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CHARACTERIZATION OF SLICES AND RIBBONS
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When the definition of ribbon knot was made [2, p.172], it was with the
expectation that it would subsequently be proved that every slice knot is a ribbon
knot (the converse being obvious), thereby establishing a simple characterization
in 3-dimensional space R’ of slice knots. Unfortunately this has turned out to
be a very difficult thing either to prove or disprove®. Although such a 3-dimen-
sional characterization may easily be obtained by suitably modifying the defini-
tion of ribbon knot, unless an example of a slice knot that is not a ribbon knot
is found this would be somewhat unsatisfactory, because the striking simplicity
of the original definition would be lost.

At any rate what I am going to do here is to give new 3-dimensional char-
acterizations of ribbon knots and slice knots. It is hoped that these new characte-
rizations may throw some light on the relationship between ribbon knots and slice
knots. In this direction they do lead to an extremely simple derivation of a con-
dition satisfied by the Seifert matrix of a ribbon knot, which condition yields at
once all of the known restrictions on the algebraic invariants of a ribbon knot.
It also shows that no knot invariants derivable from a Seifert matrix can ever be
used to show that a slice knot is not a ribbon knot.

Extending slightly a terminology introduced by Papakyriakopoulos [8, p.5],
let me call a normal singular surface f: S—M canonical if there are no branch
points and the boundary 9S of S is mapped topologically into M by f. (For
simplicity it is assumed that the 3-dimensional manifold M is orientable and
that the surface S is compact and orientable.) The singularity of a canonical
surface consists of a finite number of triple points and a finite number of double
lines which cross themselves and each other at the triple points. Each double
line J is one or another of the following three types:

(1) a closed curve whose antecedents are closed curves J” and J” that lie in the

interior 48 of S;

(2) an arc whose antecedents are an arc J’ that spans the boundary 85 of S and

D The proof presented in [4] has an error in the second paragraph of p. 380. This fact
was communicated to me by the authors, who cited diagram 2 to illustrate the difficulty.
Diagram 1, from which diagram 2 may be generated was communicated to me by I. Johansson.
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an arc J’/ that lies entirely in J5S;

(3) an arc whose antecedents are arcs J/ and J”, each of which has an endpoint
on 3S and otherwise lies in JS.

In the Dehn lemma only singularities of the first kind occur, so I call these
Dehn singularities; singularities of the second kind may be called ribbon singulari-
ties; those of the third kind may perhaps be called clasping singularities”. In
each case I call the singularity simple when J’ and J” are disjoint from one
another and have no self-intersections.

A ribbon knot is a tame knot that bounds in R® a singular disk whose only
singularities are mutually disjoint simple ribbon singularities. A slice knot is,
of course, a tame knot in R*=R’X [0] that bounds in R*X [0, o) a locally flat disk.

Extension of these concepts to links of more than one component is not
unique. In [2, p. 172] three different generalizations of the concept of slice
knot were given; only one of them is of interest here: a weak slice link® is a tame
link of, say, u components in R*x[0] that bounds in R*X [0, o) a locally flat
surface of genus 0 (that may or may not be connected). It is more or less
obvious how to make analogous generalizations of the ribbon-knot concept:
for example®, a weak ribbon link should be a tame link of, say, u components
that bounds a singular surface of genus 0 whose only singularities are mutually
disjoint simple ribbon singularities.

Now what is presently known about the relationship between slices and
ribbons may be summed up in the following theorem (cf. Murasugi [7, lemma
8.1, p. 414] or Hosokawa and Yanagawa [4, lemma 2, p. 377]), where 0 denotes the
trivial knot type, and ¢ & y» denotes the link type that splits into ¢ and yr.

Theorem A. A knot type « is a slice knot type if and only if the link type
1 & 0 &:--& 0 of u components is, for sufficiently large p, a weak ribbon link type.

I come now to the basic result of this paper. A system of annuli K, U - UK,
will be called trivial if they are mutually disjoint and such that the link
0K, U+ UOK, of 2k components is of trivial type in R®. (In other words the

2> A knot that bounds a singular disk whose only singularity is a single simple clasp is a
doubled knot (Schlingknoten); this kind of a singularity was studied by H. Seifert [10].

