

Title	Metrical theory for Farey continued fractions
Author(s)	Brown, Gavin; Yin, Qinghe
Citation	Osaka Journal of Mathematics. 1996, 33(4), p. 951–970
Version Type	VoR
URL	https://doi.org/10.18910/5477
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Brown, G. and Yin, Q.
 Osaka J. Math.
 33 (1996), 951–970

METRICAL THEORY FOR FAREY CONTINUED FRACTIONS

GAVIN BROWN and QINGHE YIN

(Received March 14, 1995)

1. Introduction

By making fundamental use of the Farey shift map and employing infinite (but σ -finite) measures together with the Chacon-Ornstein ergodic theorem it is possible to find new metrical results for continued fractions. Moreover this offers a unified approach to several existing theorems.

The application of ergodic theory to the study of continued fractions began with the Gauss transformation, $G: [0,1] \mapsto [0,1]$,

$$G(x) = \begin{cases} \frac{1}{x} - \left[\frac{1}{x} \right], & x \neq 0 \\ 0, & x = 0, \end{cases}$$

which is ergodic with respect to the Gauss measure μ_g , where

$$\mu_g(B) = \frac{1}{\log 2} \int_B \frac{1}{1+x} dx$$

for any Borel subset B of $[0,1]$. H. Nakada [11] extended G to the 2-dimensional case. Let $\tilde{G}: [0,1] \times [0,1] \mapsto [0,1] \times [0,1]$ be defined to be

$$\tilde{G}(x,y) = \left(G(x), \frac{1}{a_1 + y} \right)$$

where $a_1 = \left[\frac{1}{x} \right]$. The absolutely continuous invariant measure of \tilde{G} , $\tilde{\mu}_g$, is given by

$$d\tilde{\mu}_g = \frac{1}{\log 2} \cdot \frac{dxdy}{(1+xy)^2}.$$

Then the dynamical system $([0,1] \times [0,1], \mathcal{B}_2, \tilde{\mu}_g, \tilde{G})$ is the natural extension of $([0,1], \mathcal{B}_1, G)$ where \mathcal{B}_n is the Borel algebra of \mathbb{R}^n . Hence \tilde{G} is ergodic with respect

to $\tilde{\mu}_g$. Many metrical results for regular continued fractions can be proved using the ergodicity of G or \tilde{G} . For example, [3] (W. Bosma *et al*) gave the distribution of the sequences of approximation constants $\{\theta_n\}$.

In this paper we focus on the convergents and the mediants of the Farey (or slow) continued fractions. Define $T: [0,1] \mapsto [0,1]$ by

$$T(x) = \begin{cases} \frac{x}{1-x}, & 0 \leq x \leq \frac{1}{2}, \\ \frac{1-x}{x}, & \frac{1}{2} \leq x < 1. \end{cases}$$

T is called the Farey shift map (see [10]). T preserves the measure ν given by

$$d\nu = \frac{1}{\log 2} \cdot \frac{dx}{x},$$

which is σ -finite but not a probability measure, and T is ergodic with respect to this measure (see [12] or [10]). The natural extension of T , denoted by \tilde{T} , is the transformation on $[0,1] \times [0,1]$ given by

$$\tilde{T}(x,y) = \begin{cases} \left(\frac{x}{1-x}, \frac{y}{1+y} \right), & 0 \leq x < \frac{1}{2} \\ \left(\frac{1-x}{x}, \frac{1}{1+y} \right), & \frac{1}{2} \leq x < 1 \end{cases}$$

The absolutely continuous invariant measure, $\tilde{\nu}$, of \tilde{T} is determined by

$$d\tilde{\nu} = \frac{dx dy}{(x+y-xy)^2} \cdot \frac{1}{\log 2}.$$

The ergodicity of \tilde{T} can be established from that of \tilde{G} using an argument of [16] or by direct appeal to a general result given in [4]. Since the ν or $\tilde{\nu}$ are infinite (σ -finite, though), the Birkhoff Ergodic Theorem is not applicable for T or \tilde{T} . To avoid this disadvantage, Ito considered another transformation T_1 induced by T , the invariant measure of which is a probability measure. By the ergodicity of T_1 and its natural extension, he obtained in [8] many metrical results related to convergents and nearest mediants. In this paper we consider T and \tilde{T} directly. We shall establish an ergodic theorem for \tilde{T} though the Chacon-Ornstein ergodic theorem. In this way the results of [8] can be generalized for we can derive metrical results on Diophantine approximation by all the mediants not only the nearest ones. The results for nearest mediants become a special case. Any other metrical results obtained by applying the Birkhoff ergodic theorem for G or

\tilde{G} can also be obtained by using the ergodic theorem we build for \tilde{T} .

In Section 2, we recall some basic results about Farey and regular continued fractions and give some basic properties of T and \tilde{T} . In Section 3, we establish an ergodic theorem for T through the Chacon-Ornstein Ergodic Theorem. In Section 4, we apply the ergodic theorem established in Section 3 to prove some old and new metrical results both for the regular continued fractions and the Farey continued fractions.

2. Preliminaries

For an irrational $x \in [0, 1]$ with regular continued fraction expansion

$$\frac{1}{a_1 + \frac{1}{a_2 + \dots}} = [0; a_1, a_2, \dots],$$

the n -th convergent is given by

$$\frac{p_n}{q_n} = \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_n}}} = [0; a_1, a_2, \dots, a_n].$$

The integers p_n , q_n can be described inductively by setting

$$p_{-1} = 1, \quad p_0 = 0, \quad q_{-1} = 0, \quad q_0 = 1,$$

$$p_n = a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2}.$$

We shall be concerned with a slower sequence $\{P_n/Q_n\}$ of approximations to x , corresponding to a branch of the Farey tree (see [7], [14] for details). For our present purpose it suffices to know that

$$P_n = kp_m + p_{m-1}, \quad Q_n = kq_m + q_{m-1},$$

where

$$n = a_0 + a_1 + \dots + a_m + k, \quad 0 < k \leq a_{m+1}, \quad (a_0 = 0).$$

The sequence $\{p_n/q_n\}$ consists of the convergents of x , while $\{P_n/Q_n\}$ is the sequence of convergents and mediants.

