|

) <

The University of Osaka
Institutional Knowledge Archive

Title Metrical theory for Farey continued fractions

Author(s) |[Brown, Gavin; Yin, Qinghe

Osaka Journal of Mathematics. 1996, 33(4), p.

Citation 951-970

Version Type|VoR

URL https://doi.org/10.18910/5477

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Brown, G. and Yin, Q.
Osaka J. Math.
33 (1996), 951-970

METRICAL THEORY FOR
FAREY CONTINUED FRACTIONS

GAvIN BROWN and QINGHE YIN

(Received March 14, 1995)

1. Introduction

By making fundamental use of the Farey shift map and employing infinite
(but o-finite) measures together with the Chacon-Ornstein ergodic theorem it is
possible to find new metrical results for continued fractions. Moreover this offers
a unified approach to several existing theorems.

The application of ergodic theory to the study of continued fractions began
with the Gauss transformation, G: [0,1]+ [0,1],

X X

0, x=0,

G(x)=

which is ergodic with respect to the Gauss measure p,, where

1 1

B)=——| —dx
HelB) log2Jpl+x

for any Borel subset B of [0,1]. H. Nakada [11] extended G to the 2-dimensional
case. Let G: [0,1]1x[0,1]+—[0,1]x[0,1] be defined to be

~ 1
G(X,J’) = (G(X), (I‘I—'};)

1

1 . . . o
where a, = [—] The absolutely continuous invariant measure of G, fi,, is given by
x

.1 dxdy
He log2 (1+xy)*

Then the dynamical system ([0,1] x [0,1], 2, fis, G) is the natural extension of
([0,1), #,, G) where 4, is the Borel algebra of R”. Hence G is ergodic with respect
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to fi,. Many metrical results for regular continued fractions can be proved using
the ergodicity of G or G. For example, [3] (W. Bosma et al) gave the distribution
of the sequences of approximation constants {6,}.

In this paper we focus on the convergents and the mediants of the Farey (or
slow) continued fractions. Define T: [0,1]—[0,1] by

T Osxsl,
2

Tix)= .

1—-x 1
—, —<x<l1
2

T is called the Farey shift map (see [10]). T preserves the measure v given by

a1
log2 x

which is o-finite but not a probability measure, and T is ergodic with respect to
this measere (see [12] or [10]). The natural extension of T, denoted by T, is the
transformation on [0,1] % [0,1] given by

(L__y_) 0<x<t
l—x 1+y 2

HX,)’)= ; (1_x 1 ) 1
_— ], =<x<I1
x 14y

The absolutely continuous invariant measure, 7, of T is determined by

dx dy 1

dv= . .
(x+y—xy)? log2

The ergodicity of 7' can be established from that of G using an argument
of [16] or by direct appeal to a general result given in [4]. Since the v or ¥ are
infinite (o-finite, though), the Birkhoff Ergodic Theorem is not applicable for T or
T. To avoid this disadvatage, Ito considered another transformation T, induced
by T, the invariant measure of which is a probability measure. By the ergodicity
of T, and its natural extension, he obtained in [8] many metrical results related
to convergents and nearest mediants. In this paper we consider T and T
directly. We shall establish an ergodic theorem for 7° though the Chacon-Ornstein
ergodic theorem. In this way the results of [8] can be generalized for we can
derive metrical results on Diophantine approximation by all the mediants not only
the nearest ones. The results for nearest mediants become a special case. Any
other metrical results obtained by applying the Birkhoff ergodic theorem for G or
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G can also be obtained by using the ergodic theorem we build for T

In Section 2, we recall some basic results about Farey and regular continued
fractions and give some basic properties of T and 7. In Section 3, we establish
an ergodic theorem for T through the Chacon-Ornstein Ergodic Theorem. In
Section 4, we apply the ergodic theorem established in Section 3 to prove some
old and new metrical results both for the regular continued fractions and the
Farey continued fractions.

2. Preliminaries

For an irrational xe[0,1] with regular continued fraction expansion

1
%"_‘[O;alyab'“]’
ay+ai—
the n-th convergent is given by
A 1
p_: 1 =[O;alyaz>'”aan]~
In Ay tav.

