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Abstract

Human beings sometimes experience a variety of events in the life, such as start of smoking,
pregnancy and childbearing in female, and death in conformity with nature, as examples.
We are often interested in the time to such an event of interest, and are able to handle
time to event data in the framework of survival analysis. One of the main objectives of
survival analysis is to compare two or more survival distributions. Here, we consider using
of median survival time as the criterion of the comparison. The reasons why we prefer to
evaluate the median are that some advantages such as cut of sample size and cost, and
shortening of duration of clinical trial by achieving the conclusion early for the compari-
son, are expected. For the comparison of survival distributions, existing rank tests such
as log-rank test have been frequently used in several areas. However, to maximize the
use of rank test, we usually require the long follow-up to observe non-censored survival
data as much as possible. Meanwhile, median can be estimated accurately compared to
other statistics like mean survival time even if censored observations are involved, and it
does not require the long follow-up, that is, we just need to observe survival data until
the estimable time-point of median. As a major median test for right censored data,
Brookmeyer and Crowley (1982b) extended the sign test procedure to the version of cen-
sored data. This median test is asymptotically valid. However, that median test does not
consider the survival information after the median survival time, so it may cause the low
power, especially in small sample. To overcome such problem, we proposed alternative
median test procedure based on the property of order statistics in the framework of two-
sample problem. In this thesis, we discussed the two-sample difference between the mid
order statistics in order to conduct the median test based on estimating the significance
probability. Furthermore, we provided the rationale to estimate the significance proba-
bility, a manner to cope with censored observations and some contrivances to overcome
computational problem in that estimation. As a result, the null distribution of the pro-
posed median test was asymptotically valid, and was investigated to be appropriate with
a conservative tendency in the finite sample by the simulation. Also, simulation studies
showed that the proposed test has the same or higher power than the existing median

test procedures. Finally, we discussed the usefulness of the proposed test via case studies.
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Notations

Notations Definitions and examples Remarks

General

O, Op(n) Order of random variable

B(-,") B(m,n) = fol 2™ Y1 —2)" 'dr Beta function (m,n > 0)

Tji Tj; = min(X;, Cji) Observed survival time

X Non-negative continuous random variable
C Censored time

S; Survival function of sample j

fj Probability density function of sample j
M; True median survival time of sample j
Hy Null hypothesis: M; = My and Sq(t) = Sa(t) V ¢
Hy? Null hypothesis: M} = My

My Common median under Hy

Mg Common median under Hy'

n; Sample size for sample j

n n=mni+no Pooled sample size

Generalized Sign Test

Tus Sign test statistic for complete data

§j Kaplan-Meier estimate for sample j

So So(t) = nfl{nlgl (t) + n2§2(t)} Weighted Kaplan-Meier estimate

S\l’jin Estimated survival probability found by linear
interpolation

N;(t) Counting process

V(1) At risk process

Tsc Test statistic

T]'3C Modified test statistic

Empirical Likelihood Ratio Test

Xj Xj (t) = dN;(t)/Y;(1) Unconstrained hazard

X}" Constrained hazard under Hg'

log Ly log Ly (//\\J) Unconstrained maximum log-likelihood

log L, log L, (X}‘) Constrained maximum log-likelihood

Trir Test statistic

se Constrained Kaplan-Meier estimate

J
o Lagrangian parameter
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Notations (continued)

Notations Definitions and examples Remarks

Bootstrap Median Test

Dboot Bootstrap p-value

Proposed Median Test

Y Random variable of difference in two-sample medians
g1(y) Density function of Y in complete data

poi(+) Significance probability (p-value) function

S’j Discrete approximation of S;

puy(+) Discrete approximation of pvy(-)

91 (y) Density function of YV in censored data

O] pvy(-) for which S; is replaced by So

Y21 Ya1 = na/ny Ratio of sample size between sample 1 and 2
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NNT
B&C
ELR
p.d.f

Abbreviations

Number Needed to Treat
Brookmeyer and Crowley
Empirical Likelihood Ratio (Test)
Probability Density Function
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1. Introduction

1.1 Background

Human beings sometimes experience a variety of events in the life, for example, become
a particular illness, start smoking, pregnancy and childbearing in female, and death in
conformity with nature. In survival analysis, the time till an experience of particular
event from a common starting time is referred to as a response. And, survival analysis
makes it possible to summarize the survival information based on the particular event for
one or more groups. Typically the elapsed time till an event of interest and the event
itself are considered the survival time and death (or failure) in a comprehensive meaning,
respectively.

One of the important objectives in survival analysis is to compare two or more groups,
that is, to compare two or more survival distributions. Here, our concern is to evaluate the
statistical difference in reduced survival experiences based on the individual survival time
brought by several factors. An important problem in practice is ”What measure should
be evaluated for the difference in survival experiences, namely, survival distributions?”.

For the comparison of survival distributions, consderable statistics as evaluation cri-
terion are NNT (Number needed to treat), difference in survival rates (or mortality rate),
five-year survival rate, median survival time and mean survival time. The difference in
survival rates is a statistics which suggests the difference in survival probabilities at given
a time point, therefore it provides different result depending on the time point of interest.
Five-year survival rate is also a statistics providing only survival information at a specific
time point, namely, five years. This statistics is used frequently in the area of cancer
therapy, however, it does not make sense to evaluate 5-year survival for all cancer types.

Thus, we need to take care of handling such statistics for the comparison of survival



distributions since we must lose the survival information other than one at single time
point. NNT is defined as the reciprocal of the difference in survival rates (or mortality
rates) at a time point. NNT has also the similar characteristics from a point view of
the point estimation. Since these statistics are based on the point estimations of survival
rates or mortality rates, the comparison of survival distributions based on these statistics
is equivalent to the comparison of survival information at a time point. That is, these
statistics does not reflect the overall survival information. In contrast, median survival
time and mean survival time are considered to be useful compared to those statistics.
Each statistics has the following characteristics in practice:

Mean survival time

e Advantages:

— For the comparison of survival distributions, a group with the largest sum of
survival times can be considered to have highest survival possibility. That is,
mean survival time is proportional to the sum of survival times. In other words,
mean survival time includes all information on the length of obtained survival

times for a group.

— It is easy to understand mean survival time intuitively for non-statisticians,

namely, medical doctors and patients in medical practice.

e Disadvantages:

— Mean survival time relies heavily on the shape of survival distribution since it is
defined as the area under the survival distribution. Extremely speaking, even
if survival distributions have different shapes, the mean survival time could be

the same.

— If the largest observed survival time is censored, then Kaplan-Meier curve does
not reach at time-axis. Under this, it is very difficult to estimate mean survival
time since we can’t know the true shape of right tail of survival distribution

exactly.

Median survival time

e Advantages:



— As survival distribution is skewed with long tail on the right side in general,
mean survival time can be larger than median survival time due to small num-
ber of long survivors. Thus, median survival time is robust statistics in that

sense.

— Median survival time is not subject to the influence of censored observations

compared to the mean survival time.

e Disadvantages:

— For the comparison of survival distributions based on median survival time, we
can perform median test only when median survival time in all samples can
be estimated. That is, if median in at least one sample can not be estimated,
then we are not able to apply any of testing procedures based on the median

survival time.
— Median survival time includes the information of order mainly.

— In clinical trial, median survival time is not sensitive to larger (or smaller)

survival times even if they reflect significant benefit (or risk) of drug.

It is difficult to determine the best statistics for the comparison of survival distributions
since each has advantages and disadvantages, respectively. The preferable statistics to
be evaluated must be chosen depending on the applied case. However, we would like to
describe several reasons why we focus on the median survival time in this thesis. First,
we state its availability caused by the reduction of the overall survival distribution in
clinical trials, where the ”"reduction” implies to be representative of all the information
obtained from the survival distribution. The reduction of the survival distribution by
median survival time, if possible, can shorten the duration of clinical trial, and thus lead
to cut the cost and sample size. Next, it is very easy to interpret the median survival
time as the 50 percentage assurance timepoint for the occurrence of event such as death
compared to other percentiles. From a viewpoint of these possible contributions caused
by evaluating the median survival time, we prefer to evaluate median survival time under
a situation where two survival distributions are compared based on it.

When we consider comparing two or more samples, two-sample problem or multiple-

sample problem will be open for discussion. Unlike two-sample problem, the objective



of comparison between samples in multiple-sample problem become diversified because
order relation between samples and existence of a standard sample for comparisons should
be considered. Tsubaki and Fujita (1987) suggested that the majority of clinical trials
conducted in Japan are based on two-sample comparison even if number of samples of
interest in a clinical trial are greater than or equal to 3. In summary, even in clinical trials
having primary objective to compare > 3 samples in parallel, two-sample test for each
of considerable combinations of samples has been repeated since cut of required sample
size and reduction of efforts to set up a number of clinical trials have been usually desired
due to limited cost. That is, their suggestion is that multiple-sample comparison can be
reduced to two-sample comparisons. In contrast, two-sample problem can be extended
to multiple-sample problem in such sense. Because of this, we would like to focus on

two-sample comparison only in this thesis.

1.2 Objectives of our works

Due to characteristics of skewed survival distribution and being censored observations,
nonparametric tests such as the rank test have been frequently used than tests based on
the difference in means (for example, t-test) for the comparison of survival distributions.
One of the major advantages of the rank test is that they can reflect the entire survival
experiences from survival distributions. On the other hand, they have several drawbacks
such as requirement of long follow-up period to collect complete survival information.
That is, it is desirable to collect non-censored survival information as possible in order to
estimate survival distribution more exactly. To avoid long follow-up period for the purpose
of application of rank tests, we consider that inference based on the difference in median
survival times which could be robust statistics for various distribution forms would be very
useful as a modified version of the method based on the means for the skewed survival
distributions. We also know that an evaluation for the extension of survival potential
based on the median survival time is not always powerful for any alternative hypothesis,
while it is more powerful than rank test procedure under the alternative hypothesis with
shift of the location (Brookmeyer and Crowley, 1982b).

There are relatively few papers which propose the testing procedure to compare two



or more samples based on the median survival time while there are many papers on the
point or interval estimations of the median survival time in single sample with right-
censored data. Bartholomew (1957) provided an interval estimate for the median survival
time under exponential survival distribution. Nonparametric methods for constructing
confidence interval have been proposed by Brookmeyer and Crowley (1982a), Emerson
(1982), Simon and Lee (1982), Slud et al. (1982) and, Wang and Hettemansperger (1990).
Slud et al. (1982) provided the "reflected” confidence interval, and they distinguished the
method from ”test-based” confidence interval which was proposed by other authors. They
also went into the details of the difference between those two confidence intervals. Efron
(1981) and Reid (1981) proposed an inference for the median survival time based on the
bootstrap method.

Brookmeyer and Crowley (1982b) provided k-sample median test as an extension of
the sign test by Hajek and Siddk (1967) to censored data version. Their median test
is referred as the generalized sign test for right-censored data. Following the existing
median test for complete data, they proposed to use the weighted Kaplan-Meier estimate
in order to define the pooled-sample median survival time under null hypothesis. Then,
their median test compares the Kaplan-Meier estimate for either one of two samples at the
pooled-sample median survival time and survival probability of 0.5 under null hypothesis.
This generalized sign test is a member of the class of Mood type median test while
Gastwirth and Wang (1988) developed a median test included in the class of control
median test. Both classes of median test are the same in that the difference between
the estimated survival probability at the median survival time under null hypothesis and
survival probability of 0.5 is evaluated. However, we note that the estimation method for
the median survival time under null hypothesis is different. Test statistics in both classes
do not have exchange invariance for two samples, that is, both classes of median test do
not provide the same test statistic value when the standard distribution to be evaluated
in the test is replaced to another one. Any modification to hold the exchange invariance
has never seen in existing papers, but we present a proposal for the modification later
briefly. These classes of median tests by Brookmeyer and Crowley (1982b), and Gastwirth
and Wang (1988) seem to be asymptotically valid, but several issues such as expected low

power due to the loss of survival information post median survival time, and the validity



of null distribution under small sample size should be considered.

Naik-Nimbalkar and Rajarshi (1997) proposed the empirical likelihood ratio test for
the equality of £ medians in right-censored data. As an important characteristic, their
empirical likelihood approach does not consider a null hypothesis of equal survival distri-
butions. Their empirical likelihood ratio test is based on a null hypothesis of equal median
survival times. They considered that the empirical likelihood approach is the natural way
for the handling of censored data less than the pooled-sample median survival time and
the definition of the pooled-sample median survival time those which have been issued
by Brookmeyer and Crowley (1982b). They showed that the empirical likelihood ratio
statistic has chi-squared distribution with £ — 1 degrees of freedom under null hypothesis
of equal medians. Several empirical likelihood approaches have been developed in the sur-
vival analysis so far. And the approach has many preferable properties such as its ability
to carry out a hypothesis testing and construct confidence intervals without estimation
of the variance. However, suffice it to say to that the test statistic is constructed based
on the property of approximation. In Naik-Nimbalkar and Rajarshi (1997), they did not
provide any numerical investigation for proposed empirical likelihood ratio test.