The Farey shift map $T: [0, 1] \mapsto [0, 1]$, defined in the introduction, may be characterised as follows. For $x = [0; a_1, a_2, \dots]$, we have

$$T(x) = \begin{cases} [0; a_1 - 1, a_2, \dots], & a \geq 2 \\ [0; a_2, a_3, \dots], & a_1 = 1. \end{cases}$$

Moreover, for $x = [0; a_1, a_2, \dots]$, $y = [0; b_1, b_2, \dots]$ we have

$$\tilde{T}(x, y) = \begin{cases} ([0; a_1 - 1, a_2, \dots], [0; b_1 + 1, b_2, \dots]) & a_1 \geq 2 \\ ([0; a_2, a_3, \dots], [0; 1, b_1, b_2, \dots]), & a_1 = 1. \end{cases}$$

We make basic use of the numbers X_n , Y_n defined by $\tilde{T}^n(x, 1) = (X_n, Y_n)$. Note, in particular, that

$$Y_n = \begin{cases} [0; k + 1, a_m, \dots, a_1], & m \geq 1 \\ [0; k + 1], & m = 0 \end{cases}$$

where

$$n = a_0 + a_1 + \dots + a_m + k, \quad 0 \leq k < a_{m+1}.$$

It is well-known that for \tilde{G} , defined in the introduction,

$$\tilde{G}^m(x, 0) = (x_m, y_m) = ([0; a_{m+1}, a_{m+2}, \dots], [0; a_m, \dots, a_1]),$$

where $x_m = G^m x$, $y_m = q_{m-1} / q_m$.

Let us write

$$(1) \quad \Theta_n = Q_n^2 \left| x - \frac{P_n}{Q_n} \right|$$

and

$$(2) \quad \theta_m = q_m^2 \left| x - \frac{p_m}{q_m} \right|.$$

Then we have

$$(3) \quad \theta_m = x_m (1 + x_m y_m)^{-1}$$

and this is contained in the following formula, given in [2],

$$(4) \quad \Theta_n = (1 - kx_m)(k + y_m)(1 + x_m y_m)^{-1},$$

where

$$n = a_0 + a_1 + \dots + a_m + k, \quad 0 < k \leq a_{m+1}.$$

(4) allows discussion of Θ_n via \tilde{G} but our strategy is to work directly with \tilde{T} so we set about expressing the quantities Q_{n-1}/Q_n and Θ_n in terms of X_n , Y_n .

Lemma 1. *For $n = 1, 2, \dots$, we have*

$$Q_n/Q_{n+1} = (1 + Y_{n-1})^{-1} = \max\{Y_n, 1 - Y_n\}.$$

Proof. We know that Y_n equals $Y_{n-1}(1 + Y_{n-1})^{-1}$ or $(1 + Y_{n-1})^{-1}$ and that $0 < Y_{n-1} \leq 1$. Hence $(1 + Y_{n-1})^{-1}$ equals $\max\{Y_n, 1 - Y_n\}$.

Next we use induction. When $n=1$, we have $Y_1=1/2$, $Q_1=1$. And we always have $Q_2=2$. Hence

$$Q_1/Q_2=1/2=Y_1=\max\{Y_1, 1 - Y_1\}.$$

Suppose for $l \leq n$ we have

$$Q_l/Q_{l+1} = \max\{Y_l, 1 - Y_l\}.$$

Assume that $n=a_0+a_1+\dots+a_m+k$, $0 \leq k < a_{m+1}$. If $k=0$, then $Q_n=q_m$, $Q_{n+1}=1 \cdot q_m + q_{m-1}$ and $Y_n=[0; 1, a_m, a_{m-1}, \dots, a_1] \geq 1/2$. Hence $Q_n/Q_{n+1}=Y_n$. If $a_{m+1} \geq 2$, then $Q_{n+2}=2 \cdot q_m + q_{m-1}=Q_n+Q_{n+1}$. Thus

$$Q_{n+1}/Q_{n+2} = (1 + Q_n/Q_{n+1})^{-1} = (1 + Y_n)^{-1}.$$

If $a_{m+1}=1$, then $Q_{n+1}=q_{m+1}$ and $Q_{n+2}=q_m+q_{m+1}$. Again we have $Q_{n+2}=Q_n+Q_{n+1}$ and again we get $Q_{n+1}/Q_{n+2}=(1 + Y_n)^{-1}$.

When $0 < k < a_{m+1} - 1$, we have $Q_n=kq_m+q_{m-1}$, $Q_{n+1}=(k+1)q_m+q_{m-1}$ and $Q_{n+2}=(k+2)q_m+q_{m-1}$, and Y_n , which equals $[0; k+1]$ or $[0; k+1, a_m, \dots, a_1]$, is at most $1/2$. Hence

$$\begin{aligned} Q_{n+1}/Q_{n+2} &= Q_{n+1}(2q_m+Q_n)^{-1} \\ &= (2q_m/Q_{n+1} + (1 - Y_n))^{-1} \\ &= (2(k+1+y_m)^{-1} + (1 - Y_n))^{-1} \\ &= (2Y_n + 1 - Y_n)^{-1} = (1 + Y_n)^{-1}. \end{aligned}$$

Lastly we consider $k=a_{m+1}-1 > 0$. We have $Q_n=kq_m+q_{m-1}=q_{m+1}-q_m$, $Q_{n+1}=q_{m+1}$ and $Q_{n+2}=q_{m+1}+q_m$. We also have $Y_n=y_{m+1} \leq 1/2$. Hence, once more, $Q_{n+1}/Q_{n+2}=(1 + Y_n)^{-1}$.

