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1. Introduction

Let Q, and D, denote the generalized quaternion group and the dihedral group
of order 2"*!(n > 2), respectively. Let SD, denote the semidihedral group of order
2Ml(n > 3),

As is stated in [3], these groups have remarkable properties among all 2-groups.

Moreover, Yamada and Iida [4] proved the following interesting result:

Let Q denote the rational field. Let G be a 2-group and x a complex irreducible
character of G. Then there exist subgroups H > N in G and the complex irreducible
character ¢ of H such that x = ¢¢, Q(x) = Q(¢), N = Ker¢ and

H/N = Q,(n >2), or Dy(n > 3), or SD,(n > 3), or Cp(n > 0),

where C, is the cyclic group of order 2", and Q(x) = Q(x(g), g € G).
In [3], Yamada and lida considered the case when N = 1. Note that ¢ is faithful
in this case. They studied the following problem:

Problem. Let ¢ be a faithful irreducible character of H, where H = Q, or D,
or $D,. Determine the extension group G of H such that the induced character ¢ is
also irreducible.

It is well-known that the groups Q,, D, and SD, have faithful irreducible char-
acters. It is also known that they are algebraically conjugate to each other. Hence the
irreducibility of ¢C, where ¢ is a faithful irreducible character of Q, or D, or SD,,
is independent of the choice of ¢, but depends only on these groups.

In [3], Yamada and lida solved this problem when [G : H] = 2 and 4 for all
H=Q, or D, or SD,.

The purpose of this paper is to solve this problem when [G : H] = 8 for all
H=0Q, or D, or SD,..
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For other results concerning this problem, see [2].

2. Statements of the results

We use the following notation throught this paper.
e The dihedral group D, = {a, b)(n > 2) with
a¥ =1, b>’=1,  bab~'=a"'.
e The generalized quaternion group Q, = (a, b)(n > 2) with

a? =1, b2 =a?", bab' =a7 1.
e The semidihedral group SD, = (a, b)(n > 3) with
a¥ =1, b*=1,  bab~'=g ",

First, we introduce the following groups defined by Yamada and Iida ([3]):
i) GP(D,) = (a, b, u) with

a¥ =P =ut=1,bab ' =a~!, uau=' = a"*?" ", ub = bu,
(i) GP(D,) = (a,b,u, w) with
n n—1
a? =p*=ut=w?=1,bab ' =a, waw! = a**"", wb = bw,
uau~! = aw, ubu~! = bw, uw = wu.
(iii)  G5°(Qn) = (a, b, u) with
n n— n—2
a¥ =1, =u*=a%" ,bab '=a", uau=' = a"?"", ub = bu,
(iv) GP(Qn) = (a, b,u, w) with 1
a¥ =1, =wr=a?" ,bab~ ' = a1, waw! = a*?"", wb = bw,
w? =1, uau"! =a"**w, ub = bu, uw = wu.

ReEMARK. We use the symbols w and u instead of u;b and u; in [3], respectively.

For a finite group G, we denote by Irr(G) the set of complex irreducible charac-
ters of G and by FIrr(G) (C Irr(G)) the set of faithful irreducible characters of G.
Yamada and Iida ([3]) proved the following:

Theorem 0.1. ([3, Theorem 5]) Let n > 4 and ¢ € FIrr(Q,,). Let G be an exten-
sion of Q, such that [G : 0,1 =22 and ¢€ € Irr(G). Then G = G(Q,) or GP(Qy).

Theorem 0.2. ([3, Theorem 5]) Let n > 4 and ¢ € Flrr(D,,). Let G be an exten-
sion of D, such that [G : D,] = 2% and ¢ € Ire(G). Then G = G(D,) or G (D,).

Theorem 0.3. ([3, Theorem 6]) Let n > 4 and ¢ € Flrr(SD,). Let G be an ex-
tension of SD, such that [G : SD,] = 2> and ¢¢ € Yre(G). Then G = G$(Q,) or
GP(Qn) or G(D,) or GP(D,).

Further, we also need the following result ([3], [S]).
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Theorem 04. Let H = Q,, D, or SD,. Let G be a 2-group which contains H
with [G : H] =2"(r > 1). Let ¢ € FIrr(H). Suupose that ¢© € Irr(G), then r < n — 2.