L
The integers p,, q, can be described inductively by setting
p-1=1, po=0, ¢q_,=0, go=1,
Pn=0Dn-1+Pn-2> Gn=0qn—1Fqn-2-
We shall be concerned with a slower sequence {P,/Q,} of approximations to

x, corresponding to a branch of the Farey tree (see [7], [14] for details). For
our present purpose it suffices to know that

Po=kpm+Pm-1, On=kGu+qm-1,
where
n=ay+a,+--a,+k, 0<k<a,.;, (a,=0).
The sequence {p,/q,} consists of the convergents of x, while {P,/Q,} is the

sequence of convergents and mediants.

The Farey shift map 7: [0,1]+—[0,1], defined in the introduction, may be
characterised as follows. For x=[0;a,,a,,:--], we have

[0;611—1,02,“‘], ax>2

[0;(12,(13,"'], a1=1.

9 ={
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Moreover, for x=[0;ay,a,,:--], y=[0;b,,b,,---] we have

([0;01—1,02,"'], [09b1 + 19b2a"']) ax2

T(x,y)={
([0;(12,03,“‘], [0;15b1,b25"'])9 a1=1‘

We make basic use of the numbers X, Y, defined by 7"(x,1)=(X,, ¥,). Note,
in particular, that

{[0;k+1,am,--~,a1], m>1
[0;k+1], m=0

where

n=ay+a,+ - +a,+k, 0<k<a,,,.

It is well-known that for G, defined in the introduction,
G~m(x’0) = (xm,ym) = ([O A+ 158m+25"" ']5 [O b/ ',a1]),

where X, =G"X, Yn=qm—1/qm-

Let us write

) ®n=Q3x~—~"‘

and

@ On=g3x—2m1

Then we have

3) 0 =%pm(1 +Xppp) "

and this is contained in the following formula, given in [2],
4 0, =1 —kx )k +yu)1+Xpym) ",
where

n=ay,+a;+ - +a,+k, 0<k<a,,,.

(4) allows discussion of ®, via G but our strategy is to work directly with T°
so we set about expressing the quantities Q,_,/Q, and ®, in terms of X,, Y,.

Lemma 1. For n=1,2,---, we have
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Qn/Qn+l =(1 + Yn-l)—l =max{Y,,, 1— Yn}

Proof. We know that Y, equals Y,_,(1+7Y,_,) ' or 1+Y,_,)"! and that
0<Y,_;<1. Hence (1+Y,_,)"' equals max{Y,,1—-Y,}.

Next we use induction. When n=1, we have Y,=1/2, Q,=1. And we
always have Q,=2. Hence

0:/0Q,=1/2=Y,=max{Y,,1-Y,}.
Suppose for /<n we have

0,/ Qi1 =max{Y,,1-Y}.

Assume that n=ay,+a;+,+ - +a,+k, 0<k<a,,,. If k=0, then Q,=q,,
Qn+l=1'qm+qm-1 and Yn=[0;lsam’am—la"'aal:lzl/z- Hence Qn/Qn+1= Yn' If
am+122> then Qn+2=2.qm+qm—1=Qn+Qn+1' ThllS

Qn+1/Qn+2=(1+Qn/Qn+1)—l=(1+ Yn)_"

If a4 =1, then Q,.;=qn+; and Q,,=¢u+qms,. Again we have
On+2=0n+ 0Oy, and again we get 0,/ Q. =(1+7Y,)" "

When 0<k<am+1_1, we have Qn:kqm+qm—1a Qn+1=(k+1)qm+qm—-l and
0,+:,=(k+2)q,+4m-1, and Y,, which equals [0;k+1] or [0;k+1,a,,---,a,], is
at most 1/2. Hence

Ont1/On+2=0n+124n+ 00"
=24/ Qns1+(1=Y,) 7"
=Qk+1+y,) ' +(1-Y,)"!
=QY,+1-Y,) '=(1+Y)" "

Lastly we consider k=a,,.,—1>0. We have Q,=kqn+qm-1=qm+1—IDm>
On+1=4m+1 and Q,,2=¢,+1+¢,. We also have Y,=y, ., <1/2. Hence, once

more, Q41 /Qui2=(1+Y,)" "

