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Abstract

The electronic states of the two-dimensional tight-binding model in the strong
electric field are investigated. The electronic states of the one-dimensional tight—
binding model in the strong electric field is called Stark ladder states, which are
characterized by the evenly spaced energy levels and localized wavefunctions. Nu-
merical solutions for eigenenergies and eigenfunctions are presented as functions of
the angle between the electric field and the symmetry axis of the lattice. We show
the existence of the Stark ladder states in the two-dimensional tight-binding lat-
tice. Unexpected gaps open near the band edges for appropriate electric fields, the
magnitudes and the positions of which are smooth functions of the angle for a fixed

electric field. The effects of the system edges are also discussed.

The electronic states of the two—dimensional system applied the electric field in
the plane and a magnetic field normal to it are also studied. The magnetic subbands
at zero electric field are modified by the electric field. It is discussed whether or not
the eigenenergies for high electric fields are represented by the Stark ladder states
associated with each of the magnetic subbands. When the electric potential drop
across the system becomes comparable to the bandwidth of zero electric and magnetic
fields, the density of states becomes the pyramid shape with steps, the steps being
induceci by the finiteness of the lattice. The influence on the eigenenergies by the

change of the direction of the electric field is also discussed.

The nature of the ballistic transport properties of this system is investigated. The
electric field makes the electron wave functions localized in the parallel direction to
the electric field while they are plane wave like in the perpendicular direction, pro-
ducing narrow channels pérpendicular to the electric field. Numerical computations

are performed on the basis of the two-terminal Landauer formula for the conductance



with the transmission coeflicients calculated by the recursive Green’s function tech-

nique. The dependence on the magnetic field and random potentials is calculated.
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Chapter 1

Introduction

A history to understand Bloch electron in the electric and magnetic field is reviewed.
When the strong electric field is applied to the periodic system, the Stark ladder
states are formed, which are characterized by the evenly spaced energy levels and
localized wavefunctions. We attempt to survey the Stark ladder by using a semi-
classical and quantum treatment. We also review the Harper model which is the two

dimensional tight-binding model in the magnetic field.



1.1 Stark ladder States

Homogeneous external electric fields must have a very peculiar relationship to the
energy bands of a Bloch particle. The notion is followed up for the case of the one
dimensional systems [1]. If we suppose that there is no interband coupling and the
particle is confined to one band only, it is concluded that the wavefunction is localized
in the width Wya/2€ along the electric field direction, where Wy is the bandwidth at
zero electric field, £ the electric field and a the lattice constant, and the eigenvalue

is given by

E,=Fu, (1.1)

where F' = efa is the electric potential drop across a unit cell and v an integer. The
eigenvalue with even spacing [ is different qualitatively from continuous spectrum

of the zero electric field case. This is called “Stark ladder” by Wannier [2,3].

Recently, several experiments [4,5] have confirmed various aspects of the Stark
ladder in GaAs-AlGaAs superlattices where the period of the potential and the
bandwidth are artificially tunable. This effect attracted a lot of attention due to
not only the evidence of the Bloch oscillation but also the application side of an

electro—optical switch utilizing the blue shift.

In the following we attempt a theoretical survey of the Stark ladder. Efforts will
be made to provide a comparison between the fully quantum mechanical treatment

and the semiclassical one.

In the semiclassical treatment within a band the particle moves according to the

“Newton” law



where 7 is the time. From this equation, we get
k(r) = ko —eE7/h. (1.3)

The semiclassical equations of motion are entirely determined when Eq. (1.2) is used

in conjunction with the definition of the velocity for a semiclassical electron

1 0e(ko — eE7/R)

where €(k) is the dispersion relation in the absence of the external electric field. v

and thus the position z are periodic functions of time with a period T equal to
Tg =27h/efa = 27 Jwp, (1.5)

since €(k) is periodic in k& with periodicity 27 /a. The oscillatory motion described
by Egs. (1.4) and (1.5) is the Bloch oscillation, and wg = F/% is the Bloch angular
frequency.

The quantum treatment of this problem, restricting ourselves to a one-band

tight-binding model [6,7], is described by the following Schrédinger equation,
t{C(z+1)+C(z—1)}+ FC(z) = EC(z), (1.6)

where t is the transfer integral between the nearest neighbor sites and the units are
chosen such that the lattice constant ¢ is unity. It has been shown by Katsura,
Hatta and Morita [6] that the wavefunction of Eq. (1.6) is represented by the Bessel

function

O(z) = Jo_, (2t/F), (1.7)

with the energy eigenvalue given by Eq. (1.1). The spacing between two consecutive
eigenvalues is hwg. These quantized energy levels originate from the periodicity of

the lattice. Subsequently, Kane {8] constructed the wavefunction by the superposition

3



of the Bloch wavefunctions for a general shape of a band, and has obtained exactly
the same spectra as Eq. (1.1). The obtained wavefunctions show a similar behavior
to the one in the tight-binding model(1.7), and are spatially localized, which one
could have anticipated from the semiclassical result, within the length of the order

of

A =2t/F. (1.8)

The Stark ladder representation may fail when F is so small that A exceeds the
crystal length L (scaled by a) [9]. Eq. (1.1), should be a good description when the

potential drop through the crystal, V = FL, satisfies the condition
V > W, (1.9)

where Wy = 2¢ is the bandwidth for the zero field.

It is remarkable that the spectrum (1.1) and wavefunction (1.7) of the Stark lad-
der states are very different from those of the Bloch states: in the former the energy
spectra are discrete and the wavefunctions are localized, while they are continuous
and extended in the latter. These contrasted characters occur in an infinite lat-
tice, where the electric field potential is unbounded even for an infinitesimally small

electric field and F = 0 is a singular point of the energy spectra.

In order to see the change from the Bloch states to the Stark ladder states, it
is thus necessary to examine the lattice of finite size, where the electric potential
drop through the system is finite. The energy spectrum of the finite linear chain is
investigated by Stey and Gusman [10] and Saitoh [11]. Indeed, the change from the
Bloch states to the Stark ladder states is smooth as a function of the electric field,

and in an intermediate field strength, there appear the Airy edge states, in which
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the wavefunctions are characterized by the Airy functions

Cilz) = 2n (?)1/3 Ai [@)mz + z,} : (110)

t

and the corresponding eigenenergy is represented by
E; = =2t +|Z;|(t F*)'/3, (1.11)
where Z; is the 1~th zero of the Airy function.

On the experimental side, the search for Stark ladders proved to be eiusive,'
although there have been reports on their indirect observation in the early 1970s
in a cubic ZnS [12] and wide-band-gap semiconductors {13]. Maekawa [12] found a
stepwise increase of the electrical conductivity as a function of electric field. These
results were theoretically analyzed by Saitoh [14]. Other experimental support [13]
for the existence of the Stark ladder has been given in the optical absorption study
by Koss and Lambert, although, as these authors pointed out, the experimental
uncertainty is rather large. Actually, the dominant effect of an electric field on the
absorption edge of a bulk semiconductor is the appearance of the Franz—Keldysh
effect [15,16], i.e., the optical-absorption coefficient exhibits a tail below the edge
of ¥ = 0 with an oscillatory behavior above there. These effects originate from the
ﬁeld—iqduced breakdown of the optical selection rules(Ak = 0) along the electric
field. In addition, for bulk samples, it was quickly réalized that the time needed to
complete a period of the semiclassical bound motion was considerably longer than
any realistic collision time due to impurities, defects, phonons, and so on, thus leaving
only a faint hope for observing this effect clearly.

Recently, due to the recent improvement of the epitaxial techniques, artificial
semiconductor heterostructures are realized [17]. For example, superlattices are pre-

pared by stacking GaAs layer and AlGaAs layer alternately and have the artificial

S



periodic potential along the growth axis. The superlattices consist of a series of
quantum wells coupled by the resonant tunnelling effect. They are unique systems
where the bandwidth can be controlled in the range of a few tens of meV. This band-
width is narrow enough for the condition (1.9) to be satisfied for moderate electric
fields in the range of a few tens of kV/cm and the high—field limit can be explored.
This narrow band is called miniband which is due to the long period of artificial
potential with the period of which is of the order of ym. Due to the long period,
the wavefunction is expected to be localized in one well for the extremely strong
electric field case. Note that this expected character is different from the case of the
uniform semiconductor sample which is mentioned before, where the wavefunction
is extended on the hundred or more atoms. Thus, Voisin suggested a reexamination
of the Stark problem in semiconductor superlattices from the point of view of the
inhibition of the resonant tunnel effect between consecutive wells. For such systems
as the field is increased, the system is expected to behave more and more like a se-
ries of uncoupled quantum wells, and its optical-absorption line shape evolves from
the miniband profile at F' = 0 to a step function [4] at large field, showing a blue
shift [18] of the absorption edge of the order of half the sum of the conduction and
valence miniband widths. Mendez et al [18]. and Voisin et al. [5] experimentally
demonstrated the existence of a blue shift in GaAs—AlGaAs superlattices. Since
then, several experiments have confirmed various aspects of the Stark ladder (19],
including a room temperature achievement of an electrooptical switch utilizing the

blue shift [20].

In the above discussion we suppose that there is no interband coupling and the
particle is confined to one band only. When the potential drop through the system

V becomes greater than the bandgap we must take into account the modification
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due to other bands. It has been discussed extensively whether or not the existence
of another band destroys the Stark ladder [14,21-28]. It is confirmed theoretically
that the Stark ladder exists within the multi-band tight-binding models [22,23,28].
In the experimental side the Stark ladder effect is confirmed in the high field, where
level of one band is made to anticross another level belonging to another band, as
demonstrated and analyzed by Schneider et al. [29], Nakayama et al. [30] and
Bastard et al. [31]. Even if the electric field becomes extremely stfong such as the
energy level belonging to the band of which wavefunction is localized in the well is
equal to one belonging to the next’ band of which wavefunction is localized in the
next well, the resonant couplings between the Stark localized states of minibands in
the electrorefiectance measurement is observed [32].

