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Coupled Nosé-Hoover Lattice: a set of
Nosé-Hoover equations with di¤erent

temperatures

Ikuo Fukuda
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Abstract

A simple scheme was presented to couple any number of the Nosé-Hoover equations
with di¤erent heat-bath temperatures. In general, several practical procedures can
be considered to realize such a coupling, where the system is under nonequilibrium.
However, the present scheme provides an equilibrium distribution, namely, a smooth
invariant measure. This is attained by a very simple idea, that is, a force scaling. The
current scheme realizes the coupled di¤erential equations, analogous to the coupled
maps. Theoretical possibilities, mathematical framework, and practical utilities are
discussed. Numerical validations applying the method to a simple two-oscillator
system are given.

Key words: Nosé-Hoover method, molecular dynamics, continuous dynamical
system

1 Introduction

Thirty years ago, Nosé [1] formulated a constant temperature molecular dy-
namics (MD) scheme that is compatible with the canonical distribution. This
is based on the Newtonian equations of motion (EOM), represented by the
coordinates and the corresponding momenta of a given physical system, and
is made by attaching an additional degree of freedom describing a heat bath
at an arbitrary �xed temperature. He de�nes the Hamiltonian represented
by these coordinates, momenta, and the additional variables, and then pro-
pose a (non-symplectic) variable transformation and a time transformation to
obtain EOMs physically sound. The underling essential physical feature was
then revealed by Hoover [2], eliminating a redundant variable and creating
a perspicaciously de�ned variable. This newly de�ned variable represents a
dynamical friction coe¢ cient, which plays a role of thermostat for the physi-
cal system. The obtained EOMs are called the Nosé-Hoover (NH) equations.
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Many MD simulations have been performed using the NH equations and they
have revealed characteristics of physical systems in terms of microscopic de-
scriptions [3�5].

The NH equations describes the equilibrium characterized by the canonical
distribution at the �xed one temperature. If we add two, or more, thermostat
variables, however, then we are allowed to simulate a system under a non-
equilibrium, by de�ning distinct temperatures for the plural heat bathes that
are described by the appended thermostat variables. Two bathes, hot and cold,
are used to study heat �ow [6,7]. Such scheme should also be useful to handle
Born-Oppenheimer assumption by keeping nuclear degrees of freedom hot and
electronic degrees of freedom cold. It could also be e¢ cient to investigate
more complicated system, such as biomolecular system, where only solute
molecules can be destabilized by hot bath so that the enhanced sampling
would be attained. However, the bottle neck for wider applications is that
these NH systems attached with plural heat bath degree of freedom are not
under equilibrium and yield no statistical descriptions. Thus it is di¢ cult to
obtain thermodynamical quantities, including free energy.

This work presents a simple scheme that any number of the NH equations are
coupled and the obtained total system allows a complete statistical description.
The heat baths of the individual NH equations have di¤erent temperatures
in general. On the contrary, the total system has a natural distribution den-
sity function, which yields the statistical description. Surprisingly, these two
contradictory issues can be harmonized by a very simple manner.

Two gains would be expected. First, the presented new ordinary di¤erential
equation (ODE) should be interesting from a viewpoint of continuous dy-
namical system. Here, note that the coupled map lattices [8,9] couple plural
chaotic maps (each map de�nes a discrete-time development of a system; note
the system is often de�ned in an abstract sense). The manner of the coupling
of these maps is based on a kind of averaging or assembling the contribu-
tions of individual maps. The coupled maps show very interesting behavior,
including chaotic itinerancy, hierarchical dynamics and clustering. They have
provided new ideas and close relationship to many systems that appear in
biology, complex systems, and brain science. The current scheme presents a
method to couple plural chaotic (or no chaotic) ODEs (each ODE de�nes a
continuous-time development of a system). The manner of the coupling of
these NH ODEs is based on setting a general potential function that would
assemble the contributions of individual NH ODE systems. On the basis of an
expectation to the feature provided by these ideas, this paper emphasizes the
aspect of this �rst issue. We call the current method by coupled Nosé-Hoover
(NH) lattice.