Park and Na (2000) proposed a bootstrap median test for right-censored data under
two-sample problem. In their paper, the difference between the control median test and
the mood type median test is clarified, and the Behrens-Fisher problem is also discussed
briefly. To apply the bootstrap method to the testing procedure, they proposed to use the
difference of medians as the control median test statistic directly, and they also provided
the validity to use the asymptotic bootstrap distribution of it theoretically. The bootstrap
median test consists of the bootstrap sampling from the combined sample to estimate the
difference of medians under two bootstrap samples; estimating a p-value by counting the
number of detections for which the difference of medians based on the bootstrap samples
is greater than an actual observed difference of medians. The bootstrap median test can
be an alternative procedure based on the approximate bootstrap distributions against the
tests which assume the asymptotic normality based on the large sample approximation.
Although the bootstrap median test is very simple to be applied, it requires a heavy
workload on the computation of p-value.

Amagasaki et al. (2009) proposed a two-sample median test for right-censored data



based on the property of order statistics. They defined the density for the difference in
two-sample mid order statistics, and then proposed to obtain the p-value through the sig-
nificance probability (p-value) function directly. However, the integral calculation seems
to be rather difficult even if any parametric survival distribution is assumed. Therefore
they provided some ideas to overcome such difficulties in computing the p-value. Indeed,
their median test has several difficulties in computing the p-value, but it is very natural
manner to evaluate the difference of observed medians exactly.

As far as we know, there is no papers which describe the difference of performances for
those median tests with right-censored data. Therefore, we carry out simulation and case

studies in order to discuss how these median tests are different from their performances.

1.3 Outline of datasets

In this section, we present two datasets to be used for case studies in the later section.

[Data set No.1: Time to death for patients with cancer of the tongue(N = 80):
Sickle-Santanello et al, 1988]

A study was conducted to investigate the effects of ploidy on the prognosis of patients
with cancers of the tongue (mouth). Patients were selected who had a paraffin-embedded
sample of the cancerous tissue taken at the time of surgery. Follow-up survival in week
data was obtained for each patient. The tissue samples were examined using a flow cy-
tometer to determine if the tumor had an aneuploid (abnormal) or diploid (normal) DNA
profile using a technique discussed in Sickle-Santanello et al. (1988).

Sample 1 consisted of 52 patients with aneuploid tumors, and sample 2 consisted of 28
patients with diploid tumors. Each had 21 and 6 censored observations, respectively.
[Data set No.2: Time to death for patients with gastric cancer(N = 90): Sta-
blein and Koutrouvelis, 1985]

A clinical trial of chemotherapy against chemotherapy combined with radiotherapy in the
treatment of locally unresectable gastric cancer was conducted by the Gastrointestinal
Tumor Study Group (1982). In this trial, 45 patients were randomized to each of the two

arms and followed for about eight years. Survival data in days was reported in Stablein



and Koutrouvelis (1985).
Sample 1 consisted of 45 chemotherapy only patients, and sample 2 consisted of 45
chemotherapy plus radiotherapy patients. Each had 2 and 6 censored observations, re-

spectively.

Table 1.10 Survival data for patients with tongue cancer

Aneuploid Tumors

1 3 3 4 10 13 13 16 16 24 26 27 28
30 30 32 41 51 61+ 65 67 70 72 73 T4+ 7
80+ 81+ 87+ 87+ 88+ 89+ 91 93 93+ 96 97+ 100 101+

104 104+ 108+ 109+ 120+ 131+ 150+ 157 167 231+ 240+ 400+

Diploid Tumors

1 3 4 5 5 8 8+ 12 13 18 23 26 27
30 42 o6 62 67+ 69 76+ 104 104 1044 112 129 176+
181 231+

+ censored observations

Table 1.200 Survival data for patients with gastric cancer
Chemotherapy only
1 63 105 129 182 216 250 262 301 301
342 354 356 358 380 383 383 338 394 408
460 489 499 523 524 535 562 569 569 676
748 778 786 797 955 968 1000 1245 1271 1420
1420 1694 2363 275417 29507
Chemotherapy plus Radiotherapy
17 42 44 48 60 72 74 95 103 108
122 144 167 170 183 185 193 195 197 208
234 235 254 307 315 401 445 464 484 528
542 547 577 580 795 855 1366 1577 2060 2412*
24867 27961 2802% 2934F 2088*
+ censored observations




2. Competitive Median Tests for
Right Censored Data

In this chapter, we introduce some existing median tests for right censored data. Before
introducing existing median tests, we discuss nonparametric Behrens-Fisher problem first.
By discussing the problem, a problem for selecting a null hypothesis to be tested is
issued. Then, we introduce three existing median tests for right censored data, namely,
the generalized sign test, empirical likelihood ratio test and bootstrap median test. For
the empirical likelihood ratio test, no numerical investigation was provided in the paper
(Naik-Nimbalkar and Rajarshi, 1997). Therefore, we propose a manner how to apply the
empirical likelihood ratio test to survival data practically. Finally, we propose a median
test based on the property of order statistics. Here, we discuss the two-sample difference
between mid order statistics, so that we conduct the median test based on the estimation
of the significance probability function. For this test procedure, we provide the rationale
to estimate the significance probability, a manner to cope with censored data and a few

contrivances to overcome computational problem in such estimation.

2.1 Null hypotheses and Behrens-Fisher problem

Let S;(t) and M be the true survival function and the true median in the sample j,

respectively (7 = 1,2). One of the considerable null hypotheses is
HE M= M3,

that is, two medians are equal. However, we can not always assure S; = S, even if Hy'
is true. Thus, it is referred as nonparametric Behrens-Fisher problem. If Hf is rejected,

we can conclude Si(t) # S2(t) at ¢ in the neighborhood of median. A candidate of null



hypothesis to address the nonparametric Behrens-Fisher problem is
HO : Mik = M; and Sl(t) = Sg(t) Y t.

Thus one can avoid a null hypothesis {M; = M; and S; # S} as a part of H' by
adopting Hy. For simplicity, Hy can also be defined as Hy : Si(t) = Sa(t) (V t) since
equal survival distributions must have a common median. If one is interested in the
Neyman-Peason hypothesis testing procedure, one shall set an alternative hypothesis H; :
Si1(t) # Sa(t) against Hy. However, we need to note that Hy : Si(t) # So(t) consists of
{M;} = My and Sy # Sy} and { M # M; and S} # Ss}.

Even if our interest is to test equality of two medians, we note that existing median
tests for right-censored data have not been developed with consistent null hypothesis.
Therefore, we need to consider used null hypothesis carefully when we perform median

test.

2.2 Generalized sign test

Existing two-sample median test for complete data is within the framework of linear
rank test, and is the sign test procedure counting the number of observations exceeding
the median of the pooled-sample. Let Mj, n; and ¢; be the observed pooled median in
two-sample, sample size and the number of observations exceeding M, in the sample j
respectively, j = 1, 2. Exact distribution of ¢; under Hy based on the conditional inference
is the hypergeometric distribution as well as one based on the inference for the contingency

table. Based on the normal approximation, sign test statistic in two-sample median is
2
Tus =4 nj(c;/n; —0.5)° (2.1)
7=1

which has asymptotically chi-squared distribution with one degree of freedom (Hajek and
Siddk, 1967). It is well known that Tyg is locally most powerful rank test against the
alternative hypothesis with location shifts in the double exponential distribution and also
it only has an efficiency of about 64% compared to the t-test in the normal distribution

(Yanagawa, 1982).
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Let T;; = min(Xj;, Cj;) be observed survival times in the mutually independent sample
j (i=1,...,n;). Let X;; be non-negative continuous random variables following a distri-
bution 1 —S;, and C}; be censored times following a common distribution independently
from X;; (i =1,...,n;, j = 1,2). As an extension of the sign test for censored data,
Brookmeyer and Crowley (1982b) considered to count the number of observations less
than ]\/4\0 along with generalized signs, where ]/\/[\0 is an estimate of pooled median survival
time based on the weighted Kaplan-Meier estimate. The weighted Kaplan-Meier estimate
is given by
So(t) = n " HniSi(t) + naSa(t)},
where §j and n(= n;+ny) are the Kaplan-Meier estimate in the sample j (j = 1,2) and the
sample size for the pooled-sample respectively. Unlike the Kaplan-Meier estimate based on
the combined sample regardless of group, §0(t) is constructed so that it remains unaffected
by the difference in censoring distributions between groups as possible. Brookmeyer and
Crowley (1982b) considers Sy(t) as a continuous function by using linear interpolation,
and they found ]\/4\0 as an estimate of M, by
T — Lo+ (05 §0(L0))A(U0 — Lp)
So(Uy) — So(Lo)

where Lg is the largest observed death time with §0(t) > 0.5, and Uy is the smallest

, (2.2)

observed death time with Sy(t) < 0.5. The estimated survival probability Sj(]/\i[)) at time
]/\/[\0 in the sample 7, found by linear interpolation, is given by
{5 (Uoj) = Sj(Loj) } (Mo — Loj)

in (V) = §(Lo;
S] ( 0) 5.7( 0]) + (UOJ . LO_]) )

where Lg; and Uy, are two consecutive death times in the sample j with Ly; < ]\/4\0 < Uy,
and @i“(]/\/l\o) is the estimated probability that a randomly selected individual in the sample
j exceeds ]\/4\0 (7 = 1,2). Their test procedure evaluates the difference between SA'Jl-i“(]\//Tg)

and the expected survival probability of 0.5 under Hy, and the test statistic
Tsc = n(S(My) — 0.5)%/nao? (2.3)

has asymptotically chi-squared distribution with one degree of freedom under Hy, where

/\2 . .
o; is given by

5% = "SI ) + VRS ()

J

11



and \//z;r{g}i“(]/\/l\o)} is given by

i ~ My — Lo; \ 1% (Vo AN ;(t
Var{S;"(Mo)} = [Sj(UOj) (_Uo(y]' - L(Zﬂ o Vi) @j(t)](—)dﬁj 1)
=\ a9 = .
v { S (=g )| + 2 S )5 i) |
Loj dN;(t)
o ViOY;(t) — dN; (1)

which is the variance estimate of SA']l-in(]/\/[\[)), j = 1,2 (Klein and Moeschberger, 2003, p.232).
Note that NV;(¢) and Y;(t) are N;(t) = S_17, Ni(t) and Y;(t) = Y17, V;i(t) respectively.
And, each of the pair (Nj;(t), Y;i(t)) is usual counting process and at risk process to be

used in survival analyses, and they can also be expressed as Nj;(t) = 1(T}; < t,Tj; < Cj;)
and Y;;(t) = 1(¢t < T};) respectively, where, 1(-) denotes the indicator function.

One of the formal problems in (2.3) is that it does not provide the same statistics
value for the replacement between sample 1 and sample 2. To obtain a form providing

invariance for that replacement, however, Tgc can be modified to
Tic = (Si"(Mo) = 0.5)/o} + (S5*(Mo) — 0.5)° /o3

with the linear combination of competitive statistics. In fact, T} is reduced to (2.1) for
complete data.

Since the generalized sign test is based on the asymptotic property of the Kaplan-
Meier estimate, low power as well as typical sign test and the validity in small sample size

are issued.

2.3 Empirical likelihood ratio test

Naik-Nimbalkar and Rajarshi (1997) proposed an empirical likelihood ratio test for testing
H{". Using the same notation in Section 2.1, let Tj; = min(X;, C};) be observed survival
times in the mutually independent sample j (¢ = 1,...,n;, j = 1,2). And, let M be
the common median under Hj'. The unconstrained log likelihood for the sample j can be

expressed using the terms in counting process as follows:

j

g 1y = 3 {0,106 (1) +

=1

V(L) — AN (T;:)) log(1 - Aj@i))}, (2.4)

12



where \;(T};) is hazard (j = 1,2). It is well known that the unconstrained log likelihood
(2.4) is maximum at /):j (t) = dN;(t)/Y;(t). Let this unconstrained maximum value be
denoted by log L, (/):](t)) = > _;log L;. In order to obtain the empirical likelihood for Mg,
we maximize 25:1 log L; subject to the following two constraints:
Si(My) = T @=X(1) =05, j=1,2.
t<M;
By using the Lagrangian Multiplier method for the constrained maximization problem,

one can obtain the estimate of the constrained hazard A}(¢), that is, A;() under Hg', by

differentiating the following function with respect to c;; and A;(t) (j = 1,2):

) EH

j=1

D log(1— \i(t) — log(O.S)}}, (2.5)

<M
where «; is Lagrangian parameter, j = 1,2. The resulting /)\\;‘(t) is given by
dN;(t)

At =4 Yi(t)+ oy’
X (1), t> M;.

t < Mg
07 (2.6)

Thus the maximum log likelihood subject to those constraints can be calculated by sub-
stituting X}‘(t) into (2.4), j = 1,2. Let this constrained maximum value be denoted
by log LC(/)\\;f (t). Naik-Nimbalkar and Rajarshi (1997) showed that the empirical profile

likelihood ratio statistic R
Lo (Ai(1)) )
Le(Aj (1))

has asymptotically a chi-square distribution with one degree of freedom under Hy'.