When two-dimensional systems are considered, another complexity arises die to
the freedom of the direction of the electric field with respect to the symmetry axis
of the lattice. When the direction of the electric field is [M, N], where M and N are
mutually prime each other and M N # 0, the periodicity along the field direction is
an irregular function of the angle between the field and the [1 0] direction, and in the
irrational direction, i.e., when the tangent of the angle is irrational, the periodicity
length can not be defined. We must study to answer the question whether or not
the physically observable quantity such as the density of states is a smooth function
of the angle. It is also interesting to see how the edge states which is described
by the Airy function in one-dimension case as mentioned before, are modified in

two—dimensions.
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Figure 1.1: Eigenenergies £/t is plotted against the normalized magnetic flux ¢/d.
The eigenenergies are calculated by the numerical diagonalization on the system of
which dimension L = 240.

1.2 Electronic States of the two—dimensional tight—
binding model in the Magnetic Field

When an electric field is switched off and only a magnetic field is applied perpen-
dicular to the lattice, it is known that the electronic spectrum of a two—dimensional
tight-binding model shows a fairly complicated behavior [33-35], as shown in Fig.
1.1, where £ is plotted against the magnetic flux ¢ in units of the flux quanta
¢o = ch/e. The structure often called the Hofstadter butterfly is characterized by
the recursive structure, and by multiple magnetic subbands with gaps induced by
the magnetic field [33,36]. This model is studied in several papers [37-40] as a trial

towards the understanding of the quantized Hall effect [41].
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An effective single-band Hamiltonian representing a crystal electron in a uniform
magnetic field is constructed from the tight-binding form of the Bloch -band by
replacing ik by the operator p + eA/c, where A is the vector potentiél [42]. Work
to justify this substitution has been done [2,43-45]. This substitution is possible as
long as we assume that the magnetic fields are weak enough so ﬁhat we .may neglect
contributions from different bands and that the magnetic fields are not too rapidly

varying.! By taking the Landau gauge for the vector potential:
A = B(0,z), (1.12)
the Hamiltonian is given by

H=-t>" [aiﬂyyawyy + a;y_Hax,z,,e"z"(‘f)/d"J + h. c] (1.13)

zY

where al (as,) creates (annihilates) an electron at site (z,y) and ¢ the transfer
integral between nearest neighbor sites. We restrict ourselves to the case of rational
flux, i.e., ¢ = Ba® = (p/q)$o where p and ¢ are mutually prime integers each other.

If the periodic boundary conditions are imposed along the y direction
Clz,y) = Cla,y + D), (1.14)

and the wavefunction is Fourier transformed with respect to y,

ZZI:: e C(z,y), (1.15)
where
k=2rm/L—=m, (m=0,1,---,L—1), (1.16)
then the Schrédinger equation leads
= o1 (k) + Cora(B)] + V(2)Cx (k) = EC.(F), (1.17)

'In our case these conditions are satisfied because we consider the uniform magnetic field and
for fields B ~ 10 oersteds and taking a ~ 1078 ¢m the Landau level separation is order of the
10~* compared to the bandwidth [46].



where k is the wave vector along the y direction and

V(z) = At cos (27T§:v 4 k), (1.18)

with A = 2 which is used for later reference. This equation is sometimes called
‘Harper’s equation [46] and has been studied by a number of authors [33,36,47]. As

the potential V(z) in Eq. (1.17) satisfies
V(z)=V(z+q), (1.19)

the magnetic unit cell is defined as stacked ¢ original unit cell in the z direction.
The eigenvalue of Eq. (1.17) is studied by Azbel [36] and later numerically solved by
Hofstadter [33] as shown in Fig. 1.1. Only rational value of p/q with interval 1/60
are sthn in the figure. The spectrum is divided into ¢ magnetic subbands with
gaps in between. When ¢ is the irrational multiple of the flux quantum, it has been
pointed out that the spectrum is uncountable but measure-zero set of points. This
is also related to the one dimensional system in the quasi periodic potential [48-50].
The properties of the wavefunction C,(k) also have been well understood. The
duality arguments suggest that for A < 2 all the states should be extended while
they are localized in the z direction for A > 2. At A = 2 all states are critical [51].
Wheg both the electric and magnetic fields are present [3,26,52,53], the question
~ arises whether or not the gaps induced by the magnetic field remain stable and how
the energy spectrum is modified. It is expected in the strong electric field that the
character of wave functions may change from the Landau type to the Stark ladder
one. Wannier et al. [2,3] discussed the possibility of handling the system under
both electric and magnetic fields in a infinite solid. In the real system, however, the
system boundaries have to be taken into account in the calculation of the energy

spectrum. Claro et al. [52] studied this problem numerically, where they used the
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single mode of sinusoidal potential due to the periodic potential and ignored Landau-
level mixing. It is not trivial, however, to answer the question whether or not the
effect of other magnetic subbands is negligible, especially for the neighboring bands
of the small gaps as shown in Fig. 1.1. Note that in the case of the tight-binding
model, the Landau-level is seen as the magnetic subbands for the weak magnetic
field near the band edge. Niu [26] studied the one dimensional tight—binding model
in the electric and periodic potential and showed the system is characterized by ¢
sets of Stark ladder, for the case A « 2 in Eqgs. (1.17) and (1.18). However the
accurate calculation for the two—dimensional tight-binding model of a finite system
in applied by the electric field in the plane and magnetic fields normal to it has never
done. Thus we calculate in this thesis the eigenvalues and eigenstates of it by the

numerical diagonalization.
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1.3 Quantum Dot Lattice

The model system may be realizable in the quantum dot lattices [54] made o>f semi-
conductors, in which the lattice spacing is controllable, and the strong field con-
dition considered in this thesis may be fulfilled easily by experimentally accessible
field strengths. The quantum dot lattice is realized by the progress of techniques
of lithography and etching techniques. It is possible to confine laterally quasi-two—
dimensional electron gases at semiconductor interfaces into dots of diameter less than
the mean free path of electrons at low temperatures. The sample has a MOS (metal-
oxide-semiconductor systems) capacitor with a cross—grated NiCr evaporated onto
the InSb substrate. At the interface between NiCr and InSb a Schottky contact is
established and the Fermi energy Er is pinned within the band gap. Under the
small dot areas where there is no metal on the InSb surface, mobile electrons can be
induced by the gate voltage since the InSb substrate has a finite resistivity even at
liquid helium temperatures. In the above structure theré is no tunneling between ad-
jacent dots since the barrier between dots is high and barrier width is long ~ 150nm.
Thus this sample is inadequate for our purpose. We need the dots lattice with low
barrier and short periodicity of them for electrons to be able to tunnel between dots
so that the mini-bands are made. Such suitable sample has not been realized yet
as far a:; the author knows, and thus the more improvement of the techniques is

necessary for realization of the model considered in this work.



1.4 Organization of This Thesis

The organization of this thesis is as follows. In the following chapter, we diécuss the
electronic states and wavefunctions of the two dimensional tight-binding model in
the electric field. We calculate them numerically by diagonalization and the den-
sity of states are presented as functions of the angle between the electric field and
the symmetry axis of the lattice. Unexpected gaps open near the band edges for
appropriate electric fields, the magnitudes and the positions of which are smooth
functions of the angle for a fixed electric field. The effects of the system edges are
also discussed.

In Chapter 3, the electronic states of the two-~dimensional tight-binding model
when the electric field is applied in the plane and magnetic field normal to it are
studied. The magnetic subbands in the absence of the electric field are modified by
the presence of the electric field and it is discussed whether or not the eigenenergies
for high electric fields are represented by the Stark ladder states associated with each
of the magnetic subbands. The influence on the density of states by the change of
the direction of the electric field is also discussed.

In Chapter 4, the nature of the ballistic transport properties of the two~dimensional
lattice in the strong electric fields is investigated. Combination of the electric and
magne’;ic fields makes the electron wave functions localized in the electric field direc-
tion which is considered as the narrow channels perpendicular to the electric field.
Numerical computations are performed on t.he basis of the two—terminal Landauer
formula for the conductance on the narrow channel with the transmission coeffi-
cients calculated from the recursive Green’s function technique. The magnetic field
and random potential dependence is calculated. The final chapter is devoted to

summary and concluding remarks.
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Chapter 2

Stark Ladders in a Two—Dimensional
Tight—Binding Lattice

In this chapter the electronic states of a two-dimensional tight-binding model in a
uniform electric field are studied. Numerical solutions for eigenenergies and eigen-
functions are presented as functions of the angle between the electric field and the
symmetry axis of the lattice. When the direction of the electric field is [M, N, where
M and N are mutually prime each other and M N # 0, the eigenenergies are shown
to be quantized with an interval equal to the potential drop between the nearest
neighbor equi-potential lines. Though the level separation varies discontinuously
with the change of the direction, the smeared out density of states is shown to be
independent of the direction of the electric field, except for the direction {1 0] where
the motions parallel and perpendicular to the electric field directions are separable.
Unexpected gaps open near the band edges for appropriate electric fields, the magni-

tudes and the positions of which are smooth functions of the angle for a fixed electric

field.
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2.1 Introduction to Chapter 2

The electronic energy spectra in a periodic potential in an electric field ha\}e been
studied extensively [1,2,6,8]. In a one-dimensional single-band tight-binding model,
it has been shown by Katsura, Hatta and Morita [6] that the wavefunction is repre-
sented by the Bessel function and the energy spectra are quantized with the separa-
tion of the electric potential drop F across a unit cell. These quantized energy levels
originate from the periodicity of the lattice and are called Stark ladders by Wannier
[2].

It is remarkable that the characters of the Stark ladder states are very different
from the Bloch states: in the former the energy spectra are discrete and the wave-
functions are localized, while they are continuous and extended in the latter. These
contrasted characters occur in an infinité lattice, where the electric field potential
is unbounded even for an infinitesimally small electric field and F' = 0 is a singular
point of the energy spegtra.

In order to see the transition from the Bloch states to the Stark ladder states,
it is necessary to examine the lattice of finite size, where the electric potential drop
through the system is finite. The energy spectrum of the finite linear chain is in-
vestigated by Stey and Gusman [10] and Saitoh [11], in which the wavefunction is
characterized by the Airy type wavefunction Eq. (1.10). This Airy type spectrum is
observed most easily near the band edges.

