Osaka University Knowledge Archive

Title	PHOTOINDUCED ELECTRON－TRANSFER REACTIONS OF HOMOQUINONES
Author（s）	森脇，洋
Citation	大阪大学，1996，博士論文
Version Type	VoR
URL	https：／／doi．org／10．11501／3110032
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／

PHOTOINDUCED ELECTRON-TRANSFER REACTIONS OF HOMOQUINONES

HIROSHI MORIWAKI

Faculty of Engineering
Osaka University
1996

Preface

The work of this thesis was achieved under the guidance by Professor Emeritus Toshikazu Nagai and Professor Takumi Oshima at the Department of Applied Chemistry, Faculty of Engineering, Osaka University for five years since 1991.

The objective of this thesis is to explore the synthetic utility and mechanistic details of photoinduced electron-transfer reactions of homoquinones.

Department of Applied Chemistry,
Faculty of Engineering,
Osaka University,
Machikaneyama 1-16, Toyonaka, Osaka, 560, Japan
March/1996

Contents

Preface
Contents
General Introduction 1
Chapter 1. Photoinduced Electron-transfer Reactions of Homonaphthoquinones 6
1-1. Introduction 6
1-2. Reactions with alkyl amine donors 7
1-3. Reactions with aromatic donors 16
1-4. Conclusion 19
1-5. Experimental 20
1-6. References 29
Chapter 2. Photoinduced Electron-transfer Reactions of Homobenzoquinones 31
2-1. Introduction 31
2-2. Reactions of 2-bromo-5-methyl- homobenzoquinone 32
2-3. Reactions of 2,5-dimethylhomobenzoquinone 39
2-4. Conclusion 48
2-5. Experimental 48
2-6. References 54
Chapter 3. Intramolecular Photoinduced Electron-transfer Reactions of Homonaphthoquinones 55
3-1. Introduction 5.5
3-2. Photoinduced Electron-transfer Reactions ofDonor-substituted homonaphthoquinones55
3-3. Conclusion 65
3-4. Experimental 65
3-5. References 68
Acknowledgment 69

General Introduction

Light-induced reactions between donor(D) and $\operatorname{acceptor}(\mathrm{A})$ molecules have recieved much attention from the synthetic and mechanistic view point in recent years ${ }^{1}$. Among these, photoinduced electron-transfer(PET) is the basis of modern method for the formation of the active intermediates i.e., radical ion, under mild conditions ${ }^{2}$.

The typical pattern of photoinduced electron-transfer reactions is outlined in Scheme 1. The first step of PET reaction is the transfer of an electron between excited-state and ground-state molecule to generate rasical ions(1). Next is the conversion of radical ions(2) to the products and the back electron transfer to the ground-state reactant(3).

Fusion of a functional component to cyclopropane ring is expected to endow a new structural and electronic feature as a candidate for the useful synthetic intermediates, because cyclopropane derivatives undergo a variety of ring-opening reactions ${ }^{3}$. Recently, the preparation of quinone-fused cyclopropanes, so-called homoquinones, in the dipolar addition of diaryldiazomethanes to variously substituted quinones have been reported ${ }^{4}$. In view of the electrophilic and conjugative properties of quinones, it is of interest to obtain insight into the physicochemical properties due to the strained bicyclic systems and to investigate the effect of quinone-fusion on the photolysis of cyclopropane. However, there are only a few studies concerning the skeletal trasformation and the synthetic uses of these ring-condensed systems ${ }^{5}$.

The thesis deals with the photoinduced electron-transfer reactions of diaryl-substituted homobenzoquinones and homonaphthoquinones. The aim of this study is to explore the basic structual and mechanistic features of photoreaction of these homoquinones.

The present thesis is consist of three chapters as follows.
The chapter 1 deals with the photoinduced electron-transfer reactions of diaryl-substituted homonaphthoquinones in the presence of alkyl amine or aromatic donors and discusses the effect of the proton donating ability of donor.

The chapter 2 deals with the photoinduced electron-transfer reactions of 2 -methyl and 2 -bromo-substituted 5 -methyl-
homobenzoquinones in the presence of amine donors. The factors that determine the mechanistic features are discussed in comparison with the homonaphthoquinone. Furthermore, the X-ray diffraction analysis of trans- 1,4-dimethyl-7,7-dipheny-bicyclo[4.1.0.]hepta-2,5-dione is also described.

The chapter 3 deals with the intramolecular photoinduced electron-transfer reactions of donor-substituted homonaphthoquinones. The mechanism of the photoreaction is discussed in terms of the Coulomnb assistance of added $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$.

This thesis are comprised of the following papers.
(1) Photoinduced Reductive Cleavage of Diarylcyclopropanes fused with Bromonaphthoquinone in the Presence of Amines.