TELR =2 IOg (

In their paper, no numerical solution was provided. Therefore, we have two problems
on the estimations of M and ¢ in (2.6), j = 1,2. Here, we propose to estimate them
based on the Newton-Raphson method. It is reasonable to consider that Mg would lie
between two observed median survival times. Let ]\/4\] = inf{t : §j (t) < 0.5}, j=1,2, be
the observed median survival times, and assume M, 1 < Z/W\g as an illustration. In practical
case, we may experience ]/\/[\1 = ]\/4\2 In such case, one does not need to find ]\/4\5‘ and
aj, j = 1,2, since the common median survival time can be considered ]/\/[\5‘ so that the
constrained maximum log likelihood equal to the unconstrained maximum log likelihood

(in this case, p-value can be 1.0 because Tg g = 0). For the case ]\/4\1 =+ Z/W\g, since ]\/4\5‘
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is expected to lie between M, and Mo, A% (t) should be adjusted to have smaller hazard
while A}(¢) should be adjusted to have larger hazard for ¢ < ]/\/[\5‘. In other words, & must
be positive, and @, must be negative in (2.6).

In order to find @; efficiently, and to avoid possible convergence failures through the
Newton-Raphson method, we assume o; > 0, j = 1,2. Instead, we re-define X;‘(t) =
dN;(t)/(YV;(t) + ¥jay) for t < Mg in (2.6), where 1; takes either 1 (for sample with
min(Z\/I\l,Z/\/[\Z)) or —1 (for sample with max(Z\/I\l,Z\/i\Q)). Next, we define a; = exp(f;) as
transformation of variables. Thus the function of 3; of interest and its derivative for fixed

Mg are given as follows:

N (1 dN;(t) o
=2 (1= 557 sy o) ~ 509
. dF(B;) _ dN;(t)1h; exp(5))
F ) dp; t%m {V;(t) + ¥j exp(B8;)) HY;(t) + ¢ exp(B;) — dN;(t)}

And, one can start the following iteration process with initial guess B](.O) until a convergence

condition is satisfied: (n—1)
F(B;")

FEry

J

6](‘") _ 6](77*1) B

Finally, @; can be obtained by the logarithmic transformation of B\j, j=1,2.

The remaining problem is the estimation of M. We assume that all distinct death
times between min(]/\/.f\l, ]/\/./\2) and max(]/\/l\l, ]\/4\2) are candidates of M. Let t(1),t(2), ..., %)
and @;() be all death times between min(]\//fl, ]/\/[\2) and max(]/\/[\l, Z/\/[\Z), and the Lagrangian
parameters found by the Newton-Raphson method at a death time t¢), [ = 1,...,¢&.
And, let log Ly be the constrained log likelihood at #() which can be calculated based
on @y, [ = 1,...,§ Here, we can define the constrained maximum log likelihood as
max(log Le(1y,10g Le(2), - . ., 10g L)), and can consider a death time with the constrained
maximum log likelihood as ]/\/[\5‘. If no death time is existed between medians, then both
medians may be considered candidates of M.

Once ]/\/[\5‘ and the associated (., are found, one can construct the constrained Kaplan-
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Figure 1: The behavior of the constrained log likelihoods for tongue cancer data

Meier estimate :S’\JC, j = 1,2. The constrained Kaplan-Meier estimate is defined as

_dNG(s) T
(t) = Hm(l Vi ) e

5 D) (27)
S;(M(ak) H]/V[\S<5§t <1 - yj(s) > ) t Z M(aka
J

where we note that S(t) and S5(t) have the estimate of common median ]\/4\5‘.

To illustrate the behavior of constrained log likelihoods between Z/\J\l and Z/\J\Q graphi-
cally, we apply the empirical likelihood approach to survival data for patients with tongue
cancer (Sickle-Santanello et al. 1988). This survival data was collected to investigate the
effects of ploidy (aneuploid or diploid) on the prognosis of patients with tongue cancer.
Here, let sample 1 and sample 2 be the aneuploid tumors group with 52 patients (21
censored observations) and the diploid tumors group with 28 patients (6) respectively. As
a result, the estimates of median for each sample were M, = 42 (days) and M, = 93, and
the common median under H' was estimated as ]/\/[\5‘ = 77. The estimates of Lagrangian
parameters at ]/\/./\5‘ providing the constrained maximum log likelihood were &y = 6.91 and

ar = 3.50. Figure 1 shows the trend of the constrained log likelihoods with two time
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points of ]\/4\5‘ and M, which is the estimate of the common median defined by (2.2). From
this example, we found that ]/\4\5‘ is not the same as ]/\4\0, and the constrained log likeli-
hoods does not show the convex shape. We also found that the constrained log likelihood

changes at observed (non-censored) death times.

2.4 Bootstrap median test

Park and Na (2000) proposed a bootstrap median test for test H'. Using the same

notations in Section 2.1, let Tj; = min(X};,

C};) be observed survival times in the mutually
independent sample j (¢ =1,...,n;, j =1,2). Thus, survival data can be conveniently
represented by pairs of random variables (T}, d;;), where 0;; indicates that lifetime Xj;
is observed (d;; = 1) or (right-)censord (d;; = 0). Let M, and M, be observed medians
for each sample, and x be the absolute difference of them, that is, z = |]\/4\1 - ]/\4\2| The

bootstrap median test has the following steps:

1. Draw a sample with size of n(= n; + ng) by random re-sampling with replacement

from the combined sample.

2. Allocate the first n; observations as (T}, 67,), ..., (T1,,, 6t,,) and the remaining ny
observations as (13,05,), ..., (T, 05, )
3. Calculate observed medians ]/\ﬂ) and ]/\/.I'\éJ for each of bootstrap samples. Define

MP — M.

ITp = |
4. Repeat Step 1 to 3 B times.

For testing Hy, the approximate bootstrap p-value can be defined as the total number of

T, whose values are greater than or equal to x divided by B. Let

]/)\boot = #{xb > -'L'}/B

The testing problem of Hf is also referred in their paper (Park and Na, 2000). They
consider using the difference of medians for this testing problem too, since one can compute
p-value without a great deal amount of computing time. To obtain the null distribution,

let d = ]\/4\1 — ]/\/[\2. Unlike the testing problem of Hy, we don’t need to combine two samples.
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Instead, we need to do random re-sampling with replacement in each of samples where
sample 2 consists of (Ty; +d, 021), . .., (Ton, + d, 09,,). By doing so, two medians for each
sample can coincide. Thus, the approximate bootstrap p-value can be obtained with the

same procedure Step 1 to 4.

2.5 Median test based on the order statistics
2.5.1 General theory

Let Xj(1), Xj@2), ..., Xjm,;) be n; order statistics of random variables Xjy,..., X}, with
distribution 1 — Sj, j = 1,2. Let fjum,)(t) be the density function of Xj, ) which is
defined as

Fitmy)(#) = {1 = S;(0)}™ H{S;(6)}" ™ f(t) /B(my,nj —my + 1), (2.8)

where f;(t) is the probability density function in the sample j, and 1/B(m;,n; — m; +
1) = n;!/(m; — 1)!(n; —m;)! is the binomial coefficient. Note that m; can be the real
number within the following discussions though it is usually considered as the integer.
For simplicity, we discuss fj(y;)(t) with the form of (2.8) even if m; is not the integer.
Thus, the function B is extended as the form of usual beta function.

As our interest is statistical inference for the difference in two-sample median survival
times, suppose m; is mid-order in the sample j, namely, m; = (n; + 1)/2. For complete

data, median survival time is defined as

_ J AXom—12) + X1y }/2, if nyiseven, o
= { Xjimy): if ny s odd. U~ L2 (2.9)

Let random variables Y and V be

Y:M1 —Mg, V: Ml. (210)

Thus, Y can be considered a random variable indicating the difference in two-sample
median survival times. However, the definition of (Y, V') according to the case of even/odd
of n; in (2.10) through (2.9) poses very troublesome computations. Thus, we redefine Y’

and V as
Y = Xl(ml) - X2(m2)7 V= Xl(ml) (211)
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in order to avoid handling these random variables as in (2.10). By using the definition
(2.11), the joint density of (Xi(m,), Xo(m,)) is given by H§:1 fitm;)(t). And, the joint
density function g;(y,v) of Y and V is defined as

gl(yv U) = fl(ml)(v)f2(m2)(v - y)

by transformation of variables. The density function g;(y) of Y is defined as the marginal
density function of g;(y,v), and given by
50) = B, [ 0i0)nle ) oo ) ) 212
vE|Y,00

where B, m, = 1/B(my, m1)B(ma, ms), and ¢; and ¢, are
G1(t) = Si(t)™ H1 = Si()}™ 7, ga(t) = Sa(t)™ H1 = Sy() )™,

respectively. So, g(y) can be regarded as the density for the difference in 'two-sample
mid-order statistics’. In other words, it can be referred as the density for the difference
in two-sample median survival times. Let (= M; — Ms) > 0 be the observed difference
in two-sample median survival times, then a significance probability (p-value) function is

defined as
@)= [ (2.13)
y€[z,00)

Equation (2.13) provides the probability for what the difference in two median survival
times is greater than or equal to z. Meanwhile, let pv; (—z) be the probability below
—z and given by pvy (—x) = fye(_oo’_x} g1(y)dy, then the value of pvy (—x) is the same
as pva(—x) which can be calculated via the same processes (2.12) and (2.13) under the
replacement between sample 1 and 2 for g;, where g2(y,v) = fams) () figm:)(v —y). Thus,
so called two sided significance probability can be calculated by pvy(z) 4+ pve(—z). And,
we can proceed to discussions with a form of equation (2.13) since the generality is not
lost even if the equation is subject to = > 0.

We consider an asymptotic result for density function (2.12) below. Let Sy(t)(=
Si(t) = Sy(t)) and M§ = S;'(0.5) be true survival function and true median survival
time under Hg, respectively. When Sy(t) is twice differentiable function and Hy is true,

g1(y) is equivalent to the following normal density function asymptotically
{27V (n1, na)} 2 exp {—y*/2V5 (1, ma) } (2.14)
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where, Vi (ny,ns) is expressed as
Vo (ni,m2) = {1/4n1 + 1/4ns}/ fo(Mg)*.

Note that fy(t) is the probability density function of Sy(t). This result can be shown based
on either Laplace approximation to gi(y) (See Appendix A.1l) or that the distribution
of M; under Hy is equivalent to the normal distribution with mean Mg and variance

1/4n; fo(Mg)? asymptotically (Desu and Raghavarao, 2004, p.152-153 for reference).

2.5.2 Discrete approximation of pv;(x)

To utilize result of (2.14) for the testing problem, n; and ny are preferred to be large
sufficiently. When n; and n, are not so large, we needs to consider the direct calculation
of pvy(z) in the inference for the distribution of the difference in median survival times.
However, it has drawbacks in computing pv;(x) defined by (2.13) since the computation
of double integral is usually expected to be very complicated even if any parametric
distribution is assumed. Actually, even if equation (2.13) is expanded exactly using the
integration by parts, it causes very serious numeric errors since not only the digit varies a
great deal depending on each of terms, but also a great number of positive and negative
terms are also accrued. As a contrivance to avoid such errors, we propose a discrete
approximation for (2.13). Such discrete approximation is useful for a case where S; and
S, are replaced by discrete estimates such as Kaplan-Meier estimate.

Let S and Sy are approximations of S; and S, defined as step functions respectively,

where the function jumps at 0 < t; < ty < --- < t;, (including zero jumps). Note that h

is arbitrarily constant. In the approximation, the region of v is v € {t1,1s,...,t4}, so we
set 0 as v = tz, ¥ = 1,..., h. Using these notations, the discrete approximation of ¢ (y)dy
in (2.13) is

G1(y)dy = Bimym, Z dgl(tf})q;Q(tﬁ - y)dSQ(tﬁ - y)dgl(tﬁ)a

{9:t5 >y}

where ¢,(t) = 0i(0)]s,0)=5,0)» J = 1,2. Let pvy(z)(= [ 91(y)dy) be an approximation
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form of pvy(x). Based on the exchange order of integration, pv,(x) can be expressed as
pui(z) = [ Uy > =) {Bmlmz > (it >y} 1(ts)pa(ts — y)dSa(ts — y)dgl(tﬁ)}

h oo
= Bim, Z/ Uy > x,t; > y)bu(ts)dolts — y)dSa(ts — y)dSi(t;)

= mlmZZqﬁl )dSi(ts) D da(ts — y)dSa(ts — y).

{ts>y>a}
For simplicity, suppose y lies in range t;_; <y < t3, where ¢ is the smallest time among
t; € {ti,ta,...,tp} with ¢,y < y < t;. Then, the region of integration {0 : t; > y}
of §1(y) is equivalent to the set {t;,t;411,t542, - ,tn}. By transforming a variable to
y' = t; — y, the region of integration {xr < y < t;} is transformed into the new region

{0 <y <ty —a}, thus

P (z) = mlmzzqsl a5 (ts /{ L BSAY)
<y <ty—z

v

= m1m22¢1 )dSi(ts) S (0 <t < b5 — 2)da(t)dSa(t)  (2.15)

=1

Note that sup, |t; — t;—1| — 0 as h — oo, so that pv,(z) — pv,(z).

