n > 0).

(1.8)

In the cases of m,n = 1 and N ≥ 1, Γ0n,α(ρ̂
AB) and Γm0,α(ρ̂

AB) are reduced into

ẐBΓ01,α(ρ̂
AB)ẐB

P01,α(ρ̂AB)
=
νbρ̂

AB + |β(α)|2P̂ABΦ ρ̂ABP̂ABΦ

νb + |β(α)|2Tr[P̂ABΦ ρ̂AB]
, (1.9)

ẐBΓ10,α(ρ̂
AB)ẐB

P10,α(ρ̂AB)
=
νaρ̂

AB + |β(α)|2P̂ABΨ ρ̂ABP̂ABΨ

νa + |β(α)|2Tr[P̂ABΨ ρ̂AB]
. (1.10)

The probabilities are described by

P01,α(ρ̂
AB) =e−νa−νb−|β(α)|2

{
νb + |β(α)|2Tr[P̂ABΦ ρ̂AB]

}
, (1.11)

P10,α(ρ̂
AB) =e−νa−νb−|β(α)|2

{
νa + |β(α)|2Tr[P̂ABΨ ρ̂AB]

}
. (1.12)

In the cases of N = 0, the successful output states are

ẐB[
∑∞

n=1 Γ0n,α(ρ̂
AB)]ẐB∑∞

n=1 P0n,α(ρ̂AB)

=
(1− e−νb)ẐB ρ̂ABẐB + [cosh(|β(α)|2)− 1]ẐBP̂ABΦ ρ̂ABP̂ABΦ ẐB + sinh(|β(α)|2)P̂ABΦ ρ̂ABP̂ABΦ

1− e−νb + (e|β(α)|2 − 1)Tr[P̂ABΦ ρ̂AB]
,

(1.13)

and

ẐB[
∑∞

m=1 Γm0,α(ρ̂
AB)]ẐB∑∞

m=1 Pm0,α(ρ̂AB)

=
(1− e−νa)ẐB ρ̂ABẐB + [cosh(|β(α)|2)− 1]ẐBP̂ABΨ ρ̂ABP̂ABΦ ẐB + sinh(|β(α)|2)P̂ABΨ ρ̂ABP̂ABΨ

1− e−νa + (e|β(α)|2 − 1)Tr[P̂ABΨ ρ̂AB]
.

(1.14)
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The success probabilities are

∞∑
n=1

P0n,α(ρ̂
AB) = e−νa−|β(α)|2

{
1− e−νb + (e|β(α)|

2 − 1)Tr[P̂ABΦ ρ̂AB]
}
, (1.15)

∞∑
m=1

Pm0,α(ρ̂
AB) = e−νb−|β(α)|2

{
1− e−νa + (e|β(α)|

2 − 1)Tr[P̂ABΨ ρ̂AB]
}
. (1.16)



Appendix 2

Elementary relations on Bell states

A2.1 X̂A ⊗ X̂B-basis and Bell states

|++⟩AB =
1√
2
(|Φ+⟩AB + |Ψ+⟩AB), |+−⟩AB =

1√
2
(|Φ−⟩AB − |Ψ−⟩AB),

| −+⟩AB =
1√
2
(|Φ−⟩AB + |Ψ−⟩AB), | − −⟩AB =

1√
2
(|Φ+⟩AB − |Ψ+⟩AB).

(2.1)