The second issue we expect the gain is in the feature that the total system
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has an equilibrium distribution (smooth invariant measure). It may be inter-
esting in the fundamental aspect of physical science. It would also be e¢ cient
in a more practical purpose such as e¤ective sampling of complicated physical
systems, as described above. Furthermore, other recipe for the sampling may
be provided. Consider a target physical system whose e¤ective sampling of
states under the room temperature is sought. Then also consider many sys-
tems that are copies of the target system and de�ne the interactions between
these copied systems and the original system. These individual copied systems
can be subjected to have higher/lower temperatures in an arbitrary manner.
The interaction between the original system and higher temperature systems
may provide a su¢ ciently high energy to surmount an energy barrier for ef-
�ciently exploring the original system�s phase space. The interaction between
the original system and lower temperature systems may help to sample low
energy states. (These gains are similar to that of the replica exchange MD
method [10] in that the interactions should be regarded as the exchange of
the states or temperatures.) The point is that we can have the required in-
formation of the target system under the canonical distribution by using a
reweighting procedure, because the distribution density of the total system
is given in advance. Furthermore, in fact, these systems are not necessarily
the copy of the original target system, but can be any systems as long as the
interactions between the systems can be suitably de�ned.

In Sec. II, the Nosé-Hoover equation with one degree of freedom is reviewed. In
Sec. III, coupling scheme for the Nosé-Hoover equations where each equation
has one degree of freedom is proposed for simplicity and analyzed in detail. In
Sec. IV, coupling scheme for a more general case is presented and a reweighting
method is discussed to assess the state sampling. Sec. V address numerical
simulation results for a model system composed from oscillators. We con�rm
that the current scheme provides interesting dynamical features and yields
satisfactory results.

2 Review of the Nosé-Hoover equation

The NH equation with one degree of freedom is given by

_x = p;

_p = �DU(x)� (�=Q) p;
_� = p2 � T;

9>>>>>=>>>>>;
(1)

where x 2 R1 is the coordinate for the physical system with one degree of
freedom, p 2 R1 is the corresponding momenta, and U(x) is the potential
energy. We put a unit mass for the particle for simplicity. � 2 R is a variable

3



to control the temperature of the original physical system and to set it to
a given value of the external temperature T . Q is Nosé�s mass, a positive
parameter. This ODE has an invariant density, or equilibrium distribution
density, � (!) = � (x; p; �), de�ned by

� (x; p; �) = exp

"
� 1
T

 
U(x) +

1

2
p2 +

1

2Q
�2
!#
: (2)

This can be con�rmed by the validity of the equilibrium Liouville equation

div �X = 0; (3)

where X(!) = X (x; p; �) is de�ned by the RHS of Eq. (1). For an ergodic
assumption, for any phase-space function g, we have

�g = hgi : (4)

Here �g is the long time average

g � lim
�!1

1

�

Z �

0
g(x(t); p(t); �(t))dt; (5)

and hgi is the space average

hgi �
Z
R3
g (!) � (!) d!

�Z
R3
� (!) d! : (6)

Thus, for a physical system variables (x; p) we have the canonical distribution
exp

h
� 1
T

�
U(x) + 1

2
p2
�i
dxdp at the temperature T .

3 Coupled Nosé-Hoover lattice

We will couple N NH equations, each of which is based on Eq. (1). Quantities
originated from each NH equation will be indicated by attaching superscript
[I] or [J ] that runs from 1 to N . Thus we have N triplets,

�
x[I]; p[I]; � [I]

�
,

I = 1; : : : ; N , to de�ne a total space that is the N product of R3. By the
coupling ofN NH systems, we want to de�ne the "interaction" of these systems
via the potential function, such as U(x[1]; x[2]; : : : ; x[N ]) [U is now a function
of N variables]. In addition, we are interested in a situation that each system
has di¤erent heat bath; viz., distinct temperature T [I] and Nosé�s mass Q[I],
I = 1; : : : ; N . The proposed EOMs for this total space is:

_x[I] = p[I]; I = 1; : : : ; N;

_p[I] = �� T [I]DIU(x)� (� [I]=Q[I]) p[I]; I = 1; : : : ; N;
_�
[I]
= (p[I])2 � T [I]; I = 1; : : : ; N:

