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Abstract 

 

Cohesin-mediated sister chromatid cohesion is established during S-phase, and recent 

studies demonstrate that a cohesin protein ring concatenates sister DNA molecules. 

However, little is known about how DNA replication is linked to the establishment of 

sister chromatid cohesion. Here, I used Xenopus egg extracts to show that AND-1 and 

Tim1-Tipin, homologs of Saccharomyces cerevisiae Ctf4 and Tof1-Csm3, respectively, 

are associated with the replisome and are required for proper establishment of the 

cohesion observed in M-phase extracts. Immunodepletion of both AND-1 and 

Tim1-Tipin from the extracts leads to aberrant sister chromatid cohesion, which is 

similarly induced by the depletion of cohesin. These results demonstrate that AND-1 

and Tim1-Tipin are key factors linking DNA replication and establishment of sister 

chromatid cohesion. On the basis of the physical interactions between AND-1 and 

DNA polymerases, I discuss a model to describe how replisome progression complex 

establishes sister chromatid cohesion.



 4 

Table of contents 

ABSTRACT.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

TABLE OF CONTENTS.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

INTRODUCTION .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

REFERENCES .................................................................................................................................14 

RESULTS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 

XENOPUS AND-1, CLASPIN AND TIM1-TIPIN ARE S-PHASE SPECIFIC CHROMATIN BINDING 

PROTEINS .......................................................................................................................................23 

CDC45-DEPENDENT BINDING OF AND-1 AND TIM1 TO CHROMATIN .........................................26 

PROTEIN INTERACTIONS OF AND-1, TIM1-TIPIN, AND CLASPIN ...............................................28 

ROLE OF AND-1 AND TIM1 IN DNA REPLICATION AND CHK1 ACTIVATION .............................32 

AND-1 IS REQUIRED FOR PROPER ESTABLISHMENT OF SISTER CHROMATID COHESION IN 

M-PHASE EXTRACTS ......................................................................................................................38 

TIM1-TIPIN IS INVOLVED IN THE PROPER ESTABLISHMENT OF SISTER CHROMATID COHESION41 

DISCUSSION .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 

FORMATION OF REPLISOME PROGRESSION COMPLEX IN XENOPUS EGG EXTRACTS...................45 

FUNCTIONAL IMPLICATIONS OF AND-1 AND TIM1-TIPIN IN DNA REPLICATION AND CHK1 

ACTIVATION....................................................................................................................................46 

AND-1 AND TIM1-TIPIN ARE REQUIRED FOR THE PROPER ESTABLISHMENT OF SISTER 

CHROMATID COHESION..................................................................................................................47 

MODELS FOR THE COHESION ESTABLISHMENT REACTION MEDIATED BY RPC..........................48 

EXPERIMENTAL PROCEDURES .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 

REFERENCES .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 

ACKNOWLEDGEMENTS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 

 



5 

Introduction 

 

In eukaryotic cells, chromosomal DNA is duplicated accurately during S-phase and the 

resulting sister chromatids are segregated during mitosis to produce the next generation. 

Sister chromatids remain physically connected from S-phase to the onset of anaphase 

to allow the chromatids to be distributed equally to the two daughter cells. The 

physical connection, known as sister chromatid cohesion, is generated in two ways: by 

catenation of sister DNA molecules during DNA replication and by the proteinaceous 

linkage formed by the multi-protein complex cohesin. Although DNA catenation 

contributes to the physical connection of sister chromatids (Vagnarelli et al. 2004; 

Toyoda and Yanagida 2006), it is unclear whether DNA catenation is sufficient to 

connect sister DNAs under physiological conditions where topoisomerases are active. 

The observation that cohesion proteins mediate cohesion between yeast 

minichromosomes in the absence of DNA catenation (Ivanov and Nasmyth 2007) 

indicates that the proteinaceous linkage plays a major role in sister chromatid cohesion. 

Cohesin consists of at least four subunits including two structural 

maintenance of chromosomes (SMC) subunits, one kleisin subunit, and one non-SMC 

subunit (Fig. IA) (Hirano 2006). The two SMC subunits, Smc1 and Smc3, exhibit a 

characteristic rod-like structure bent at a central hinge domain to form an 

intra-molecular coiled-coil that brings the N- and C-terminal regions together to form a 

globular ATPase head domain (Haering et al. 2002; Hirano and Hirano 2002). 

Biochemical analysis revealed that the two SMC subunits bind to each other via their 

hinge domain and to the kleisin subunit Scc1 via their ATPase head domains (Haering 

et al. 2002). Scc1 is a member of the kleisin family of proteins that bridge the ATPase 

heads in different SMC complexes (Schleiffer et al. 2003). In the case of cohesin, Scc1 

binds to the ATPase head of Smc1 at its C-terminus and to Smc3 at its N-terminus 

forming a tripartite ring with a diameter of about 40 nm (Haering et al. 2002). This 

unique structure is observed in purified vertebrate and yeast cohesin complexes by 

electron microscopy (Anderson et al. 2002; Haering et al. 2002) and by crystal 

structures of cohesin subcomplexes (Haering et al. 2002). In addition to its binding to 

the SMC heterodimer, Scc1 is also associated with Scc3, the fourth non-SMC subunit 

of cohesin (Toth et al. 1999). Recent studies reveal that Scc3 has an essential role in 

the establishment of cohesion and in the stable binding of cohesin to chromatin  



Smc1

Smc3

Scc3

Scc1

A B
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Figure I. Molecular architecture of the cohesin complex

(A) Schematic structure of the cohesin core complex. The cohesin core complex consists of the four core

subunits Smc1, Smc3, Scc1, and Scc3. SMC-heterodimer and Scc1 form a ring structure. (B, C, D) Models

of cohesin-DNA interaction. (B) Ring model. A single cohesin molecule encircles sister DNA molecules.

(C) Cohesin dimer model. A single cohesin molecule encircles one of the sister DNA molecules and the

two cohesin molecules form a dimer. (D) Oligomeric cohesin model. Two or more cohesin molecules form a

large single ring that embraces the sister DNA molecules.

6
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(Rowland et al. 2009), but the structure of Scc3 has not been determined. Unlike other 

cohesin subunits, two homologs of Scc3, SA1 and SA2, exist in somatic vertebrate 

cells (Losada et al. 2000). A cohesin complex will contain SA1 or SA2, but not both, 

and it is unclear whether the resulting two types of cohesin have different functions. 

In addition to these four core subunits of cohesin, there are at least three 

proteins that bind to cohesin to modulate its function. One of these proteins is Pds5, 

which is conserved from yeast to human and has the HEAT-repeat protein interaction 

domain (Hartman et al. 2000; Panizza et al. 2000; Sumara et al. 2000). Vertebrate cells 

have two Pds5 homologs, Pds5A and Pds5B, which associate with two types of 

cohesin complex (Losada et al. 2005). Pds5 is essential for cohesion in yeast, worm, 

and fly through the maintenance of stable chromatin association of cohesin (Hartman 

et al. 2000; Panizza et al. 2000; Tanaka et al. 2001; Stead et al. 2003; Wang et al. 

2003; Dorsett et al. 2005). Knockout of both Pds5A and Pds5B leads to embryonic 

lethality in mice (Zhang et al. 2009), whereas depletion of either of them by siRNA 

treatment in vertebrate cells has only a slight effect on cohesion (Losada et al. 2005). 

These findings indicate redundancy in the function of Pds5A and Pds5B. In contrast, 

depletion of both Pds5A and Pds5B causes no apparent cohesion defect in Xenopus 

egg extract (Losada et al. 2005). Cohesin is also associated with Wapl (Gandhi et al. 