A2.2 Bell bases of four qubits

|Φ±⟩A1B1 |Φ±⟩A2B2 =
1

2
(|Φ+⟩A1A2 |Φ+⟩B1B2 + |Φ−⟩A1A2 |Φ−⟩B1B2

± |Ψ+⟩A1A2 |Ψ+⟩B1B2 ± |Ψ−⟩A1A2 |Ψ−⟩B1B2),

|Φ±⟩A1B1 |Φ∓⟩A2B2 =
1

2
(|Φ+⟩A1A2 |Φ−⟩B1B2 + |Φ−⟩A1A2 |Φ+⟩B1B2

∓ |Ψ+⟩A1A2 |Ψ−⟩B1B2 ∓ |Ψ−⟩A1A2 |Ψ+⟩B1B2),

|Φ±⟩A1B1 |Ψ±⟩A2B2 =
1

2
(|Φ+⟩A1A2 |Ψ+⟩B1B2 + |Φ−⟩A1A2 |Ψ−⟩B1B2

± |Ψ+⟩A1A2 |Φ+⟩B1B2 ± |Ψ−⟩A1A2 |Φ−⟩B1B2),

|Φ±⟩A1B1 |Ψ∓⟩A2B2 =
1

2
(|Φ+⟩A1A2 |Ψ−⟩B1B2 + |Φ−⟩A1A2 |Ψ+⟩B1B2

∓ |Ψ+⟩A1A2 |Φ−⟩B1B2 ∓ |Ψ−⟩A1A2 |Φ+⟩B1B2),

|Ψ±⟩A1B1 |Φ±⟩A2B2 =
1

2
(|Φ+⟩A1A2 |Ψ+⟩B1B2 − |Φ−⟩A1A2 |Ψ−⟩B1B2

± |Ψ+⟩A1A2 |Φ+⟩B1B2 ∓ |Ψ−⟩A1A2 |Φ−⟩B1B2),

|Ψ±⟩A1B1 |Φ∓⟩A2B2 =
1

2
(− |Φ+⟩A1A2 |Ψ−⟩B1B2 + |Φ−⟩A1A2 |Ψ+⟩B1B2

± |Ψ+⟩A1A2 |Φ−⟩B1B2 ∓ |Ψ−⟩A1A2 |Φ+⟩B1B2),

|Ψ±⟩A1B1 |Ψ±⟩A2B2 =
1

2
(|Φ+⟩A1A2 |Φ+⟩B1B2 − |Φ−⟩A1A2 |Φ−⟩B1B2

± |Ψ+⟩A1A2 |Ψ+⟩B1B2 ∓ |Ψ−⟩A1A2 |Ψ−⟩B1B2),

|Ψ±⟩A1B1 |Ψ∓⟩A2B2 =
1

2
(− |Φ+⟩A1A2 |Φ−⟩B1B2 + |Φ−⟩A1A2 |Φ+⟩B1B2

± |Ψ+⟩A1A2 |Ψ−⟩B1B2 ∓ |Ψ−⟩A1A2 |Ψ+⟩B1B2).

(2.2)
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A2.3 Bell measurement

1̂AB ⊗ B̂C1C2
00 = C1C2⟨Φ+|

=
1

2
|Φ+⟩AB(⟨Φ+|AC1⟨Φ+|BC2 + ⟨Φ−|AC1⟨Φ−|BC2 + ⟨Ψ+|AC1⟨Ψ+|BC2 + ⟨Ψ−|AC1⟨Ψ−|BC2)

+
1

2
|Ψ+⟩AB(⟨Φ+|AC1⟨Ψ+|BC2 − ⟨Φ−|AC1⟨Ψ−|BC2 + ⟨Ψ+|AC1⟨Φ+|BC2 − ⟨Ψ−|AC1⟨Φ−|BC2)

+
1

2
|Φ−⟩AB(⟨Φ+|AC1⟨Φ−|BC2 + ⟨Φ−|AC1⟨Φ+|BC2 + ⟨Ψ+|AC1⟨Ψ−|BC2 + ⟨Ψ−|AC1⟨Ψ+|BC2)

+
1

2
|Ψ−⟩AB(−⟨Φ+|AC1⟨Ψ−|BC2 + ⟨Φ−|AC1⟨Ψ+|BC2 − ⟨Ψ+|AC1⟨Φ−|BC2 + ⟨Ψ−|AC1⟨Φ+|BC2),

(2.3)

1̂AB ⊗ B̂C1C2
01 = C1C2⟨Ψ+| = C1C2⟨Φ+|X̂C2

=
1

2
|Φ+⟩AB(⟨Φ+|AC1⟨Ψ+|BC2 + ⟨Φ−|AC1⟨Ψ−|BC2 + ⟨Ψ+|AC1⟨Φ+|BC2 + ⟨Ψ−|AC1⟨Φ−|BC2)

+
1

2
|Ψ+⟩AB(⟨Φ+|AC1⟨Φ+|BC2 − ⟨Φ−|AC1⟨Φ−|BC2 + ⟨Ψ+|AC1⟨Ψ+|BC2 − ⟨Ψ−|AC1⟨Ψ−|BC2)

+
1

2
|Φ−⟩AB(⟨Φ+|AC1⟨Ψ−|BC2 + ⟨Φ−|AC1⟨Ψ+|BC2 + ⟨Ψ+|AC1⟨Φ−|BC2 + ⟨Ψ−|AC1⟨Φ+|BC2)

+
1

2
|Ψ−⟩AB(−⟨Φ+|AC1⟨Φ−|BC2 + ⟨Φ−|AC1⟨Φ+|BC2 − ⟨Ψ+|AC1⟨Ψ−|BC2 + ⟨Ψ−|AC1⟨Ψ+|BC2),

(2.4)

1̂AB ⊗ B̂C1C2
10 = C1C2⟨Φ−| = C1C2⟨Φ+|ẐC2

=
1

2
|Φ+⟩AB(⟨Φ+|AC1⟨Φ−|BC2 + ⟨Φ−|AC1⟨Φ+|BC2 − ⟨Ψ+|AC1⟨Ψ−|BC2 − ⟨Ψ−|AC1⟨Ψ+|BC2)

+
1

2
|Ψ+⟩AB(−⟨Φ+|AC1⟨Ψ−|BC2 + ⟨Φ−|AC1⟨Ψ+|BC2 + ⟨Ψ+|AC1⟨Φ−|BC2 − ⟨Ψ−|AC1⟨Φ+|BC2)

+
1

2
|Φ−⟩AB(⟨Φ+|AC1⟨Φ+|BC2 + ⟨Φ−|AC1⟨Φ−|BC2 − ⟨Ψ+|AC1⟨Ψ+|BC2 − ⟨Ψ−|AC1⟨Ψ−|BC2)