Lemma 2. For $n=2, 3, \dots$, we have

$$(5) \quad \Theta_n = \begin{cases} (1 - Y_n)(X_n + Y_n - X_n Y_n)^{-1}, & Y_n < 1/2, \\ X_n Y_n (X_n + Y_n - X_n Y_n)^{-1}, & Y_n > 1/2, \end{cases}$$

$$(6) \quad \Theta_{n+1} = (1 - X_n)(X_n + Y_n - X_n Y_n)^{-1}.$$

Proof. For $n=a_0+a_1+a_2+\dots+a_m \geq 2$, we have $X_n=x_m$ and $Y_n=(1+y_m)^{-1} > 1/2$. An application of (3) gives

$$\Theta_n = \theta_m = X_n(1 + X_n(Y_n^{-1} - 1))^{-1} = X_n Y_n (X_n + Y_n - X_n Y_n)^{-1}.$$

For $n = a_1 + \dots + a_m + k \geq 2$ where $0 < k < a_{m+1}$, we apply (4) after noting that

$$X_n = (x_m^{-1} - k)^{-1}, \quad Y_n = (k + 1 + y_m)^{-1} < 1/2.$$

This gives

$$\Theta_n = (1 - Y_n)(X_n + Y_n - X_n Y_n)^{-1}.$$

It is now easy to see that $Y_{n+1} > 1/2$ if and only if $X_n > 1/2$. When $X_n > 1/2$

$$(X_{n+1}, Y_{n+1}) = \tilde{T}(X_n, Y_n) = (X_n^{-1}(1 - X_n), (1 + Y_n)^{-1}).$$

In this case we see that

$$\begin{aligned} \Theta_{n+1} &= X_{n+1} Y_{n+1} (X_{n+1} + Y_{n+1} - X_{n+1} Y_{n+1})^{-1} \\ &= (1 - X_n)(X_n + Y_n - X_n Y_n)^{-1} \end{aligned}$$

For the case $X_n < 1/2$, we substitute $X_{n+1} = (1 - X_n)^{-1} X_n$, $Y_{n+1} = Y_n(1 + Y_n)^{-1}$ in the formula

$$\Theta_{n+1} = (1 - Y_{n+1})(X_{n+1} + Y_{n+1} - X_{n+1} Y_{n+1})^{-1}$$

to obtain the required result. ■

3. Ergodicity and ergodic theorem for \tilde{T}

We begin this section by showing that \tilde{G} can be induced from \tilde{T} .

Theorem 1. *The dynamical system $(\Omega, \mathcal{B}_2, \tilde{\mu}_g, \tilde{G})$ is (isomorphic with) the system induced from $(\Omega, \mathcal{B}_2, \tilde{v}, \tilde{T})$ on the set $E = \{(x, y) : y > 1/2\}$.*

Proof. Recall that for $x = [0; a_1, a_2, \dots]$, $y = [0; b_1, b_2, \dots]$ we have

$$\tilde{T}(x, y) = \begin{cases} ([0; a_1 - 1, a_2, \dots], [0; b_1 + 1, b_2, \dots]), & a \geq 2, \\ ([0; a_2, a_3, \dots], [0; 1, b_1, b_2, \dots]), & a_1 = 1. \end{cases}$$

In particular the second coordinate of $\tilde{T}(x, y)$ is greater than $1/2$ if and only if $a_1 = 1$. Accordingly the induced map \tilde{T}_E is given by

$$\tilde{T}_E(x, y) = (x^{-1} - a_1, (1 + (y^{-1} + a_1 - 1)^{-1})^{-1}).$$

Now consider the map $\phi : E \mapsto \Omega$ given by

$$\phi(x, y) = (x, y^{-1} - 1).$$

The map transforms to $(x, y) \mapsto (x^{-1} - a_1, (y + a_1)^{-1})$ and the measure $dxdy(x+y-xy)^{-2}$ transforms to $dxdy(1+xy)^{-2}$. \blacksquare

By Theorem 1 and the ergodicity of \tilde{G} together with a result of [16], we obtain the ergodicity of \tilde{T} . Theorem 1 also gives an abstract justification of the statement that any result derived from G or \tilde{G} can be obtained from \tilde{T} .

The map \tilde{T} is ergodic and invertible and \tilde{v} is non-atomic so it follows (see [5]) that \tilde{T} is conservative. Therefore we may apply the Chacon-Ornstein theorem (cf. [13]) on the system $(\Omega, \mathcal{B}_2, \tilde{v}, \tilde{T})$ (we use Ω to denote $[0,1] \times [0,1]$ for the remainder of the paper) to derive the following result.

Theorem 2. *For any $f, g \in L^1(\Omega, \mathcal{B}_2, \tilde{v})$ with $\int g d\tilde{v} \neq 0$, one has*

$$\lim_{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} f(\tilde{T}^k(x, y))}{\sum_{k=0}^{n-1} g(\tilde{T}^k(x, y))} = \frac{\int f d\tilde{v}}{\int g d\tilde{v}} \text{ a.e.}$$

Next we show that under Lipschitz conditions on f, g , the points $\tilde{T}^k(x, y)$ in Theorem 2 can be replaced by $(X_k, Y_k) = \tilde{T}^k(x, 1)$.

Theorem 3. *Suppose that $f, g \in L^1(\Omega, \mathcal{B}, \tilde{v})$ satisfy*

$$|f(x, y) - f(x, y')| \leq L|y - y'|^\alpha$$

$$|g(x, y) - g(x, y')| \leq L|y - y'|^\alpha$$

where $L > 0$, $\alpha > 0$ are constants. If $\int g d\tilde{v} \neq 0$, then for almost all $(x, y) \in \Omega$ one has

$$\lim_{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} f(\tilde{T}^k(x, y))}{\sum_{k=0}^{n-1} g(\tilde{T}^k(x, y))} = \lim_{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} f(X_k, Y_k)}{\sum_{k=0}^{n-1} g(X_k, Y_k)}.$$

