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1. Introduction

Let Qn and Dn denote the generalized quaternion group and the dihedral group

of order 2n+ι(n > 2), respectively. Let SDn denote the semidihedral group of order

2n+ι(n > 3).

As is stated in [3], these groups have remarkable properties among all 2-groups.

Moreover, Yamada and Iida [4] proved the following interesting result:

Let Q denote the rational field. Let G be a 2-group and χ a complex irreducible

character of G. Then there exist subgroups H > N in G and the complex irreducible

character φ of H such that χ = φG, Q(χ) = Q(φ), N = Kεrφ and

H/N = Qn{n > 2), or Dn(n > 3), or SDn(n > 3), or Cn(n > 0),

where Cn is the cyclic group of order 2", and Q(χ) = Q(χ(g), g e G).

In [3], Yamada and Iida considered the case when N = I. Note that φ is faithful

in this case. They studied the following problem:

Problem. Let φ be a faithful irreducible character of H, where H = Qn or Dn

or SDn. Determine the extension group G of H such that the induced character φG is

also irreducible.

It is well-known that the groups Qn, Dn and SDn have faithful irreducible char-

acters. It is also known that they are algebraically conjugate to each other. Hence the

irreducibility of φG, where φ is a faithful irreducible character of Qn or Dn or SDn,

is independent of the choice of φ, but depends only on these groups.

In [3], Yamada and Iida solved this problem when [G : H] = 2 and 4 for all

H = Qn or Dn or SDn.

The purpose of this paper is to solve this problem when [G : H] = 8 for all

H = Qn or Dn or SDn.
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For other results concerning this problem, see [2].

2. Statements of the results

We use the following notation throught this paper.

• The dihedral group Dn = {a, b)(n > 2) with

• The generalized quaternion group Qn = {a, b)(n > 2) with

a2" = 1, b2 = ar'\ bab~ι=a-\
• The semidihedral group SDn = (a, b)(n > 3) with

fl2" = l, 2>2 = 1, bab~ι=a-ι+2n~\

First, we introduce the following groups defined by Yamada and Iida ([3]):

(i) G^iDn) = {a, b, u) with

a2" = b2 = u4 = 1, bab~ι = a~λ ,uau~λ = aι+2"~2, ub = bu,

(ii) G(2}(Dn) = (a,b,u,w) with

aτ =b2 -u2 = w2 = 1, bab~x - a~ι, waw~ι = aι+2"~\ wb = bw,

uau~ι - aw, ubu~ι = bw, uw = wu.

(iii) G(

2

l)(Qn)=(a,b,u) with

a2" = l,b2 = u4 = aτ~\bab-χ = a~ι, uau~ι = aι+2n~2, ub = bu,

(iv) Gf{Qn) = (a,b,u,w) with

a2" = l,b2 = w2 = a2"'1, bab~ι =a~ι, waw~ι = aι+2n~ι, wb = bw,

u2 - 1, uau~ι = al+2" w, ub = bu, uw = wu.

REMARK. We use the symbols w and u instead of u\b and w2 in [3], respectively.

For a finite group G, we denote by Irr(G) the set of complex irreducible charac-

ters of G and by FΙrr(G) ( c Irr(G)) the set of faithful irreducible characters of G.

Yamada and Iida ([3]) proved the following:

Theorem 0.1. ([3, Theorem 5]) Let n>4 and φ e FIrr(βn). Let G be an exten-

sion of Qn such that [G : Qn] = 22 and φG e Irr(G). Then G = G^iQn) or Gf{Qn).

Theorem 0.2. ([3, Theorem 5]) Let n > 4 and φ e FIrr(Dn). Let G be an exten-

sion of Dn such that [G : Dn] = 22 and φG e Irr(G). Then G = G ^ ( D n ) or Gf{Dn).

Theorem 0.3. ([3, Theorem 6]) Let n > 4 and φ e Flτr(SDn). Let G be an ex-

tension of SDn such that [G : SDn] = 22 and φG e Irr(G). Then G = G^iQn) or

Gf{Qn) or G$\Dn) or Gf(Dn).

