

Title	One flat 3-manifolds in 5-space
Author(s)	Noguchi, Hiroshi
Citation	Osaka Journal of Mathematics. 1964, 1(2), p. 117–125
Version Type	VoR
URL	https://doi.org/10.18910/5442
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ONE FLAT 3-MANIFOLDS IN 5-SPACE

Dedicated to Professor Hidetaka Terasaka on his sixtieth birthday

HIROSHI NOGUCHI

(Received June 23, 1964)

1. Introduction

The results concerned with closed orientable surfaces in 4-space obtained in [5] will be extended in the paper.

Things will be considered only from the piecewise-linear (or semilinear) and combinatorial point of view, and manifolds M, W etc., will be combinatorial, orientable with an orientation, maps will be piecewiselinear with respect to (simplicial) subdivisions and generally homeomorphisms between manifolds will be orientation preserving. So that $M \subset M_1$, $M = M_2$ and $\partial M = M_3$ will indicate obvious relations between the orientations of manifolds, if meaningful, together with the usual set theoretic meanings, where ∂M is the boundary of M.

Let M_i be a closed *n*-manifold in an (n+2)-manifold W_i without boundary, i=1, 2. Precisely, there are subdivisions K_i and L_i of M_i and W_i respectively such that K_i is a subcomplex of L_i . For convenience, the situation is simply said that $M_i = |K_i|$ is in $W_i = |L_i|$ in the rest of the paper. Then M_1 is *iso-neighboring* to M_2 if there are regular neighborhoods U_i of M_i in W_i , see [4], where $U_i \subset W_i$ and an onto homeomorphism $\psi: U_1 \rightarrow U_2$ such that $\psi(M_1) = M_2$. By Theorem 1 of [4], the iso-neighboring relation is an equivalence relation.

In §2 two invariances the collection of singularities and the Stiefel-Whitney class under the iso-neighboring relation will be dealt with. Let a closed *n*-manifold M = |K| be in an (n+2)-manifold W = |L| without boundary. For each point *x* of *M*, the links $Lk(x, K) \ Lk(x, L)$ in *K*, *L* are (n-1)-, (n+1)-spheres respectively. Then *M* is said to be *p*-flat in *W* if the link Lk(x, K) bounds an *n*-cell in Lk(x, L), alternatively the (n-1, n+1)-knot (Lk(x, K), Lk(x, L)) is trivial, where $x \in M - |K^{p-1}|$ and K^q is the *q*-skeleton of *K* $(K^{-1}$ is the empty set). The *p*-flatness of *M* in *W* is alternatively said to be *locally flat*. For a 1-flat *M* in *W* the collection of singularities of *M* in *W* will be defined, which is an in-

variance under the iso-neighboring relation.

If K is a full subcomplex of L, then the star neighborhood N(K', L') is a regular neighborhood, which consists of (n+2)-cells dual to vertices of K in L, where X' denotes the first barycentric subdivision of X. In general, a regular neighborhood U of M in W carries some properties similar to those of normal bundles in differential topology. So that an invariance ω , called the *Stiefel-Whitney class*, under the iso-neighboring relation may be defined for M in W following the classical arguments due to Seifert [7] and Whitney [8].

In the paper the boundary of a regular neighborhood of M in W is called a *tube* of M in W, and for a mapping $f: X \to Y$, $f^*(f_*)$ denotes the induced homomorphism between cohomology groups of Y and X (homology groups of X and Y).

The following will be established in §3.

Theorem A. Let a closed 3-manifold M_i be 1-flat in 5-manifold W_i without boundary, where i=1,2. Then M_1 and M_2 are iso-neighboring if and only if there is an onto homeomorphism $\phi: M_1 \rightarrow M_2$, such that $\phi^*(\omega_2) = \omega_1$ and they have the same collection of singularities.