2.5.3 Impact of censored data

In this section, we consider how general theory of the inference for the difference in median
survival times based on order statistics from complete data can be applied to censored
data. For censored data, median survival time can not be observed based on (2.9) typically.
One of the definitions which is frequently used for the estimation of median survival time,
inf{t : §j(t) < 0.5}, is not equal to (2.9) exactly in complete data. Similar definition to
(2.2) has also the same problem. So, we define the observed (estimated) median survival
time for censored data in the sample j as follows, so that it can be reduced to (2.9) in

complete data

- . m g
i, —{ Ui g <05, (2.16)

17\ Ui+ U - L) 05— /Gy - §(Ly), 8> 05,

where :S’\;“ = {§j(Lj) + §j(Uj)}/2, and L; (U;) is the largest (smallest) observed death
time with S;(¢) > 0.5 (S;(t) < 0.5) in the sample j, j = 1,2.
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Let g1(y) be the density function for the difference in median survival times, y = M, —
Z/\J\Z, in censored data. For censored data, note that the distribution of ]\//TJ is asymptotically
equivalent to the normal distribution with mean M and variance Vaur(:S’\j(Ma‘))/fo(Ma‘)2
under Hy when Sy(t) is twice differentiable (Wang and Hettmansperger, 1990). Thus,
based on the similar inference drawing (2.14), g(y) is asymptotically equivalent to the

following normal density function
(200 (1, 19) V2 exp {—y2 2V (ny, m)} . (2.17)
In particular, the form of variance function \70*(711, ns) is given by
Vi (n1,m5) = {Var(Si (M) + Var(S,(M;))}/ fo(M5)?,

where the incompleteness due to censoring from Vi (ny,n2) in complete data is consid-
ered. This result yields that the quantity Z/W\l — Z/W\Z is orthogonally decomposed into
My — My & Zons approximately, and the normal univariate Z..,s has mean zero and vari-
ance V' (ny,ns) — Vi (nq,ns). To consider this result from a viewpoint of sample size,
suppose (n},nh) are sample sizes of each sample in complete data which are associated
with original sample sizes (ni,ns) in censored data. Sample sizes (n},n}) satisfies the
following relationship to have the same quantity of test statistic based on (nq, ns)

Vi (n1,ng) _ Var(Si(Mg)) + Var(Sy(M;))

= =1.

Although there are a few methods to resolve above equation, we assume that current ratio

of sizes vo1 = ny/ny is fixed, thus
n = (14 1/721)/4{Var(Si(My)) + Var(So(M;))}, nh = yaun]. (2.18)

As aresult, we need to compute (2.13) or (2.15) by substituting (n}, nj) for original sample
sizes (n1, no) when we consider using pv; () for testing problem of Hy under censored data.
While there are some considerable estimates to substitute the quantity Var(:S'\l(Ma‘ ) +
Var(Sy(M{)) in (2.18), we use an estimate Var(log S;(M;))/4 + Var(log S»(Ms)) /4. Here,
we use the Nelson-Aalen estimate foﬁj dN;(t)/Y;(t)(V;(t) — N(t)) at a time-point ]\/4\]
for Var(log S;(M;)), j = 1,2. An approximation Var(5;(t)) ~ S;(t)2Var(log S;(1)) in the

derivation of Greenwood formula and S;(M;) = 1/2 are behind the use of such estimate.
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2.5.4 Testing problem and the estimate of pv;(x)

We discuss the testing problem of Hy under situation where n; and ny are not sufficiently
large. That is, we go over the use of pv;(z) or pv,(x) as an alternative since we can’t use
the asymptotic result (2.14) immediately. However, pv;(z) has to be estimated by using
some methods because S; and Sy are unknown in actual survival data. An issue is how to
construct better estimate of pvi(z). One of the solutions is the permutation procedure,
but it causes serious computational load. Another procedure is to estimate puv;(x) by
substituting the Kaplan-Meier estimates for S; and S,, as well as V-statistic. Hence,
we discuss the property of estimate and the associated problems when the Kaplan-Meier
estimate is substituted into pv,(z) under Hy. Because of S; = Sy under Hy, we use the
following weighted Kaplan-Meier estimate as the estimate of the true survival function

So(t) which is used in the testing procedure by Brookmeyer and Crowley (1982b)
So(t) = n~{n1 Sy (t) + n2Ss(t)}.

And, we define pv, (x) which use Sy as a substitute for S; and S, in (2.15). Then, pv,(x)
is given by

pU1 = mlmz Zd)l dS() )Z ]l(O S tl S tf, - $)$2(tl_)d§0(tl) (IL‘ 2 0)

=1
Here, {t1,ts,- -+ ,t4} are the distinct observed death times (h = d) in the pooled sample,

and &S\j(t—) is given by

0i(t-) = Sot-)™~H1 = So(t-)}™ 7 (j=1,2)

where £_ is a time just prior to ¢.
First we state the outline of asymptotic results for pv,(z). pv,(x) can be expressed

using the terms used in the counting process:

o) B [ 0800 { [ B100500 20} £

where dSy(t) = Sp(t_)dN(t)/Y(t), N'(t) = 37, N;(t) and J(t) = z§ Vit ). The
Doob-Meyer decomposition of A (¢) under Hy can be written as N (t) —l—fo s)dNo(s
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(Fleming and Harrington, 1991; Andersen et.al, 1993). Here, Ay(t) is the cumulative haz-
ard function —log(Sp(t)), and M(t) = Y7 | M;(t) is Z;-martingale process. Filtration
%, is the history just before ¢

‘gz.tzo—{'/\/}i(s)7yji(8+)7 0<s<ti=1,--- T, J= 1727}

where ¢, is the value just after ¢. pv,(z) can be expressed by applying the Doob-Meyer

decomposition to N (t) as follows:

Ui () = Bpym, [ Mz(v - x)d//\\/a (v) + Boym, [, Ay (v — a:)dﬂl(v)
By [T Mo(v — 2)d Ay (v) + Buyms [7 As(v — 2)d A (v).  (2.19)

Here, since aj (t,)gg(t,) is .#;-predictable, therefore, based on the martingale transform,
M;(v) = IN i (t_)So(t_)dM(t)/V(t) is .F,-martingale process, and A;(v) = IN i (t_)Sy
(t_)dAo(t) is .Z,-predictable process, j = 1,2. Furthermore, 7, = sup{t : J(t) > 0}
indicates the maximum observation, and 7 = sup{t : E[);;(t)] = Pr(t < Tj;) > 0} is limit
of 7,. For the later discussions, let pv,;(z) be jth term of four decomposed terms in (2.19)
(j =1,--+,4). Here, because of Sy(t) = 0 for 7, < t, pv,,(x) provides the same value
even if the upper limit of integration 7 is replaced by 7, or co. So, we set 7 beforehand
for the upper limit of integral range in (2.19). However, we set 7, for the upper limit
of integral range in remaining three terms because it is necessary to consider it in the
calculation of the predictable variation process.

First, we provide one of the asymptotic properties of pv,(x) as follows.

Theorem 1. For two-sample with sizes (ni,n2), let max(]/\/.f\l,]\/iz) < T, when Hy is
true. Also, assume that Sy(t) is twice differentiable in the neighborhood (3 t) of M,
and lim,, ,,, Y(7_) —, co. Let min(n;,ny) — oo, then [pv;(z) — pv,(x)] =, 0 on x €
[0,7] (on the scale of z = O(y/n/niny) uniformly, where ”—,” represents convergence in
probability.

Proof of Theorem 1. To clarify the dependences of both pv, (z) and pv,(z) to my, ma,
Sp and Sy, let pv, (z) = pvl(x)(mf’gén)). Using the same notation, pv,(z) = pv, (z)m>%),
Although we can make similar discussions given in Appendix A.1 in order to achieve our

intended result, we show that each of two terms in right side given below convergence to
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zero in probability uniformly on x:

j m;,5{™ * m; * m; m;
—pvy ()" | < Jpu, ()50 —poi () 79500 | [ () 750 —pu, () 750

P (@)™ = By, [7{ o 61(0)So(0)a()So(0)dAo(t) } dAo(0) (< o ().

We use pv}(x) as simplified notation of pvt(z)(™50) as well as pv, (z) and pv, (z).

First, we assume that m; and my are fixed, that is, By, n, and the power m; in &5\]()
are fixed respectively, as a matter of form. Then, we show puv, (x)(mjjé")) —p pui(z)ma»%)
as n — 0o. The consistency of Kaplan-Meier estimate §0 can be obtained by a condition
lim, o V(1) —, oo (Fleming and Harrington, 1991, Theorem 3.4.2). Thus, based on
that ¢;(v)So(v)di(1)So(v) —p ¢;(v)Se(v)y(v)So(v) uniformly on v,t € [0,7] (j,1 = 1,2)
by the Continuous Mapping Theorem, and the application of Lenglart’s Inequality (Ander-
sen and Gill, 1982, Theorem I.1) to martingale components in pv,;(x) (j = 1,2, 3), we can
show pv, (z) —, pvi(x) uniformly on x € [0, 7]. Hlustrating the application here, the pre-
dictive variation process of M;(v) in (2.19) is (M,)(v) = I i (t_)280(t_)2d Ao (1) /D (1),
SO n(/@l})(T) —p O(1)B(2m; —1,2m;—1) as n — co. And, we obtain sup,c .| |Mv](v)| <
O,(1){B(2m; — 1,2m; — 1) /n}'/? by Lenglart’s Inequality. Through these discussions, we
get that pv,;(z) converges to zero in probability, j = 1,2, 3.

Next, we discuss [pvt(z)™i>%) — py, (2)m%)| = 0 as my, my — co well as n. This
can be shown by similar discussions in Appendix A.1, where Sy(¢) is twice differentiable.
However, %pvl(x) must be point density function when on the original scale of # when
my,my — oo. We avoid this by scale transform to x :C\/W, then we apply
the results of Laplace approximation (Appendix A.l). Here, since it is ensured that
7 exceeds the true median asymptotically by a condition max(Z\/I\l, ]/\/[\2) < 1, < 7, the
results of Laplace approximation which implies that pvi(x) is dominated by the integrand
around median, concludes that pvi(z) is identical with puv,(z) asymptotically. That is,
we obtain [pvi(z) — pv,(v)| —, 0 uniformly on x = O(y/n/niny). Finally, we achieve
our intended result by integrating these two results with Fleming and Harrington(1991,
p.220) or Sugimoto and Goto(2003, Appendix A.3). O

From the relationship pvi(x) < pv,(x), it seems to have a problem of integration

regions in using pv,(x). For example, it is commonly occurred that 7, and 7 are not
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close enough to inf{t : Sy(t) = 0}, especially, when any fixed censoring time is hap-
pened. However, as well as Theorem 1., such problem can be negligible because pv, () is
dominated by the integrand value around median when we have adequate sample sizes.
Further investigations can be done based on simulation study, but we consider that trend
what pv,(z) underestimates pv,(z) due to integration region for small samples is almost
negligible practically.

Now, we investigate the relationship between E[pv, (z)] and pvi(x) as one of properties
in the finite sample. pvy, (x) and pv,,(x) holds martingale property for {.%#;,t > 0} because
each of integrands MQ('U — )0 Ay(v — ) is Z,-predictable, so that their expectations
are zero. Meanwhile, although the third term does not hold martingale property in the
finite sample, it can be shown that pv,;(z) —, 0 by Theorem 1. and E[pv,;(z)] = o(n™")
by discussions in Appendix A.2. Therefore, expectation of pv,(z) can be written as

E[pv, (z)] = E[pvy,(2)] + o(n™?), and
B[, (5)) = By / / 0-)Bu(0-)Ba(t)Sa(t-)| dNa()dAo0).  (2:20)

In the discussion about the relationship between E[pv,,(z)] and pv?(z), we note that So(t)

has positive bias with the following range:

0< E[§0(t)] — So(t) < (1 — Sy(t)) exp (—E[y(t)]) (2.21)

(Andersen et al., 1993, p.259). For instance, for any functions t,(t) and ¢;(v), we have

E | 61(0) S0 (0)$2(£) S0 (1) — é1(v)So(v) s (1) So(?)

= 9 (1) (B[S (1)] = So(1)) + ¥1(v) (E[So(v)] = So(v))  (2.22)
by Taylor expansion of ¢;(v)S(v)ba(£)So(t) around the true value and the mean value
theorem. Here, 1, (s) tends to have negative values for region {s < My}, and positive
values for region { Mg < s} (u,s =v,t). By (2.21), we know that bias of E[So(s)] — So(s)
in region { M < s}, in general, is bigger than one in region {s < M;} (s = v,t). So, bias
written by (2.22) has more regions of positive value than that of negative value on (¢,v),
so that E[pv,,(x)] — pvi(z) has positive trend as a result of integration. Summarizing
above discussions, E[pv,(z)] — pv,(x) is positive-biased slightly for small samples, and
which implies that the procedure using pv,(x) provides a conservative result practically

for testing Hy.
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2.5.5 A few considerations for the computational problem

The calculation of proposed median test in two samples can be summarized as below.
With respect to the definitional identity (2.16) of ]\//.Tj, observed difference in medians z
is defined by = = M; — M,. The value of m; in pu,(|z|) is m; = (n; + 1)/2 for complete
data, however, we set m; = (nj + 1)/2 with (n/,n}) which can be found by (2.18) for
censored data (5 = 1,2). And, let pu,(|x|) be the one defined by the replacement of
information between sample 1 and 2 in pv,(|z|). Under these settings, the two-sided
significance probability is pv, (|z|) + pvy(|z|) for testing problem of Hy. Hence, we define
the two-sided significance probability as pv(z) = pv,(|x]) + pvy(|z|).

