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Preface

About 80 years have passed since quantum mechanics was completed. For those days, quantum
mechanics not only has presented clear understanding of physical phenomena ranging from
particle physics to cosmology, but also has contributed to engineering through the design of
materials. However, these successes seem to be merely indirect evidence to ensure the validity of
quantum mechanics itself, because several principles of quantum mechanics — e.g., the back action
inevitably caused by the measurement — are not needed for the successes and are not sufficiently
tested. In other words, for giving the direct proof of the validity of quantum mechanics, we
have to list various phenomena that can be predictable solely by the combinations of the all the
principles of quantum mechanics, and we must test them. This kind of concepts has already
been taken by quantum information theory.

Quantum information theory is an area where, by constructively utilizing all the principles
of quantum mechanics and by borrowing the concept of information theory, it is tried to seek
striking quantum phenomena, the possibility of novel applications for information processing,
and the fundamental limits lying in the quantum world. This new approach has already re-
vealed many novel aspects of quantum mechanics ranging from the fundamentals to the novel
applications. In fact, the non-locality [1, 2, 3] of distant quantum systems — which is called
quantum entanglement — is featured as a fundamental property of the quantum world, and the
quantification and the operational characterizations have been successfully accomplished [4].
Moreover, quantum computation and communication — which are recognized as significant goals
of the development of quantum technologies — are shown to be applications that are consid-
ered intractable on conventional computers and communication. In fact, quantum computation
has the potential to efficiently solve several problems that seem to be beyond the active field
of classical computers, e.g., finding the prime factors of large integers [5], simulating the dy-
namics of quantum systems [6, 7], and searching marked data in a lot of data [§8]. Quantum
communication promises to enable novel applications such as absolutely secure communication
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and distributed quantum computation [19]. However, at
present, merely primitive operations of quantum computation are realized [20, 21, 22, 23, 24, 25],
and quantum communication more than 300 km has not yet been reported [26, 27]. Hence, it has
become really important to seek feasible architectures for long-distance (~ 1000 km) quantum
communication and quantum computation.

As the first step toward this goal, in this thesis, we quest a promising architecture to make
quantum communication possible over long distances. Quantum communication usually utilizes
optical pulses as the carrier of quantum information. However, the real transmission channel for
optical pulses suffers from the loss that increases exponentially with the channel length, which
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Preface 5

makes it practically impossible to extend the distance of quantum communication based on the
direct distribution of optical pulses. Instead, for long-distance quantum communication, it is
known to be better to invoke quantum repeater protocols [28, 29], which need repeaters with
quantum memories between the two-end parties as the infrastructure. The protocols aim to
generate quantum entanglement between the two-end parties, relying on the quantum teleporta-
tion protocol [30] that enables quantum communication by consuming quantum entanglement.
Actually, there are several repeater protocols depending on the types of quantum memories
[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

One promising candidate of quantum repeaters is based on atomic-ensemble quantum mem-
ories [31, 32, 33, 34, 35, 36]. These protocols are composed of two primitive operations, ‘en-
tanglement generation between repeaters’ and ‘entanglement connection.” Under the situation
where only photon losses are considered as error, the protocols enable the communication time
to scale sub-exponentially with the communication length. However, since the protocols have
difficulties to implement a scheme to recover quantum entanglement — entanglement distillation,
these protocols do not have countermeasures against the other types of noises.

Another candidate called ‘hybrid quantum repeater protocols’ [40, 41, 42, 43] is based on an
off-resonance coupling between an optical pulse and a qubit, which allows us to use various
qubit systems as the quantum memories. For example, individual A-type atoms, single electrons
trapped in quantum dots, and nitrogen-vacancy (NV) centers in a diamond with a nuclear spin
degree of freedom can be used as quantum memories. However, for achieving a sufficient coupling
between an optical pulse and a qubit, it may be needed to confine the qubit in a cavity. Differently
from the repeater protocols based on atomic-ensemble quantum memories, the hybrid quantum
repeater protocols are composed of all the primitive operations that are considered to be needed
for general settings, i.e., entanglement generation between repeaters, entanglement connection,
and entanglement distillation. Although it has been reported [40, 43] that the protocol shows
efficient communication times, the entanglement connection and the entanglement distillation
rely on hypothetically efficient local gates on two qubits (CZ gate) [44, 45]. In fact, the local
gates are too complicated to be accomplished with such high efficiencies [46].

In this thesis, we present a single module on two qubits — remote nondestructive parity mea-
surement (RNPM) — that promises to accomplish efficient long-distance quantum communication
under arbitrary types of noises. The RNPM is based on the same quantum memories and off-
resonance coupling that are used in the hybrid quantum repeater protocols, which implies the
applicability of the RNPM to various qubit systems. In particular, the RNPM is achieved by
application of off-resonance laser pulses to be reflected dependently on the state of qubits and
by manipulation on the pulses based on a simple combination of beam splitters and photon
detectors. Despite this simplicity, the RNPM allows us to implement all the operations needed
for long-distance quantum communication, namely, entanglement generation, entanglement con-
nection, and entanglement distillation. In addition, we prove that the entanglement generation
based on the RNPM achieves the theoretical limit of performance among arbitrary protocols to
generate entanglement with one type of error. Moreover, we show that the progressive improve-
ment of RNPM opens up the possibility of measurement-based quantum computation [47, 48, 49].

This thesis is organized as follows. Chapter 1 and Chapter 2 are brief reviews on quantum
mechanics and quantum communication. In Chapter 3, we provide an entanglement generation
protocol between distant qubits, and we show that it has higher efficiencies than known protocols
[31, 37, 38, 40, 41, 42, 43] found in the development of quantum repeaters. In Chapter 4, deriving
the theoretical limit of performance of protocols to generate entanglement with only one type



6 Preface

of error, we prove that the proposed protocol achieves the upper limit. In Chapter 5, we show
that the proposed protocol actually plays the role of the RNPM, and we further clarify the
possibility of striking applications of the RNPM. In Chapter 6, we estimate the performance of
long-distance quantum communication based on the RNPM, and show that the communication
time scales sub-exponentially with the channel length. There, we further show that the nested-
purification repeater protocol [28, 29] is also achievable by the RNPM. Chapter 7 concludes this
thesis.
This thesis is based on three papers as follows:

Chapter 3: Koji Azuma, Naoya Sota, Ryo Namiki, Sahin Kaya Ozdemir, Takashi Yamamoto,
Masato Koashi, and Nobuyuki Imoto, Optimal entanglement generation for efficient hy-
brid quantum repeaters. Phys. Rev. A 80, 060303 (R) (2009).

Chapter 4: Koji Azuma, Naoya Sota, Masato Koashi, and Nobuyuki Imoto, Tight bound
on coherent-state-based entanglement generation over lossy channels. arXiv:0908.2735
[Phys. Rev. A (to be published)].

Chapters 5 and 6: Koji Azuma, Hitoshi Takeda, Masato Koashi, and Nobuyuki Imoto, Quan-
tum repeaters built on a single module: Remote nondestructive parity measurement. In
preparation.
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1

Quantum mechanics

One of most successful theories in physics is the so-called quantum mechanics. This theory
features considering the back action of the measurement process as a law of nature. In this
chapter, we briefly review the principle of quantum mechanicst. In the last of this chapter, we
provide the no-cloning theorem clarifying a striking difference between our ordinary worldview
and the quantum world. This chapter contains the basic knowledge to understand the subsequent
chapters.

1.1 Properties for linear operators.

Quantum mechanics is based on the linear algebra. Without proofs], here we mention on several
properties of representative linear operators:

Normal operators: A linear operator A satisfying At A = AAT is called normal operator. For
a normal operator A, we can always find an orthonormal basis {|i)} such that A =
>, ai]i)(i]. The form of A= > a;]i)(i] is specifically called the spectral decomposition
of A.

Hermitian operators: A linear operator A satisfying At = A is called Hermitian operator.
Since any Hermitian operator A is normal, A can be always represented by A = > aqli) (i
with an orthonormal basis {|i)}. Note that AT = A means a* = a;. Thus, any Hermitian
operator A can be always represented by A = >, ai]i) (7] with an orthonormal basis {|7)}
and real numbers {a;}.

Positive operators: A linear operator A is called positive operator if and only if <¢|fl]¢> >0
holds for any vector |¢). Since any positive operator A is Hermitian§, the operator
A can be always represented by A = >; a;]%)(i] with an orthonormal basis {|i)} and
nonnegative numbers {a;}.

Unitary operators: A linear operator A satisfying ATA = AAY = T is called unitary oper-
ator. Any unitary operator A can be represented by A = > lwi) (v;| with complete
orthonormal bases {|v;)} and {|w;)}.

We may use operator functions defined by the following: If we have a function f mapping
complex numbers to complex numbers, we can define the operator function on normal operators

t This chapter is based on the lectures of Koashi, on the text book of Nielsen and Chuang [50], and on the lecture note of
Preskill [51].

1 For example, the proofs can be found in Ref. [52]

§ This fact is proved as follows. Note A = B + iC with B := (A4 A1)/2 and € := (A — A)/(2i). Then, (¢|C|¢) =
Im[(¢|A|¢)] holds but €' is an Hermitian operator. This means ($|C|¢) = 0, which concludes A = AT.
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as f(A) :== 3, f(ai)|a;){ai|, where A is a normal operator with spectral decomposition A =

> ailai)(ail.

We may also use the following theoremf:

Theorem 1.1 (Simultaneous spectral decomposition for Hermitian operators) Sup-
pose that two Hermitian operators A and B commute, i.e., [A,B] :== AB — BA = 0. Then,
there exists an orthonormal basis {|a,b,k)}qpr such that A =5, ala,b,k){a,b k| and B =

Za,b,k: b|a7 b, k> <a, b, k‘| .

1.2 The postulates of quantum mechanics

In the classical world, the measurement is merely a process of giving us an outcome to learn
the state of a physical system, and it is considered to be, in principle, performed without
disturbing the state of the system. That is, in the classical mechanics, the state of a system is, in
principle, determined by sequential measurements of various physical quantities on the system.
But, in the quantum world, the measurement is not such a simple process. In fact, there is a
measurement that not only returns such an outcome but also inevitably causes a back action on
the system. In order to describe phenomena including this complicated measurement process,
quantum mechanics divides the description of the state from that of the measurement process.
The quantum mechanics is formed by the following four postulates:

Postulate 1: A physical system corresponds to a Hilbert space H — a vector space with an
inner product (|v), |w)) =: (v|w) that is also a complete metric space with respect to the
distance function induced by norm |||v)|| := \/(v|v). The state of the system is described
by a ray [¢), which is |¢) € {a|¢) | a € C,|a| =1, |¢) € H}.

Postulate 2: The time evolution of a closed system is represented by a unitary operator. Let
|4(t)) be a state of the system at time t. The time evolution from time ¢; to time ¢y
satisfies

[0(tp)) = Ule(t), (1.1)

where U is a unitary operator. Note that, by regarding U = exp[—iﬁ(tf—ti)/h], Eq. (1.1)
corresponds to the solution of the well-known Schrédinger equation:

. d A
ih=[0(8)) = H[¢(t)), (1.2)

where H is an Hermitian operator called Hamiltonian, and ki is defined as h := h/(2)
with the Plank constant h.

Postulate 3: A physical quantity A corresponds to an Hermitian operator fli Since A is an
Hermitian operator, A is diagonalizable as follows:

A= Za¢|ai><ai|, (1.3)

where a; is an eigenvalue of A and la;) is an eigenvector corresponding to the eigenvalue
a;. Then, we regard a; as a possible outcome given by the measurement of A, and |a;) as
a state always giving the measurement outcome a;. Such an operator A is particularly

t For example, the proofs can be found in Ref. [50].
1 More precisely, the operator A is the so-called self-adjoint operator.



1.2 The postulates of quantum mechanics 3

called an observable. In addition, by making measurement of A on an initial state [v),
the state |¢) is found in state |a;) with probability

plas) = [{aily) . (1.4)

This measurement is called projective measurement. From Eq. (1.4), the expectation
value (A) of A is given by

(A= aipla) = Y aulwlaaily) = (G1A). (1.5

Postulate 4: Suppose that H 4 and Hp correspond to physical systems A and B, respectively.
Then, the composite system AB corresponds to H4 ® Hp. Moreover, if the systems A
and B are prepared in state |1)) 4 and |@) g respectively, the state of H 4 ®@H p corresponds
to [)a @ @) B(=: [¢) al®) B).

Postulate 1 gives the description of a physical system and the state. Postulate 2 determines the
dynamics of the physical system. Postulate 3 defines the relation between the physical state
and the outcome obtained by the measurement. Postulate 4 specifies the stage to describe a
composite system.

As an example, we consider the so-called qubit system. This system corresponds to a two-
dimensional Hilbert space H 4. Thus, the state of the system can be described by

)4 = al0)a + BI1) 4, (1.6)

where |0) and |1) are a complete orthonormal basis, a, 3 € C, and |a|?> + |3]> = 1. The
basis {|0),|1)} is specifically called computational basis in the context of quantum information
processing. The unitary operator of the system is generally represented by

ﬁ;:x#’ — oieme™/2 _ o (g) I4 —isin (g) (ne X4 + ny?A +n,Z%), (1.7)

where ¢ € R, n = (ng,n,,n,) € R® such that [n| = 1, I* = 0)(0[4 + [1)(1]4, and 64 =
(XA, Y4, Z4) with

24 = 62 =(0)(0]4 — [1) (1. (18)
XA =67 :=(0)(L]a + [1)(0], (1.9)
VA= 6= = i([0) (14 — 1)(0]). (1.10)
A well used and important unitary operator is the Hadamard gate defined by
HA = 10,){01a + [12)(1]a, (1.11)
where |0,) 4 := [+)4 = (|0)4 +|1)4)/v2 and |1;) 4 := |=)a := (]0) 4 — |1)4)/+/2. The operator

n-64 is an Hermitian operator, and hence this is an observable of the qubit system. By defining
(ng, ny,n.) =: (sinf cos ¢, sin § sin ¢, cos #), the observable n - 64 can be written as

-6 =n, XA 40,V 40,24 = |0,)(0n]a — 1) (1n]a (1.12)
with

|0n) 4 = cos <g> 0) 4 + € sin <§> 11) 4,

1)1 =sin (2) 0)4 — € cos (2) 1)

(1.13)
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time )
time
Application of unitary operation U on system A or l
Outcome j(=0,1) is obtained by Z-basis measurement j or j
A A B
_*.—
Application of CNOT gate on AB or D
B o
A A B
_*.—
Application of CZ gate on AB or )
B &

Fig. 1.1. The definition of the schematic descriptions of operations.

The projective measurement of the basis {|0p)4,|1n)a} is called n - 64-basis measurement.
Eq. (1.12) reduces U;;‘?(p to a simple form
Uty = e72|05)(0n]a + €%/ 1n) (1n ] a. (1.14)

The combined system of qubit A and qubit B corresponds to the Hilbert space H4 ® Hp, and
hence the state of the system is described by

|Y)aB = a|00) 4B + B]|01) A + 6[10) 4B + [11) aB (1.15)

with «, 8,d,7 € C and |a|? + |B]? + |6|? + |y|? = 1. An important unitary operation of the two
qubits is the so-called CNOT gate defined by

C{E = 10)(0|a @ Ip + |1)(1]4 ® XB. (1.16)
Since CNOT gate is asymmetric under the change A <> B, for clarity, A and B are called control
qubit and target qubit, respectively. A similar unitary operation on two qubits

CHP = |0V (0|a @ Ip + [1)(1]4 @ 2P (1.17)

is called CZ gate. In contrast to CNOT gate, CZ gate is symmetric under the change A < B.
In this thesis, these operations are described as in Fig. 1.1.

1.3 The description of the measurement on a subsystem

Here we consider the description of the measurement process on a subsystem and of the state
of the subsystem. Let |¥)p be a state of physical systems shared by Alice and Bob. Let us
consider a process where Alice and Bob make projective measurements represented by complete
orthonormal bases {|a;)a} and {|b;)p} on their systems. Then, the probability p(a;, b;) with
which Alice and Bob find their systems in state |a;)4|b;) B is given by

plai, bj) = [alail 5 {(b;||¥) anl?, (1.18)
from Postulate 3.
Suppose that the measurement process is actually done through the following two steps: (i)
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Alice first makes measurement {|a;) 4} on her system, and finds the system A in state |a;)4; (ii)
Bob then makes measurement {|b;) g} on his system, and finds the system B in state |b;)p. Let
us assume that Bob’s system is described by a state |i;) g after Alice’s measurement. Since Bob
makes the measurement on his system in state |1;) g, the probability p(bj|a;) with which Bob
finds his system in state |b;)p is

p(bjla;) = |B{bj|vi)|*. (1.19)

Substituting Egs. (1.18) and (1.19) for a relation of probability theory, p(b;|a;)p(a;) = p(ai, b;),
we have

| a(ail B {bj||¥) aB| = |/ p(ai) B(bj|¢i) B (1.20)

Since this relation should hold for any projective measurement {|b;)p}, we conclude

||
i) = ALz (1.21)
p(a;)
where we used the fact that |(z|y)| = |(x|z)| for any ray |z) means |y) = |z).

Now, what if Bob does not know what Alice does. More precisely, Bob knows the state
|¥) ap of a composite system AB, but he never communicate with Alice. Then, how should we
describe the state of Bob’s system? Probability p(b;) with which Bob gets result |b;) from his
measurement is

p(bj) = Zp(ai, bj) = Zp(bj\ai)p(ai) = Zp(ai)\B@jWi)BlQ

=p(b;l (ZP(%)’%)BB(%!) ;)5 (1.22)

B
=:5(bj|p”|bj) B,
where we introduced density operator p? defined by

PP = Zp(ai)!%)BB(i/%!' (1.23)

Since density operator pP gives the correct probability distribution {p(b;)} of Bob’s measure-
ment, it is a good candidate for the description of the state of Bob’s system. From Eq. (1.21),
the density operator p can be rewritten as

PP =" alail|¥) apap(¥||ai) a (1.24)
=Tra|¥) apas (Y]], (1.25)
where Tr 4[] is known as the partial trace over system A. Since the partial trace has a property
Tea[CA19) apap(¥)] = Tral|¥) apan(¥|CY (1.26)

for any operator C4, we have
Tea[UA9) apap(PI(OH)T] = Trall¥) apas (V] (1.27)

for any unitary operator UA, which implies that p? is invariant for Alice’s local unitary operation
UA. Thus, the density operator 5 is determined independently of Alice’s measurement {|a;)},
which is compatible with the assumption that Bob does not know what kind of measurement
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Alice makes on her system. Hence, it seems to be good to describe the state of system B by the
density operator . In the subsequent sections, one can also see why the density operator is a
good description of a subsystem.

In this section, we have seen how to describe the measurement process on a subsystem and
the state of a subsystem. These can be summarized as follows:

Theorem 1.2 (Projective measurement on a subsystem) Suppose that a party has system
AB in state |¥) s, and makes projective measurement represented by a complete orthonormal
basis {|a;)a}. If the measurement indicates that the state |V)ap is in state |a;) 4, the state of
subsystem B is described by

a;||P
i) B = alwlB)an (1.28)
p(ai)
where p(a;) is probability with which the party finds the system A in state |a;) 4, and is given by
plai) = |lafa|[9) apl|* = Trla(as]|9) apan(¥]|as) al- (1.29)

Theorem 1.3 (The description of a subsystem) Suppose that a composite system AB is in
state |V)ap. If a party holding subsystem B does not know how system A is manipulated, the
state of subsystem B can be described by

p” = Tral|¥) apan(¥|]. (1.30)

Probability p(b;) with which state pP is found in a state |b;)p by projective measurement repre-
sented by a complete orthonormal basis {|b;)p} is

p(bi) = B{bil " |bi) 5. (1.31)

1.4 The density operator

Here we introduce several properties of the density operator. We start with giving the formal
definition of the density operator.

Definition 1.1 For an ensemble {p;,|¢;)}, density operator p is defined by
pi=Y_ pilthi) (Wil. (1.32)

This indicates that the operator p? of Eq. (1.23) is an example of the density operators. We
have an equivalent expression of the density operator:

Theorem 1.4 (Density operators) An operator p is the density operator if and only if (i)
Tr[p] = 1, and (ii) p is positive.

Proof. Suppose that p satisfies conditions (i) and (ii). Since p is positive, we can write p =
> pili)(i] with an orthonormal basis {|7)} and p; > 0. From condition (i), we have ), p; = 1,
which concludes that p has the form of the density operator defined by Eq. (1.32).

Conversely, suppose that p is a density operator defined by Eq. (1.32). Then, for any vector
|z), we have

(z[plz) = Zml(fﬂli/%ﬂ? >0, (1.33)
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which means that p is positive. We can also check Tr[p] = 1. O

From Theorem 1.4, it is shown that any density operator p? of the qubit system A can be
described by

FA ~A
a2 Fv o7 (1.34)
2
where v € R? and |v| < 1. v is called Bloch vector, and it uniquely corresponds to the density
operator pA.

We mention on several terms. Let p4P be a density operator for a composite system AB.
Then, an operator defined by pf := Tr A[ﬁAB] is also a density operator on system B. The
density operator pP is particularly called a reduced density operator on system B. If a density
operator p can be written as p = [¢) (1| with a normalized vector |¢), the density operator p is
called a pure state; otherwise the density operator is called a mized state, or a mixture of pure
states. Here we give a useful fact to judge whether a density operator p is pure or mixed.

Theorem 1.5 (Pure or mixed?) Tr[p?] < 1. The equality holds if and only if p is a pure
state.

Proof. We represent p as p = ), p;|i)(i| with an orthonormal basis {|7)}. Then, we have

T =Y < (1.3

Note that Tr[p?] = 1 means the existence of i satisfying p; = 1. Conversely, if p = |¢) (1| with a
state |¢), then Tr[p?] = 1. Thus, this theorem is proved. O

The ensemble of density operators {p;, p;} is also a density operator:

Theorem 1.6 (The mixture of density operators) Suppose that {p;} is a set of density
operators, and {p;} is a probability distribution. Then, p:= Y . pip; is also a densilty operator.

Proof. p; can be written as p; = Zj qj|il14,i)(1j,i| with probability distribution {g;;}; and pure
states {|1j;)};. Thus, p can be represented by

P=> pifi=_ > pidjilthia) (Wil (1.36)

which is a density operator. 0

Suppose that we are given a system in a state p; with probability p;. If we are interested in the
probability distribution to be obtained by a measurement on a system in an ensemble {p;, p;},
this theorem implies that the probability distribution is equivalent to one to be given by the
measurement on a system in state p =) . p;p;.

1.5 Schmidt decomposition and purification

In this section, we introduce two powerful tools called Schmidt decomposition and purification.
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Theorem 1.7 (Schmidt decomposition) Let |¥)sp be a pure state of a composite system
AB, and define pP := Tra[|¥) apan(¥|]. Then, using an eigenbasis {|b;)p} and the eigenvalues
{pi} of pP, we can write the state | V) op as

)45 = Z VDilai) albi) B, (1.37)

where {|a;)a} is an eigenbasis of p? = Trp[|V)apap(¥|]. {pi} is called Schmidt co-efficients,
and the number of non-zero {p;} is called the Schmidt number.

Proof. From the assumption, the reduced density operator p” can be diagonalized as p? =
> pilbi) B(b;| with an orthonormal basis {|b;) g}. Then, we have

aB(Y|16) B (bil|¥) an =Y an(¥llar) albj) pa(ar|s(bil|¥) an
k

= Z(ak\]g(biH\I’)ABAB<‘I’\|ak>A‘bj>B
k

=p(bil"[b;)
=pi0ij,

which indicates that |a;) 4 := p(bi||¥)aB//Pi composes an orthonormal basis {|a;)4}. For the
bases {|a;)a} and {|b;)B}, |¥)ap is expressed in the form of Eq. (1.37). O

This theorem enables us to reduce a general description of a bipartite state,

|W)ap = Zcij|ai>A|bj>B (1.38)
4,J

with co-efficients {c¢;;} of the complex numbers, into a simple form of Eq. (1.37). The simple
form for any bipartite state |¥) 4p is useful for proving many results.

We proceed to the relation between bipartite pure states |¥)sp and |®)4p with the same
Schmidt co-efficients.

Theorem 1.8 |¥) sp and |®)ap have the identical Schmidt co-efficients if and only if there are
unitary operators U4 and VB such that

@) ap = (U4 @ V)W) 4. (1.39)

Proof. Suppose that the dimension of system A is d4, and that of system B is dg. From the
assumption, |V)sp and |®)sp are written as

d
()ap =Y /pilai)albi) s, (1.40)
=1

d
[®)ap = /pilai)alb}) s, (1.41)
=1
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where {p; }i=1,.. 4 are Schmidt co-efficients with p; # 0, and {|a;)a}, {|a})a}, {|b:) B}, and {|0]) 5}
are orthogonal states. Let us define U4 and V' as

da
=> " lai)aalail, (1.42)
=1

dp
= [t ebil, (1.43)
i=1

by addmg extra bases {|az>A}d+1, 7dA7 {|CL >A}d+1, das {|b >B}d+1, dp> and {|b >B}d+1, .dpB if
they are necessary. These U4 and VB are unitary operations satisfying Eq. (1.39), and hence
the direct part is proved.

The converse part is trivial, because local unitary operations preserve the eigenvalues of p4 =

Trp[|®) apap(¥|] (and p” = Tra[|¥) apap(P|)). O

This theorem suggests a nontrivial fact as follows. Let a composite system AB be in state
|¥)ap. Suppose that Alice and Bob, who are separated parties, hold system A and system B,
respectively. According to the theorem, by their local unitary operation UA®VE, Alice and Bob
can freely transform the state |¥)4p into a state |®)4p with the same Schmidt coefficients as
those of |W) 4p. Thus, |¥)4p and |®) 4p should be regarded as equivalent states under situations
where Alice and Bob can freely use local unitary operations.

Let us proceed to another useful technique called purification, which relates a density operator
pP of a system B with a pure state |¥) 4p of a composite system AB by introducing a fictitious
system A. The fictitious system A is called a reference system.

Theorem 1.9 (Purification) Let pP be a density operator of a system B. Then, there
exists a pure state |U)ap of a composite system AB with a reference system A such that
B = Tra[|U) apap(V|]. The pure state |¥) ap is called a purification of pB.

Proof. We write p as p¥ := >, pi|b;) p(b;| with an orthonormal basis {|b;)5}. Suppose that
{]a;) 4} is an orthonormal basis of system A. Then, we define |¥V)4p as

U)ap = Z\/@mimbm, (1.44)

which satisfies p” = Tra[|¥) apap(¥|]. Thus, the theorem is proved. O
Note that the purification of a density operator is not unique as follows.

Theorem 1.10 (Freedom in purifications) Let |V)sp and |®)ap be arbitrary purifications
of a density operator pB. Then, there is a unitary operation U4 such that

@) ap = (U4 @ IP)|¥) 5. (1.45)
Proof. From the assumption, we have

= Tral|¥)apap(¥|] = Tral|®) apap(®]]. (1.46)
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Then, from Theorem 1.7, by using an eigenbasis {|b;) p}i=1,.. 4 and the eigenvalues {p;}i=1 . 4
of the reduced density operator 5?, we can represent the states |¥)p and |®)4p as

d
W)ap = > pilas)albi) s, (1.47)
=1
d
[®)ap = > V/Pilaj)albi) s (1.48)
i=1

with orthonormal bases {|a;)a}i=1,. a4 and {|a})a}i=1,. 4. Therefore, by defining

dimH 4

U= > laj){aila (1.49)

=1

through adding extra bases {|a;) a }i=a+1,....dim#, and {|a})a}i=dt+1,.. dimw, if they are necessary,
we have Eq. (1.45). 0

This theorem indicates the following important fact. Suppose that a composite system AB is
in a purification |¥)4p of a density operator ¥, and the systems A and B are held by Alice
and Bob, respectively. The theorem indicates that Alice can freely convert the state |¥)4p
into another purification |®)4p of the density operator p” by her local unitary operation UA.
This conversion is achievable by Alice alone, independently of the distance between Alice and
Bob. Here Bob must not have the ability to discriminate whether the conversion is executed by
Alice, without communicating with her, because, if it were possible, she could send him a signal
faster than light. Actually, signaling faster than light is prohibited even in quantum mechanics,
as represented by the fact that both of the reduced density operators of |¥) 45 and |®)4p on
system B are the same. Thus, the theorem suggests not only that quantum mechanics satisfies
no-signaling , but also that we should describe the subsystem of quantum systems as a density
operator.