By the argument due to [7] the Stiefel-Whitney class ω is the identity if M is in euclidean (n+2)-space \mathbb{R}^{n+2} . Thus,

Corollary to Theorem A. Let closed 3-manifolds M_1 and M_2 be 1-flat in 5-space such that M_1 and M_2 are homeomorphic and symmetric. Then they are iso-neighboring if and only if they have the same collection of singularities. (We say that M is symmetric if there is an orientation reversing homeomorphism onto itself.)

Moreover, $M \times o$ is locally flat in $M \times R^2$ and its Stiefel-Whitney class ω is the identity, where R^2 is 2-space and o is the origin of R^2 . And $M \times C^2$ is a regular neighborhood of $M \times o$ in $M \times R^2$ where C^2 is a 2-cell containing o in its interior. Therefore,

Theorem B. If a closed 3-manifold M is locally flat in 5-space R^{s} . Then a regular neighborhood U of M in R^{s} is the product of M and a 2-cell.

Finally, (1). Some results of the paper [4] will be used in this paper. Although they were proved modulo the Schoenflies conjecture, they are verified without the conjecture in virtue of Theorem (2.3) of [6].

(2). The detail of the proofs which were omitted in the paper [5] will be seen in the paper, even if this paper concentrates upon 3-manifolds M.

The author thanks Masako Ujihara for her valuable discussions.

2. Invariances

NOTATION A. Let M = |K| be a closed *n*-manifold in an (n+2)manifold W = |L| without boundary, where it is assumed that K is a full subcomplex of L, that is, the intersection of a simplex of L and |K|is either a simplex of K or empty. By Δ we shall denote a (closed) *r*-simplex of K. Then by ∇ and \Box we denote the (n-r)-, (n-r+2)cells dual to Δ in K and L respectively. (∇ and \Box are covered by subcomplexes of K' and L' respectively.) By \Re^q we shall denote the polyhedron consisting of dual cells ∇ where Δ ranges over $K - K^{n-q-1}$. Similarly by \Re^{q+2} we denote the polyhedron consisting of dual cells \Box where $\Delta \in K - K^{n-q-1}$. Note that \Re^{n+2} is the star neighborhood N(K', L').

If an orientation is assigned to Δ , the orientation of $\nabla(\Box)$ is naturally determined such that the intersection number of Δ and $\nabla(\Box)$ in M(W) is 1. We shall always assigne an orientation to Δ and use those natural orientation for ∇ and \Box throughout the paper. It is obvious that the (n-1, n+1)-knot (Lk(x, K), Lk(x, L)) is trivial if $x \in M - |K^{n-2}|$, and that M is (n-1)-flat in W.

Lemma 1. If M is p-flat in W then for each r-simplex Δ of K the (n-r-1, n-r+1)-knot $(\partial \nabla, \partial \Box)$ is trivial where $r \ge p \ge 0$ and for each (p-1)-simplex Δ the (n-p, n-p+2)-knot $(\partial \nabla, \partial \Box)$ is locally flat, where $p \ge 1$.

Proof. Let x be an interior point of an r-simplex Δ of K. It is elementary to check that that the (n-1, n+1)-knots (Lk(x, K), Lk(x, L))and $(\partial \Delta * \partial \nabla, \partial \Delta * \partial \Box)$ are equivalent, where X * Y is the join of X and Y. If $(\partial \nabla, \partial \Box)$ is not trivial then (Lk(x, K), Lk(x, L)) is not locally flat, because the latter is the suspension of the former. In particular (Lk(x, K), Lk(x, L))is not trivial, contradiction. Therefore $(\partial \nabla, \partial \Box)$ is trivial.

Let x be a point of $\partial \nabla$ where Δ is a (p-1)-simplex of K. Then x is an interior point of a q-simplex η of K where q > p-1. Let \mathcal{E} be the face opposite to Δ in η and c be the barycenter of \mathcal{E} . Since the (n-1, n+1)-knot $(\partial(\Delta * c) * Lk(x, \partial \nabla), \partial(\Delta * c) * Lk(x, \partial \Box))$ is equivalent to (Lk(x, K), Lk(x, L)) which is trivial, the (n-p-1, n-p+1)-knot $(Lk(x, \partial \nabla), Lk(x, \partial \Box))$ may not be non-trivial. Hence $(Lk(x, \partial \nabla), Lk(x, \partial \Box))$ is trivial for each x of $\partial \nabla$ and $(\partial \nabla, \partial \Box)$ is locally flat.