9>>>>>=>>>>>;
(7)
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Here DIU(x) = DIU(x
[1]; x[2]; :::; x[N ]) indicates a partial derivative of U with

respect to the Ith variable at product-space coordinate x = (x[1]; x[2]; : : : ; x[N ]) 2
RN . Thus �DIU(x) is the force acting to the Ith system in this total product-
space. The factor, � T [I], attached to this force may seem to be peculiar. This
factor is introduced to satisfy the Liouville equation in this new system, as
seen below. � is a parameter that should be suitably taken. Now we de�ne a
density of the total space as follows:

� (x; p; �) � �
�
x[1]; : : : ; x[N ]; p[1]; : : : ; p[N ]; � [1]; : : : ; � [N ]

�
(8a)

=
NY
I=1

exp

"
� 1

T [I]

 
�U(x) +

1

2
(p[I])2 +

1

2Q[I]
(� [I])2

!#
: (8b)

Here � is a parameter that are related to the parameter � such that

� =

 
NX
J=1

1

T [J ]

!
�: (9)

Now we prove that the Liouville equation

div �X = 0 (10)

holds, where � is given in Eq. (8) and X(!) � X (x; p; �) �
X
�
x[1]; : : : ; x[N ]; p[1]; : : : ; p[N ]; � [1]; : : : ; � [N ]

�
is de�ned by the RHS of Eq. (7).

Notice div �X(!) = (r�(!) jX(!)) + �(!) div X(!) = P3N
a=1Da�(!)Xa(!) +

�(!)
P3N
a=1DaXa(!) and since �(!) > 0 for any point !, where our notation is

! � (x; p; �) �
�
x[1]; : : : ; x[N ]; p[1]; : : : ; p[N ]; � [1]; : : : ; � [N ]

�
� (!1; : : : ; !3N) 2 R3N . Thus Eq. (10) is equivalent to

(r ln �(!) jX(!)) + div X(!) = 0 (11)

for any ! 2 R3N . Now, from the aid of Eq. (9), we see

ln � (x; p; �) = �
NX
J=1

1

T [J ]

 
�U(x) +

1

2
(p[J ])2 +

1

2Q[J ]
(� [J ])2

!
(12a)

= �� U(x)�
NX
J=1

1

T [J ]

 
1

2
(p[J ])2 +

1

2Q[J ]
(� [J ])2

!
: (12b)

Thus we easily get

Dx[I] ln � (!) = �� DIU(x); I = 1; : : : ; N; (13a)

Dp[I] ln � (!) = �
1

T [I]
p[I]; I = 1; : : : ; N; (13b)

D�[I] ln � (!) = �
1

T [I]
� [I]

Q[I]
; I = 1; : : : ; N: (13c)
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On the other hand, the divergence for Eq. (7) becomes the sum of the diver-
gence for the original NH equation, viz.,

div X(!) = �
NX
I=1

� [I]

Q[I]
: (14)

Integrating these results, we have

(r ln �(!) jX(!)) + div X(!) (15a)

= ��
NX
I=1

DIU(x) p
[I]

+
NX
I=1

1

T [I]
p[I]

h
� T [I]DIU(x) + (�

[I]=Q[I]) p[I]
i

�
NX
I=1

1

T [I]
� [I]

Q[I]

h
(p[I])2 � T [I]

i

�
NX
I=1

� [I]

Q[I]
(15b)

= 0 (15c)

for any ! 2 R3N . Therefore we con�rm the validity of the Liouville equation,
Eq. (10).

The Liouville equation ensures that � becomes an invariant density (�d! is an
invariant measure) of the �ow generated by the ODE, _! = X(!) [Eq. (7)] [11,12].
Therefore, the long time average for any phase space map g : R3N ! R exists
(for almost everywhere) from Birkho¤�s ergodic theorem, and by assuming the
ergodic condition, we have the same type equality as Eq. (4), viz.,

�g = hgi : (16)

Here �g is the long time average

g � lim
�!1

1

�

Z �

0
g(x(t); p(t); �(t))dt (17a)

= lim
�!1

1

�

Z �

0
g(x[1](t); : : : ; x[N ](t); p[1](t); : : : ; p[N ](t); � [1](t); : : : ; � [N ](t))dt;

(17b)

and hgi is the space average

hgi �
Z
R3N

g�d!
�Z

R3N
�d! (18a)

=

R
R3N dxdpd� g(x; p; �)

QN
I=1 exp

h
� 1
T [I]