Let us imagine that two ensembles give the same density operator. Then, can we discriminate
the ensembles? The answer is given in the proof of the following theorem.

Theorem 1.11 (Freedom in ensembles for a density operator) Both {p;,|;)} and
{q,|¢i)} give an identical density operator p, namely {p;, |1:)} and {q:, |pi)} satisfy

p= Zpi’1/1i><¢i| = Z%|¢i><¢i|’ (1.50)

if and only if

Vpilti) = Zuij@|¢j> (1.51)

holds for a unitary matriz u;;.
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Proof. Suppose that {p;, |1;)} and {g¢;, |¢i)} satisfy Eq. (1.50). Let us define pure states |¥)4p
and |®) 4p as follows:

V)ap =) Vpilaialti)s, (1.52)
®)an ZZZ\/@!(I@?A\(MB, (1.53)

where {|a;) 4} is an orthonormal basis of a reference system A. Note that the states |¥)4p and
|®) 4p are purifications of the density operators p” of Eq. (1.50). Then, from Theorem 1.10,
there is a unitary operation U such that

> Vpilaialti) s =Y Va(Uai)a)léi) s (1.54)
Applying 4(a;| to this equation, we have

Vpilti)B = EU¢j\/<7j|¢j>B, (1.55)

where u;; == A(ai]UA|aj>A is a unitary matrix. This equation is equivalent to Eq. (1.51).
Conversely, suppose that Eq. (1.51) holds. Then, we have

ZP%W: ) (Wil _ZZUU U514/ 4545 |oj) (6]

v 5,5

> (Z u> VT 6

2

_ZQZ|¢Z (i, (1.56)

which means that both {p;,|¢;)} and {¢;,|¢i)} give an identical density operator. Thus, the
theorem is proved. O

This proof implies that we cannot discriminate between two ensembles {p;, [¢;)p} and {q;, |¢i) B}
giving the same density operator. Suppose that systems A and B in state |U)ap of Eq. (1.52)
are held by Alice and Bob, respectively. Then, Eq. (1.54) implies that Alice can give Bob
not only ensemble {p;, WQ B} by making measurement {|a;) 4}, but also ensemble {g¢;, |¢;) 5} by
making measurement {U/ A\al) A}. Here, if Bob could discriminate between the two ensembles, he
could learn Alice’s choice between the two measurement procedures, which contradicts the no-
signaling. Thus, discrimination between the two ensembles should be impossible, and actually,
the impossibility is ensured by the fact that ensembles {p;, [¢);) g} and {g¢;, |¢i;) 5} give the same
density operator.

1.6 The postulates of quantum mechanics for density operators

As seen above, the density operator is a good description of the state of a physical system.
Hence, it is better to rewrite the postulates of quantum mechanics for the density operator.
In terms of the density operators, the postulates of the quantum mechanics are rephrased as
follows:
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Postulate 1: A physical system corresponds to a Hilbert space H. The state is described by a
density operator p on the Hilbert space H.

Postulate 2: The time evolution of a closed system is represented by a unitary operator U.
Let p and p' be an initial state and the final state of the system, respectively. Then, the
relation between the states is described by

P =UpU". (1.57)

Postulate 3: Suppose that A is an observable described by A = 37, a;]a;){(a;|. By the measure-
ment of A on an initial state p, the state p is found in state |a;) with probability

plai) = (ai|plas). (1.58)
From Eq. (1.58), the expectation value (A) of A is given by
(A) = aip(a;) = ailail pla;) = Tr[Ap). (1.59)
i i
Postulate 4: Suppose that H 4 and Hp correspond to physical systems A and B, respectively.
Then, the composite system AB corresponds to H4 ® Hp. Moreover, if the systems A

and B are prepared in state p4 and 67 respectively, the state of H ® Hp corresponds
to pA @ 6B,

Similarly, Theorem 1.2 and Theorem 1.3 can be rewritten as follows.

Theorem 1.12 (Projective measurement on a subsystem) Suppose that a party has system
AB in state pAB, and makes measurement represented by a complete orthonormal basis {|a;)a}.
If the measurement indicates that the subsystem A is in state |a;)a, the state of subsystem B is
described by

5 _ Alailp?Plai)a

P = 1.60
(@) (1.60)

where p(a;) is the probability with which such an event occurs and it is given by
plai) = Tra(a;|p*”|ai) a]. (1.61)

Theorem 1.13 (The description of a subsystem) Suppose that a composite system AB is
in state pAB. If a party holding subsystem B does not know how system A is manipulated, the
state of subsystem B is described by

pl = Tra[p"P]. (1.62)

1.7 Generalized measurement

The most important process in physics is the measurement. In this section, we consider the
description of generalized measurement in quantum mechanics.

Without loss of generality, measurement on a physical system A can be regarded as the
following process (Fig. 1.2):

(i) We first prepare physical system E in a standard state |X)g, which is called an ancilla
or an auxiliary system,
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Fig. 1.2. A schematic picture of generalized measurement.

(ii) In order to extract information of system A, we make the physical system A interact with
ancilla E according to a unitary operation U4¥ on systems AE;

(iii) We make projective measurement represented by a complete orthonormal basis {|i) g}
on ancilla E’ such that Ha @ Hg = Ha @ Hp/, and we find that ancilla E’ is in state

i) .

Suppose that system A is initially in a state p4. Then, the state 64" after the interaction UAF
is described by

oM = UM (5" @ [2) i (S)UAPT. (1.63)
Making measurement {|i) g} on system E’, we find system E’ in state |i) gz with probability
pi = Tr[p (6|62 F i) ], (1.64)

where we have used Theorem 1.12. From Theorem 1.12, we also conclude that the state of
system A is in state

(S ATE |
oy i Uy (1.65)
bi
By introducing a set of operators
M; = g (i|lUAF|D) g, (1.66)

p; and (7;4/ are simply rewritten as follows:

pi = Te[M] M; ™, (1.67)
’ M AAMT
i (1.68)
bi
Note that
> NN = T (1.69)
)

The operators {]\Z[Z} satisfying Eq. (1.69) are called Kraus operators. Therefore, any measure-
ment process can be represented by Kraus operators {M;}.
Conversely, the measurement corresponding to Kraus operators {M;} always exists. From
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Eq. (1.69), we have

(ZM!¢ Ald) ) (ZMW ali) ) = (16)4l2) )" (1) 4ID) ) (1.70)

for arbitrary states |¢)) 4 and |¢), a standard state |X) g, and an orthonormal basis {|i)g/} of a
system E’. This fact suggests that {d°, M;|k)a|i) g br=1,. . dimu, With a complete orthonormal
basis {|k) A }k=1,.. dim#, is an orthogonal basis of system H 4 ® Hps. Thus,

dimH 4

> <Z Milk>Ali>E/> Alk|e(X| (1.71)
k=1 i
is shown to be an isometryt from Ha @ |X)g to Ha @ Hpr, and it satisfies

Ulg)alS) e = ZMi‘w>A‘i>E’- (1.72)

Since we can make a unitary operator UAE as an extension of the isometry U, we can achieve the
measurement corresponding to given Kraus operators {MZ} by applying the unitary operation
UAE on system A and system E in a standard state |X)z and by projective measurement {|i) g }
on system FE’.

The description of the generalized measurement is summarized as follows.

Theorem 1.14 (Generalized measurement) Any measurement on system A is described by
a set {M } of operators, where M is an operator mapping system A into system A’ and satisfying
> ZM;'MZ = JA. If we make the measurement on system A in state p*, we receive an outcome
indicating that the left quantum system A’ is in state

. NMpAM
o = L 1 (1.73)
b
with probability
pi = Te[M] M p™). (1.74)

1.7.1 POVM measurement

In practice, there are cases where we are interested in only the probability distribution {p;}
obtained by a measurement {M;}. In such cases, it is better to use a set of operators {E;} with
E; =M ;Mi, because p; is determined only by operator E; as Eq. (1.74) indicates. The set {EZ}
is called a POVM (Positive Operator-Valued Measure). More formally, the POVM elements are
defined to be operators satisfying the following two properties: (i) E; is positive; (i) >, E=1.
In fact, the operators {EL} with these properties are related with Kraus operators as follows.
From property (i), we can ensure the existence of operator \/E Combined this with property

(ii), M; := v/ E; can be regarded as Kraus operators, which ensures the achievability of POVM
measurements.

1 A linear operator A from C™ to C™ is called an isometry if (x| AT Aly) = (z|y) for any |z), |y) € C™.



1.7 Generalized measurement 15

Partial trace
over system £’

Fig. 1.3. Completely-positive trace-preserving (CPTP) map.

1.7.2 CPTP map and CP map

As represented by Theorem 1.14, generalized measurement returns an outcome ¢ and a quantum
system in the corresponding state &2‘4/7 with probability p;. Here, if we cannot get the measure-
ment outcome ¢ or we forget the outcome i, we should consider that the measurement returns
only an ensemble {p;, 57 "}, In this case, we should consider the left quantum system to be in

oM =3 el = Mipt (1.75)
% %

state

where we used Eq. (1.73). The right-hand side of this equation can be considered to be a
quantum operation mapping system A to system A’. This operation is called a deterministic
operation or a completely-positive trace-preserving (CPTP) map. Using the fact that {MZ} is
executed through a unitary operator U4F satisfying Eq. (1.72) [or Eq.(1.66)], we obtain

o =3 p UM (" @ D) pp(SNT i) p = Trp [UA (6" @ [S)pp(S)TFY. (1.76)

This equation implies that the CPTP map is implementable by unitary operation UAE on system
A and ancilla E followed by the partial trace over system E’ (see Fig.1.3).

More generally, by the generalized measurement {M;};cs, we may receive an outcome p only
ensuring that the outcome is included in a subset &’ C S. In this case, we should consider
that the measurement returns ensemble {p;/(}_;cs ), 04 Yicsr. Thus, the left state can be
described by

/ 1 / 1 N N
~A ~ A ~A
o gty Tl = s S am
]Es/pj jes’ jES’p] jeS!
This process is also considered to be a quantum operation mapping system A to system A’.
Unless ZJES, pj = 1, the operation is called a probabilistic operation or a completely-positive
(CP) map.
Here we provide several examples of CPTP maps. An important CPTP map on qubit A is
the so-called bit-flip channel described by
1+ 1—7r

A/~ ~
Er(p)_ 2 p+ 9

with —1 < r < 1, where the factor (1 —r)/2 is called bit error rate. A similar CPTP map
1 1—7 24 4
M D) = L p+ 2424 (1.79)

X4pXA (1.78)
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is called phase-flip channel, and the factor (1 — r)/2 is called phase error rate. These CPTP
maps are known as the simplest models of noisy channels.

1.8 The description of general processes

Here we consider to describe an arbitrary process £. Suppose that £ is a map transforming
density operator p of system H 4 into density operator p’ of an output system H 4. For the map,
we require the following three axioms:

Axiom 1: 0 <Tr[€(p)] <1 holds for any input p.
Axiom 2: £ is a linear map for any input.
Axiom 3: & is a completely positive map.

Axiom 1 is required so that £(p) corresponds to an (unnormalized) density operator. Axiom 2
is a sufficient condition for reconciling with any ensemble interpretation. In fact, Axiom 2 gives

E(pp1 + (1 —p)p2) = pE(p1) + (1 — p)E(p2) (1.80)

for any 0 < p < 1. The completely positive map in Axiom 3 is defined as follows: £ is called a
completely positive map, if (E@IF)(64F) is positive for any positive operator 647 of a composite
system H 4 ® Hp, where I¥ is the identity map on system Hp. Axiom 3 should hold, because,
even if a system AF in a state 6% passes through a physical process & for system A, the output
(€ ® I¥)(64F) must be in a physically plausible state.

Here we derive the representation of the general process &:

Theorem 1.15 (The description of a general process) A map £ satisfies the above three
axioms if and only if

E(p) = > MiphI, (1.81)

where {M;} is a set of linear operators transforming a state of input system H 4 into a state of
output system Har and satisfies ), MZTMz < J4,

Proof. Suppose that £ satisfies the above three axioms. Let [¢)) = _ cu[u)a be a state of Ha,
where {|u)a} is an orthonormal basis of H4. Let us introduce a vector |®)4p of a composite
system H4 ® HE as follows:

By ap =Y |w)alp) e, (1.82)

where {|x) g} is an orthonormal basis of Hp. Let [¢*)p := 3", ¢;|p)p. Then, from Axiom 2, we
obtain

W] (€@ IP) (1) apap(®)e*) g = E(1¥) aa(¥)). (1.83)

On the other hand, since (£ ® I”) (|]®)apap(®|) is positive from Axiom 3, it can be diagonalized
as follows:

(E@IP)(|®)apar(®]) = ) [vi) aparp(vil- (1.84)

%
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Let us define a map M;([¢)4) as Mi(|¢)a) := p{1*||v;) 4, which is a linear map. Combined
with Eqgs. (1.84) and (1.83), this shows

> NG|W) aa (] M = > EWTvi) apas(illy) e (1.85)
=5 (€@ T7) (|1®) apar(®)|v*) s (1.86)
=E([Y) aa{tl). (1.87)
In addition, from Axiom 2 and the linearity of Mi, we can show
> MipMf = £(p), (1.88)

for any state p of Ha. We can also show ), M;Mi < 14 from Axiom 1. Thus, the the direct
part of the theorem is proved.
On the other hand, the converse part is trivial, and hence the theorem is proved. 0

This theorem indicates that the general operation £ is equivalent to a CP map or a CPTP map.
Therefore, general operations can be always represented by a CP map or a CPTP map. In what
follows, we give several basic theorems as examples of the application of this result.

1.8.1 The no-cloning theorem

The description of general processes enables us to clarify many features of the quantum world.
One of the most important features is the no-cloning theorem [53, 54, 55]. Before getting down
to the no-cloning theorem, we give a useful lemma:

Lemma 1.1 (The existence of a unitary operator) Let {|®;)}i=1,..n and {|V;)}i=1,..n be
sets of pure states. Then, there is a unitary operator U such that |V;) = U|®;) if and only if
(®;|®;) = (¥;|V;) holds for any i and j.

Proof. Suppose that (®;|®;) = (¥;|¥;) holds for any 7 and j. We introduce states
1 n
) aB ::ﬁ ; @) ali) B,

1 n
1B)aB :=—= > [¥i)ali)B,
where {|i)p} is an orthonormal basis of system B. Then, from the assumption, we have

Trafle)(alap] = Tral|8)(Blas]-

Since this equation means that the reduced density operator of |&) 45 on system B is the same
as that of |5) ap, from Theorem 1.10, there is a unitary operator UA on H4 such that

) ap = (U @ 17)|B) 5. (1.89)
This indicates the existence of U4 such that |¥;) = U4|®;).
Converse part of the proof is trivial, and the lemma is thus proved. 0

This lemma gives the no-cloning theorem:


Azuma
取り消し線
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Theorem 1.16 (No-cloning theorem for a set of quantum states) Suppose that we are
given a state |;) secretly chosen from a set {|1;)}i=1,..n of states. Then, it is impossible to
deterministically make the copies |;)|1;) from one copy |v;) if and only if the set {|¢;)}iz1, .
includes a nonorthogonal (and nonidentical) pair.

Proof. Recall that any deterministic map (CPTP map) can be expressed by unitary operation
UAE acting on the combined space H 4 @ H, where H g represents an auxiliary system initially
prepared in a standard state |3)g. Hence, any cloning process is described by

UAP(|$3) alZ) ) = [9hi) althi) BI5:) e (1.90)

for all i, where Hqa @ Hrp = Ha @ Hp @Hp. Thus, we can make the copies [¢;)|¢;) if and only if
there exist a unitary operator U4F and states {|¥;)z} satisfying Eq. (1.90). From Lemma 1.1,

UAE exists if and only if

(Wils) = (Wilby)* (5]25) (1.91)

holds for any ¢ and j. Eq. (1.91) holds for any i and j if and only if |+;) is orthogonal to |¢;) or
the same as |1);). Hence, we cannot make the copies [¢;)[¢;) if and only if the set {|¢;)}iz=1, .n
includes a nonorthogonal (and nonidentical) pair. O

such a unitary operation

The no-cloning theorem can be considered to be the basis to determine whether a physical state
|1;) has classical or quantum information. For clarifying this statement, let us consider a game.
Suppose that Alice wants to send a message i € {1,...,n} to Bob. The communication is easily
achievable by sending a memorandum in which the message ¢ is written. Moreover, even if Alice
encodes the message ¢ into a quantum system in state |i) of orthogonal states {|i)}i—1, .., and
sends it to Bob, they can achieve the communication. In fact, Bob can discriminate |i) from
the other candidates by making projective measurement {|i)};—1 ., on the received quantum
system. Thus, the state |i) essentially plays the same role as the message i, and hence we should
consider that the state |i) includes only classical information. In this sense, we call the states
classical states.

Now, what if Alice encodes the message ¢ into state [1;) of nonorthogonal states {|¢;)}i=1,.. n7
In this case, the no-cloning theorem prohibits Bob from cloning the state |¢;). The impossibility
of the cloning implies that Bob cannot discriminate [¢;) from the other states. Hence, Bob
cannot receive complete message ¢ from Alice. Therefore, we should consider that the state
|1;) includes non-classical information, i.e., quantum information. In what follows, a state that
cannot be cloned is called quantum state.

As is represented by this consideration, the no-cloning theorem shows an essential difference
between classical information and quantum information. By giving a well-known form of the
no-cloning theorem as a corollary of Theorem 1.16, we close this section:

Corollary 1.1 (No-cloning theorem for a completely unknown quantum state) Sup-
pose that we receive a quantum state [1) = . ¢;|i) with unknown parameters, ¢; € C. We cannot
clone the state deterministically.

1.8.2 Probabilistic cloning and unambiguous state discrimination

The no-cloning theorem states that we cannot generate the copies |¢;)|¢;) from an unknown
quantum state [¢;) via deterministic ways. Then, one might naturally ask: Can we make
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the copies |¢;)®* from one copy |;) even if we permit probabilistic failure. Here we consider
probabilistic cloning [56], which is a probabilistic process to make the copies of an unknown input
state. We also consider a process that probabilistically discriminates a given quantum state |t;)
from the other candidates, which is called unambiguous state discrimination [57, 58, 59, 60].

1.8.2.1 Probabilistic cloning

Here we consider whether we can generate the copies from an unknown quantum state by a
probabilistic way. We begin with noting an important fact about positive matrices.

Lemma 1.2 (Positive matrices) For an n x n matriz A, there exists a set of unnormalized
states {|xi) }i=1,...n satisfying A = [(xi|x;)] if and only if A is positive.
Proof. Suppose that A is positive. Then, since A can be diagonalized, A can be written as

I

_ (Z @UM) (Z JCTVU;M) ,

where U is a unitary matrix, D is a diagonal matrix, and {|x) },=1,..» is a complete orthonormal

basis. Thus, defining |x;) as
i) =Y VAU ),

v

we have A = [(xi|x;)], which concludes the direct part of the proof.
Conversely, suppose that A can be written as A = [(xi|x;)]. Then, for any vector = =
(z1,...,2,)7, we have

2
20

af Az ="} (xilxg)z; = H > @)
i,j i
which concludes that A is positive. Therefore, the lemma is proved. O

Using this lemma, we can easily derive the necessary and sufficient condition for the existence
of probabilistic cloning processes [56] as follows.

Theorem 1.17 (Probabilistic cloning) Suppose that |1;) is a state secretly chosen from a set
{%i) Yi=1,..n of quantum states. There exists a process that succeeds in generating [0 Ek from
state |1p;) with probability ~v;, if and only if there are normalized states {|P;) g }i=1,..n such that
the matriz X — VTY VT is positive, where

X = [(il),
Y 1= (i) (B P, (1.92)
I := diag(vy1,72, -+ 7n)

are n X n matrices.

Proof. Without loss of generality, probabilistic cloning can be regarded as a unitary operation
UAF on a given system A in state [t/;) 4 and on an ancilla E in a standard state |X) g followed by

a projective measurement on system E’ to learn an outcome, ‘success’ or ‘failure.” Thus, there
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exists a process that succeeds in generating |;)®* from state |¢);) with probability v;, if and

-----

states {|€2%) A }i=1,..n such that

UAE ([} al2) B) = VAl ¥ P e + Q) arr, (1.93)
and
e (Fil|Q) 4 =0 (1.94)

for any 7 and j. From Lemma 1.1 and Egs. (1.93) and (1.94), there exists the unitary operation
UAE if and only if

X -VIYVI =Q (1.95)

holds, where Q := [(€;]Q2;)].

From Lemma 1.2, the right-hand side of Eq. (1.95) is positive, and hence X — VTY VT should
be positive. Conversely, if X — VTY VT is positive, from Lemma 1.2, there exist (possibly
unnormalized) states {|2;) }i=1,... , satisfying Eq. (1.95). This ensures the existence of the wished
probabilistic cloning. Thus, this theorem is proved. 0

It is instructive to derive the optimal success probability for the cloning by using this theorem.
Suppose that we want to clone a state |¢;) chosen randomly from a set {|v;)}i=12. Then, the
matrix X — VTY VT is

_ _ L=m (W1]t2) — 72 (W [¢h2) " (P1| Py)
X VIV = < (alpr) — /A1Y2 (2 lt1) " (Po| Pr) 1—7 ) '
(1.96)

For a probabilistic cloning process to exist, X — vT'Y VT should be positive, which is equivalent
to v < 1 and det(X — vI'YV/T) > 0. From v; < 1, det(X — vTYVT) > 0 is equivalent to

0 < V=)= 12) = [{Wltha) = VAT [a) (P P2) . (1.97)
By noting that
[(Wal2) — VAT (1 92) (PP} 2 [(hala)] — 222 o) (1.98)
VI =) <1- 1, (199
Eq. (1.97) is reduced to
Mt o 1= [Wafy)] (1.100)

2 71— (i)

where the equality holds when (Py|Py)(11]12) = [(¥1]¢2)| and 71 = ~2. Since the left-hand
side of this equation indicates the success probability of the probabilistic cloning, the right-hand
side of this equation gives an upper bound on the success probability. Noting that we can set
parameters {|FP;) }i—1,2 and {; }i=1,2 so that (Pi|P2)(¥1]|v2) = [(¢1]2)| and 1 = 72, we conclude
that the optimal success probability p°P' is

popt o 1- |<¢1W}2>|

= T ) (1.101)
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The optimal success probability p°?® monotonically decreases with [{t1|¢2)| and k. This
implies reasonable conclusions: (i) [(11]|12)| represents the difficulty of cloning; (ii) the increase
of the number k of copies incurs the decrease of the efficiency of the cloning.

As can be seen here, the evaluation of success probabilities of quantum cloning can be expected
to lead to quantitative understanding of quantum information the state has. However, actually,
such an evaluation seems to be difficult if the number of possible states {|t;)} is three or more.

1.8.2.2 Unambiguous state discrimination

There is a fundamental process that has been considered [57, 58, 59, 60] before the probabilistic
cloning. The process is called unambiguous state discrimination, where one tries to probabilis-
tically identify a state |¢;) secretly chosen from states {|¢;)}. Actually, this process can be
regarded as a kind of probabilistic cloning from the following intuition: if we had infinite copies
of a quantum state [1);) secretly chosen from the set {|v;)}, we could discriminate the state |1;)
from the other candidates. In fact, similarly for probabilistic cloning, we can obtain a formula
to derive the efficiency of unambiguous state discrimination:

Theorem 1.18 (Unambiguous discrimination) Suppose that |1;) is secretly chosen from
a set {|¢i)}i=1,..n of quantum states. There exists a process that succeeds in unambiguously
discriminating state |1;) with probability ~;, if and only if the matriz X — T' is positive, where
X = [(¥il))] and T := diag(y1,v2,...,Vn) are n x n matrices.

Proof. We can unambiguously discriminate |¢;) from the other candidates with probability ;
if and only if there exist a unitary operation U4 and unnormalized states {|€;) 4} such that

U (1) alS) ) = VAili) ak + |4) AR, (1.102)

where {|i)ag} is an orthonormal basis. By this fact, the theorem can be proved by a similar
manner to the proof of Theorem 1.17. O

This theorem suggests the validity of the above intuition. In fact, if we take the limit of
k — oo in Theorem 1.17 under the condition |(1;|¢;)| < 1 for any i # j, the theorem is reduced
into Theorem 1.18. Thus, we conclude that, if a set {|1;)} is composed of different quantum
states, making infinite copies of an input |¢;) probabilistically is equivalent to unambiguous state
discrimination of the quantum states {|;)}.

By using this fact, we can easily derive the optimal success probability of unambiguous dis-
crimination of quantum states {|1;)}i=12. Suppose that [¢;) is randomly chosen from states
{|¥i) }i=1,2. Then, since the optimal success probability p°?* of the unambiguous discrimination
is equivalent to the limit £ — oo of Eq. (1.101), it is concluded to be

PPt =1 — [({W]ya)l. (1.103)

1.9 Fidelity

As seen in Sections 1.8.2.1 and 1.8.2.2, the magnitude of the inner product between states is a
measure representing the difficulty of distinguishing the states, namely a closeness of the states.
As such a measure indicating a ‘distance’ between the states p and &, we use fidelity [61]

F(p,6) = |I\/pVell® (1.104)
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with || X|| := Trv/ XTX. Note that the fidelity satisfies
0< F(po) <1, (1.105)

and F(p,6) = 1 implies p = 4.
In the case of & = |¢) (1|, the fidelity is reduced to

F(p,[4)) = (&lplv), (1.106)

which implies F(|¢),|¥)) = [(¢[1))|?>. Therefore, the fidelity may be regarded as a natural
generalization of the magnitude of the inner product between states.



2

Quantum communication

Quantum communication is the basic technique to enable faithful transmission of unknown quan-
tum states, which is shown to enable important applications such as the distribution of uncon-
ditionally secure key and the distributed quantum computation. The ideal quantum channel is
described by a single Kraus operator

1475 = 10)pa(0] + 1) pa(Ll. (2.1)

In fact, it enables us to transmit an unknown quantum state () 4 = «|0) 4 + 5|1) 4 of system A
to system B according to

142P 1) 4 = al0)s + BI1) 5 = [¥) 5. (2.2)

One way to achieve the quantum communication is the direct transmission of quantum systems
through a channel. However, this way is not necessarily the best solution, because the practical
channel inevitably causes errors on the transmitted state. Instead, here we introduce a scenario
to accomplish quantum communication in an indirect manner based on the so-called quantum
teleportation protocol [30]. The goal of this manner is to share Bell states between the sender
and the receiver through a practical channel. The Bell states are defined by

1

1) ap := |Boo)as = —=(]00) ap + [11) aB),

S

2

1 - N
O ap == |Bo1)ap = 2(\01>AB +10)45) = XA4|®T) = XB|oT),

@) ap = |Bo) ap == —=(|00) ap — |11) ap) = Z*4|2T) = ZB|@T),

-3

2
1

2(\01>AB —|10)4p) = ZAXA®F) = XBZB|oH).

W™ )ap = |B11)aB =

5

In order to see why sharing Bell states is sufficient for achieving quantum communication, we
begin with clarifying the role of the quantum teleportation protocol.

2.1 Quantum teleportation and entanglement swapping

Suppose that Alice wants to transmit a quantum state [10) 4, = «|0)4, + 5|1).4, with unknown
parameters «, 8 € C. Then, from the no-cloning theorem (Corollary 1.1), Alice cannot clone the
state |1) 4,, let alone knowing parameters « and . This implies that Alice cannot send Bob the
state 1) 4, only by classical communication channels between them.

23
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|h;

|ba

Fig. 2.1. Bell measurement.

Alice %Bob

4| @ D qr  Alice ideal OC  Bob
qubit A Bell pair —> o D»

Bell measurement
Fig. 2.2. Quantum teleportation (QT) protocol. CC (QC) indicates classical channel (quantum channel).