When two—-dimensional S);stems are considered, another complexity arises due
to the freedom of the direction of the electric field with respect to the symmetry
axis of the lattice. Except for the trivial case of [1 0], the periodicity along the
field direction is an irregular function of the angle between the field and the [1 0]

direction. In the irrational direction, where the tangent of the angle is irrational,

16



the periodiéity length can not be defined. It is not trivial to answer the question
whether or not the physically observable quantity such as the density of states is a
smooth function of the angle. It is also interesting to see how the edge states are
modified in two-dimensions.

In this chapter, to answer the above questions, we investigate the energy spectra
in the two-dimensional tight-binding model of the square lattice when the electric
field is applied in various directions. The model system may be realizable in the
quantum dot lattices made of semiconductors, in which the lattice spacing is con-
trollable, and the strong field condition considered in this chapter may be fulfilled
easily by experimentally accessible field strengths.

The organization of this chapter is the following. In the following Section, we
calculate the energy spectra analytically assuming the periodic boundary conditions.
In Section 2.3, the model for the numerical calculation is given. The energy spectra,
the density of states and the wave functions are studied by numerical calculations
for systems of finite size in Section 2.4. Section 2.5 is devoted to discussion and the

summary is given in the final section.
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2.2 Solutions for Bulk States

We consider electrons on a two—dimensional lattice described by the tight-binding

model. The Hamiltonian is given by

F
H = —t E al iyt g0z, +Z—— (Mz + Ny) a; ary, (2.1)
Z +oy+ Yy - A/,[2+N2 Yy Yy

Z2Y (0,8)=(£1,0),(0,%1)
where al (as,) creates (annihilates) an electron at site (z,y), ¢ the transfer integral
between the nearest neighbor sites and the lattice constant a is set unity. The
electric field is assumed to be applied along the direction [M, N} with M and N
being relatively prime integers.
When the electric field is applied in the direction of the crystal axis, 7.e., [M, N] =

[1 0], the Hamiltonian (2.1) is easily diagonalized and the eigenvalues are explicitly

written as
E(v,k) = Fv —2tcosk, (k=2mm/L;, v=0,---,L—1), (2.2)
and the corresponding wavefunction is given by
Coirl(z,y) = L_l/QJm_l,(‘.Zt/F)eiky, (2.3)

where v 1s an integer. In the above L is the system linear dimension and the periodic
boundary condition is assumed. The first term originates from the Stark ladder
states 'along the z~direction where v corresponds to the gravity center of the squared
eigenfunction, and the second comes from the hopping of electrons in the y—direction.
In this case, the energy spectrum consists of multiple bands, the centers of which are
located in a equi—-distant manner.

When the field is not in the direction of the crystal axis, i.e., [M, N] % [1 0], the

Schrodinger equation for the Hamiltonian (2.1) is not decoupled into the equations
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for the z— and y—directions. To obtain the energy spectrum in this case, we rotate

the coordinate (z,y) to (£,m) by

¢ = (Ma+Ny)/VIPFIV,

1 = (-Ne+ My VIPTN, ey

where the direction of the axis £ is parallel to the electric field and that of 5 per-
pendicular to it. Then by the standard argument in crystallography, the equivalent
lattice net lines {M, N} are characterized by the integral values of ém, and
the distance between the nearest neighbor net lines is given by d = 1/v/M? + N2.
On each of the net lines the lattice points are located 1/d apart. The eigenfunction

1) 1s given by the linear combination of the wave function at each site,

b= C&n)E ), (2.5)
&m

where |£,7) is the state localized at site (£,n) and C(&,n) is its amplitude. From

equations (2.1) and (2.5), we obtain

—+{C(¢ + Nd,n+ Md) + C(¢ = Nd,n — Md) + C(£ + Md,n — Nd)

+C(§ = Md,n+ Nd)} +FEC(E,m) = EC(&,n). (2.6)

We assume the periodic boundary condition along the 7—direction with the period

L = K/d where K is a positive integer, viz.,

Clen+L)=Clén), (2.7)

and Fourier transform C'(£,7) by

1 Ld-1 .
Clem =1 3 e0,(6), (2.
m=0
where
g=2rm/L —nd, (m=0,1,---,Ld~1). (2.9)
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Then we have

—t{eMUC, (¢ + Nd) + e MUC, (¢ — Nd)

NG, (6 + Md) +eNUC, (€ — Md)} + FEC,(€) = EC,(€).  (2.10)
Next, the periodic boundary condition along the {—direction is imposed, viz.,
Cq(f + L) = Cq(é)a (2‘11)

“and the amplitude is Fourier transformed by

| Lid-1
Cq(g) = E Z eszCp,q’ (2'12)
(=0
where
p=2xl/L—-x/d, (I=0,1,---,L/d—1). (2.13)
Then we have
Cp+27r/d,q = CP’Q‘ (2~14)

The ¢-linear term in Eq.(2.10) can be transformed to

1 2n/d

£ Co(8) = o Jo dp feipgcpaq
B 1 2w /d g 0
= 5/ dp e za—pCp,q, (2.15)

where the integral by parts was performed to reach the final line. We obtain from

(2.10),
0Cpq _ _E—clpg)
i R 2.

T 1 T Cpoa (2.16)

Where,
(p,q) = —2t {cosd(Mp — Ng) + cosd(Np+ Mq)}, (2.17)

and the solution of (2.16) is given by
Z. 4 / !

Chpq X €XP {—F/O {E —€(p,q)}dp'|. (2.18)
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The periodicity condition (2.14) leads to
E = Fdv, (v = integer). (2.19)

This result indicates that there is no dispersion in E like (2.2) and to each Stark
ladder state there correspond Ld different values of the wavenumber g, or in other
words, the degeneracy factor is . This is because in the case of general [M, N], the
hopping of the electron onto the sites on the same equi-potential line, 7.e., on the
same net line, is forbidden while it is allowed for [1 0] case.

The wavefunction C,(£) as obtained by the inverse Fourier transformation of
(2.18) is localized within the length of the order of A given by (1.8). For example, in

the case of [M, N] = [1 1] the wave function (2.17) is rewritten as

J\/Eg—u <4\/§t cos (q/\/é)/F) , for cos q/\/§ #0,
6 /3t-v0 » for cosq/+/2 =10,

Co(€) = {

and the localization length is given by 4v/2t cos (¢/v/2)/F which is ¢-dependent.
The treatment here is valid as long as the localization length is much smaller
than the system size, and in a finite system the energy spectrum (2.19) is realized
only in the band center when Wy/F S L, or V 2 W, where V = FL is the potential
drop through the system and W, = 8¢ the bandwidth for the zero field. However
effects of the boundaries have not been considered in the above derivation. Since the

states near the system edges are difficult to discuss quantitatively by the analytic

calculation, we will perform numerical calculations of Eq. (2.10) in the next section.



2.3 Model for the Numerical Calculation

The super cell used in our numerical calculation is illustrated in Fig. 2.1, énd the
lattice is assumed to be composed of I x K super cells where K is a positive integer,
or in other words the system linear dimension is given by L = K+/MZ% + N2?. Integer
K is so chosen that L remains roughly constant (= 150) for various directions of the
electric fields. Typically X' = 6 ~ 20 in our calculations.

The density of states per site is defined by

D(E) = Y 6B~ E)
1

- Allvrriozi: L2\ /mA

exp{—(E—Eif/Az}, (2.21)

where E; is the i-th eigenvalue. To avoid the divergence due to the delta function,
we set A to be a finite value in (2.21), instead of taking the limit to zero. We take
A = (Wy + V) /2L, which means that A is comparable to each ladder separation in

the Stark ladder region. The energy origin is taken to be £ = V/2.

]
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Figure 2.1: Slanted super cell for the electric field direction [M, N]. The electron.
at site [, 7] can hop to [ + Md,p — NdJ, [6 + Nd,n + Md), [ — Md,n + Nd] and
[6 — Nd,n — Md), where d = (M? 4+ N?)~'/2 is the separation between the nearest

net lhnes.



2.4 Numerical Results in Finite Systems

The eigenvalues, density of states and wavefunctions in two—dimensional tight-binding
model in the electric field are numerically studied based on Eq. (2.1) with the pe-
riodic boundary conditions when the direction and magnitude are changed.. The
density of states is calculated for weak (V = 0.5W;), intermediate (V = W,) and
strong (V = 16W,) electric fields. In Fig. 2.2a, the density of states in the weak
electric field is shown for the case of the nonsymmetric direction [M, N] = [3 1]. The
logarithmic singularity, :.e., the van Hove singularity of the density of stbatesJr of the
2D square lattice at the center , which exists at F' = 0, disappears. Near the band
edges there appear oscillations of the density of states, and the energy position of the
i—th peak counted from the band bottom is written by |Z;| (¢ F2)1/3 + const. as given
by Eq. (1.11). Thus the eigenenergies are understood as the sum of |Z;] (¢ F2)1/3
and a term originating from the degree of freedom perpendicular to the field. This
point will be discussed in Section 2.5. The bandwidth is of the order of Wy + V. We
have confirmed that the density of states is almost independent of the direction of
the electric field in these magnitudes of the field strength as shown below.

In the intermediate electric field shown in Fig. 2.2b, the Stark ladder states do

not appear, because the wavefunctions still extend through the system. We have

IThe density of states in two dimensional square lattice is given by

1 1 E\?
D(E)= 15 8(E~B)=g5K 1= (3) |,
k

where K (k) = fow/g d8(1 — &% sin® 0)~1/2 is the elliptic integral. Thus, the density of states near
the band center (]E| = 0) is approximately given by

pe) {3 (%) 1) 1},
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Figure 2.2: Electric field dependence of the density of states for the field direction
[M,N] = [3 1] at (a) the weak electric field V = 0.5W; and at (b) the intermediate
electric field V = Wy, where Wy = 8t is the bandwidth at zero electric field, V the

potential drop across the lattice, and L the lattice linear dimension.
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Figure 2.3: Density of states at the strong electric field V = 16W, for the direction
[M,N]=[31].

confirmed that the Stark ladder states appear in the band center, when the electric
field is greater than W5/ L. This is consistent with the argument in Section 2.2 that
wavefunctions for the Stark ladder states are localized along the field direction within
the length of the order of A ~ Wy /2F.