Lemma 2. For n=2,3,---, we have

(5) _{(I—Yn)(Xn'i_Yn_XnYn)—l’ Yn<1/2,
" XnYn(Xn+Yn_'XnYn)_ls Yn>1/2’

(6) ®n+1=(1_Xn)(Xn+Yn—XnYn)_l'

Proof. For n=ay+a,+a,+ - +a,>2, we have X,=x,, and Y,=(1+y,)"!
>1/2. An application of (3) gives
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0,=0,=X,(1+X,Y, '-1)"'=X,Y,X,+ Y,— X, Y,)" .
For n=a,+ --- +a,+k>2 where 0<k<a,,,, we apply (4) after noting that
X,=(x 1=k, Y,=k+1+y,) '<1/2.
This gives

®n=(1— Yn)(Xn+ Yn_XnYn)-l'

It is now easy to see that Y,,,>1/2 if and only if X,>1/2. When X,
>1/2

(Xn+1’ Yn+1)=ﬂXn’ Yn)=(Xn_ 1(l_fYn)a(l‘}' Yn)-l)'
In this case we see that
®n+1=Xn+1Yn+1(Xn+l+ Yn-f-l_lYn+1Yn+l)—1
=(1~’Xn)(Xn+Yn_XnYn)_l

For the case X,<1/2, we substitute X,,,=(1—-X,)"'X,, Y,,,=Y,(1+7Y,)"!
in the formula

®n+1=(1"'Yn+1)(Xn+1+ Yn+1_Xn+lYn+1)_l

to obtain the required result. ]

3. Frgodicity and ergodic theorem for T

We begin this section by showing that G can be induced from 7.

Theorem 1. The dynamical system (Q,4,, ﬁg,G) is (isomorphic with) the system
induced from (Q,8,,9,T) on the set E={(x,y):y>1/2}.

Proof. Recall that for x=[0;a,,a,,---], y=[0;b,,b,,---] we have

([0;a,—1L,a,,---1,[0;b6, + 1,b5,---]), a=2,

T(x,y)={
([0;a3,a3,---1,[0; 1,b4,b,,-+-]), a;=1.

In particular the second coordinate of T{x,y) is greater than 1/2 if and only if
a,=1. Accordingly the induced map T is given by
Texy)=(x""—a, (1+@~"+a,—1)" ).

Now consider the map ¢: E—Q given by
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dx,y)=(x,y~ ' —1).

The map transforms to (x,y)—(x"'—a,, (v+a,)”") and the measure dxdy(x+y
—xy)~? transforms to dxdy(1+xy)~2. |

By Theorem 1 and the ergodicity of G together with a result of [16], we
obtain the ergodicity of 7. Theorem 1 also gives an abstract justification of the
statement that any result derived from G or G can be obtained from T.

The map T is ergodic and invertible and ¥ is non-atomic so it follows (see
[5]) that T is conservative. Therefore we may apply the Chacon-Ornstein theorem
(cf. [13]) on the system (Q,%,,7,7) (we use Q to denote [0,1]x[0,1] for the
remainder of the paper) to derive the following result.

Theorem 2. For any f,ge L'(Q,%,,%) with [gdV#0, one has

n—1

Y [T xy) |fav
lim <=3 =
e kZ g(T x.y) |gdv

=0

a.c.

1

Next we show that under Lipschitz conditions on f, g, the points T%x,y) in
Theorem 2 can be replaced by (X,,Y,)=T*(x,1).

Theorem 3. Suppose that f,ge L'(Q,8,V) satisfy

Lf(6,y)—f ey N<Lly—y'I*
lg(x,y)—glx,y)N <Lly—y'|"

where L>0, «>0 are constants. If [gdv#0, then for almost all (x,y)eQ one has

n—1 n—1

Z f(Tk(x,}’)) Z f(X, YY)
lim —  =lim:%— .
T L) T e Y

Proof. Let Z; be the second coordinate of T(x,y), ie. T'(x,y)=(X,Z). We
claim that for almost all xe[0,1] and all y€(0,1], we have

3 |Zi— Y{*< + co.
i=0

In fact, for x=[0;a,,a,,---], i=a,+a,+ -+ +a,+k, 0<k<a,,,, one has
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Z=[0;k+1,a,, a5a,—1+y~ 1]
and
Y;=[0;k+1,a,, ,a5a,].
Hence we have
IYi—Z|<c/qn

for some constant ¢, where ¢, is the denominator of the m-th convergent P of

Gm
the regular continued fraction expansion of x (cf. [1] p.42]. Therefore we get that

m=0k=1 m=0 q,,,
By induction we can see that
Gm > 2(m— 1)/2.

