

Title	A note on direct sums of cyclic modules over commutative regular rings
Author(s)	Oshiro, Kiyoichi
Citation	Osaka Journal of Mathematics. 1975, 12(3), p. 715-718
Version Type	VoR
URL	https://doi.org/10.18910/5466
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Oshiro, K.
Osaka J. Math.
12 (1975), 715-718

A NOTE ON DIRECT SUMS OF CYCLIC MODULES OVER COMMUTATIVE REGULAR RINGS

KIYOICHI OSHIRO

(Received December 18, 1974)

Throughout this note R is a commutative ring with identity and all modules are unital.

We denote the maximal ring of quotients of R by $Q(R)$ and the ring generated by the set of all idempotents of $Q(R)$ over R by $C(R)$. In case R is semi-prime, $C(R)$ coincides with the Baer hull of R in the sense of A. C. Mewborn ([3, Proposition 2.5]). For an R -module M , we denote its injective hull by $E_R(M)$. It is well known (e.g. [1]) that if R is semi-prime, then $Q(R)=E_R(R)$.

Let M be an R -module. We put

$$\begin{aligned} T(M) &= \{x \in M \mid \text{Hom}_R(Rx, E_R(R)) = 0\} \\ &= \{x \in M \mid (0:x) \text{ is a dense† ideal of } R\} \end{aligned}$$

where $(0:x) = \{r \in R \mid rx=0\}$ (see [7]). M is said to be torsion if $T(M)=M$ and torsion free if $T(M)=0$.

Now, for an R -module M , we shall consider the following condition studied in [4]:

(*) M is embedded in a direct sum of cyclic R -modules as an essential R -submodule.

In [4] the author proved the following

Theorem 1. *Let R be a regular ring. Then the following conditions are equivalent:*

- (a) $Q(R)=C(R)$.
- (b) *Every finitely generated torsion free R -module M satisfies the condition (*)*

The purpose of this note is to prove the following two theorems.

Theorem 2. *Let R be a regular ring. Then the following conditions are equivalent:*

- (a) $Q(R/I)=C(R/I)$ for every dense ideal I of R .

† An ideal I of R is said to be dense provided that for any r and r' in R with $r' \neq 0$, there exists s in R such that $sr \in I$ and $sr' \neq 0$.

(b) *Every finitely generated torsion R -module M satisfies the condition $(*)$.*

Theorem 3. *Let R be a regular ring. Then the following conditions are equivalent:*

- (a) $Q(R/I)=C(R/I)$ for every ideal I of R .
- (b) *Every finitely generated R -module M satisfies the condition $(*)$.*

To prove the theorems above, we use the following lemmas.

Lemma 4. *For any R -module M with n generators, there exist n elements x_1, \dots, x_n in $E_R(M)$ such that $E_R(M)$ is a direct sum of $E_R(Rx_1), \dots, E_R(Rx_n)$. Moreover we can take $Rx_1 + \dots + Rx_n$ to be torsion if M is torsion.*

Proof. We proceed the proof by induction on the number n of the generators of M . If $n=1$, our assertion is obvious. We assume that the lemma is true for every R -module with $n (< m)$ generators, and let us suppose that M has m generators, say $M = Ra_1 + \dots + Ra_m$.

By a usual property of injectivity of $E_R(Ra_m)$, we have that

$$E_R(Ra_m) + M = E_R(Ra_m) \oplus S \subseteq E_R(M)$$

for some submodule S of $E_R(Ra_m) + M$. Putting $a_i = b_i + s_i$, $b_i \in E_R(Ra_m)$, $s_i \in S$, $i=1, 2, \dots, m-1$, we obtain

$$M + E_R(Ra_m) = (\sum_{i=1}^{m-1} Rs_i) \oplus E_R(Ra_m).$$

Hence by making use of our induction hypothesis on $\sum_{i=1}^{m-1} Rs_i$, there are $m-1$ elements x_1, \dots, x_{m-1} in $E_R(\sum_{i=1}^{m-1} Rs_i) \subseteq E_R(M)$ such that

$$E_R(\sum_{i=1}^{m-1} Rs_i) = E_R(Rx_1) \oplus \dots \oplus E_R(Rx_{m-1}).$$

Hence it follows that

$$E_R(M) = E_R(Rx_1) \oplus \dots \oplus E_R(Rx_{m-1}) \oplus E_R(Ra_m).$$

Moreover, if M is torsion, so is each Ra_i and hence each Rs_i is also torsion. This implies that $(\sum_{i=1}^{m-1} Rx_i) + Ra_m$ is torsion.

The following lemma is due to R. S. Pierce [6, Corollary 23.7].