3 A strong slice link is a tame link of, say, # components in R%®x[0, o) the union of x
mutually disjoint locally flat disks; a strong ribbon link would be a tame link of, say, 2 com-
ponents that bounds (in R®) the union of u singular disks the only singularities of which are
mutually disjoint simple ribbon singularities. With proofs similar to those of theorem 1’ and
corollary 1’ one can prove the following: THEOREM 17’. A link of u components is a strong
ribbon link if and only if it bounds a non-singular surface F of, say, genus h on which there is a
trivial system of annuli K., -+, Ky+u-1 which is such that each component of F—(K,U---U
K} +w-1) has one of the components of the link as its boundary. Corollary 1’". A strong ribbon
link of 1 components has a standard Seifert matrix V of size, say (2h+u—1)X(2h+ u—1) whose
leading principal hXh minor is 0, as are its last u—1 rows and columns.
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annuli are untwisted, unknotted and unlinked.) Let me call a connected non-
singular oriented surface F in R® semi-unknotted if on it there is a trivial system
of annuli K,U--- UK, which is such that F—(K,U--UK,) is a (connected)
surface of genus 0. Note thatin such a case the genus of F is 4, and the number
of boundaries of F —(K,U - UK}) is 2k more than the number of boundaries
of F.

Theorem 1. A knot is a ribbon knot if and only if 1t bounds a semi-unknotted
surface.

Proof.” Suppose first that & is a ribbon knot, and consider a singular disk
f: D—R® bounded by k, whose only singularities are mutually disjoint ribbon
singularities (J;/, J;")—J:» t=1,2, -, h. For each 7 let u; be a simple closed
curve on JD that bounds a disk d; in JD that contains J,// and is otherwise dis-
joint from the pre-singularity and from the other disks d; (j==17). If, for each i,
one makes the orientation-preserving cut [8, p. 12] along J; one gets a non-
singular orientable surface F of genus 4. On this surface a suitably thin neigh-
borhood K; of f(«;) is an annulus, and F— (K, U--- UK,) is connected, hence a
surface of genus 0. Since the disks D,=f(d;), i=1, -+, h, are pairwise disjoint
the link 0K, U -+ UBK,(of 2k components) is of trivial type.

Suppose conversely that & bounds a semi-unknotted surface F of geuns A.
Then there are mutually disjoint annuli K, -+, K, on F such that
F—(K,U:-UK,)is a surface of genus 0, and pairwise disjoint disks D,t, .-,
D}, D3, -++, D} in R® such that 0D U0D4=0K;. If one replaces K, U --- UK, by
D{y---UD{UDiU-+- UD} one obtains a singular disk bounded by k whose
singularity consists of a certain number of mutually disjoint simple ribbon
singularities (J;/, J;/)—J:i=1, -+, [, and perhaps also a number of simple Dehn
singularities that are disjoint from each other and from J,U---UJ,. Such Dehn
singularities are easily eliminated in the usual way (there being no triple points)
by making orientation preserving cuts along them.

With virtually identical proof one may obtain a generalization to links:

Theorem 1'. A link is a weak ribbon link if and only if it bounds a semi-
unknotted surface.

Of course a characterization of slice knots results from theorem A and 1’:

Theorem 1*%. A knot type « is a slice knot type if and only if, for some
w=1, thereis a semi-unknotted surface whose boundary is of the link type « & 0 &---
& 0 of u components.