2006; Kueng et al. 2006), a human homolog of Drosophila wings apart-like gene 

(Verni et al. 2000). In human cells, depletion of Wapl causes accumulation of cohesin 

on chromatin from interphase to metaphase (Gandhi et al. 2006; Kueng et al. 2006), 

indicating that Wapl is required for the removal of cohesin from chromatin. However, 

studies in Saccharomyces cerevisiae reveal that the deletion of Rad61/Wpl1, the Wapl 

homolog, causes a mild cohesion defect (Warren et al. 2004) but does not cause 

accumulation of cohesin on chromatin (Rowland et al. 2009), indicating that the 

function of Wapl in cohesion differs among organisms. Sororin is a third cohesin 

binding protein and is required for the stable association of cohesin with chromatin 

(Rankin et al. 2005; Diaz-Martinez et al. 2007; Schmitz et al. 2007). Sororin has been 

identified only in vertebrates and the mechanism underlying its role in stabilizing 

cohesin is unknown. 

The stable association of cohesin with chromatin is required for maintaining 

the connection between sister chromatids for a long time period and to allow them to 

endure the pulling force exerted by spindle microtubules during metaphase. However, 
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it is not known how cohesin connects sister chromatids. Recently, biochemical analysis 

of cohesin in budding yeast revealed that cohesin binds to chromatin by encircling the 

DNA molecule with its ring structure (Haering et al. 2008). This finding suggests that 

the cohesin complex mediates cohesion of the sister chromatids by embracing them 

within its ring-like structure (Fig. IB). The topological binding model for the binding 

of cohesin to chromatin is consistent with the experimental observation that cleavage 

of the cohesin subunits Scc1 or Smc3 causes dissociation of cohesin from chromatin 

(Uhlmann et al. 2000; Gruber et al. 2003). Further support for this model comes from 

the observation that cohesin dissociates from circular minichromosomes when they are 

linearized with restriction enzymes (Ivanov and Nasmyth 2005). This model implies 

that the cohesin ring must be opened to be loaded onto the chromatin; this speculation 

was confirmed in yeast, where cohesin cannot associate with chromatin if its subunits 

are genetically manipulated to fuse with each other (Gruber et al. 2006). This finding 

also suggests that the opening of the cohesin ring to allow binding to chromatin occurs 

at the hinge domain of Smc1 and Smc3 and not at the ATPase head of Smc1 and Smc3 

(Gruber et al. 2006). This result is unexpected because ATP hydrolysis by Smc1 and 

Smc3 is required for the chromatin binding reaction of cohesin (Arumugam et al. 

2003; Weitzer et al. 2003), and the ATPase heads of Smc1 and Smc3 bind to each 

other or dissociate depending on ATP binding and hydrolysis (Arumugam et al. 2003; 

Weitzer et al. 2003; Haering et al. 2004). Hence, these results suggest that the ATPase 

heads may associate with the hinge domain and open it. These experimental 

observations can also be explained by other models; for example, two cohesin 

complexes that each embrace a single sister chromatid bind to each other to form a 

dimeric structure (Fig. IC), or two or more cohesin complexes form an oligomeric ring 

that connects the sister chromatids (Fig. ID) (Huang et al. 2005; Nasmyth 2005; 

Guacci 2007; Skibbens et al. 2007; Zhang et al. 2008b). However, a monomeric 

cohesin molecule is obtained if subunits of cohesin covalently linked by a chemical 

cross-linker on the chromatin (Haering et al. 2008). Furthermore, oligomeric cohesin 

has not been found in eukaryotes. Thus, it is plausible that sister chromatid cohesion is 

mediated by a monomeric cohesin molecule that causes concatenation of sister DNA 

molecules in a ring. 

Chromatin binding of cohesin ring requires the distinct heterodimeric 

complex adherin, which consists of Scc2 and Scc4 (Dorsett 2004). Scc2 is a 
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well-conserved HEAT-repeat protein in eukaryotes, including humans (Furuya et al. 

1998; Ciosk et al. 2000; Gillespie and Hirano 2004; Rollins et al. 2004; Takahashi et al. 

2004; Tonkin et al. 2004). By comparison, Scc4 has a less conserved amino acid 

sequence, and a functional homolog of Scc4 has been identified only in a limited 

number of organisms, including Schizosaccharomyces pombe and human (Ciosk et al. 

2000; Bernard et al. 2006; Seitan et al. 2006; Watrin et al. 2006; Takahashi et al. 

2008). Adherin binds to cohesin (Toth et al. 1999; Gause et al. 2008; Takahashi et al. 

2008), and is thought to stimulate the ATPase activity of the SMC heterodimer to 

promote the loading of cohesin onto chromatin. Since sister chromatid cohesion can 

occur only with cohesin that binds to chromatin before DNA replication (Lengronne et 

al. 2006), adherin also needs to bind to chromatin prior to DNA replication. In 

Xenopus egg extracts, the loading of adherin onto chromatin is dependent upon the 

pre-replication complex (pre-RC) (Gillespie and Hirano 2004; Takahashi et al. 2004). 

Recent study reveals that adherin is recruited to the chromatin via binding to Cdc7 

kinase and its activating subunit Drf1 or Dbf4 (Takahashi et al. 2008). The dissociation 

of adherin from chromatin is dependent upon M-phase CDK activity (Gillespie and 

Hirano 2004). In fission yeast, cohesin loading onto pericentromeric heterochromatin 

requires the Cdc7 homolog Hsk1 (Takeda et al. 2001; Bailis et al. 2003), indicating 

that replication factors may function in cohesin loading. It is not known whether 

chromatin loading of adherin and cohesin in other organisms requires the pre-RC. On 

the contrary, the pre-RC component Cdc6 is dispensable for cohesin loading in 

budding yeast (Uhlmann and Nasmyth 1998). In any case, the initiation of the loading 

of cohesin onto chromatin occurs at the time when pre-RCs are assembled, at G1-phase 

in budding yeast (Guacci et al. 1997; Michaelis et al. 1997) and at telophase in 

mammalian cells (Losada et al. 1998; Darwiche et al. 1999; Sumara et al. 2000; 

Gerlich et al. 2006), suggesting that cohesin loading is regulated in a 

cell-cycle-dependent, maybe in a replication-dependent manner. 

Since cohesin is loaded onto chromatin before DNA replication and its 

presence on chromatin during DNA replication is required for sister chromatid 

cohesion, the cohesion establishment reaction may involve sliding of the replication 

fork through the cohesin ring. Accumulating evidence suggests that the eukaryotic 

replisome forms a complex composed of tens of components. At the onset of S-phase, 

the pre-RC at each origin is activated by S-phase promoting kinases, S-CDK and Dbf4 
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dependent kinase (DDK), leading to formation of the initiation complex of DNA 

replication (Bell and Dutta 2002; Labib and Gambus 2007). Once replication is 

initiated, the replication fork is formed as a result of unwinding of DNA, which is 

followed by replication of unwound DNA by the DNA polymerases. Current studies 

suggest that Mcm2-7, a central component of the pre-RC, acts as a replicative helicase 

and that Cdc45 and GINS are co-factors that activate Mcm2-7 by forming a ternary 

Cdc45/Mcm2-7/GINS (CMG) complex (Moyer et al. 2006). Upon unwinding of DNA, 

DNA synthesis is initiated by DNA polymerase ! (Pol !), and the leading and lagging 

strands are synthesized separately by DNA polymerase " (Pol ") and #, respectively 

(Nick McElhinny et al. 2008). In addition to these components essential for replication, 

studies by Gambus et al (2006) in budding yeast show that accessory factors are 

associated with the CMG complex to form a replisome progression complex (RPC) 

(Fig. II). Some non-essential components, such as the Tof1-Csm3 complex and Mrc1, 

appear to be involved in maintaining fork integrity and are recognized as components 

of the replication checkpoint (Katou et al. 2003). These factors, together with other 

components including Ctf4, are conserved from yeast to human (Chou and Elledge 

2006; Zhu et al. 2007). Considering that three DNA polymerases are located separately 

in the vicinity of the RPC, the apparent size of the replisome formed on the replication 

fork may be as large as the maximum diameter of the cohesin ring. It is possible that 

the large size of the replisome makes it difficult for the replication fork to slide through 

the cohesin ring. 