DEFINITION 1. Let M = |K| be 1-flat in W = |L|. By Lemma 1 only the (n-1, n+1)-knot $(\partial \nabla, \partial \Box)$ may not be trivial where Δ is a vertex of K. We say that a vertex Δ is a *non-singular* point or *singular* point of M in W according as the (n-1, n+1)-knot class k containing $(\partial \nabla, \partial \Box)$ is a trivial class 0 or $k \neq 0$. If $k \neq 0$, we say that the *singularity* of M on W at Δ is of type k. If M in W has singular points $\Delta_1, \dots, \Delta_s$ of type k_1, \dots, k_s , then the unordered set of classes k_1, \dots, k_s will be called the *collection of singularities* of M in W, which is invariant under the isoneighboring relation as easily seen.

Now let us define the Stiefel-Whitney class ω for M in W following the argument due to Seifert [7] and Whitney [8]. Let \mathfrak{H} be a subpolyhedron of \mathfrak{R}^n , we say that a map $\kappa : \mathfrak{H} \to \partial N(K', L')$ is a cross section over \mathfrak{H} if $\kappa(\nabla) \subset \partial \Box$ for all ∇ of \mathfrak{H} .

(a) Let $\sigma: \mathfrak{H} \to \partial N(K', L')$ be a cross section, then σ may be extended to a cross section κ over $\mathfrak{H} \cup \mathfrak{R}^1$, where \mathfrak{H} may be empty.

Proof. Define $\kappa^{0}(\nabla) = a$ vertex of $\partial \Box$ if $\nabla \in \Re^{0} - \mathfrak{H}$ and $\kappa^{0}|\mathfrak{H} = \sigma|\mathfrak{H}$, then $\kappa^{0} : \mathfrak{H} \sqcup \mathfrak{R}^{0} \to \partial N(K', L')$ is a cross section over $\mathfrak{H} \sqcup \mathfrak{R}^{0}$. Let Δ be an (n-1)-simplex then ∇ and \Box are 1-, 3-cells respectively. Let Δ_{1}, Δ_{2} be *n*-simplexes incident to Δ then $\Box_{1} \sqcup \Box_{2}$ is a regular neighborhood of the 0-sphere $\nabla_{1} \sqcup \nabla_{2}$ in the 2-sphere $\partial \Box$, and $\partial \Box - Int (\Box_{1} \sqcup \Box_{2})$ is the cylinder $S^{1} \times I$ where *Int* M is the interior of M and I is the closed unit interval. Then there is a homeomorphism $\kappa_{\nabla} : \nabla \to \partial \Box - Int (\Box_{1} \sqcup \Box_{2})$ such that $\kappa_{\nabla} | \nabla_{1} \sqcup \nabla_{2} = \kappa^{0} | \nabla_{1} \sqcup \nabla_{2}$. Define $\kappa | \nabla = \kappa_{\nabla}$ if $\nabla \in \mathfrak{R}^{1} - \mathfrak{H}$ and $\kappa | \nabla = \sigma | \nabla$ if $\nabla \in \mathfrak{H}$, then $\kappa : \mathfrak{H} \sqcup \mathfrak{R}^{1} \to \partial N(K', L')$ is the required cross section.

(b) Using a cross section $\kappa : \Re^1 \to \partial N(K', L')$, let us define an integral 2-cochain W_{κ} of M as follows.