�
�U(x) + 1

2
(p[I])2 + 1

2Q[I]
(� [I])2

�i
R
R3N dxdpd�

QN
I=1 exp

h
� 1
T [I]

�
�U(x) + 1

2
(p[I])2 + 1

2Q[I]
(� [I])2

�i :

(18b)
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We have observed that the factor, � T [I], of the force and the relationship (9),
between � and �, are necessary to valid the Liouville equation. A natural
choice of � is

� =
1

N
: (19)

In this case Eq. (9) yields

� =

 
NX
J=1

1

T [J ]

!
� �

 
NX
J=1

�[J ]
!
� (20a)

=
1

N

 
NX
J=1

�[J ]
!
� h�i : (20b)

Namely, � becomes the average of the inverse temperatures, �[1]; : : : ; �[N ]. So,
the factorized force becomes,

� � T [I]DIU(x) (21a)

= �h�i
�[I]

DIU(x) (21b)

' �DIU(x); (21c)

viz., the ordinary one, if �[I] ' h�i. In other words, the factor becomes large
for a smaller �[I] (or a higher temperature T [I]). The density, Eq. (8), becomes
[see Eq. (12)]

� (x; p; �) = exp

"
�� U(x)�

NX
J=1

1

T [J ]

 
1

2
(p[J ])2 +

1

2Q[J ]
(� [J ])2

!#
(22a)

= exp [�h�i U(x)]
NY
I=1

exp

"
��[I]

 
1

2
(p[I])2 +

1

2Q[I]
(� [I])2

!#
: (22b)

Namely, for the product-space coordinates x = (x[1]; : : : ; x[N ]) 2 RN , we have
the canonical form with the average inverse temperature, exp [�h�i U(x)],
and for the product-space momenta p = (p[1]; : : : ; p[N ]) 2 RN and for con-
trol variables � = (� [1]; : : : ; � [N ]) 2 RN we have the simple product of the
individual density exp

h
��[I]

�
1
2
(p[I])2 + 1

2Q[I]
(� [I])2

�i
. In practical application,

uniform Nosé�s masses, viz., Q[1] = � � � = Q[N ], would be su¢ cient.

To illustrate the scheme, we consider the most basic system, a coupled system
of two 1-dimensional harmonic oscillator (1HO) NH systems (N = 2); see
Fig. 1. Namely, Eq. (7) with potential function

U(x[1]; x[2]) =
1

2

2X
I;J=1

k[I;J ]x[I]x[J ]; (23)

where k[I;J ] is the spring constant (k[2;1] = k[1;2]) is used. The EOMs are
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explicitly written as8>>>>><>>>>>:
_x[1] = p[1];

_p[1] = �� T [1] (k[1;1]x[1] + k[1;2]x[2])� (� [1]=Q[1]) p[1];
_�
[1]
= (p[1])2 � T [I];8>>>>><>>>>>:

_x[2] = p[2];

_p[2] = �� T [2] (k[2;2]x[2] + k[2;1]x[1])� (� [2]=Q[2]) p[2];
_�
[2]
= (p[2])2 � T [2]:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(24)

Let T [1] < T [2]: the oscillator in system 1 is subject to a cold bath and the
oscillator in system 2 a hot bath. If the coupling spring constant k[1;2] (=
k[1;2]) is zero, then the two systems are decoupled and just two 1HO NH
systems are obtained (the change k[I;I] ! T [I]k[I;I] is just the spring constant
change). If they are not zeros, then the two systems couple and the coupling
force is � T [1]k[1;2]x[2] for system 1 and � T [2]k[2;1]x[1] for system 2. It should
be noticed that the coupling strengths � T [1]k[1;2] and � T [2]k[2;1] are not equal
because T [1] < T [2]. This symmetry breaking is a key of the trick to produce
an equilibrium in the current method.