In Fig. 2.3, an example of the density of states is plotted for the strong electric
field (V = 16W,). It is flat near the band center indicating the existence of the
Stark ladder. The density of states in the flat region is 1/V, which is confirmed to
be independent of the direction of the electric field. This indicates that the energy
spacing is F'//v/M? + N? and the degeneracy factor of each level in the band center is
L/\/W = K as discussed for the infinite lattice in Section 2.2 and the factor

VM? + N? cancels out in the density of states. These discretized eigenvalues for
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Figure 2.4: The squared amplitude of wavefunctions for the eigenvalues (a) v =220
and (b)v = 2, where d = (M? + N?)~/2 is the equivalent net line distance.

the nonsymmetric direction are contrasted to the continuous eigenvalues of (2.2) for
the symmetric direction. When the electric field is applied parallel to the symmetry
direction, 2.e., [M, N] = [1 0], the density of states is given by the superposition of
1D density of states centered at £ = Fv, and is not flat but has oscillations which
is clearfly seen due to the 1D van Hove singularity. Near the band edges, oscillatory
peaks are seen in Fig. 2.3, which are again due to the Airy type spectrum as in the

weak electric field case.

In Fig. 2.4a, we show an example of the squared amplitude of the wavefunction
Cq(€) corresponding to a state near the band center for V = 16W, and [M, N] = [31].
It is seen that they are symmetric and that the characteristic localization length is

of the order of Wy/F similar to the 1D case. In Fig. 2.4b, we show the squared
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Figure 2.5: The direction of the electric field N/M vs. the eigenenergies in the lower
band region for F' = 0.1W,. Arrows indicate the dense energy positions.

wavefunction amplitude corresponding to the state near the band edge. As discussed
before, the behavior of the wavefunction parallel to the electric field is characterized

essentiaHy by the Airy function.

To see these edge levels in detail, the energy spectruin is plotted in Fig. 2.5 for
different electric field directions. The magnitude of the electric field F' = 0.1W; is
fixed which is nearly equivalent to the strong field case V' = 16W,. Near the band
edge, there are regions where the states become more dense than the lowe1‘ energy
region of which are independent of the field direction (see arrows in the figure). These

dense regions correspond to the Airy type spectrum and show up as peaks in the
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density of states in Fig. 2.3.

It 1s remarkable that many energy gaps which are not related to the Airy states are
seen in the lower energy region and their magnitude and location vary continuously
with the field direction N/M. It is confirmed that these gaps do not appreciably
depend on the lattice size L for constant F'. These gaps are not clearly seen in the
density of states in Fig. 2.3, because the width A in (2.21) is taken to be largef than

these gaps. The physical origin of these energy gaps is discussed in next section.



2.5 Discussion about Edge States

First we discuss the Airy states in the two dimensional lattice. To obtaiﬁ wave-
functions and eigenenér_gies for the edge states for the general direction [M, N], we
expand the wavefunction in (2.10) around £ up to the second order. The resulting
second order differential equation with respect to £ is easily converted to the Airy
type equation. Assuming that the wavefunction vanishes at the boundary £ = 0, we

obtain, apart from the normalization factor,

' 1/3
Ci(6) = exp {=iBla)¢/2D (@) A ((%) £+ z:-) L k)

with the corresponding eigenenergy

s Blg)® +44(9)D(g)

Eiq) = 1Z|(F*D(q , 2.23
(@) = 121 D(e) o 223
where

A(q) = 2t(cos Mdgq + cos Ndg),

B(q) = 2td(Nsin Mdg— M sin Ndq), (2.24)

D(q) = td*(N*cos Mdg+ M?*cos Ndq).

This is an obvious extension of the one dimensional version given in (1.10). The first
term represents the Airy steps and the second the dispersion. Since |¢| is smaller

than nd as seen from (2.9), we obtain
Efg)~ 124 {10 = MNP} T 1 =) ole®), - (225)

for small ¢. This indicates that the energy is quantized to | Z;|(F*¢)*/® with the width

of the order of |Z;|(F%)/*(MNd*)?¢?/3. We understand that the dense region in

Fig. 2.5 which is independent of the direction of the electric field corresponds to the
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Airy steps. The oscillation of the density of states as seen in Figs. 2.2 and 2.3 is also
explained by this eigenenergy Eq. (2.25). The peak positions in Fig. 2.2a measured
from the first peak are 1.85x1072,3.36 x 1072,4.69 x1072,. .., and the corresponding
values estimated from eigenenergies (2.25) are 1.88x1072,3.43x1072,4.79x 1072, . |

and their correspondence is satisfactory.

Next, we consider the gaps shown in Fig. 2.5. To see the electric field depen-
dence of the gaps, the energy spectrum is replotted as a funcfion of the electric field
in Fig. 2.6a, where the direction of the electric field is fixed to [M, N] = [6 1]. At
sufficiently high electric field, the energy spectrum is quantized to the Stark ladder
levels. As the electric field decreases, the Stark levels are broadened and the energy
spacings among them become narrowed, and finally the energy levels become con-
tinuous at sufficiently small electric field. In Fig. 2.6b, the similar plot is shown
for [M, N] = [11 2] which is close to the direction [M,N] = [6 1]. The magnitude
of gaps decreases with decreasing field similarly to the case of [M,N] = [6 1]. It is
remarkable that the magnitude and location of the second gap for [M, N] = [11 2]
1s nearly equal to the first gap for [M, N] = [6 1]. In the case of general direction
[M, N], it is confirmed that the Nn-th energy gap counted from the bottom, with 7
an int§ger, persists until the field becomes small enough F = 0.1W; and thaf other
gaps are destroyed at rather high fields. The magnitudes and the locations of the
persisting gaps are continuous functions of the field direction N/M. The gaps seen
in Fig. 2.5 correspond to the above mentioned persisting gaps. These phenomena
are understood qualitatively as follows. In the general direction of [M, N], first N
net lines from the system edge have no hopping lattice points at the edge side (cf.
Fig. 2.1). As a general rule, the environment of the n—th group of net lines located

at Nn+1,Nn+2,...,Nn+ N from the edge is similar. The eigenenergy E:(q) of

31



(@) IM,N}=[06 1]

06 1

F/W

04 - |
02 7 smom e e e

0 T T }

{b) (MNJ=[112]

...........

06 4 D T T .

FIW,

D4 + -

02 4 =

0

Pigure 2.6: The electric field dependence of the eigenenergies for fixed field directions,
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the edge state is closely related to the position of the wavefunction since the gravity
center of the wavefunction (£);, is given by 0FE;(¢)/0F by Feynman—Hellman theo-
rem [55]. Therefore, the above situation leads to the result that each group of N
eigenenergies is almost degenerate and gaps open between each groups. The mean
positions of the gaps are also controlled by (£), which will be a,v smooth function of
the angle.

Finally we discuss the characteristic parameters of our calculations. The overall
shape of the density of states, such as the bandwidth or the region of energy where
the Stark ladder states exist, is characterized by the potential drop V = FL. On
the other hand the edge states are governed by the field strength F, e.g., separation
of the oscillations in the density of states near the band edges. There are no direct
system size dependence within the sizes performed in our calculations as long as
they are scaled properly by V or F. It should be noted also that the choice of the
boundary conditions, either periodic or Dirichlet type, does not alter the conclusions

given above.
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2.6 Summary of Chapter 2

In this chapter, the electronic states of a two-dimensional tight-binding mod-el ina
uniform electric field are studied in which the direction of electric field is varied. It
is shown that the magnitude of the density of states at the plateau on the center of
the band region is independent of the field direction when the Stark ladder states
appear, although the periodicity of the crystal along the electric field is a chaotic
function of the field direction, and hence the Stark ladder spacing becomes erratic.
By looking at the finite lattice, we find that the edge states are characterized by the
Airy spectrum and that some unexpected energy gaps appear for the appropriate
electric fleld strength. The features found in the finite lattice, if they are properly

scaled by either F' or V| do not depend explicitly on the system size.
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Chapter 3

Two—Dimensional Tight—Binding Lattice in
Electric and Magnetic Fields

Electronic states of a two—dimensional tight-binding model on a two-dimensional
square lattice yvith finite size in the presence of both uniform electric and magnetic
fields are studied. Numerical solutions for eigenenergies are presented. The magnetic
subbands at zero electric field known as the Hofstadter butterfly are modified by
the electric field and the eigenenergies for high electric fields are represented by the
Stark ladder states associated with each of the magnetic subbands. When the electric
potential drop across the system becomes comparable to the bandwidth of zero field,
the density of states becomes the pyramid shape with steps, the steps being induced
by the finiteness of the lattice. The influence on the density of states by the change

of the direction of the electric field is also discussed.
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3.1 Introduction to Chapter 3

It is known that the electronic spectrum of a two-dimensional tight—binding model
in high magnetic fields shows a fairly complicated structure [33-35]. The structure
often called the Hofstadter butterfly is characterized by the self-similarity and by
multiple magnetic subbands with gaps induced by the magnetic field [33,36]. When
the magnetic flux ¢ per unit cell is equal to (p/q)¢o, where p and ¢ are mutually
prime integers and ¢o = ch/e is the flux quantum, the spectrum is divided into ¢
magnetic subbands with gaps in between. This model is studied in several papers
[37-40] as a trial towards the understanding of the quantized Hall effect [41].

When a magnetic field is switched off and only an electric field £ is applied parallel
to the lattice as discussed in Chapter 2, the wavefunctions are localized in parallel to
the electric field and a set of discrete eigenenergies called Stark ladders is generated
for sufficiently strong electric fields [1,2,6,10,11]. Its energy level spacing is uniform
and is equal to the potential drop across the lattice periodicity length. When the
electric field is applied parallel to the direction [M, N], where M and N are integers
prime to each other, the periodicity length d in units of the lattice constant a is
given by d = (M? 4+ N?)~1/2 and the ladder spacing is given by F'd where F' = efa
with —e the electron charge [56,57]. When the angle § (tan§ = N/M) between the
electric ﬁeld and the symmetry axis is changed slightly, a pair of M and N changes
irregularly, so that the periodicity length becomes an erratic function of §. In the
irrational direction, where tan @ is irrational, the periodicity length is no more well-
defined. In this connection the question will be raised whether or not this irregularity
is reflected in the observable quantities such as the density of states. The dependence
of the energy spectrum on the angle between external electric field and crystal axis

has been investigated in a previous chapter [56,57] when magnetic field is absent. It
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has 1béen shown that the smeared out density of states becomes independent of the
direction of the electric field at strong fields, though the level separation F'd varies
discontinuously with the change of the field direction.