One problem under the calculation process is that the value of pv,(0) + pv,(0+) does
not always become 1.0 exactly since pv, () is the discrete approximation of pv;(z). Also,
another problem may be caused by the value of B,, ,,, in large sample sizes. When n;
and m; (j = 1,2) are large, By, m, has explosively large value while B, ! pv;(|z|) has
extremely small value. Here, as a result of loss of significant digits caused by both, the
value of pu, (0) +pv,(0+) calculated with By, ,,, is away from 1.0 further. Under situation
where n < 200 for complete data, we observed that pv,(0) +pv,(0+) is nearly equal to 1.0
even the discrete approximation so far. However, we also observed that its discrepancy
from 1.0 becomes considerably serious as n becomes larger than 200. But, to overcome
such computational problem, we can avoid such process as the computation of pu;(|z|)
based on the direct calculation of B, m,. That is, we assume pv,(0) + pv,(0+) = 1 on
a constant basis, and employ the procedure which calculate the value of pv(x) with the

following form
BimsPU(%)/{ By, (P01 (0) + PU5(0+)) } (2.23)

where both denominator and the numerator have been divided by B,,,,, preliminarily.
Computational method by (2.23) has a merit not only to obtain the stable pv(z)

numerically but also to reduce the positive bias slightly inherent in E[pv(x)]. Further

investigations for the property of pv(x) by (2.23) in the finite sample are referred in the

simulation study.
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2.5.6 Testing problem for Hy'

Now, we discuss testing problem for Hf'. Although, our main concern may be the testing
problem for Hy, it is valuable to resolve testing problem for Hj*. To estimate pv, (x) under
H{* where two survival distributions have the common median survival time Mg (= M| =
M3), we propose to use the constrained Kaplan-Meier estimate §]°(t) ( = 1,2) given by
(2.7). When the empirical likelihood ratio test is applied, §Jc(t) (7 = 1,2) are constructed
based on the Lagrangian Multiplier method. And, the estimate ]/\/[\5‘ having the maximum
profile likelihood is also found there. Thus, we obtain pv;(z) under HJ® by substituting
Se(t) (j =1,2) into pv, (x).
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3. Simulation Study

Two simulation studies are carried out to investigate the performance of existing median
tests. First simulation study aims to compare the standard median test developed by
Brookmeyer and Crowley (1982b) to proposed median test based on the property of order
statistics, with respect to the shape of null distribution, empirical type I error and power
under a simple simulation model. It is not easy to carry out the simulation study for many
scenarios of alternative hypothesis, therefore we take a typical simulation model first for
which the discrepancy between two survival distributions becomes large over time. Second
simulation study aims to investigate the performance with respect to the shape of null
distribution, empirical type I error and power for each of four median tests introduced
in Section 2 under shift model. Unlike first simulation model, we focus on only shift
alternative here since the shift model has been frequently used in the simulation for the
nonparametric approach. Another reason is that median test is locally powerful against
location shifts with censored data (Brookmeyer and Crowley, 1982b). In this simulation

study based on the shift model, several underlying survival distributions are assumed.

3.1 Simulation study 1

Simulation Model: Assume that distribution function 1 — Sy (¢) is uniform on [0, 500].
And, assume that survival function Sy() is also a linear function with the same slope as
S1(t) till a branch time-point £(> ¢) and different slope after £&. Thus, survival functions
for each sample are defined as

Lt _{ si), t<¢
Silt) =1- 555 S2(t)_{b2+b1(t_€)a t>¢

where by, by and £ are
by =a/(d —500a), by =0.54a, &=250—500a (a>0)
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Figure 2: Graphical illustration of simulation

for a constant a (equally, survival probability 0.5+ a at a branch time-point &) and a true
difference in median survival times §(= M; — M) in Figure 2.

Censoring times Cj;, © = 1,--+ ,n, j = 1, 2 are generated from the uniform distribution
on [0, tymax|. In the simulation, four levels of the percentage of censoring, namely, 0%, 10%,
30% and 50% are considered respectively. The percentage of censoring is adjusted by
moving t,.x SO that the targeted percentage of censoring is met. We set equal sample size

for each of two samples, namely, n; = ny =15, 25, 50 and 100 are considered respectively.

3.1.1 Comparison of null distributions

In section 2.5.4, we discussed the approximate property of pv,(|z|) under Hy and some
trends of E[pv,(|z|)] in the finite sample, and then we provided a practical calculation
method for both sided significance probability function pv(z) in section 2.5.5. Here, we
investigate the behavior of the null distribution of pv(x) based on the simulation study
in order to complement those discussions and to check the performance of pv(x) in the
finite sample.

For simulated data under Hy, we find p-values obtained by both pv(x) and T} which
is the modified test statistic of testing procedure by Brookmeyer and Crowley (1982b). As
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Figure 3 to 6: Histogram of 10,000 p-values from complete data (vertical axis: p-value,
horizontal axis: density)

previously mentioned, we set four levels for sample size n and the percentage of censoring,
respectively. Each simulation consists of 10,000 iterations.

In Figure 3 to 6, we provide four histograms of 10,000 p-values obtained under the
situation where the percentage of censoring is 0% and the sample size n = 30 and 100.
Figure 3 and 5 show histograms of 10,000 p-values based on T}, and Figure 4 and 6
show ones based on pv(z). We can consider that distributions of p-values obtained by

Lo have larger variability than that of pv(z). Especially, the density of T} at around
0.8 is extremely large when n = 30. This reflects that, when n = 30 for complete data,
two of the difference |5/21-in(]/\/[\0) —0.5], j = 1.2 are difficult to be zero simultaneously due
to the composition of M, and 5'\]1‘“(]\/4\0) In other words, T§. does not still accomplish
the continuity of asymptotic distribution. More important result in practice is that the

proportion of p-values less than 0.05 for T} is large while it is slightly small for pv(x)
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Figure 7 to 8: Empirical significance level based on 10,000 p-values for the nominal
significance level of 0.05

on average. These biases are reduced in proportion to sample size n, for example, when
n = 100 and 200, and their proportions closed to the nominal significance level of 0.05. We
presented these results for complete data in Figure 3 to 6 in order to figure out the entire
picture of the null distribution under the situation where no effect caused by censoring is
existed. Other results based on the censored data also show the similar trends, namely,
the distribution of p-values by T} has larger variability than that of pv(x), the proportion
of p-values less than 0.05 for T} is slightly large while it is slightly small for po(z). It
is confirmed that the null distribution of pv(x) is almost uniform except two-sided tails
and it yields the conservativeness of testing, so we conclude that the proposed testing
procedure and the associated calculation method has appropriate performance.

Next, we consider the proportion of p-values less than 0.05. We provide bar graphs of
the empirical type I error (empirical ) against the nominal significance level of 0.05 which
is defined as the number of p-values less than 0.05 of 10,000 p-values, for all combinations
between sample size n and the proportion of censoring (16 cases in total). Figure 7 and 8
show testing results based on T} and pu(z) respectively (See also Table 1). Median test

based on T} shows the empirical o’s are greater than 0.05 in all cases, and a tendency
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Table 1: Empirical type I error

Size 200 Size 100 Size 50 Size 30
%Cens. | B&C  Proposed | B&C  Proposed | B&C  Proposed | B&C  Proposed
0% 0.0538 0.0420 0.0540 0.0405 0.0559 0.0336 0.0624 0.0375
10% | 0.0535 0.0397 0.0564 0.0355 0.0616 0.0340 0.0690 0.0290
30% | 0.0513 0.0357 0.0555 0.0322 0.0614 0.0303 0.0772 0.0292
50% | 0.0511 0.0318 0.0528 0.0267 0.0691 0.0243 0.1177 0.0372

closing to the nominal significance level 0.05 with increasing n. And, another median test
based on pu(x) shows the empirical o’s are less than 0.05 in all cases, and a tendency
closing to 0.05 with increasing n. We notice that the empirical o of median test based on
T}, exceeded 0.05 extremely as increasing the percentage of censoring in the small sample.
Especially, a case of the percentage of censoring of 50% suggests a serious problem due to
the empirical o beyond 0.1. For median test based on pv(z), only a case of n = 30 shows
a tendency that the empirical o is somewhat proportional to the percentage of censoring
(with reasons considered in section 2.5.4). In other cases, the conservativeness of the test
was enhanced by the way dealing with censoring which is proposed in section 2.5.3, so

that the empirical « did not exceed the nominal significance level of 0.05.

3.1.2 Comparison of powers

According to the simulation model described previously, we compare the power of median
tests based on T} and po(z). For the alternative family of Hy, the difference of survival
functions between sample 1 and 2 arise early in proportion to the value of a. And, the
range for the difference in median survival times 0 can be determined depending on that
value. In this experiment, we set a = 0.2 so that ¢ can range from 0 to 100. Here, we also
set max(d)= 90 from a practical point view. The reason is that the survival function must
drop vertically at a time-point with survival probability of 0.5+ a when § = 100. For the
purpose of comparing the power and achieving the empirical significance level 0.05 for the
test, we used the critical value obtained empirically by simulation with 6 = 0 as the rule
of testing, based on the investigations for the null distribution in previous section.

We provide two power curves in cases of n = 50 and n = 100 in Figure 9 and 10,

respectively (See also Table 2). In addition, Figure 9 and 10 show power curves for
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Figure 9-10: Power curves of T}-based test (dashed) and puv(x)-based test (solid)
for Y%censoring with 4 levels (horizontal axis: §, vertical axis: Power)

ho-based test (dashed line: B&C test) and pv(z)-based test (solid line: proposed test)
simultaneously by the level of percentage of censoring (0%, 10%, 30% and 50%).

From Figure 9 and 10, we found that pv(z)-based test has higher power than T%-based
test consistently. With increase of the percentage of censoring, the power becomes smaller
than that of complete data for each of testing procedures and sample sizes. However, the
power of pu(z)-based test under 50% censoring is significantly higher than that of T}-
based test under no censoring. Furthermore, even if we use the nominal critical value
0.05 without such condition that the empirical a has to be 0.05, pv(x)-based test reached
power of 0.8 with smaller 6 compared to T}~-based test. As stated above, the proposed
test is found to be superior to the test by Brookmeyer and Crowley (1982b) from point
view of power (at least in this simulation model).

For the information, results for n = 30 are omitted since both median tests did not
meet a power of 0.8 even complete data. Similar results were seen for n = 200 with ones
for n = 100 while the difference in powers for both testing procedures was slightly reduced
overall. (namely, pv(x)-based test under 50% censoring had higher power than T} -based

test under no censoring for all 0’s greater than 40)
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Table 2: Power comparisons