Further, we also need the following result ([3], [5]).
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Theorem 0.4. Let H - Qn, Dn or SDn. Let G be a 2-group which contains H

with [G : H] = 2r(r > 1). Let φ e Flπ(H). Suupose that φG e Irr(G), then r < n - 2.

To state our results, we have to introduce the following groups:

(1) G<υ(Ai) = (a, b, u, x)(>G(

2

l)(Dn) = (a, b, u)) with

a2" = b2 = u4 = l, bab~x = a~\ uau~x = al+T~\

ub = bu, xax~ι = ax+2n~3, xbx~x = b, xux~ι = u,

x2 = u (when n > 6), x2 = u3 (when n = 5).

(2) Gfφn) = (a, b, u, x)(>G^\Dn) = (a, b, u)) with

a2n =b2 = u4 = l, bab-1^ = a~\ uau~x = aι+2n~\

ub = bu, xax~ι = α1+2""3w2, xbx~ι = bu2, xux~~ι = w,

x2 = u (when n > 6), x2 = u3 (when n = 5)

(3) Gψ{Qn) = (a, b, u, x)(>G(

2

ι\Qn) = (a, b, u)) with

a2n = l,b2 = u4= a2n~\bab-χ = a"1, uau~x = ax+2n~2,

ub = bu, xax~x = α1+2"~\ xbx~x = b, xux~x = u,

x2 = u (when n > 6), x2 = u3 (when n - 5).

(4) GfiQn) = (a, b, u, xK>G$\Qn) = (a, b, «)) with

a2" = l,b2 = u4= a2n-\bab-χ = a~x, uau'x = ax+2n~2,

ub = bu, xax~x = ax+2n u2, xbx~x = b, xux~x = u,

x2 = u3 (when n > 6), x2 = u (when n = 5).

It is easy to see that [Gf(Dn) : G^\Dn)] = 2, and that [Gf(Qn) : G(

2

l)(Qn)]

= 2 (/ = 1, 2). A direct calculation shows that the number of involutions in G^ (Dn)

(resp. Gf(Qn)) are 2n~x + 2n + 3 (resp. 2n~x + 3) for i = 1, 2. Therefore Gf(Dn) ¥

GψiQn) for any /, j , 1 < /, j < 2. On the other hand, the number of conjugacy

classes of involutions in G(

3

l)(Dn) (resp. Gψ(Dn)) is 5 (resp. 4). Hence G(

3

l)(Dn) ¥

Gf{Dn).
It is easy to see that the center of the groups of G3\ζ)n) are both (α2" }, for / = 1, 2.

Let Gf(Qn) D Vi = {υ e Gf(Qn)\v2 = α2""1}. Then a direct calculation shows that the

number of conjugacy classes of V\ in Gψ(Qn) (resp. V2 in Gψ(Qn)) is 5 (resp. 4).

Hence G^(Qn) ¥ Gf(Qn).
Consequently, above four groups G(

3

l)(Dn), G{

3\Dn), G(

3\Qn) and Gf(Qn) are not

isomorphic to each other.

Our main theorems are the following:

Theorem 1. Let φ e Flττ(Dn). Suppose that Dn c G such that [G : Dn] = 8 and

φG e Irr(G). Then n > 5 and G = G(

3\Dn) or G(

3\Dn).

Theorem 2. Let φ £ FIrr(β«). Suppose that Qn C G such that [G : Qn] = 8 and

φG e Irr(G). Then n > 5 and G = G(

3\Qn) or Gf(Qn).
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Theorem 3. Let φ e Fίπ(SDn). Suppose that SDn C G such that [G : SDn] = 8

and φG e Irr(G). Then n>5 and G = G(

3

l)(Dn) or Gf(Dn) or G$\Qn) or Gf(Qn).