Let Δ_j be an (n-2)-simplex of K then ∇_j , \Box_j are 2-, 4-cells respectively. Then we have a knot $(\partial \nabla_j, \partial \Box_j)$ and the tube (=torus) $T_j = \partial(\bigcup_k \Box_{jk})$, where $\bigcup_k \Box_{jk}$ is a regular neighborhood of $\partial \nabla_j$ in $\partial \Box_j$ when Δ_{jk} ranges over (n-1)-simplexes of K incident to Δ_j by Lemma 4 of [4]. By the knot theory the longitude b_j and the meridian a_j of the torus T_j are well defined up to homology such that $a_j \sim \partial \Box_p$ in T_j where $\Delta_p(\Box M)$ is an n-simplex having Δ_j as a face, and such that $b_j \sim \partial \nabla_j$ in $\bigcup_k \Box_{jk}$ and $b_j \sim 0$ in $\partial \Box_j - Int (\bigcup_k \Box_{jk})$ where \sim means to be homologous. By w_j we denote the looping coefficient of $\kappa_*(\partial \nabla_j)$ and b_j in $\partial \Box_j$. That is, $\kappa_*(\partial \nabla_j) \sim w_j a_j + b_j$ in T_j . Then an integral 2-cochain W_{κ} of M is defined by taking $W_{\kappa}(\nabla_j) = w_j$ for each ∇_j .

The following (c), (d) and (e) are the modification of the arguments due to Seifert and Whitney.

(c) Let κ , σ be cross sections over \Re^1 then W_{κ} is cohomologous to W_{σ} in M. See [8, p. 120].

(d) Let M and W be spheres. Then there is a cross section σ over

120

\Re^1 such that $W_{\sigma}(\nabla_j)=0$ for each ∇_j . See [7, pp. 6–7]. (e) W_{κ} is a cocycle. See [8, p. 121].

(f) The cohomology class ω containing the cocyle W_{κ} is independent of the subdivisions K and L.

Proof. As usual it is sufficient to prove that W_L is cohomologous to W_Z where W_L and W_Z are the cocyles obtained from the subdivisions K, L and Y, Z of M, W respectively such that Z is a subdivision of Land Y is the subcomplex of Z covering M.

Then it may be assumed that L is transformed to Z by a simple subdivision (γ, d) of L where γ is a 1-simplex of L and d is an interior point of γ , see [1, p. 302]. The proof is separated in two cases. That is, $\gamma \notin K$ and $\gamma \in K$. Since the both cases may be treated similarly, we shall prove the second one.

Suppose that $\gamma \in K$. Let $\gamma = ab$ where a and b are vertices of K. At first we construct an onto map $\theta: N(Y', Z') \rightarrow N(K', L')$ which takes the dual cells of d in Y, Z onto the dual cells of γ in K, L and the dual cells of c in Y, Z onto the dual cells of itself in K, L respectively, where c is a vertex of Y other than d. Let \Box_Z be the dual cell of d in Z, $\partial \Box_Z$ consists of simplexes written $v_0v_1\cdots v_q$ where v_j is the barycenter of the simplex $dc_0c_1\cdots c_j$ and c_i is a vertex of L lying in Lk(d, L). Define $\theta(v_0\cdots v_q)=u_0\cdots u_q$ if $c_0=a$ (or b), where u_i is the barycenter of $bc_0\cdots c_q$ $(ac_0\cdots c_q), \ \theta(v_0\cdots v_q)=u_0\cdots u_q$ if $c_0 \neq a$ and b, where u_i is the barycenter of $abc_0\cdots c_q, \ \theta(d)=e$, the barycenter of γ , and $\theta|Lk(d, L)=$ identity. Since a simplex of Z' in the star St(d, L) is either the join of a simplex lying in Lk(d, L)and a simplex in $\partial \Box_Z$, or the join of a simplex in $\partial \Box_Z$ and d, the map θ may be extended over the star St(d, L). Then the map θ is the required one.