Size 200 Size 100 Size 50 Size 30
%Cens. | a | 6 | B&C  Proposed | B&C  Proposed | B&C  Proposed | B&C  Proposed
0% 0.2 0 | 0.0496 0.0492 0.0502 0.0505 0.0513 0.0504 0.0498 0.0505
10 | 0.0598 0.0570 0.0551 0.0592 0.0528 0.0553 0.0534 0.0518
20 | 0.0961 0.1040 0.0742 0.0846 0.0616 0.0689 0.0591 0.0633
30 | 0.1673 0.2020 0.1122 0.1374 0.0770 0.1004 0.0694 0.0858
40 | 0.2852 0.3621 0.1707 0.2271 0.1072 0.1553 0.0884 0.1237
50 | 0.4541 0.5786 0.2635 0.3769 0.1532 0.2503 0.1209 0.1941
60 | 0.6514 0.7981 0.3930 0.5671 0.2227 0.3983 0.1650 0.2910
70 | 0.8228 0.9338 0.5521 0.7617 0.3176 0.5734 0.2254 0.4202
80 | 0.9342 0.9889 0.7081 0.9079 0.4341 0.7496 0.3085 0.5747
90 | 0.9799 0.9985 0.8392 0.9786 0.5703 0.8824 0.4089 0.7086
10% | 0.2| 0 | 0.0502 0.0505 0.0509 0.0496 0.0505 0.0492 0.0502 0.0493
10 | 0.0613 0.0631 0.0569 0.0554 0.0521 0.0519 0.0523 0.0500
20 | 0.0974 0.1054 0.0724 0.0806 0.0588 0.0626 0.0572 0.0590
30 | 0.1725 0.1965 0.1048 0.1335 0.0764 0.0923 0.0686 0.0768
40 | 0.2839 0.3512 0.1672 0.2215 0.1071 0.1435 0.0890 0.1063
50 | 0.4550 0.5654 0.2603 0.3709 0.1584 0.2337 0.1213 0.1713
60 | 0.6443 0.7841 0.3859 0.5543 0.2256 0.3725 0.1668 0.2580
70 | 0.8174 0.9301 0.5406 0.7568 0.3223 0.5444 0.2312 0.3695
80 | 0.9299 0.9869 0.6995 0.9050 0.4413 0.7200 0.3175 0.5004
90 | 0.9808 0.9990 0.8318 0.9757 0.5749 0.8623 0.4196 0.6043
30% 0.2 0 [0.0510 0.0485 0.0501 0.0499 0.0503 0.0502 0.0497 0.0505
10 | 0.0587 0.0583 0.0550 0.0554 0.0522 0.0517 0.0514 0.0529
20 | 0.0874 0.0918 0.0697 0.0772 0.0590 0.0622 0.0565 0.0594
30 | 0.1504 0.1725 0.0966 0.1216 0.0750 0.0886 0.0632 0.0730
40 | 0.2470 0.3105 0.1475 0.2043 0.1002 0.1339 0.0772  0.0967
50 | 0.3945 0.5062 0.2333 0.3347 0.1408 0.2129 0.1014 0.1398
60 | 0.5779 0.7274 0.3489 0.5139 0.2025 0.3377 0.1385 0.1970
70 | 0.7647 0.8999 0.4961 0.7188 0.2905 0.5046 0.1911 0.2653
80 | 0.8990 0.9781 0.6542 0.8771 0.4053 0.6838 0.2644 0.3289
90 | 0.9702 0.9980 0.7962 0.9654 0.5398 0.8350 0.3674 0.3520
50% 0.2 0 | 0.0498 0.0491 0.0502 0.0493 0.0505 0.0497 0.0510 0.0501
10 | 0.0581 0.0590 0.0528 0.0546 0.0503 0.0513 0.0501 0.0494
20 | 0.0807 0.0912 0.0653 0.0725 0.0516 0.0583 0.0470 0.0513
30 | 0.1301 0.1614 0.0867 0.1081 0.0570 0.0750 0.0491 0.0556
40 | 0.2152 0.2891 0.1284 0.1862 0.0735 0.1104 0.0518 0.0632
50 | 0.3566 0.4762 0.2010 0.3109 0.1040 0.1675 0.0597 0.0780
60 | 0.5287 0.6938 0.3082 0.4868 0.1532 0.2684 0.0779 0.0980
70 | 0.7150 0.8772 0.4509 0.6828 0.2250 0.4157 0.1093 0.1215
80 | 0.8693 0.9693 0.6104 0.8532 0.3348 0.5804 0.1615 0.1814
90 | 0.9554 0.9970 0.7621 0.9572 0.4684 0.7378 0.2450 0.2678
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Survival probability

Figure 11: Graphical illustration of modified simulation

3.1.3 Power under a hypothesis of equal medians

One may be interested in powers of both testing procedures under a hypothesis { M} =
M3 and Si(t) # Ss(t), It}. To achieve this, we modified simulation model slightly.
Assume that distribution function 1 — S;(¢) is uniform on [0,500], and S(¢) is linear
function with two branch time-points (&, 0.54+a) and (250, 0.5) (See Figure 11). Therefore,
two survival distributions cross at the common median survival time £ = 250. Thus,
survival functions for each sample are written by

1 —(a—0.5)t/100, t <&
So(t) = cit + o, & <t<05

c3t + ¢y, t > 0.5,
where ¢, = —a/150, ¢ = 0.5 + 5a/3, ¢ = —0.5/(250 — d) and ¢4 = 0.5 — 250c3. Note
that the slope of survival function after the common median in sample 2 is determined
by the location of & = 500 — d. In this simulation, we set a = 0.25, & = 100 and
d € {0,50,100, 150,200} respectively. Also, we carry out the simulation for n = 30 and
n = 100, respectively.

Power curves for each of sample size are provided in Figure 12 and 13. From the

simulation results, we found that the power for each of median tests was increased as

larger discrepancy of Sy(t) # Si(t) even if M = Mj. Of course, it is certain that
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powers are rather low since this simulation was carried out under equal medians. As a
characteristics of T} -based test, the power was increased with increasing percentage of
censoring. Similar trend has already been discussed in Figure 7 presenting bar graph of
empirical type I error for the nominal significance level of 0.05 under Hy. And, it was
suggested that the sign test would not be sensitive to the discrepancy of two survival
distributions after median survival time. Meanwhile, as characteristics of puv(x)-based
test, the power was decreased with increasing percentage of censoring. However, it was
also suggested to have larger power with increased n. Similar trend is discussed in Figure
8. Comparing to the power with T}-based test, although pv(x)-based test has smaller
power than that of T}-based test when n = 30, the former has larger power for large d

when n = 100.

Table 3: Power comparisons under H!
Size 30 Size 100
%Cens. | d | B&C  Proposed | B&C  Proposed

0% 0 |0.0633 0.0395 0.0554 0.0428
50 | 0.0640 0.0417 0.0548 0.0459
100 | 0.0665 0.0532 0.0560 0.0560
150 | 0.0710 0.0767 0.0631 0.0760
200 | 0.0825 0.1241 0.0774 0.1269
10% 0 | 0.0700 0.0319 0.0573 0.0393
50 | 0.0716 0.0405 0.0583 0.0438
100 | 0.0747 0.0508 0.0627 0.0526
150 | 0.0810 0.0736 0.0682 0.0732
200 | 0.0936 0.1240 0.0816 0.1193
30% 0 10.0783 0.0300 0.0532 0.0363
50 | 0.0781 0.0347 0.0550 0.0401
100 | 0.0786 0.0473 0.0582 0.0483
150 | 0.0839 0.0593 0.0650 0.0709
200 | 0.0963 0.0804 0.0759 0.1180
50% 0 |0.1175 0.0379 0.0535 0.0285
50 | 0.1141 0.0380 0.0542 0.0329
100 | 0.1122 0.0417 0.0570 0.0428
150 | 0.1085 0.0515 0.0615 0.0650
200 | 0.1091 0.0679 0.0722 0.1123
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Figure 12-13: Power curves of T}-based test (dashed) and pv(z)-based test (solid)
for %censoring with 4 levels (horizontal axis: ¢, vertical axis: Power)

3.2 Simulation study 2

In section 3.1, a simulation study was carried out to investigate the performances for T}-
based test and pv(z)-based test. In this section, we carry out comprehensive simulation
study to investigate the performances with respect to the null distribution, empirical type
I error and power for each of four median tests introduced in Section 2. In order to carry
out this simulation study, we utilized several underlying survival distributions given in
Table 4.

In the simulation, four levels of the percentage of censoring, namely, 0%, 10%, 30%
and 50% are considered respectively. The percentage of censoring is adjusted by the value

of scale parameter in assumed exponential distribution as the censoring distribution. We

Table 4: Assumed underlying survival distributions in the simulation
Survival distribution | p.d.f.
Uniform fit)=:1 (a<t<bh)

b—a
Exponential () f(t;A) = Nexp(—At)
Weibull(A, p) ft A, p) = Ap(At)?~* exp{—(At)"}
Gamma(r, \) f(t; 5, \) = W
Log-normal(u, %) | f(t1,0%) = = o exp{—gz(logt — )"}
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set equal sample size for each of two samples, that is, (n; = ny =)15 and 50 per sample
are considered respectively.

With respect to the examination of the null distribution and empirical type I error
for each of median tests, only Exponential(A = 1) and Log-normal(y = 0,0 = 1) were
used. With respect to the examination of the power, the following shift alternative was

considered, namely,

H, : Si(t) = St +0).

As a result, 6 was adjusted for each of underlying survival distributions so that at least one
testing procedure could have adequate power when n = 100. That is, the same § was used
within the same underlying survival distribution regardless of the percentage of censoring
and sample size. For all simulation we utilized 10,000 iterations except bootstrap median
test. For bootstrap median test only, we utilized 1,000 iterations with B = 1,000 per

iteration.

3.2.1 Null distribution for each of median tests

In order to investigate the null distributions of T}q, TrLr, Dhoor and po(z), survival data
was generated from Exponential(1) and Log-normal(0,1) under Hy.

We provide four histograms of p-values obtained under the situation (only for Expo-
nential(1)) where the percentage of censoring is 0% and the sample size n = 30 and 100
in Figure 14 to 21. Histograms of 10,000 p-values based on T} are given in Figure 14
and 18, ones based on Txrr in Figure 15 and 19, ones based on Py in Figure 16 and 20,
and ones based on pv(x) in Figure 17 and 21. With respect to null distributions of T},
they show the similar trends as discussed in Simulation 1. That is, the density of T}
at around 0.8 is large when n = 30. As discussed in Simulation 1, we consider that T}
does not still accomplish the continuity of asymptotic distribution. Also, the proportion
of p-values less than 0.05 for T} is large compared to Dy and po(z) on average. With
respect to null distributions of Tgpg, it is suggested that the null distribution of Tgrr is
not continuous, especially when n = 30. It is also suggested that null distribution of Tgpr
tends to be continuous as the sample size increased. The reason why the density of Tgrr

at around 1.0 is relatively large, is that Tx g provides p-value of 1.0 when two observed
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median survival times are equal by chance. Since the ratio between unconstrained and
constrained maximum log likelihoods is zero, therefore Ty r = 0. For Pyoe and po(x), the
shape of null distributions are very similar. That is, their null distributions are almost
uniform except both tails.

Based on these discussions, it is confirmed that the null distributions of Dy, and
pu(x) yields the conservativeness of testing. On the other hand, Ty g and T} would not
yield the conservativeness, especially for small samples. In a sense, T g may yield the
conservativeness of testing, however there is room for further research into the shape of
its null distribution.

Next, we discuss the proportion of p-values less than 0.05. We provide bar graphs of
the empirical type I error (empirical o) against the nominal significance level of 0.05 which
is defined as the number of p-values less than 0.05 of 10,000 p-values, for all combinations
between sample size n and the percentage of censoring. Figure 22 to 25 shows the empirical
type I error for each of median tests (See also Table 5). The generalized sign test based
on T} shows the empirical o’s are greater than 0.05 in all cases, and a tendency closing
to the nominal significance level 0.05 with increasing n. Also, its empirical a exceeded
0.05 as increasing the percentage of censoring for small samples. The other median tests
based on Tgrr and pv(z) show the empirical o’s are less than 0.05 in all cases, and a
tendency closing to 0.05 with increasing n when n = 100. Bootstrap median test based
on Ppoot Shows the empirical a’s are less than 0.05 in all cases too, however, no consistent

tendency was seen.

3.2.2 Power for each of median tests

We utilized the standardized distributions for most of assumed underlying survival distri-
butions, namely, Uniform(a = 0,b = 1), Exponential(A = 1), Log-Normal(z = 0,0 = 1)
(log-transform of standard normal). In addition, Weibull(A = 1, p = 2) and Gamma(x =
2, A = 1) were utilized.

Table 6 shows a simple comparison under shifted alternative of 4. The value of § was
adjusted for each of underlying survival distributions so that at least one median test
could have adequate power when n = 100. For n = 100, each of median tests have almost

the same power except the empirical likelihood ratio test. The empirical likelihood ratio
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test has slightly smaller power compared to other median tests. We consider that this was
caused by its conservativeness as seen in the investigation of the empirical type I error.
The same tendency was also shown when n = 30. For n = 30, the generalized sign test
has higher power than other median tests. Considerable reasons are: vertical difference
|5/ﬂji“(]/\/[\0) — 0.5] is sensitive compared to the horizontal differences in medians defined by
several ways for small samples, and the characteristic of simulation design, namely, shift
model. Through the investigation of powers under shift model, bootstrap median test

and proposed median test tend to be powerful as increasing n.
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Figure 14: p-values (1}) when n =30
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Figure 16: p-values (Dpoot) When n = 30
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Figure 15: p-values (TgLg) when n = 30
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Figure 17: p-values (pv(z)) when n = 30

Figure 14 to 17: Histogram of p-values from complete data when n = 30
(vertical axis: density, horizontal axis: p-value)
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Figure 18: p-values (T}) when n = 100

Figure 20: p-values (Dpoo) When n = 100
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Figure 19: p-values (TgrLr) when n =100
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Figure 21: p-values (pv(z)) when n = 100

Figure 18 to 21: Histogram of p-values from complete data when n = 100

(vertical axis: density, horizontal axis: p-value)
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Figure 22 to 25: Empirical significance level based on 10,000 p-values for the nominal
significance level of 0.05
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Table 5: Empirical type I error for each of median tests

Sample size  %Cens. Type of Median test Exponential(1) Log-normal(0,1)
30 0% B&C 0.0623 0.0624
Empirical likelihood ratio test 0.0192 0.0171
Bootstrap median test 0.0170 0.0240
Proposed median test 0.0265 0.0234
10% B&C 0.0638 0.0646
Empirical likelihood ratio test 0.0128 0.0137
Bootstrap median test 0.0200 0.0200
Proposed median test 0.0195 0.0165
30% B&C 0.0666 0.0668
Empirical likelihood ratio test 0.0168 0.0175
Bootstrap median test 0.0180 0.0160
Proposed median test 0.0196 0.0170
50% B&C 0.0781 0.0782
Empirical likelihood ratio test 0.0316 0.0298
Bootstrap median test 0.0240 0.0390
Proposed median test 0.0276 0.0261
100 0% B&C 0.0545 0.0547
Empirical likelihood ratio test 0.0234 0.0232
Bootstrap median test 0.0330 0.0350
Proposed median test 0.0362 0.0338
10% B&C 0.0541 0.0538
Empirical likelihood ratio test 0.0208 0.0200
Bootstrap median test 0.0280 0.0350
Proposed median test 0.0314 0.0292
30% B&C 0.0544 0.0540
Empirical likelihood ratio test 0.0195 0.0187
Bootstrap median test 0.0370 0.0260
Proposed median test 0.0295 0.0275
50% B&C 0.0535 0.0546
Empirical likelihood ratio test 0.0178 0.0161
Bootstrap median test 0.0280 0.0200
Proposed median test 0.0240 0.0222
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Table 6: Powers under shift alternative