When both the electric and magnetic fields are present [52,53], the question arises
whether or not the gaps induced by the magnetic field remain stable and how the
energy spectrum is modified. In this chapter we analyze the interplay of magnetic
and electric fields to answer these questions. We investigate the energy spectra in
the two-dimensional tight-binding model of the square lattice with the magnetic
field applied normal to the surface and the electric field applied in various directions
parallel to the surface. The organization of this chapter is the following. In Section
3.2 we introdqce the Harper equation [46] modified by the electric field term. In
Section 3.3, the energy spectra and the density of states are calculated numerically
for lattices of finite size assuming the periodic boundary conditions. Section 3.4 is
devoted to discussion on the symmetries of this model and the summary is given in

the final section.
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3.2 Two—Dimensional Tight—Binding Model on
Crossed Electric and Magnetic Fields

We consider a tight-binding model with a nearest-neighbor transfer integral —¢ on
a square lattice with lattice constant a. We assume that an electric field £ is applied
parallel to the direction [M, N], and a magnetic field B normal to the lattice plane.

It is convenient to use the following gauge for the vector potential:

A <_N(M'm+Ny) M(Ma:—%—Ny))B' (3.1)

M2+N2 ? M? 4+ N2

The effect of the magnetic field is taken into account by the Peierls phase factor [42]
of the transfer integral, and the Hamiltonian is given by
‘ H = —¢ Z [alﬂ G yez’27rq5N(]W(x+1/2)+Ny)d2

Y

-+ al,y%—1az,ye—i2w¢M(Mx+N(y+1/2))d2 + hc}

+ Y Fd(Mz + Ny)al as,, (3.2)

zy
where af  (a.,) creates (annihilates) an electron at site (z,y), F' = e£a is the electric
potential drop across the lattice constant a, ¢ = Ba® the magnetic flux per unit cell
and d = a/\/m. In the above, units are chosen such that the lattice constant
a and th§ magnetic flux quantum ¢o = ch/e are unity.
For later convenience we rotate the coordinate system and define a new set of

variables £ and 7 by

{ ¢ = (Ma + Ny)/v/M2 + N2, (3.3)

n=(—Nz+ My)//M?+ N?
where the direction of the axis £ is parallel to the electric field and n perpendicular

to it. Then by the standard argument in crystallography, the equivalent lattice

net lines {M, N} are characterized by the integral values of £&4/M? + N2, and the

38



distance between the nearest neighbor net lines is given by d = 1/+/M? + N2. On

each of the net line the lattice points are located 1/d apart. These transformations

lead to the Schrodinger equation:

~t[C(€ + Nd, 7 + Md)exp {~i2r$Md(¢ + Nd/2)}

+

_+_

_{,_

+

C(¢ — Nd,n — Md)exp {i2r¢ Md(é — Nd/2)}
C(é+ Md,n — Nd)exp {i2r¢Nd(£ + Md/2)}
C(€ — Md,n + Nd)exp {—i2r gNd(€ — Md/2)}]

FEC(E,n) = E C(&,n), (3.4)

where C(¢,7) is the amplitude of the eigenfunction on site (£,7). We assume here

the periodic boundary condition along the 7 direction with a period L = K/d where

L is the system size and K a positive integer, viz.,

C(&n+ L) =C(&n), (3.5)

and Fourier transform C(£,7) by

where

Then we have

1 K=1
Cl&m) = 30 eCu(©), (36)
k=2mm/L—nd, (m=0,1---,K—-1) (3.7)

—t {MAUSCHINEN O (¢ 4 Nd) + e MAE=28 N 0 (¢ V)

+e—iNd(k—2w¢({+dNI/2))Ck(g + Md) +ez’Nd(k—?vrqS({—dM/?))Ck(s B Md)}

+IECHE) = ECK(¢). (3.8)

The advantage of employing the gauge (3.1) is now clear. Namely, we can reduce

the Hamiltonian for two dimensions into an equation for one dimension which con-

tains the wavenumber & as a parameter, and the numerical treatment to derive the
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eigenenergies becomes much easier than to analyze the original Hamiltonian (3.2).
In the next section, the above Schrodinger equation is numerically solved with the
boundary condition Cx(£) = Ck(£ + L) in various electric and magnetic fields, and

the results will be shown.
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3.3 Results of the Numerical Calculation

3.3.1 Density of States

In this section, the eigenvalues and the density of states of the two—dimensional tight—
binding model given by (3.8) in the presence of both the electric and magnetic fields
are numerically calculated under the periodic boundary conditions. Since in finite
systems, the density of states consists of a set of delta functions, it is inconvenient for
the graphical representation. We present here instead the smoothed density of states,
which is the convolution with the Gaussian shape (Eq. (2.21)) with the appropriate
width in the same manner in the Section 2.3 [56].

We first discuss the case where the direction of the electric field is parallel to the
symmetry axis, i.e., [M, N] = [1 0]. The density of states for various electric fields
is shown in Fig. 3.1 with the lattice linear dimension L = 400. The magnetic flux
is fixed to be ¢ = 1/4 (p = 1,¢ = 4). In the zero electric field, as shown in Fig.
3.1a, the density of states is known [58] to be symmetric with respect to £ and be
composed of ¢ magnetic subbands, Where central two subbands touch together at
E = 0. For ¢ = 1/4 the bandwidths of the 1st and 2nd magnetic subbands from the
bottom are (2\/5 Y/ 2\/§> Wo/8 = 0.0269W, and /4 — 2v/2Ws/8 = 0.1353W,,
respectively, the band-gap between them being (\/Z—k 22 — \/4 - 2\/§> Wo/8 =
0.1913W,, and the overall bandwidth of the four subbands is I/Vo/\/fz, where Wy = 8t

is the bandwidth of the zero electric and magnetic fields [59,60].

For the non-zero electric field, the important parameter is the ratio V/W, where
V = F'L is the potential drop through the system [11], since the Stark ladder states
are expected to be generated when V' becomes comparable to or greater than the
magnetic subband widths. For small V, the bandwidth of each magnetic subband

increases with ¥V and the two subbands in the center merge into one to result in a
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Figure 3.1: Electric field dependence of the density of states for the field direction
[M,N] = [1 0] and the magnetic flux ¢/¢o = 1/4. The potential drop through the
sample V = F'L is given by (a) V/W, = 0, (b) V/W, = 0.1, (c) V/W, = 0.25, (d)
V/Wy = 0.5 and (e) V/Wy = 1.0, respectively, where L the sample length along the
electric field and W, the bandwidth for zero magnetic and electric fields.



central subbands with two peaks and two subbands at both side as shown in Fig.
3.1b. The two subbands at both side has plateau in the center, which indicates that
states in the subbands are in the Stark ladder states. The potential drop V is larger
than the original subbandwidth of the both sided bands. As V is further increased,
the two peaks in the middle merge into one, and the density of states gradually loses
the original four peaked character toresult in the three peaked shape as shown in Fig.
3.1c. In this figure, V equals 0.25W, which is equal to the energy distance between
the two peaks of the first and the second magnetic subbands at V' = 0. For this value
of V, the widths of the two central magnetic subbands are widened and the overlap
of these two bands at E ~ 0 becomes appreciable so that two subbands merge into
one to form a single peak at the center. There are two peaks on either side. The peak
consists from the overlap of the outer and inner subband. With increasing V, two
peaks on both sides in Fig. 3.1c grow to reach the stage where the central peak is
no more observable and only the two pronounced peaks are seen on the two-stepped
mesa as shown in Fig. 3.1d. The reason why the shape of the density of states
becomes the stepped mesa is understood qualitatively in the following way. When
only the magnetic field is applied with the flux ¢ = p/q per unit area, the band is
split into ¢ magnetic subbands as mentioned before. When the parallel electric field
is introduced in addition to the magnetic field, ¢ sets of the Stark ladder states will
be formed which are associated with each of the magnetic subbands [22,24,27 28].
The step-height of the mesa is roughly given by W,/ (4V), since the density of states
is given by 1/(¢F L) as will be explained in the next section. Thus the step—height
of the density of states indicates the number of the overlapped Stark ladders which
originate from each of the magnetic subbands. The two peaks seen in the density of

states in Fig. 3.1d are caused by the small overlap of three sets of the Stark ladders.
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In the strong field such that V becomes of the order of Wy, the density of states
becomes the pyramid shape with ¢ steps as shown in Fig. 3.1le. The first, third and
fourth steps are almost flat, indicating that the Stark ladders are formed for all of
the four subbands. At the second step, the density of states has wiggles unlike other
steps. These are caused by the edge states where the wavefunctions are localized near
the sample edge (X = +L/2) because of the triangular potential at both ends and
their eigenvalues are not equi-distant. Note also that the total bandwidth increases
monotonically with the electric field, and is roughly given by V 4+ W, for the strong
enough field V' 2 Wy. In the extreme electric field such that FF 2 Wy or V 2 Wy,
where L is the system size normalized by the lattice constant a, the density of states
becomes structgreless showing only one flat plateau, the height of which is given by
1/F.

In order to see the existence of the Stark ladder states more clearly, the eigenen-
ergy against the gravity center of the eigenstate is plotted in Fig. 3.2 for V = W,

where the gravity center X is defined by

X =3 ¢ICk(O)F. (3.9)
€

The eigenenergies for V = W, are characterized by three bands with the same
slope F' (cf. also Fig. 3.le). The (;,onstant slope indicates the formation of the
Stark 1adder states. The central wide band consists of the two dark narrow belts
connected by a light wide belt in between. The two narrow belts in the middle
and two detached bands located at the top and the bottom originates from the
four magnetic subbands in the absence of F. The light wide belt in the center
originates from the hybridized states of the two central magnetic subbands, where
the wavefunctions are characterized by the resonating states between the two central

subbands. The number of the hybridized states is smaller than the number of states
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Figure 3.2: Eigenenergies against the gravity center X of the wavefunction for V =
Wo and ¢/do = 1/4. Four sets of the Stark ladder states represented by dark belts
are associated with each of the magnetic subbands.

on the bands which consist from two narrow belts in the middle and two detached
bands located at the top and the bottom. Note that the edge states at both ends of
the sample are clearly seen. The number of the edge states is much smaller than the
bulk states, the ratio of which is of the order of L™*. The number of overlapped bands
is one for |E/Wy| > 0.6, two for 0.6 > |E/W;| > 0.4, three for 0.4 > |E/W,| > 0.15,
and four for |E//Wy| < 0.15. These numbers are reflected into the steps in the density

of states in Fig. 3.1e.