Proof. Let Z_i be the second coordinate of $\tilde{T}^i(x, y)$, i.e. $\tilde{T}^i(x, y) = (X_i, Z_i)$. We claim that for almost all $x \in [0, 1]$ and all $y \in (0, 1]$, we have

$$\sum_{i=0}^{\infty} |Z_i - Y_i|^\alpha < +\infty.$$

In fact, for $x = [0; a_1, a_2, \dots]$, $i = a_1 + a_2 + \dots + a_m + k$, $0 \leq k < a_{m+1}$, one has

$$Z_i = [0; k+1, a_m, \dots, a_2, a_1 - 1 + y^{-1}]$$

and

$$Y_i = [0; k+1, a_m, \dots, a_2, a_1].$$

Hence we have

$$|Y_i - Z_i| \leq c/q_m^2$$

for some constant c , where q_m is the denominator of the m -th convergent $\frac{p_m}{q_m}$ of the regular continued fraction expansion of x (cf. [1] p.42]. Therefore we get that

$$\sum_{i=0}^{\infty} |Z_i - Y_i|^{\alpha} \leq \sum_{m=0}^{\infty} \sum_{k=1}^{a_{m+1}} \left(\frac{c}{q_m^2} \right)^{\alpha} = c^{\alpha} \sum_{m=0}^{\infty} \frac{a_{m+1}}{q_m^{2\alpha}}.$$

By induction we can see that

$$q_m \geq 2^{(m-1)/2}.$$

We need the following theorem (see [15]).

Theorem A. *Let $F(n) > 1$, for $n = 1, 2, \dots$, and suppose that $\sum_{n=1}^{\infty} \frac{1}{F(n)} < \infty$.*

Then the set

$$A = \{x \in [0, 1], a_k(x) > F(k) \text{ infinitely many times}\}$$

has Lebesgue measure 0.

Now we choose $F(n) = 2^{n\alpha/2}$. By the above theorem we see that the set

$$E = \{x \in [0, 1], a_k(x) > F(k) \text{ only finitely many times}\}$$

has Lebesgue measure 1. Hence for almost all $x \in [0, 1]$,

$$\sum_{m=0}^{\infty} \frac{a_{m+1}}{q_m^{2\alpha}} \leq C(x) + \sum_{m=0}^{\infty} 2^{\alpha(2-m)/2} < \infty.$$

Where $C(x) = \sum_{a_m > F(m)} \frac{a_{m+1}}{q_m^{2\alpha}}$. The required result follows easily when we bear in mind the fact that $\Sigma g(\tilde{T}^k(x, y))$ diverges almost everywhere because \tilde{T} is conservative and ergodic. \blacksquare

For some functions $f(x, y)$ though we do not have

$$(*) \quad |f(x,y) - f(x,y')| \leq L|y - y'|^\alpha$$

for all $y, y' \in [0,1]$, it is still true that

$$|f(T^i(x,y)) - f(X_i, Y_i)| \leq L|Z_i - Y_i|^\alpha, \quad \alpha > 0,$$

for almost all $x \in [0,1]$ and i large enough.

EXAMPLE. Let

$$f(x,y) = \begin{cases} \log(1-y) & y \in [0,1) \\ 0 & y=1 \end{cases}$$

Then $f \in L^1(\Omega)$. We do not have $(*)$ for all $y, y' \in [0,1]$.

For $x = [0; a_1, a_2, \dots]$, let

$$i = a_1 + a_2 + \dots + a_m + k, \quad 0 \leq k < a_{m+1}$$

where $m \geq 2$. Then

$$\begin{aligned} & |f(T^i(x,y)) - f(X_i, Y_i)| \\ &= |\log(1 - Z_i) - \log(1 - Y_i)| \\ &= \frac{1}{|1 - \xi_i|} |Z_i - Y_i| \end{aligned}$$

where ξ_i is in between y_i and Y_i . It is easy to see that $1 - \xi_i \geq 1/q_m$, i.e.

$$\frac{1}{1 - \xi_i} \leq q_m \leq c|Y_i - Z_i|^{1/2}.$$

Therefore, $|f(T^i(x,y)) - f(X_i, Y_i)| \leq c|Y_i - Z_i|^{1/2}$.

4. Applications

In this section we apply the ergodic theorems for \tilde{T} to obtain metrical results for convergents and medians of regular continued fractions. For all the functions f, g involved in this section it is valid to replace $\tilde{T}^k(x,y)$ by (X_k, Y_k) as in Theorem 3 but omit the tedious verification.

For an irrational $x = [0; a_1, a_2, \dots]$ we shall call

$$\frac{kp_n + p_{n-1}}{kq_n + q_{n-1}} \quad \text{and} \quad \frac{(a_{n+1} - k)p_n + p_{n-1}}{(a_{n+1} - k)q_n + q_{n-1}}$$

the k -th mediants of x , when $a_{n+1} \geq 2k$. We let $P_n^{(k)}/Q_n^{(k)}$ denote the sequence which consists of all convergents and i -th mediants of x for all $i \leq k$. When $k=0$, we recover the convergents $\{p_m/q_m\}$ and, when $k=1$, we obtain the so-called nearest mediants of Ito, [8]. It is easy to see that the event “ P_n/Q_n appears as some $P_i^{(k)}/Q_i^{(k)}$ ” is characterised by $X_n > 1/(k+1)$ or $Y_n > 1/(k+2)$ while “ P_{n+1}/Q_{n+1} appears as some $P_i^{(k)}/Q_i^{(k)}$ ” is by $X_n > 1/(k+2)$ or $Y_n > 1/(k+1)$.

Let us write also

$$\Theta_n^{(k)} = (Q_n^{(k)})^2 |x - P_n^{(k)}/Q_n^{(k)}|.$$

Our main theorem can now be stated.