However, the transmission of the quantum state 1) 4, is achievable if Alice and Bob share
system Ay B in Bell state |®1) 4,5 in advance and they can use classical communication. In fact,
Alice and Bob can accomplish the transmission through the following protocol:

(i) Alice first makes the so-called Bell measurement {Bﬁ}AQ }jk=0,1 on system AjAy;
(ii) Alice sends the outcome jk to Bob by using classical communication;
(iii) On receiving the outcome jk, Bob applies unitary operation (Z2)7(XB)E,

Here Bell measurement is defined by Kraus operators
pA1 Az | _ +
By ™ = 4,4,(27,
pA1 A2 | _ +
BOl ‘= A1 <\Il ‘7
pA1As -
BlO ‘= A1 <(I) ’7

BﬁIAZ = T A Ay <\Ili ’7

(2.4)

and it is achievable in a manner in Fig. 2.1. This protocol is called quantum teleportation [30].
The protocol indicates that the consumption of a Bell state and two-bit classical communication
has the same power as the ideal quantum channel (see Fig. 2.2).

Let us proceed to showing why the quantum teleportation succeeds in the transmission of the
unknown quantum state |¢)) = «|0) + §|1). By the Bell measurement at step (i), Alice receives
outcome jk with probability

Pk = 4y (6 anp (@ (B BA © 17)[) 4, 87) 4,5, (2.5)

and the left state is described by |¢jx)p = (Bﬁ1A2|w>A1]<I>+>A23)/,/pjk,. Through the com-
munication at step (ii), Bob also knows the outcome jk. Since Bob applies unitary operation
(ZB)1(XB)F on system B in state |¢;x)p as step (iii), the final state |¢1.) B is described by

1
/Pjk
Thus, for proving |¢3k) B = |9)B, it is sufficient to show

1
/Djk

|Pk) B = (ZP) (XY B2 () 4,|97T) a5 (2.6)

(ZBY(XPYFBRA2(0%) 4y = [0) 54, (0] + [1) 54, (1. (2.7)
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Claire Alice —2DILCC o g} Claire Alice Bob

A2|Q o QT D
o 1A, Bell pair —> e Bell pair

Bell measurement

Fig. 2.3. Entanglement swapping.

Note that the right-hand side of this equation is equivalent to the description of the ideal quantum
channel A — B.
To show Eq. (2.7), we start with noting
1
V2

:%[(|¢+>A1A2 + |(I)_>A1A2)|0>B + (‘\I’+>A1A2 + |\IJ_>A1A2)|1>BL

|1>A1’®+>AQB :;5(’10>A1A2|0>B + |11>A1A2|1>B)
=10 aas — 1) )10} + (14,1, — 187 4,011 5]

|0>A1|¢+>A23 = (’00>A1A2|0>B + |01>A1A2|1>B)

This indicates
. 1 o
AlA
Bjkl ? ’0>A1 ‘¢+>AQB :i(ZB)] (XB)k‘O>B,
. 1 ~p.. -
B 14, 07) 4, =5 (27 (XP)H(1) 5,
and thus we have p;, = 1/4 and

B8 1,15 = S (27 (XM (10) 54, (0] + 1), (1))

These relations conclude Eq. (2.7).

As an application of the quantum teleportation, we introduce a way to connect two entangled
pairs. Suppose that, in addition to the Bell pair |®1) 4,5, Alice shares a Bell pair |[®T)c4, with
another party, Claire (see Fig. 2.3). Here we consider that Alice transmits the state of system
A; to Bob by using the teleportation. As can be convinced by Eq. (2.7), the teleportation acts
as the ideal channel A; — B at the expense of system A;As. Hence, it transforms two Bell
pairs |®*)ca,|®T) 4,5 to a Bell pair |®T)pc. This teleportation process is particularly called
entanglement swapping [62]. The entanglement swapping suggests that the Bell pairs connecting
Bob with Claire through the intermediary of Alice are sufficient for presenting a Bell pair between
Bob and Claire. Thus, the entanglement swapping is regarded as the connection of Bell pairs.

Note that quantum teleportation and entanglement swapping work independently of positions
of the users, as long as they share Bell pairs in advance and can use classical communication.
Therefore, the working principle of these protocols is independent of the physical distances
between the users.

2.2 Entanglement-based quantum key distribution protocol

As seen in the previous section, if Alice and Bob share a Bell pair, they can simulate the ideal
quantum channel. Here we show that the Bell pair also provides them an unconditionally secure
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bit [10, 11]. The secret bit is in the form of

HEE = 5 3 fiiidlan ©67, (2.8)

i=0,1
where FE is assumed to be held by an eavesdropper, Eve. In fact, from the state ﬁfe]f,E , Alice
and Bob can obtain a complete correlated bit by their local projective measurement {|ij)ap }ij,
whereas the state 67 of Eve’s system cannot have any correlation with their bit. Thus, state
ﬁfeng corresponds to a situation where Alice and Bob can share an unconditionally secure bit.

Suppose that Alice and Bob share qubits AB in a Bell pair |®*) 45. Then, from Theorem 1.9
and 1.10, the arbitrary purification of state |®T) 4 is expressed as |®T) 4 p®|x) g with a reference
E’. Since a part or the entire of reference system E’ corresponds to the system FE, without loss
of generality, the state of Alice, Bob, and Eve is described by pABF .= |+)(dF| 45 @ 6F with
state 67 := Trp[|x)(x|g], where Hp = Hp ® Hp. Thus, by applying CPTP map P4(p) =
10) 44(0]((0[p]0Y4) 4+ [1) aa(1|(a(1]p|1) 4) on Alice’s system, Alice and Bob obtain state

P (Pcs) = Piey > (2.9)
which is the secret bit. Hence, Alice and Bob can generate an unconditionally secure bit from a
Bell pair.

In practice, Alice and Bob should check whether the state pA8 of their shared qubits is the
Bell state |®T) 45 or not. This is achievable if they share additional check qubits that can be
considered to be in the same state p*Z. Suppose that Alice and Bob make local measurements
{lij) aB}ij=0,1 and {|kzlz) aB }k,i=0.1 on the check qubitsf. Noting

100) a5 =j§<r¢+>AB F107)a5), [01)ap = \}E(I\PWB 1) ap), -
10) 4 == (1945 — |97V ap), [11)ap = —=(18%) 45 — [B7)ap),

V2 V2

and Eq. (A2.1)i, if the measurements {|ij)ap}ij=0,1 and {|kzls)aB}ki=0,1 always return out-
comes (i, j, k, 1) satisfying i®j = 0 and k@I = 0, then the state 54 must be |®*) 45. Therefore,
Alice and Bob can check whether their shared pair is in the Bell state or not.

2.3 Quantum entanglement

As represented by the quantum teleportation protocol, Bell states are the resource of quantum
communication. Then, naturally arising question is what kind of the property of the Bell state
enables quantum communication? The property is considered to be quantum entanglement,
which is a correlation that is essentially different from classical one.

For grasping the nature of quantum entanglement, it is better to consider what we can do under
the situations where we can freely use classical correlation. Such a situation can be obtained in a
paradigm called local operations and classical communication (LOCC). Suppose that separated
parties, Alice and Bob, share a state pap. In the class of LOCC, Alice and Bob are allowed to
use local operations (LO) and classical communication (CC) between them. In particular, under
LOCC, Alice and Bob can take the following tactics: (i) Alice makes generalized measurement

1 Note that the check qubits are used only for the identification of the state p4%, and it will be discarded after the
measurement.
1 Eq. (A%) means equation (*) in Appendix.
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on her system, and sends the output i; to Bob by CC; (ii) Depending on the data i1, Bob selects
quantum operations to be applied to his system, executes them, and sends the output j; to

Alice; (iii) Depending on the previous data (i1, 71), Alice selects - - -, and vice versa. Thus, the
net LOCC is the map from a density operator p4p into an unnormalized state
(81,71 5+++5%m50n) (81,51 5+-sTnsJnsin41) (41.41) (41.,41,82) (i1)y/ 2

(A ®B; ) (ALY @ BT (Aip @ B V) (pas), (2.11)

where {.Aéx)}y ({B?Sw)}y) is the set of quantum operations that might depends on the previous
outcomes x, and Az(f) (Béx)) is the operation corresponding to outcome y. Thus, LOCC can be
described by a stochastic map composed of separable operators.

Similarly, we can define LOCC between multi-party. However, for simplicity, here we focus
on LOCC between two parties, Alice and Bob.

Through LOCC, we define entanglement as follows:

Definition 2.1 (Entanglement) Quantum entanglement or entanglement is a class of corre-
lations that cannot be freely strengthened by LOCC.

From this definition, states in the form of
A A A
pseg = Zpipi ® O-z'B (212)
i

are not entangled states, because this state can be always generated by LOCC. These states
are particularly called separable states. In contrast, it seems that Bell states cannot be freely
generated by LOCC. Is it true? To answer this question, we proceed to finding monotonicity of
LOCC.

2.3.1 Entanglement monotones

Here we clarify monotonicity of LOCC. More precisely, we show the existence of quantities that
do not increase on average under LOCC. Such quantities are called entanglement monotones.
The formal definition of the entanglement monotones is the following [63]:

Definition 2.2 (Entanglement monotones) Suppose that u(ﬁAB ) is a function on bipartite
density operators pAB. If magnitude p(pAP) does not, on average, increase under LOCC between

Alice and Bob, we call it entanglement monotone.
In other words, entanglement monotones u(p4%) are quantities satisfying the following two

conditions:

Condition 1: For any local quantum operation 5,? on a subsystem X = A, B in a state pA5,

w(pAP) satisfies

w(p"?) = pen(pi®), (2.13)
k

where py, := Tr[EX (pAP)] and piP = EX(p4P) /..
Condition 2: For any ensemble {py, pi12}, u(pAP) satisfies

> oenpit?) = p(p*?), (2.14)
k

where pAB = >k pkﬁfB.


Azuma
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Under LOCC, Alice and Bob are allowed to implement generalized measurements locally. Con-
dition 1 indicates that u does not increase on average under such local operations. In addition,
under LOCC, there are cases where Alice and Bob forget outcomes k of the previous measure-
ments and describe their state as pA8 = >k Pk ﬁ‘,?B . Condition 2 implies that u does not increase
under such discard of the outcomes.

Let us proceed to showing that entanglement monotones exist. Before giving such monotones,
we introduce a manner to compose an entanglement monotone.

Theorem 2.1 (Composition of an entanglement monotone) Let f be an operator function
mapping an operator of a Hilbert space H to a real number. The function is assumed to satisfy the
following two properties: (i) function f is invariant under unitary operations, namely satisfies

FOUT) = f(p) (2.15)

for any density operator p of system H and any unitary operation U ; (ii) function f is concave
for any density operator, namely it satisfies

fpp1+ (1 =p)p2) > pf(p1) + (1 —p)f(p2) (2.16)

for any density operators p1, p2 of system H and any p such that 0 < p < 1.
By using function f, we define magnitude pu(p) as the following: for pure states of a system
AB, u is defined by

() ap) = f(Trg(|¥) (¥las]) (= f(Tralld)(¥|as))); (2.17)
for mized states of the system AB, i is defined by
p(p'?) = {pi,ﬁ?pii?AB}ij“(WﬂAB)’ (2.18)

J
where the minimum is taken over all ensembles {p;, |V;)ap} satisfying pAP = 3", pilthi) (Wil a-

Then, the function u is an entanglement monotone for the system AB, namely it satisfies Con-
dition 1 and Condition 2.

Proof. First we show the convexity of the function u, which is equivalent to Condition 2. Let
us consider any ensemble {py, piB} such that 3, prppt? = pAB. For each state piB, let us
introduce an ensemble {qx, [¢r) a5} satisfying

p(piB) =" aen|$r) as), (2.19)
l

AP =" aquplvow) (Yral an- (2.20)
l

Combined with Eq. (2.18) and 45 = Y, prpp® = 31, Pkduk|tr) (r| s, these imply

p(p*P) <> ok > auplr) aB) = > pri(pi). (2.21)
ko P

Hence, the function u is convex.
Let us show that the function p satisfies Condition 1. Assume that system A and system B
in a state p*% are held by Alice and Bob, respectively. For density operator pZ, we introduce
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an ensemble {qg;, |¢;)ap} such that

(%) Zqzu (I6:)a5) (2.22)
P :qu (0ilas. (223)
By quantum operation & (-) (X = A, B), pP and |¢;) ap are converted to normalized states
X AAB
Pk
EX (1M bs

Pkl
From the latter equation and the fact that Y, £ (-) is a CPTP map on system X, we have

> e Tex 7] = Trx Z&f(l@ﬂ@l%) = Trx (l:){(dilan). (2.26)
k
In addition, from the linearity of E,f , pj;‘ZB and [)?B have a relation
pehn? = aipridii” (2.27)

AB

We further note that, for any density operator 67 =Y. r;|n;)(n:|ap, we have

&) <D rap|mi)an) = Y rif (Tex (i) (mlas)) < f (Z nTanmxm\AB]) = f(Tex[o"7))
(2.28)
from the concavity of f. Eq. (2.22), Egs. (2.26)-(2.28), the concavity of f, and the convexity of

w1 indicate

Z qild |¢1 AB Z Qz TI‘X |¢z ¢Z|AB Z Qz (Z pk|z’TrX [/A);I‘cB]>
. %pk|z AAB
= ZQipk\if(TrX[pik D)= Z qiPk|i( ) Zpk )

ik ik
q%pklz B
> ZPW Z Zpku ), (2.29)
which means that function p satisfies Condition 2. Therefore, the theorem is proved. O

This theorem implies that all the functions u based on the operator functions f are entanglement
monotones. Thus, it is expected that many entanglement monotones exist. In the next section,
we give an explicit example among such entanglement monotones. The example clarifies that
LOCC has a fundamental limit of its performance.

2.3.2 Entanglement formation

Here we present an example of entanglement monotones by using Theorem 2.1. We first give a
lemma.



30 Quantum commumnication

Lemma 2.1 Let f(x) be a concave function from real numbers to real numbers, and let /Al, B be
Hermitian operators. Then, for any 0 < p <1,

Te[f(pA + (1 = p)B)] = pTr[f(A)] + (1 — p)Tx[f(B)], (2.30)

where f(fl) is the operator function based on f(x). This inequality indicates the concavity of
function Tr[f(A)].

Proof. For any Hermitian operator A to be diagonalized as A = 3", a;]a;)(a;| and any state |¢),
we have

F(9lAle)) (Z\ (Plas)] az> > Z\ (plai)[* f(ai) = (9] (Z f(az-)a&(ai!) [0) = (61f(A)]9).

(2.31)

Let us define Hermitian operator C = pfl + (1 - p)B We can write the operator C as

C' =), ¢|i)(i| with an orthonormal basis {|7)}. Then, from Eq. (2.31) and the concavity of f,
we have

TW@WJ4ZﬂMM4=Zﬂm=ZHM@ = X Ayl + (1= p)IB1)
Zpi((i\flliD+(1—p)Zf(<i!BIi>) sz ilf (A + ( —p)z<i!f(3)\i>
=pTe[f(A)] + (1 - p)Tx[f(B)], (2.32)

which is equivalent to Eq. (2.30). O
Let us introduce a concave function f(z) := —xlogy x for > 0. Then, we define an operator

function S(p) with a density operator p as
S(p) = Tl f(5)] = ~Tr[plogy . (2.33)

where f(p) is the operator function defined by f. This function S is called von Neumann entropy.
For the spectral decomposition p = >, p;|)(i|, von Neumann entropy S is reduce to

S(p) ==Y _pilogapi =: H({p}), (2.34)
where the function H({p;}) is called Shannon entropy. Since this equation indicates that S(p)
is determined only by the eigenvalues of p,

S(p) = S(UpUT) (235)

holds for any unitary operator U. In addition, Lemma 2.1 ensures that S is concave. Hence, from
Theorem 2.1, von Neumann entropy S generates an entanglement monotone Ky for bipartite
states by definitions:

E(|¢)) == S(Trp[[¢) (¥[]); (2.36)
Er(p) : {prﬁgj ij (15))- (2.37)

E is called entropy of entanglement, and Ey is called entanglement formation [64]. Note that
Er([¢)) = E(|¢)).
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We mention on several simple properties of the entanglement formation.

Corollary 2.1
Ef(psy) =0, (2.38)
E¢(p"7) < min{S(p"), S(5")}, (2.39)
where psep is a separable state in the form of Eq. (2.12).
Proof. Since pih = Y-, pigjivkjil Vi) (Yijla © |dir) (Gir|5, we have

Ep(pan) < pigjirei B (i) aldin) 8) = 0.

Combining this with Ey > 0, we obtain Eq. (2.38).
For X = A, B and pAP = 3, pi|ts) (¥i| ap, we can show

Ep(p*P) < sz ([4i)aB) sz (Trx[[vs)(vil aB]) (szTrX |¢z><¢z|AB]> = S(5"),
(2.40)
where A = B and B = A. This is equivalent to Eq. (2.39). O

For example, let us evaluate the entanglement of state

‘\Ijmes AB — \/‘ Z |“ (241)

defined by an orthonormal basis {|i)4|j)p} on the Hilbert space Hq ® Hp with dimH 4 =
dimHp = d. The state with d = 2 is equivalent to Bell state |®*) 45. From

TrB[| Vo) (Vihes| 4] = 14/d, (2.42)
we have
Ef(|es)aB) = B(| W) ap) = S(I/d) = logy d. (2:43)
Combined this with Eq. (2.39), for any density operator p*Z, we have
Ef(p"P) < S(p*) < logyd = E(|Ue) aB)- (2.44)

Therefore, |04 )ap is called a mawimally entangled state. In addition, the monotonicity of
the entanglement formation provides an operational meaning of the maximally entangled state:
Alice and Bob cannot transform state pA8 with Ef(pA8) < Ep(|We ) ap) to the maximally
entangled state by LOCC. Thus, the state |U% ) 4p should be considered to be a state with
maximal entanglement.

mes>

2.4 Entanglement distillation: recurrence method

Thanks to quantum teleportation protocol introduced in Sec. 2.1, for achieving quantum com-
munication, it is sufficient to share Bell pairs. However, in Sec. 2.3, we see that separated
parties, Alice and Bob, cannot increase entanglement by LOCC, let alone generating Bell pairs
from scratch. Thus, in order to share a Bell pair, Alice and Bob have no choice but to use a
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practical channel that can convey quantum systems. Such a channel inevitably causes noise on
the quantum systems, and hence it will return mixed state p*Z. Therefore, we need a way to
regain entanglement from the mixed state by LOCC. Such a way is called entanglement distil-
lation. Although there are several methods to achieve entanglement distillation actually, in this
section, we focus on the most realistic distillation called recurrence method [64, 65, 66].

In what follows, we consider a system composed of qubits. We begin with introducing a
measurement called parity check measurement, which is known to be a key operation not only
for the recurrence method but also for the other quantum operations such as a fusion gate of
cluster states. The measurement is CNOT gate followed by Z-basis measurement {lk)}k=0,1 on
the target qubit (see Fig. 2.4). In particular, the measurement is described by Kraus operators

R{P7E =4 (0|CR* = 10)aB(00] + 1) pap(11] = [+) BaB(®T| + | ) BaAB(® ],
R{B7E =, (1|CE* = 10)5aB(10] + |1) pap(01] = |+) BaB(YT| — | =) pap(¥ 7],

where C’)C('T represents CNOT gate.

The goal of the recurrence method is to transform two entangled pairs into a more entangle
pair. Suppose that the two pairs of qubits are shared by Alice and Bob, and called A;B; and
A9 Bs, respectively. In the recurrence method, Alice (Bob) executes parity check measurement
{R?lAQ_)AQ} =01 ({}?kBlB2_>B2 }k=0,1). Then, they exchange the outcomes of the measurement by
classical communication, and they declare the success of the recurrence method if their outcomes
are the same. From Eqgs. (2.45), (A2.1), and (A2.2), the successful measurement of Alice and
Bob can be described by Kraus operators

~ . 1 _ _
R641A2_>A2 ® R[)BlBQ_>B2 :7’@+>A232 (AlBl <(I)+‘A2Bz <(I)+| + a8 <(I> ’AQB2 <(I) |)

\/>|\Il >A232 (A1B1 <\I’+|A232 <\IJ+| + A1B; (kIJi‘A2BQ <‘117|)
\/>|CI) >A232 (AlBl <(I)+|A2B2 <®7‘ + A1B; <(I)7‘A232 <(I)+’)

+ E‘Q7>A232 (AlBl <\II+|A2BQ<\II7| + A1B; <\117‘A232 <\Ij+‘)7
(2.46)

~ . 1 _ _
R1141A2_>A2 ® lengz—}B2 :7’®+>A232 (AlBl <(I)+‘A232 <(I)+’ — A1B1 <(I) ’AQBQ <<I) |)

\/*‘\I] >A2B2 (A1B1 <\II+‘A232<\II+’ — A1By <\I/_‘A232<\Il_‘)

+ %‘@_>A2B2 (AlBl <‘I)+|A2Bz <CI)_‘ — A1B <(I)_‘A2B2 <(I)+D

1 _ _ _
+\ﬁ|\p >A232(A1B1<\Ij+|14232<\11 |_A131<“I/ ‘AzB2<\I/+|)'

Leaving the pair AsBs, these Kraus operators announce that the pairs A1 By and AsBs have
been in a state living in the Hilbert subspace spanned by |®%) 4, 5,|®%) 4, 5,, |2T) 4,8, |PT) 4,8,
U5 4, B, [UF) 4,8, and |UF) 4, , |¥TF) 4, ,. In what follows, we demonstrate how the recurrence
method works.
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Fig. 2.4. The parity check measurement {I:Z,fB%B}kzo’h which is CNOT gate followed by Z-basis mea-
surement on the target qubit.

2.4.1 On Bell-diagonal states

Suppose that Alice and Bob apply a unitary operation randomly chosen from {iA ® 18, 74 ®
ZB, x4 RXB, YA® YB} on the pairs A1 B; and A3 Bs. Then, their system A By A2 B becomes
in a Bell-diagonal state ﬁlAlBl ® ﬁgAQBZ satisfying

~A,B ~A1B
Pkk b= Z <BU Pp ’BZ]>’BZ]><Bij‘AkBk (2.47)
i,j=0,1
for k = 1,2 [64, 65, 66]. If Alice and Bob succeed in performing the recurrence method on the
system, from Eq. (2.46), the state 64282 of the left system AsBs is

o o' -4 —\(H—| A _
<<I)+’6.A232’(I)+>:<(I)+|p11Bl|(1)+><(1>+|p2232|q>+>+<(I) |p1131|(1> ><q) ‘P22B2|(I) >

pPd ’
By TP ) (U 220 (@) (1 g )
pPd ’
5 2.48)
~A | AA _ 1 AA _ ~A (
<<I> |O_Asz|<I> > <(I)+‘:0 1Bl‘q)+><¢) ’p22B2’(I) >+<(I) ’p11B1’® ><(I)+‘p22B2‘q)+>
P4 '
| AAsBs (U o PO (W52 P2 (U ) 4 (W [ PO ) (W] g P2 o)
(Ur|e™72uT) =
P4 ’
where Psd is the success probability described by
=@ @T) + (@7 @ 7)) (BT (22| ) + (@7 gy )) (2.49)

(U W) (U P ) (03272 [0 + (U (g2 2 0 )).

Note that state 64252 is still Bell-diagonal, and it is thus uniquely determined by Eq. (2.48).
In Ref. [67], Macchiavello has considered the performance of this recurrence method in the case
of p1 = p9, and has shown that the iteration of this method will asymptotically produce a Bell

pair if one of four components {(By;|:?"|Bij)}ij—o0.1 is greater than 1/2.
~A1B1

As an example of Bell-diagonal states, here we consider a case where the states p] and
prB 2 are the copies of a state described by
po = FIOH)(@F] + (1 - F)[w+)(w], (2.50)

This state includes only one type of error, i.e., bit-error. In fact, this state can be expressed as

po = Esp_1(12T) ap(@T | aB) (2.51)
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with bit-flip channel &5}, of Eq. (1.78). Then, Egs. (2.48) and (2.49) are reduced to

F2
(@F|5aeBe gty = L
PS,O
1— F)?
(wtjodeBe gty = LI
P
<0 (2.52)

(@7 |652"2|97) =0,
(T 16522107) = 0,
Plo=F*+(1-F)~.
Clearly, (®+|55°52|®%) is larger than (®F|p5252|®+) for any 1/2 < F < 1. In addition, the out-

252 also includes only one-type of error, suggesting that the subsequent distillation
from the states 6’823 2 works similarly. Hence, the iteration of this recurrence method on entan-

~A
put state o,

gled states po will asymptotically give a Bell pair. Curve (i) in Fig. 2.5 indicates <<I>+|&323 2|dT)

as a function of (®F[p5252|+).

2.4.2 On Werner states

As another important examples of Bell-diagonal states, we consider the cases where the two
pairs A1B7 and A3 B5 are the copies of a so-called Werner state

pw = IRy (@] 4 2 ()t + o) (@ |+ um) (2. (2.53)

This state is always obtained by applying a unitary operation randomly chosen from {ZA/2 ®

25/27 Xf/Q ®Xf/2, Y;}Q ® ?732} and a unitary operation ZZ XB on a Bell-diagonal state [64, 65].

Then, from Egs. (2.48) and (2.49), the recurrence method returns a state &{2}32 parametrized

as

10F2 —2F +1
(a2 |0ty = 2D
9PSW
2(1 — F)?
<\I,+’&al/232’q,+> _ ( ) :
9Py
2Fﬂ7F) (2:54)
(@~ |6y = = ,
3PS,W
2(1 — F)?
(| )gmy <2 L)
9Py,
with success probability
1
R$V:§@F2—4F+5) (2.55)

Thus, <<I>+|6é/?32]<1>+> is larger than <<I>+|ﬁ€VQB2|<I>+> for any 1/2 < F < 1. Therefore, combining
the fact that any pair with a fidelity F' to a Bell state can be transformed to a Werner state with
the same F' by LOCC, we can always generate an almost perfect Bell pair from many entangled

pairs with F' > 1/2 by recursively using this recurrence method. Curve (ii) in Fig. 2.5 indicates
(@622 ®) as a function of (®|pH2P2(@).
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Fig. 2.5. The efficiencies of the recurrence method. F' is the fidelity of initial entangled pairs to a Bell
state, and F” is the fidelity of a returned pair to a Bell state. The curve (i) is the case where the initial
entangled pairs are the copies of po. The curve (ii) is the case where the initial entangled pairs are the
copies of py .

2.5 Apparatuses for quantum communication

As seen in the previous section, entanglement distillation enables us to obtain an almost perfect
Bell pair from (possibly many) noisy entangled pairs. To share noisy entangled pairs, we have
no choice but to transmit quantum systems through a practical channel. A promising candidate
of the transmittable quantum systems is the photons. In this section, we briefly review available
operations on the photonst and properties of the photons as the carrier of quantum information.

On the other hand, it is known that the interaction among photons are too weak to perform
global operations, e.g., CNOT gate. In addition, it is difficult to stop the motion of the photons,
which implies that the photons are not appropriate to be used as a kind of memories. Hence,
quantum information held by the photons must be transferred to another quantum systems that
allow us to use global operations and that can store up the quantum information. Such quantum
systems should be called a quantum memory. In this section, we also give an example of the
quantum memories that can interact with photons.

2.5.1 Photons and those manipulation

In this section, we briefly review the description of the photons and those manipulations. In
the last of this section, we show a protocol to realize quantum communication based only on
photons.

2.5.1.1 The state of photons

Here we provide a method to describe the state of photons. In quantum mechanics, the free
electromagnetic field {E(r), H(r)} in a cubic cavity with volume L3 can be described by

E(r) = Z €rsh(Anse™T + al e7*T), (2.56)
ks
3 1 k< €ks N ikr | AT _—ikr
H(r) = m Z ” Erapse™ " + age”™™"), (2.57)
ks

where E(r) is the electric field, H(r) is the magnetic field, s is the freedom of the polarization,
k is defined by (kg, ky, k2) = (2mn,/L, 270, /L, 2mn, /L) with integers ng, ny,n, = 0,+1,%2,. ..,
vy = c|k| is the frequency of a plane wave, & := [(hvy)/(2¢0L3)]"/?, € is the free space

t This review is based on a text book of Mandel and Wolf [68].