To establish cohesion, the replisome should interact with the cohesin 

molecule to catch the ring and finally slide through the ring. Thus, the cohesion 

establishment factors must be components of the replisome. A study of budding yeast 

mutants has identified a number of cohesion establishment factors, and indeed many of 

these factors have been detected at the replication fork (Lengronne et al. 2006). Eco1 is 

an essential S-phase factor in budding yeast and genetically interacts with proliferating 

cell nuclear antigen (PCNA) and with components of replication factor C (RFC) 

(Kenna and Skibbens 2003). Eco1 promotes cohesion establishment by acetylating the 

cohesin subunit Smc3 at two lysine residues located near the ATPase head domain 

(Ben-Shahar et al. 2008; Unal et al. 2008; Zhang et al. 2008a). This acetylation is 

essential for cohesion, whereas Smc3 mutants harboring amino acid substitutions 

mimicking the acetylated state survive in the absence of Eco1(Ben-Shahar et al. 2008;  



Figure II. Components of RPC in budding yeast

Yeast RPC consists of essential factors, such as the CMG complex, and non-essential factors,

including non-essential cohesion establishment factors. Arrows indicate interaction between

these factors.
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Unal et al. 2008; Zhang et al. 2008a; Rowland et al. 2009; Sutani et al. 2009). 

Interestingly, Pds5 and Wapl mutants are viable in the absence of Eco1 in budding 

yeast (Ben-Shahar et al. 2008; Rowland et al. 2009; Sutani et al. 2009). Fission yeast 

Eso1, a homolog of Eco1, also becomes dispensable for viability in pds5 deletion 

mutants (Tanaka et al. 2001). Similarly, the cohesion defect caused by the depletion of 

Esco2/Efo2, one of two human Eco1 homologs, is partially restored by depletion of 

Wapl (Gandhi et al. 2006). These findings suggest that Pds5 and Wapl may prevent 

establishment of cohesion, and that acetylation of Smc3 can counteract their inhibitory 

effect. In vertebrate cells, two Eco1 homologs are required for establishment of 

cohesion and have partially non-redundant functions in the cohesion process. Not 

Esco2/Efo2 but Esco1/Efo1 is required for Smc3 acetylation (Zhang et al. 2008a). 

However, depletion of either Esco1/Efo1 or Esco2/Efo2 causes a mild cohesion defect, 

and depletion of both Esco1/Efo1 and Esco2/Efo2 causes severe mitotic abnormalities 

(Hou and Zou 2005). It is still unclear how Esco1/Efo1 and Esco2/Efo2 function in 

establishment of cohesion. Ctf18-RFC, an alternative RFC complex composed of 

Ctf18, Ctf8, Dcc1, and Rfc2-4, is a non-essential establishment factor detected at 

replication forks in budding yeast (Hanna et al. 2001; Mayer et al. 2004; Lengronne et 

al. 2006). Biochemical analysis revealed that the Ctf18-RFC complex associates with 

PCNA, the sliding clamp, and can load it onto the chromatin (Bermudez et al. 2003). A 

homolog of Ctf18-RFC has been identified in eukaryotes (Merkle et al. 2003; Ansbach 

et al. 2008; Berkowitz et al. 2008) and vertebrate Ctf18-RFC has been shown to load 

PCNA (Shiomi et al. 2004); however, it has not been known whether Ctf18-RFC is an 

establishment factor in vertebrates as in yeasts. 

A more precise study in budding yeast showed that some of the cohesion 

establishment factors are in fact non-essential components of the RPC (Gambus et al. 

2006). The non-essential RPC component Ctf4, originally identified as an accessory 

factor of Pol !, is implicated in establishing sister chromatid cohesion in budding yeast 

(Hanna et al. 2001). This notion is supported by the finding that fission yeast Mcl1 and 

Aspergillus nidulans sepB, homologs of Ctf4, are required for proper segregation of 

sister chromatids (Harris and Hamer 1995; Williams and McIntosh 2002). Recent 

studies in budding yeast showed that Ctf4 is required for the stable association of Pol ! 

with the chromatin (Tanaka et al. 2009), suggesting that Ctf4 may be involved in DNA 

replication. Similarly, human AND-1, a homolog of Ctf4, was shown to play an 
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essential role in DNA replication by recruiting Pol ! to the chromatin, and this study 

suggested that the defect observed in the Ctf4 mutant of budding yeast is the result of 

defects in DNA replication (Zhu et al. 2007). Therefore, the function of the Ctf4 

homologs in cohesion remains unclear. The Tof1-Csm3 complex and Mrc1 are also 

implicated in sister chromatid cohesion in budding yeast (Mayer et al. 2004; Xu et al. 

2004). However, it is not known whether or not these proteins are required during 

S-phase for the establishment of cohesion. The function of these proteins in cohesion 

in higher eukaryotes has not been explored; however, in Caenorhabditis elegans the 

homolog of Tof1 appears to play an important role in establishing sister chromatid 

cohesion during meiosis (Chan et al. 2003).  

During the course of exploring new proteins involved in DNA replication 

with Xenopus egg extracts, I became interested in the non-essential but conserved 

proteins of the yeast RPC. Previous studies showed that Xenopus Claspin is a homolog 

of yeast Mrc1 (Nyberg et al. 2002), and recent studies suggest that the Xenopus 

Tim1-Tipin complex and AND-1 are homologs of the yeast Tof1-Csm3 complex and 

Ctf4, respectively (Errico et al. 2007; Zhu et al. 2007). Here, I investigated the 

function of AND-1 and Tim1-Tipin in chromosomal replication and in the 

establishment of sister chromatid cohesion in Xenopus egg extracts. I demonstrated 

that AND-1 and Tim1 play a crucial role in establishing sister chromatid cohesion 

during S-phase. 
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Results 

 

Xenopus AND-1, Claspin and Tim1-Tipin are S-phase specific chromatin binding 

proteins 

To investigate the function of these proteins in Xenopus egg extracts, I raised 

antibodies against Xenopus AND-1, Tim1, Tipin, and Claspin. Western blot analysis of 

egg extracts using antibodies against each protein specifically recognized a single band 

corresponding to the calculated molecular mass of each protein (Fig. 1). Since yeast 

homologs are implicated in S-phase and M-phase activity, I first examined chromatin 

binding of these proteins during S- and M-phase. When sperm chromatin was 

incubated in S-phase egg extracts, pre-RC was assembled within 15 min, judging from 

the chromatin binding of Orc2 and Mcm3 (Fig. 2A). DNA replication was then 

initiated within 30 min after starting the incubation (data not shown), and proteins 

essential for DNA replication such as Cdc45 and Pol ! were loaded onto chromatin. 

AND-1, Tim1, and Tipin were bound to chromatin at similar timing with those of 

Cdc45 and Pol ! and their amounts were increased during replication, and decreased 

when the replication was completed (about 120 min incubation). Claspin behaved 

similarly with AND-1, Tim1, and Tipin, but showing some delay in its initial binding; 

I could not detect Claspin binding at 15 min incubation. At 120 min after the 

incubation, chromatin binding of Tim1, Tipin, and Claspin was almost completely 

abolished, and small amount of AND-1 was detected on chromatin fraction by western 

blotting, which was similar to background level detected in the control prepared in the 

absence of sperm chromatin (-sperm). Observation under fluorescent microscopy 

confirmed that AND-1 bound to replicating chromatin (Fig. 2B), but only weak 

AND-1 signal detected in nuclei when the replication has been almost completed (Fig. 

2B, 60 min). These results show that Xenopus AND-1, Claspin, Tim1, and Tipin 

specifically bind to chromatin during DNA replication. 

 I next investigate the chromatin binding of various proteins during M-phase by 

adding non-degradable cyclin B (!N 106-cyclin B) to S-phase extracts after the 

completion of DNA replication. Within 30 min after the addition of cyclin B, the 

nuclear envelope was broken down and chromatin structure was dramatically altered 

into condensed state (Fig. 2B, 240 min). In accord with the changes in chromatin 

structure, condensin was loaded onto chromatin, which was detected as chromatin  
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binding of XCAP-E, a condensin subunit, by immunoblot (Fig. 2A). On the contrary, 

chromatin binding of Smc3, a cohesin subunit, was decreased upon chromatin 

condensation as previously reported (Losada et al. 1998). Tim1, Tipin, and Claspin 

were not detected on M-phase chromatin by western blotting, and immunofluorescence 

observation of AND-1 verified that AND-1 was not present on M-phase chromatin.  