To state our results, we have to introduce the following groups:

(1) GP(D,) = (a, b, u, x)(>G(D,) = (a, b, u)) with
a¥ =b*=u*=1,bab' =a~', uau="' = a*?*"’,
ub =bu, xax' =a*?” xbx~' = b, xux"' = u,

x%2 =u (when n > 6), x? = u® (when n = 5).

Q) GP(D,) = (a,b,u, x)(>G3(D,) = (a, b, u)) with
a =b*=u*=1,bab~' =a~', uau=' = a*?"",
ub = bu, xax~' =a*?" 42 xbx~! = bu?, xux~' =
x% =u (when n > 6), x2 = 43 (when n =5)

3 G(Qn) = (@, b,u, x)(>G5(Qy) = (@, b, u)) with
a =1,p*=u*=a*" bab"' =a~', uau"! = a'**",
ub =bu, xax~' =a*?"" xbx~' = b, xux"' = u,

x%2 =u (when n > 6), x2 = u3 (when n = 5).

@ GP(Qn) = (@, b,u, x)(>Gy(Qy) = (a, b, u)) with
a =1, =u*=a*" bab~' =a~, uau=" = a'*?",
ub =bu, xax~ ' =a" 42 xbx ' = b, xux"' = u,

x% =u® (when n > 6), x> =u (when n =5).

It is easy to see that [G{(D,) : G(D,)] = 2, and that [GY(Q,) : G(Q)]
=2 (i=1,2). A direct calculation shows that the number of involutions in G(;)(D,,)
(resp. G(;)(Qn)) are 2" 1 +2" +3 (resp. 2"=1 4 3) for i = 1, 2. Therefore G(;)(D,,) o
ng)(Q,,) for any i,j, 1 < i,j < 2. On the other hand, the number of conjugacy
classes of involutions in Ggl)(Dn) (resp. ng)(Dn)) is 5 (resp. 4). Hence Ggl)(D,,) Z
G(Dy).

It is easy to see that the center of the groups of Ggi)(Q,,) are both (azn_'), fori=1,2.

Let GY(Q,) D Vi = {v € GY(Q,)|v? =a?"'}. Then a direct calculation shows that the

number of conjugacy classes of V; in Ggl)(Qn) (resp. V; in G(32)(Q,,)) is 5 (resp. 4).

Hence G3(Qn) % G(Qn).

Consequently, above four groups Ggl)(Dn), G(32)(D,,), Ggl)(Q,,) and G:(f)(Q,,) are not

isomorphic to each other.

Our main theorems are the following:

u,

Theorem 1. Let ¢ € Flrr(D,,). Suppose that D, C G such that [G : D,] =8 and
¢C € Itr(G). Then n > 5 and G = G{(D,) or G (D,).

Theorem 2. Let ¢ € Flrr(Q,,). Suppose that Q, C G such that [G : Q,] =8 and
¢S € Ire(G). Then n > 5 and G = G(Q,) or GP(Q,).
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Theorem 3. Let ¢ € FIrr(SD,). Suppose that SD,, C G such that [G : SD,] =8
and ¢° € I(G). Then n = 5 and G = G5'(D) or G5(Dy) or G3(Qn) or GS(Qa).

To prove the theorems, we need some results concerning the criterion of the irre-
ducibility of induced characters.

We denote by ¢ = (;» a primitive 2"-th root of unity. It is known that, for H = Q,,
or D,, there are 2"~! — 1 irreducible characters o1 <v< 2”‘1) of H, which are not
linear:

¢u@)=¢"+¢, $@b)=0 (1<i<2".

For H = SD,, there are 2"~! — 1 irreducible characters ¢, (—2""2 < v < 2"~2 for odd
v, 1 <v < 2" for even v) of H, which are not linear:

pu@)= ¢V + T g @) =0 (1<i<2).

Each irreducible character ¢, of Q, or D, or SD, is induced from a linear character
n, of the maximal normal cyclic subgroup (a) : n,(a’) = ¢¥*(1 < i < 2"). Therefore,
for a group G D H = Dy, or @, or SD,, ¢¢ is irreducible if and only if n¢ = (n)C
is irreducible. For H = Q, or D, or SD,, an irreducible character ¢, of H is faithful
if and only if v is odd. The faithful irreducible characters ¢, of H are algebraically
conjugate to each other.