36 Quantum commumnication

permittivity, ug is the free space permeability, €gs is the unit vector satisfying k - €xs = 0 and
€}, " €ks’ = Og¢, and ag, is the bosonic operator defined by

[dksa dk’s’] - 07
[}, ] = 0, (2.58)
[dksu &L/sl] = 5kk’5ss"
The Hamiltonian of the free electromagnetic field is described by
) L 1
H= kz hvg (azsaks + 2) : (2.59)
S

Hence, in the Heisenberg picture, the electromagnetic field {E(r,t), H(r,t)} is

E(’I‘,t) _ eifit/hE(r)efiIA{t/h _ Z Eksgk(&kseik-'rfiukt + &};Sefik-r%»iykt)’ (260)
ks
X o . 1 k o o
H(’I", t) _ eth/hH(r)e—th/h _ - Z X €ks gk(dksezk.r—wkt + d;fcse—zk-'r'+zl/kt)7 (261)
Ho ks Vi

where we used relation

oA R _iaT 4 N —
€mk5aksyktaks(7')e g Ohs Vil — Afs€ Wit (262)

derived from formula

eABed = By [A B+ A4 B]+ ... (2.63)

Therefore, the state of the electromagnetic field lives in the Hilbert space the bosonic operators
{ags ks act on.

In what follows, for the simplicity, we omit ks of operator dgs, and denote it as a. Let us
consider how to describe the state of the Hilbert space G acts on. Since 7 := afa is a positive
operator, we can diagonalize it as follows

A= nln)(n| (2.64)

n

with
n > 0. (2.65)
The operator 7 is called the number operator. Noting [n,a] = —a, i.e., na = an — a, we have
n(aln)) = (n — 1)a|n), (2.66)

which implies that a|n) is the eigenstate of 7 with eigenvalue n—1. This indicates that a*|n) is the
eigenstate of 1 with eigenvalue n — k for any k, but this fact must be compatible with Eq. (2.65).
Hence, n should be a non-negative integer and a|0) = 0. The state |n) with n = 0,1, ... is called
a number state, and |0) is specifically called the vacuum state. The normalization of state a|n)
implies

aln) = /nln — 1) (2.67)

for any n. By applying a! to this equation, we have

atln) = vVn+ 1jn + 1), (2.68)
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which implies
(ah)"
Vn!

Since this indicates that |n) is generated by applying a' to the vacuum state |0), a' is called

In) = 10). (2.69)

creation operator. Conversely, a is called annihilation operator.
Since {|n)}n=0,1,.. is an complete orthonormal basis, we have ) 7 ,|n)(n| = I. This implies
that any state [¢)) of a single-mode electromagnetic field can be described by

[e.9]

[0) = Ilv) =) _(nlg)n). (2.70)

n=0

Similarly, the state of general electromagnetic fields is described by

W)> = ® Z ‘nk:s><nks‘ W) (2'71)

ks Ngs=0

Let us introduce the so-called coherent state. This state is the description of an output pulse
of the laser. A coherent state |«) is defined as

) = e 23" ) — omlof 20 (2.72)
a)=ce —In)y=e e .
n=0 \/m
with a complex number a. From Eq. (2.67), we can show
Py O
ala) = e —=+v/nln — 1) = a|a), (2.73)
n=1 m

which means that this state is an eigenstate of annihilation operator a. The coherent state can
be also considered as a displaced vacuum state. In particular, the state |a) can be described by

la) = Dq|0) (2.74)

with the displacement operator
D, = eod!-od (2.75)

Eq. (2.74) can be ensured from
D, = eod'—aa _ ~lal?/2gadl g—aa (2.76)

where we used the Campbell-Baker-Hausdorff relation for two operators A, B, ie.,

A+B _ 6/16196_[/&,19]/27 (2.77)
provided that
[fl, [fl, B]] = [B, [A, E]] =0. (2.78)
The displacement operators have properties
DD = DDl = 1, (2.79)
DI =D_,, (2.80)
DoDg = ™eB D, 5. (2.81)
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Egs. (2.79) and (2.80) are confirmed from Eq. (2.76), and Eq. (2.81) is shown from the Campbell-
Baker-Hausdorff relation.

2.5.1.2 Linear optical elements

Let us introduce unitary operations obtained by basic linear optical elements, phase shifters and
beam splitters. The phase shifter can be considered to be a gate on a single-mode optical field as
in Fig. 2.6 (a). The time evolution given by the phase shifter corresponds to a unitary operator
Pg relating an input bosonic operator a; with an output operator ao as

Gy = e Pya, P, (2.82)
where 0 is a real number. Noting
[UAUT, UBUT = U[A, B|Ut (2.83)
for any unitary operator U and arbitrary operators A and B, we have
a2, ab] = Pylay,al] P =1 (2.84)
T

which implies that as is also a bosonic operator. The number operator a;a; satisfies
Ppalar P} = alas. (2.85)
Combined with the fact that a state [¢)) evolves into Py|¢)), this indicates
(9| FjatazPoly) = (dlajan|v) (2.86)

for arbitrary states [1) and |¢). Thus, the role of number operator d{&l on a system is replaced
with that of number operator d;dg on the system outputted by the phase shifter Py. This implies

Py|0) = |0). (2.87)

Actually, this equation and Eq. (2.82) are sufficient for determining the effect of the unitary
operator 159.

The beam splitter can be considered to be a gate on two single-mode optical fields as in Fig. 2.6
(b). The time evolution given by the beam splitter corresponds to a unitary operator Bt,r,t’,r’
relating input bosonic operators {a1,as} with output operators {as,as} as

a3 =By (a1 + T&Q)Biﬁtlyru

R A~ /A N A~ T
a4 :Bt,'r',t’m’(r ay + taQ)Bt,r,t’,r”

(2.88)

where t,r,t',r" are parameters satisfying
'] = Irl, (2.89)
'] = 14, (2.90)
[+ [¢7 =1, (2.91)
r*t +r't" =0, (2.92)
r*t + 't = 0. (2.93)
Note that Eq. (2.88) can be also described by
. 5 . a B
< ?’3 > — B ‘?tﬂ',t,,’r’,?l-??r,t/ﬁ./ (294)
a4 Bt,r,t/,r’a2B

! !
t,rt',r
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@

ar a

Fig. 2.6. Linear optical elements. (a) Phase shifter. (b) Beam splitter.

with a matrix

B = ( f, Z ) . (2.95)

Then, Egs. (2.89)-(2.93) are equivalent to the unitarity of matrix B, i.e., BfB = BB' = I. From
Egs. (2.89)-(2.91) and (2.83), we have

[&3,&};] By [t'an + rag, t’ ai + ]BJM, o =1 (2.96)
[d4, d}l] By [ran + tag, v *aJ{ *AT]BZM, =1, (2.97)

which indicates that operators {as, a4} are also bosonic operators. From Eq. (2.93) and (2.83),
we obtain

las, a}] = By oo[t'ar + rag, v al +t*al]B] , =0, (2.98)

which concludes that the mode of ag is different from that of as. From Eq. (2.92), the total
number operator of &{&1 + &2&2 satisfies

Biyy (@l +alag)B! = alas + alas. (2.99)

This implies that the role of number operator dJ{ch + d;&z on a system is replaced with that
of number operator &;&3 + dlfm on the system outputted by the beam splitter f)’t’m/,ru This
indicates

By y1,|0) = [0). (2.100)

Similarly to the phase shifter, this equation and Eq. (2.88) are sufficient for determining the
action of the unitary operator Bt,r’t/m/.

As an example, let us apply the phase shifter and the beam splitter to a system in a coherent
state. If we perform phase shifter Pyona system in coherent state |a);, we will obtain state

Bylayy = e~ 1oP/2 Pye0dl BT Byl = elel*/2e0Phai ] |g) = e~lel*/2g0e a0 = |aei®),,  (2.101)

where we used Egs. (2.82) and (2.87). On the other hand, if we apply beam splitter Bt,r,t/m/ to
a system in a coherent state |a)1|3)2, we will obtain state

S (12 2y /g ~ “t . aat A .
Bt7r7t',r’|a>1|ﬁ>2 =€ (lal™+181%)/ Bt,nt’,r’eaaﬁ_ﬂ%Bj,r,t/,r/Bt,r,t/,r/|0>
e (01822 Buirt 11 AT +0)B) s 1| 2,102
2.102

:e_(|a|2+|ﬁ\2)/26a(t'*a3+r'*ajl)+5(r*a;+t*a1)‘O>

:\t'*a—}-r*ﬁ)g]r’*a—kt*ﬂh,



40 Quantum commumnication
where we used Eqgs. (2.88) and (2.100).
For simplicity, we may define a beam splitter as
BT = Bﬁ,m,ﬁ,*m (2103)

with real parameter 0 < T < 1, because the combination of this beam splitter and proper
phase shifters can simulate arbitrary beam splitters represented by Eq. (2.88). T is called the
transmittance. In this case, Eq. (2.102) is reduced to

Brla)|8)2 = [VTa+v1—=TB)s| — V1 —Ta+VTB). (2.104)

The beam splitter plays important roles in manipulation of photons. As an example of appli-
cations of the beam splitter, we show that the displacement operator 157 is implementable by
the combination of a beam splitter and an additional pulse in a coherent state. Let us assume
B = (VT/V/1—T)yin Eq. (2.104). Then, the equation is altered to

Brlan|(VT/V1=T))2 = WT(a+7))s| = V1=Ta+ (T/V1-T)h)a. (2.105)
From (a|B) = e~ (ol T181")/2¢0”8 for coherent states |o) and |3), we have
{(T/VT=Th| = VI=Ta+(T/V1-T)y)s
— o [T?/A=T)yP+A=D)|a* +(T?/1-T) W [*~T(a*y+ay*)]/2 ,~Tay* +(T? /1-T) |y[?
= (= Dla?/2,T(a"y—a")/2 _ ((1-T)|a|?/2,iTIm[ya"] (2.106)
which means
|~ VI=Ta+(T/VI=T)y)s = ™0 g(y)s (2.107)

for a state |¢(y))4 = limp_,1 |[(T/+v/1 — T')7y)4 depending only on «y. Hence, in the limit of " — 1,
Eq. (2.105) is reduced to

lim Brlo)|(VI/VT =T = ™0 a4 )slo()s = (Dyfads) @ [6(1)a (2.108)

Therefore, the displacement operation is implementable by a beam splitter and an optical pulse
in a coherent state.

2.5.1.83 Transmission channel

Transmission channels of the photons such as optical fibers are useful for quantum communica-
tion. An ideal transmission channel will enable us to faithfully send an unknown state |¢)) of
the input bosonic mode to the output bosonic mode. However, practical channels are not such
an ideal one. In particular, the practical channels inevitably leak a fraction of the transmitted
photons into the environment e. This noise is specifically called photon loss. To describe the
practical channels with such an imperfection, we conventionally use the beam splitter Bt,r,t’,r"
As noted in the previous section, the beam splitter Et,r,t’,r’ relates the two bosonic operators
{a1, a2} to the two output operators {as, a4} according to Eq. (2.88). Here, for the description
of the practical channel, we regard the bosonic mode a1 as the input mode a;, of the channel, the
bosonic mode a9 as the input mode a,. of the environment, the bosonic mode a3 as the output
mode Goyt of the channel, and the bosonic mode a4 as the output mode a,. of the environment.
We further assume that the initial state of the environment e is the vacuum state |0).. These
assumptions define an isometry Nt,r,t’,r’ as a theoretical model of the practical channel.
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Fig. 2.7. Transmission channel.

Let us consider that a boson in state |n)i, is inputted into such a practical channel. Then,
the channel returns state

Nt,r,t/,r/’n>in 1:Bt,r,t',r"n>in|0>e = Bt,r,t/,r/ Btrt’ '(AT )nB”t/ T/Btrt/ r! ’0>

1 N * “ n
=—=(Biry r’a Btrt’r’) ’0>:7(/ out+r, T) 10)

() @bt abr o)

(2.109)

as the output, where we define
Nt,r,t’,r’ = Et,r,t’,r’|0>e- (2110)

Since we cannot access the state of the environment e, the partial trace over system e is ap-
plied after the isometry Nt’r’t/m/, implying that the practical channel corresponds to a channel
depicted in Fig. 2.7. Combining these with the fact that any state |1)i, can be described by
the superposition of the state |n)iy, we can uniquely determine the output state of the practical
channel for any input state.

For example, if we input a pulse in coherent state |«) to the practical channel, we receive

Ny |)in = Biry o |0)in|0)e = [t ) oue|r’ a)e, (2.111)

as the output state. Here we used Eq. (2.102).

In practice, we use a transmission channel whose parameters ¢, r, ', " are estimated in advance.
In such a case, up to the freedom of phase shifters on the input/output modes, the channel can
be characterized only by the transmittance 1" such that

NT = B\/T7_m7ﬁ’m|0>e. (2112)

In practical setups, the parameters of the channel may fluctuate because of noises such as thermal
noises, but even in this situation, there are cases where the model of Eq. (2.112) becomes valid
by utilizing an additional optical pulse as the reference of the fluctuations.

Actually, the transmittance T of the channel N is related with the channel distance L. The
relation is described by

T = e L/ Lan (2.113)
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with an attenuation length Lat. That is, the transmittance of the channel decreases exponen-
tially with the channel length, which makes long-distance quantum communication difficult to
be achieved as shown later.

2.5.1.4 Photon detectors

A photon detector is a device to count photons. The most ideal photon detector is called the
ideal photon-number-resolving detector, whose POVM elements {E,(noo)}m:0,17._, are described by

B = |m)({m| with the number state |m). In general, the photon detectors cannot necessarily
count photons up to infinite numbers, namely, there are possibilities such that they can count
photons up to N(> 0). More precisely, the photon detector returns outcome m if it catches
m(< N) photons, but it gives outcome N + 1 if it receives photons more than N. The (N + 2)
POVM elements of the detector are described by

BV {Vmﬂmv (0 <m < N),
" Il (m= N+ 1),

This POVM is described as in Fig. 2.8 (a). The detector with N = 1 is called single photon
detector, and the detector with NV = 0 is called threshold detector.

In practice, there are various imperfections of the detectors. For example, not all the incident
photons are caught by the detector. This imperfection can be modeled as a transmission channel
Nn in front of the detector (see Fig. 2.8 (b)). The transmittance 7 is specifically called the
quantum efficiency. The POVM elements of the detector with quantum efficiency 7 are described
by {E4 " }m—o,..n+1 in Fig. 2.8 (b).

Another type of the imperfections is the so-called dark counts. The dark counts are caused
by an event where the photons from the environment are mixed with the signal mode. The
redundant photons are effectively described by

(2.114)

oo

N e v

poi= > )l (2:15)
m=0 ’

where v > 0 indicates mean dark count. This implies that m additional photons are appended to
the signal mode with probability (e “v™)/(m!). Thus, the probability with which the number
of the signal photons is k& but the photon detector announces the arrival of m(> k) photons is

(e7?v™=F)/[(m — k)!]. This indicates that the POVM elements B of the photon detector
with threshold N and mean dark count v are described by

m efuymfk
%Mw_{zhomkyW%L (0 <m < N),
m - oo n e—uyn—k
Zn:N+1 > k=0 W|kz><k|, (m=N +1).
This POVM is described as in Fig. 2.8 (c).

More generally, there are detectors with threshold N, quantum efficiency 7, and mean dark
count v. The POVM are described by {Ey(nN’n’y)}mzo,...7N+1 in Fig. 2.8 (d).

(2.116)

2.5.1.5 Quantum communication based on the direct transmission of photons

As an example, we introduce a way to share entanglement between separated parties, Alice and
Bob. Suppose that they are distance 2L apart, and Claire is located in the middle point between

1 The attenuation length is determined by the physical properties of the channel.
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(a) (b) (© (d)

Fig. 2.8. Photon detectors. (a) Ideal photon detector with threshold N. (b) Photon detector with
threshold N and quantum efficiency 1. (c¢) Photon detector with threshold N and mean dark count v.
(d) Photon detector with threshold N, quantum efficiency 7, and mean dark count v.

Alice and Bob. Alice prepares a bosonic Bell state described by
1 . . 1
|mﬁoson>aac = 7((1:;0 =+ a2)|0> = \ﬁ(ml)aac + |10>aac)> (2117)

and she sends the photon in mode a. to Claire through transmission channel N%C_m“. Bob
also prepares the same state |‘I'boson>bbw and sends the photon in mode b. to Claire through
transmission channel Né’fﬁcb. At this point, from Eq. (2.109), the total state |¢)i, is described
by

ey L
) =N Ny 2 (@, + af) (@), + a})|o)
(\Faf +V1-Tal, +al)(VTal, +\/1—Tazb+ab)|0>

1
zi[TaT al, + (1 —1)af al, +ala) + /T —T)(al al, +afal )

+\/7( cab+acb a)+\/1_ ( eab+a )”0> (2118)
:i[T’OO>ab|11>CaCb|OO>eaeb + (1 - T)‘00>ab|00>ca6b|11>eaeb + |11>ab’00>cacb’00>eaeb

+ VT'(1 = T)(]00)a5[10)coc,[01)eqe, + 100)ab|01)c,e, [10)eqe, )
+ \/T(‘Ol>ab|10>0a%|00>eaeb + ’10>ab‘0]‘>cacb‘00>eaeb)
+ V1 =T(]01)4p|00)c,c,|10)e e, +[10)ab]00)c,c, 01)eqe, )]

where e, and e, are modes in the environment.

On receiving the bosons, Claire applies a beam splitter Bg%‘lcb—}dadb with 7" = 1/2, and she
counts photons of the output modes d,d,. If she detects a single photon at either mode d, or
dp, she declares the success. The Kraus operators in the success cases are described by

1
(cacy (10] + ¢, (011), (2.119)

=

dadb<10’(Bf7§b4>dadb)T —

daa, (L] Byttt =

1/2 (cacy (10] = coc, (O1]). (2.120)

Sl

Hence, we have
1t 01 (BE2 ) ) = YL (0441000, + VI T100)0s [0 ey, (2.121)

(!‘I’ Jab|00) eae, + V1 = T]00)ap[ ¥ )egey ), (2.122)

o5 el5

(O] (B o)) =
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where [¥U~) := (|01) — |10))/v/2. Assuming that Alice applies phase shifter P? if detector dj,
announces the arrival of a single photon, Alice and Bob will share state

1 1-T
~ab _ + +
= —— 0T e 2.12
P = S TN+ o [00) (001, (2.123)
with probability Ps := T(2 — T')/2. Since T decreases exponentially with distance L of the
channel, from Eq. (2.113), for large L, the success probability Py becomes

Py~ T = ¢ L/las (2.124)

Therefore, quantum communication is achievable by the direct transmission of photons, but the
efficiency decreases exponentially with the channel length.

2.5.2 A-type system and the interaction with photons

As shown in Sec. 2.5.1.5, we can achieve entanglement distribution by the direct transmission of
photons through a transmission channel such as an optical fiber. But, because of the exponen-
tial increase of the photon loss, the efficiency decreases exponentially with the channel length,
which will strongly restrict the achievable distances of quantum communication. To avoid the
exponential increase of the photon loss, we have no choice but to give up the direct transmission
of photons over long distances. Instead, actually, we have two protocols to achieve long-distance
quantum communication against the photon loss: one way is the so-called quantum repeater pro-
tocol; the other way is the so-called satellite-based quantum communication. Either way needs
quantum memories that can interact with photons, and is based on entanglement generation
between moderately distant quantum memories by utilizing photons. In this section, we intro-
duce a quantum memory that can be realizable by various two-level quantum systems, and we
show how the quantum memory interacts with photons. We further show that the interaction is
achievable even by A-type systems. An entanglement generation protocol and several methods
to achieve long-distance quantum communication based on this quantum memory will be shown
in the subsequent chapters.

2.5.2.1 The interaction of a single two-level system with a single-mode optical field

Let us consider the interaction between a single two-level system and a single-mode optical field
with frequency vg. Suppose that the two-level system has the parity symmetry. In the dipole
approximation (k- r < 1), the Hamiltonian of the combined system is [69, 70] described by

H = Hiea + Hiwo—tevel + Hint, (2.125)
~ A 1

Hficla = huy, (aLsaks + 2) , (2.126)
Hiwotevel = Eele){e| + Eq4lg){gl, (2.127)
Hine = —q7 - Ey,(0), (2.128)

where Ej,(0) is the electric field at the origin, ¢# is the dipole moment, E, and E,(< E,) are
the eigenvalues of Hiyo_level, and |e) and |g) are the eigenstates of Hiyo—level. From Eq. (2.56),
H;,t can be rewritten as

Hin, =(le){e] + |g)(g]) (—a7 - exsEi) (e} (el + [9){g]) (ans + k)

2.129
=[(—q€klelflg) - €xs)ds+ + (—aEx{g|Fle) - €rs)o—](ars + ) ( )
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A=w—vh ke

hy fiw

j—{Ig>

Fig. 2.9. A single two-level system. v is the frequency of a single-mode optical field and Aw is the difference
between energies of |e) and |g).

where we define 6 := |e)(g| and 6_ := |g)(e|, and we used (g|7|g) = (e|7|e) = 0 from the parity
symmetry of the eigenstates {|e),|g)}. Since the terms 6, a,, and 6_axs represent processes
that do not conserve energy, they are eliminated in the rotating wave approximation. Thus, the
interaction Hamiltonian Hiy, can be approximately reduced to

Hine ~[(—qk(elPlg) - €xs)insor + (—aSk(g|Ple) - €ns)ify -] 2,130
l7e) : ) 2.130
:7(Aksez¢&+ +afe ),
where 12/2 := | — ¢€k(e|F|g) - €ks| and ¢ := arg|—qEk(e|F|g) - €ks]. The frequency 2 is called

Rabi frequency. By defining a =: agse’®, v := vy, and hw := E, — E, for the simplicity, the total
Hamiltonian H is reduced into Jaynes-Cummings Hamiltonian Hjc such that

- B.+E, hv - hw 79 L.
H— % - 7” ~ Hjc = hwala + - 0=+ 7(&@ +a'6_) =: Hy+ Hi, (2.131)
N

Hy = 7”@ + hwata, (2.132)
. hA Q)

Hy = =-6-+ —-(a6y + alo), (2.133)

where 6, := |e){e| —|g){(g| and A :=w — v.
Let us consider the spectral decomposition of the Jaynes-Cummings Hamiltonian Hjc. Let
{le)|m), |g)|n) }m.n=0,1,.. be the eigenbasis of Hy. Since

Hole)m) = hw (; + m> €Y [m), (2.134)
Fola)in) = v (=5 +n) o)), (2.135)

states |e)|m) and |g)|m + 1) with m > 0 have the same eigenvalue of Hamiltonian Hy. On the
other hand, noting [6.,6+] = 264, [a'a,al] = af and [afa, a) = —a, we have [Hy, Hy] = 0. This
implies that, from Theorem 1.1, Hy and H; are simultaneously diagonalizable. Hence, defining
a projector P, := |e){e| @ |m)(m| + |g){g| @ |m + 1)(m + 1| (m > 0) — the projector on the
eigenspace of eigenvalue hw(1/2 +m) of Hy, we can decompose Hy and H, as

Ho=}_ hv <; + m) Py — %\gﬂgl ® [0)(0], (2.136)
m=0
Hy =Y PP+ (19) (] @ [0)(0) i (19} gl © [0) 0)). (2.137)

m=0
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Note (g|(0|Hy|g)|0) = —AA/2. Let us further diagonalize Py, H1 P,,. From

AOQvVm + 1

ife)lm) = "2 ey im) + EV L gy 1), (2.138)
Hilg)lm +1) = —%Ig)!m +1) + Miym+1 V;nﬂ\eﬂm), (2.139)

me:l 1]5m can be viewed as a matrix described by

< (el(m|Hje)lm) — (el{m|En|g)lm + 1) )
(glim + LI Hle)|m)  (g](m + 1|H|g)lm + 1)

1 0 . 0 1
=A\m |:C089m<0 _1>+sm9m(1 0)], (2.140)

where

() + (7).

hA
O = — (2.141)
cos b, on
. AQ/m + 1
sin 0, := o

Hence, the eigenvalues of f’mﬁlf’m are £\, (=: A\ +), and the corresponding eigenvectors are

Om, . (O
| Am,+) = cos <2> le)|m) + sin (2> lg)lm + 1), (2.142)
. (O Om
[ Am,—) :=sin 5 le)|m) — cos o lg)|m + 1), (2.143)
which implies
P Py = A nt) Ot | = o) - ])- (2.144)

Therefore, the spectral decomposition of the total Hamiltonian His
FIJC =Hy+H 1s

= (; ; m> (o) o+ o) o) = 2 ) 5] 10 0]

(2.145)
YN hA
A= 3" M) | = Aon, ) 1) = =719} (9] @ [0) 0]
m=0
Time evolution of the system with the Hamiltonian H is determined by
(1)) = e~ et/ My 0)), (2.146)

where [1(0)) is the initial state of the system, and [¢(t)) is the final state of the system. From
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the decomposition in Eq. (2.145), the final state [1(t)) is described by
(1)) =™t My (0))

[e.9]

Z B O [ (0)) A, 4) D e 0 EHme =2, [45(0)) Ao, )

m=0 m=0

+ e~ 12 (g](0]4(0))]9)]0).-
(2.147)

This is the solution of the Schrodinger equation.

Let us consider the solution of the off-resonant case, i.e., |[A] > Q. In this case, since
RlA| RO (m + 1)

2 4|A| ’

A, =

(2.148)

hold, we have

. © 2(m
HEDY (hf + W) (le)(el @ m) om| ~ Ig) gl @ m -+ ){m + 1)) — "2y ig] ©0)(0

m=0
hQ? RA B2 th

This indicates

2 8A 4A

Therefore, the solution of the Schrodinger equation is

. h)2 hw  hQ2 h)2
Hyc ~ S+ hwata + < + ) L+ ——alag.. (2.150)

[p(t)) = e~ivatate=ilg+Ex)ostc-ifsatadtiy ). (2.151)
In the following chapters, one can see that this interaction plays a central role of long-distance
quantum communication.

In contrast to the on-resonant interaction (A = 0), the off-resonant interaction (|A| > )
does not restrict the frequency v of the single-mode electromagnetic field. This implies that the
off-resonant interaction can be observed in various two-level quantum systems [40, 41, 42, 44, 45].
Hence, the off-resonant interaction of Eq. (2.151) can be considered to be a universal interaction
between a two-level system and a single-mode optical field.

2.5.2.2 The interaction between A-type system and a single-mode optical field

As seen in the previous section, we see the interaction between a single two-level system composed
of states {|e), |g)} and a single-mode optical field. Actually, it is not good to use the two-level
system as a quantum memory, because the system suffers from the spontaneous emission turning
state |e) into state |g). Instead of the two-level system, it is known to be better to use a three-level
system called A-type system as a quantum memory.

The A-type system is composed of three states {|0), |1), |e)} as in Fig. 2.10. This system is
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supposed to have a selection rule that prohibits the dipole transition |0) <> |1). But the system
allows us to induce dipole transitions |0) <> |e) and |1) <> |e) by proper electromagnetic fields.
The selection rule releases the states |0) and |1) from the noise caused by the spontaneous emis-
sion, which implies that the states |0) and |1) are stable enough to be used as the computational
basis of a quantum memory. In addition, we can apply unitary operations on the qubit by
Raman processes [69, 70, 71]. The Raman processes are induced by two electromagnetic fields
whose frequency difference vy — v1 matches the separation of the two ground states, (E1 — Ey)/h
(see Fig. 2.10), and whose frequencies 1y and v; are sufficiently detuned from the resonances of
the transitions |0) <+ |e) and |1) <> |e), respectively. Therefore, the A-type systems are good
candidates for quantum memories.