We need the following theorem (see [15]).

® 1
Theorem A. Let Fin)>1, for n=1,2,---, and suppose that Y. m< 0.
n=1L0N
Then the set
A={xe[0,1], a(x)> RKk) infinitely many times}

has Lebesgue measure 0.

Now we choose F(n)=2""2, By the above theorem we see that the set
E={x€e[0,1], ax)> Flk) only finitely many times}

has Lebesgue measure 1. Hence for almost all xe[0,1],

0

< 0.

Where C(x)= Y a"';;l. The required result follows easily when we bear in
am>Fm) Im

mind the fact that Zg(T*(x,y)) diverges almost everywhere because T is conservative
and ergodic. [ ]

For some functions f(x,y) though we do not have
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(*) LfCe,y) =y <Lly—y'I*
for all y,)’ €[0,1], it is still true that
AT ey)— (X, Y)<LIZ— Y[, >0,

for almost all xe[0,1] and i large enough.

ExAaMPLE. Let

log(1—y) ye[0,1)

f(xsy)={0 y=1

Then feL'(Q). We do not have () for all y,y"e[0,1].
For x=[0;a,,a,,---], let
i=a;+a,+ - +a,+k, 0<k<a,,,
where m>2. Then

AT (e.p) —f(X, Y)
=|log(1—Z;)—log(1 - Y))|

where ¢; is in between y; and Y;. It is easy to see that 1—¢,>1/q,,, ie.

<gm<clY—Z|">

13

Therefore, | f( Ti(x’J’)) (X, )<Y, —Z] 12,

4. Applications

In this section we apply the ergodic theorems for T* to obtain metrical results
for convergents and medians of regular continued fractions. For all the functions
/, g involved in this section it is valid to replace T*(x,y) by (X,,Y,) as in Theorem
3 but omit the tedious verification.

For an irrational x=[0;a,,a,,---] we shall call

kpn+pn—l and (an+1_k)pn+pn—1
kqu+qn—1 (an+1—k)qn+qn—1
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the k-th mediants of x, when a,,,>2k. We let P¥/Q® denote the sequence
which consists of all convergents and i-th mediants of x for all i<k. When k=0,
we recover the convergents {p,./q,} and, when k=1, we obtain the so-called
nearest mediants of Ito, [8]. It is easy to see that the event “P,/Q, appears as
some P® / Q¥ is characterised by X,>1/(k+1)or Y,>1/(k+2) while “P,,  / On+1
appears as some P®/Q®” is by X,>1/(k+2) or Y,>1/(k+1).

Let us write also
O =(QW e~ PP/ QW)

QOur main theorem can now be stated.

Theorem 4. For almost all x we have
@). for k=0,1,2,--,

2

1
lim-logQ¥=—_"
noo N 121og(2k +2)

@ii). for k=0,1,2,--,
1 pP® 2
lim —logix —|= ————— |
nwo N oW 6log(2k +2)
@ii). for k=1,2,+,
N PP .
lim - #{i: i<n, O <z}
n—'oon
z, 0<z<1
k+1
1+logz, lsz<—~+2—
log2k+2) | 2— % 410g 2, Kl ki
k+1 k+1
log(2k +2), k+l<z
1 12z, 0<z<1,
@iv). lim #{i: i<n, @i<z}=_{z <z
n-o10g O, n?1+logz, 1<z

REMARK. The case k=0 of (i) and (ii) are the basic results of Levy (see [1]),
and the case k=1 of (i), (ii) and (iii) give results of Ito, [8]. The important result
of Bosma ef al in [3] corresponds to the case k=0 of (ii) and the proof which
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follows could be simplified to yield that special case. Nevertheless a suitable
interpretation of the three terms corresponding to 1/2<z <1 yields the appropriate
distribution. We take the signed sum, i.e.