By the theorem of Shoda (cf. [1, p. 329 ]), we have the following:

Proposition 1. Let (a) ¢ H C G, where H = D, or Q, or SD, and {(a) is a
maximal normal cyclic subgroup of H. Let ¢ be a faithful irreducible character of H.
Then the following conditions are equivalent
(1)  @C is irreducible.

(2) For each x € G — (a), there exists y € (a) Nx{a)x~" such that xyx~' # y.

DerFINITION. - When the condition (2) of Proposition 1 holds, we say that G satis-
fies (EX, H), where H = D, or Q, or SD,.

RemaRrk. It is easy to see that the group Gg)(D,,) (resp. Gg)(Q,,)_) satisfies
(EX, D,) (tesp. (EX, Qn)), for i = 1,2. It is also easy to see that G5'(D,) and
GY(Q,) satisty (EX, SD,), for i =1,2.

3. Proof of Theorem 1

By Theorem 0.4, we have n > 5. Let G be a 2-group, satisfying the conditions of
Theorem 1. Then, there exists a subgroup G, such that

D,CcG,CcG



IRREDUCIBILITIES OF INDUCED CHARACTERS 777

and [G, : D,] =4 and [G : G;] = 2, because G is a 2-group. Since G, must satisfy
the condition (EX, D,), we have G, = G$"(D,) or G (D,). So we can write as

G = (GY(Dy), y)

where y € G — GY(D,) = {g € Glg ¢ GY(D,)} and y> € GY(D,), for i = 1 or 2.
Hence we have only to consider the following two cases:

Case . G = (GV(Dy,), y) = (a, b, u, y) > GP(D,) = (a, b, u)

Case I G = (GP(Dy), y) = (a, b, w,u, y) > GP(D,) = (a, b, w, u)

First, we consider Case 1. For the sake of simplicity, we write G, instead of
G$"(D,) in this proof. It is well-known that

Aut(a) = (Z/2"Z>* = (=1) x (5)

where (Z/2"Z)* is the unit group of the factor ring (Z/2"Z) and (—1) and (5) are the
cyclic subgroups of (Z/2"Z)* generated by —1 and 5 respectively.

First, we consider the element yay~!. Since it is in G,, it can be represented as
a'bfu’ for some i, j,k€Z, 0<i<2"—-1,0<k<1,0<j<3.

Suppose that yay~! = a’bu’, then

yagy_1 = (a’Abuj)8 =1,

by direct calculation. This contradicts the fact that a® # 1.
Thus we must have

yay_1 =a'u.

1 4i(142-

Since ya*y~! = (a'u/)* =a *i), i is an odd integer. Furthermore, if
i €(=1) x (5) —(5), then (by)a(by)~! =a~u/ and —i € (5). Hence we may assume
that i € (5).

Next, consider the element yuy~'. Write ug = yuy ™.

Taking the conjugate of both sides of the equality, ua*u~! = a*, by y, we get

i n—=3 :y i n—3 ;
u0a41(1+2 j)uol =a4l(1+2 j)‘

4, -1

Since i is odd, we have uga‘uy' =a*. Thus we can write ug = a®u’ for some do, t €
Z. Suppose that ¢ is even, then it is easy to see that u3 € (a). Since u3 # 1 and ug =1,
we have u? = a*"'. This contradicts the fact that (a*" ') is the center of G, and u? is
not in the center of G,. Hence ¢ is odd. Since 1 = u§ = @42 ) \we have dy = 0
(mod 2"~2). Therefore we may write dy = 2"~2d for some d € Z, and so

— n—2
yuy b =a¥"u.
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Note that

- azn—Zi(1+2n—3j) — 2n—2

-2 _ ]
ya* y~'=(@'u)” a®”,

because i € (5). Taking the conjugate of both sides of the equality, uau=! = a'*2"” by
y, we get

@ Y@ u )@ ) = alula? .
Hence, we have
PLCE >t I LV L
Therefore, i(1 +¢ -2""2) = i +2"2 (mod 2"). But i = 1 (mod 4), so we get t = 1
(mod 4), and hence

_ n—2
yuy~ ' =a? .