 I further examined the effect of various cell cycle inhibitors on the chromatin 

binding of AND-1 and Tim1 (Fig. 2C). The chromatin binding of AND-1 and Tim1 

was completely suppressed by geminin, which inhibits the pre-RC formation, and also 

by p21 plus roscovitine, which completely inhibit CDK activity in the extracts and thus 

inhibit the initiation of DNA replication. However, the binding was not significantly 

affected by the addition of aphidicolin, which inhibits DNA polymerase activities but 

not the initiation of the replication. Similar results were also obtained with the binding 

of Tipin and Claspin (data not shown). Previous studies on Xenopus Claspin, Tipin and 

AND-1 show that these proteins bind to chromatin in S-phase extracts, and CDK 

activity and/or pre-RC formation, but not DNA polymerase activity is required for 

these proteins to bind chromatin (Lee et al. 2003; Errico et al. 2007; Zhu et al. 2007) . 

I confirmed that the specific binding of Xenopus AND-1, Claspin, Tim1, and Tipin to 

chromatin depends on the initiation of DNA replication in S-phase and does not occur 

in M-phase. 

 

Cdc45-dependent binding of AND-1 and Tim1 to chromatin 

The similar behavior of AND-1, Tim1, Tipin and Claspin prompted me to explore the 

factors involved in their binding to chromatin. I first examined whether the binding of 

each of these proteins to chromatin depends on the other proteins (Fig. 3A and 3D). In 

accordance with the initiation-dependent binding of these proteins to chromatin, 

depletion of Cdc45 from the egg extract abolished the binding of AND-1, Tim1, Tipin, 

and Claspin to chromatin. Tim1, Tipin, and Claspin bound to chromatin in the absence 

of AND-1, and AND-1 bound to chromatin in the absence of Tim1 or Claspin. It 

should also be noted that Tipin and Claspin failed to bind to chromatin in the absence 

of Tim1. These data demonstrate that AND-1 and Tim1 bind independently to 

chromatin and that the binding of these proteins to chromatin requires Cdc45. 

 Since AND-1 and Tim1 bound to chromatin in the presence of aphidicolin (Fig. 

2C), I examined whether the binding requires the recruitment of DNA polymerases  



27



 28 

onto the chromatin. AND-1 and Tim1 bound to chromatin in the absence of Pol ! or 

Pol " (Fig. 3B). In addition, the binding of Pol ! and Pol " to the chromatin was 

unaffected by AND-1 depletion. My finding that the binding of Pol " to chromatin was 

unaffected by AND-1 depletion is not consistent with the findings of a previous report 

(Zhu et al. 2007). To further explore the critical events in the binding of AND-1 and 

Tim1 to chromatin, I investigated the role of RecQ4 and RPA, both of which are 

required for replication after the binding of Cdc45 (Sangrithi et al. 2005; Matsuno et al. 

2006). RPA is required for stabilizing the single-stranded DNA formed upon DNA 

unwinding and is required for the loading of Pol " onto the chromatin. The precise 

function of RecQ4 is unknown, but it is required for the loading of Pol " onto the 

chromatin after the binding of Cdc45. Upon depleting RecQ4 or RPA from the extract, 

the replication activity was diminished in the depleted extract (data not shown), while 

both AND-1 and Tim1 bound to chromatin in the absence of RecQ4 or RPA, 

irrespective of the presence of aphidicolin in the extracts (Fig. 3C). It should be noted 

that the binding of RecQ4 to chromatin increased in RPA-depleted extract compared 

with the mock-depleted extract. 

 

Protein interactions of AND-1, Tim1-Tipin, and Claspin 

The similar chromatin binding profiles of AND-1 and Tim1 in various depleted 

extracts suggested that AND-1 and Tim1 recognize a similar intermediate for the 

formation of the replisome. To identify targets of AND-1 and Tim1, I first examined 

whether these proteins interacted with Mcm2-7 or cohesin, two major 

chromatin-binding proteins in the egg extracts (Fig. 4A and Table 1). Tim1, Tipin, and 

Claspin did not co-precipitate with AND-1, being consistent with my finding that 

AND-1 and Tim1 bind independently to chromatin. Immunoprecipitation of Tim1 with 

the Tim1 A2 antibody, but not the Tim1 A1 antibody, resulted in the co-precipitation 

of AND-1, Mcm2, and Mcm6 from the extracts. Smc3 also co-precipitated with both 

of Tim1 antibodies. Tim1, AND-1 and Mcm6 co-precipitated with Claspin. I also 

found that Tim1 and Tipin co-precipitated with each other in a similar manner, i.e., the 

amount of Tim1 and Tipin in the immunoprecipitates were similar irrespective of the 

antibody used (Fig. 4A). Consistent with this finding, I demonstrated that depletion of 

Tim1 resulted in almost complete depletion of Tipin from the extracts (Fig. 3A and 

11B).  
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Table 1. Interaction of AND-1, Tim1-Tipin, Claspin, and replication proteins 

 

Immunoprecipitation from egg extract. Data from Fig.4. 

 antibody used for immunoprecipitation 

!  Claspin Tipin Tim1 A1 Tim1 A2 AND-1 Cdc45 Pol ! Pol " Psf2 

Claspin !  !  !  !  !  !  !  !  !  

Tim1 !  !  !  !   !  !  !  !  

Tipin !  !  !  !  !  !  !  !  !  

Smc3 !  !  !  !  !  !  !  !  !  

MCM !  !  !  !  ! !  !  !  !  !  

AND-1 !  !  !  !  !  !  !  !  !  

Cdc45 !  !  !  !  !  !  !  !  !  

Pol ! !  !  !  !   ! !  !  !  !  

Pol " !  !  !  !  !  !  !  !  !  

Sld5 !  !  !  !  !  !  !  !  !  

          

Immunoprecipitation from replicating chromatin. Data from Fig.4 and Fig. 5.   

 antibody used for immunoprecipitation   

!  AND-1 Cdc45 Psf2 Pol ! Pol " Tim1 A2 Tipin   

Pol " !  !  !  !  !  !  !    

Pol ! !  !  !  !  !  !  !    

AND-1 !  !  !  !  !  !  !    

Sld5 !  !  !  !  !  !  !    

Cdc45 !  !  !  !  !  !  !    

MCM !  !  !  !  !  !  !    

Tim1 !  !  !  !  !  !  !    

Tipin !  !  !  !  !  !  !    

Red box: precipitated, open box: not precipitated, shaded box: not tested in this study. 
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 I next examined a possible target of replisome components for the binding of 

AND-1, because there was no apparent interaction between AND-1 and Mcm2-7 or 

cohesin in the extracts. To identify candidate proteins that interact with AND-1 I 

screened replication proteins in the egg extract by immunoprecipitation assays (Fig. 

4B). Previous studies with budding yeast suggest that Ctf4 interacts with PolI (Pol !) 

and GINS (Miles and Formosa 1992; Gambus et al. 2006). AND-1 co-precipitated with 

Pol ! but did not co-precipitate with GINS. By comparison, Sld5, a subunit of GINS, 

co-precipitated with the antibody to Psf2, the other GINS subunit, but not with AND-1. 

I found that Cdc45 and Pol " co-precipitated with AND-1. It should be noted that the 

depletion of AND-1 scarcely affected the amount of Pol " or Cdc45 in the extracts (Fig. 

3B). 