3.3.2 Magnetic Field Dependence of the Eigenenergy

In order to eliminate the shift of the energy by the electric field, E — FX is plotted

against the normalized magnetic flux for V = W, in Fig. 3.3. Here, in order to see
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Figure 3.3: The magnetic field dependence of £ — FX, where the energy states
corresponding to the wave functions located at |X| > L/4 are omitted from the
diagram.

the bulk property of the energy states, the wave functions located at [X| > L /4 are
omitted from the diagram. The similarity of this diagram to the Hofstadter diagram
shown in Fig. 1.1 [33] is clear, though some of the small band gaps are destroyed
by the electric field. This similarity at moderate electric fields indicates that the
eigenenergy £ is given by the sum of the eigenenergy for zero electric field and the
expectation value of the electric potential F'X. When the localization length of the
wavefunction is smaller than the magnetic length | = /% /(eB) = \/a?¢o/(27¢), the
magnetic subbands merge into one. In the extreme electric field strength such that

'~ Wy or Va Wyl all the gaps observed in Fig. 3.3 will be destroyed.
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3.3.3 Dispersion Relation and the Dependence on the Di-
rection of the Electric Field

In order to see the dependence on k for [M, N] = [1 0], we plot £ — FX against k as
shown in Fig. 3.4a. Most of the energy eigenvalues denoted by thick lines have the
periodicity of 2r/q (¢ = 4 in this case). Thin lines with the k periodicity which are
going parallel to the thick lines around |E — FX| ~ 0.1W, and isolated thin lines
without the k periodicity located roughly at 0.1W, S |E — FX| < 0.35W, are due to
the edge states. Scattered points seen around F — F'X = 0 are due to the hybridized
states of the central two subbands. For fixed k, there are four (¢ = 4) main energy
branches, and some edge states. This diagram is very similar to the one at F' = 0,
which is shown in Fig. 3.5, in the sense that there are four subbands in similar shapes
with the periodicity with respect to k. The reason why the eigenenergy for F' # 0 is
similar to the one for F' = 0 is understood in the following way. For appropriately
strong field such that V is larger than the subband width at zero electric field, the
eigenenergy is characterized by ¢ sets of the Stark ladders, for which the energy
spacing 1s, as will be discussed in the next section, given by AE = Fg¢/d, and
X = qu/d with v an integer. This implies that for fixed k,¢ different values of
E—-FX correspohd to the band centers of ¢ magnetic subbands. The ¥ = 0 bands
have séveral different features, however. The energy widths £ — F'X of each of the ¢
subbands are broadened for ' = 0 because of the wave vector corresponding to the
freedom in the ¢ direction, and absence of the hybridized states and the edge states
which are caused by the electric field. The narrowing of F — F'X for F' # 0 is caused
by the electric field, which destroys the periodicity along the electric field, and kills

the wavevector dependence along the field direction.

So far we have considered the case where the electric field is applied parallel to
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Figure 3.4: £ — F'X as a function of £ for (a) V = W, and (b) V = 0, where X is
the gravity center of the wavefunction and &k the wave number perpendicular to the
electric field direction. The electric field is applied in the direction of crystal axis,

ie., [M,N]=T[10]
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the symmetry axis of the lattice, viz., [M,N] = [1 0]. Now we examine the case
where the direction of the electric field is tilted so that the direction is parallel to
[M, N] with M N # 0. We have checked that the density of states and the functioﬁal
dependence of E/W, on X are almost unchanged from the case of [1 0]. The main
and important effect of the tilting of the electric field is to freeze partly the dispersion
with respect to k£ (see Eq. (3.7)). In order to show this, the energy (£ — FX)/W,
against & for this case is plotted in Fig. 3.5. The eigenenergies F— F X are symmetric
with respect to the origin £ — FX = 0 and &£ = 0. The top and the bottom subbands
are located roughly at (F — FX)/Wy ~ +0.34, which show no k dispersion. The
states denoted by the round dots without % dispersion (i.e. (£ — FX) ~ 0.088W})
are Stark localized. The round dots belonging to the central subband keep the
periodicity Ak = 2xd/q with respect to k. The reason for this periodicity will be
discussed in the next section. Round dots have the multiplicity ~ L/¢d and square
dots have no multiplicity of energy. Round dots with k dispersion in the £ — FX
< 0.03W, denote the hybridized states of the two magnetic subbands of the zero
electric field. This is because two central subbands touching together [33,58] at zero
electric field easily form a single wider band by applying the electric field and the
mixing of the wavefuntions becomes appreciable. The square dots are due to the edge
states and the number of the states is negligibly small as compared to the number
of the bulk states. The fact that bulk of the wavefunctions for a fixed & belongs to
four (¢ = 4) different eigenenergies can be contrasted to the case of ¢ = 0. In the
latter, most of the eigenenergies are dispersionless with respect to & and are given
by a single energy value £ — F'X = 0 [53], since the hopping of electrons onto the
nearest neighbor lattice sites for ¢ = 0 are prohibited because of the energy difference

generated by the electric field.
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3.4 The Symmetries of the Model

In order to understand the behavior of £ —~ FX in Fig. 3.5, we rewrite (3.8) in the
following way

(Ho + FE)Ck(€) = ECL(£), (3.10)

where Hj is the Hamiltonian in the magnetic field:

Ho(& k@) = —2t[cos{Md(k —2n¢t) — tNd(O/IE)}

+ cos {Nd(k —27¢t) +iMd(3/IE)}]. (3.11)
The Hamiltonian Ho(&; k&, ¢) has the following symmetry properties:

Ho(€ +q/d;k,p/q) = Ho(&;k,p/q), (3.12)

Ho(¢ +djk —2npd/q,p/q) = Ho(€; k,p/q). (3.13)

The first property implies that Hy is periodic in ¢ with periodicity ¢/d. From the
second property and the standard argument of the magnetic translation operator [55],
the size of the reduced Brillouin zone is given by Ak = 27d/q. For zero electric field,
the eigenenergies are split into ¢ subbands by the magnetic field. When both of the
electric and magnetic fields are applied, the eigenstates of Hy(&;k,p/q) + FE is given
by the Stark ladder states with the energy spacing given by AE,(k,p/q) = Fq/d for
an infinite lattice where « is the subband index. This implies that the wavefunctions
corresponding to the Stark ladders are localized near X =~ qv/d with v an integer.
Consequently, the energy spectrum F — F'X is less influenced by the electric field
and has almost the original character of the subbands for the zero electric field. This

explains the periodicity of & — F'X with respect to k in Fig. 3.5.
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3.5 Summary of Chapter 3

In this chapter, electronic states of the two-dimensional tight-binding rnoldel are
studied when both uniform electric and magnetic fields are present. It is shown that
the Stark ladder states are observed associated with each of the magnetically induced
subbands for a high electric field F' 2 Wy/L. The Stark ladder spacing is given by
Fgq/d where d = (M? 4+ N?)7Y/2 and ¢/¢y = p/q with [M, N] the direction of the
electric field. For the symmetric direction, i.e., [M, N] = [1 0], the eigenenergies have
the dispersion with respect to the wave vector k perpendicular to the electric field,
but for the general non-symmetric direction such that M N # 0, this k£ dispersion
is killed and the eigenenergies become £ independent. Irrespectively of the electric
field direction, the density of states becomes the pyramid shape with ¢ steps when
the electric potential drop V through the system becomes comparable to the original

bandwidth of the zero field.
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Chapter 4

The Ballistic Transport in Crossed Electric and
Magnetic Fields

The nature of the ballistic transport properties on the two-dimensional lattice in
applying the electric field in the axis direction and magnetic fields normal to the plane
1s investigated. The electric fields makes the electron wave functions localized on the
narrow channels perpendicular to the electric field and the conductance quantization
through these narrow channels is expected to occur. A tight-binding Hamiltonian
which is employed to describe the system which is connected with perfect leads.
Numerical computations are performed on the basis of the two-terminal Landauer
formula for the conductance with the transmission coeflicients in the perpendicular
direction to the strong electric field calculated from the recursive Green’s function

technique.
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4.1 Introduction to Chapter 4

The conductance through the narrow channels has been studied experimentally [61,
62] and theoretically [63—65]. Recently the suitable sample for the “point contact”
is fabricated at the GaAs-AlGaAs interface of the heterostructure. The schematic
top view was given in Fig. 4.1a, while the Fig. 4.1b shows a cross—sectional view of
the split gate. By applying a negative voltage to a split gate, electrons on the large
two dimensional regions under the gates are depleted, leaving a narrow channel in
which electrons are undepleted. In this way one can define short and small region
where two-dimensional electron gas exists with variable width 0 < W < 250nm
comparable to the Fermi wavelength (=~ 40nm) and much shorter than the mean free
path (= 10pm). This is the “quantum point contact”. The length of the contact
also much shorter than the mean free path, and hence the transport is ballistic. Van
Wees et al. [61] and Wharam et al. [62] independently discovered a sequence of

steps in the conductance of such a point contact when its width was varied by means
of the voltage on the split gate. The steps are close to integer multiples of 2e?/A.
The ballistic transport in the point contact is studied theoretically [63] based on
the Landauer formula [66,67]. Consider an ideal two—dimensional conductor without
impurities or inhomogeneties of width connecting two electron reservoirs as shown
in Fig.v 4.2. The electron reservoirs at chemical potentials y; and p» serve as source
and sink of carriers and of energy. One reservoir emits carriers into current—carrying
states up to its chemical potential. Every carrier reaching either the other or the

original reservoir, independent of phase and of energy, is absorbed without reflection.