Since
2 -2 i iy —1 i jNig 2772 N
yeay " =y(a'u)y " =(a'u') (@ “uy,
we can write

ylay~? = a"uiit,
for some m € Z. But y?> € G,, so y’ay™? € (a). Hence ij + j = 0 (mod 4). Since
i =1 (mod 4), we have 2j =0 (mod 4). Thus j is even and we can write as j = 2jg
for some integer jo. Summarizing the results, we can write

yay™' = a'u*h,

_ n—2
yuy !l = a® 4y,

Hence Case I is divided into the following two cases:
Case IA.  yay !'=a' (i =1 (mod 4)) and yuy~ ,
Case IB.  yay~'=a'u? (i =1 (mod 4)) and yuy~' = a? "u.
First we consider Case IA.

We will need the following:

-2
Lo g2y,

Lemma 1. Let | be an integer and k be an odd integer. Then there exist an in-
teger ¢ and an odd integer e satisfying the following equalities

c(1+k-2"%H+1=0 (mod2" ™),
A+k-2"3=1+2"3 (mod2").
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Since y2ay~2=a'" and y? € G,, we have i2 € (1 +2"~2), where (1+2"72) is the
cyclic subgroup of (Z/2"Z)* generated by 1+2"~2. Therefore, i € (1+2"3). Suppose
that i € (1+2"72), then there exists s € Z such that (yu®*)a(yu*)~' = a. This contradicts
the condition (EX, D,) for G. Hence we can write as

-1 1423k
yay ~=a )

for some odd integer k. Consequently, we have

— n—2 — n—2
yzay 2 =al+2 k (resp. y2ay 2 =a1+(k+2)2 )

E)

when n > 6 (resp. n = 5). So, y*> must be written as y? = a°u™ for some odd integer
m and some integer /. Therefore

_ -2 _ n—1 _ — -2
yZuy 2 = y(aZ" du)y 1 =aZ du - (aloum)u(aIOMM) 1 =a 102" u.

Hence, we can write [p = 2! for some integer /. Thus

where m is odd.
Let ¢, e be the integers satisfying the conditions in Lemma 1, and set y; = (a“y)°.
Then we get

n—4
)2e 2c(1+k2' )+2!um )e = yme

yi=(ay)y* =(a

So, we have
-1 _
yluyl =u,

and

—_ — n—2yme n—2
y%ayl 2 = uMequme =a(1+2 ) =al+me2 .

On the other hand

— — n—31\e n—3
}’Iayl 1 - (acy)ea(acy) e =a(1+2 k) - a1+2

’

and

n—3\2 on—2
= a2 gl 143202y

2 =2 +2n2
yiay, (resp. a

when n > 6 (resp. n = 5). Hence we get me = 1 (mod 4) when n > 6, and me = 3
(mod 4) when n = 5. Therefore

y]2 =u (resp. u3),
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when n > 6 (resp. when n = 5).
Set by = y by, . Taking the conjugate of both sides of the equality, bab™' = a™"!,
by yi, we get

b0a1+2"-3b—1 e
0 = .

So, we have bpab; ''= a~!, hence we can write as by = a'b for some t € Z. On the
other hand, since y? =u (or u*), we have

b = ylzbyl—2 = yl(atb)yl—l - at(l+2"_3)atb = a21(1+2"'4)b‘

So ¢ =0 (mod 2"~") and we can write y;by;! = a® b where 1o =0 or 1.
Summarizing the results, we get

n—3
— a1+2

yiay;" ,
yuyy ! =u,
nibyrt =" 0b,

y12 =u (resp. y12 = u3) when n > 6 (resp. n =5).

When ¢y = 0, these relations are the same as that of Ggl)(D,,). So, the group G =
{a, b, u, y;) is clearly isomorphic to G(31)(D,,).

When 5 = 1, we set u; = a* 'u and y, = a* y;. Then we have u} =1 and
urb =bu; and ujau;' = a2 So, (a, b, uy) = (a, b, u) = G(21)(D,,).

Further, we have

_ n—3
20y, 1o g
yaury;' =ui,
yby;' =b,

y% =u; (resp. y% = uf) when n > 6 (resp. n = 5).

Thus, in this case also, the group G = (a, b, u1, y;) is isomorphic to G (D,).
Next, we consider Case IB.
Let yay~! = a’u®. We have

_ ; n—2 : on—1
yaZy 1 =aZt(1+2 )=a21+2" .