To prove the theorems, we need some results concerning the criterion of the irre-

ducibility of induced characters.

We denote by ζ = ζ2n a primitive 2"-th root of unity. It is known that, for H = Qn

or Dn, there are 2n~ι — 1 irreducible characters φυi\ < v < 2n~ι) of H, which are not

linear:

ΦM) = r + c1"', ΦΛJb) = 0 (l < i < 2").

For H = SDn, there are 2n~ι - 1 irreducible characters φv(-2n-2 <v< 2n~2 for odd

v, 1 < v < 2n~ι for even v) of H, which are not linear:

ΦM) = ζui + C^(-1+2"-1), φv(a[b) = 0 (1 < i < 2n).

Each irreducible character φv of β« or Dn or 5Z)n is induced from a linear character

ηv of the maximal normal cyclic subgroup {a} : ^ ( α 1 ) = ζm(l < i < 2n). Therefore,

for a group G D H = Dn, or Qn or .SD^, 0^ is irreducible if and only if rβ = (η^)G

is irreducible. For H = Qn or Dn or .SD^, an irreducible character φv of // is faithful

if and only if v is odd. The faithful irreducible characters φv of H are algebraically

conjugate to each other.

By the theorem of Shoda (cf. [1, p. 329 ]), we have the following:

Proposition 1. Let {a) c H C G, where H = Dn or Qn or SDn and {a) is a

maximal normal cyclic subgroup of H. Let φ be a faithful irreducible character of H.

Then the following conditions are equivalent

(1) φG is irreducible.

(2) For each x e G — {a}, there exists y e (a) (lx{a)x~ι such that xyx~ι ^ y.

DEFINITION. When the condition (2) of Proposition 1 holds, we say that G satis-

fies (EX, H), where H = Dn or Qn or SDn.

REMARK. It is easy to see that the group G^\Dn) (resp. G^(Qn)) satisfies

(EX,Dn) (resp. (EX, Qn)), for / = 1,2. It is also easy to see that Gf(Dn) and

Gf(Qn) satisfy (EX, SDn), for / = 1, 2.

3. Proof of Theorem 1

By Theorem 0.4, we have n > 5. Let G be a 2-group, satisfying the conditions of

Theorem 1. Then, there exists a subgroup G2 such that

DncG2GG
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and [G2 : Dn] = 4 and [G : G2] = 2, because G is a 2-group. Since G2 must satisfy

the condition (EX, Dn), we have G2 = G2\Dn) or Gψ(Dn). So we can write as

G = {Gf(Dn), y)

where y e G - Gf(Dn) = [g e G\g φ Gf(Dn)} and y2 e Gf(Dn\ for / = 1 or 2.
Hence we have only to consider the following two cases:

CASE I. G = {G2

Λ)(Dn\ y) = (a, b, u, y) > G(

2

l)(Dn) = (a, b, u)

CASE II. G = <G<2) (Dn), y) = {a, b, w, u, y) > Gf(Dn) = (fl, 6, u;, w>

First, we consider Case I. For the sake of simplicity, we write G2 instead of

G2

l)(Dn) in this proof. It is well-known that

Aut(fl) = (z/2nZ\* = (-1) x (5>

where (Z/2nZ)* is the unit group of the factor ring (Z/2nZ) and (-1) and (5) are the

cyclic subgroups of (Z/2"Z)* generated by —1 and 5 respectively.

First, we consider the element yay~λ. Since it is in G2, it can be represented as

aιbkuj for some 1, 7, k e Z, 0 < i < 2n - 1, 0 < k < 1, 0 < j < 3.

Suppose that yay~λ =aibuj, then

yasy~ι =(aibuj)s = l,

by direct calculation. This contradicts the fact that as φ 1.

Thus we must have

yay~ι = aιuj.

Since ya4y~ι = (aϊui)4 = a

4i(^1+2n'3j\ i is an odd integer. Furthermore, if

i e (—1) x (5) — (5), then (by)a(by)~ι =a~luj and —i e (5). Hence we may assume

that i e (5).