By (d) and (a) we may construct a cross section κ defining W_Z such that $W_Z(\nabla_Y^2)=0$ for each 2-cell ∇_Y^2 which is on $\partial \nabla_Y$ and ∇_Y is the cell dual to d in Y and such that for each point x of \Re^1 the set $\theta^{-1}(x)$ is mapped by $\theta \kappa$ to a point of $\partial N(K', L')$. Then the mapping $\theta \kappa \theta^{-1}$ is well defined which is a cross section over \Re^1 defining W_L such that $W_L(\nabla_K^2)=0$ for each 2-cell ∇_K^2 which is on $\partial \nabla_K$ and ∇_k is the cell dual to γ in K, and such that $W_Z(\nabla) = W_L(\nabla)$ for each (n-2)-simplex Δ of K, which does not contain γ . Hence W_Z is cohomologous to W_L .

DEFINITION 2. Let a closed *n*-manifold M = |K| be in an (n+2)-manifold W = |L| without boundary. Then by (a), (b), (c), (d), (e) and (f) a 2-dimensional cohomology class ω of M is defined, called the *Stiefel-Whitney class* of M in W.

We gather the above in the following:

Lemma 2. The Stiefel-Whitney class ω of M in W is invariant under the iso-neighboring relation. Moreover, ω is the identity if W is (n+2)space R.

3. The dual skeletonwise extension scheme

NOTATION B. Let $M_i = |K_i|$ be a closed *n*-manifold in an (n+2)manifold $W_i = |L_i|$ without boundary, i=1, 2. Suppose that $\phi: M_1 \to M_2$ is a homeomorphism which is simplicial relative to K_1 and K_2 . Then by Δ_i, Δ_{ij} we shall denote simplexes of K_i such that $\phi(\Delta_1) = \Delta_2, \phi(\Delta_{1j})$ $= \Delta_{2j}$. Since ϕ induces an isomorphism between complexes K_1 and K_2 and the correspondence between Δ_i and ∇_i is one-to-one, ϕ also induces an isomorphism, written ϕ , between \Re_1^q and \Re_2^q by taking $\phi(\nabla_1) = \nabla_2$. Since the correspondence between Δ_i and \Box_i is one-to-one, ϕ also induces a one-to-one correspondence ψ between cells of \Re_1^{q+2} and cells of \Re_2^{q+2} , by taking $\psi(\Box_1) = \Box_2$.

(0) Let $M_i = |K_i|$ be a closed n-manifold in an (n+2)-manifold $W_i = |L_i|$ without boundary. Let $\phi: M_1 \to M_2$ be a homeomorphism which is simplicial relative to K_1 and K_2 . Then there is a homeomorphism $\psi^0: \mathfrak{N}_1^2 \to \mathfrak{N}_2^2$ such that $\psi^0 | \mathfrak{N}_1^0 = \phi$, and $\psi^0 (\Box_1) = \Box_2$ for each n-simplex Δ_i of K_i .

Proof. For each *n*-simplex $\Delta_i(\Box M_i)$ of K_i , $\partial \Box_i$ is a 1-sphere and we have a homeomorphism $\psi'': \partial \Box_1 \to \partial \Box_2$. Since ∇_i is the point such that \Box_i is the join $\nabla_i * (\partial \Box_i)$, there is a homeomorphism $\psi': \Box_1 \to \Box_2$ such that $\psi'|\partial \Box_1 = \psi''$ and $\psi'|\nabla_1 = \phi|\nabla_1$. Since all \Box_i are disjoint, $\psi^0: \mathfrak{N}_1^2 \to \mathfrak{N}_2^2$ defined by $\psi^0|\Box_1 = \psi'$ is a homeomorphism such that $\psi^0|\mathfrak{N}_1^0 = \phi$ and $\psi^0(\Box_1) = \Box_2$ for each Δ_i , proving (0).

 $(0) \rightarrow (1)$. Under the situation of (0), furthermore we suppose that $\phi^*(\omega_2) = \omega_1$ where ω_i is the Stiefel-Whitney class of M_i in W_i . Then there is a homeomorphism $\rho: \mathfrak{N}_1^3 \rightarrow \mathfrak{N}_2^3$ such that $\rho | \mathfrak{R}_1^1 = \phi$ and $\rho(\Box_1) = \Box_2$ for each (n-1)-simplex Δ_i of K_i and such that for each (n-2)-simplex Δ_{ij} of K_i , $\rho_*a_{1j} \sim a_{2j}$, $\rho_*b_{1j} \sim b_{2j}$ on the tube T_{2j} , see (b) in §2.