Theorem 4. *For almost all x we have*

(i). *for $k=0,1,2,\dots$,*

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log Q_n^{(k)} = \frac{\pi^2}{12 \log(2k+2)},$$

(ii). *for $k=0,1,2,\dots$,*

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \left| x - \frac{P_n^{(k)}}{Q_n^{(k)}} \right| = -\frac{\pi^2}{6 \log(2k+2)},$$

(iii). *for $k=1,2,\dots$,*

$$\lim_{n \rightarrow \infty} \frac{1}{n} \#\{i: i \leq n, \Theta_i^{(k)} < z\} = \frac{1}{\log(2k+2)} \begin{cases} z, & 0 \leq z < 1 \\ 1 + \log z, & 1 \leq z < \frac{k+1}{2} \\ 2 - \frac{2z}{k+1} + \log \frac{2z^2}{k+1}, & \frac{k+1}{2} \leq z < k+1 \\ \log(2k+2), & k+1 \leq z \end{cases}$$

$$(iv). \quad \lim_{n \rightarrow \infty} \frac{1}{\log Q_n^{(k)}} \#\{i: i \leq n, \Theta_i < z\} = \frac{12}{\pi^2} \begin{cases} z, & 0 < z \leq 1, \\ 1 + \log z, & 1 < z. \end{cases}$$

REMARK. The case $k=0$ of (i) and (ii) are the basic results of Levy (see [1]), and the case $k=1$ of (i), (ii) and (iii) give results of Ito, [8]. The important result of Bosma *et al* in [3] corresponds to the case $k=0$ of (ii) and the proof which

follows could be simplified to yield that special case. Nevertheless a suitable interpretation of the three terms corresponding to $1/2 \leq z < 1$ yields the appropriate distribution. We take the signed sum, i.e.

$$\lim_{n \rightarrow \infty} \frac{1}{n} \# \{i: i \leq n, \theta_n < z\} = \frac{1}{\log 2} \begin{cases} z, & 0 \leq z < \frac{1}{2} \\ 1 - z + \log(2z), & \frac{1}{2} \leq z < 1 \\ \log 2, & 1 \leq z \end{cases}$$

where

$$1 - z + \log(2z) = z - (1 + \log z) + [2 - 2z + \log(2z^2)].$$

Proof. For (i) we take

$$f(x, y) = \log(\max\{y, 1-y\}),$$

$$g(x, y) = \begin{cases} 1, & \text{when } x > (k+1)^{-1}, \text{ or } y > (k+2)^{-1} \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\int f d\tilde{v} = -\frac{\pi^2}{12 \log 2}, \quad \int g d\tilde{v} = \frac{\log(2k+2)}{\log 2}.$$

For $n = a_0 + a_1 + \dots + a_m + k$, $0 \leq k < a_{m+1}$, we have, by Lemma 1,

$$\log \frac{Q_n}{Q_{n+1}} = f(X_n, Y_n)$$

while

$$\sum_{i=1}^n g(X_i, Y_i) = \# \{i: i \leq n, Q_i \text{ appears as some } Q_j^{(k)}\}.$$

Therefore

$$\sum_{i=1}^n f(X_i, Y_i) \Big/ \sum_{i=1}^n g(X_i, Y_i) = -s^{-1}(\log Q_{n+1} - \log Q_1).$$

where s is determined by $Q_s^{(k)} \leq Q_n < Q_{s+1}^{(k)}$. By the ergodic theorem of the last section

$$\lim_{s \rightarrow \infty} \frac{\log Q_s^{(k)}}{s} = - \lim_{n \rightarrow \infty} \sum_{i=1}^n f(X_i, Y_i) \Big/ \sum_{i=1}^n g(X_i, Y_i) = - \int f d\tilde{v} \Big/ \int g d\tilde{v},$$

and the required result follows.

For (ii) noting that $\Theta_n^{(k)} = (Q_n^{(k)})^2 |x - P_n^{(k)} / Q_n^{(k)}|$, by (i) it suffices to show that

$$\lim_{n \rightarrow \infty} \frac{\log \Theta_n^{(k)}}{n} = 0 \quad \text{a.e.}$$

Remember that Θ_{n+1} is one of $\Theta_s^{(k)}$ if and only if $X_n > (k+2)^{-1}$ or $Y_n > (k+1)^{-1}$. Then when Θ_{n+1} is one of $\Theta_s^{(k)}$ we have

$$\Theta_{n+1} = \frac{1 - X_n}{X_n + Y_n - X_n Y_n} < k+1.$$

On the other hand,

$$\Theta_{n+1} \geq 1 - X_n \geq 1 - [0; 1, a_{m+1}, \dots] > 1/(a_{m+1} + 1) \geq 1/2a_{m+1},$$

where m is determined by $Q_n \leq q_m < Q_{n+1}$. Therefore,

$$-\frac{\log a_{m+1} + \log 2}{s} < \frac{\Theta_s^{(k)}}{s} < \frac{\log(k+1)}{s}.$$

Noting that $m \leq s \leq (2k+1)m$ we obtain

$$\frac{\log a_{m+1}}{s} \leq \frac{\log a_{m+1}}{m} = \left(\frac{a_{m+1}}{m^\alpha} \right)^{1/\alpha} \cdot \frac{\log a_{m+1}}{a_{m+1}^{1/\alpha}} \rightarrow 0 \quad \text{a.e.}$$

by Theorem A, where $\alpha > 1$ is a constant. Therefore

$$\lim_{n \rightarrow \infty} \frac{\log \Theta_n^{(k)}}{n} = 0 \quad \text{a.e.}$$

To prove (iii) and (iv) we also consider Θ_{n+1} instead of Θ_n . Let

$$\begin{aligned} E_{z,t} &= \{(x,y) \in \Omega : \frac{1-x}{x+y-xy} < z, x > \frac{t}{1+t}\} \\ &\cup \{(x,y) \in \Omega : \frac{1-x}{x+y-xy} < z, y > t\} = E_1 \cup E_2 \end{aligned}$$

where $0 < z$, $0 \leq t \leq 1/2$ and

$$f(x,y) = \begin{cases} 1, & (x,y) \in E_{z,t} \\ 0, & \text{otherwise.} \end{cases}$$

We recast the inequality

$$(1-x)(x+y-xy)^{-1} < z$$

in the form

$$x > (1-zy)(1+z(1-y))^{-1} = u(y), \text{ say,}$$

and note that $(1-zy)(1+z(1-y))^{-1} > t/(1+t)$ if and only if $y > z^{-1} - t$. Therefore

$$E_1 = \begin{cases} \{x > u(y), 0 < y < 1\}, & 0 < z < \frac{1}{1+t} \\ \{x > u(y), 0 < y < \frac{1}{z} - t\} \cup \{x > \frac{t}{1+t}, \frac{1}{z} - t < y < 1\}, & \frac{1}{1+t} < z < \frac{1}{t} \\ \{x > \frac{t}{1+t}, 0 < y < 1\}, & \frac{1}{t} < z. \end{cases}$$

Suppose first that $0 < z < 1/(1+t)$. Then $E_{z,t} = E_1 = \{x > u(y), 0 > y > 1\}$. Hence

$$\log 2 \int f d\tilde{v} = \int_0^1 dy \int_{u(y)}^1 (x+y-xy)^{-2} dx = z.$$

Now consider the case $1/(1+t) \leq z < 1$. Note that $t \leq 1 - t < z^{-1} - t$. Then again $E_{z,t} = \{x > u(y), 0 < y < 1\}$ and $\log 2 \int f d\tilde{v} = z$.