 I next performed immunoprecipitation assays to examine the interaction 

between AND-1 and a component of the replisome on the chromatin (Fig. 4C). Unlike 

with the egg extracts, I did not detect any robust interactions between AND-1 and the 

DNA polymerases using replicating chromatin fractions. One reason may be the lower 

level of polymerases in the fragmented chromatin fractions. By comparison, AND-1 

and Cdc45 efficiently co-precipitated from the chromatin fractions and more than 50% 

of the AND-1 bound to chromatin was recovered by immunoprecipitation with the 

anti-Cdc45 antibody (Fig. 4C, flow through fraction). I also detected co-precipitation 

of AND-1 and Cdc45 in the chromatin fractions with Psf2. Again, I found that the 

amount of AND-1 in the flow through fraction was markedly reduced by 

immunoprecipitation with Psf2. In addition, Mcm2 was detected in 

immunoprecipitates of Psf2, Cdc45, and AND-1. These results showed that the 

interactions among GINS, Cdc45, AND-1, and Mcm2-7 were more stable on 

chromatin than in the egg extracts. In contrast to the findings for AND-1, I did not 

detect tight association between Tim1-Tipin and Mcm2-7 or Cdc45, but I detected 

co-precipitation of Tim1-Tipin with Mcm3, 5, 6, and Cdc45 in the chromatin fractions 

(Fig. 5). 

 

Role of AND-1 and Tim1 in DNA replication and Chk1 activation 

Chromatin binding and chromatin immunoprecipitation experiments suggest that 

AND-1 is assembled into a replisome complex before the start of DNA synthesis and 

stably associates with the replisome during DNA replication. To understand the 
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function of AND-1, I first examined the replication activity of AND-1–depleted 

extracts (Fig. 6A). The extracts were subjected to the anti-AND-1 antibody three times 

to generate AND-1–depleted extracts. Following this process, AND-1 was not detected 

in samples with an extract volume five times greater than that of the mock-treated 

extract, and comparison of the depleted extracts with various dilution of the 

mock-depleted extracts suggest that the amount of AND-1 in the AND-1–depleted 

extracts was as much as few percent of the mock-depleted one (Fig. 7). Chromatin 

binding of AND-1 was abolished in the AND-1–depleted extracts (Fig. 3, and see also 

Fig. 6B). In an average of seven independent experiments DNA replication activity 

was not significantly decreased in AND-1–depleted extracts, compared with that in the 

mock-depleted extract, and recombinant AND-1 did not affect DNA replication 

activity when added to the AND-1–depleted extracts. I further examined DNA 

replication activity in extracts exposed to the anti-AND-1 antibody to interfere with 

AND-1 function, but although I used 1/20 volume of anti-sera or up to 60 !g of 

affinity purified antibody per mL extract I did not detect any effect on replication 

activity (Fig. 8 and data not shown).  

 The yeast ctf4 mutant shows sensitivity to DNA damaging agents and synthetic 

lethality with deletion of components of the replication fork protection complex, such 

as Mrc1 (Tong et al. 2004; Ogiwara et al. 2007). Therefore, I examined whether 

AND-1 affects Chk1 activation upon the inhibition of DNA replication. Activation of 

Chk1 was detected by examining the phosphorylation status of Chk1 in nuclear 

fractions (Kumagai et al. 1998). The amounts of Orc2, Pol !, and Claspin in the 

nuclear fractions were not markedly affected by AND-1 depletion, whereas the level of 

AND-1 was diminished in the AND-1–depleted extracts (Fig. 6B). Addition of 

recombinant AND-1 to the AND-1–depleted extracts resulted in the accumulation of 

AND-1 in the nuclear fractions. In the absence of aphidicolin, Chk1 phosphorylation 

was not detected in the mock-depleted extracts, and a low level of Chk1 

phosphorylation was detected in the AND-1–depleted extracts; this level diminished 

upon the addition of recombinant AND-1. By comparison, in the presence of 

aphidicolin I detected a similar level of Chk1 phosphorylation in mock- and 

AND-1–depleted extracts. These results suggest that AND-1 is not essential for the 

activation of Chk1 upon inhibition of replication activity with aphidicolin. 

 A previous study revealed that Tipin is not essential for replication but is  
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required for the activation of Chk1 in response to aphidicolin (Errico et al. 2007). 

Tipin forms a complex with Tim1, but it remains to be determined whether the defect 

observed with Tipin-depleted extracts is due to depletion of the Tim1-Tipin complex or 

Tipin alone. I therefore examined the role of Tim1 in the phosphorylation of Chk1 

induced by aphidicolin. Upon depletion of Tim1, most of the Tipin was removed from 

the extracts, but the replication activity of Tim1-depleted extracts was similar to the 

level of replication activity in mock-depleted extracts (Fig. 9A). In contrast, Chk1 

phosphorylation was markedly reduced in Tim1-depleted extracts compared with that 

in mock-depleted extracts (Fig. 9B). This decrease in Chk1 phosphorylation was 

recovered by adding human recombinant Tim1-Tipin complex to the Tim1-depleted 

extracts (Fig. 9C). In addition to the recovery of Chk1 phosphorylation, the binding of 

Claspin to the chromatin was recovered by adding recombinant Tim1-Tipin to the 

Tim1-depleted extracts (Fig. 9D). 

 

AND-1 is required for proper establishment of sister chromatid cohesion in 

M-phase extracts 

Previous reports show that Ctf4 is involved in the proper establishment of cohesion 

(Hanna et al. 2001). Therefore, I investigated whether AND-1 is required for sister 

chromatid cohesion. To examine the sister chromatid cohesion with egg extracts, I first 

incubated sperm chromatin in the treated extracts containing Cy3-dCTP, which is 

incorporated into the replicated region of chromatin. After 120 min incubation when 

DNA replication has been completed, !N106-Cyclin B was then added to the extracts 

to induce S- to M-phase transition and incubated for a further 120 min to complete the 

condensation of chromatin. In a mock-depleted extract, a pair of condensed and 

replicated chromatids was observed by Cy3 fluorescence and was found to be closely 

aligned with a regular interval of cohesive structures along the entire chromosome 

length (Fig. 10A). To quantify the cohesive structure of condensed chromatin, I 

evaluated the distance between paired chromosome molecules by measuring the 

distance between peaks of fluorescence signals for each chromosome axis visualized 

by immunostain with anti-XCAP-E antibody (Fig. 10B). In mock-depleted extracts, the 

distribution of distances showed a peak and the average of mean distance 

measurements taken from three independent experiments was 0.57 ± 0.030 !m. In 

AND-1–depleted extracts, pairs of replicated chromosomes displayed irregular and 
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partly separated structures revealed by Cy3 fluorescence. The distances between paired 

chromosome axes were widely distributed and the line plot of the distribution showed 

a broad peak with an average of mean distances of 0.72 ± 0.059 !m. This disordered 

chromosome structure was restored by adding recombinant AND-1 to the 

AND-1–depleted extracts. Chromosomal structures in the AND-1–depleted extracts 

with added recombinant AND-1 appeared to be similar to those observed in 

mock-depleted extracts and had a similar distribution of distances (average of mean 

distances, 0.61 ± 0.038 !m). Rescue of the disordered structures observed in 

AND-1–depleted extracts by the addition of recombinant AND-1 suggested that these 

structural defects were due to the absence of AND-1 from the egg extracts. 

 In Smc3-depleted extracts, the paired structures of replicated chromosomes 

were almost completely abolished and most of the replicated chromatin formed clumps, 

making it difficult to distinguish paired chromosome structures by microscopy. The 

chromatin structural defects that I observed are in good agreement with the finding of a 

previous report that cohesin is essential for sister chromatin cohesion in CSF-arrested 

extracts (Losada et al. 1998). I hereafter describe the defect in AND-1–depleted 

extracts as a defect in sister chromatid cohesion. The most likely reason underlying 

impaired cohesion is dissociation of the cohesin complex from M-phase chromatin in 

AND-1–depleted extracts. To test this possibility, I compared M-phase chromatin 

isolated from mock-depleted extracts with that from AND-1–depleted extracts, in the 

presence and absence of recombinant AND-1. Western blot analysis of egg extracts 

showed that AND-1 was absent in the depleted extracts, but Smc3, a subunit of cohesin, 

remained in both extracts. Both Smc3 and XCAP-E bound to M-phase chromatin in the 

absence of AND-1, and the ratio of Smc3 to XCAP-E in the chromatin fractions was 

similar in mock- and AND-1–depleted extracts (Fig. 10C). Since cohesin loaded onto 

the chromatin in the S-phase extracts, irrespective of the presence of AND-1 (Fig. 3B), 

my results suggest that the cohesion defect in AND-1–depleted extracts is not due to a 

defect in the loading of cohesin onto the chromatin in S-phase extracts or to 

dissociation of cohesin from the chromatin during M-phase. 