Proof. Let Δ_{ia} , Δ_{ib} be *n*-simplexes incident to an (n-1)-simplex Δ_i . Then $\Box_{ia} \bigcup \Box_{ib}$ is a regular neighborhood of the 0-sphere $\partial \nabla_i$ in the 2-sphere $\partial \Box_i$ by [4]. Since $\Box_{ia} \bigcup \Box_{ib}$ consists of disjoint 2-cells and $\phi: M_1 \to M_2$ is orientation preserving, there is an onto homeomorphism $\psi'': \partial \Box_1 \to \partial \Box_2$ such that $\psi''(\partial \nabla_1) = \partial \nabla_2$ and $\psi'' | \Box_{1a} \bigcup \Box_{1b} = \psi^0 | \Box_{1a} \bigcup \Box_{1b}$. Since \Box_i is the join $c_i * (\partial \Box_i)$ and $\nabla_i = c_i * (\partial \nabla_i)$ where c_i is the barycenter of Δ_i , we have an onto homeomorphism $\psi': \Box_1 \to \Box_2$ such that $\psi'|\partial \Box_1 = \psi''$ for each Δ_i . Define ψ^1 by taking $\psi^1|\Box_1=\psi'$ for each (n-1)= simplex Δ_1 , we have a homeomorphism $\psi^1: \mathfrak{N}_1^3 \to \mathfrak{N}_2^3$ such that $\psi^1|\mathfrak{N}_1^1=\phi$ and $\psi_*^1a_{1j}\sim a_{2j}$ on T_{2j} for each (n-2)-simplex Δ_{ij} of K_i . Let $\kappa:\mathfrak{R}_1^1 \to \partial N(K'_1, L'_1)$ be a cross section we, have integers w_{1j}, w_{2j} such that $\kappa^*(\partial \nabla_{1j})\sim w_{1j}a_{1j}+b_{1j}$ on T_{1j} and $\psi_*^1\kappa_*(\partial \nabla_{1j})\sim w_{2j}a_{2j}+b_{2j}$ on T_{2j} .

Let $W_i(\nabla_{ij}) = w_{ij}$ then W_i is a 2-cocycle contained in ω_i . Since $\phi^*(\omega_2) = \omega_1, W_1 - \phi^* W_2 = \delta X$ for a 1-cochain X of M_1 , where δ is the coboundary operator. Since $\partial \Box_i - Int (\Box_{ia} \bigcup \Box_{ib})$ is the finite cylinder C_i , there is an onto homeomorphism $\eta : \Box_1 \to \Box_2$ such that $\eta | \Box_{1a} \bigcup \Box_{1b}$ $= \psi^1 | \Box_{1a} \bigcup \Box_{1b}$ and $(\eta \kappa)_* (\nabla_1) - \psi_1^1 \kappa_* (\nabla_1) = (X \cdot \nabla_1) a_{2j}$ on T_{2j} , where $X \cdot \nabla_1$ is the coefficient of ∇_1 in X. Define ρ by taking $\rho | \Box_1 = \eta$ if $X \cdot \nabla_1 \neq 0$, and $\rho | \Box_{1j} = \psi^1 | \Box_1$ otherwise. Since $W_1 - \phi^* W_2 = \delta X$, $(\rho \kappa)_* (\partial \nabla_{1j}) \sim (w_{2j} + X \cdot \partial \nabla_{1j})$ $a_{2j} + b_{2j} = w_{1j} a_{2j} + b_{2j}$ on T_{2j} for each Δ_{ij} . Since $\rho_* \kappa_* (\partial \nabla_{1j}) \sim \rho_* (w_{1j} a_{1j} + b_{1j}) \sim$ $w_{1j} a_{2j} + \rho_* (b_{1j}), \rho_* (b_{1j}) \sim b_{2j}$ on T_{2j} .