+
1

2
|Ψ−⟩AB(⟨Φ+|AC1⟨Ψ+|BC2 − ⟨Φ−|AC1⟨Ψ−|BC2 − ⟨Ψ+|AC1⟨Φ+|BC2 + ⟨Ψ−|AC1⟨Φ−|BC2),

(2.5)

1̂AB ⊗ B̂C1C2
11 = −C1C2⟨Ψ−| = C1C2⟨Φ+|X̂C2ẐC2

=
1

2
|Φ+⟩AB(−⟨Φ+|AC1⟨Ψ−|BC2 − ⟨Φ−|AC1⟨Ψ+|BC2 + ⟨Ψ+|AC1⟨Φ−|BC2 + ⟨Ψ−|AC1⟨Φ+|BC2)

+
1

2
|Ψ+⟩AB(⟨Φ+|AC1⟨Φ−|BC2 − ⟨Φ−|AC1⟨Φ+|BC2 − ⟨Ψ+|AC1⟨Ψ−|BC2 + ⟨Ψ−|AC1⟨Ψ+|BC2)

+
1

2
|Φ−⟩AB(−⟨Φ+|AC1⟨Ψ+|BC2 − ⟨Φ−|AC1⟨Ψ−|BC2 + ⟨Ψ+|AC1⟨Φ+|BC2 + ⟨Ψ−|AC1⟨Φ−|BC2)

+
1

2
|Ψ−⟩AB(−⟨Φ+|AC1⟨Φ+|BC2 + ⟨Φ−|AC1⟨Φ−|BC2 + ⟨Ψ+|AC1⟨Ψ+|BC2 − ⟨Ψ−|AC1⟨Ψ−|BC2).

(2.6)
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A B A B



A B

Lr

A B

Lr


(a)

(b)

P a,mnN,

P a,mnN,



P a,mnN, P a,mnN,

m+n>0

Lr Lr

Fig. A2.1. Equivalences on the nondestructive parity measurement followed by the phase-flip channel.

A B A B


Lr Lr

Bell-diagonal Bell-diagonal

Fig. A2.2. Equivalence on a phase-flip channel on a Bell-diagonal state.

A2.4 Equivalences on the nondestructive parity measurement followed by the

phase-flip channel

Here we show the equivalences in Fig. A2.1. The equivalence in Fig. A2.1a is shown from

ẐAP̂ABΦ = P̂ABΦ ẐA,

ẐAP̂ABΨ = P̂ABΨ ẐA.
(2.7)

The equivalence in Fig. A2.1a is also proven from

ẐAP̂ABΦ = ẐBP̂ABΦ ,

ẐAP̂ABΨ = −ẐBP̂ABΨ .
(2.8)

A2.5 Phase-flip channel on Bell-diagonal states

The equivalence in Fig. A2.1 is confirmed from

ẐA|Φ±⟩AB = ẐB|Φ±⟩AB,
ẐA|Ψ±⟩AB = −ẐB|Ψ±⟩AB.

(2.9)
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density operator, 5, 6
deterministic operation, 15
displacement operator, 37, 40

entanglement, 26, 27
entanglement connection, 83
entanglement distillation, 32
entanglement formation, 30
entanglement monotones, 27
entropy of entanglement, 30

graph state, 78

Hadamard gate, 3
Hamiltonian, 2
Hermitian operator, 1
Hilbert space, 2

ideal quantum channel, 23
isometry, 14

Jaynes-Cummings Hamiltonian, 45

Kraus operators, 13

linear algebra, 1
local operations and classical communication, 26

maximally entangled state, 31
mean dark count rate, 42
mixed state, 7
mixture, 7

nested-purification repeater protocol, 92, 95
no-cloning theorem, 17, 18
no-signaling, 10
nondestructive parity measurement, 67
normal operator, 1
number operator, 36
number state, 36

observable, 3
operator functions, 1

parity check measurement, 32
partial trace, 5
phase error rate, 16
phase shifter, 38
phase-flip channel, 16
photon, 35
photon detector, 42
photon loss, 40
photon-number-resolving detector, 42
Plank constant h, 2
positive operator, 1
Positive Operator-Valued Measure (POVM), 14
probabilistic cloning, 19
probabilistic operation, 15
projective measurement, 3
pure state, 7
purification, 9

quantum communication, 23
quantum efficiency, 42
quantum entanglement, 26, 27
quantum information, 18
quantum memory, 35
quantum repeater protocol, 44
quantum state, 18
quantum teleportation, 24
qubit, 3

Rabi frequency, 45
Raman processes, 48
ray, 2
recurrence, 32
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reduced density operator, 7
reference system, 9
remote nondestructive parity measurement (RNPM), 67

satellite-based quantum communication, 44, 92
Schmidt co-efficients, 8
Schmidt decomposition, 7
Schmidt number, 8
Schrödinger equation, 2
self-adjoint operator, 2
separable states, 27
Shannon entropy, 30
single photon detector, 42
spectral decomposition, 1
symmetric protocol, 57

target qubit, 4
threshold detector, 42
transmittance, 40
two-probe protocol, 51

unambiguous state discrimination, 19, 21
unitary operator, 1, 2

vacuum state, 36
von Neumann entropy, 30

Werner state, 34