Moreover, such a quantum memory based on the A-type system can couple with a single-mode
optical field [40, 41, 42, 44]. For coupling a single-mode optical field with the quantum memory,
it is sufficient to apply a single-mode optical field with an off-resonance frequency vg. In this case,
since the field can activate only the transition |0) < |e), this process is essentially considered
to be the off-resonant interaction between two levels of |0) and |e) and the field. Thus, from
the consideration in the previous section (e.g., from Eq. (2.150)), the total Hamiltonian of the
system is approximately described by

. hv

H— =~ Hy + Hyc, (2.152)
. E.+ E
Hy = B1[1)(1]+ =" (le){e| + [0)(0)), (2.153)
p hQ? hw  hO? hQ?
nel” ata+ (P90 LB 5 MY s
Hjc ~ A (le){el +10)(0]) + Ava'a + ( 5 + A > G, + A 8140, (2.154)
where
w:= (E. — Ep)/h, (2.155)
A= w — 1, (2.156)
G, :=le)(e| —10)(0]. (2.157)
Note that I{IO and H jo are commute. We further note
PN E.+ E
HoPywie =E1[1){1] + =*—"(0)(0],
N RO2 v (hw QP Q%
hw h$Y?
—pueata — =2 _ e et
hvpa'a 5 |0)(0] Al a|0)(0]

for projector Poupic = |0)(0] + |1)(1]. Thus, the unitary operator U(t) at time ¢ on the qubit
represented by {|0),|1)} and on the single-mode optical field is given by

U(t) — pqubite—i(ﬁo—&-ﬁm)t/hpqubit _ e—iuodT&te—i(E()lO)(O\-i-El|1>(1\)t/h6i%ﬁ&\0>(0|t. (2.158)

The operators e—ivoalat and =i(Eol0){01+E1 1) (1Nt/h can be offset by proper local unitary operations

on the qubit and on the single-mode optical fields, which means that they cannot make coherent

2
2atalo) (o)t

coupling between the systems. In contrast, e's is an essential unitary operation to
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10) ——

Fig. 2.10. A-type system. vy and 14 are the frequencies of single-mode optical fields.

couple the systems. In fact, the unitary operation works as
000} ) = [0)|ae™),

At (2.159)

000N a) = [1)]a),

where |a) is a coherent state of the optical field and 6 := (2%t)/(4A), and hence, we can easily
generate an entangled state in the form of

0NN /10) + VarIL)la) = Val0)lae”) + VailLla) (2160

. 2 ~ ~
with go+¢1 = 1 and 0 < g9 < 1. Hence, we can expect the unitary operator eiinatalo)(olt ¢, play
an important role in the coherent manipulation of the qubit. The importance of this unitary
operation will be ensured in the subsequent chapters.



3

Entanglement generation based on a two-probe protocol

As seen in Sec. 2.5.1.5, the communication efficiency of quantum communication based on the di-
rect transmission of photons decreases exponentially with the channel length. The goal in what
follows is to avoid the exponential decrease of the communication efficiency, and to compose
alternative architectures to achieve long-distance quantum communication efficiently. Although
there are candidates of such architectures, e.g., quantum-repeater-based or satellite-based quan-
tum communication, either ways are based on entanglement generation between distant quantum
memories, and further execute entanglement distillation and entanglement swapping if necessary.

In this chapter, we provide an entanglement generation protocol between quantum memories
by utilizing the off-resonant interaction in the form off

Up(|0)arla)e) =[0)araec™/?).,

. . 3.1
Up(|1) arla)e) =[1)arlae™ )., -1

where Uy is the unitary operator, {l7)a}j=0,1 is the computational basis of the quantum memory
M, |a). is a coherent state, and the parameter 6 depends on the strength of the interactionf. The
entanglement generation protocol is composed of a simple combination of linear optical elements
and photon detectors, and it can generate entanglement with only one type of error, which is a
favorable property that makes subsequent entanglement distillation efficient (see Fig. 2.5). In the
case where ideal photon-number-resolving detectors are used, the performance of the protocol
in terms of fidelity and efficiency exceeds all known protocols [37, 38, 40, 41, 42, 43] including a
protocol generating entanglement with two types of errors [40, 41]. In fact, it is shown that the
protocol achieves the theoretical limit of performance among the protocols with the single-error-
type property. In addition, even if realistic photon detectors are used, the protocol shows higher
performance than known realistic protocols. Thus, the protocol introduced here is a promising
protocol for efficient production of entanglement.

3.1 Two-probe protocol

Let us consider the entanglement generation protocol illustrated in Fig. 3.1. In what follows,
we call the sender and the receiver as Alice and Bob, respectively, who are connected via an
optical fiber with transmittance T = e~"/! where [ is the distance between the nodes. Alice
first prepares a probe pulse in a coherent state |a), with @ > 0 and a quantum memory A in

1 Note that this unitary Uy is equivalent to the unitary operation of Eq. (2.159) up to a phase shifter on the optical field.
1 According to Ref. [40], 6 ~ 0.01 is achievable.

50
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qulbiotA o';’\ﬁc'h @ A/\ ’u/\sz]\Lo (Bob)
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Fig. 3.1. Schematic diagram of the two-probe protocol.

state (e EF9|0) 4 + € E+D(1) 4)/v/2 with

=(1/2)Ta?sin 6,

=(1/2)(1 — T)a?sin 6, (32)

where phase factors £ and ¢ are chosen to offset irrelevant phases appearing later. Alice then
makes the probe pulse interact with her memory by Ug, and sends the output probe pulse to Bob
through the fiber together with the local oscillator (LO). Optical loss in the fiber is effectively
described by

Nla)q = |VTa)y, |V1 —Ta)g, (3.3)

where N is an isometry from input mode a into output mode b; and the environment E. Then,
the state of Alice’s memory A, the received probe pulse in mode by, and the environment F is
described by

) ab B = (|0>A|UO>b1|vo>E+|1>A|u1>b1|01> ) (3.4)

g

with
), = e OV Tae 02,
lvj)E = i 1]€|\/ﬁae 1)]9/2>

The above recipe for Alice is also shared by the protocols in Refs. [40, 41, 42], while that for
Bob is not. In these protocols, Bob first interacts the received probe pulse with his memory,
and then he either performs homodyne measurement on the probe pulse (protocol I) [40, 41]
or displaces the probe pulse and conducts photon counting (protocol IT) [42]. As seen below,
the protocol introduced here differs from these in the sense that it uses two probe pulses, which
inherits the approach adopted by Duan et al. [31, 32, 33, 34, 37, 38]. Hence, in what follows,
we call it two-probe protocol.

In the two-probe protocol, upon receiving the probe pulse and the LO pulse, Bob first generates
a second probe pulse in state [v/T'a)y, from the LO with a beam splitter (BS2), and then makes
it interact with his memory initialized in state (e~%|0)p + €*|1)5)/+v/2. Then, his memory and
the second probe pulse are in state |¢) gy, = (|0)5|u0)s, +|1)B|u1)s,)/v/2. Bob further applies a
50/50 BS (BS3) described by |a1)p, |a2)p, — |(a2 — a1)/v2)p,[(a2 + a1)/v/2)p, to the pulses in
modes by and by, which is followed by a phase-space displacement D_ T cos(8/2) to the pulse
in mode by. Note that the displacement operation is achieved by the combination of LO and a

(3.5)
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beam splitter, as shown in Sec. 2.5.1.2. These operations correspond to the following isometry:

[20) by [%0) by —+10)6515) s

0 by [U1)by =] = B)bs|0)bs (3.6)
|u1>b1‘u0>b2 _>|ﬂ>b3|0>557
|u1>b1‘u1>b2 _>|0>bg‘ - B>b57
where ( :=iv2Tasin (0/2). Then, the state of the total system is described by
X) ABbsbs B =0)b5 (100) 4B|B)es [v0) & + [11) aB| — B)os|v1)E)/2 (3.7)

+10)5 (101) aB| — B)bs[v0) B + 110) aBIB)bs|v1) E) /2-

The pulses in b3 and b5 go to photon detectors D1 and D2, respectively, and Bob announces the
success of the protocol when either photon detector D1 or D2, but not both, reports the arrival
of nonzero photons.

Let us consider the case where D1 and D2 are ideal photon number-resolving detectors. Since
the detectors have no dark counts, the output state |x)appsbs 2 Dever provokes an event where
both detectors receive photons. Hence the two-probe protocol fails only when the pulses in
modes bz and bs are in the vacuum state |0)p,]0)s,, which leads to the success probability of

—2Ta? sin?
Py(a) = 1= {4, (01 Ol X) aBbaps | |* = 1 — e72F ©/2), (3.8)

The type of the generated entanglement in qubits AB depends on which detector informs how
many photons have arrived. If detector D1 announces that the number of arriving photons is
odd (even but nonzero), the generated entangled state has fidelity

F(Oé) _ (1 + 672(17T)oz2 sin2(9/2))/2 (39)

to the nearest Bell state |U ™) ap := (|01) a5 — |10)aB)/V2 (|[¥)ap := (|01) ap + |10)aB)/V2),
and it is diagonalized by Bell states {|¥*) 45}. Similarly, detector D2 informs whether the near-
est Bell state to the obtained entanglement is |®~)4p := (|00)ap — |11)aB)/V2 or |®F) ap =
(]00) 4p+|11) 45)/V/2. These facts can be confirmed by simple calculations, e.g., », (n||X) ABbsbs E =
|0)p; ((n] — B)|01) ap|vo)E + (n|B)|10)aB|vi)E)/2 for the number state |n)y, (n > 0), (n|8) =
(=1)"(n| — B), and (vy|vg) = e~2(1=T)a?sin®(6/2) Then, using a local unitary operation depend-
ing on the outcome of the detectors, Alice and Bob can transform the generated entangled state
into the standard state,

F(a)|2") (@ [ap + (1 = F())| 27 (27 |ap- (3.10)

Since this standard state includes only one type of error, from these states, we can efficiently
distill a Bell pair according to Fig. 2.5. This property is also shared by protocol II [42] and by
another protocol [43].

In order to evaluate the potential of the two-probe protocol, we compare its performance
with protocols I and II in Fig. 3.2, assuming ideal photon number-resolving detectors and ideal
homodyne detectors. The figure suggests that the two-probe protocol has the best performance
among the protocols. In addition, the figure shows that, in the vicinity of zero success probability,
protocol II and the two-probe protocol achieve a fidelity close to unity, while protocol I does
not unless ' =1 (I = 0). This difference comes from the choice of different types of detectors,
and it is further amplified with the increase of distance I: In fact, for [ > 40 km, protocol I can
generate almost separable states at best [42], but the two-probe protocol and protocol II can
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Fig. 3.2. The performance of protocols with ideal detectors: fidelity of the obtained entanglement to a
Bell state as a function of the success probability when Iy = 25 km (corresponding to ~ 0.17 dB/km
attenuation) and 6 = 0.01, for (i) protocol I [40, 41], (ii) protocol IT [42], and (iii) the two-probe protocol.

generate acceptable entanglement. The better performance of the two-probe protocol was also
supported by numerical simulations for various values of 7.

3.2 Optimality of the two-probe protocol

Actually, the high potential of the two-probe protocol is not accidental, because it can be shown
to have the maximal performance among a wide range of protocols, which generate entangled
states with only one type of error. The complete proof of this fact is somewhat complicated,
and hence it is given in Chap. 4. Instead, in this section, we provide a preliminary result of
it, namely we derive the upper bound of entanglement generation in qubits AB among all the
protocols that satisfy the following two conditions:

(i) Alice prepares qubit A and pulse a in a state (3_;_q, €3 |5) ala)a)/V2 with {|a)a} =01
being arbitrary coherent states, and sends the pulse a to Bob;

(ii) Upon receiving the pulse (in mode b;), Bob may perform arbitrary operations and mea-
surements on by, the LO, and his memory qubit B, but whenever he declares success,
Alice and Bob must be able to apply a local unitary operation Ua ® Ug such that the
final state of AB is represented only by {|®*)} (contained in the subspace spanned by

{125)}).

Condition (i) is satisfied by protocol I-III, and the others [37, 38, 40, 41, 42, 43]. In the proof
to be given in Chap. 4, this condition will be omitted as an unnecessary assumption. Condition
(ii) suggests that considered protocols generate entanglement with only one type of error, and
it is met by protocols II and III.

Let us proceed to the proof. From condition (i), we see that the state of the system Ab;E
when the pulse arrives at Bob is written by

W) abe = D |7 alug), [v)e/V2 (3.11)

j=0,1
with
(1 —T)In|(ui|uo)| = T In|(vi|vo)], (3.12)
where T' is the transmittance of the fiber. Since the cases with [(vi|vg)| = 1 are trivial, we

assume |(v1]vg)| < 1 in what follows, and we use condition (ii) and Eq. (3.11) to derive bounds
on the success probability Ps and the fidelity F' in terms of |{u1|ug)| and |(vi|vg)|. Then we use
Eq. (3.12) to determine the achievable region of (Ps, F') for given 7.
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Let us define a phase flip channel A4 on qubit A by
Aa(p) == qp+ (1 — q)67po (3.13)

with 62 := [0)(0]4 — [1)(1|4 and
1+ [(v1]vo)|
= 3.14
: (3.14)

From Eq. (3.11), we have
Trpllt) (¥]as, 5] = Aa(¥") (¥ av,),

where [¢) 4, 1= D01 ei(_l)j@|j>A|uj>bl/\/§ with 2¢ := arg[(vi|vg)]. The effect of the lossy
channel is thus equivalently described as preparation of |¢)') 45, followed by A4. Since any
operation of Bob commutes with A4, the protocol is equivalent to the following sequence: (a)
System Ab; is prepared in |¢)') 4p,; (b) Bob does his operations and measurements, and leaves
system AB in a state pap; (c) A4 is applied on qubit A.

Now condition (ii) requires that, whenever Bob declares success, there exists a unitary UaoUp
such that (U'=[A4(pap)| W) = 0 with [U'=) 45 1= Ul @ UL|U%) 45. Since pap is positive and
0 < ¢q <1, we have

VpaB|¥'F) =0,

- (3.15)
Vhape|U*) =0
for both +. Adding and subtracting these equations, we obtain
Vhaslzj) alyje1) = V/pao|z;) alyjen)s =0 (3.16)
for j = 0,1, where
sl
ziya :=U A
f25) 4 =0 3) .

)5 :=UL13) 5.

Since pap # 0, the set {|z;)alyje1)B,62|7;) alyje1) B} =01 must be linearly dependent, which
only happens when {|z;)4};=0.1 is an eigenbasis of 5.
Without loss of generality, the fidelity F' of the final state is given by

F = (®""|Aa(pap)| @), (3.18)

where [0/%) 45 1= U} ® ULI®*) a5 = (|w0)alyo) % [21) aly1)5)/v/2. Since {|aj)a}j=0, is an
eigenbasis of 62, we have 62|®'T) = 4+(®'~). Hence F = ¢(®'*|pap|®'T) +(1—q)(®'~|pap|®' ),
leading to

F < (1+ [(o1]vo)])/2 (3.19)

from Eq. (3.14).

In order to find a bound on Ps, imagine a situation where, after the steps (a)—(c) above, Alice
and Bob proceeds as follows: (d) Bob measures qubit B on basis {|yx)B}r=0,1; (¢) Alice measures
qubit A on basis {|j)a}j=0,1. Whenever Bob has declared success, we see from Eq. (3.16) that
the state of qubit A after step (d) should be |z3)4, which is an eigenvector of 7. Hence Bob
can certainly predict Alice’s outcome j in step (e). Now if we look at the whole sequence (a)—(e),
we notice that Alice’s measurement (e) can be equivalently done just after (a), and (c) becomes
redundant. Then, when Alice finishes steps (a) and (e), Bob is provided with {|u;)p, }j=0,1 with
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equal a priori probabilities, from which he proceeds with steps (b) and (d). At this point, he
can determine the value of j precisely whenever he declares success. Thus, the total success
probability P is not larger than that of the unambiguous state discrimination (USD), which is
1 — |(u1|up)| from Eq. (1.103). Hence we have

PS S 1-— \(ul\uoﬂ (320)

Combining Egs. (3.12), (3.19), and (3.20), we conclude that, for given T' < 1, the performance
(Ps, F) of any protocol satisfying conditions (i) and (ii) must lie within the boundary {(1 —
t,(14+t0=D/Ty/2) | 0 < t < 1}. Conversely, as Eqs. (3.8)-(3.9) suggest, this boundary is always

achievable by the two-probe protocol with the choice of amplitude « satisfying t = e~ 2Ta?sin?(0/2)

3.3 The performance of the two-probe protocol with realistic photon detectors

Here we show that the two-probe protocol shows high performance even if we replace the photon
number-resolving detectors with threshold detectors (TDs) that just report the arrival of photons
and do not tell how many of them have arrived. We represent quantum efficiency and mean
dark count of the detector as n and v, respectively. From Sec. 2.5.1.4, the function of a TD is
represented by the following POVM elements:

9
Enc = Z eil/(l - n)m|m><m|7
m=0 (321)
Ec = Enm

where EC (E'nc) corresponds to an event reporting the arrival (non-arrival) of photons. When
the used TDs are ideal (n = 1, v = 0), the generated state has only one type of error and has
fidelity (1 + e~20”sn*(6/2)) /9 o the nearest Bell state. The success probability is the same as
that with ideal photon number-resolving detectors. For the realistic values of (7, v), the success
probability and the fidelity are described by

P, (77’ v, Oé) :671/72T7]a2 sin?(6/2) [1 — 27V + 62T770‘2 51112(9/2)]7
67211672T042 sin?(6/2) 2 .o 2 2
F _ 2T (1—nm)a®sin®(0/2) ¢ v 2Tna?sin?(0/2) 1 3.22
(777 1/7a) 2Ps(777V7 a) [6 (6 € ) ( )

_ e—Q(l—T)a2 sin2(6/2)e—2T(1—n)a2 sin2(9/2)(eue—2T77a2 sin?(6/2) 1)].

We show numerically estimated performance (Ps(n, v, «), F(n,v,«)) of the two-probe protocol
in Fig. 3.3. Note that the chosen values (n,v) are typical for currently available detectors, e.g.,
TES (superconducting transition-edge sensors) [72] and APD (avalanche photodiode) [73]. The
dark counts of such detectors increase the types of errors occurring in generated entanglement.
However, such additional errors occur with a small probability ~ v(P; ! —1) 4+ O(v?), and hence
can be neglected. To evaluate the performance of the two-probe protocol, we also plotted the
performance of protocol I with an ideal homodyne detector, and that of protocol II with its
photon number-resolving detector replaced by TD1 and TD2. The figure shows that the two-
probe protocol has higher efficiency than protocol II. We see that there is a region where the
performance of protocol I exceeds that of ours, but this region decreases with the increase of
distance [. Hence, we can safely say that the two-probe protocol outperforms the other protocols
in the cases where long-distance and/or high quality entanglement generation is required. It is
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Fig. 3.3. The performance of protocols with realistic detectors: (i) protocol I with an ideal homodyne
detector, (ii) protocol I with a TD1 (n = 0.89, v = 1.4 x 107%), (ii’) protocol II with a TD2 (n =
0.12, v = 3.2 x 1077), (iii) the two-probe protocol with TD1s, (iii’) the two-probe protocol with TD2s.

also worth to mention that entanglement generated by protocol I always includes two types of
non-negligible errors, which will affect its performance in the entanglement distillation stage.

3.4 Summary

In conclusion, we have proposed a two-probe entanglement generation scheme, which outper-
forms the generation schemes proposed so far. More importantly, as shown in this chapter,
the two-probe protocol can achieve the optimal performance among all the schemes satisfying a
couple of plausible conditions [(i) and (ii) above]. Actually, the optimality can be ensured even
if we omit physically meaningless condition (i) (see the next chapter). Therefore, the two-probe
protocol is not only a feasible and efficient entanglement generation protocol but also a funda-
mental protocol enlightening us a quantum mechanical limit of single-error-type entanglement
generation. The distinguished importance of the protocol will be also authenticated with its
striking applications given in Chapters 5 and 6.
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Tight bound on coherent-state-based entanglement generation
over lossy channels

In Chapter 3, we have provided a protocol that can generate entanglement with only one type
of error by using a unitary operator V in the form of

V10) ala)a = |0) 4]0,
V1) ala)e = [1) ale1)a,

where A is a qubit, a is a single-mode optical field, and |a), and {|®;)s}j=0,1 are coherent

(4.1)

states. As in Fig. 2.5, we can efficiently distill an almost maximally entangled pair from the
single-error-type entangled states. Thus, protocols producing entanglement with only one type
of error are favorable for rendering the total performance of quantum communication efficient.
In this chapter, considering a general paradigm of single-error-type entanglement generation
in which, through a lossy channel, a sender sends the receiver an optical field entangled with
sender’s qubit by interaction V, we derive the tight upper bound on the performances of these
protocols stated in terms of the average singlet fraction of generated entanglement and the
success probability. This derived bound is determined only by the channel loss, i.e., the length
of the channel, which clarifies how the loss in the channel affects the entanglement generation in a
quantitative way. In order to derive the bound, we require no additional assumption, differently
from Sec. 3.2, where the quantum memory of the sender is additionally assumed to start from
a symmetric state (|0)4 + |1)4)/v/2. Moreover, the general bound is shown to be achievable
by utilizing the symmetric protocolf in Sec. 3.1 that is realizable by linear optical elements and
photon-number-resolving detectors, and starts with the symmetric state (|0)4 + [1)4)/v/2.

This chapter is organized as follows. In Sec. 4.1, we define protocols to generate entanglement
with only one type of error, and the measure of the performance. We derive an upper bound
on those performances in Sec. 4.2, which is the main theorem in this chapter. In Sec. 4.3, we
show that the upper bound is achievable by convex combination of the symmetric protocol and
a trivial protocol. In Sec. 4.4, we derive an explicit expression of the tight upper bound as a
function of the transmittance of the channel loss.

4.1 Single-error-type entanglement generation and the measure of its performance

Let us define the family of single-error-type entanglement generation protocols. We require Alice
and Bob to make an entangled state with only one type of error. More precisely, Alice and Bob
t In fact, the symmetric protocol was dubbed the two-probe protocol in Chapter 3 in order to distinguish it from the

other entanglement generation protocols based on a single probe. But, in this chapter, because we do not care about the
number of the used probe pulses, we rename the protocol in order to clarify the initial state of the memory of the sender.

o7
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are required to make qubits AB in an entangled state that can be transformed into a state
contained in the subspace spanned by Bell states {|®*) 45} via local unitary operations, where
%) a5 := (|00) a5 £ [11)ap)/V2.

To generate such an entangled state, Alice and Bob execute the following steps (Fig. 4.1):
(i) Alice prepares qubit A in her desired state )4 = >, o4 "9 V/@j17)a with real parameters
©j, ¢; > 0, and Zj ¢; = 1, and she makes it interact with a pulse in a coherent state o), =
e““|2/26"af|0)a via a unitary operation V of Eq. (4.1). (ii) Alice sends the pulse a to Bob,
through a lossy channel described by an isometry

Nla)e = [VTa)|vV1—Ta)g, (4.2)

where 0 < T < 1 is the transmittance of the channel and system E is the environment. (iii)
Upon receiving the pulse in mode b, Bob may perform arbitrary operations and measurements
involving pulse b and his memory qubit B, and declare success outcome k occurring with a
probability py or failure. (iv) If Step (111) succeeds, depending on the outcome k, Alice and Bob
apply a local unitary operation UA P ® UB . to the obtained state, in order to satisfy that the final
state 7{'P is contained in the subspace spanned by {|®*)4p}, and also that the nearest Bell
state to the state 712 is |®F) 4.

We evaluate the performance of the protocols by the total success probability,

k
and the averaged fidelity of the obtained entangled states

1
k

8)4la), > 4

Quantum
operation

T;:IB——)

Fig. 4.1. The scenario of entanglement generation protocols. |¢)4 := ijo 1 /T5€°©715) 4. Bob’s quantum
operation returns qubit B in the state depending on outcome k, and he shares the outcome with Alice
by using classical communication.
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where F}, is
Fy = (0T |72 |@7). (4.5)

Thanks to the choice of the unitary operation in Step (iv), Fy is equivalent to so-called singlet
fraction [64]. Since 7!8 is contained in the subspace spanned by {|®*)45}, Fj > 1/2 holds.

This means
F>1/2. (4.6)
We also allow Alice and Bob to switch among two or more protocols probabilistically. The
performance of such a mixed protocol is determined as follows. Suppose that Alice and Bob can
execute a protocol with performance (Pégl), F (1)) and a protocol with performance (Pé@), F (2)).

Then, by choosing these protocols with probabilities {r,1 — r}, Alice and Bob can achieve
performance (P!, F') determined by

P P P

It is thus convenient to describe the performance of a protocol by point (Ps, PsF'). Then, the
set of achievable points (Ps, PsF') forms a convex set.

4.2 An upper bound on the performance of a single-error-type entanglement
generation protocol

We first introduce a protocol equivalent to the single-error-type entanglement generation proto-
col. Steps (i) and (ii) indicate that, when the pulse arrives at Bob, the state of the total system
AbE is written in the form of

) abm = Y V/Gld)alu)slvs) e (4.8)

j=0,1
with 0 < g0 <1,q9 +¢ =1, and
[(u|uo) '~ = [(vr]wo)[" > 0. (4.9)

Let us define a phase flip channel A4 on qubit A by

Aa(p) = fp+ (1= floztpes (4.10)
with -
foe 1+|(;’1|U0>| _ 1+|<U12|U0>|T (4.11)
and 64 := 10)(0]a4 — |1)(1]4. From Egs. (4.8), (4.10), and (4.11), we have
Tr(|v)(¥lave] = Aa(|$") (W' ab), (4.12)
where

W= > @ ) alugde (4.13)

j=0,1

with 2¢ := arg[(vi|vg)]. The effect of the lossy channel is thus equivalently described as prepa-
ration of [¢)’) 45 followed by A4. Since any operation of Bob commutes with A 4, the protocol is
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equivalent to the following sequence (Fig. 4.2): (1) System Ab is prepared in [¢)') 4p; (2) Bob’s
successful measurement leaves system AB in a state /’)?B; (3) A4 is applied on qubit A.

In what follows, according to the equivalent protocol of Fig. 4.2, we show that, for fixed T
and |(u1|ug)|, the performance (Ps, PsF') of an arbitrary protocol must be in the triangle with
the apexes,

Xo :=(0,0),
X1 = <1 ~ Lol (1 — s o)) = sz‘mw) | o
Xy = (1,1/2).

a) |go — qi1| = 1 or [(ui|up)| = 1. In these cases, from Eq. (4.13), |[¢')ap is a product state
between system A and b. This implies that %,fB is a separable state, which means Fj < 1/2.
From Eq. (4.6), F' = 1/2. Thus, in this case, the performance (Ps, PsF) of protocols must be on
the segment XyXo.

b) |go — q1| < 1 and |(ui|ug)| < 1. As stated in Step (iv), whenever Bob declares success
outcome k, the state %I?B of their qubits satisfies

(UH|FE 1) = (WA (5 D)) = 0 (4.15)

with (W) ap = U7 © O7110%)ap = (d)alyt) s £ ak) alyd)n)/v2: [9%)ap 1= (01)an +
110)48)/v2, #1)a = UM|j)a, and |yl)p = UP'|j)s (j = 0,1). Since piP is positive and

60WTa), > 4

Quantum
operation

Fig. 4.2. An imaginary protocol equivalent to the real protocol in Fig. 1. [pYa =
ijo,l \/cheiej +i(_1)J‘P|j>A. Channel @ — b becomes ideal at the expense of the application of a phase-flip
channel A 4.
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0 < f <1, Eq. (4.15) indicates
PPV ap =0, (4.16)

\ARBe W) ap =0, (4.17)

for both . Note that Eq. (4.16) implies
1—a

. l—l-ak _ _ by . by
0B = @, (@) |aB + g\q’ﬁjﬂ@é |aB + 5’”‘1’2 WP s,

(4.18)

| PN aB + ——

where |05 45 1= UM @ UPT|0F) ap = (120 alyQ) 5 £ |21 alyl) 8)/v2, and the positivity of j{B
implies
a4 |bg|* < 1. (4.19)

Note that 0 < a < 1 is satisfied by the choice of the unitary operation U,? o U, ,f in Step (iv).
Adding and subtracting Egs. (4.16) and (4.17), we obtain

[ AB~A
AB’372>A’Z/1£>B = Pk U \$k>A\Z/k>
= /s Blap) alyl) B = /PP k) alyi) s = 0. (4.20)

Since pitP # 0, the four states, |z0) alyt) s, 6220 alyt) B, [2}) alyl) B, and 62|z} 4lyL) 5, must
be linearly dependent, which only happens when {|z7)4}j—01 is a set of eigenvectors of 62
Combining this fact with Eq. (4.18), we obtain

AAB] i4 + Zk&?