 Since AND-1 is tightly associated with the replisome components, I 

investigated the requirement for AND-1 in the establishment step of cohesion during 

DNA replication. Thus, I examined sister chromatid cohesion following the addition of 

recombinant AND-1 to the AND-1–depleted extracts before and after replication (Fig. 
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10D). The average distances between sister chromatids in mock- and AND-1–depleted 

extracts were 0.57 and 0.73 !m, respectively. The cohesion defect observed in 

AND-1–depleted extracts was almost completely restored by the addition of 

recombinant AND-1 before the start of DNA replication (average of mean distances, 

0.61 !m); this is the same condition as shown in Fig. 10A. By comparison, the 

cohesion defect was not rescued when AND-1 was added after the completion of DNA 

replication (120 min after the start of incubation) and incubated for a further 120 min 

in the M-phase extracts. The average distance between sister chromatids was 0.75 !m, 

giving a distribution similar to that observed for AND-1–depleted extracts (Fig. 10D). 

These results suggest that AND-1 is required for the proper establishment of cohesion 

during DNA replication but not after DNA replication. 

 

Tim1-Tipin is involved in the proper establishment of sister chromatid cohesion 

Previous studies with budding yeast suggest a possible role for the fork protection 

complex (Tof1-Csm3-Mrc1) in establishing sister chromatid cohesion (Mayer et al. 

2004; Xu et al. 2004). However, little is known about the exact nature of the cohesion 

defect. Taking advantage of the egg extracts that allowed me to directly observe sister 

chromatid cohesion, I investigated whether Tim1-Tipin and Claspin are involved in 

sister chromatid cohesion. Depletion of Tim1 or Claspin from the extracts did not 

affect the chromatin binding of AND-1 (Fig. 3A) or Smc3 (Fig. 11B). The 

establishment of cohesion was monitored in the depleted extracts by using a similar 

approach to that used for AND-1–depleted extracts. The distribution of distances 

between the sister chromosome axes was unaltered by depletion of Tim1 or Claspin 

from the extracts, but some regions of the chromatids showed a constantly open 

configuration in Tim1-depleted extracts compared with mock-depleted extracts (Fig. 

11A). In order to distinguish such subtle structural change in sister chromatid cohesion, 

the distribution of distances between the chromatids was displayed at the interval of 

one pixel length (0.065 !m). Examination of the histogram of the distribution revealed 

that the peak position shifted to two pixel lengths wider in the Tim1-depleted extracts 

than in the mock-depleted extracts, and the average distance increased to 0.59 !m from 

0.53 !m for the mock-depleted extract (Fig. 11A). By comparison, the peak shifted 

only one pixel length for Claspin-depleted extracts, and the overall distribution of 

distances was not markedly altered (average distance, 0.54 !m). 
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To explore the possible interplay between AND-1 and Tim1, I examined the 

effect of depleting both AND-1 and Tim1 from the egg extracts on sister chromatid 

cohesion. Depletion of both AND-1 and Tim1 did not alter the amount of cohesin in 

the egg extracts or that bound to the chromatin after completion of DNA replication 

(Fig. 11B). The replication activity of double-depleted extracts was lower than that of 

the mock-depleted extracts (Fig. 12); this may have been the result of poor nuclear 

formation in the double-depleted extracts. In order to assess the completion of 

replication, I examined condensed chromatin uniformly labeled with Cy3-dCTP. In 

mock-depleted extracts, induction of chromosomal condensation after DNA replication 

led to the formation of sister chromatid cohesion, which was detected as a close 

alignment of a pair of replicated chromosomes with a regular interval of cohesive 

structures (Fig. 11C, mock). Cohesive structure of the replicated chromosomes was 

difficult to detect in double-depleted extracts, as most of the replicated chromatin 

detected by Cy3 fluorescence showed regions of clamping and dispersal; in the latter 

there was an irregular and separated configuration of chromatin fibers, which is similar 

to the chromatin structure found in Smc3-depleted extracts (Fig. 10A). These cohesion 

defects were completely rescued by the addition of recombinant Xenopus AND-1 and 

human Tim1-Tipin to the depleted extracts before the start of replication. Most of the 

replicated chromatin showed cohesive structures similar to that observed in 

mock-depleted extracts (Fig. 11C). Therefore, I conclude that the aberrant sister 

chromatid cohesion in extracts depleted in AND-1 and Tim1 was due to the absence of 

both AND-1 and Tim1-Tipin. 
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Discussion 

 

I showed that AND-1 and Tim1-Tipin were required for the sister chromatid cohesion 

observed in Xenopus egg extracts. Factors involved in sister chromatid cohesion have 

been extensively studied in budding yeast as a model organism. Yeast Ctf4 is one of 

the factors involved in sister chromatid cohesion (Hanna et al. 2001), but the exact 

function of Ctf4 remains unknown. Tof1 and Csm3 are implicated in the same pathway 

as Ctf4 for the establishment of cohesion (Xu et al. 2007). Since these proteins are 

putative components of the RPC (Gambus et al. 2006), it is plausible that the replisome 

plays an important role in establishing sister chromatid cohesion. However, no 

evidence has been presented for the requirement of these factors during S-phase. 

Recent studies in budding yeast have demonstrated that cohesion is formed by 

embracing sister chromatids with a single cohesin molecule (Haering et al. 2008). This 

novel finding formed the basis of my investigations into the molecular mechanisms 

underlying the cohesion establishment reaction catalyzed by the replisome. I found 

here that AND-1 and Tim1-Tipin, vertebrate homologs of Ctf4 and Tof1-Csm3, 

respectively, formed a complex with replisome components in Xenopus egg extracts 

and were required for establishing cohesion during DNA replication. This is the first 

report showing the role of replisome components such as AND-1 and Tim1 in 

establishing the sister chromatid cohesion during S-phase. 

 

Formation of replisome progression complex in Xenopus egg extracts 

Previous studies show that Cdc45, but not RPA, is required for the binding of Claspin 

to chromatin, and that Mcm10 is required for the binding of AND-1 to chromatin (Lee 

et al. 2003; Zhu et al. 2007). I confirmed here that AND-1, Tim1-Tipin, and Claspin 

are S-phase–specific chromatin-binding proteins, and that the binding of these proteins 

to chromatin depends on Cdc45, but not RPA or the DNA polymerases. In addition, I 

found that Tim1-Tipin is required for the binding of Claspin to chromatin; this is 

consistent with the results of a previous report that Tipin is required for the binding of 

Claspin to chromatin (Errico et al. 2007). Apparent chromatin binding of Tim1-Tipin 

in the absent of RecQ4 further suggests that the fork protection complex is assembled 

before the formation of replication fork. The observed independent binding of 

Tim1-Tipin and AND-1 to chromatin, and the strict dependence of this binding on 
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Cdc45, suggests that Tim1-Tipin and AND-1 are assembled onto chromatin after 

formation of the CMG complex but before the loading of DNA polymerases. 

 The chromatin immunoprecipitation assays for AND-1 and Tim1-Tipin showed 

that these proteins were associated with Cdc45, GINS, and Mcm2-7 on digested 

chromatin fractions. In particular, AND-1 appeared to form a tight complex with 

Cdc45 and GINS, because the immunoprecipitations of Cdc45 and GINS led to a 

marked decrease in AND-1 in the flow-through fractions. By comparison, I did not 

detect a tight association between AND-1 and Pol ! on the chromatin; however, the 

chromatin binding of AND-1 slightly decreased in the absence of Pol ! (Fig. 3B). 