By the condition (EX, D,), we must have
i¢(1+2"72).

= g2 _ 02

Since y%a?y~? and y? € Gy, we get

i e (142072,
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Hence we can write i = 1 +2" 3k, so

_ n—3
yay~! = a7 ky2

’

where k is an odd integer. Therefore

yaty ! = (a1+2"-3ku2)4 = g*1+ 27k a*?,
and
ya¥y™'=a?,
for t > 3. Thus we have
ylay ™2 = y(a“’zn_akuz)y_l - y(aazn_3ku2)y"1 = g1+ ko,

where ko = k +2d (resp. ko =k +2 +2d) when n > 6 (resp. n = 5). In any cases, ko is
an odd integer. Since y*> € G,, we can write y?> = au™ for some lo,m € Z, and m
is odd. By the same way as in Case IA, we can write [y = 2/ for some [ € Z. So,

y2 = a2lum‘

We can show easily

Lemma 2. (1) Let ! be an even integer. Then there exists an integer t, satis-
fying the following equality

dto(1+2" 3 +k- 2" +20 =0 (mod 2").
(2) Let l be an odd integer. Then there exists an integer t| satisfying the following
equality
22+ DA +2" 3 +k-2"H+20=2"2=0 (mod 2").

Let #) and #; be the integers satisfying the conditions in Lemma 2.

When [ is even, we set y; = a?o y. Then we have

n-3 n—4
y2 = (a¥oy)? = g2k ym _ yym

2t +1

When [ is odd, we set y; =a“"*'y. Then we have

n—3 n—4 _n-2
y12 - (a2t|+1y)2 - a2(2t1+1)(1+2 +k2" )42 -2 u2+m - u2+m'

In any cases, we can write as )’12 =u™ where my is an odd integer. Hence we have

yiuyr ' =u
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We also have

ylay,‘l =a1+k.2"‘3u2’
where, k; = k — 4 (resp. k| = k) when [ is odd (resp. ! is even).
When n > 6, a direct calculation shows that

yi‘ayl—s = a1+sk|2"“3u2s’
for any integer s (1 <s <7).
When n =5, we have

n—3,an—1
=al+sk12 +2 eu2s

)

yiay;’

for any integer s (1 <s <7), where e=0for s=1or 5, and e=1 for s =3 or 7.
In any cases, we can take s satisfying the following equality

=gt

S0 —80
yray, = u
Set y, = y;°, then we have

1 142v3 2

»ay, =4 e,
-1

}’214)’2 =u,

y% = umoso‘

1+3.2"~

Since y2ay;? =a'**" (resp. a ") for n > 6 (resp. n = 5), we have
y% =u (resp. u3),
for n > 6 (resp. n =5).

Finally, we consider y;by, ', Write by = by, L Taking the conjugate of a=2 =
ba*b~! by y,, we have

2~ 2042701427 _ b0a2“+2"_3)(1+2"_2)bg'.
Since (1 +2"73)(1+2"2) is odd, we have,
a?= boazbal.

So, we can write as yzbyz‘l =a'bu” for some t,r € Z. We also take the conjugate of
a~! = bab~! by y,, then

— n—3 n—1 n—3 _ _ n—3 n—2,.\__nn—1
q (#2142 )u2=(a'bu’)(a“2 uz)(a’bu’) I o g2 )2 221 2
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Hence we get
—1+2"HA+2" H=—1+2" A +r-2""H —1-2"1  (mod 2"),
SO
221 +2"H2=r)—1-2""'=0 (mod 2").

Therefore r = 0 (mod 2). If we write r = 2r;, where r; € Z, we have rj +t = 1
(mod 2). Since y3 =u (or u?), we get

b= y22by2'2 = yz(a’bu2" ))’2_1 _ (a1+2"'3u2)t(atbu2r| W2,

Hence we have

-3
(a1+2" u2)tat = 1'

Since
(al+2”_3u2)t - a—-t e (a),
we have t = 0 (mod 2). Therefore r; is odd. Denote by ¢ = 2¢; where t; € Z. We have

— 142773 2\28 2t _ 4t (142734204
l1=(a u)lal_al( ),

so t =0 (mod 2" 1). If we write ¢ = 2""!t,, we have
— n—1 n—1
nbyy ! =a* bu* = a* 2bu.