Next, consider the element yuy~ι. Write UQ = yuy~ι.

Taking the conjugate of both sides of the equality, ua4u~ι = a4, by y, we get

Since / is odd, we have UOCI4UQ1 = a4. Thus we can write UQ = a^u* for some do, t e

Z. Suppose that t is even, then it is easy to see that u\ e {a). Since u\±\ and u\ - 1,

we have u\ - a2"'1. This contradicts the fact that (a2"'1) is the center of G2 and u2 is

not in the center of G 2 . Hence t is odd. Since 1 = MQ = β

44)(i+2π-3o? w e h a v e ^ = 0

(mod 2n~2). Therefore we may write do = 2n~2d for some d e Z, and so
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Note that

yain~2 y~ι = (αV) 2"" 2 = a2"'2^2^^ = a2"",

because / £ (5). Taking the conjugate of both sides of the equality, uau~ι = aι+τ~2 by

y, we get

) - χ = aiuja2n~2.

Hence, we have

Therefore, ι(l +1 2n~2) = i + 2n~2 (mod 2n). But i = 1 (mod 4), so we get t = 1

(mod 4), and hence

yuy~ι =

Since

y2ay~2 =

we can write

y2ay-2 = amuij+j,

for some m e Z. But y2 e G2, so y2ay~2 e (a). Hence ij + j = 0 (mod 4). Since

/ = 1 (mod 4), we have 2j = 0 (mod 4). Thus j is even and we can write as j = 2 jo

for some integer jo. Summarizing the results, we can write

yay~ι = alu2J°,

yuy-χ = aT"2du.

Hence Case I is divided into the following two cases:

CASE IA. yay~ι = a1 (i = 1 (mod 4)) and yuy~ι - a2n2du,

CASE IB. yay~ι = aιu2 (i = 1 (mod 4)) and yuy~ι = a2n~2du.

First we consider Case IA.

We will need the following:

Lemma 1. Let I be an integer and k be an odd integer. Then there exist an in-

teger c and an odd integer e satisfying the following equalities

c(l+k 2n~4) + / = 0 (mod 2""1),

(1 + k - 2n~3)e = 1 + 2n~3 (mod 2n).
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Since y2ay~2 = ai2 and y2 e G2, we have i2 e (1 + 2 " " 2 ) , where (1 + 2n~2) is the

cyclic subgroup of (Z/2nZ)* generated by 1 + 2 " " 2 . Therefore, / e (1 + 2""3). Suppose

that i e (l+2n~~2), then there exists s eZ such that (yus)a(yus)~ι = a. This contradicts

the condition (EX, Dn) for G. Hence we can write as

for some odd integer k. Consequently, we have

y2ay~2 = aι+2n~2k (resp. y2ay~2 = a^

when n > 6 (resp. n = 5). So, y2 must be written as y2 = aι°um for some odd integer

m and some integer /Q. Therefore

Hence, we can write /o = 2/ for some integer /. Thus

where m is odd.

Let c, e be the integers satisfying the conditions in Lemma 1, and set y\ = (acy)e.

Then we get

y

2 = (acy)2e = (a2c(l+k2n~4)+2lumY = ume

So, we have

yiwyf1 = M,

and

•u2,,,,—2 _ ..me^^—me _ Jl+2n~2)me _ Λ+me2n~2

y\ay\ ~u a u —a —a

On the other hand

yiay;1 = (acyYa(acyΓ = a^2"^' = α1+2""\

and

when n > 6 (resp. n = 5). Hence we get me = 1 (mod 4) when n > 6, and me = 3

(mod 4) when n = 5. Therefore

y2 = u (resp. w3),
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when n > 6 (resp. when n = 5).

Set bo = y\byγx. Taking the conjugate of both sides of the equality, bab~ι = a~ι,

by yu we get

So, we have b§ab^x = a~ι, hence we can write as bo = afb for some t e Z. On the

other hand, since y\-u (or w3), we have

b = y2by~2 = yxtftyy-1 = cί^^cΐb = a2t(l+2n~4)b.