These results suggest that Pol ! plays an important role in stabilizing AND-1 in the 

RPC. In addition, I found that AND-1 and Pol " could be reciprocally 

immunoprecipitated from digested chromatin fractions and egg extracts. Taken 

together, these data suggest that a complex, like the RPC of budding yeast, is formed 

during DNA replication, and that AND-1 and Tim1-Tipin are components of this 

complex. 

 

Functional implications of AND-1 and Tim1-Tipin in DNA replication and Chk1 

activation 

Previous studies show that Tipin and AND-1 are not essential for DNA replication in 

Xenopus egg extracts, but instead play an important role in maintaining the replication 

fork. Tipin is required for the stalled replication fork to resume DNA replication after 

the removal of aphidicolin (Errico et al. 2007), whereas AND-1 is required for 

stabilizing Pol ! on the chromatin (Zhu et al. 2007). In addition, Tipin is required for 

the activation of Chk1 following the inhibition of DNA polymerases by aphidicolin 

(Errico et al. 2007). We found here that the Tim1-Tipin complex is required for the 

activation of Chk1 and the association of Claspin with chromatin. The ability of 

Tim1-Tipin in recruiting Claspin to chromatin thus suggests that the activation of Chk1 

is mediated by Claspin recruited onto the replicating fork via Tim1-Tipin. In contrast, 

AND-1 is not essential for the activation of Chk1. A previous report showed that 

AND-1 is required for efficient DNA replication in Xenopus egg extracts (Zhu et al. 

2007). It is unclear why I did not detect an effect of AND-1 depletion on DNA 

replication. It is possible that the procedures I used did not adequately deplete AND-1. 

However, I detected a defect in the establishment of cohesion with AND-1 depletion 
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and rescued the defect with recombinant AND-1. Differences in the antibodies used in 

the experiments in the previous study and mine may also account for my failure to 

detect an effect on DNA replication with AND-1 depletion. The antibody used in the 

previous report is a neutralizing antibody, which inhibits replication when added to the 

egg extracts. However, the antibody I used here did not inhibit replication. Thus, it is 

possible that immunodepletion with the neutralizing antibody results in release of the 

antibody from the conjugated beads into the extracts, leading to the apparent inhibition 

of replication. 

 

AND-1 and Tim1-Tipin are required for the proper establishment of sister 

chromatid cohesion 

My results showed for the first time that AND-1 was required for proper establishment 

of sister chromatid cohesion in higher eukaryotes. The depletion of AND-1 from 

Xenopus egg extracts resulted in pairs of replicated chromatids with a more separated 

structure than in the controls, and this defect was recovered by adding recombinant 

AND-1 to the AND-1–depleted extracts before DNA replication. Unreplicated DNA 

should form a physical link between sister chromatids; thus incomplete DNA 

replication may lead to incomplete resolution of the chromatids. On the contrary, I 

detected separated structures of replicated DNAs instead of a cohesive structure. 

Therefore, my results suggest that AND-1 is required for proper formation of sister 

chromatid cohesion, and incomplete DNA replication in the absence of AND-1 is not 

the underlying cause of the defect. 

 Morphological defects in cohesion were also observed in Tim1-Tipin–depleted 

extracts. Again, I confirmed that the depletion had no marked effect on the replication 

activity of the extracts (Fig. 9). Thus, the defect in Tim1-depleted extracts is the result 

of the absence of Tim1 and not the inhibition of DNA replication. There were no 

detectable cohesion defects in Claspin-depleted extracts. Since the binding of 

Tim1-Tipin to chromatin is required for the binding of Claspin to chromatin, but not 

vice versa, the defects in cohesion in Tim1-Tipin–depleted extracts are not the result of 

the absence of Claspin on the chromatin and suggest a distinct role for Tim1-Tipin in 

establishing sister chromatid cohesion. 

 A severe defect in sister chromatid cohesion was observed by the combination 

of AND-1 and Tim1 depletion. The irregular morphology of the replicated chromatin 
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in the double-depleted extracts was similar to that observed in the Smc3-depleted 

extracts. Since Smc3 is a component of cohesin, the observed defect in the 

double-depleted extracts suggests that AND-1 and Tim1-Tipin are essential for the 

proper establishment of sister chromatid cohesion. The requirement for AND-1 and 

Tim1 in the establishment of cohesion is consistent with previous work in fission yeast 

and C. elegans (Williams and McIntosh 2002; Chan et al. 2003). In budding yeast, 

Ctf4 and Tof1 or Csm3 are reported to have a redundant role in the establishment 

reaction (Xu et al. 2007), and conversely, another report shows that the depletion of 

both genes is synthetic lethal (Tong et al. 2004). The cause of the lethality is unknown, 

and I could not directly correlate my results with the synthetic lethality observed in 

budding yeast, but my results showed that both AND-1 and Tim1 are required for the 

proper establishment reaction. 

 

Models for the cohesion establishment reaction mediated by RPC 

I found novel morphological defects in sister chromatid cohesion along the entire 

length of the chromosome in the absence of AND-1 and Tim1-Tipin. Although it is 

difficult to speculate on the molecular function of AND-1 and Tim1-Tipin in the 

establishment reaction on the basis of morphological defects, I propose models for the 

molecular mechanism underlying the establishment reaction. There are two possible 

models to explain the behavior of the cohesin molecule bound to unreplicated DNA 

during DNA replication. In the first model, the cohesin ring remains intact throughout 

replication, whereas in the second model the ring embracing the DNA opens during 

replication to allow the passage of the RPC. In the first model, the cohesin molecule 

bound to the DNA might be an obstacle for the progression of the replisome. Although 

I do not know the exact diameter of the replisome, it may be as large as 30 nm, which 

is close to the maximum diameter of the cohesin ring. When the replisome encounters 

the ring, if the ring is not pushing away, the replication fork may be stalled by the ring. 

If the helicase alone could slide through the ring, it would be necessary to stop the 

helicase from moving forward and leaving the polymerases at the ring. In this scenario, 

Tim1-Tipin may have a role in stabilizing the stalled fork. In order to slide through the 

ring, the replisome structure needs to be as compact as possible. Since AND-1 interacts 

with Pol ! and ", it is possible that AND-1 tethers both polymerases on the leading and 

lagging strands of the DNA and also stabilizes the replisome by interacting with the 
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helicase. If the ring is opened transiently during DNA replication, according to the 

second model, it would be difficult to catch the sister chromatids with a cohesin 

molecule after replication. The replicated sister chromatids would physically separate 

soon after replication, such that catching both chromatids with a cohesin ring would be 

increasingly difficult. In this situation, the replisome may function as a tether of the 

cohesin molecule to allow re-embracing of the replicated sister chromatids soon after 

replication. The physical interaction that I found here between Tim1 with Smc3 may 

contribute to such a tethering process. In either case, my study suggests that 

components of the RPC play a crucial role in the establishment reaction, and further 

investigation of the functions of these proteins may help to elucidate the molecular 

mechanism underlying the cohesion establishment reaction. 
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Experimental procedures 

 

Cloning and protein expression 

Full-length Xenopus AND-1 was constructed as follows: The ORF encoding the 

N-terminal amino acids 1-571 of AND-1 was PCR amplified from the cDNA clone 

(I.M.A.G.E. ID 4970671, from ATCC) by using the 5’ primer 

CGCGGATCCATGCCAGCTATAAAGAAG and the 3’ primer 

ACCTCTATGATAGACCAC, and then digested with BamHI and NcoI. The cDNA 

clone XL021l13 (supplied from NIBB), which contains the ORF encoding the 

C-terminal amino acids 321-1127, was digested with BamHI and NcoI, and ligated 

with the PCR-amplified N-terminal fragment. 