Underlying survival distributions

Sample Type of Uni  Exp(l) Wei(1,2) Gam(2,1) LN(0,1)
size %Cens. median test =05 =05 =04 d=1 §=0.7
30 0% B&C 0.4723 0.4179  0.5090 0.4777 0.4127
ELR 0.3783 0.2513  0.3804 0.3067 0.2148

Bootstrap 0.6020  0.3000  0.4200 0.3680 0.2830

Proposed 0.6306 0.3207  0.4364 0.3870 0.2692

10% B&C 0.4815 0.4106  0.5062 0.4636 0.4130

ELR 0.3524  0.2407  0.2987 0.2874 0.1884

Bootstrap 0.5610 0.2790  0.3700 0.3330 0.2220

Proposed 0.5466  0.2815  0.3872 0.3263 0.2034

30% B&C 0.4411 0.3906  0.4629 0.4547 0.3875

ELR 0.3112  0.1965  0.2436 0.2491 0.1325

Bootstrap 0.4350 0.2410  0.2950 0.3150 0.1770

Proposed 0.4078  0.2428  0.3261 0.3146 0.1529

50% B&C 0.3986  0.3603  0.4100 0.4065 0.3654

ELR 0.2857 0.1669  0.2055 0.1943 0.1183

Bootstrap 0.3500  0.1900  0.2450 0.2410 0.1890

Proposed 0.3255 0.2005  0.2556 0.2564 0.1418

100 0% B&C 0.8795 0.7956  0.9230 0.8848 0.8555
ELR 0.7886  0.7215  0.8545 0.7796 0.8064

Bootstrap 0.9050 0.7960  0.9310 0.8980 0.8650

Proposed 0.9141 0.8160  0.9354 0.9023 0.8533

10% B&C 0.8529 0.7870  0.9128 0.8613 0.8385

ELR 0.7492 0.7032  0.8279 0.7263 0.7528

Bootstrap 0.8770 0.7740  0.9070 0.8703 0.8220

Proposed 0.8791 0.7935  0.9183 0.8663 0.8056

30% B&C 0.8007 0.7532  0.8685 0.8532 0.7964

ELR 0.6608 0.6687  0.7513 0.7169 0.6733

Bootstrap 0.8070  0.7520  0.8740 0.8495 0.7660

Proposed 0.8311 0.7536  0.8711 0.8551 0.7457

50% B&C 0.7211 0.6716  0.8024 0.7972 0.7338

ELR 0.5466 0.5866  0.6375 0.6187 0.5769

Bootstrap 0.7380 0.6450  0.7750 0.7924 0.6580

Proposed 0.7620 0.6460  0.7922 0.7895 0.6294
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4. Case Studies and Numerical
Investigation

In this chapter, we carried out two case studies to investigate the behaviors for each of
four median tests, that is, generalized sign test, empirical likelihood ratio test, bootstrap
median test and proposed median test. As references, log-rank test (Cox-Mantel) and
Generalized Wilcoxon test (Modified Peto-Peto) were also applied as well. The reasons
why such rank tests were involved are to investigate how sensitive are such rank tests for
the difference of survival distributions compared to median tests and to give a caution to
interpret obtained result in particular case, such as crossing survival distributions.

First case was selected with the reason that survival data provides the standard two
survival distributions with no cross between them. Second case was selected with the

reason that two survival distributions cross at a time-point (beyond two medians).

4.1 Case 1: Survival data of patients with tongue can-
cer

Survival data was collected to investigate the effects of ploidy (aneuploid or diploid) on
the prognosis (survival time) of patients with cancers of the tongue (Sickle-Santanello et
al, 1988). Let sample 1 and 2 be the aneuploid tumors group with 52 patients and the
diploid tumors group with 28 patients, respectively. The number of censored observations
for each sample was 21 and 6 respectively.

Table 7 shows the results based on both testing procedures as well as ones based
on the log-rank test and the generalized Wilcoxon test as reference. The generalized
Wilcoxon test provided a smaller p-value than that of the log-rank test. This is because

relatively-large differences between two survival curves are seen for small ¢.
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Figure 26: Kaplan-Meier estimates ;(¢) (Aneuploid Tumors: solid line) and Sh(t)
(Diploid Tumors: dashed line), and weighted Kaplan-Meier estimate Sy(t) (dotted line)

Let ]/\4\0 be the estimated median survival time under Hy for which the linear interpo-

lation of §0(t) meets a survival probability of 0.5. The generalized sign test evaluates the

difference between an estimate of survival probability @’ji“(]/\/[\[)) ( =1 or 2) based on the

linear interpolation and 0.5. For this data, it was estimated that ]/\/[\0 = 72.2 (in week),

§1(]\/4\0) =0.569 and §2(]\/4\0) =0.362. Since |§§m(]\/4\0) —0.5] is greater than |§’f“(]\//70) —0.5],

the p-value from the test statistic Tpc based on S/’\{in(]\/io) is greater than one based on

@’21“(]/\/[\0) (p-value is 0.0816 for sample 1 while 0.0634 for sample 2). In practice, an issue is

which p-value should be used. To maintain their balance, we used the unified test statistic

T, which provides a p-value of 0.0692.

Table 7: p-values for each of testing procedures in tongue cancer data

Type of test: Procedure x?  p-value
Median test: Generalized sign test

Test statistic Tgc based on sample 1 | 3.032 0.0816

Test statistic Tgc based on sample 2 | 3.447 0.0634

Unified test statistic T} 3.302  0.0692
Median test: Empirical likelihood ratio test 2.048 0.1523
Median test: Bootstrap median test - 0.0900
Median test: Proposed test - 0.0722
Log-rank test: Cox-Mantel 2.790  0.0949
Generalized Wilcoxon test: | Modified Peto-Peto 3.306  0.0690

48




< |
«© ]
o
S n
1 c
S © | Sl
{8 ©
o
<1
a i i
= ]
=
P
=1 o
“ww /S T LT
N fmmmmeeeee |
o |
~ ok
° M,
o 7 \
T T 77 T T T
0 50 100 150 200

time to death (weeks)

Figure 27: Kaplan-Meier estimates §j (t) and the constraint Kaplan-Meier estimates :S’\;(t),
j = 1,2 (dotted line) for tongue cancer data

For the empirical likelihood ratio test, the unconstrained maximum log likelihood value
was log Ly (/):J(t)) = —205.0573. In order to estimate the common median under Hf', the
estimates of median defined by inf{¢ : §j (t) < 0.5} (j = 1,2) were used. Each of estimated
medians was Z/W\l = 42 and Z/\J\Q = 93, respectively. Among death times between 42 and
93, the constrained maximum log likelihood was obtained at 77, so the common median
under H{' was estimated as ]/\/[\5‘ = 77. Here, through the Newton-Raphson method, the
estimates of Lagrangian parameters at ]/\4\5‘ were a; = 6.91 and a, = 3.50 associated with
¢1 = 1 and ¢ = —1, respectively. As a result, the constrained maximum log likelihood
value was log LC(X;‘(t)) = —206.0816, and the empirical likelihood ratio test statistic
Trrr yields a p-value of 0.1523. Obtained p-value was the larger than that of any other
median tests. One of the reasons for this is that this test procedure is considered more
conservative compared to other median tests through simulation study 2. The behavior of
the constrained log likelihoods between ]\/4\1 and Z/\J\Q is illustrated in Figure 1. In addition,

the constrained Kaplan-Meier estimates with common median ]\/4\5‘ = 77 are given in

Figure 27.
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The bootstrap median test was applied with B = 1,000. For this testing procedure,
observed difference in medians to be used for the testing was 93 — 42 = 51. Out of 1,000
bootstrap samples, the number of bootstrap samples providing a difference in medians
greater than or equal to 51 were 90. Therefore, Py, was estimated as 0.0900.

For the proposed median test, estimated median survival times ]/\4\] (j = 1,2) defined
by (2.16) are 93 and 37.6, respectively. Based on these estimates, observed difference
in median survival times was 55.4 which yields a p-value of 0.0722, namely, pv(55.4) =
0.0722. Adjusted sample sizes due to the censoring were (n/,n}) ~ (27.1,50.3). The
value of pv(55.4) is slightly greater than that of T},. One of the reasons for this is
that the testing procedure based on pv(z) with no adjustment of « is conservative via
investigations of the null distributions based on the simulation study. Further discussions
on the Monte-Carlo method to adjust the critical value so that the empirical o can become

0.05 based on actual survival data are problems to be resolved in the future.

4.2 Case 2: Survival data of patients with gastric can-
cer

Survival data was observed for patients with locally unresectable gastric cancer in a
randomized clinical trial (Stablein and Koutrouvelis, 1985). Either of two treatments
(chemotherapy or chemotherapy plus radiotherapy) was assigned to them randomly. Let
sample 1 and 2 be the chemotherapy group with 45 patients and the combination therapy
(chemotherapy plus radiotherapy) group with 45 patients, respectively. The number of
censored observations for each sample was 2 and 6 respectively.

The Kaplan-Meier estimates Sy (£) (solid line) and Sy(t) (dashed line) for each sample,
and a weighted Kaplan-Meier estimate for them are provided in Figure 28. Table 8 shows
the testing results similar to Table 7 for the first case. From Figure 28, we can see that
the differences between Sy(t) and Sy(t) are large relatively in the beginning (in favor of
S, (t)), then both functions cross at a time-point and the advantage was reversed finally
(in favor of Sy(t)). Based on such data, the generalized Wilcoxon test gives a smaller
p-value while a p-value by log-rank test is considerably large, as indicated in Table 8.

As required information for the generalized sign test, M, is estimated as ]/\4\0 = 401
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Figure 28: Kaplan-Meier estimates 5, (¢) (Chemotherapy only: solid line) and Sy() (Com-
bination therapy: dashed line), and weighted Kaplan-Meier estimate Sy(t) (dotted line)

in days, and the estimates based on the linear interpolation of survival probability are
Slin(N,) =0.566 and Skn(My) =0.422, respectively. Since Sin(M,) has a larger difference
with 0.5 compared to SA'iin(]\//To), test statistic based on Ty for sample 2 is greater than
that for sample 1. The unified test statistic T} provides a p-value of 0.1624.

For the empirical likelihood ratio test, the unconstrained maximum log likelihood
value was log Lu(xj(t)) = —327.6901. And, the estimates of median defined by inf{¢ :
§j (t) < 0.5} were M, = 489 and M, = 254. Among death times between 254 and 489, the

constrained maximum log likelihood was obtained at 401, so the common median under

H§' was estimated as ]/\/./\(’)“ = 401. Here, the estimates of Lagrangian parameters at ]\/4\5‘

Table 8: p-values for each of testing procedures in gastric cancer data
Type of test: Procedure x?  p-value
Median test: Generalized sign test
Test statistic T based on sample 1 | 1.653  0.1985

Test statistic Tgc based on sample 2 | 2.250 0.1336

Unified test statistic T} 1.952  0.1624
Median test: Empirical likelihood ratio test 1.650 0.1990
Median test: Bootstrap median test - 0.1340
Median test: Proposed test - 0.0138
Log-rank test: Cox-Mantel 0.232  0.6301
Generalized Wilcoxon test: | Modified Peto-Peto 3.997  0.0456
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were a@; = 6.91 and @, = 3.50 associated with ¢; = 1 and ¢y = —1, respectively. As
a result, the constrained maximum log likelihood value was log LC(/)\\;‘(t)) = —328.5151,
and the empirical likelihood ratio test statistic Tgrr yields a p-value of 0.1990. We note
that ]/\/[\5‘ under Hf' and Z/W\g under Hy in the generalized sign test were equal. In this
situation, the generalized sign test provided smaller p-value than that of the empirical
likelihood ratio test. The behavior of the constrained log likelihoods between ]/\/[\1 and
]/W\Z is illustrated in Figure 29. In addition, the constrained Kaplan-Meier estimates with
common median ]/\/./\5‘ = 401 are given in Figure 30.

For the bootstrap median test, observed difference in medians to be evaluated was
489 — 254 = 235 according to estimated medians in the empirical likelihood ratio test.
Out of 1,000 bootstrap samples, the number of bootstrap samples providing a difference
in medians greater than or equal to 235 was 134. Therefore, ppoo; = 0.1340.

For the proposed median test, meanwhile, the estimates of the median survival time
for each group Z/W\l and ]\/4\2 defined by (2.16) are 499 and 252 (days), respectively. Because
no survival time is censored prior to ]\//.Tj, j = 1,2 for both samples, we can define that
(n},nh) = (n1,ng). Using these information, p-value by the proposed testing procedure
was calculated as pv(247) = 0.0138 based on the observed difference in median survival
times M, — My =247 (day).