4 Coupled Nosé-Hoover lattice: a general case

In the previous section we have the coupling of the NH equations based on
Eq. (1) that is for one degree of freedom. In general, we should work with
the system with any numbers of degrees of freedom in an application. Thus
we seek the form of the coupling of the NH equations based on n degrees of
freedom:

_x =M�1p 2 Rn;

_p = �rU(x)� (�=Q) p 2 Rn;
_� = 2K(p)� nkBT 2 R1;

9>>>>>=>>>>>;
(25)

where x � (x1; : : : ; xn) 2 Rn are the coordinates of a certain physical sys-
tem and p � (p1; : : : ; pn) 2 Rn are the corresponding momenta. K(p) =
(pjM�1p)=2 � Pn

i;j=1(M
�1)ijpipj=2 is the kinetic energy, with M being the

masses (a symmetric, positive-de�nite square matrix of size n) of the parti-
cles, and kB is Boltzmann�s constant.

Here, we couple N NH systems, each of which has nI degrees of freedom for
I = 1; : : : ; N . The total space of this coupling will thus be R

PN

I=1
(2nI+1), and
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the point ! will be represented as

! � (x; p; �) �
�
x[1]; : : : ; x[N ]; p[1]; : : : ; p[N ]; � [1]; : : : ; � [N ]

�
2 
 � R

PN

I=1
(2nI+1)

(26)
with coordinates, momenta, and the friction variable being

x[I] = (x
[I]
1 ; : : : ; x

[I]
nI
) 2 RnI ; I = 1; : : : ; N; (27a)

p[I] = (p
[I]
1 ; : : : ; p

[I]
nI
) 2 RnI ; I = 1; : : : ; N; (27b)

� [I] 2 R1; I = 1; : : : ; N; (27c)

respectively. Then, the EOM, _! = X(!), that generalizes Eq. (7) to handle
any degrees of freedom case is given as follows:

8>>>>><>>>>>:
_x[I] =M[I]�1p[I] 2 RnI ; I = 1; : : : ; N;

_p[I] = �� T [I]rIU(x)� (� [I]=Q[I]) p[I] 2 RnI ; I = 1; : : : ; N;
_�
[I]
= 2K [I](p[I])� nIkBT [I] 2 R1; I = 1; : : : ; N;

(28)

or explicitly,

8>>>>><>>>>>:
_x[1] =M[1]�1p[1] 2 Rn1 ;

_p[1] = �� T [1]r1U(x
[1]; : : : ; x[N ])� (� [1]=Q[1]) p[1] 2 Rn1 ;

_�
[I]
= 2K [1](p[1])� nkBT [1] 2 R1;8>>>>><>>>>>:

_x[2] =M[2]�1p[2] 2 Rn2 ;

_p[2] = �� T [2]r2U(x
[1]; : : : ; x[N ])� (� [2]=Q[2]) p[2] 2 Rn2 ;

_�
[2]
= 2K [2](p[2])� nkBT [2] 2 R1;

...8>>>>><>>>>>:
_x[N ] =M[N ]�1p[N ] 2 RnN ;

_p[N ] = �� T [N ]rNU(x
[1]; : : : ; x[N ])� (� [N ]=Q[N ]) p[N ] 2 RnN ;

_�
[N ]
= 2K [N ](p[N ])� nkBT [N ] 2 R1:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(29)

We call this a coupled NH lattice equation. HereK [I](p[I]) = (p[I]jM[I]�1p[I])=2 �PnI
i;j=1(M

[I]�1)ijp
[I]
i p

[I]
j =2, T

[I], andQ[I] are the kinetic energy, the temperature,
and the Nosé�s mass of the Ith system, respectively. We de�ne a density of
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this system:

� (x; p; �) � �
�
x[1]; : : : ; x[N ]; p[1]; : : : ; p[N ]; � [1]; : : : ; � [N ]

�
(30a)

=
NY
I=1

exp

"
��[I]

 
�U(x[1]; : : : ; x[N ]) +K [I](p[I]) +

1

2Q[I]
(� [I])2

!#
;

(30b)

where �[I] = 1=kBT [I] for each I. We also de�ne a relationship, which is essen-
tially the same as Eq. (9), as follows:

� =

 
NX
J=1

�[J ]
!
�: (31)

Thus

� (x; p; �) = exp
h
�� U(x[1]; : : : ; x[N ])

i NY
I=1

exp

"
��[I]

 
K [I](p[I]) +

1

2Q[I]
(� [I])2

!#
:

(32)
Note that the choice of Eq. (19) yields � = 1

N

�PN
J=1 �

[J ]
�
= h�i, which is the

same as Eq. (20). All the results of the preceding section, including the EOMs
and the corresponding density, can be obtained if we put kB = 1 and nI = 1
andM[I] = 1 (I = 1; : : : ; N).