Lemma 5. *Let R be a regular ring, I an ideal of R and M an R -module with $IM=0$. Then M is injective as an R -module if and only if M is injective as an R/I -module.*

REMARK. Let R be a regular ring and I an ideal of R . If M is an R -module and $IM=0$, then it is easily seen that $IE_R(M)=0$. In particular we have that $IE_R(R/I)=0$ and hence, by the lemma above, $E_R(R/I)=E_{R/I}(R/I)$ ($=Q(R/I)$).

Proof of Theorem 3. (a) \Rightarrow (b). Let $M=Ra_1+\cdots+Ra_n$ be a finitely generated R -module. By Lemma 4 and the above remark, there are ideals I_1, \dots, I_n of R such that M is embedded in the external direct sum of $Q(R/I_1), \dots, Q(R/I_n)$ as an essential submodule. Let us write

$$\begin{aligned} a_1 &= x_{11} \times \cdots \times x_{1n}, \\ a_2 &= x_{21} \times \cdots \times x_{2n}, \\ &\dots \\ a_n &= x_{n1} \times \cdots \times x_{nn}, \end{aligned}$$

where $x_{ij} \in Q(R/I_j)$, $i, j=1, 2, \dots, n$, and denote $\sum_{i=1}^n Rx_{ij}$ by A_j , $j=1, 2, \dots, n$. Then A_j is a finitely generated R/I_j -submodule of $Q(R/I_j)$, $j=1, 2, \dots, n$ and M is embedded in $A_1 \oplus \cdots \oplus A_n$ as an essential R -submodule. Here, applying Theorem 1, each A_j satisfies the condition (*) as an R/I_j -module and so does as an R -module. Hence M satisfies the condition (*) as an R -module.

In the proof above, we can take each I_i to be dense ideal of R if M is torsion. Therefore this yields the proof of (a) \Rightarrow (b) in Theorem 2 at the same time.

(b) \Rightarrow (a). Let I be an ideal of R . By Theorem 1, to prove that $Q(R/I)=C(R/I)$, we may show that every finitely generated torsion free R/I -module satisfies the condition (*) as an R/I -module. But this is evident, since every finitely generated torsion free R/I -module satisfies the condition (*) as an R -module and so does as an R/I -module.

Note that if I is a dense ideal and M is an R/I -module, then M is torsion as an R -module since $IM=0$. Hence we also obtain the proof of (b) \Rightarrow (a) in Theorem 2.

Corollary 6. *Let R be a regular ring such that $Q(R/I)=C(R/I)$ for every dense ideal I of R . Then every finitely generated torsion injective R -module is a direct sum of cyclic R -modules.*

Corollary 7. *Let R be a regular ring such that $Q(R/I)=C(R/I)$ for every ideal I of R . Then every finitely generated injective R -module is a direct sum of cyclic R -modules.*

Corollary 7 was shown by R. S. Pierce [6, Theorem 23.5] for the ring of all global sections of the simple F -sheaf over a Boolean space where F is a finite field. Let us note that a regular ring R is isomorphic to such a regular ring if and only if there exist finite elements, say r_1, \dots, r_n , in R with the property that all R/\mathfrak{m} , $\mathfrak{m} \in \text{Spec}(R)$ are fields with just n elements $r_1+\mathfrak{m}, \dots, r_n+\mathfrak{m}$ and $R/\mathfrak{n} \cong R/\mathfrak{n}'$ for any $\mathfrak{n}, \mathfrak{n}'$ in $\text{Spec}(R)$ by the canonical mapping: $r_i+\mathfrak{n} \rightarrow r_i+\mathfrak{n}'$ (cf. [5, Proposition 2.1]). This class of regular rings contains Boolean rings and more generally p -rings in the sense of McCoy and Montgomery [2] ([6, p. 53]).

On the other hand, since this class of regular rings is clearly closed under homomorphic images, it is contained, by [5, Theorem 2.4], in the class of those regular rings R with $Q(R/I)=C(R/I)$ for every ideal I of R . So, Corollary 7 can be seen as a generalization of the result due to R. S. Pierce.

YAMAGUCHI UNIVERSITY

References

- [1] J. Lambek: *Lectures on Rings and Modules*. Blaisdell Publishing Co., Waltham, Mass., 1966.
- [2] N.H. McCoy and D. Montgomery: *A representation of generalized Boolean rings*, Duke Math. J. **3** (1937), 455–459.
- [3] A.C. Mewborn: *Regular rings and Baer rings*, Math. Z. **12** (1971), 211–219.
- [4] K. Oshiro: *On torsion free modules over regular rings*, Math. J. Okayama Univ. **16** (1973), 107–114.
- [5] K. Oshiro: *On torsion free modules over regular rings II*, Math. J. Okayama Univ. **16** (1974), 199–205.
- [6] R.S. Pierce: *Modules over Commutative Regular Rings*, Memoirs Amer. Math. Soc. 70, 1967.
- [7] J. Zelmanowitz: *Injective hulls of torsion free modules*, Canad. J. Math. **23** (1971), 1094–1101.