Summarizing the results, we get
-1 142773 2
yay, =a ‘" u’,
-1
nuy, =u,
-1 21t 2
by, =a~ "bu’,

y% =u (resp. y22 =u’) when n > 6 (resp. n =5).

When t, = 0, these relations are the same as that of ng)(D,,). So, the group G =
(a, b, u, y;) is clearly isomorphic ]to ng)(D,,).

When 1, =1, we set u; =a? u and x, =a
and ujauy! = a™*?”.

So,

27y, Then we have u? = 1, u1b = bu,

(@, b,u1) = (a, b, u) = GL(D,).
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Further, we have

1 _

— n—3 n—3
x2ax; _al+2 u2=a1+2 u2

9
-1

XoU1Xy =Uj,

xszz_l =bu’ = bu%,

x% =u; (resp. x% = u?) when n > 6 (resp. n =5).

Thus, in the case also, the group G = (a, b, uj, x;) is isomorphic to G(32)(D,,), as de-
sired.

Now, we consider Case II. For the sake of simplicity, we write G(zz) instead of
GP(Dy) in this proof.

First, we consider the element yay~!.
Write ag = yay~!. Since it is in G, it can be represented as a'b/w'u™ for some
i,j,lbmeZ 0<i<2"-1,0<j,l,m<1.

By a direct calculation, we have

(@bw'um™* =1,

for any i,/,m € Z. So we must have yay~! =a'w'u™.
Suppose that yay~! =a'w'.
When [ =1 we have yay~! = a‘w. Then
yaty™!' = (@d'w)? = a2i(l+2"’2)’

so i must be an odd integer. If we write i = 2ip+ 1, iy € Z, we have

(uy)a(uy)—l = u(a2io+1w)u—1 = (aw)2i0+1w - a2i0(1+2"_2)+1.

1 1

When [ =0 we have yay~! = a’. Consequently, when yay~! = a‘w', there exists an

element g € G — G such that gag™' € (a). Write

1 s

gag =a’,

where s € Z.
Then, by the same way as in the proof of Case I, we must have

_ n—2
gag 1=a1+2 k

’

for some odd integer k.
Then we have

(ug)a)(ug)™" ¢ (a),
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since u(ayu~' ¢ (a). Further

n—2 - n—2 n—2 n~2
2(1+42 k))ul )2(1+2 k)=a2(1+2 )(1+2 k)=a2

(ug)a*(ug)™' = u(a = (aw

since k is odd. Therefore we have
(@) N (ug)(a)(ug)™" = (a?).

This contradicts the hypothesis that G satisfies the condition (EX, D,). Thus we must
have

ap=yay ' =d'w'u.

In this case, we have ya*y~! = (@'w'u)* = a*, so i must be odd. As usual, we may
assume that i € (5). If we write i =2iy+ 1, iy € Z, then

yaZy—l = (aiwlu)z = a2i+(i0+l)2""]w ¢ <a)

and ya*y~! =a*. Hence

(@) Nyfa)y™" = (@*.
Therefore, by the condition (EX, D,) for G, we must have a* # a*. Thus

i¢(1+2"72%).

On the other hand, y2a*y~2 = a*’ and y* € G, we get

i e (1+2"72).

Hence we can write i = 1 +2" 73k, for some odd integer k. So we must have

ap=yay ' = a2kl
We denote by CG(zn((a)), the centralizer of (a) in ng) .
It is clear that CG<22>((a)) = (a).

So
Coo({ao)) = {ao)-
By a direct calculation, we have

-3
ab = @ Wl = ab.

Write wo = ywy~!. Then, by taking the conjugate of waw™" = a'**"" by y, we get

n—1 n—1 n—1 n—3 n—1
1 1+2 2 P =(al+k2 (12 .

Wodow, = q =ap-a; =ap-a w'u)
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Therefore we have

wwoaowo‘lw_l - w(a1+k2"_3wlu)a2"_lw‘l = ap.
Thus wwg € CG<22>((a0)) = (ap). So we can write

— i n—3 :
wo = ywy ! = wa = w@"** *wluyk,

for some integer jo. Since w3 = 1, we have

. 3 .
1= (wa(])0)2 = {w(al+k2" wlu)IO}Z
-3 : -3 .