So t = 0 (mod 2n~ι) and we can write yφy^1 = a2"~lt°b where to - 0 or 1.

Summarizing the results, we get

yιuy-χ = u,

y\-u (resp. y\ = u3) when n > 6 (resp. n = 5).

he

(a, b, M, y\) is clearly isomorphic to Gψ(Dn).
1

When ίo = 0, these relations are the same as that of Gψ(Dn). So, the group G =

When to = 1, we set u\ = α2"'1*/ and yi = aτ~'ιy\. Then we have u\ - 1 and

= fcwi and uγau~x = aι+2"~3. So, (α, Z?, MI) = (α, b, u) = G^υ(Z)n).

Further, we have

y2 = u\ (resp. vf = M3) when « > 6 (resp. n = 5).

Thus, in this case also, the group G = (a, b, u\, y2) is isomorphic to

Next, we consider Case IB.

Let yay~x = aιu2. We have

By the condition (EX, Dn), we must have

/ i{\ + 2"-2).

Since y2a2y~2 = a

2i2<-ι+2n~^ = a2(l and y2 e G2, we get

i2 e {1 + 2"-2).
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Hence we can write i = 1 + 2n~3k, so

where k is an odd integer. Therefore

ya4y~x = (α1+2"~3 V ) 4 = ίΓv™ "" = cΓ

and

9' — 1 9 '
2 y ι = a2 ,

for ί > 3. Thus we have

where ko = k + 2d (resp. A:o = k + 2 + 2d) when n > 6 (resp. « = 5). In any cases, ko is

an odd integer. Since y2 e G2, we can write j 2 = aι°um for some /o, m € Z, and m
is odd. By the same way as in Case IA, we can write /Q = 2/ for some / e Z. So,

y
2 = a

2lum.

We can show easily

Lemma 2. (1) Lei / be an even integer. Then there exists an integer to satis-
fying the following equality

4fo(l + 2n~3 + k 2n~4) + 2/ = 0 (mod 2n).

(2) Lei / be an odd integer. Then there exists an integer t\ satisfying the following

equality

2(2tι + 1)(1 + 2n~3 + k 2n~4) + 21- 2n~2 = 0 (mod 2n).

Let to and t\ be the integers satisfying the conditions in Lemma 2.

When / is even, we set y\ = a2toy. Then we have

y2 = (a2t0y)2 = a*to(l+2»-i+k2»-*)+2lum = um

When / is odd, we set y\ = a2tι+ιy. Then we have

y2 _ ^ 2 f 1 + 1 ^ 2 = β2(2ί1+l)(l+2"-3+A:2"-4)+2/-2'ι-2

M2+m _ u2+m^

In any cases, we can write as y2 = um° where mo is an odd integer. Hence we have

y\uy~ι = u.
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We also have

where, k\ = k — 4 (resp. k\ = k) when / is odd (resp. / is even).

When n > 6, a direct calculation shows that

for any integer s (1 < s < 7).

When n = 5, we have

for any integer s (1 < s < 7), where £ = 0 for 5 = 1 or 5, and e = 1 for s = 3 or 7.

In any cases, we can take SQ satisfying the following equality

Set j2 = yS\°, then we have

= M ,

Since y^ay^2 = a1*2" (resp. α1 + 3 '2" ) for n > 6 (resp. rc = 5), we have

y\ = u (resp. w3),

for n > 6 (resp. « = 5).

Finally, we consider yφy^1 > Write Z?o = yiby^1 - Taking the conjugate of cΓ2

ba2b~x by v2, we have

Since (1 +2 r t~3)(l +2"~2) is odd, we have,

So, we can write as yiby^1 - a*bur for some t, r e Z. We also take the conjugate of

a~ι = bab~ι by j2, then
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Hence we get

-(1 + 2"-3)(l + 2n~ι) = - (1 + 2n" 3)(l + r 2n~2) - t 2n~ι (mod 2"),

so

2n~2(l + 2"-3)(2 - r) - t 2""1 = 0 (mod 2n).