When $1 < z < 1/2t$ we also have $z^{-1} - t > t$. Remember that $u(y) > 0$ when $y > z^{-1}$. Thus

$$\begin{aligned} E_{z,t} &= \{(x,y) \in \Omega: x > u(y), 0 < y < 1\} \\ &= \{x > u(y), 0 < y < z^{-1}\} \cup \{x > 0, z^{-1} < y < 1\}, \end{aligned}$$

and

$$\log 2 \int f d\tilde{v} = 1 + \log z.$$

If $1/2t < z < 1/t$, then $0 < z^{-1} - t < t$ and

$$\begin{aligned} E_{z,t} &= \{x > u(y), 0 < y < \frac{1}{z} - t\} \cup \{x > \frac{t}{1+t}, \frac{1}{z} - t < y < t\} \\ &\cup \{x > u(y), t < y < \frac{1}{z}\} \cup \{x > 0, \frac{1}{z} < y < 1\} \end{aligned}$$

Calculate that

$$\log 2 \int f d\tilde{v} = 2 - 2tz + \log(2tz^2).$$

Lastly, when $z > 1/t$ we have

$$E_{z,t} = \{x > t/(1+t), 0 < y < t\} \cup \{x > 0, t < y < 1\}$$

and $\log 2 \int f d\tilde{v} = \log 2 - \log t$.

It is now easy to piece together the result of (iii) by taking $t = (k+1)^{-1}$ and

$$g(x,y) = \begin{cases} 1, & \text{when } x > (k+2)^{-1} \text{ or } y > (k+1)^{-1} \\ 0, & \text{otherwise.} \end{cases}$$

To obtain (iv) we set $t=0$ and replace g by the function $\log(\max\{y, 1-y\})$ used as f in proving (i). This completes the proof. ■

REMARK. Part (iii) of the theorem (in some sense a limiting case as $k \rightarrow \infty$) shows that $\frac{1}{n} \#\{i: i \leq n, \Theta_i < z\} \rightarrow 0$ as $n \rightarrow \infty$ and hence that $\{\Theta_n\}$ does not have a distribution function. We can obtain some more information about Θ_n . We have

For almost all $x \in [0,1]$ and any $\varepsilon > 0$,

$$(i). \quad \lim_{n \rightarrow \infty} \frac{\Theta_n}{m^{1+\varepsilon}} = 0, \text{ where } q_m \leq Q_n < q_{m+1};$$

$$(ii). \quad \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n \Theta_i = \infty; \text{ and}$$

$$(iii). \quad \lim_{n \rightarrow \infty} \frac{1}{n^{2+\varepsilon}} \sum_{i=1}^n \Theta_i = 0.$$

In fact, for $n = a_0 + a_1 + \cdots + a_m + k$, where $0 \leq k < a_{m+1}$, by Lemma 2

$$(*) \quad \Theta_{n+1} < Y_n = [k+1; a_m, \dots, a_1] < k+2.$$

Then (i) follows from Theorem A. Using (*) we can get the the following estimation:

$$(**) \quad \frac{1}{16} \left[\sum_{i=1}^m a_i^2 + k^2 - n \right] - (m+1) < \sum_{i=1}^n \Theta_i < \sum_{i=1}^m a_i^2 + k^2.$$

Then follow (ii) and (iii).

Next let us compare Theorem 4 (iv) with some results of P. Erdős [6] and

J. Blom [2]. Let

$$\Theta\left(\frac{p}{q}, x\right) = q^2 \left| x - \frac{p}{q} \right|.$$

Define

$$\begin{aligned} U(x, z, n) &= \#\{(p, q) \in \mathbb{Z} \times N : (p, q) = 1, \Theta\left(\frac{p}{q}, x\right) \leq z, q \leq n\}, \\ U_1(x, z, n) &= \#\{(p, q) \in \mathbb{Z} \times N : (p, q) = 1, \Theta\left(\frac{p}{q}, x\right) \leq z, q \leq n, \\ &\quad \frac{p}{q} \text{ is a convergent of } x\} \end{aligned}$$

and

$$\begin{aligned} U_2(x, z, n) &= \#\{(p, q) \in \mathbb{Z} \times N : (p, q) = 1, \Theta\left(\frac{p}{q}, x\right) \leq z, q \leq n\}, \\ &\quad \frac{p}{q} \text{ is a best approximant of } x\}. \end{aligned}$$

By best approximant we mean that if there is a fraction $\frac{a}{b}$ different from $\frac{p}{q}$ such that

$$\left| \frac{a}{b} - x \right| \leq \left| \frac{p}{q} - x \right|$$

then $b > q$. Erdős [6]) proved that for any $z \geq 0$

$$\lim_{n \rightarrow \infty} \frac{U(x, z, n)}{n} = \frac{12}{\pi^2} z \quad \text{a.e.}$$