A OSZ<1
‘ 2

'l_’(X)n

limlﬂ{i: i<n, 6’,,<z}=L 1—z+log(2z), 1sz<1
log2 2
log 2, 1<z

\

where

1 —z+4log(2z)=z—(1 +logz)+[2—2z+1log(2z?)].

Proof. For (i) we take

fx,y)=log(max{y, 1 —y}),
1, whenx>k+1)"YLory>k+2)~!
0, otherwise.

gx,y)= {

Then

2 log(2k +2
fdi=——" ﬁ;dhw.
121log?2 log2

For n=ay+a,+ - +a,+k, 0<k<a,,, we have, by Lemma 1,
log 2 =/(x,,7,)
n+1

while

Y g(X, Y)=4#{i: i<n, Q, appears as some Q({"}.

i=1
Therefore
i SX;, Yi)/ ig(Xia Y)=—s" 1(10g Qn+1—log Q).
i=1 i=1

where s is determined by Q¥ < 0, < 0% ,. By the ergodic theorem of the last section

fim 108 or__ lim Z f(X, Y) / Z g(X, Y)=— J fdv / Jgd\'?,

§— 0 s n—-o0i=1
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and the required result follows.

For (ii) noting that @® =(Q®)?|x — P® /0™, by (i) it suffices to show that

1 @(k)
O 2 =0 ae.

lim

n— o n

Remember that ®,,, is one of O% if and only if X,>(k+2)"' or
Y,>(k+1)"'. Then when ©,,, is one of @ we have

1-X
=<k +1.
X,+Y,—X,Y,

n+1

On the other hand,
®n+1Zl—XnZI_[O;laam+1,"']>1/(am+l+1)21/2am+1’
where m is determined by Q,<¢q,,<0,.;. Therefore,

1 log2 ©® logk+1
_loga,,,+log2 O logk+1)
§ S §

Noting that m<s<(2k+1)m we obtain

a.c.

s m m® 1/a

A+ 1

loga,, . <10gam+1=(am+1>1/a.]ogam+1 -0

by Theorem A, where a>1 is a constant. Therefore

log ®®
lim 08 n =0 ae.

n— oo h

To prove (iii) and (iv) we also consider ®,,, instead of ®,. Let

1—x t
E, . ={xy)eQ:— <z, x>—
2 ={(x.Y) e T

1—
u{(x,y)eQ:7x<z, y>t}=E|UE,
X+y—xy

where 0<z, 0<t<1/2 and

I, (xyeE,,
0, othewise.

f(x’y)={
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We recast the inequality
(1=x)x+y—xy) '<z
in the form
x>(1—zy)1+2(1-y) "' =u(y), say,

and note that (1 —zy)(1+z(1—y))~'>t/(1 +f)ifand onlyif y>z~'—¢. Therefore

1
x>u(y), O0<y<l1}, O<z<—
{x>u(y) y<l1} Y

E, =< {x>u(y), 0< <1—t}u{x> ! ! t<y<l1} 1 <z<1
! ’ r=3 1+ z S 14 t
{x> L o< <1} 1<z

1+¢ y<in t

Suppose first that O<z<1/(1+¢). Then E,,=E; ={x>u(y), 0>y>1}.
Hence

1 1
longfdﬁzf dyf (x+y—xy) %dx=z.
Y u(y)

Now consider the case 1/(14+f)<z<1. Note that t<1—t<z '—t. Then
again E,,={x>u(y), 0<y<1} and log2|fdi=z.

When 1<z<1/2t we also have z~!—¢>¢. Remember that u(y)>0 when
y>z"!. Thus

E,,={(xy)eQ: x>u(y), 0<y<1}
={x>u(y), O<y<z }u{x>0, z7'<y<1},

and

10g2ffdﬁ=1+logz.

If 1/2t<z<1/t, then 0<z™!'—t<t and

1 t 1
E,,={x>uy), O<y<-—t}u{x>—, ——t<y<t}
z 1+t z

U{x>uy), t<y<1}u{x>0, 1<y<1}
z z
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Calculate that

log2 jfdﬁ =22tz +log(2tz?).