Therefore r = 0 (mod 2). If we write r = 2ri, where π e Z, we have π + t = 1

(mod 2). Since j | = w ( o r " 3 ) ' w e S e t

Z? = y^by^2 = y2(atbu2rι)y2l = (aι+2n u2)1(a1'bu2rχ)u2r'.

Hence we have

( α 1 + 2 w 2 / ^ = 1.

Since

I

we have t = 0 (mod 2). Therefore π is odd. Denote by t = 2t\ where t\ e Z. We have

so ί = 0 (mod 2 n " 1 ). If we write / = 2""1ί2, we have

Summarizing the results, we get

y2 = u (resp. vf = u3) when « > 6 (resp. n = 5).

When ί2 = 0, these relations are the same as that of G9\Dn). SO, the group G =
(2)

{a, b, u, y2) is clearly isomorphic to G\ (Dn).

When t2 = 1, we set u\ — a2" u and x2 = α2" y2. Then we have u\ = 1, u\b = bu\

and u\au\x = aι+r .

So,
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Further, we have

X2U\X2

 l = Mi,

x2bx2

ι = bu2 = bu\,

x\ = u\ (resp. x\ = u\) when n > 6 (resp. « = 5).

Thus, in the case also, the group G = (a,b,u\,x2) is isomorphic to Gψ{Dn), as de-

sired.

Now, we consider Case II. For the sake of simplicity, we write G2 instead of

G(

2\Dn) in this proof.

First, we consider the element yay~ι.

Write <?o = yay~ι. Since it is in G2\ it can be represented as aιb^wιum for some

/, 7, /, m e Z, 0 < i < 2n - 1, 0 < j , /, m < 1.

By a direct calculation, we have

for any /, /, m e Z. So we must have yay~ι = aιwιum.

Suppose that yay~ι -aιwι.

When / = 1 we have yay~ι = airw. Then

so i must be an odd integer. If we write / = 2/0 + 1, /o ^ Z, we have

1 = wCα2'^1^)!/"1 = (awf0+lw = a2 i o

When / = 0 we have yay~ι = a1. Consequently, when yay~ι = aιwι, there exists an

element g e G - Gψ such that gag"1 e (a). Write

gag'1 =as,

where s e Z.

Then, by the same way as in the proof of Case I, we must have

for some odd integer k.

Then we have

(ug)(a)(ugΓι £ {a),
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since u(a)u~ι £ (a). Further

{ug)a2(ugTι = W(α2(1+2"-2*V~1 = ( ^ ) 2 ( 1 + 2 " έ ) = α2 ( 1 + 2"'2 ) ( 1 + 2 Π~2^ = a2

since k is odd. Therefore we have

(a)n(ug)(a)(ugΓι = (a2).

This contradicts the hypothesis that G satisfies the condition (EX, Dn). Thus we must

have

flo = yay~l = aιwιu.

In this case, we have ya4y~ι = (aιwιu)4 = a4\ so / must be odd. As usual, we may

assume that i e (5). If we write i = 2/Q + 1, i'o € Z, then

ya2y-1 = (a'w'uf = α

2<+«o

and ya4y~ι = a41. Hence

(a)Πy(a)y-ι = (a4).

Therefore, by the condition (EX, Dn) for G, we must have a41 ^ a4. Thus

/ ^ < l + 2 " - 2 ) .

On the other hand, y2a4y~2 = a4(ί and y2 e Gf\ we get

i2 e ( l+2"" 2 >.

Hence we can write / = 1 +2n~3k, for some odd integer k. So we must have

— 1 1+2n~3fc /

fl0 = yay =a wu.

We denote by CG(2)((α», the centralizer of (a) in G2 .

It is clear that CG(2)((α» = {a).