Now, also in this general case, we see that the Liouville equation

div �X = 0 (33)

holds, as a similar manner done in the previous section. Thus, under an ergodic
assumption, we have

�g = hgi (34)

for map g : 
! R. Here �g is the long time average

g � lim
�!1

1

�

Z �

0
g(x(t); p(t); �(t))dt (35a)

= lim
�!1

1

�

Z �

0
g(x[1](t); : : : ; x[N ](t); p[1](t); : : : ; p[N ](t); � [1](t); : : : ; � [N ](t))dt;

(35b)

and hgi is the space average

hgi �
Z


g�d!

�Z


�d! (36a)

=

R

 dxdpd� g(x; p; �)�X(x)�2(p; �)R


 dxdpd� �X(x)�2(p; �)
: (36b)
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Here we have de�ned

�X(x) �
NY
I=1

exp
h
��[I]

�
�U(x[1]; : : : ; x[N ])

�i
(37a)

= exp
h
�� U(x[1]; : : : ; x[N ])

i
; (37b)

viz., the coordinates part of the density,

�2(p; �) �
NY
I=1

exp

"
��[I]

 
K [I](p[I]) +

1

2Q[I]
(� [I])2

!#
; (38)

viz., the momenta�� part of the density, and dx = dx[1]dx[2] � � � dx[N ] =
dx

[1]
1 � � � dx[1]n1 � � � dx

[N ]
1 � � � dx[N ]nN

, etc. By this formalism we can set �interactions�
of any type systems with di¤erent number of degrees of freedom, through
U(x[1]; : : : ; x[N ]). This advantage would be clear in many applications, includ-
ing multi-scale physics simulation.

The distribution of system I is given by the marginal distribution density,

R
R
PN

J=1 (J 6=I) nJ
dx[1] � � � dx[I�1]dx[I+1] � � � dx[N ]�X(x[1]; : : : ; x[I]; : : : ; x[N ])R

R
PN

J=1
nJ
dx�X(x)

: (39)

This integration is not explicitly done in general, except simple cases. How-
ever, we can obtain the information about the states in system I under any
distribution by using a reweighting method. Thus the impossibility of the ex-
plicit integration would not be a serious drawback of the current method. The
details are discussed in the following subsection.

Remark 1: The coordinate part of the density [Eq. (37)] �X = exp [�� U ] :
R
PN

J=1
nJ ! R should be smooth and integrable. The EOM (28) can be de�ned

without this integrability condition, such as the case in which a set of NH
equations of the ideal gases is treated. However, the integration in Eq. (36)
diverges and yields meaningless result to ensure the statistical statement.

Remark 2: Equation (29) seems to be similar to the massive NH equa-
tions [13]. In fact, the essential di¤erence between this method and the current
method is the presence of the factor � T [I] in the current method. The former
method has no equilibrium density, Eq. (32), and could not have any density,
if individual heat baths have di¤erent temperatures, in general. Regarding the
use of the NH thermostat in the current method, the extension of the current
method based on other thermostat [14] is not di¢ cult. For example, replacing
the NH to the NH chains [15] is straightforward. Application to the Hoover-
Holian method [16] should be interesting, where a strong mixing-like behavior
is expected. The current method is di¤erent from the work in Refs. [17,18],
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where the temperature or parameters are dynamically �uctuated with keeping
the statistical descriptions.

4.1 Reweighting

In application, we want to have a desired distribution for a speci�c target
system, say, I. This can be done using a reweighting technique, since we have
a predetermined distribution described by Eqs. (32) and (34). To obtain a
formula reweighting to any desired distribution density �[I] : RnI ! R+, we
�rst apply Eq. (34) to function A�[I]��[I]=�X for any quantity A(x

[I]). Here, ��[I]

is a function on R
PN

J=1 (J 6=I) nJ taking a value of

��[I](x
[1]; : : : ; x[I�1]; x[I+1]; : : : ; x[N ]); (40)

which is introduced to be a convergence factor, as seen below. For this role,
��[I] should be strictly positive and integrable:

0 < c[I] �
Z
R
PN

J=1 (J 6=I) nJ

NY
J=1(J 6=I)

dx[J ] ��[I](x
[1]; : : : ; x[I�1]; x[I+1]; : : : ; x[N ]) <1:

(41)
Now we haveD
A�[I]��[I]=�X

E
(42a)

�
Z


A�[I]��[I]=�X�d!