These conditions on spanning surfaces lead to conditions on Seifert matrices

4 I am indebted to F.Hosokawa for pointing out an error in the original proof.
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obtained from them. First, recall the definition of a Seifert matrix for a knot
or link [9, p. 586; 11, p. 64]. Let F be a non-singular oriented connected surface
in R’ of genus &, whose boundary OF is a link of 4 components. Since F is
2-sided in R’, any 1-dimensional cycle b on F can be deformed into a cycle b* of
R’ lying slightly above F, and it can also be deformed into a cycle 4 of R® that
lies slightly below F. To any family of cycles b,, -++, b,,.._, representing a basis
for the first homology group H,(F) of F one can associate a matrix V=l||v;,]|
with 2A+p—1 rows and columns by defining the entry v;; to be the linking
number L(b%, b%) of &% and b} in R®. Any such matrix is called a Seifert matrix
of thelink OF (or of the surface F). It should be noted that V' — V"’ is the matrix
of intersection numbers on F of these basic cycles [9, p. 585].

Suppose that F is put in the canonical form of a disk with % pairs of bands
B;, B,,;,i=1, «-, h, and p—1 unpaired bands C,, ---, C,,_,. Cf[9, p. 584; 11,
p. 63]. A basis by, +++, by yu_, for H (F) represented by the median lines of
By, -+, By, By, +++y By, C,, +++, Cy_,, In that order, oriented so that the intersec-
tion number on F of b; with b,;, is +1 for i=\, -+, A, is called a standard basis.
In such a case the matrix ' —V’ of intersection number will have the form

0—E 0
V—-V'=|E 0 0)

0 0 0

where E denotes the Xk identity matrix. I shall call a matrix V standard if
V —V’ has this form.

If the surface F is semi-unknotted it can be put into canonical form in such
a way that the annuli K, -+, K, follow the median lines of B,, :-, B,. When
this is done it is obvious that L(b%, 4)=0 for all 7, j<h. Thus Theorems 1 and 1’
have the following consequence.

Corollary 1. A ribbon knot has a standard Seifert matrix V of size, say,

2hX 2h, whose leading principal h X h minor Pu P |l 45 0,

Up1***Unn

Corollary 1'. A weak ribbon link of p components has a standard Seifert
matrix V of size, say, (2h+p—1)X (2h+p—1), whose leading principal hxh
minor is 0.

It is known that any (2h4p—1)X(2h+p—1) integral matrix V=||v;;||

0—E 0
that satisfies the condtion V —V’'= (E 0 0) is a Seifert matrix for some link
0 0 O

of u components [9, pp. 586-587]. If the leading principal /X & minor is 0 then,
among the various surfaces F' for which V' is a Seifert matrix, there will be at
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least one that is semi-unknotted.

One can also obtain a corollary from Theorem 1*. Suppose that F is a
semi-unknotted surface whose boundary is a link of x components of type
£ &0 &---& 0. Then it can be put into canonical form in such a way that the
annuli X,, -+, K, follow the median lines of B,, :--, B, and the curves C,, :--,
C,._, represent the trivial constituents of x& 0 &---& 0. Then v,;=0 not only

when 7, j <A but also whenever either :>2k and j>2h. Thus

Corollary 1*. If k is the type of a slice knot then, for some <1, the link
type k & 0&---& 0 of p components has a standard Seifert matrix V of size, say,
(2h+p—1) X (2h—p—1) of the form

V1h+1 *Uian Vi1 " Viznip—1
[ T P
Uhp+1 ***Unan Vhon+1 " Vhohtp-1
Uptr " Vntan Uptin+r """ Optizn Vpt12p+1°" " Upt1zptp—1
Uany ***Uohn Vanh+1 ***Ushon Uonzh+1 **"V2hzh+n-1
Uop+11 " V2p+1n Voh+1h+1 Uoh+12k
................................................ 0

Uopru-11"""Vshtu—1h  Vzptt-in+1’ Voptp-124

From Corollary 1 it is easy to deduce all the known algebraic conditions for
ribbon knots, i.e. that [3. pp. 262-263] the Alexander polynomial must be of
the form A(t)=f(t) f(1/t), that [1] the Minkowski units must all be=-1, and
that [7, theorem 8.3, p. 414] the signature must be=0. These are, of course,
also known conditions for slice knots, cf [6]. The analogue of corollary 1 for
slice knots has been proved by J. Levine [5]. It follows that, in order to show
that some slice. knot is not a ribbon knot, if indeed that is true, deeper
invariants than those derived from the Seifert matrix will be required.
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