The Hamiltonian of the perfect conductor is

1
H (pz +py) + V(2), (4.1)

:2m
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Figure 4.1: The schematic top (a) and cross—sectional (b) view of the split gate. By
applying a negative voltage to a split gate indicated by the hatched regions, electrons
under the split gates are depleted, leaving a narrow channel represented by the black
square region in which electrons are undepleted. Positive ionized donors in AlGaAs
and negative charges on a Schottky gate electrode are indicated.
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Figure 4.2: The electric potential F' produced by the condenser plates. The sample
occupies the region 0 < z < 20,—10 < y < 10, which is shown by shadow. The
condenser plates with width D = 52 are located at z = 0 and 20. The leads
are attached both side of the sample, which is connected the heat reservoirs. The
chemical potential 7 and po of the heat reservoirs are slightly different each other
and g1 < po. The magnetic field is applied perpendicular to the plane.

where y is the coordinate along the strip,  the coordinate transverse to the strip

and V(z) the confining potential. The wavefunctions are separable and of the form

eik(z,y) = ™ fi(z), (4.2)

where  is the wavevector along y and f;(z) a transverse eigenfunction with energy
eigenvalue ;. The total energy of the state is the sum of the transverse (z—direction)
energy E; and the energy for longitudinal (y—direction) motion. Thus at the Fermi
energy BFr = E; +712kJ2-/2m, there are 2N states, where N is the number of transverse
energy F; below the Fermi energy. Let us calculate the current through this perfect
conductor assuming gy < go. Below p; left— and right-moving states are equally

occupied, and the net current is zero. Thus we need to be concerned only with those
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states the energy of which is located between y; and gy. The current injected from
the right reservoir in the channel j is I; = ev;(dn/dE);Au, where v; = k™' (dE;/dk)
is the longitudinal velocity at the Fermi energy of the channel j. (dn/dFE); is the
density of states at the Fermi energy for this channel and Ay = gy — 4. In one
dimensional system the density of states is (dn/dF); = 1/2nhv; since dn/dk = 1/2x.

Therefore, the current fed into a channel is
Ii = (e/h)Ap, (4.3)

independent of the channel index j. The total current is I = N{e/h)Apu. The
voltage drop between the reservoirs is eV = Ay, and thus the conductance of a

perfect N—channel wire is

G==N. (4.4)

When the magnetic field is applied to the point contact, the dispersion relation is
modified, and we have bulk Landau levels and magnetically induced edge states. The
quantization (4.4) is still true for this case, because the fundamental cancellation of
the group velocity v; = A7 (dE;/dk) and the density of states in the one dimensional
system (7 dE;/dk)~" holds regardless of the form of the dispersion relation E;(k)
of the states located near the both system edges which is parallel to the flow. In
this case the magnetic edge channels at the Fermi level take over the role of one
dimensional subbands. Thus, the right going electrons and the left going electrons is
separated spatially. The above discussion for the pure case gives a hint for the dirty
case. When there are impurities in the sample, the spatial separation between the
right— and the left—going channels due to the magnetic field reduces the reflection.
Thus, even in the presence of impurities, the plateau of the conductance reflecting

the perfect transmission survives in the magnetic fields [68].
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We give a different kind of the point contact, ¢.e., the narrow strip is fabricated
by the strong electric field in two dimensional plain. When an strong electric field
is applied in the lattice plane and we assume the infinitely high potential walls
at the perpendicular boundaries to the field, thé wavefunction is localized in the
bulk parallel to the electric field, and moreover, the wave functions are confined
around the system edges because in the vicinity of the lattice edges the triangular
potential is formed by the electric field [56]. Such wave functions are localized in
the parallel direction while they are plane wave like in the perpendicular direction,
producing narrow channels perpendicular to the field. In the narrow channels the
electron move freely in the perpendicular direction to the field. We may expect
that the conductance is also quantized in our model. We present in this chapter
the calculations of the conductance through this narrow channels induced by strong

electric fields.

When both the eleétric and magnetic fields are applied, the change of the plateaux
of the conductance by the magnetic field is presented. The electronic energy states
in the two—dimensional tight—binding model in the magnetic field applied normal to
the lattice plane 1s known to be fairly complex as discussed in the previous chapters
[33]. When the normalized magnetic field ¢/ ¢y is equal to the rational number p/qg,
where gb is the magnetic flux through the unit cell, ¢o = ch/e the flux quantum
and p and g are integers prime to each other, the energy eigenstates are split into ¢
subbands. Wave functions for this system are extended over the entire lattice. This
behavior is very different from those in the case of free electrons, where the Landau
states are localized around the centers of the circular motion and their energies are
all degenerate for the fixed Landau index. For a finite system with confining walls,

the electron states near the boundaries are appreciably modified, and the electrons
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migrate on the classical skipping orbits at both edges of the system [69-72]. It is
expected that the edge states contribute the transfer, 1.e., edge channel is appeared.
The width of each channel is roughly equal to the magnetic length {¢o/(27$)}*/* in
units of the lattice constant.

As we see in the previous section, the eigenstates in both the electric and mag-
netic fields have the peculiar feature. When the moderate electric field is applied,
each magnetic sub-band becomes the Stark ladder bands. Their wavefunctions are
localized in the electric field direction, and hence there are many strips in space the
number of which is equal to the number of the original magnetic sub-band. These
strips are also the candidate of the channel. When the electric field becomes further
stronger, the gigenvalue is shown to form the single band of the Stark ladder.

When there are impurities in the sample, it is expected that the quantization of
the conductance will be broken by the electric field due to the enhancement of the
backward scattering, i.e., the transport is ballistic at zero electric field and diffusive
at high electric field case. In the intermediate electric field the transport properties
ére not clear. Therefore, we study the transition of the conductance from the ballistic
to the diffusive regime in this chapter.

The organization of this chapter is the following. In Section 4.2 we given the
model ‘for the crossed electric and magnetic field. In Section 4.3 the conductance
as the function of the electric field is shown for the various magnetic fields. The

conclusion of this chapter is given in the final section.
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4.2 Model and Method

The arrangement of the model for the numerical calculation is shown in Fig. 42 We
consider the 2D lattice of dimensions L, x L, (the lattice constant is set to be unity)
and assume that the electric field is applied along the z direction by the condenser
plates with width D at z = 0 and L,, and the magnetic field is applied parallel to the
z direction. The condenser width D is taken to be a little bit larger than L, so that
the effective potential along the y direction in the sample becomes linear. The probes
to measure the conductance are attached at y = £Y where Y is much larger than
the sample width L,. The effective électric potential in the system is determined by
the Laplace equation with the boundary conditions where the electric potential is
zero at z = 0 and y = +Y, and is equal to V = F L, for z = L, and |y| < D/2 with
F the electric potential drop across a unit cell. The resultant electric potential near
the sample is shown in Fig. 4.3 for L, = L, =20, D = 52 and Y = 677.

In order to consider the electric flow in the magnetic field, the effect of the
Coulomb interaction is crucial [73,74]. It is assumed, however, that the Hall voltage
is negligible because the transport in the electric field direction is insulating due to
the Stark ladder. The validity of this assumption is discussed in the Appendix A.

The Schrédinger equation for the sample with random impurities is given by the

following tight—binding model: |

~t{C(z +1,y) + Clz — 1,y) + Clz,y + 1)e2™ /%)= 4 O(z,y — 1)e2¢/%0)=}

+F:LC<$ay)+U($v y)C(:E? y) = EC(:I:,y), (45)

where U(z,y) is the random potential and the confining walls are assumed implicitly
to belocated at 2 = 0 and L,. The corresponding boundary conditions for ¥(z, y) are

given by ¥(0,y) = ¥(L.,y) = 0. For the calculation of the conductance, 9 (z,+Y) is
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Figure 4.3: The effective electric potential in the neighborhood of the sample. The
sample occupies the region 0 < z < 20, —10 < y < 10, and the applied voltage along
the z axis is V = 0.6 ¢ where ¢ is the transfer energy. The condenser plates with
width D = 52 is located at z = 0 and 20.

connected with the incident and reflected waves within the probe and #(z, —Y") with
the transmitted waves. The conductance along the y axis is evaluated as a function
of the Fermi energy based on the Landauer formula [66,67] from the transmission
coeflicients which are calculated by the recursion method proposed by Ando [65]
The recursion method is the strictly expansion of the Landauer formula to the two—

dimensional tight-binding model reviewed in the Appendix B.
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4.3 Transport of the ‘quantum wire’

First we show the conductance calculated as a function of the electric field F', which
is shown in Fig. 4.4. Here the strength of the incident energy of the electron at
the probe y = —Y is fixed to be Ep = 1.6t and the sample size is L, = L, = 20.
The conductance for the case without the random potential is plotted by thin lines
and for the case with the random potential by thick lines. The strength of the
random potential is distributed between —t/2 and +¢/2 with the flat probability
distribution. We calculate the conductance of 1000 different samples and the mean
value of conductance is plotted by the thick line and the standard deviation is given
by the error bars.

The Fig. 4.4a shows the case without magnetic field, where the conductance for
the pure case shows a step-like feature with its plateau quantized in units of 2e?/A.
This is because electrons move freely along the channel with wave vector £ and the
conductance for such a case is known to be quantized [63]. The step width AF
for Er < 3t reflects the energy difference of the quantized edge states, the wave
functions of which are approximated by the Airy functions Eq. (1.10) [14]. When
the random potential is introduced into the sample, the conductance for fixed Er
becomesn smaller than the one for the pure case, and the steps become corroded, so
that the step—like feature of the conductance becomes unclear. The reason for the
decrease of the conductance for the impure case, i.e., the increase of the backward
scattering, is that the impurities make the wave function localized in the y direction
and mix the forward-going and backward—-going waves and hence the transmission
probability decreases.