(1) \rightarrow (2). Under the situation of (0) \rightarrow (1), suppose that M_i is (n-2)-flat in W_i . Then there is an onto homeomorphism $\psi^2: \mathfrak{N}_1^4 \rightarrow \mathfrak{N}_2^4$ such that $\psi^2 | \mathfrak{N}_1^2 = \phi$ and $\psi^2 (\Box_1) = \Box_2$ for each (n-2)-simplex Δ_i of K_i .

Proof. Let Δ_{ij} be (n-1)-simplexes of K_i incident to Δ_i . Then $\bigcup_j \Box_{ij}$ is a regular neighborhood of the 1-sphere $\partial \nabla_i$ in the 3-sphere $\partial \Box_i$ by [4]. By Lemma 1, the knot $(\partial \nabla_i, \partial \Box_i)$ is trivial, and then there is an onto homeomorphism $\theta: \partial \Box_2 \to \partial \Box_1$ such that $\theta|\partial \nabla_2 = \phi^{-1}|\partial \nabla_2$ and such that $\theta(\bigcup_j \Box_{2j}) = \bigcup_j \Box_{1j}$ by Theorem 1 of [4]. So we have a homeomorphism $\rho\theta: \bigcup_j \Box_{2j} \to \bigcup_j \Box_{2j}$ such that $(\rho\theta)_*a_2 \sim a_2$ and $(\rho\theta)_*b_2 \sim b_2$ on $T_2(=\partial(\bigcup_j \Box_{2j}))$. By the argument due to Baer [2] $\rho\theta|T_2: T_2 \to T_2$ is isotopic to the identity. And then by Theorem 4 of [4] there is an onto homeomorphism $\alpha: \partial \Box_2 \to \partial \Box_2$ such that $\alpha|\bigcup_j \Box_{2j} = \rho\theta|\bigcup_j \Box_{2j}$.

Taking $\psi'' = \alpha \theta^{-1}$, then $\psi'' : \partial \Box_1 \to \partial \Box_2$ is an onto **ho**meomorphism such that $\psi'' | \bigcup_j \Box_{1j} = \rho$. Since \Box_i is the join $c_i * (\partial \Box_i)$ and $\nabla_i = c_i * (\partial \nabla_i)$ where c_i is the barycenter of Δ_i , we have an onto homeomorphism $\psi' : \Box_1 \to \Box_2$ such that $\psi^1 | \partial \Box = \psi''$. Then $\psi^2 : \Re_1^4 \to \Re_2^4$ defined by $\psi^2 | \Box_1^4 = \psi'$, is an onto homeomorphism such that $\psi^2 | \Re_1^2 = \phi$ and $\psi^2 (\Box_1) = \Box_2$ for each (n-2)-simplex Δ_i , proving $(1) \to (2)$.

Under the conditions that there is a homeomorphism $\phi: M_1 \to M_2$ which is simplicial relative to K_1 and K_2 , $\phi^*(\omega_2) = \omega_1$, and M_i is (n-2)-flat in W_i , we have proved the following (m) for $m \leq 2$.

(m) There is an onto homeomorphism $\psi^m : \mathfrak{N}_1^{m+2} \to \mathfrak{N}_2^{m+2}$ such that $\psi^m | \mathfrak{R}_1^m = \phi$ and $\psi^m (\Box_1^{m+2}) = \Box_2^{m+2}$ for each (n-m)-simplex Δ_i of K_i .

H. NOGUCHI

Proof of Theorem A. The necessity follows from §2. Let $\phi: M_1 \to M_2$ be a given homeomorphism, it may be assumed that ϕ is simplicial with respect to K_1 and K_2 . Furthermore since any point x of a closed manifold may be mapped into a given point y of the manifold by a homeomorphism of the manifold onto itself, it is assumed that the (n-m-1, n-m+1)-knots $(\partial \nabla_1, \partial \Box_1)$ and $(\partial \nabla_2, \partial \Box_2)$ belong to the same class for every pair of m-simplexes Δ_1 and Δ_2 by Lemma 1 and the assumption of Theorem A.