= w(al+k2" wlu)jow(al'(-kZ” wlu)]o

-3 -1 -3 .

- (al+k2" wlua2" )}0(a1+k2" wlu)]()

n—3 ; n—1 ;
- (a1+k2 wlu)2]0a2 ]0'

k1

Since the order of the element a'*?" *w'y is 2", we have jo = 0 (mod 2"~ !). If we
write jo =2""!j where j € Z, then we have

—1 2n—lj
wo = ywy =wa, = wa

2n-—lj.
Next, we write ug = yuy~'. Then, by taking the conjugate of uau~! = aw by y, we
get

-3 — -3 n—1 3
uo(a1+k2n wlu)uol = (a1+k2" wlu)(az ]T,U).

Hence

; n—3 _ —F - n—3
uw’ ug(a'**? wlu)uolw Tu ™l = a2yl

So, we have
uw’ug € CG<22>((ao)) = (ap).
Therefore we can write

_ ; i -3
uo = yuy ' = wiu(ag)™ = w'u(@"***  wlu)ym,

for some integer m. On the other hand, by taking the conjugate of u = wuw™! by y,
we get

_ -1 ; : -3 -1 —1
Uug = wouowo1 =@ Tw){w u@*? *w'uwy"y @ Tw)! = uga® ™.

Hence, m is even, so we can write as m = 2mg for some integer mo. And

i n—3 i n—3 n—1 n—3 .J.on—1 i
ug = wju(a1+2 kwlu)Zmo - w]u(a2(1+2 k)+2 lw)m() - ua2m0(1+2 k)+mg-1-2 w‘]+m0.
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Since u3 =1 we have

2 4m0+m02"‘1+m0k2""
l=uy=a .
Therefore 4my = 0 (mod 2"), so we can write m = 2mgy = 2" 'm; for some integer
my. Thus

_ . n—3 n—1 : n—1
uo = yuy ' = wu@***  wlu? ™ = wiua® ™.

Summarizing the results, we must have

— n—3
yay~! = a2 yly,
— i n—1
yuy~' = wiua® ™,
— n—1
ywy™! = wa? .
Using these relations, we have
— n—3 _ n—2 ./ : n—1 .
y2ay 2 - y(a1+k2 wlu)y 1 =al+k2 +(jl+m;)2 w’
n—2 : n—1 :
(resp. — al+k2 +(1+j14m ;)2 w;)’

when n > 6 (resp. n =5). Set k; = k+2(jl+m;) when n > 6 and set k; = k+2(1+jl+m )
when n =5. Then k; is odd and

ylay=? = a2 i
Suppose that j is even, then y2ay~2 = a'*%2"” This contradicts the fact that y* €
G(Zz). Suppose that j is odd, then we have

n—2 _ n-2
1 14k, 2 w)u 1 _ a1+k12

uyza(uy2)_ =u(a

and uy® € G(22), contradiction. Consequently, Case II does not occur. Thus the proof of
Theorem 1 is completed.

4. Proof of Theorems 2 and 3

Proof of Theorem 2 is similar to that of Theorem 1, so we omit some of the de-
tails. By Theorem 0.4, we must have n > 5. Let G be a 2-group, satisfying the con-
ditions in Theorem 2. Then, by the same way as in the proof of Theorem 1, we have
only to consider the following two cases:

Cast I G =(G$(Qn), y) = (@, b,u, y) > GS(Qy) = (a, b, u)

Case I G = (GP(Qn), y) = (@, b, w,u, y) > GL(Q,) = (a, b, w, u),
where, [G; G5 (0.)]1=2,y ¢ G3(Q,) and y? € GS(Q,), for i =1 or 2.
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Furthermore, Case I can be devided into the following two cases:
Cast IA.  yay~'=ai(i =1 (mod 4)) and yuy™' =a* "u
Case IB.  yay~'=a'u’(i =1 (mod 4)) and yuy™ = a* "u

In Case IA, we can show that G = Ggl)(Q,,) and, in Case IB, we can show that

G*= ng)(Q,,) by the same way as in the proof of Theorem 1.

On the other hand, we can show that Case II does not occur, by the same argu-

ment as in the proof of Theorem 1.

So, the proof of Theorem 2 is completed.
Theorem 3 follows from Theorem 0.3, Theorem 1 and Theorem 2.
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