Blom [2] gave that

$$\lim_{n \rightarrow \infty} \frac{U_1(x, z, n)}{n} = \frac{12}{\pi^2} (f)z \quad \text{a.e.}$$

and

$$\lim_{n \rightarrow \infty} \frac{U_2(x, z, n)}{n} = \frac{12}{\pi^2} (f(z) + h(z)) \quad \text{a.e.}$$

where

$$f(z) = \begin{cases} z & 0 \leq z \leq \frac{1}{2} \\ 1-z+\log(2z) & \frac{1}{2} \leq z \leq 1 \\ \log 2 & z \geq 1, \end{cases}$$

$$h(z) = \begin{cases} 0 & 0 \leq z \leq \frac{1}{2} \\ z - \frac{1}{2} - \frac{1}{2} \log(2z) & \frac{1}{2} \leq z \leq 1 \\ \frac{1}{2} + \frac{1}{2} \log(2z) & z \geq 1. \end{cases}$$

When $z \leq 1$ Theorem 4(iii) corresponds to the result of Erdős [6]. [8] and [9] also gave new proofs in this case. When $z > 1$ this result takes a different form. This fact tells us that, for $z > 1$, there is no result for convergents and mediants analogous to the theorem of Legendre for $z = 1/2$ or the theorem of Fatou and Koksma for $z = 1$ (see [9]).

The result of Blom [2] can also be proved by Theorem 2 or 3. In fact for irrational $x \in [0, 1)$, a best approximant is an element of $\left\{ \frac{P_n}{Q_n} \right\}$ characterized by

$$Y_n > \frac{1}{2} \text{ or } Y_n^{-1} > X_n^{-1} + 1, \quad n \geq 2.$$

Thus we can prove these results by choosing appropriate functions f and g .
Jager [9] considered the two sequences

$$\frac{\{p_n + p_{n-1}\}}{\{q_n + q_{n-1}\}}, \quad \frac{\{(a_{n+1} - 1)p_n + p_{n-1}\}}{\{(a_{n+1} - 1)q_n + q_{n-1}\}}$$

separately and obtained some metrical results. If P_N/Q_N appears as $(p_n + p_{n-1})/(q_n + q_{n-1})$ then we have

$$X_N = [0; a_{n+1} - 1, a_{n+2}, \dots], \quad Y_N = [0; 2, a_n, \dots, a_1] \quad \text{when } a_{n+1} \geq 2,$$

or

$$X_N = [0; a_{n+2}, \dots], \quad Y_N = [0; 1, 1, a_n, \dots, a_1] \quad \text{when } a_{n+1} = 1.$$

Thus the first sequence is characterised by $1/3 < Y_n < 2/3$. The second one is more complicated. If $a_{n+1} \geq 2$, then $((a_{n+1} - 1)p_n + p_{n-1})/((a_{n+1} - 1)q_n + q_{n-1})$ corresponds

$$X_N = [0; 1, a_{n+2}, \dots] \in (1/2, 1), \quad Y_N = [0; a_{n+1}, \dots, a_1] \in (0, 1/2).$$

When $a_{n+1}=1$ we get p_{n-1}/q_{n-1} which corresponds to

$$\begin{cases} X_N = [0; a_n, 1, a_{n+2}, \dots] \in \left(\frac{1}{a_n+1}, \frac{2}{2a_n+1}\right), \\ Y_N = [0, 1, a_{n-1}, \dots, a_1] \in (1/2, 1). \end{cases}$$

Hence the second one is characterised by

$$X_n \in (1/2, 1), \quad Y_n \in (0, 1/2) \quad \text{or} \quad X_n \in \bigcup_{i=1}^{\infty} \left(\frac{1}{i+1}, \frac{2}{2i+1}\right), \quad Y_n \in (1/2, 1).$$

However, those two sequences are not “pure” nearest mediants. We shall consider the sequences

$$\left\{ \begin{array}{l} p_n + p_{n-1} \\ q_n + q_{n-1} \end{array} \right\} \quad \text{and} \quad \left\{ \begin{array}{l} (a_{n+1}-1)p_n + p_{n-1} \\ (a_{n+1}-1)q_n + q_{n-1} \end{array} \right\}, \quad a_{n+1} \geq 2$$

which are characterised by $1/3 < Y_n < 1/2$ and $X_n > 1/2, Y_n < 1/2$ respectively. In general we use $\{a_n^{(k)}/b_n^{(k)}\}$ and $\{c_n^{(k)}/d_n^{(k)}\}$ to denotes the “pure” k -th mediant sequences for each of the two directions

$$\left\{ \begin{array}{l} kp_n + p_{n-1} \\ kq_n + q_{n-1} \end{array} \right\} \quad \text{and} \quad \left\{ \begin{array}{l} (a_{n+1}-k)p_n + p_{n-1} \\ (a_{n+1}-k)q_n + q_{n-1} \end{array} \right\}, \quad a_{n+1} \geq 2k$$

respectively, where $k \leq 1$. It is not hard to see that $\{a_n^{(k)}/b_n^{(k)}\}$ is the subsequence of $\{P_n/Q_n\}$ determined by $X_n < 1/k$ and $(k+2)^{-1} < Y_n < (k+1)^{-1}$ while $\{c_n^{(k)}/d_n^{(k)}\}$ determined by $(k+1)^{-1} < X_n < k^{-1}$ and $Y_n < (k+1)^{-1}$. Define

$$\sigma_n^{(k)} = b_n^{(k)} |b_n^{(k)} x - a_n^{(k)}|$$

and

$$\rho_n^{(k)} = d_n^{(k)} |d_n^{(k)} x - c_n^{(k)}|.$$

Theorem 5. *For almost all $x \in [0, 1]$ and $k = 1, 2, \dots$, one has*

$$(i). \quad \lim_{n \rightarrow \infty} \frac{\log b_n^{(k)}}{n} = \lim_{n \rightarrow \infty} \frac{\log d_n^{(k)}}{n} = \frac{\pi^2}{12(\log(2k+1) - \log(2k))},$$

$$(ii). \quad \lim_{n \rightarrow \infty} \frac{1}{n} \log \left| x - \frac{a_n^{(k)}}{b_n^{(k)}} \right| = \lim_{n \rightarrow \infty} \frac{1}{n} \log \left| x - \frac{c_n^{(k)}}{d_n^{(k)}} \right| = -\frac{\pi^2}{6(\log(2k+1) - \log(2k))},$$