�Z


�d! (42b)

=

R
R
PN

J=1
nJ
dxA(x[I])�[I](x[I])��[I](x

[1]; : : :)(1=�X(x))�X(x)
R
R
PN

J=1
(nJ+1)

dpd��2(p; �)R
R
PN

J=1
nJ
dx �X(x)

R
R
PN

J=1
(nJ+1)

dpd��2(p; �)

(42c)

=

R
RnI dx

[I]A(x[I])�[I](x[I])
R
R
PN

J=1 (J 6=I) nJ

QN
J=1(J 6=I) dx

[J ]��[I](x
[1]; : : : ; x[I�1]; x[I+1]; : : : ; x[N ])R

R
PN

J=1
nJ
dx �X(x)

(42d)

=

R
RnI dx

[I]A(x[I])�[I](x[I])c[I]R
R
PN

J=1
nJ
dx �X(x)

: (42e)

Similarly we get

D
�[I]��[I]=�X

E
�
Z


�[I]��[I]=�X�d!

�Z


�d! (43a)

=

R
RnI dx

[I] �[I](x[I])c[I]R
R
PN

J=1
nJ
dx �X(x)

: (43b)
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We then straightforwardly have

A�[I]��[I]=�X
.
�[I]��[I]=�X (44a)

=
D
A�[I]��[I]=�X

E.D
�[I]��[I]=�X

E
(44b)

=

R
RnI dx

[I]A(x[I])�[I](x[I])c[I]R
R
PN

J=1
nJ
dx �X(x)

,R
RnI dx

[I] �[I](x[I])c[I]R
R
PN

J=1
nJ
dx �X(x)

(44c)

=

R
RnI dx

[I]A(x[I])�[I](x[I])R
RnI dx

[I] �[I](x[I])
(44d)

=: hAi�[I] : (44e)

Thus, the average of the function of A under the desired density �[I] can be
obtained through the evaluations of the two long-time averages, A�[I]��[I]=�X
and �[I]��[I]=�X, via the reweighting, Eq. (44).

The factor ��[I] is necessary to converge the integration with respect to
dx[1] � � � dx[I�1]dx[I+1] � � � dx[N ] in Eq. (42d) (if ��[I] = 1 then the integral be-
comes the in�nity). Note that the reweighting formula (44) is irrelevant to the
choice of speci�c form of ��[I] in a theoretical sense. In actual simulation, how-
ever, the �nite-time convergence may depend on the choice. One reasonable
choice would be
��[I](x

[1]; : : : ; x[I�1]; x[I+1]; : : : ; x[N ]) � QN
J=1(J 6=I) exp

�
�c[J ]




x[J ]


2
nJ

�
with some

positive constants c[J ] (J 6= I).

5 Numerics

We numerically investigated the current method by applying it to the most ba-
sic system, a coupled system of two 1HO NH systems. This system is discussed
in Sec. 3, and the potential function of the total system is de�ned by Eq. (23).
The following parameter values were used: k[1;1] = k[2;2] = 1, k[1;2] = k[2;1] =
1=2, Q[1] = Q[2] = 1, T [I] = 1, T [2] = 2, and � = 1

N

�PN
J=1 1=T

[J ]
�
= 3=4 [see

Eq. (20)]. For comparison, we also treat the case of k[1;2] = 0. This corresponds
to a decoupled two NH EOMs (with a 1HO force scaled by � T [I]).

To numerically integrating the EOMs, we used a general scheme employing an
extended ODE [19,20]. The fundamental maps corresponding to decomposed
individual vector �elds are easily obtained in a similar manner described in
Ref. [19], and thus a symmetric, desired order integrator can be constructed.
Furthermore, the numerical error of the integration can be checked by monitor-
ing an invariant function de�ned in an extended ODE during the integration
process [19,20]. In the current study, the simplest symmetric, second-order in-
tegrator of unit time step h = 0:01 was used. We integrated 108 time steps with
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initial values of x[1](0) = 0, p[1](0) = 1, � [1](0) = 0, x[2](0) = 0, p[2](0) = 1,
and � [2](0) = 0.