R (4.21)

ﬁk} = TI'B[

where zj, := £Re(bg).
The fidelity F}, of the final state is given by F, = (@F|71B|0F) = (@) |A4(pB)|@}F).
Since {]wk>A}] 01 is an eigenbasis of 62, we have 62|®}") = £|®, ), which means [}, =
F@T 18819 T) + (1= £)(@) |pB| @) ). From Eqs. (4.18) and (4.11), the fidelity Fy is rewritten

as

Fie= (14 (o1 o) o). (4.22)

Combining this equation, Eq. (4.19), and the definition of zx, we have
(2Fk -1

[(v1vo)|

Let us consider the success probability of the protocol. Suppose that Bob’s failure measure-

ment returns a state [)?B with probability 1 — P;. Since Alice does nothing until the end of
Bob’s generalized measurement, Alice’s averaged density operator is unchanged through the

2
) +2E <1 (4.23)

measurement, i.e.,

u?““ = Pypj + (1= Po)gs?, (4.24)
where /4 := Try[|¢)/) (¢ 4], p2 = (X prpi)/Ps and g := Trplp;AP). Eq. (4.13) indicates
that 1’4 is in the form of

14 4+ 2067 + yo6; + 2007

P = (4.25)

2 )
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where 62 := |0)(1]4 + 11)(0] 4, &, 54 = —i]0) (1|4 4 4|1)(0] 4, and zg, yo and zo satisfy

20 =qo — q1,
(4.26)
@+ Yo = 4qoq| (s |uo)|* = (1 — 23)|(u uo) >
On the other hand, p2 is written as
?7;“
where zs := (D) przr)/Ps, and it satisfies
2F — 17
(1) 29
[{vi]vo)]
from Eq. (4.23) and the convexity of function 22. Note that this inequality implies
1T
2 2
where we used Eq. (4.9). We also decompose ,5‘]? as
A ~A ~A ~ A
+ x50, +yro,; + 20
ph = R (4.30)
with real numbers ¢, y¢, 2y satisfying
x?c + yfc + zj% <1. (4.31)

From Eq. (4.24), we have

zo = (1 — Ps)xy,
Yo = (1 = Ps)yy, (4.32)
20 = Pszs + (1 — Ps)Zf.

From these equations, Eq. (4.26) and Eq. (4.31), we obtain
g(Ps) = PZ(1 = 23) = 2Ps(1 — 2025) + (1 = [(ur]uo) ) (1 — 25) = 0, (4.33)

or equivalently, we have
2
[(1 = [ualuo)[*)z0 — Pszs]

A [ p L o) _ 1 [{ulug)?
<[l (1— )] 0>|]<PS 1_|<u1|u0>|m> (ps 1+|<u1|u0>|m>. (434

Since 22 < 1 and 0 < |(u1|ug)| < 1, we have

9(1 = [urfuo)?) = — (1 [{ur|uo)*) [(1 = 22) [{urluo)|® + (20 — 2)*] <0, (4.35)

and

9(1) = = (1 = 25) urluo)|? — (20 — 25)* < 0, (4.36)
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which mean g(Ps) < 0 for Py > 1 — |[(u1|uo)|? because g(P;) is linear or convex. Thus, Eq. (4.33)
implies
Py < 1 — |{u1|ug)”. (4.37)

To satisfy inequality (4.34), the right-hand side of the inequality should be nonnegative, which
occurs only when

1 — |(ur|uo)|?
P, < (4.38)
1+ [{ug|ug)|y/1 — 22
under the condition of Eq. (4.37). Combining Eq. (4.28), we have
1— 2
P, < ‘<“1‘“°ZL —, (4.39)
1 o) ()
which can be rewritten as
1 \(UH)OH) 1 oy | (v1|vo)]
PF <= (1— 00 b g ug) [2) NP0 4.40
2< oy ) T T2~ Heanlwod Dy iy (4.40)
1 1-2T 1 1—2T
=5 (1= Nutfuo)l 75 ) P+ S(1 = [{uua o) )| fuo) |7 (4.41)

where we used Eq. (4.9).
Since Eq. (4.6), Eq. (4.29), and Eq. (4.41) must be satisfied at the same time, the performance
(Ps, PsF') of an arbitrary protocol must be in the triangle with the apexes Xy, X1, and

Xai= (1 a5 0 = ). (4.42)

which is included in the triangle XoX;X5. This completes the proof.

4.3 Simulatability of an arbitrary protocol via symmetric protocols

Here we show that the performance of an arbitrary protocol, which is in the triangle defined
by Eq. (4.14) with fixed T and |{uq|ug)|, is simulatable by utilizing the symmetric protocol in
Sec. 3.1. In the protocol, Alice starts with preparing system A in a symmetric state |¢)4 =
(0Y4 + [1)4)/+/2, and, upon receiving pulses from Alice, Bob carries out a measurement that
is composed of a simple combination of linear optical elements and photon-number-resolving
detectors. With a proper choice of the intensity of pulse a, the symmetric protocol can achieve
(Ps, PsF') with

P, =1—u,
Fe—y

for any u with 0 < u <1 (see Sec. 3.1). This indicates that the symmetric protocol can achieve
performances (Ps, PsF') = X by choosing u = 1, and (Ps, PsF') = X1 by choosing u = [{u1|ug)|.
On the other hand, the performance (Ps, PsF') = X5 is also achievable by a trivial protocol in
which Alice and Bob prepare their memories in state |00) 45 and declare success all the time.
The achievability of points Xy, X1, and X5 indicates that all the points in the triangle XX X5
are achievable by mixing. Since this fact holds for any |(u1|uo)|, we conclude that, for given T,
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the performance of an arbitrary protocol is simulatable by combining symmetric protocols and
the trivial protocol.

4.4 Optimal performance of single-error-type entanglement generation

Here we calculate the optimal performance of the mixture of arbitrary single-error-type entan-
glement generation protocols for given T. As shown in the preceding section, for any 7', the
performance (Ps, PsF') of an arbitrary protocol is achievable by mixing symmetric protocols and
the trivial protocol. Since the performance achieved by a symmetric protocol or the trivial
protocol can be described by a point (Ps, PsF') = (Ps, PsF¥¥Y™(Py)) with

1+ (1-P)T

Fsym( Ps) : 5

L (0< P, <1), (4.44)

the performance of the mixture of arbitrary protocols must be in the convex hull of the region
S ={(Fs,PsF)|0< P; <1, 1/2 < F < F¥™(Fs)}. In what follows, we show that the convex
hull, Conv(S), is given by the region Cg := {(Ps, PsF) | 0 < P, <1, 1/2 < F < FPY(P,)} with
F°PY(Py) defined by

1-T
1+(1-P) T p.< T
FPY(P,) := 2 ’ oy (Pe < =) (4.45)
1 1-Ps T 1-2T T T
2 + 2Ps 1-2T < 1—T> ’ (PS > l—T)'

Note that Ps > T'/(1—T) holds only when T" < 1/2. The tight upper bound F°P*(P;) is depicted
in Fig. 4.3.
Let us proceed to the proof of Cs = Conv(S). From Eq. (4.44), we have

dPsF™(Ps) 1 P 1-27
—_— = —=— |1 1-—|(1-P 4.4
P, 2" 7 )= P) T (4.46)
2P, F™(P,) 11-T (P, -
s 2( ) L S _o)a-p)T. (4.47)
dP; 2 T T
The latter equation indicates
d2P Fsym( p
8—2(5) >0, (Ps > 2T),
dPs (4.48)
d2P Fsym(p :
5—2(5) <0, (pS < 2T).
dP;

a) T > 1/2. In this case, FP*(P;) = F™(P), and hence § = Cs. In addition, Eq. (4.48)
indicates that PsF*™(Ps) is concave for 0 < P, < 1. These facts imply that Conv(S) is
equivalent to S, namely, to Cs.

b) T < 1/2. Let P be P} :=T/(1—T). The proof begins with noting the following facts: (i)
FoPY(Py) = FY™(Py) for 0 < Py < P (i) FOPY(PF) = F™(PY); (iii) FoPY(1) = F™(1); (iv)

P,FoPY(Py) and (dPsF°PY(Ps))/(dPs) are continuous at Ps = P; (v)

d2 P, F°Pt(P,) {< 0, (0<Ps< Py, (4.49)

dp? =0, (Pr<P);
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Fig. 4.3. The optimal performances of single-error-type entanglement generation for 10 < [ < 100 km
at intervals of 10 km, where we assume T = e /! and [y = 25 km (corresponding to ~ 0.17 dB/km
attenuation).

(vi) FOPY(Py) > FYm(P;) for P* < P; < 1. Facts (i)-(v) are easily confirmed from Eqs. (4.44)-
(4.45). Fact (vi) is proven by facts (ii)-(iii),
dP,FoPY(PY)  dP,Fom(Py)
dPs N dPs ’
and by Eqs. (4.48)-(4.49). Facts (iv)-(v) show that Cs is convex. Facts (i)-(iii) and (vi) imply
S C Cs. From facts (i)-(v), we have Cs C Conv(S). Therefore, we conclude Conv(S) = Cs.

(4.50)

4.5 Summary

In conclusion, we have provided the tight upper bound on the performances of protocols that
generate entanglement with only one type of error by transmitting pulses in coherent states
through a lossy channel. As represented by Eq. (4.45), the tight upper bound is stated in terms
of the success probability Ps and the average singlet fraction F' of generated entanglement, and
is determined only by the transmittance T' of the channel. In addition, we have shown that
the upper bound is achievable without large-scale quantum operations, namely by utilizing the
symmetric protocol composed of linear optical elements and photon-number-resolving detectors.

The arts enabling us to derive such a general bound can be summarized as follows. The proof
begins with replacing the real protocol in Fig. 4.1 by an equivalent (virtual) protocol in Fig. 4.2.
Thanks to the replacement, the effect of the optical loss in the practical channel is reduced
to a local phase-flip channel acting on Alice’s memory, and the quality of final entanglement
is bounded by the form of the local density operator of the memory A fed to the phase-flip
channel (see Egs. (4.21) and (4.23)). Since the local density operator can only be altered by Bob
remotely at the expense of a failure probability, we are led to Eq. (4.24) relating the change in
Alice’s local density operator and the success probability. This relation enables us to derive a
trade-off relation Eq. (4.41) between the success probability Ps and the average singlet fraction
F, which leads to the tight upper bound of arbitrary protocols.

Throughout this chapter, we have focused on the entanglement generation protocols with
only one type of error, based on the fact that the known simple distillation protocols work more
efficiently against such a restricted type of errors. This has allowed us to treat the entanglement
generation protocols separately from distillation protocols. If we look into the properties of the
distillation protocols in more detail, there is a possibility that accepting multiple types of errors
for higher success probability in the generation protocol could lead to a better result if there
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exists a distillation protocol with a less penalty on the multiple types of errors. Pursuing such
a possibility is important for implementation of quantum repeaters, and is also interesting in
connection to the fundamental question of what is the best way of distributing entanglement
against an optical loss in the channel. We expect that the arts introduced here may be also
useful in solving such general problems in the search of good entanglement generation protocols.
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Remote nondestructive parity measurement

As shown in Chapters 3 and 4, the two-probe protocol (or the symmetric protocol) is an efficient,
feasible, and fundamental tool to generate entanglement between distant quantum memories. In
this chapter, we open up the possibility of more striking applications of the two-probe protocol.
This chapter starts with showing that the two-probe protocol actually corresponds to the non-
destructive parity measurement on qubits AB. The nondestructive measurement is defined by
Kraus operators

PP =|®T) (@7 |ap + 27} |ap = [00)(00]4p + [11)(11] 4,

5AB gt —\(P— (5-1)
Py 7 =[N (O [ap 4+ |87 ) (T [ap = [01)(01]ap + [10)(10]ap-

Since the protocol allows us to implement the nondestructive parity measurement even if the
qubits AB are distant, we call it remote nondestructive parity measurement (RNPM) protocol.
We further show that the RNPM protocol can act as a single module for accomplishing quantum
information processing.

5.1 Apparatuses for RNPM protocol

First of all, we summarize physical systems and operations required for the implementation of
the RNPM protocol. We assign capital letters to quantum memories, and small letters to optical
pulses. The number states of optical pulses are denoted by small letters, e.g., |m),, whereas the
coherent states are denoted by the Greek alphabets, e.g., |a),.

The quantum memory A used here is assumed to interact with an optical pulse a in coherent
state |a), with amplitude a > 0 according to

U'“(0) ala)a = 10) alae’®’?)q,

A . (5.2)
U5 [1)ala)a = [1) alae™/)a,

where ﬁé““ is a unitary operator, the parameter 6 is determined by the strength of the interaction
(e.g. 8 ~ 0.01 [40]). Note that this unitary operation is achievable by applying a phase shifter
after the unitary operation of Eq. (2.159). We assume that the quantum memory allows us to
use the following unitary operations:

Z4 = 0)(0[4 — |1)(1]4,
HA = |4+)(0]4 + | =) (1], (5.3)

24 = e 2 = 72000 4 + /2 (1) (1 4,

67
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Fig. 5.1. RNPM protocol with complete photon-number-resolving detectors. The operation is represented
by Kraus operators {Qg‘fm}m,n:o’l,,,,. If photon-number-resolving detectors announce m > 0 (n > 0),

this operation acts as the nondestructive parity measurement ]5\1,43 (]S(fB ). If the detectors inform of
m = n = 0, the gate does not work, but the system AB receives no disturbance, i.e. Qa 00 O 148,

where |4)4 1= (]0)4 £ |1)4)/v2. We also suppose that Z-basis measurement on the quantum
memory is also implementable.

Optical pulses can be transmitted from mode a to mode b through a lossy channel described
by

N&a), = VT )| V1 = Ta)e, (5.4)

where ]\7 a=b is an isometry, 0 < T < 1 represents the transmittance of the channel, and system
e is the environment. We use beam splitter B“b_m Y defined by

B 10) 018 = | — VTa+ VI = TB)w|VTa+ V1 —TAB)y (5.5)

for coherent states |a), and |3),. By utilizing a beam splitter and a pulse in a coherent state,
we can achieve a displacement operation Dgﬁb, described by

DEY|B), = e | 4 gy, (5.6)

as shown in Sec. 2.5.1.2. We also use a photon detector in Sec. 2.5.1.4 to make the projective
measurement on the number states {|m)q}m=01,...-

5.2 RNPM protocol

In Section 5.2.1, we consider the RNPM protocol using ideal optical channels and photon detec-
tors. In practice, the optical channel are lossy and photon detectors are imperfect, and thus, in
Section 5.2.2, we also consider the effect of the imperfections on the RNPM.

5.2.1 RNPM protocol with ideal channels

Throughout Section 5.2.1, we assume that the used optical channels are ideal. Section 5.2.1.1
gives the working principle of the RNPM protocol with perfect detectors. In Sec. 5.2.1.2, we
consider cases where photon detectors can count up to N(> 0). In Appendix 1, we also consider
cases where the detectors have dark counts.
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5.2.1.1 RNPM protocol with complete photon-number-resolving detector

As the first step, we show that the nondestructive parity measurement {Pq), P\p} is achievable by
RNPM protocol (Fig. 5.1) using interaction Ué““, the ideal photon-number-resolving detectors,
and beam splitters. The RNPM protocol starts with making measurement described by Kraus
operators,

VR = almlo (0 24}y 20y VO3 O )al s, (57)

o,mn

where a > 0, and V% and ¢(a) are defined as

rab b—b ab—ab
Vo D—Tfoz Cos(O/Z)Bl/; ’ (58)
d(a) := arglae™2|ae/?) = o®sin 0. (5.9)

Kraus operator M ffm corresponds to an event where the ideal photon-number-resolving detector

on mode a (on mode b) announces the arrival of m photons (n photons). By noting relations

Vlae?) | ae™?),, = e )[0),|B(a))p,
Veblae®/?), | ae™?/2), = | — B(a))a|0)s,
Ve lae™ /%), lae'’?), = [B(a))a|0)s,

()

V2 e 0/2) | ae™/2), = 7@ |0) ] — B())s,

(5.10)

with
B(a) == ivV2asin(6/2), (5.11)

we can show that measurement M;‘fm acts on qubits AB as

Il
(=%}

M5 100 4
MZ5 101)a

)AB = 6mo(n|B(a))|00) ap,

)AB
MAB 10 45

)AB

no(=1)"(m|B())|01) a5,
no{m|B(a))[10) 5,
mo(—1)"(n[B())[11) 4B

I
(=%}

(5.12)

I
(=7}

o,mn

AB
amn‘ll A

I
(=%}

This implies

nlB(e))]
A _ ) mlA)
) (018 () 147

0,

0){00]ap + (=1)"[11)(11]a5],

0
[(=1)"]01){01] a5 + [10){10] 4],
AB

m=0,n>0),
>0,n =0),
m>0,n =0) (5.13)
m=n =0),

m > 0,n > 0).

o~ o~ o~ o~

the net Kraus operator (25 )m+”M&4,§m is

By applying (Z5)™" after the measurement M43

o mn’
shown to be

Qa - — (ZB)m+nMAB

a,mn — <0’ﬁ(0&)>1AB, (514)
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Therefore, the RNPM protocol in Fig. 5.1 implements the nondestructive parity measurement
with success probability 1 — r(a) with

r(a) — ‘<a67i9/2‘a619/2>’ — |<0|5(a)>|2 — 672a251n2(9/2) — efa2(1fcosa)' (515)

Note that, even if the measurement outcome is m +n = 0, the system AB receives no distur-
bance, implying that one can freely repeat this measurement until getting a success event (m,n)

satisfying m+mn > 0. We also note that, if we use coherent states with a@ — oo, Qﬁfnn is reduced
to
sap P8P (m=0,n>0), (5.16)
oo P&,“B, (m > 0,n=0), '

which implies that the nondestructive parity measurement {PﬁB ) p\fB } is achievable without
failure.

5.2.1.2 RNPM protocol with photon detector with a threshold

Let us consider how the RNPM protocol works in the case where the photon detectors can count
up to N(> 0) photons (see Fig. 5.2). More precisely, the detector gives outcome m(< N) if the
number of arrival photons is m(< N), but it returns outcome N + 1 if the number of arrival
photons exceeds N. Note that the detector with N = 1 is called the single-photon detector, and
the detector with NV = 0 is called the threshold detector.

Let us see the equivalence of Fig. 5.2, namely the fact that the measurement with outcome
(m,n) in Fig. 5.2 is equivalent to the ideal nondestructive parity measurement followed by a

phase-flip channel Amzr" )1 where

Zm€{2n\n€Z,2n2N+1} ‘(m‘ﬁ(a)HQ
te(N,a) := = 5 , (5.17)
Y om=n+11(m[B())]
t(N,a) :=max{t.(N,a), 1 —t.(N,a)}, (5.18)
R 1+r, 1-—7r
A (p) = 5 P+ ZpZ, (5.19)
I, (0<k<N),
Agt(Nu)—l = B (5.20)
AgyyNay-1, (E=N+1).
To show the equivalence, we first note
Zk— (ZB)kMAB AAB[(Z )kMé?gk]T _ A<1>ABPAABP£‘B
> [(kIB(a)) 2
B B AB B
ZNa O(N+1) (Zk>N a,0k AB (M 0k>T) ZNaO(N+1) _ AP (PABjAB pAB)
= T (a0t o)
N 5 A 5 ~ .
Zk:l(ZB)kMAB AB[(ZB)kM(f,EO]T o PAB AABPAB
=iy p L]

S e [(kIB()))?
Zﬁa (N+1)0 (Zk>N koﬁAB(Mé‘fo)T) Zﬁ,a,(N+1)0

2 ks [(KEIB(@))?

= AzB;(N a)— 1(P AABPAB)
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A B
PN,a/,mn ' =

Fig. 5.2. RNPM protocol with photon detectors with threshold N. This operation is denoted as quan-

tum operations {P;f}g mn bmn=0,....N+1- {Qﬁi’mn}m’nzo ,,,,, ~+1 works as the ideal nondestructive parity

measurement for m + n > 0 and as the identity channel for m +n = 0.

where Zn o mn is defined as

mrn (0 <m+n<N),
(m+n=N+1, t.(N,a) > 1/2), (5.22)
, (m4+n=N+1, t.(N,a) < 1/2).

ZN,a,mn =

N\ N\

Eq. (5.21) indicates that the measurement transforms an input state A8 into unnormalized
states according to

;

bt [ (BIB(a) ) PP p AP PR,

( ) (m
(%MWWMMMWWW%( )

45 Progn ) (Tily [(kIB(@)[2) P pA7 PP, A 0 <m<N.n=0), 593
g (55 o (KB oy (PRFAAPEIE) (m=N 1 1n=0), 2
[(018()) 227, (m=n=0),

0, (m > 0,n > 0).

With Kraus operators
|(n|B(a))| P”, (m=0,0<n<N),
Ve n [(kIB@)PPLE, (m =00 =N +1)
Onan o ) [ (mIB@)IPGE, (0<m<Nn=0), (5.24)
) S [RIB@)PPEE, (m= N +1,n =0),
[(01B(a)) |47, (m=n=0),
0, (m > 0,n > 0),

we can summarize the working principle of the RNPM protocol as in Fig. 5.2. Therefore, the
RNPM protocol based on photon detectors with threshold N works as the ideal channel for out-
come m+n = 0 occurring with probability [(0|3(a))|? = r(a), as the ideal nondestructive parity
measurement for outcomes 0 < m +n < N occurring with probability Z]kV:1 |(k|B(c))|?, and
as the ideal nondestructive parity measurement with phase flip channel A2t( Na)— , for outcomes

m+n = N + 1 occurring with probability >, v [(k|3())|*. Hence, allowing the mixture of a
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1.0
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06 N=3
Py n N=2
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Fig. 5.3. Ps n(a) := Zszl |(k|B(a))|? with N =1,2...,7 for Ps (a) =1—17(a).

phase-flip channel, we can regard all the outcomes (m,n) with m+n > 0 as the success events of
the RNPM protocol. Thus, the success probability of this protocol is 1 — [(0|3(a))]? = 1 —r(c).

However, in the RNPM protocol with photon detectors with N > 0, one can regard events
satisfying m +n = N + 1 as failure events, in order to prevent the mixture of phase flip channel
AQB;(N’Q)_I. In this case, the success probability is Py y(a) := SIn_ | [(k[B(a))>. We describe
the relation between this success probability and the ideal one P () in Fig. 5.3. This figure
suggests that Py y(a) with N 2 5 are comparable with P, («). Thus, the power of the
RNPM protocol with detectors with moderate threshold N = 5 is approximately equal to the
ideal RNPM protocol. In addition, Fig. 5.3 suggests that the penalty of discarding events with
m+n=N+1, ie., Pso(a) — Ps y(a), is very small for small . From these facts, there will

be cases where it is better to consider events satisfying m +n = N + 1 to be failure.

5.2.2 Realistic RNPM protocol

In the previous section, we have shown that the nondestructive parity measurement is imple-
mentable by ideal optical channels, beam splitters, and photon detectors. Actually, the loss of
photons is inevitably caused by practical devices, e.g., optical channels, quantum memories, and
photon detectors. Here we clarify the effect of such losses for the RNPM protocol, which is based
on several equivalences on quantum operations. We begin with showing the equivalences.

5.2.2.1 A channel equivalent to the discard of a pulse entangled with qubit-state

We consider the effect of the discard of pulse a entangled with quantum memory A by interaction
Ug'e (Fig. 5.4). More precisely, we seek an effect equivalent to Up'%|a), followed by the partial
trace over pulse a. We note
N\ U i 1)76/2y (i (~1¥6/2
) (kla@la)(ale == [5) (k4 @ [ae"D2)(a la
T
= (el V2|0 0002y ) (k|

— |<Oz€‘( k9/2|a Z(—1)79/2>|ezarg aei<’1)k0/2|aei(’l)j9/2>|j> <k3|A

= Aoy (22 (o9 (Rl A(Z2 4 ))T). (5.25)

Since the map consisting of [7(;4“\@>a and the partial trace over system a are linear, Eq. (5.25)
indicates the equivalence in Fig. 5.4.
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A

Fig. 5.4. Equlvalence between the discard of a pulse entangled with qubit-state and the combination of

rotation Z (@) and phase-flip channel AA( )

4
Ia> I«F @)

l_I

Fﬂ)

H W

Fig. 5.5. Equivalence between the loss for a pulse entangled with qubit-state and the unitary operation
Ué““ followed by rotation Z f S(VTTa) and phase-flip channel A:‘( VT Ta)"

5.2.2.2 A channel equivalent to the loss for a pulse entangled with qubit-state

We consider the effect of the loss occurring on the morrow of the interaction Uy (Fig. 5.5). We
begin with showing
. uge i(=1)70/2\ /- _i(—1)k6/2
1j ><k|A ® |a)(ala = 1) (kla ® |ae ) ae o

M 1) © [VTae 02 (VTac D7), @ |VT— Tae'- ORI Tac 0",
— T3U (1) (k|4 @ [VTa) (VTaly @ VT = Ta)(VT = Tal) (T (T3, (5.26)

where T represents the net transmittance of the optical channel. This shows the first equivalence
in Fig. 5.5. The second equivalence in Fig. 5.5 is shown from the equivalence in Fig. 5.4.

5.2.2.3 A channel equivalent to the loss in photon detectors

Practical detectors do not necessarily announce the arrival of photons even if the detectors
actually receive photons, namely their quantum efficiencies 1 can be non-unity. Such a practical
detector can be regarded as an ideal detector following a lossy optical channel with transmittance
7 (see Fig. 2.8 (b)). Because the photon detectors are used after unitary operation Vwab in the
RNPM protocol, for clarifying the imperfection coming from the non-unity quantum efficiency,
it is sufficient to consider the effect of the lossy channels after unitary operation Vy‘lb (Fig. 5.6).
Here we show that the effect of the lossy channels can be regarded as lossy channels before
unitary operation V\‘}llv
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Fig. 5.6. Equivalence between unitary operator V.2 followed by lossy channels J\Af;;%“ ® N2~ and lossy

channels N,‘;_*“ ® Ng_)b followed by unitary operator V\‘}QW

By comparing process

|[@)alB)o 1, il 7O (—a 4 B)/V2)al (@ + B)/V2 = V2ycos(6/2)), (5.27)

Ng].—}a®qu;—>b ;

1In1[7'ycos(9/2)(a*+,3*)}’f(_a+I8)/\f> |f(a—|—6 /\[— \/7"}/COS 9/2
@ V1 =n(—a+B)/V2)e,|\/1T—nla+B)/vV2—/2(1 —n)ycos(0/2))e, (5.28)

and process

a—)a vb—b

@)alB)s " | el BN/ a)er VT~ 1), (5.29)
Vab

fw eiIrn[—’Ycos(0/2)77(a*+,8*)]|\/ﬁ(_a + /8)/\/§>a|\/ﬁ(oz 4 5)/\[ _ /*277,7 cos(6/2)),
@ V1 =na)e,[\/1=nB)e (5.30)
V8182

VI @il eos@/2)(@ 8| /p(— o+ B) /V2)al i1+ B) V2 — /21y cos(8/2)s

@ [V1—=n(=a+B)/V2)e, V1= nla+ B)/V2 = /2(1 = n)ycos(0/2))e,
(5.31)

we see that these processes are equivalent. Even if one adds the partial trace over system ejes
to these processes, the total operations are equivalent. On the other hand, the partial trace
over system ejeg following the process of Eq. (5.31) is equivalent to one following the process of
Eq. (5.30), because the partial trace over system ejes is invariant under unitary operator V\e/ll%w
on system ejes. Therefore, the equivalence in Fig. 5.6 holds.