$$(iii). \quad \lim_{n \rightarrow \infty} \frac{1}{n} \# \{ \sigma_i^{(k)} < z, i \leq n \} = \lim_{n \rightarrow \infty} \frac{1}{n} \# \{ \rho_i^{(k)} < z, i \leq n \}$$

$$= \frac{1}{\log(2k+1) - \log(2k)} \begin{cases} \frac{2z}{k} - 1 - \log \frac{2z}{k}, & \frac{k}{2} < z \leq \frac{k^2+k}{2k+1} \\ \frac{z}{k^2+k} - \log \left(1 + \frac{1}{2k+1}\right), & \frac{k^2+k}{2k+1} < z \leq k \\ 1 - \frac{z}{k+1} - \log \frac{2(k^2+k)}{(2k+1)z}, & k < z \leq k+1 \\ \log(2k+1) - \log(2k), & k+1 < z. \end{cases}$$

Proof. For (i) we take f to be the same function as in the proof of Theorem 4(i). We let

$$g_1(x, y) = \begin{cases} 1, & 0 < x < k^{-1}, (k+2)^{-1} < y < (k+1)^{-1} \\ 0, & \text{otherwise} \end{cases}$$

for the first one and

$$g_2(x, y) = \begin{cases} 1, & (k+1)^{-1} < y < k^{-1}, 0 < x < (k+1)^{-1} \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\int g_1 d\tilde{v} = \int g_2 d\tilde{v} = \frac{\log(2k+1) - \log(2k)}{\log 2}.$$

Therefore we get (i).

(ii) can be proved by a similar argument as the proof of Theorem 4(ii).

As for (iii), we take $\sigma_n^{(k)}$ as an example. Since we are concerned $X_n < 1/k$ and $(k+2)^{-1} < Y_n < (k+1)^{-1}$, we have

$$\Theta_n = (1 - Y_n)(X_n + Y_n - X_n Y_n)^{-1}$$

by Lemma 2. It is easy to see that for the Θ_n in consideration we have

$$k/2 < \Theta_n < k+1.$$

Let

$$f(x, y) = \begin{cases} 1, & \frac{1-y}{x+y-xy} < z, x < \frac{1}{k}, \frac{1}{k+2} < y < \frac{1}{k+1} \\ 0, & \text{otherwise.} \end{cases}$$

Then $\sum_{i=1}^n f(X_i, Y_i)$ counts the number of $\Theta_i, i \leq n$ appears as some $\sigma_j^{(k)}$ and $< z$. The non-zero regions of f with respect to different values of z are as follows:

$$\begin{aligned} & \left\{ \frac{1-zx}{1+z-zx} < y < \frac{1}{k+1}, \frac{k-z}{kz} < x < \frac{1}{k} \right\}, \text{ when } \frac{k}{2} < z \leq \frac{k^2+k}{2k+1}, \\ & \left\{ \frac{1-zx}{1+z-zx} < y < \frac{1}{k+1}, \frac{k-z}{kz} < x \leq \frac{k+1-z}{(k+1)z} \right\} \\ & \quad \cup \left\{ \frac{1}{k+2} < y < \frac{1}{k+1}, \frac{k+1-z}{(k+1)z} < x < \frac{1}{k} \right\}, \text{ when } \frac{k^2+k}{2k+1} < z \leq k, \\ & \left\{ \frac{1-zx}{1+z-zx} < y < \frac{1}{k+1}, 0 < x \leq \frac{k+1-z}{(k+1)z} \right\} \\ & \quad \cup \left\{ \frac{1}{k+2} < y < \frac{1}{k+1}, \frac{k+1-z}{(k+1)z} < x < \frac{1}{k} \right\}, \text{ when } k < z \leq k+1. \end{aligned}$$

The proof is completed by calculating several integrals and taking g as g_1 in the proof of (i). ■

References

- [1] P. Billingsley: *Ergodic Theory and Information*, John Wiley & Sons, Inc., New York, 1965.
- [2] J. Blom: *Metrical properties of best approximation*, J. Austral. Math. Soc. (Ser. A), **53** (1992), 78–91.
- [3] W. Bosma, H. Jager and F. Wiedijk: *Some metrical observations on the approximation by continued fractuibs*, Indag. Math., **45** (1983), 281–299.
- [4] G. Brown and Q. Yin: *Natural extensions with infinite invariant measure*, submitted.
- [5] N.A. Friedman: *Introduction to Ergodic Theory*, Van Nostrand Reinhold, New York, 1970.
- [6] P. Erdős: *Some results on Diophantine approximation*, Acta Arith., **5** (1959), 359–369.
- [7] L. Goldberg and C. Tresser: *Rotation orbits and the Farey tree*, preprint.
- [8] S. Ito: *Algorithms with mediant convergents and their metrical theory*, Osaka J. Math., **26** (1989), 557–578.
- [9] H. Jager: *Some metrical observations on the approximation of an irrational number by its nearest mediants*, Period. Math. Hungar., **23** (1991), 5–16.
- [10] J.C. Lagarias: *Number theory and dynamical systems*, Proc. Symp. Appl. Math., **46** (1992), 35–72.
- [11] H. Nakada: *Metrical theory for a class of continued fraction transformations and their natural extensions*, Tokyo J. Math., **4** (1981), 499–426.
- [12] W. Parry: *Ergodic properties of some permutation processes*, Biometrika, **49** (1962), 151–154.
- [13] K. Petersen: *Ergodic Theory*, Cambridge Univ. Press, 1983.
- [14] I. Richards: *Continued fractions without tears*, Math. Mag., **54** (1981), 163–171.
- [15] A.M. Rockett and P. Szusz: *Continued Fractios*, World Scientific, 1992.
- [16] M. Thaler: *Transformations on [0,1] with infinite invariant measures*, Isr. J. Math., **46** (1983), 67–96.

Department of Pure Mathematics
The University of Adelaide
Adelaide, SA 5005, Australia

Vice-Chancellor
The University of Sydney
Sydney, NSW 2006, Australia