So

CGω({a0))= (flo).

By a direct calculation, we have

4 = (aι+k2n-3wιu?=a*.

Write wo = ywy~ι. Then, by taking the conjugate of waw~ι = aι+2n~ι by y, we get

woaowo =flo = f lo «o =«o « =(α 1 + / c z W 'M)^ 2 .
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Therefore we have

— 1 —1 • 1-i-t?n~3 / -in —1 _ i

wwoaowo w = w(a w u)a w = ao.

Thus wwo G CG(2)((αo)) = {ao). So we can write

wo = ywy~ι = waJ

0° = w(al+2" 3kwιu)jo,

for some integer JQ. Since WQ = 1, we have

Since the order of the element aι+2" 3kwιu is 2", we have yΌ Ξ 0 (mod 2n~ι). If we

write y'o = 2n~ιj where j e Z, then we have

wo - ywy~ι = u>α0

 J = waτ 7 .

Next, we write wo = ywy"1. Then, by taking the conjugate of uau~ι = aw by y, we

get

Hence

uwjuo(aι+k2n W1U)UQ1W~JU~1 = aι+k2n wιu.

So, we have

uwjuo e CG(2)((fl0» = (αo>.

Therefore we can write

uo = yuy~ι = wju(a0)
m = wJu(aι+k2n~3wιu)m,

for some integer m. On the other hand, by taking the conjugate of u - wuw~ι by y,

we get

u0 =

Hence, m is even, so we can write a s m = 2πio for some integer rao And
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Since u\ = 1 we have

l = u 2

0 = a

Therefore ArriQ = 0 (mod 2"), so we can write m = 2IΠQ = 2n xπi\ for some integer

m\. Thus

u0 = yuy-1 = wju(a1+k2n~'wιuf~lmι = wjua2n'lmK

Summarizing the results, we must have

yay ι = α i l f V " κ/w,

yuy~ι = w^ua2n

ywy~ι = waln j.

Using these relations, we have

y2ay-2 = y{aι+k2 wιu)y~ι = a

(resp. = fli*

when n > 6 (resp. n = 5). Set k\ - k+2{jl+m\) when n > 6 and set k\ = k+2(l+jl+mι)

when n = 5. Then &i is odd and

Suppose that j is even, then y2ay~2 - aι+ki2 . This contradicts the fact that y2 6

Gf\ Suppose that j is odd, then we have

uy2a(uy2)-1 = u(a1+k'2"

and uy2 e G2 , contradiction. Consequently, Case II does not occur. Thus the proof of

Theorem 1 is completed.

4. Proof of Theorems 2 and 3

Proof of Theorem 2 is similar to that of Theorem 1, so we omit some of the de-

tails. By Theorem 0.4, we must have n > 5. Let G be a 2-group, satisfying the con-

ditions in Theorem 2. Then, by the same way as in the proof of Theorem 1, we have

only to consider the following two cases:

CASE I. G = (G$\Qn), y) = (a, b, u, y) > G^{Qn) = (a, b, u)

CASE II. G = (G(2)(Qn), y) = (a, b, w, u, y) > G(2)(Qn) = (a, b, w, u),

where, [G; G^(Qn)] = 2, y φ G?(Qn) and y2 e Gf{Qn\ for / = 1 or 2.
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Furthermore, Case I can be devided into the following two cases:

CASE IA. yay~ι = aι(i = 1 (mod 4)) and yuy~x = ain~2du

CASE IB. yay~ι = a(u2(i = 1 (mod 4)) and yuy~ι = ar~2du

In Case IA, we can show that G = G^(Qn) and, in Case IB, we can show that

G = Gψ(Qn) by the same way as in the proof of Theorem 1.

On the other hand, we can show that Case II does not occur, by the same argu-

ment as in the proof of Theorem 1.

So, the proof of Theorem 2 is completed.

Theorem 3 follows from Theorem 0.3, Theorem 1 and Theorem 2.
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