 The full-length AND-1 was then cloned into pGEX 6P-3 (GE Healthcare) for 

expression of the GST-tagged AND-1 protein. Full-length AND-1 was sub-cloned into 

the BamHI-XhoI site of pGEX 6P-3. The GST-tagged AND-1 protein was expressed 

in DH5! at 23 ºC for 4 h after induction with 0.1 mM IPTG. Cells were harvested and 

then lysed by using french pressure cell. Purification of the GST-tagged AND-1 

protein and removal of the GST-tag with PreScission Protease (GE Healthcare) were 

performed in accordance with the manufacturer’s instructions. For His-tagged AND-1 

protein expression, I used the Bac-To-Bac Baculovirus expression system (Invitrogen). 

His-tagged AND-1 protein was expressed in Sf9 insect cells and purified with Ni-NTA 

agarose (Qiagen) in native conditions in accordance with the manufacturer’s 

instructions. The expression vector GST-"N106-cyclin B was a generous gift from Dr. 

K. Ohsumi (Iwabuchi et al. 2002). GST-"N106-cyclin B was expressed in E. coli 

BL21 DE3 and affinity purified with Glutathione Sepharose 4B (GE Healthcare) in 

accordance with the manufacturer’s instructions. 

 To prepare anti-Xenopus Tim1 antibodies, the N-terminal fragment of Tim1 

(1-1113 bp) was PCR amplified using the 5’ primer 

ATAGAATTCATGGACTTGTACATGATGAATTG and the 3’ primer 

CTATCTCGAGTTATAAAGAACAGCGCAACACC and sub-cloned into the 

EcoR1-Xho1 site of pGEX 6P-3. The GST-tagged N-terminal fragment of Tim1 was 

expressed in E. coli. The recombinant protein was recovered as insoluble pellets and 

further purified SDS-PAGE. 

To prepare anti-Xenopus Tipin antibodies, full-length Tipin cDNA was PCR 
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amplified using the 5’ primer ATAGAATTCATGATGGATCCTTTGGACAACGG 

and the 3’ primer TATCTCGAGTTCAATATTCTTCTTTAGTGTTTGCACAAGC 

and then sub-cloned into the EcoR1-Xho1 site of pGEX 6P-1. GST-tagged full-length 

Tipin expressed in E. coli was purified by standard procedures using PreScission 

protease. The Protein complex of full-length human Tim1-Tipin was a generous gift 

from Dr. H. Masai (Yoshizawa-Sugata and Masai 2007). 

 

Antibodies 

Anti-AND-1 antibody was raised against full-length AND-1 expressed in E. coli. 

Anti-Tim1 and Tipin antibodies were raised against the N-terminal fragment of 

Xenopus Tim1 and full-length Xenopus Tipin, respectively. All of these polyclonal 

antibodies were raised in the rabbit (Hokudo Inc., Japan). XCAP-E and Xenopus Smc3 

antibodies were raised against the C-terminal peptides SKTKERRNRMEDVK (Hirano 

et al. 1997) and EQAKDFVEDDTTHG (Losada et al. 1998), respectively (OPERON 

Biotechnologies). Phosphorylation of Xenopus Chk1 at Ser344 was detected with 

human Phospho-Chk1 (Ser345) monoclonal antibody from Cell Signaling 

Technologies. Other antibodies were prepared as described previously (Hashimoto et 

al. 2006). 

 

Immunodepletion and DNA replication assays 

Xenopus egg extracts and permeabilized sperm nuclei were prepared as described 

previously (Kubota and Takisawa 1993), with slight modifications. For preparation of 

egg extract, a second centrifugation was carried out at 40,000 ! g for 10 min. Egg 

extract was supplemented with 5% glycerol and 20 "g/mL cycloheximide and then 

frozen in liquid nitrogen until required. Immunodepletion and DNA replication assays 

were carried out as described previously (Mimura and Takisawa 1998) with slight 

modifications. For the immunodepletion assay rProtein A sepharose Fast Flow (GE 

Healthcare) was used instead of Affi-Prep protein A matrix (Bio-Rad), and 10-"L 

anti-sera were used instead of antibodies. For double-depletion assay anti-AND-1 and 

anti-Tim1 anti-sera were mixed and bound to rProtein A sepharose Fast Flow (GE 

Healthcare), and used for immunodepletion as described above. For the DNA 

replication assay the autoradiograms were quantified with Image Gauge software and a 

BAS2500 image analyzer (Fujifilm). 
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Preparation of chromatin and nuclear fractions 

To isolate the chromatin fraction, sperm nuclei were incubated at 23 ºC in 50 to 100 !L 

of egg extracts (4000 nuclei/!L) for the indicated periods of time in the Figures. The 

samples were diluted with 10 volumes of extraction buffer (EB; 100 mM KCl, 2.5 mM 

MgCl2, 50 mM HEPES-KOH; pH 7.5) containing 0.25% NP-40 (Wako), incubated for 

2 min on ice, and then centrifuged at 10,000 " g for 10 min through the layer of EB 

containing 10% sucrose . The upper layer containing the diluted extract was removed 

by aspiration and the remaining extract was washed by adding EB to the lower layer 

and repeating centrifugation at 10,000 " g for 10 min. The pellets were washed once 

with EB, solubilized with SDS-PAGE sample buffer, and then filtered through a 

0.45-!m filter (Millipore, Ultrafree-MC) to remove insoluble matrix. To isolate the 

nuclear fraction, sperm nuclei were incubated at 23 ºC in 50 !L of egg extract (4,000 

nuclei/!L) in the presence or absence of 10 !M aphidicolin for the indicated periods of 

time. The samples were diluted with 450 !L EB, incubated for 2 min on ice, and then 

centrifuged at 10,000 " g for 5 min through the layer of EB containing 1 M sucrose . 

The pellets were washed with EB containing 1 M sucrose, solubilized with SDS-PAGE 

sample buffer, and then filtered through a 0.45-!m filter (Millipore, Ultrafree-MC) to 

remove insoluble matrix. 

 

Immunoprecipitation and chromatin immunoprecipitation 

Immunoprecipitation from egg extracts was carried out as described previously 

(Mimura and Takisawa 1998), except that 10 !L anti-sera were used instead of 

antibodies. Chromatin immunoprecipitation was carried out with the digested 

chromatin fraction in the absence of aphidicolin, as described previously (Mimura et al. 

2000). 

 

Cohesion assay and immunofluorescent staining 

Egg extracts containing 1 !M Cy3-dCTP (GE Healthcare) were incubated at 23 ºC for 

2 h with sperm chromatin (2000 nuclei/!L) to complete DNA replication. 

GST-!N106-cyclin B (final 130 !g/mL) was then added to the egg extracts to 

condense the replicated chromatin. The egg extracts were incubated at 23 ºC for a 

further 2 h. The samples were then diluted and fixed for 10 min on ice with 10 volumes 
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of EB containing 3.7% formaldehyde, and the condensed chromatin was recovered on 

polylysine-coated coverslips by centrifugation at 1200 ! g for 5 min through EB 

containing 1 M sucrose. The coverslips were washed and incubated overnight at 4 ºC 

with anti-XCAP-E antibody as the primary antibody, following by incubation for 1 h at 

room temperature with Alexa488–labeled anti-rabbit IgG (Molecular Probes) as the 

secondary antibody. The coverslips were washed and mounted on glass slides with 

mounting solution (15 mM PIPES [pH 6.9], 15 mM NaCl, 80 mM KCl, 3.7% 

formaldehyde, and 50% glycerol) containing Hoechst33258 (Wako) for DNA staining. 

Images of the condensed chromatin were collected by OpenLab 3.0.9 software 

(Improvision) from a cooled CCD camera (CoolSNAP HQ, Photometrics) with a 

microscope (BX50, Olympus) using a UPlanFl objective lens (100!, 1.30 NA, oil 

immersion, Olympus). Distances between sister chromatids were measured as the 

lengths between peaks of fluorescent signals of each sister chromosome axis, by using 

ImageJ software (NIH). The distances were measured at regular intervals at a rate of 

more than 100 measurements per sample. Average distances between sister chromatids 

were calculated from mean distances of at least three independent experiments, with 

standard deviation (± S.D). 
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