Proposed median test achieved significance level of 0.05 while the generalized sign
test did not. One of the reasons is that proposed median test would have higher power
compared to other median tests under large sample and few censored observations as
indicated in the simulation study 2. Another reason would be that the vertical difference
|§’ji“(]\//70) — 0.5] on the survival curve is underestimated compared to the horizontal differ-
ence |Z\/4\1 - Z/\4\2| on the scale of detecting the difference, due to the character of this data
that the survival probabilities change rapidly around the estimated survival times.

Whether or not it be true, the important thing in the application is that how do
we choose the measure for the comparison in survival distributions. And, note that we
can not interpret the relative merits for two survival distributions by just looking at the
size of p-value. The result by the generalized wilcoxon test meets the significance level
of 0.05, but it can be hardly said that the result is easy to interpret under this case.

On the other hand, the interpretation of results based on the median test is clear. If
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one’s most important and interesting objective is to compare median survival times, the
proposed testing procedure has a great deal of potential to be applied since the proposed
testing procedure detected the statistical significant difference in median survival times

even though other median tests could not detect it in this case.
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5. Conclusion and Further Works

In this thesis, we discussed a testing procedure in order to detect the difference of medi-
ans in the framework of two-sample problem including right censoring. To refer existing
median tests for right censored data, we introduced three existing median tests. First, the
generalized sign test has been developed by Brookmeyer and Crowley (1982b) which is
based on the extension of sign test to censored data version. Since their testing procedure
is based on the asymptotic normality of Kaplan-Meier estimate, it can be considered to
have small power in particular situation, namely, in small samples. Also, this testing pro-
cedure does not provide the same test statistic value for the replacement of information
between two samples. In order to avoid the confusion caused by different two p-values,
we defined the unified test statistic T}-. Second, Naik-Nimbalkar and Rajarshi (1997)
proposed the empirical likelihood ratio test for the equality of £ medians in right censored
data. One of the key characteristics of their testing procedure is that it is based on Hf'
while other median tests are based on Hy. Although their idea is considered a natural way
for constructing median test based on the empirical profile likelihood, they did not show
any numerical investigation in their paper. So, we introduced a practical way until the
derivation of p-value by using the Newton-Raphson method where the Lagrangian param-
eters are estimated in order to find the estimate of the common median (fw\g) under Hf.
Using the estimated Lagrangian parameters and common median with maximum profile
log likelihood, the constrained maximum log likelihood value can be calculated. Thus,
one can obtain the empirical likelihood ratio test statistic based on the unconstrained
maximum log likelihood value and the constrained maximum log likelihood value. Last,
Park and Na (2000) proposed a bootstrap median test for right-censored data. Although
their bootstrap median test is rather simple to estimate the bootstrap p-value, it requires

a heavy workload on the computation of p-value. Based on several unfavorable char-
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acteristics of existing median tests for right censored data, we proposed an alternative
median test based on the two-sample difference between the mid order statistics, and
the significance probability function. Furthermore, we provided the rationale to estimate
the significance probability, a manner to cope with censored observations and some con-
trivances to overcome computational problem in that estimation. Although this proposed
median test was developed for testing Hy mainly, we also introduced a modified version
of proposed median test for testing Hi' by making use of the constrained Kaplan-Meier
estimates. A proposal for an alternative median test for right censored data was one of the
main objectives of this thesis. To investigate the performances of the proposed median
test, simulation and case studies have been carried out.

We investigated the null distribution, the empirical type I error and power for each of
median tests under several hypotheses based on simulation studies. From these simulation
studies, we found that the null distributions of pv(x) and Do are almost uniform except
both tails. On the other hand, we found that the null distributions of T} and Tgrr
are not uniform. In particular, it was suggested that null distribution of Tg g is not
continuous for small samples. We have no clear reasons why it has such distribution, so it
is valuable to pursue the exact cause of such trend for T g in future. With respect to the
empirical type I error, only T} provided the error rate of greater than 0.05 regardless of
sample size and percentage of censoring. From these investigations, it was suggested that
the null distributions of pv(z) and Py are asymptotically valid, and they are appropriate
with a conservative tendency in the finite sample. Tgr may be appropriate in such sense
that it had conservative tendency of the empirical type I error. However, as described
above, we will need to find the reason for the unique shape of null distribution. For T}
based median test, it was suggested that its null distribution may not be valid, and their
empirical type I error was extremely higher for small samples.

With respect to the power, it was suggested that pv(x) has higher power than that of
T} under the simulation model in which the discrepancy of two survival distributions is
increased over time (Simulation study 1). We think that pv(z) had higher power because
of it property to consider survival information after medians. In contrast, it can be
considered that T}~ had lower power because it must lose the survival information after

medians, that is, it does not consider the discrepancy between two survival distributions
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post medians. Second simulation study provided powers for each of median tests under
shift model as well. Unlike the first simulation study, the discrepancy between two survival
distributions is fixed. Because of such characteristic of alternative hypothesis, pv(z) had
smaller power than that of T} for small samples. However, pv(z) had the same or higher
power than that of T} for each of underlying survival distributions on average in large
samples. From this, it was suggested that pv(z) tends to be powerful as increasing n
compared to T} under shift model. T r had lower power than po(x) for small samples.
As the empirical type I error of T r was extremely small, so it is expected to lead such
results. Bootstrap median test revealed that it has the same power as others in larger
sample while it had the smallest power for small samples (under shift model).

We discussed the nonparametric Behrens-Fisher problem by distinguishing between
Hy and Hf' in the beginning of section 2. As described in background of our thesis, our
interest is to detect the difference of survival distributions based on the median survival
time. Therefore, our main interest is to test Hy. However, one may be interested in Hf’,
namely, {M; = MJ and Si(t) # S(t)}, so we modified a proposed median test to test
HY* where pv(z) is modified by replacing §0 by the constrained Kaplan-Meier estimates
:S’\; (7 = 1,2) which were discussed in the empirical likelihood ratio test. As one of the
further works, it is important to investigate the difference of performance between H,
and H{" in detail and the correlation structure between them by focusing on {M; = M
and Sy (t) # Sa(t)}. Also, one of the important perspectives to be noted in the survival
study is to shorten the duration of clinical trial. Considering that main goal, we need
to compare median tests with existing rank tests such as log-rank test and generalized
Wilcoxon test in detail from a view point of early detection on the clinical trial result.

In this thesis, we used Kaplan-Meier estimate to estimate the significance probability
function. However, we are also interested in parametric inference to compare medians
based on the significance probability function. Especially, we are interested in the infer-
ence of the significance probability function applied to the normal distribution family so

that we could compare median test with ¢-test and/or Wilcoxon-test.
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Appendix

A.1 Density for the difference in median survival times: Asymp-
totic result by Laplace approximation

Here, we discuss a point based on the Laplace approximation to derive the limiting form
for the density of the difference in median survival times. However, since the same lim-
iting distribution can be derived by another theory, we provide no detailed discussions
considering the rest term and order for the convergence. Asymptotic theory based on the
Laplace approximation provides several useful suggestions in discussing the property of
the proposed median test.

By Stirling’s approximation for Gamma function, Beta density —¢;(x)dS;(x)/B(m;, m;)

is asymptotically equivalent to the normal density
. (1 /\/zm(nj)) exp {—(S;(z) — 0.5)2/20(n;)2} dS;(x) (A.1)

where, o(n;) = y/1/4n; <0(nj) = \/1/4n/; for censored data). And, the density function
g1(y) in (2.12) is asymptotically equivalent to

_ 1 > (S1(v) —0.5)*  (Sa(v —y) —0.5)?
51(y) W/y exp{— - }fz('U —y) fi(v)dv.

- 2mo(ny 20(nq)? 20 (no)?

Hence, we assume Hy where So(t) = S () = Sa(t) and M§ = S;*(0.5) as well as used

in the context. Furthermore, to simplify the remaining discussion, we define v' = v — Ky
for a constant k(> 0), and then we perform variable transformation with respect to v of
g1(y). We discuss how to deal with k later. Through such variable transformation (and

we bring v' back to v), gi(y) is
1 o0
gi(y) = m/ exp [h(v; y, k)] fo(v — K'y) fo(v + Ky)dv
YK

where k' =1 — k, and
h(viy, &) = —{So(v + ky) — 0.5}%/20(n1)* = {So(v — K'y) — 0.5}%/20(n,)*.
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By differentiating h(v;y, k) with respect to v twice, then the first-order differential A, (v; y, k)

and the second-order differential h,,(v;y, k) are

hy(viy, ) = (So(v + Ky) — 0.5) fo(v + ky) /o (n1)” + (So(v — Ky) — 0.5) fo(v — K'y) /o (n2)”
how (0 y, ) = {=fo(v + ky)* + (So(v + wy) — 0.5) fo (v + ky)}/o(m1)?

H—fo(v = K'y)* + (So(v — K'y) = 0.5) fo(v = K'y)}/o(n2)*

respectively, where fj(z) = 0fy(z)/0x. Function h(v;y,x) has a maximum point at
v = U which satisfy h,(7;y,x) = 0. Such v arises in the neighborhood of M (when
So(v + ky) and Sy(v — k'y) are near 0.5 together) from the shape of h,(v;y, k), and Mg
is an inner point between v — k'y and v + ky, that is, v — «'y < My < U+ ky. So, one
can set U + ky — M§ = k'y for any &, then the followings can be obtained by the Taylor
expansion,

So(T+ ky) = So(Mg) — fo(Mg)r'y — f(Mio)s"y?/2, (IMig € (Mg, T + ry)),

So(i)\— n’y) = S()(Mék) + fo(Mg)Iiy - fé(MQO)Ii2y2/2, (EIMQO S (@\— Ii’y, MJ)), (AQ)

where Sy(Mg) = 0.5. In addition, we obtain the following relationship to determine x by
substituting (A.2) into h,(0;y, k) = 0:

fo(M§)k — fi(Mog) K2y /2 _ 0(n2)® fo(U+ ky)
fo(M)K' + fy(Mio)k?y/2  o(m)® fo(0— k'y)’

(A.3)

Thus, three quantities x, So(vU + ky) — 0.5 and So(v — k'y) — 0.5 can be determined by
(A.2) and (A.3). Since the integral in g;(y) is dominant at a point v = ¢ (around the
neighborhood of M) which provides a maximum point of h(v;y, k), the results of Laplace
approximation provides that g (y) is asymptotically equivalent to

Jo(W — K'y) fo(U + Ky)
2mo(n1)o(n2)\/ —hw (U5 y, k)

7 (y) =

exp {h(V;y, k) }

From y ~ O,(1/4/n) by (A.1), (A.2) and (A.2), we finally conclude that g;(y) is asymp-
totically equivalent to (2.14) (asymptotically equivalent to (2.17) for censored data).
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A.2 Evaluation of E[pv,;]

PUy3(x) is written by pui3(z) = Bumum, [ LS, dA, (s)}dM,(t) based on the exchange
order of integration. In the finite sample, integrand ftﬂ, dAl(s) is not .Z#;-predictable.
However, we have E[ﬁla(x”j{l:fq] = 0 by the martingale property when A, is replaced

by definitive A7, so

E[pv13(1)] = By ELf;" " [T (d A1 () — dAj(5)), dM (1)),

t+x

where dA%(s) = ¢;(s-)So(s-)dAo(s). First, for simplicity, we consider a case where By,
and the power m; in ¢;(-) are fixed. Here, we have d.A, (s) — dA;(s) = Op(n="2)dAo(s) by
the asymptotic normality of v/72(Sy(s)—So(s)) and delta method. In addition, nE[|pv,s(z)|] <
oo can be shown by a result n(/ﬁ/])(T) = O,(1) given in the proof of Theorem 1. So, we
obtain nE[pv,;(z)] —, 0 by dominated convergence theorem and asymptotic martingale
properties of pu;(z), that is, E[pv,5(z)] = o(n~1). We show how such results can be ex-
tended in usual case where my, my — 0o as well as n. As g;(y) in Appendix A.1, pv,;(z)

is equivalent to the following expression

VAR A A S T o7 So(v =y ) dMw(v —y) ”
- //y p{=mZn(v -y )*} C) ST gy ), (A

by Stirling’s approximation, where 7; = 2n;/n, Zy(v) = Vi(Ss(v) = 0.5), Zm(v) =
Vi(So(v) = 0.5), Mu(v —y) = Vn(M(v — ) — M(M;)), and

C(v-) = exp{—m1 Zum(v_)*}So(v-) — exp{—m Zum(v_)?}So(v-).

Under situation where (A.4) is obtained, (Sy(v) —0.5)/(v— M) =, (So(v)—0.5)/(v— M)
since v is concentrated in the neighborhood of M with order (v — M§) = O,(1/v/n)
stochastically, s0 Zm(v) —p Zm(v). As a result, we obtain n=/2C(v_) = O,(1). By similar
discussions, d{My,)(v—y) = O,(n*?)Y(v—y) dAo(v—1y), and d(My) (v —y)/V(v—y)? =
Op(n1)dZm(v — y). Once we apply these results to (A.4), we have nE[[pv,;(z)|] < oo,
and obtain E[pv,;(z)] = o(n™") definitely.
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