When the magnetic field is applied, the conductance for the pure sample also

shows a step-like feature with its plateau quantized in units of 2¢*/h as shown in
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Figure 4.4: The electric field dependence of the conductance for (a) ¢/¢o = 0 and
(b) ¢/éo = 1/20. Thin lines show the case without the random potential and thick
lines show the case without the random potential. Error bars are estimated from
1000 different samples.
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Fig. 4.4b. and the step width is now estimated from the cyclotron energy separation.
This quantization comes from the fact that the wave function along the y direction is
still characterized by the wave vector & [69]. This indicates that the electrons move
freely along the y direction, and therefore the conductance is quantized. The most
noticeable effect of the magnetic field is to reduce the number of plateaux in a given
electric field. This provides a demonstration of depopulation of magnetoelectric
subbands. In addition, one observes that the reduction of the conductance from
the plateaux of the pure case improves in the presence of the random potential
compared to the case without magnetic fields. This is due to the reduction of the
reflection probability at the sample, which is shown in the dirty sample on the
absence of magnetic field. This is because the location of the wave functions of the
forward-going and the backward-going waves are separated spatially by the distance
~ Eg/F, where Eg is the bandgap between magnetically induced subbands, so that
the mixing of these waves are reduced as compared to the case of vanishing magnetic
field. In other words, the application of the magnetic field favors the conductance

quantization.
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4.4 Conclusion of Chapter 4

We have examined the conductance quantization of the narrow channels v-vhich are
realized by the application of both electric and magnetic fields. For pure samples,
the conductance quantization is clearly seen, and the step width AF reflects the
energy separation between the Airy edge states for the case of the electric field only,
or that between the cyclotron energy separation for the case where both electric and
magnetic fields are applied. In the dirty samples, the conductance quantization is
severely damaged for the case where only the electric field is present. In contrast, the
quantization is only partly destroyed when both of the electric and magnetic fields
are applied, 7.e., the quantization of the conductance is more easily observable by

the application of the magnetic field.
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Appendix A

The Effects of the Hall Voltage

In order to consider the electric flow in the magnetic field, the effect of the Coulomb
interaction is crucial [73]. In the steady states the Lorentz and Coulombvforces cancel
out each other. The electrostatic potential in the sample between the condenser
plates has to be calculated from the local density distribution of the electron and
the Coulomb interaction. In the center of the sample as the effects of the edges
of the condenser plates are negligible, the electron system may treat as the infinite
wires which are parallel to the condenser plates. The Schrodinger equation (1.17) is

modified as

b () + Yaa(B)) V(@) () = B (B), (A1)
V(z) = 2cos (27«'5-:1: +k)+ Fz— > DAz")loglz — 2], (A.2)
z'Fz

where D = e?/2mea with € the dielectric constant and the local density of the electron

is written as

M) = 3 (k) (A3)

T E<Ep

where the summation is taken in such a way that the states are below the Fermi

level Ep. We calculate V(z) from Eq. (A.2) with the boundary conditions

and determine F' and the local density of the electron self-consistently.
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Figure A.1: The electrostatic potential in the sample as the function of z, which
is calculated with the local density distribution of the electron and the Coulomb
interaction.

We calculate numerically under the condition that the magnetic field p/q = 1/20
is fixed and V = 8¢. The result ié shown in Fig. A.1, where the potential V(z) is
plotted. In the quantum dot lattice system the lattice constant is of the order of y
m, and 1f we take the dielectric constant € = 12.9 of the bulk GaAs, then we get
D ~ 0.2 [meV]. As the dielectric constant and the lattice constant in the quantum
dot lattice depends on each sample we calculate three case, i.e., the large dielectric
constant case (D = 0.01¢), the middle (D = 0.1¢) and the small (D = t) where ¢ is

estimated as the order of meV.

The effect of the re-distribution of the electron and Coulomb force is negligible in

our model. The re-distribution of the electron is small in our calculation because in
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the Stark ladder states the system is insulator in the field direction. In the quantum
dots lattice as the lattice constant is sufficiently larger than the normal material, the
effect of the Coulomb interaction is negligible. The effective electrostatic potential

is nearly linear.
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Appendix B

Recursion Formula

In this appendix the numerical technique for calculating the conductance introduced
by Ando [65] is reviewed. First we shall consider a two—dimensional wire infinitely
long in the y direction and consisting of L, lattice sites in the z direction. The

Schrodinger equation of the tight-binding model of a square lattice is given as
(BX— Ho)®, + tPd,_, + tP*®,,, =0, (B.1)

where @, is a vector describing the amplitudes of the yth cell consisting of L, sites

and P is an L, X L, matrix consisting of phase factors
{P}ro = exp{=27i(¢/d0)x}bs 0, (z,2'=1,...,L,). (B.2)
The Hamiltonian Hg is also an L, X L, matrix given by
{Ho}eo = 46z 00 — t(bp,041 + b5 pr1),  (z,2" =1,..., L,). (B-3)
To obtain linearly independent solutions for Eq. (B.1) we first set
D, = NPy, (B.4)
The eigenvalue problem of (B.1) is rewritten as

/\(23_1>:(t“1P(I§o—EI) »p;)(gz_l ) | e

If |A] < 1, then from Eq. (B.4) the solution is exponentially decaying in the positive

y—direction and describes right-going evanescent modes. The solutions with [A] > 1
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describe left—going evanescent modes. If the absolution value of X is unity then
the classification is done according to the sign of the matrix element of the current

density operator

. e .
J = % @I@w—l - ‘I'y@;rﬂ + @I—l(ﬁy - @y—lél
2
= %”méyﬁlmx. (B.6)

If ImA > 0 then 5 > 0 and the wave is propagating to the right, and if ImA < 0

then it is propagating to the left. The equation (B.5) has 2L, eigenvalues and

2L, eigenvectors, which are classified into L, right— and L, left—going waves. Let
ui(—),...,ur, (—) be ®q of the left-going solutions corresponding to A; (=), ..., Az (=)

and u;(+),...,ur,(+) be @¢ of the right-going solutions corresponding to A1 (+), ..., Ar.(+).
Define the matrices

U(E) = [wi(£) - ug.(+)], (B.7)

and

@o(+) = U(+)2(%), (B.9)

where ®(+) is an appropriate vector consisting of expansion coefficients. For general

y we have

@, (+) = U(£)A(£) @ (4), (B.10)

which leads to the relation
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For the purpose of transport calculations the quantum wire is sandwiched between
two perfect leads. We define our lead—-sample-lead system to lie along the y—axis as
show in Fig. 4.2. It can be divided into slices along that direction, each of which has
L, sites, i.e., a cross—section of the quantum wire. Now let us consider the scattering
problem for the wire with length L,. First, we separate the amplitude ®, at cell y

into the right-going and left—going solution:
Dy = By(+) + 2y(-). (B.13)

Define the Green function G as

C=Ew (B14)
with
[ Hy — tPF~*(-) —tP* 0 --- 0 0 i
—tP H, —tP* ... 0 0
0 ~tP H, --- 0 0
H = : ) : : ] ) , (B.15)
0 0 0 - Hp, —tP*
i 0 0 0 - —{P Hp —tPF(+) |

where the Hamiltonian H, is an L, x L, matrix given by
Mylow = 4t +v(2,y)) 00 — t(Esmi1 + 8opo1), (2,2 =1,...,Ls), (B.16)

and Hp, 11 = Ho with v(z,y) being the local potential energy at the site (z,y).

Immediately, we can derive
Or, () = =t (Ly + UG P [F(+) = F (=) &o(+),  (B17)

where (L, + 1/G|0) is the Green’s function which couples the 0th and the (L, + 1)st
slice in our system, z.e., the last slice in the left-lead and the first slice in the right—

lead. The Green’s function (L,+1|G|0) is calculated iteratively by using the recursive
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method {75]. From these equations we can obtain the amplitude transmission coeffi-
cients t,,, for the incident channel n with velocity v, and out-going channel m with

velocity v, as

tnn = 1| == [~tUY(+) (L, + LG P[F}(+) = F(-)JU(+)] . (B.18)

mn
Un

The conductance G is given by the multichannel version of Landauer’s formula Eq.

(4.4) [66,67].

G = % S mn . (B.19)

m,n

This numerical technique has proved very reliable for the Anderson localization prob-

lem [76,77].
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Chapter 5

Summary and Concluding Remarks

In this thesis, we have investigated the electronic states in the tight-binding model
on the two-dimensional square lattice under the strong electric field with various
direction of the electric field. It is shown that the value of the density of states in the
band center region is independent of the field direction when the Stark ladder states
appear, although the periodicity of the crystal along the electric field is a irregular
function of the field direction, and hence the Stark ladder spacing becomes erratic.
By looking at the ﬁnit¢ lattice, we find that the edge states are characterized by the
Airy spectrum and that some unexpected energy gaps appear for the appropriate

electric field strength.

We also investigated Stark ladder states of the magnetic subbands, when both
uniform electric field is present in the plane and the magnetic field is applied per-
pendicular to the plane. It is shown that the Stark ladder states are seen in each
of the magnetically induced subband for a high electric field F32 Wy/L, where F
the pbtential drop through the unit of the lattice, W, the bandwidth in the absence
of the fields andiL the system size. The Stark ladder spacing is given by Fg/d
where d = (M? + N?)7Y/2 and ¢/dy = p/q with [M, N] the direction of the electric
field. For the symmetric direction, 'i.e.,A (M, N] = [1 0], the eigenenergies have the
dispersion with respect to k, where £ is the wavevector perpendicular to the electric

field. For the general non-symmetric direction such that M N # 0, this & dispersion

is killed and the eigenenergies become & independent. [rrespective of the electric
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field direction, the density of states becomes the pyramid shape with steps when
the electric potential drop through the system becomes comparable to the original
bandwidth of the zero field. When the electric field F' becomes extremely strong
Wo/F < m, the stark ladder states seen in each of the magnetically induced
subband for the moderate electric field become Stark ladder of one band.

We have investigated the ballistic transport of the ‘quantum wire’ which are
realized by the application of strong electric field. We examine the dependence
of the random potential and magnetic fields. For pure samples, the conductance
quantization is clearly seen, and the step width AF reflects the energy separation
between the Airy edge states for the case that only the electric field is applied, or
that between the cyclotron energy separation for the case where both electric and
magnetic fields are applied. In the dirty samples, the conductance quantization is
severely damaged for the case where only the electric field is present. In contrast, the
quantization is only partly destroyed when both of the electric and magnetic fields
are applied, 7.e., the quantization of the conductance is more easily observable by
the application of the magnetic field.

It 1s discussed that the Stark ladder states in the two-dimensional system would
have realized in the quantum aots lattice. The dots lattice is fabricated by holo-
graphic lithography in arrays on macroscopic areas. In the system the lattice spacing
is controllable, and the strong field condition considered in this thesis may be fulfilled

easily by experimentally accessible field strengths.
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