Figure 2 shows the trajectories of (x[I]; p[I]) for the initial 50000 time steps. For
the decoupled case [Figs. 2(a) and 2(b)], the trajectories show the torus-like
regular structure as seen in many literature. In contrast, for the coupled case
[Figs. 2(c) and 2(d)], the trajectories show chaotic behavior and explored much
more compared with the decoupled case. The system with the hot thermostat
[I = 2, shown in Fig. 2(d)] sampled wider range of momentum than the system
with the cold thermostat [I = 1, shown in Fig. 2(c)].

As demonstrated, due to the scaled force, the current coupled system allows
the description of the equilibrium states. Namely, this system has an invariant
measure �d!, where � is given by Eq. (8). Furthermore, the current simple
potential function, Eq. (23), yields the explicit form of the distribution of
coordinate x[I]. That is, from Eq. (39), we have

�x[1](y) =
Z
R1
dx[2]�X(y; x

[2])
�Z

R2
dx�X(x) : (45a)

_
Z
R1
dx[2] exp

h
�� U(y; x[2])

i
(45b)

_ exp
"
��
2

(
k[1;1] � (k

[1;2])2

k[2;2]

)
y2
#
: (45c)

Similarly we have

�x[2](y) _ exp
"
��
2

(
k[2;2] � (k

[1;2])2

k[1;1]

)
y2
#
: (46)

In the current numerics we thus have �x[1](y) = �x[2](y) =
q

9
32�
exp

h
� 9
32
y2
i
.

The distribution density of p[I] and that of � [I] are always Gaussian function
[see Eq. (8)], and the current case yields: �p[1](y) = ��[1](y) =

1p
2�
exp

h
�1
2
y2
i

and �p[2](y) = ��[2](y) =
1

2
p
�
exp

h
�1
4
y2
i
.

We con�rm that these distributions theoretically obtained agree with the dis-
tributions numerically produced. The latter were obtained by the histogram
counted in the numerical simulation, viz., by the long-time average [Eq. (17)]
�C=jCj (with a �nite-time approximation), where �C is the characterized func-
tion with respect to each small bin C for an individual variable. Figure 3 shows
these theoretical and simulated distribution densities. Simulated distribution
densities show clean-cut Gaussian shapes and the agreement with the theoret-
ical densities are good for all the variables. This indicates that �C = h�Ci for
all bins and for all variables. Thus, the invariant density, or stationary density,
�, given by Eq. (8), was realized under the ergodic condition in the current
system. In this sense, the current coupling method produces an equilibrium in
the system that is composed from the NH system with a hot thermostat and
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the NH system with a cold thermostat, and the method allows a completely
de�nite statistical description. Although the ergodicity is broken in the single
NH 1HO system (viz., the decoupled case in the current study) [2,21] and
identical 1HOs coupled to the single NH equation [22], it holds in the current
coupled NH 1HO systems. Only the current coupling with the additional linear
force �� T [I]k[I;J ]x[J ] against particle I is su¢ cient to attain the ergodicity.

These are the conclusions obtained from the numerical simulations. Pure
mathematical statement related to ergodic dynamical system theory is still
open. Applications to more complicated systems are under study.
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Fig. 1. Schematic �gure to understand the current scheme by presenting the most
simple example of the coupled NH lattices. Two oscillators are subject to cold and
hot bath, respectively. They also have an interaction described by a spring with its
strength k[1;2]. (a) Conventional case represents a non equilibrium. (b) The current
case realizes an equilibrium by using scaled forces, viz., the scaled spring constants,
~k[I;J ] = � T [I]k[I;J ], which is not symmetric in general [see Eq. (24)].
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Fig. 2. (x; p) trajectories for NH oscillators: (a) an oscillator in a cold bath in an
uncoupled system, (b) an oscillator in a hot bath in an uncoupled system, (c) an
oscillator in a cold bath in the coupled system, and (d) an oscillator in a hot bath
in the coupled system.
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Fig. 3. Distribution densities for the coupled NH oscillators: (top) theoretical and
simulated densities of x, p, � for system 1 (an oscillator in a cold bath); (bottom)
theoretical and simulated densities of x, p, � for system 2 (an oscillator in a hot
bath).
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