Then (0), (0) \rightarrow (1), (1) \rightarrow (2) hold. Suppose that all (*m*) are proved for $m \leq n$. Since $\Re_i^n = M_i$ and $\Re_i^{n+2} = N(K'_i, L'_i)$, the homeomorphism $\psi^n: \Re_1^{n+2} \rightarrow \Re_2^{n+2}$ is the required homeomorphism ψ . Therefore it remains to prove that the proposition (2) implies the proposition (3).

Let Δ_{ij} be a 1-simplex of K_i incident to a vertex Δ_i . Then $\psi^2(\bigcup_j \Box_{ij}) = \bigcup_j \Box_{2j}$ where $\bigcup_j \Box_{ij} \Box \partial \Box_i$ and $\bigcup_j \Box_{ij}$ is a regular neighborhood of the 2-sphere $\partial \nabla_i$ in the 4-sphere $\partial \Box_i$ by Lemma 4 of [4]. Since $\partial \nabla_i$ is locally flat in $\partial \Box_i$ by Lemma 1, the tube $T_i (=\partial(\bigcup_j \Box_{ij}))$ is homeomorphic to $S^2 \times S^1$ by Theorem B of [5]. Since the corresponding (2, 4)-knots $(\partial \nabla_1, \partial \Box_1)$ and $(\partial \nabla_2, \partial \Box_2)$ belong to the same class, there is a homeomorphism $\theta : \partial \Box_2 \to \partial \Box_1$ such that $\theta | \partial \nabla_2 = \phi^{-1} | \partial \nabla_2$ and $\theta(\bigcup_j \Box_{2j}) = \bigcup_j \Box_{1j}$ by Theorem 1 of [4]. Then $\psi^2 \theta | T_2 : T_2 \to T_2$ is an onto homeomorphism such that

and
$$(\psi^2 \theta)_* S^2 \sim S^2$$

 $(\psi^2 \theta)_* S^1 \sim S^1$

Therefore $\psi^2 \theta | T_2: T_2 \to T_2$ is isotopic to either the identity or the homeomorphism T, see [3 p. 320]. Since T may not be extended over $\bigcup_j \Box_{2j}, \psi^2 \theta | T_2$ is isotopic to the identity by [3 p. 323]. Then, by Theorem 4 of [4], there is a homeomorphism $\alpha: \partial \Box_2 \to \partial \Box_2$ such that $\alpha | \bigcup_j \Box_{2j} = \psi^2 \theta | \bigcup_j \Box_{2j}$. Then $\alpha \theta^{-1}: \partial \Box_1 \to \partial \Box_2$ is a homeomorphism such that $\alpha \theta^{-1} | \bigcup_j \Box_{1j} = \psi^2 | \bigcup_j \Box_{1j}$. Then, by the similar argument in $(1) \to (2)$, we may obtain the required homeomorphism ψ^3 .

WASEDA UNIVERSITY

References

 [1] J. W. Alexander: The combinatorial theory of complexes, Ann. of Math. 31 (1930) 292-320.

124

- [2] R. Baer: Isotopie von Kurven auf orientierbaren geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen. J. reine angew. Math. 159 (1928) 101-116.
- [3] H. Gluck: The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962) 308-333.
- [4] H. Noguchi: The thickening of combinatorial n-manifolds in (n+1)-space, Osaka Math. J. 12 (1960), 97-112.
- [5] H. Noguchi: A classification of orientable surfaces in 4-space, Proc. Japan Acad. 39 (1963), 422-423.
- [6] R. Penrose, J. H. C. Whitehead, and E. C. Zeeman: Imbedding of manifolds in euclidean space, Ann. of Math. 73 (1961) 613-623.
- [7] H. Seifert: Algebraische Approximation von Mannigfaltigkeiten, Math. Z.
 41 (1936) 1–17.
- [8] H. Whitney: On the topology of differentiable manifolds, Lectures in Topology, Univ. of Mich. Press, 1941.