Lastly, when z>1/¢ we have
E,,={x>t/(1+1), 0<y<t}u{x>0, t<y<1}

and log2 [fdi=log2—logz.
It is now easy to piece together the result of (iii) by taking t=(k+1)"' and

1, whenx>k+2) 'ory>k+1)"!
0, otherwise.

g(x,y)= {

To obtain (iv) we set t=0 and replace g by the function log(max{y,1—y}) used
as f in proving (i). This completes the proof. [ ]

REMARK. Part (iii) of the theorem (in some sense a limiting case as k — o0)
shows that 1#{i: i<n, ®,<z} -0 as n—> oo and hence that {®,} does not have
a distribution function. We can obtain some more information about ®,. We have

For almost all xe[0,1] and any &¢>0,

N
(i) lim —2-=0, where ¢, <0, <Gqm+1;
n—'uom

(ii). lim1 Y. ©;=o0; and
nsooMi=1

1

+e
i

@ii). lim

n—s oo N

Z ®i=0'
=1

In fact, for n=ay+a,+ -+ +a,+k, where 0<k<a,,,,, by Lemma 2
(*) ®n+1<Yn=[k+l;ama"'9al]<k+2'

Then (i) follows from Theorem A. Using (*) we can get the the following estimation:

(*%) fg[z a3+k2—n]—(m+1)< Y ©,<Y a?+k
i=1 i=1 i=1
Then follow (ii) and (iii).

Next let us compare Theorem 4 (iv) with some results of P. Erdés [6] and
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J. Blom [2]. Let

ofioh
q
Define
Ux,z,n)=#(p,9) e Zx N: (p,q)=1, @(3,x>3z, q<n},
q
Uy(x,z,n)=#{(p,9)e Zx N: (p,q)=1, ®<€,x)52, q<n,
q
D .
— is a convergent of x}
q
and

Uy(x,2,n)=4#{(p.9) € ZX N: (p,q)=1, @(’3,x>gz, q<n),
q

2 is a best approximant of x}.

. . . . a.,.
By best approximant we mean that if there is a fraction 5 different from” such that

q

then b>q. Erdos [6]) proved that for any z>0

1
lim U(x,z,n)=_§z a.e.
n— oo 1 T
Blom [2] gave that
lim M=l—§(ﬂz a.e.
n-*oo n TC

and

lim U—Z(’i’”)J—f( f(2)+hz) ae.
n Y/

n—oo

where

965
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z OSZS1
J 2
1
f@)= 1 1—z+log(2z) ESZSI
log2 z>1,

1
0 0<z<-
2

1 1 1
h(z)= ————log(2 -<z<l1
(2) z 573 0g(2z) 5 z

11
§+Elog(22) z>1.

\

When z<1 Theorem 4(iii) corresponds to the result of Erdés [6]. [8] and
[9] also gave new proofs in this case. When z>1 this result takes a different
form. This fact tells us that, for z>1, there is no result for convergents and
mediants analogous to the theorem of Legendre for z=1/2 or the theorem of
Fatou and Koksma for z=1 (see [9]).

The result of Blom [2] can also be proved by Theorem 2 or 3. In fact for

o . . P .
irrational xe[0,1), a best approximant is an element of {—"} characterized by

n

1
Y,,>5 or Y,'>X,'+1, n>2.

Thus we can prove these results by choosing appropriate functions f and g.
Jager [9] considered the two sequences

{pn+p,.-1} {(an+1—l)pn+pn-1}

Gntqn-1 (@t 1= 1)+ Gn-1

separately and obtained some metrical results. If Py/Qy appears as (p,+p,-1)/(4q,
+¢,-1) then we have

XN=[0a an+1_1aan+2""]a YN=[0;2,0",‘“,(11] when an+122,
or
XN=[O;an+29"'], YN=[O;1’1,am“',al] when an+1=l.
Thus the first sequece is characterised by 1/3<Y,<2/3. The second one is more

complicated. Ifa,,,>2,then ((a,,, —1)p,+p.-1)/(@,+—1)g,+9g,_ ) corresponds
XN=[0’ l’an+2,“']e(1 /2’ 1)! YN=[O;an+ ls"',alj 6(09 1 /2)
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When a,,,=1 we get p,_,/q,-, which corresponds to

1 2
Xy=[0;a,1,a,,,,--]€
J w=10:a, 1.0, ]<a+12a+1>

Yy=[0,1,a,_,---,a;1e(1/2,1).