5.2.2.4 Realistic RNPM protocol

Considering the effect of photon losses, we reconstruct nondestructive parity measurement as
in Fig. 5.7, which is denoted by the measurement {PTA TN mn}m,nZO,---,NH- In the figure,
T4 (Tp) represents the net transmittance of the optical channel @ — c1 (b — ¢2), and 7 is
the quantum efficiency of the photon detector. The first equivalence in Fig. 5.7 is proved by
equivalences of Fig. 5.5 and Fig. 5.6, by commutability of A, and 25 for any r, £, and by equation

ArAy = Ay (5.32)

for any r and s. The second and the third equivalences in Fig. 5.7 are shown from Fig. 5.2. Hence,

the realistic nondestructive parity measurement PT is effectively the same as the non-

N ‘A, T,m,N,a,mn 0
B
destructive parity measurement Py ., followed by the phase flip channel AT AT Tama) ®

B This implies that a phase flip channel is added to the nondestructive parity

r(v/(1=Tgn)/(Ten)a)’
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la/VTan) Ia/vng )
a

A
) la)
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Fig. 5.7. Realistic RNPM protocol {PzéfTB,n,N,a,mn}mm:O,m,NH- This operation is equiva-
lent to nondestructive parity measurement {Pg% 1. .—0.. n41 followed by phase-flip channels

AA ® AB )
r(y/(1=Tan)/(Tan)c) r(y/(1=Tn)/(Ten)a)

measurement P]efx,mn as the penalty of the photon losses. Moreover, the phase error rates show
a trade-off relation to the success probability through amplitude « of the used pulses. In fact,
the phase error rates [1 — r(\/(1 — Txn)/(Txn)a)]/2 (X = A, B) and the success probability

1 — r(«) monotonically increase with a. Therefore, the realistic RNPM protocol performs as

RNPM with a trade-off between the success probability and the phase error rates.

5.2.2.5 Realistic RNPM protocol on distant quantum memories

< - . . AB
Here we show that the realistic nondestructive parity measurement {PTA7TBy777 N, a,mn}mm:O,m, N+1

is applicable even if quantum memories AB are distant. Suppose that the memory A (B) is held
by Alice (Bob), and they locate over distance Lg. Alice (Bob) is connected to a station C' by an
optical channel a; — ¢; with length 14 (b — co with length Lo —14), where 0 < 14 < Ly. In
this case, we should assume

—la/La
Ty —reta/Lan,

Tg :Te_(LO_lA)/Latt, (5.33)
where 7 is the transmittance of the local optical channel, and L. is the attenuation length
of the used channels. For accomplishing the realistic nondestructive parity measurement, Alice
(Bob) should send the local oscillators (LOs) to station C' through the same channel a; — ¢;
(b1 — c2) with the signal pulses so that the party in station C' can offset unwished phase shifts
occurring in the channel. By these modifications, distant parties, Alice and Bob, can achieve

the realistic nondestructive parity measurement {PffTBm, N,a,mn}mm:o,..., ~N+1 with Eq. (5.33).

5.3 Applications of RNPM protocol

In this section, we show several striking applications of the RNPM protocol. In particular, the
RNPM protocol enables parity check measurement, Bell measurement, isometry C”ZqB |+) 4, and
CZ gate C’?B. These operations play the primary role for implementing long-distance quantum
communication and quantum computation.
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Fig. 5.8. Ideal parity check measurement {R,?B*B}kzo,l, which is CNOT gate followed by Z-basis mea-
surement on the target qubit. The measurement can be also executed by using the ideal nondestructive

parity measurement {Qoo lj} G=0,1,...

4 4 A
_— - m — e m
o— = =0
e P T4, To, 0, N if - PN,a,ij
B B B_| AT VG

Fig. 5.9. Realistic parity check measurement {R?ﬁ?BBin’Nyan}i7j=07,__,N-i,-l-

5.3.1 Parity check measurement

The parity check measurement {Rk} k—=0,1 was introduced in Sec. 2.4. The measurement is CNOT
gate followed by Z-basis measurement {|k) }x—0,1 on the target qubit (see Fig. 5.8), and the Kraus
operators are

R§P7P =4 (0% = 10)pan(00] + [1) pap(11] = [+)Ba(®F| + | =) pan(®7,

B (5.34)
R{MP7E =4 (11O = 10)pap (10| + [1) pap(01] = [+) pap(¥T| — |=) pan(¥~],
where CA')C;T represents CNOT gate defined by
C¢T = |0)(0|c @ 1T + 1) (1| @ XT. (5.35)

As seen in Sec. 2.4, the measurement is essential for implementing the recurrence method. In
addition, the measurement is also utilized as a fusion gate of cluster states [74, 75]. In this
section, we show that the parity check measurement is implementable by the RNPM protocol.

5.83.1.1 Ideal parity check measurement

We begin with showing that the parity check measurement is achievable by utilizing the ideal
nondestructive parity measurement {Qégj}i,j:0,17.,_. From Eq. (5.16) and

Al A1) 45 =5 (005 % (1)"15) T3 1),
(5.36)
Al A =5 (1) £ (1 o)) T £
we have
(28 4 (| HAQAD, = ﬁ<|+>BAB<<I>+|+|—>BAB<<I>|>=¢15R5‘B%B, (5.37)
2Py ) BA0A%, =TV (1) st — | ypanu ) = TR R (5ay)

V2
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for 4,7 > 0. This fact implies the equivalence in Fig. 5.8, where

k(ij) := {(1)7

Hence we conclude that the parity check measurement {Rk}k:m is achievable by using the
nondestructive parity measurement {Q?o%j}i,jio,l,m'

(i=0,j5>0),

(i >0, j=0). (5.39)

5.3.1.2 Realistic parity check measurement

Here we consider a parity check measurement based on the realistic RNPM protocol. The realis-
tic parity measurement is defined as in Fig. 5.9, and it is denoted by {RTA Ty, N@,ij}iy]':Orn:NJrl‘
In order to clarify the property of the realistic parity check measurement, we show several equiva-
lences in Fig. 5.9. The first equivalence in the figure is shown from Fig. 5.7. The last arrow in the
figure indicates the equivalence holding only when i+ 5 > 0, which is shown from the equivalence
in Fig. A2.1 (b). The last figure in Fig. 5.9 and Fig. 5.8 imply that, for i + j > 0, the realistic

parity check measurement RAB 5

Ty T Naij 18 the same as the ideal parity check Rk(m followed by

" B i+j,B
phase-flip channel Ar(\/(17TAn)/(TA77)a)r(\/(1fTBn)/(TBn)a)A2t(N’a)71 .

RNPM protocol, we can perform the parity check measurement with a phase flip channel. The
failure outcome (i + j = 0) of the parity check measurement {R%?:TB7777N7a72-j}i,j:0,,,_7]v+1 occurs
with probability r(a).

Therefore, by the realistic

5.3.2 Bell measurement
As represented in Sec. 2.1, Bell measurement is defined by Kraus operators
Bit? == ap(®7],
By = ap (¥,
Biy” = ap(®7|,

BB .= — 1p(U|.

(5.40)

The measurement is essential for executing the quantum teleportation protocol and the entan-
glement swapping. In this section, we show that the Bell measurement is implementable by the
RNPM protocol.

5.3.2.1 Ideal Bell measurement

Here we start with noting that Bell measurement is achievable by the ideal parity check mea-
surement {R?B_)B }e=0,1 and X-basis measurement on system B. This fact is easily confirmed
by

BO|HPRGP7P = 4p(@*] = B,
B<0|HBR143_>B AB<‘I’+\ - 301 ) 541
B< | 0 AB< |— 10 ’
(UHPRPE = — 4 p(0~| = B{}P

Since the measurement {RfBHB }k=0,1 is achievable by ideal nondestructive parity measure-

ment {Qfo%j}i,j:(),l,...a

{Qfo]?ij}i,jzm,....

the ideal Bell measurement {Blk}k,l:071,...

is also achievable by utilizing

This equivalence is described in Fig. 5.10.
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I:.k

B/k =

IDJ

Fig. 5.10. Ideal Bell measurement {Bﬁ‘cB }ii=0,1. This measurement can be also executed by the ideal
nondestructive parity measurement {Qfo%j bij=01,...-

A A 4

B, m, nNe | o= Rr.1 nNa,ij = Q N,ail BN,(Y, Ik(if)

Ibo
IDc
3
§

) L AB
Fig. 5.11. Realistic Bell measurement {B7 1, , v a.ij}i,j=0,....N+1; 1=0,1

5.3.2.2 Realistic Bell measurement

Here we introduce Bell measurement based on the realistic RNPM protocol. The realistic Bell
measurement {B%ETB 0Nl j}z’,j:D,..., N+1; 1=0,1 is executed by the realistic parity check measure-
ment {Réﬁffnw,a,ij}i,j=0,m,N+1 and X-basis measurement on system B, as in Fig. 5.11. The
equivalence in Fig. 5.11 is derived from the equivalence in Fig. A2.1 (a). This equivalence and

Fig. 5.10 imply that, when ¢+5 > 0, the realistic Bell measurement B%FTB N oli is the same as

. A . A B i+j,B
the ideal Bell measurement By ;) following AT( T Tame) ®Ar( T Tom o) 2t(jN,a)71'

Hence, by the realistic RNPM protocol, we can accomplish the Bell measurement with a phase
error. The failure outcome (i+j = 0) of the Bell measurement {B?ETB%N@’M]- }ij=0,...N+1; 1=0,1
occurs with probability r(«). For simplicity, we describe this working principle by the last figure

of 5.11, where B]‘:‘[]Z Ui(mn) T€ (partial) Kraus operators
|(n]B())|Bjy”, (m=0,0<n<N),
V1 | IB) PP, (m = 0,n =N +1),
B]ei,lk(mn) = |<m|ﬁ(a)>|BﬁBa (0 <m< N,n= 0)7 (542)
VE N |KIB@)PBAE,  (m =N +1,n=0),
0, (m>0,n>0)

5.3.8 Isometry C4P|+)a
The CZ gate defined by
CHP = 10)(0|a ® 18 + [1)(1|4 ® ZB (5.43)
is essential for generating the so-called graph state [47, 48, 49]. The graph state is known [48, 49]
as an entangled state enabling universal quantum computation through sequential one-qubit

projective measurements. Actually, for connecting a qubit A in state |[+)4 with a qubit B in a
graph state through a single bond, isometry C45|+) 4 is sufficient [49]. The isometry C2Z|+) 4
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|+ 4 |+ 4

Fig. 5.12. The operation to add a qubit to a graph state. This operation is achievable by the ideal
nondestructive parity measurement.

1+ 4

= P N -

Ito

B

Fig. 5.13. The operation to add a qubit to a graph state based on the realistic nondestructive parity
measurement.

is described by
€
V2

Here we show that this operation is achieved by the RNPM protocol.

CHPl A= —=(100a® 1% + 1) 4 ® Z5). (5.44)

5.3.8.1 Isometry C’?B\+>A based on the ideal nondestructive parity measurement
Here we begin with showing that the isometry C’?B |+) 4 is achieved by the ideal nondestructive
parity measurement {Qfol?ij}i,j:0717,_,. This fact is easily confirmed by noting
C2"0a
1
V2

HAQ 1 +)a = (14 0){001ap + | = 1){11|ap)|+)a =
(5.45)
ZAHAQAD | +)a = (| = 1)(01|ap + | + 0)(10[ap)|+)a = —=CHP|+) 4,
for 4,j > 0. This equivalence is shown in Fig. 5.12.

5.8.8.2 Isometry C’?BH-)A based on the realistic nondestructive parity measurement

. . +,B—AB o . . . .
Let us consider the operation {CZ,TA,TB,n,N,a,ij }ij=0,...N+1 in Fig. 5.13. From the equivalences in

Figs. 5.7 and A2.1 (b), one can confirm the equivalence in Fig. 5.13. The last figure in Fig. 5.13
and Fig, 5.12 indicate that, in the case of i+j > 0, the net operation is equivalent to the isometry

“AB : B i+7,B
C%7|+) a followed by phase-flip channel Ar(\/(1—TAn)/(TAn)a)r(\/(l—TBn)/(TBn)a)AQt(Nva)*l' Thus,
by the RNPM protocol, we can achieve the isometry C?B |+)4 with a phase error. The failure

outcome (i + j = 0) of the operation {C}r’rﬁzp’zi N.a,ij i:j=0,....N+1 occurs with probability r(c).

5.3.4 CZ gate C’gB

CZ gate is essential for implementing quantum computing. In fact, universal quantum compu-
tation is achievable by the combination of CZ gates and one-qubit unitary operations [50]. In
addition, even for generating closed loops in a graph state, CZ gate is required to connect qubits
AB in a graph C. In this section, we show that CZ gate is achievable by the RNPM protocol.



80 Remote nondestructive parity measurement
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Fig. 5.15. CZ gate based on the realistic nondestructive parity measurements.

5.8.4.1 CZ gate by the ideal nondestructive parity measurement

Here we show that CZ gate is achievable by the ideal nondestructive parity measurement
{Qoo,ij}i,j:(),l,...- The I‘el&tiOHS

1
V2

X . 1 .
1Bo|0Ve+ 2P @ 1)) = —=C4B
( 10)c 11)c) N

R(,)AC—>A6150|_|_>C :(|0>AAC<OO‘ + |1>AAC<11|)

(5.46)

N A ~ 1 ~ “ 1 -

ZBR{CTACEC 1 +) e =(10) aac(01] + ’1>AAC<1ODE(ZB ®0)c+ 1P ®1)c) = 5093,
(5.47)

imply the first equivalence in Fig. 5.14. The second equivalence is shown from the equivalences in
Figs. 5.8 and 5.12. The last figure indicates that CZ gate can be accomplished by the combination
of the two ideal nondestructive parity measurements.

5.8.4.2 CZ gate by the realistic nondestructive parity measurement
Let us consider the operation {Cg,?A,TB,Tc,n,N,oc,ijlm}iﬂjﬂhm:OwwN“‘l in Fig. 5.15. From Figs. 5.7
and A2.1 (b), one can show the validity of the arrow in Fig. 5.15. The last figure in Fig. 5.15 and
Fig. 5.14 indicate that, for i+ 3 > 0 and [ +m > 0, the operation C?]%A Ts is equiva-

)1 ®

Tc 7777N7a7ijlm

. A +m,A
lent to CZ gate followed by phase-flip channel AT( ST T \/(lchn)/(Tcn)a)A%( No

Hence, by the RNPM protocols, we can achieve

B i+j.B
r(/(=Tpn)[(Tm)a)r(y/(1=Tcn) /(Ten)a) 2N .0) =1
the CZ gate with a phase error with probability [1 — r(a)]?.

5.3.5 Summary

In this section, we have shown that several primitive quantum operations for implementing long-
distance quantum communication and universal quantum computation are realizable by using
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only the RNPM protocols and single-qubit operations. This implies that the RNPM protocols
and single-qubit operations can be a universal set for arbitrary quantum operations. However,
because the practical RNPM protocol has noises such as photon losses, the RNPM protocol
inevitably has a trade-off between the success probability and the received phase error rate.
Therefore, it should be clarified whether, against such a trade-off, the RNPM protocol really
works as a useful gate. In the next chapter, as the first step of this trial, we show that the RNPM
protocol properly works for accomplishing efficient long-distance quantum communication.



6

Quantum repeaters with remote nondestructive parity
measurement

If two distant parties, Alice and Bob, hold quantum memories in a maximally entangled state
(Bell state), they can accomplish quantum communication by quantum teleportation. In order
to prepare their memories in a Bell state, optical pulses are used as the carrier of quantum
information of the memories. However, the real transmission channel for optical pulses suffers
from photon losses that increase exponentially with the length of the channel, and furthermore
there are inevitable residual imperfections in physical systems. The way out of the photon losses
will be the combination of entanglement generation between quantum memories of quantum
repeaters and entanglement swapping at the repeaters [31]. The residual imperfections will
be compensated by entanglement distillation [28, 29]. In this chapter, we show that a single
protocol — RNPM protocol — is sufficient for efficient implementation of long-distance quantum
communication through accomplishing entanglement generation, entanglement swapping, and
entanglement distillation.

6.1 Basic operations for quantum repeater protocols

In this section, we show that the three basic operations needed for efficient long-distance quantum
communication — entanglement generation, entanglement swapping, and entanglement distilla-
tion — are implementable by the realistic RNPM protocol.

6.1.1 Entanglement generation based on the realistic RNPM protocol

We show that the entanglement generation is achieved by the realistic RNPM protocol, using
the fact that the RNPM protocol on qubits AB is implementable even if the qubits AB are
distant (see Sec. 5.2.2.5). According to the conclusion in Sec. 5.2.2.5, Alice (Bob) is connected
to a station C' by an optical channel a; — ¢; with length 14 (by — c2 with length Ly —14), and
the net transmittances of the channels are described by

—p—la/L
Ty =Te a/ att

(6.1)

—(Lo—1 La
Ty =Te (Lo—la)/ o

where 7 is the transmittance of the local optical channel, and L, is the attenuation length
of the used channels. Based on these facts, entanglement generation is accomplished by the

RNPM {PﬁBTB nNocmn}m»":OwwNJFl on distant quantum memories AB in state | + +)4p =
(12T ap + [¥T)ap)/V2. In fact, from Fig. 5.7, the measurement Pj’f‘fTBm’N%mn transforms

82
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state | + +)ap into unnormalized states according to

PAB
Tp,Tg,mN,a,mn
AN

|+ +)aB

1/2) (3N 2)AB P+ (o
(1/2) (L= [l B(e))) r(\/(l—TAm/(TAn)a)r(\/<1—T3n>/(TBn>a>(| (@),
(m=0,0<n<N),

o0 HAB (Bt
/2y IS ON o /T Tomi@emmive-n 1 ® (T 14z),
(m=0,n=N+1),

(1) (T |aB),

(0<m < N,n=0),

B Yt
T(\/(I_TAW)/(TAW)O‘)T(\/(1_TB77)/(TB77)0‘)[2t(N7a)_1](‘\Il AT
(m=N+1,n=0),

0 2a4 AB
BNt ame © Ao/ aTam @ | T+ las))

(1/2) (e [(mlB()))A

B
r(v/(1=Tan)/(Tan)a)r(\/(1=Tpn)/(Tpn)a)

(1/2)(Cm=n1 [{mlB(a)) P)A

(m =n= 0)7
(6.2)

where §(a) = iv/2asin(f/2). Therefore, the RNPM protocol fails in generating entanglement for
outcome m = n = 0 occurring with probability |(0|3(a))|?> = r(a), and succeeds in producing
entanglement for the other outcomes occurring with probability 1 — [(0|8(a))]? = 1 — ().
Actually, the obtained entangled states are divided into two types, dependently on the received
phase error rate: Compared with entanglement generated in the cases of 0 < m +n < N,
entanglement obtained in the cases of m +n = N 4+ 1 receives an additional phase error with
rate 1 — ¢(IN, o) coming from finite threshold N of the photon detectors.

For a fixed Lg, the choice of Iy = Ly/2 gives the best performance of this entanglement
generation protocol. On the other hand, the entanglement generation with [4 = Lg is equivalent
to the two-probe protocol in Fig. 3.1, and hence it has a technical merit in stabilizing the relative
phase between pulses ¢ and ¢a. Moreover, the optimality proof in Chapter 4 can be generalized to
be applicable for any 0 <[4 < Lg, which will show that the entanglement generation introduced
here achieves the theoretical limit of performance of single-error-type entanglement generation
protocols.

6.1.2 Entanglement connection based on the realistic RNPM protocol

As represented by entanglement swapping, we can transform the state |®) ¢, |®T )¢, p into a
Bell state |®T) 45 by making Bell measurement on system C;Cy. However, in practice, there are
cases where the initial state of the system AC;C5 B is not the complete Bell state [®1) 4c, [T ), 5

but an entangled state described by ,6’1401 ® [)QCQB . Here we consider the effect of Bell measurement
on system in such a state ,5‘1401 ® ,5523 . Let us call this operation entanglement connection.

6.1.2.1 Entanglement connection by the ideal Bell measurement

Let us consider to connect two Bell diagonal states ﬁfcl ® ﬁQCQB by the ideal Bell measurement

{BgleICQ}k’lzo,l. Then, from Egs. (A2.3)-(A2.6), when the Bell measurement returns outcome
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Ik = 00, the state 6658 := 40,0, (O]9 @ pS2B|®1) ¢, ¢, is represented by
660> = | D) (@T|ap((@F]57 @) (DF]F2F|1@T) + (27|57 7 ) (@ (52" |@7)
H(OF WY |G [0 (W | ) (552 E )
H TN T ap((DF 1O )W T2 E W) 4+ (@7 |7 &) (W |5 W)
HOF WY@ (F2E @) + (|1 W)@ |52 e T)) (6.3)
H TN [ap (BT[] @) (@752 [@7) + (@715 @) (@7 |52 @) '
H(F WO |55 [0 (W | ) (652 E )
HTTNET Lap((DF TR )W (T2 WT) + (@7 |57 @) (W5 W)
HEH A WY@ T[T @) + (|1 W) (@52 o)),
Note that this state is also a Bell diagonal state. In the other cases, the left states are determined

by

~A ~AC AC B ~AC AC B
UOlB = 40102<\I/+|p1 ! ® p 2 |\II+>C1CQ _X Clcg<q>+|p1 ! X p g |®+>C1CQXB>

&ﬁ)B = 40102<®_|ﬁi401 ®ﬁ2€23@ >Clc2 =Z 0102<(I>+|pi401 ® AC2B|(I>+>ClCQZ ) (6'4)
617 = 4o (U151 @ 552107 ) ey =28 X P oy, (@ |91 @ p52F 107 ) 0,0, X P 2P,

Therefore, the entanglement connection on Bell-diagonal states p; ® po returns aﬁcB according

to outcome k.

6.1.2.2 Entanglement connection by Bell measurement based on the realistic RNPM protocol

Let us consider to connect two Bell diagonal states ;3‘1401 ®/32CQB by the realistic Bell measurement

{ S;S]?Na’lij}i,jzo,,,,7N+1;lzo,l. Here 7 represents the net transmittance of the local optical

channel. As can be seen from Figs. 5.10 and 5.11, when i+ j > 0, the realistic Bell measurement

TCiC;]ZN alij 18 the same as the ideal Bell measurement Bcl( § following A“ " ma
B i+j,B

T e 2t (V) -1 Hence, in the case of the success of the Bell measurement (i+j > 0),

from the equivalence in Flg A2.2, the remaining state is A4 fyrich (0 AB )

(AT ey 2t (N, -1 Oik(iz) )
where states {675} 4 =01 are defined by Egs. (6.3) and (6.4). Therefore, the successful operation
works as the entanglement connection having a phase error. The phase error rate changes,

dependently on whether outcome ij satisfies i + j = N + 1, because AZF{NA o =1 for 0 <
i+7 <N and A;;F(JNAQ) = AQ(N a)—1 for i+j = N + 1. Here, the failure outcome (it+7=0)
of the Bell measurement {BS;,%Nalzg}%j=07--~7N+1; 1—0.1 occurs with probability [(0|3(a))|? =
T‘(Ck) — 672042 sin2(0/2).

6.1.3 Entanglement distillation based on the realistic RNPM protocol

Suppose that, in the recurrence method for Bell-diagonal state p141P1 @ 4282 Alice (Bob)
uses the realistic parity check measurement {Rf;’?ﬁﬁfi g}i,j=0,--‘, N+1 ({Rf;%;gim}l,m:&w N+1)-
Here 7 represents the net transmittance of the local optical channel. Then, from Figs. 5.8 and

5.9, the recurrence method succeeds with probability

[1—r(a)*PY, (6.5)
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and the remaining state is

AA2 Ai+j,A2 AB2 AH‘TMBQ ~ A2 Bo 6.6
/Ty’ 21 © A e a1 ) (66)

where i + j > 0, [ +m > 0, P4 is defined by Eq. (2.49), and 54252 is the Bell-diagonal state
defined by Eq. (2.48). Therefore, the distillation from Bell-diagonal state 1P @ 524252 can be
achievable even by the realistic Bell measurement {Bf;(’;fN a,lij}i7j=0,~-~» N+1: 1=0,1, if one allows
the mixture of a phase error. The phase error rates depend on outcomes ij and [m, because

A’gt(m)_l =1 for 0 <k < N and Agt(N@)_l = Agy(Na)_1 for k=N +1.

6.2 Quantum repeaters with entanglement generation and entanglement
connection

We consider a quantum repeater protocol [31] composed of entanglement generation and entan-
glement connection. Suppose that Alice and Bob want to communicate over distance L = 2" L.
In the protocol, 2" — 1 nodes with a repeater are set at intervals Ly between Alice and Bob,
and they begin with entanglement generation between quantum memories at neighboring nodes.
Once the generation protocols make neighboring entangled pairs with length Lo, by implement-
ing entanglement connection of the pairs, they try to generate an entangled pair with length
2Lg. Similarly, the jth (j = 1,2,3,...,n) entanglement connection receives two neighboring
entangled pairs with length 2971 Ly, and returns an entangled pair with 27 Ly. Hence, at the end
of the nth entanglement connection, they will obtain an entangle pair between A and B.

Let us estimate the time needed to generate the entangled %)air AB. Considering that the
entanglement generation protocol succeeds with probability Pso), the average time needed to
make the entanglement generation protocol succeed is proportional to 1 /PS(O). Similarly, by
assuming that the jth entanglement connection succeeds with probability Ps(j ), the average time
needed to make the jth entanglement connection succeed is proportional to 1/ PS(] ). Since the first
entanglement connection (jth entanglement connection) can start after the success of neighboring
entanglement generation protocols (after the success of (j — 1)th entanglement connections), the
total time needed to make entanglement between AB will scale as 1/([];—, Py )). In fact,
the total time T"°" is approximately described [36] by

L " 1
7ot ~ 20 <3> e (6.7)
¢ 2 Hj:O,..,,n PSJ

where Lg/c is the communication time in the entanglement generation, and the operation time
of local manipulations is ignored.

In what follows, we consider a protocol parametrized by Fig, 6.1. In this protocol, we use the
RNPM protocols {PTA,TBJhN’ag’ij}i’j:OW’NJrl for entanglement generation, and the realistic Bell
measurements {BT,T% N,ozs,lij}i,j:O,..., N+1; 1=0,1 for entanglement connection, where 7 represents
the transmittance of the local optical channel, and T4 and T are defined by Eq. (6.1). In what
follows, we estimate the time T by allowing the use of photon detectors with N = oo, N =1,
and N = 0. From Figs. 5.7, 5.11 and A2.1, this protocol is shown to be equivalent to the Fig. 6.2
in the case of i1 + ji,...,don + jon, 8y + 41, ... i1 + Jon_q > 0.
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Fig. 6.1. Quantum repeaters based on the entanglement generation and the entanglement connec-
tion. k := (k(ibjl)v k(i%jQ)v ) k(iQ"an“))a k= (k(zllvji)v k(zévjé)v EERE) k(ién—lvjén—l))a and I :=
(l1,1a,...,lon_1), where k(i,7) is one defined by Eq. (5.39). IA/MQ/J is a unitary operation to transform
the state obtained in the success cases into a standard state F|®T)(®T|4p + (1 — F)|®~){(®~|ap.

6.2.1 The repeaters with photon-number-resolving detectors (N = o)

Here we suppose that the RNPM protocols use photon-number-resolving detectors, i.e., N = co.

In this case, entanglement generation succeeds with PS(O) =1—r(ay), and the jth entanglement
(4)

connection succeeds with Ps”’ =1 — r(a;). Hence, we have
1 B 1 B 1 68)
Moy P9 [ rlagl=r(ag)] L= r{ag]l = r(ag)" |
On the other hand, since N = oo implies Agt(N,ag)—l = Agt(N’as)il = [ for any k, Fig. 6.2 shows

that, by a suitable choice of the unitary operation Vk/,k,l, the protocol returns an entangled state
in the form of

Flo*)(@F |ap + (1= F)[@" N |4z, (6.9)
with
p L+ (VA= Tan)[(Tan)ag)r® (L = Ton) /[(Tn)ag)r®® D (/(L = 0)/(rn)s)
2
n( TA+TE—2T 4Ty " _or
B 1+ 7“2 ( 4 TiTBWA z ]) (Oég)T‘(Q _1)<2 7-271 n) ((ys)
= 5 .
(6.10)
In order to clarify the relation between 1" and F', we introduce parameters defined by
Qn(TA‘FI;_‘B*QTATBn)
=r ATBn Qgq),
Is 2 (6.11)

fs ::r(2n_1)<2;2;7m>(as).
By these parameters, Egs. (6.10) and (6.14) are rewritten as
2F — 1= f,fs, (6.12)
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Fig. 6.2. An imaginary protocol equivalent to Fig. 6.1 in the case of 41 +7j1, ..., 49n +Jon, i1+ 57, ., thn_1+
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1

3 n

<2> (1_ g%%) <1—fs2n11(27;m>)n

o (2 1

=7 \3 [1—exp (mz%)} [1—exp(lnfs ( 7 ))r

27 Ta+Tp—2TaTg7 271 \ 2—27
Lo (3\" 2" Ta+Tp—2TaTpn (Inf, TaTgn
= 2> In f, TaTpn < 20 Ty +Tp — 2TATBn) (6.13)
X[2"—1<2—2¢n>g<lnfs < ™ ))]n
In £ ™ 2n —1\2—-27n
Ly (3 (L/Lo) T + T — 2T Ty ( Infy TuTsn
c > In f, TATBn <(L/L0) Ta+1Tp — QTATBU>

[ ()l )

with g(z) := x/(1 — €®). Because g(x) — 1 in the limit of z — 0, Eq. (6.13) shows that T
increases sub-exponentially with L. In fact, the minimum time to generate entanglement of
Eq. (6.9) over distance L is determined by minimizing 7" of Eq. (6.13) for parameters f; and f
satisfying Eq. (6.12) and for parameter n. Figure 6.3 indicates the minimum time 7 for given
distance L and fidelity F'.
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Fig. 6.3. The minimum time 7T needed to generate entanglement with 0.60 < F' < 0.90 in increments of
0.05 over distance L under the use of detectors with N = oo; (a) 4 = Lo/2, 7 = 0.98, and n = 0.95;
(b) la = Lo/2, 7 = 0.98, and n = 0.90; (¢) la = Lo/2, 7 = 0.95, and n = 0.90; (d) 4 = Lo, 7 = 0.98,
and n = 0.95; (e) la = Lo, 7 = 0.98, and n = 0.90; (f) 4 = Lo, 7 = 0.95, and n = 0.90. We assume
c=2x10% m/s, La; = 22 km. The dashed line indicates 1/(fne~%/Faw) with f = 10 GHz, which is the
direct transmission time of the photon from 10 GHz single photon source.