Hence the second one is characterised by

2

X,e(1/2,1), Y,€(0,1/2) or X€U<+1 2i+1
1 1

) Y,e(1/2,1).

However, those two sequences are not “pure” nearest mediants. We shall
consider the sequences

_ -1 _
{pn_'_pn l’a"+122} and {(an+l )pn+pn l’an+122}
qn+qn—l (an+1_1)qn+qn—1

which are characterised by 1/3<Y,<1/2 and X,>1/2, Y,<1/2 respectively. In
general we use {a®/b®} and {c¥/d®} to denotes the “pure” k-th mediant
sequences for each of the two directions

k - —k -
{M—‘,aleZk} and {(a"“ Pt P l,a,,+122k}
kqn+qn—-l (an+l_k)qn+qn—1

respectively, where k<1. It is not hard to see that {a® /b®} is the subsequence
of {P,/Q,} determined by X,<1/k and (k+2)"'<Y,<(k+1)"! while {c*/d®}
determined by (k+1)"'<X,<k™ ! and Y,<(k+1)"'. Define

k k k k

k) __ k k k
=N x — ).

Theorem 5. For almost all xe[0,1] and k=1,2,---, one has

) *) 2
Q). lim 19827 _ jipy 108" _ " ,
nsw N rew R 12(log(2k + 1) —log(2k))
1 a® *) .
(ii). lim —log [x ———|=lim —log [x — | = — ,
now N bW L Lon d® 6(log(2k + 1) —1log(2k))
(iii). lim #{a"" <z, i<n}=lim #{p"" <z, i<n}

n—'oon n-oo
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2z 2z k k*+k
——1-log—, —<z<-
k k 2 2k+1

1 z 1 k*+k
= 2——]0g 1+ A <z<
log(2k +1)—log(2k) | k*+k 2k+1 2k +1
2
1% —logz(k +k),
k+1  C(@Qk+1)z
log(2k + 1) —log(2k), k+1<z.

k<z<k+1

Proof. For (i) we take f to be the same function as in the proof of
Theorem 4(i). We let

[—

, O<x<k L k+2 '<y<k+1)7?
0, otherwise

gl(x,y)={

for the first one and

1, (k+D)'<y<k L 0<x<k+1)!
0, otherwise.

g2(x,y)= {

Then

ng die ng dﬁ=log(2k+ 1)—log(2k)‘
log2

Therefore we get (i).
(i) can be proved by a similar argument as the proof of Theorem 4(ii).

As for (i), we take ¢® as an example. Since we are concerned X,<1/k
and (k+2)"'<Y,<(k+1)"!, we have
0,=(1-Y,)X,+Y,—X,Y,)"!
by Lemma 2. It is easy to see that for the ®, in consideration we have
k/2<0O,<k+1.

Let

1—y 11 1
b k2 ke
X —X
flxp)= y

0, otherwise.
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Then Zi_ , f(X,, Y;) counts the number of ®;, i <n appears as some ¢ and <z. The
non-zero regions of f with respect to different values of z are as follows:

{ 1—zx 1 k—:z l} k k2+k
<y< X <x<-p, when —<z< R
14+z—zx k+1 kz k 2 2k+1

{ 1—zx 1 k—z k+1—z}
<y< , <x<
l4+z—zx k+1" kz k+1)z

1 1 k+1-—z 1 k*+k
V] <y< R <x<-p, when - <z<k,
k+2 k+1 (k+1)z k 2k+1

{ 1—zx 1 k+1-z
<y< , 0<x<———
1+z—2zx k+1 (k+1)z

1 —
u{ I k+1-z x<1}, when k<z<k+1.

<y< , <
k+2 k+1 (k+1)z k

The proof is completed by calculating several integrals and taking g as g, in the

proof of (i). [ ]
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