6.2.2 The repeaters with single photon detectors (N =1)

Here we suppose that the RNPM protocols use single-photon detectors, i.e., N = 1. For simplic-
ity, we regard, as the success cases, only the events where one of single photon detectors in the
RNPM protocol announces the arrival of a single photon. Then, entanglement generation suc-
ceeds with PV = [(1]8(cg))? = —r(ag) Inr(ayy), and the jth entanglement connection succeeds

with PY) = —r(as)Inr(as). Hence, we have
1 1

Moy PP [rlagnr(ag)=r(a) (e (6.14)

On the other hand, since A%t(l ag)-1 = I and A%t(l a)—1 = I, Fig. 6.2 shows that, by a suitable

choice of the unitary operation Vi 1, the protocol returns an entangled state in the form of
FI®T)(®F |ap + (1 — F)|®7)(®7 |45, (6.15)

with

g L (V= Tan)/(Tan)og)r® (v/(L= Ten) [ (Tan)og)r** Y (/1 = mn) /(rn)s)
2

™ )(Oés).

TA+TB—2TATB17)

1 +r2n( Talpn ag)r

2
(6.16)



6.2 Quantum repeaters with entanglement generation and entanglement connection 89

T (s)

/
/
500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

0 500 1000 1500 2000 2500 3000
L (km) L (km) L (km)

| | |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
L (km) L (km) L (km)

Fig. 6.4. The minimum time 7" needed to generate entanglement with 0.60 < F' < 0.90 in increments of
0.05 over distance L under the use of detectors with N = 1; (a) l4 = Lo/2, 7 = 0.98, and n = 0.95;
(b) la = Lo/2, 7 = 0.98, and n = 0.90; (¢) la = Lo/2, 7 = 0.95, and n = 0.90; (d) l4 = Lo, 7 = 0.98,
and n = 0.95; (e) a4 = Lo, 7 = 0.98, and n = 0.90; (f) 4 = Lo, 7 = 0.95, and n = 0.90. We assume
c=2x10% m/s, La; = 22 km. The dashed line indicates 1/(fne~%/Faw) with f = 10 GHz, which is the
direct transmission time of the photon from 10 GHz single photon source.

In order to clarify the relation between 1" and F', we introduce parameters defined by

on (TA+TB_2TATB’7)
Jo =" T (o),

(6.17)
n__ 2-27
fo =@ V) (0,
By these parameters, Egs. (6.16) and (6.14) are rewritten as
OF — 1= f,fs, (6.18)
and
L " 1
T =20 3 _
¢ 2 1 TaT, %T +JTATQBTT7 T, 1 ﬁ(2T2n )
= n m - n — ™ ™ — —27n
2TTA+T;—2BTATBn g ATETTATE lnfg on—1 (2—2777) s In fs
_Lo(3\" 2" TAJFTB—ZTATB??f‘%%
c \2/) (=Infy) TaTpn g
n
2

"1 (2-2m\ ()
X[(—lnfs)( )8

Lo (§)1°g2(” ) (L/Lo) Ta+Tp — 2TaTpn 1w T A
2 (—In fy) TaTgn g

. logy(L/Lo)
. [(L/Lo) L (2 o (22%)] T

(—In fs) ™ °

(6.19)
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Fig. 6.5. The minimum time 7T needed to generate entanglement with 0.60 < F' < 0.90 in increments of
0.05 over distance L under the use of detectors with N = 0; (a) l4 = Lo/2, 7 = 0.98, and n = 0.95;
(b) la = Lo/2, 7 = 0.98, and n = 0.90; (¢) la = Lo/2, 7 = 0.95, and n = 0.90; (d) l4 = Lo, 7 = 0.98,
and n = 0.95; (e) a4 = Lo, 7 = 0.98, and n = 0.90; (f) 4 = Lo, 7 = 0.95, and n = 0.90. We assume
c=2x10% m/s, La; = 22 km. The dashed line indicates 1/(fne~%/Faw) with f = 10 GHz, which is the
direct transmission time of the photon from 10 GHz single photon source.

. _(L/lL )T -s-zc"rAzﬂszz7 T _(L%(%L) . ..
Since f, (“/F0) TAtTBTEATEY g and f, PPOTIRETET 1 in the limit of L — co, Eq. (6.19)
shows that T increases sub-exponentially with L. In practice, the minimum time to generate
entanglement of Eq. (6.15) over distance L is determined by minimizing 7' of Eq. (6.19) for
parameters f, and f, satisfying Eq. (6.18) and for parameter n. Figure 6.4 indicates the minimum
time T for given distance L and fidelity F.

6.2.3 The repeaters with threshold detectors (N = 0)

Here we suppose that the RNPM protocols use threshold detectors, i.e., N = 0. In this case,
entanglement generation succeeds with PS(O) =1—r(ay), and the jth entanglement connection

succeeds with Pg(j )=1- r(as). Hence, we have
1 B 1 B 1 (6.20)
. o P L=rleglll —r(as)]® [ =r(ag)][l —r(as)]™ '
From t,(0, ) = (1 — e~ 12@F) /2, we have
2t(0,00) — 1 = 2[1 — t,(0,0)] — 1 = e PF@F = p(q). (6.21)

Hence, Agt(o ag)-1 = Ap(a,) and Agt(o ag)—1 = Ap(a,) hold for k£ > 1, implying that the protocol
returns an entangled state in the form of

FIOTN @ ap + (1= F)|®7)(27 |a, (6.22)
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with
gn (Ta+Tp—TaTpn (2n—1)( 2=
po Lt - >2(% = )(0‘8). (6.23)
In order to clarify the relation between 1" and F', we introduce parameters defined by
n( TA+Tg—T4T
fg ;:'r2 < 4 TiTBIW4 Bn)(ag)’
(6.24)
(2-1)(222)
fsi=r ™ /) (as).
By these parameters, Egs. (6.23) and (6.20) are rewritten as
OF — 1= f,fe (6.25)
and
L " 1
L
c \2 1 TaTpn %( K )
(l—f; TA+TBTATBn) (1 —f32 —i\2=m )
Lo (3)” 1
T e \2 In f, TAT, In f, "
‘ 1= oxp ("5 gt S )| |1 - o (35 (27%))|
Lo (3\" 2" Ta+Tp—TaTpn (Inf, TuTsn
“c\2) Iy, TaTpn 9 Ty +Tp — TaTgsn (6.26)
y 2" —1(2—7mn In £, ™ "
In f ™ I\on 1 2—1n
Ly >‘°g2 () (L /L) Ta + T — TaTpn ( In £, Iy )
c In f, TxTpn (L/Lo) Ta+Tp —TaTsn

A I (= )T

with g(x) := z/(1 — €*). Because g(z) — 1 in the limit of x — 0, Eq. (6.26) shows that T'
increases sub-exponentially with L. Actually, the minimum time to generate entanglement of
Eq. (6.22) over distance L is determined by minimizing 7" of Eq. (6.26) for parameters f, and f;
satisfying Eq. (6.25) and for parameter n. Figure 6.5 indicates the minimum time 7" for given
distance L and fidelity F.

6.2.4 Summary

In this section, we have shown that long-distance quantum communication is efficiently imple-
mentable only by the RNPM protocols. In particular, the time needed to generate an entangled
pair increases only sub-exponentially with the distance, irrespectively of the types of the used
photon detectors. This sub-exponential increase of the time ensures that the quantum repeater
protocols are more efficient than quantum communication based on the direct transmission of
photons for long distances. These facts can be also represented by Figs. 6.3-6.51. As can be seen
by comparing Fig. 6.3 with Fig. 6.4, the protocol based on single photon detectors (N = 1) has

1 Note that the repetition rate of the single photon source assumed in those figures, i.e., 10 GHz, is a very ambitious value
(36].
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the performance comparable with one based on photon-number-resolving detectors (N = o0).
On the other hand, from Figs. 6.4 and 6.5, the protocol based on threshold detectors (N = 0)
is rather inferior to one based on single photon detectors, but even the protocol with N = 0
exceeds quantum communication based on the direct transmission of photons in efficiencies for
distances L = 900 km. In addition, from Figs. 6.3-6.5, the performance of the repeater protocol
with 14 = Ly/2 is rather superior to one with [4 = L.

The repeater protocol used here has two favorable properties: (i) It is sufficient that each
repeater at a node has two quantum memories at least; (ii) As long as the error of the detectors
comes from non-unity quantum efficiencies, the generated entanglement includes only one type
of error (see Egs. (6.9), (6.15), and (6.22)). Property (ii) implies that the obtained entanglement
is of good quality. In fact, for the state with fidelity F', the formula of unconditionally secure key
rate of the entanglement-based quantum key distribution protocol is proportional to 1 — h(F')
with the binary entropy function h(z) := —zlogyx — (1 — ) logy(1 — x), which implies that the
secret key is distillable for any F' > 1/2. Therefore, the quantum repeater protocol presented
here is realistic and efficient for achieving long-distance quantum communication.

6.3 Quantum repeaters based on the nested purification protocol

As seen in the previous section, by a quantum repeater protocol that utilizes only entanglement
generation and entanglement connection, we can overcome the photon loss of the transmission
channel. However, in practice, other types of noises may be caused by imperfection of physical
devices such as quantum memories. To beat such additional errors, we will need entanglement
distillation. Actually, entanglement distillation will be also useful for the satellite-based quan-
tum communication. In the satellite-based quantum communication, a ground station tries to
accomplish quantum communication with another ground station by exchanging photons be-
tween a satellite and the ground stations in the night. If one of the ground stations is in the day,
the satellite needs to store quantum information of the photons in quantum memories until the
station becomes in the night, but, in general, quantum memories have several types of noises,
which implies that such satellite-based quantum communication will also need entanglement
distillation.

In this section, we show that the recurrence method based on the RNPM protocols works.
In addition, by the recurrence method, we can also implement the nested-purification repeater
protocol [28, 29] whose cost scales as the distance only polynomially.

6.3.1 The realistic recurrence method on Werner states

Here we show that the recurrence method based on the RNPM protocols can work for Werner
states. This fact ensures that the method has the possibility to recover entangled states with
multiple types of error, because any bipartite state can be converted into a Werner state.
Suppose that Alice and Bob share a system in Werner states ;;)5?}3 '® ,6{;1[,23 2 of Eq. (2.53), and
apply the realistic parity check measurements {Rf;‘?ﬁ;é;l ;® RT,;ﬁ?ﬁfj,lm}ivjvlvm:()w"7 N1 on it.

According to Sec. 6.1.3, in the case of i +j > 0 and [ +m > 0, the left state has the fidelity
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Fig. 6.6. The efficiencies of the recurrence method based on the RNPM protocols with N = oo as a
function of fidelity F' of the Werner state to Bell state |®1): (a) the fidelity F” of the left qubits to a Bell
state and (d) the success probability Ps, for n = 0.98, 7 = 0.95, and r(ay) = 0.96,0.92,0.88, 0.84, 0.80;
(b) the fidelity F’ of the left qubits to Bell state |[®1) and (e) the success probability Ps, for n = 0.98,
7 = 0.90, and r(ag) = 0.98,0.96,0.94,0.92,0.90; (c) the fidelity £’ of the left qubits to Bell state |®T)
and (f) the success probability Ps, for n = 0.95, 7 = 0.90, and r(ag) = 0.98,0.96,0.94,0.92, 0.90.

described by

/ o + Ao i+j,A2 B l+m,Ba ~ A2 B +
FIE) = (@ ’Aﬂ( G i)’ 20N -1 @ Ao (1—m)/(m)cm)A%(Nw)*l(UW 1)

1—7n 1—7n
™

1+r4( T )(ad) 10F2—2F+1 + 177~4( )(ad) 6F(1—F)
2 8F2—4F+5 2 8F2—4F+5>

(0<i4+j<N,0<l+m<N),
4(&) 4(1*J)
14+r 71 ) (ag) (2¢(Nyog)—1) 10F2—2F+1 | 1=r \ 77 J(ag)(2t(N,aq)—1) 6F(1—F)
2 8FP—4F15 T 2 8F2—4F+5’
(i+j=N+1,0<l4+m<N),
4(4571) a(1zm)
1+r ™ J(agq)(2t(N,aq)—1) 10F2—2F+1 1—r ™ ) (ag)(2t(N,aq)—1) 6F(1—F)
2 SFP—if15 T 2 8F2—4F+5°
(0<i4+j<N,l+m=N+1),
)

(5) (5
147\ 71 ) (ag)(2t(N,aq)—1)2 10F2_2F+1+1—r ™ ) (ag)(2t(N,aq)—1)2 6F(1—F)
2 8F2—4F+5 2 8F2—4F+5>
(i+7=N+1,l+m=N+1),

(6.27)

where (3{2,23 % is the state defined by Eq. (2.54). This state may be converted to a Werner state
with the fidelity F” before being fed to the subsequent operations such as the entanglement
distillation or the entanglement connection. In Fig. 6.6 (Fig. 6.8), assuming the use of photon
detectors with N = oo (N = 0), we depict the efficiencies of this recurrence method. In these
cases, the success probability is described by Eq. (6.5), namely by

[1—7(ag))*(8F? — 4F +5)
5 ;

where we used Eq. (2.55). In Fig. 6.7, we show the efficiencies of the recurrence method based

[1 = r(ea)* Py = (6.28)
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Fig. 6.7. The efficiencies of the recurrence method based on the RNPM protocols with N = 1 as a function
of fidelity F' of the Werner state to Bell state |®1): (a) the fidelity F” of the left qubits to a Bell state
and (d) the success probability P, for n = 0.98, 7 = 0.95, and r(ay) = 0.96,0.92,0.88,0.84,0.80; (b) the
fidelity F’ of the left qubits to Bell state |®*) and (e) the success probability Ps, for n = 0.98, 7 = 0.90,
and r(aq) = 0.98,0.96,0.94,0.92,0.90; (c) the fidelity F’ of the left qubits to Bell state |®T) and (f) the
success probability Ps, for n = 0.95, 7 = 0.90, and r(ag) = 0.98,0.96, 0.94, 0.92, 0.90.

on photon detectors with NV = 1, regarding the event of i + j = 1 and | + m = 1 as the only
success case. In this case, the success probability is
[—7(ag) Inr(ag)]?(8F? — 4F +5)

[—7(aq) In r(ad)]ngw = 9 ) (6.29)

Figures 6.6, 6.7, and 6.8 suggest the existence of two threshold fidelities Fi,in, and Fipax such
that

FI(Fmin) = Fmina
F/(Fmax) - Fmax; (630)
F'(F)>F, (Fuin < F < Fax)-

The threshold fidelities are controllable by choosing amplitude a4. In particular, for sufficiently
small ag, i.e., 7(ag) = 1, F'(F) comes closer to the ideal relation of Fig. 2.5. Therefore, by
properly selecting amplitude ag4, the recurrence method based on the realistic RNPM protocol
can distill an almost Bell pair.

6.3.2 Entanglement connection of Werner states by the realistic RNPM protocol

In order to see that a longer entangled pair can be obtained by connecting entangled states
with multiple types of error, here we consider entanglement connections of Werner states by the
realistic RNPM protocols. Let us consider the protocol of Fig. 6.9 (a) to connect 2" pairs in
Werner states of Eq. (2.53). We start with noting an equivalence in Fig. 6.9 that is similar to the
equivalence between Figs. 6.1 and 6.2. The equivalence is shown by the combination of Fig. A2.2
and the fact that entanglement connection of Bell diagonal states returns a Bell diagonal state
(see Sec. 6.1.2.1). Fig. 6.9 (b) suggests that the success of all the realistic Bell measurements
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Fig. 6.8. The efficiencies of the recurrence method based on the RNPM protocols with N = 0 as a function
of fidelity F' of the Werner state to Bell state |®T): (a) the fidelity F’ of the left qubits to Bell state |®)
and (d) the success probability P, for n = 0.98, 7 = 0.95, and r(ay) = 0.99,0.98,0.97,0.96,0.95; (b) the
fidelity F’ of the left qubits to Bell state |®*) and (e) the success probability Ps, for n = 0.98, 7 = 0.90,
and r(agq) = 0.99,0.98,0.97,0.96,0.95; (c) the fidelity F’ of the left qubits to Bell state |®T) and (f) the
success probability Ps, for n = 0.95, 7 = 0.90, and r(ag) = 0.99,0.98,0.97,0.96, 0.95.

means the connections of Werner states by ideal Bell measurements followed by a phase-flip
channel on system B. The state connected by the ideal Bell measurement is Werner state

1 4F —1\?*"
&P == [1+3( ) ] |&TYV (DT | 4B

3

+1 L (A1 2z
4 3

Since this state receives the phase-flip channel as the penalty of imperfections of RNPM proto-
cols, the final state is described by

(6.31)

()T |4 + 127 ) (@7 [ap + ¥ )T [ap).

B ’i/+jl,B i/n, +j/n, 7B ~AB
s (i rman M2t (Va1 Bavan—1 O (6.32)

On being transformed into a Werner state, this state will be sent to the distillation stage.

6.3.3 Nested-purification repeater protocol

Here we provide the idea of the nested-purification repeater protocol [28, 29]. Since this protocol
relies on entanglement distillation, it requires a lot of quantum memories. But, the protocol has
an advantage that the protocol can enable long-distance quantum communication even if physical
apparatuses have various types of error.

We use an entanglement distillation protocol with thresholds { Finax, Fin } satisfying Eq. (6.30).
Suppose that the channel with distance L is divided to N = k! (k,l € N ) smaller segments,
and the segments have entangled pairs with high fidelity Fi,(< Fupax) to a Bell state. j x k
adjacent entangled pairs with distance L/k™ (m = I,1 —1,...,2,1) are regarded as a bundle
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Fig. 6.9. Entanglement connection of Bell diagonal states. k' := (k(i},j1), k(i5,75), -, k(ihn_1, G5n_1)),
and 1 := (l1,la,...,lan_1), where k(i,7) is one defined by Eq. (5.39). f/kf,l is a unitary operation to
transform the state obtained in the success cases into a standard state of Eq. (6.32). The equivalence

between (a) and (b) holds when all the realistic Bell measurements succeed.

(see Fig. 6.10). The pairs of a bundle are converted to entangled pairs with fidelity Fout(> Finin)
and with distance L/k™~! by the entanglement connections, and are further converted to an
entangled pair with fidelity F}, and with distance L/k™~! by the entanglement distillations. j
is chosen to be large enough to make this two-step process succeed with almost unity proba-
bility. In other words, the working principle of this strategy is based on a ‘purification loop’
transforming the bundle into a pair according to

(L/K™, Fp) OO (L1 Foe) PP (L1 Fy). (6.33)

The purification loop is repeated [ times, namely it is continued until generating an entangled
pair with distance L and fidelity Fi,. Then, the total number R of elementary entangled pairs
is described as (kj)!, namely

R = (kj)' = kK87 = N1+lo8e i, (6.34)

Here note that j depends only on the efficiencies of the entanglement distillation and the entan-
glement connection of k neighboring pairs. This implies that j is independent of . On the other



6.3 Quantum repeaters based on the nested purification protocol 97

2
k
J : L e : L e
J2 : . : ..
A Cl Ck q,’

Fig. 6.10. Nested purification with an array of elementary Bell pairs.

hand, N can be changed by selecting parameter [ with k fixed. Therefore, Eq. (6.34) shows that
the total number R of elementary entangled pairs grows polynomially with the number N of the
segments.

Since this repeater protocol is based on recursive use of a purification loop, we need to show
that a purification loop is constructible. In Fig. 6.11, as examples, we show that such a purifi-
cation loop can be made by entanglement distillation and entanglement connection in Sec. 6.3.1
and 6.3.2. There, we assume the RNPM protocols with photon detectors with N =occor N =1
in (a)-(c) of Fig. 6.11, and ones with photon detectors with N = 0 in (d)-(f) of Fig. 6.11. With-
out taking optimization, we chose parameters, a4, as, and k, but, in practice, we will need to
optimize the parameters for minimizing the cost j.

6.3.4 Summary

In this section, we showed that the recurrence method based on the realistic RNPM protocol
works against Werner states. This enables us to distill an almost Bell pair even from entan-
gled states with multiple types of errors. Moreover, the achievability of such an entanglement
distillation makes it possible to implement the nested purification repeater protocol. Since the
resources needed to this protocol increase with the communication distance only polynomially,
the protocol would achieve efficient long-distance quantum communication even in the cases
where the entanglement obtained by an entanglement generation protocol inevitably receives
multiple types of errors.
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Fig. 6.11. The purification loop for entanglement connection and entanglement distillation based on the
realistic RNPM protocols, which are described in Secs. 6.3.1 and 6.3.2. In the case where the single
photon detectors (N = 1) are used, the detections of single photons are regarded as only success cases of
the RNPM protocols. In Fig. (a), we describe a purification loop as an example. (a) 7 = 0.98, n = 0.95,

r(ag) = 0.96, r(as) = 0.80 for k = 4, r(as) = 0.95 for k = 8, and N = 1,00; (b) 7 = 0.98, n = 0.90,
= 0.98, r(as) = 0.80 for k = 4, r(as) = 0.97 for k = 8, and N = 1,00; (c) n = 0.957 7 = 0.90,
= 0.98, r(as) = 0.80 for k = 4, r(as) = 0.97 for k = 8, and N = 1,00; (d) 7 = 0.98, n = 0.95,
=0.98, r(as) = 0.90, N =0, and k = 4; (e) 7 =10.98, n = 0.90, r(ag) = 0.98, r(cs) = 0.90, N =0,

4; (f) T =0.95, n = 0.90, r(ad)—098 r(as) =0.90, N =0, and k = 4.

r(og) =
r(aq)
r(aa)
and k =
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Conclusion

In this thesis, we have provided a two-probe entanglement generation protocol, and we have
shown that the two-probe protocol can achieve the theoretical limit of performance among all
the protocols to generate entanglement with only one type of error by exchanging photons over
a lossy channel. We further show that the two-probe protocol acts not only as an entanglement
generation scheme but also as the remote nondestructive parity measurement (RNPM). Since the
RNPM plays the role of a module for accomplishing the Bell measurement and the parity check
measurement, the RNPM has the possibility to accomplish all the primitive operations needed
for quantum repeater protocols, namely, entanglement generation, entanglement connection,
and entanglement distillation. Actually, because of the loss of photons used as the carrier of
quantum information, the protocol merely probabilistically implements RNPM with phase error,
and hence, it was unclear whether the protocol dubbed ‘RNPM protocol’ is powerful enough
to achieve long-distance quantum communication efficiently. However, as shown in Chapter 6,
the RNPM protocol enables long-distance quantum communication with communication time
increasing only sub-exponentially with the channel length. Therefore, the RNPM protocol is a
promising candidate of a single module for long-distance quantum communication.

We mention several possibilities of future developments of the RNPM protocol. As shown in
Chapter 5, the RNPM further acts as a module for isometry é?B |+) 4 and CZ gate C‘?B . These
operations are known to be essential for generating graph states that are the resources for the
measurement-based quantum computation. Hence, it is clear that the ideal RNPM protocol can
efficiently generate graph states. However, the realistic RNPM protocols will inevitably receive
phase error because of the photon loss. Therefore, we will need to clarify how efficient RNPM
protocols are required for efficiently composing the graph states. Even for experimentalists,
the finding of the RNPM protocol is important. In fact, as noted in Preface or Sec. 2.5.2, the
interaction with an optical pulse can be realizable by various quantum memories. Hence, the
RNPM protocol can be also achievable by them. We expect that experimental efforts on the
development of the RNPM protocol will be reported. Finally, we stress that this thesis has only
just begun to grasp the full implications of the RNPM protocol: unexpected progresses of the
RNPM protocol would appear in near future.
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Appendix 1

RNPM protocol with photon detectors with a threshold and dark
counts

We consider the effect of the dark counts occurring in the detectors. The POVM elements of a
detector with mean dark count v can be described by

Jo :Z%Wk« (1.1)

Suppose that the used two detectors show dark counts rates v, and 1. Then, for an input state

pAB | we have

an,a(ﬁAB)
AaA 5 5 Aa 2 (lA A ABb AAa Aa . o
= Tray { BB [ 2440) 250 VU TF (077 © |0} (0o @ ool U770, Vet 221, 241 )
T n e ayn Tk eyl e B i AB
) a e 1.2
k=0 1=0 (m—Fk)! (n—1)! kil okl 0 (12)

where note that

Ma,mn =6mo(n|B())(|00)(00]ap + (=1)"[11)(11]aB)
+ Sno(m|B())((=1)"[01)(01]ap + [10)(10].15) (1.3)
=6mo(n|B(c)) (Z7)" P + 8uo(m|B(c)) (27)" Pg'".

A B
| la) o) |

|« 2]

Fig. A1.1. RNPM protocol with photon detectors with threshold N and mean dark count v.
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For m,n > 0, this means

n
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=
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(1.4)

where [x] is the smallest integer > x. These relations are reduced to
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and |(n|B(a))|? = (e 1P@F|8(a)[2)/(n!). These equations give
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Thus, the measurement transforms state p42 into unnormalized states according to
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The probabilities are described by
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In the cases of N = 0, the successful output states are
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The success probabilities are

o0
ZPOn,a(ﬁAB) _ e—Va—\ﬁ(a)|2 {1 —e V4 (e\ﬁ(a)|2 _ 1)T1~[P§B[)AB]}, (1.15)
n=1

S Proa(p?) = e8P {1 — e o (PO - )T RE AP L (1.16)
m=1



Appendix 2

Elementary relations on Bell states

A2.1 XA ® XB_basis and Bell states

|+ +)an =\}§<|<1>+>AB U ap), |+ —)ap = \}§<|<1>>AB — ) ap), -
= +)an :\}5<|<1>>AB 1) aR), |~ —)ap = \}EU@WAB — ) ap).

A2.2 Bell bases of four qubits
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A2.3 Bell measurement
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Fig. A2.1. Equivalences on the nondestructive parity measurement followed by the phase-flip channel.

Bell-diagonal Bell-diagonal
A B A

Fig. A2.2. Equivalence on a phase-flip channel on a Bell-diagonal state.

A2.4 Equivalences on the nondestructive parity measurement followed by the
phase-flip channel

Here we show the equivalences in Fig. A2.1. The equivalence in Fig. A2.1a is shown from

ZAPAB — pABZA,

fa RN (2.7)
ApPA A A
ZAPgP = pgB 74,
The equivalence in Fig. A2.1a is also proven from
ZAP({XB — ZBPC}{lB
5 A BHAB 5B AA73 (2.8)
A2.5 Phase-flip channel on Bell-diagonal states
The equivalence in Fig. A2.1 is confirmed from
Z4 %) ap = Z5|0%) 4,
2%) %) 29

ZAUH) gp = —ZB|0F) 4.
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