Hiroshi Moriwaki, Takumi Oshima and Toshikazu Nagai J. Chem. Soc., Chem. Commun., 1994, 255-256.
(2) Photoisomerization of Bromonaphthoquinone-fused Diphenylcyclopropane into Xanthylium Salt in the Presence of Arene Donors.
Hiroshi Moriwaki, Takumi Oshima and Toshikazu Nagai
J. Chem. Soc., Chem. Commun., 1994, 1681-1682.
(3) Photoinduced Electron-Transfer Reactions of Homonaphthoquinones with Amine and Arene Donors. Hiroshi Moriwaki, Takumi Oshima and Toshikazu Nagai
J. Chem. Soc., Perkin Transactions 1, 1995, 2517-2523.
(4) Photoreactions of Homoquinones with Amine Donors. Hiroshi Moriwaki, Takashi Matsumoto, Toshikazu Nagai and Takumi Oshima
J. Chem. Soc., Perkin Transactions 1, in press.
(5) Conversion of Donor-substituted Homonaphthoquinones into indenonaphthoquinones via intramolecular Photoinduced Electron-transfer.

Hiroshi Moriwaki, Kazuaki Fukushima, Toshikazu Nagai and Takumi Oshima
J. Chem. Soc., Chem. Commun., in press.
(6) Half-chair Conformation of trans- 1,4-dimethyl-7,7-diphenybicyclo[4.1.0.]hepta-2,5-dione, $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}$.

Hiroshi Moriwaki, Tatsuya Kawamoto and Takumi Oshima Acta Crystallographica Section C., in contribution.

References

1, Angelo Albini, Mariella and Mauro Freccero, Tetrahedron, 1994, 50, 575.

2, a) Photoinduced Electron Transfer, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988.
b) J. Mattay, Angew. Chem. Int. Ed. Engl. 1987, 26, 825.
c) G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 401.

3, H. N. C. Wong, M. -Y. Hon, C.-W. Tse and Y.-C. Yip, Chem. Rev., 1989, 89, 165.

4, T. Oshima and T. Nagai, Bull. Chem. Soc. Jpn., 1988, 61, 2507.
5, a) K. Maruyama and S. Tanioka, J. Org. Chem., 1974, 39, 492.
b) T. Oshima, K. Tamada and T. Nagai, J. Chem. Soc., Perkin Trans.1, 1994, 3325.

Chapter 1.

Photoinduced Electron-Transfer Reactions of Homonaphthoquinones

1-1 Introduction

During the past decade, photoinduced electron-transfer (PET) reactions of cyclopropanes bearing several aryl groups as chromophore have been studied extensively by many workers to get interesting insights on the physicochemical properties due to the strain of the small ring and to shed light on potential utility of them as synthetic intermediates. In most of these cases, arylcyclopropanes behave as the electron donor due to the high lying HOMO level of cyclopropane ring and give rise to various type of oxidatively ring-cleaved products. For example, arylcyclopropane radical cations generated from PET reaction undergo nucleophilic attack of alcohols accompanied by cleavage of cyclopropane ring ${ }^{1}$, cis-trans photoisomerization ${ }^{2}$, transformation into propene derivative ${ }^{3}$, $(3+2)$ cycloaddition with vinylethers ${ }^{4}$, and $(4 \pi+2 \sigma)$ addition with acceptor 9,10 -dicyanoanthracene (DCA) ${ }^{5}$. In contrast, only a few examples are known about photoreactions in which arylcyclopropanes play as the acceptor component. These cyclopropanes necessarily contain strong electron withdrawing groups such as CN and halogens. Photoreactions of arylcyclopropanes bearing $\mathrm{Br}, \mathrm{CO}_{2} \mathrm{R}$, and CN groups with tertiary amines proceed through cyclopropane radical anions to provide debrominated cyclopropanes ${ }^{6}$, 1:1 amine adducts and reduction product ${ }^{7,8}$.

This chapter deals with the photolysis of monoaryl- and diarylsubstituted homonaphthoquinones (1a-1e) with substituent X $(=\mathrm{Me}, \mathrm{Cl}, \mathrm{Br})$ under the influence of amine and arene donors.

The aim of this study is to explore the distinct behavior between the n - and π-donors and to clarify the mechanistic features of photolytic reactions of these homoquinones.

$$
\begin{aligned}
& \text { 1a; } X=B r, A r^{1}=A r^{2}=p \text {-Tolyl 1b; } X=B r, A r^{1}=A r^{2}=P h \\
& 1 \mathrm{c} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Ar}^{1}=\mathrm{Ar} \mathrm{r}^{2}=\mathrm{Ph} \quad 1 \mathrm{~d} ; X=\mathrm{CH}_{3}, \mathrm{Ar}^{1}=\mathrm{Ar}{ }^{2}=\mathrm{Ph} \\
& \text { exo-1e; } X=B r, A r^{1}=\mathrm{CH}_{3}, A r^{2}=\mathrm{Ph} \\
& \text { endo-1e; } X=B r, A r^{1}=P h, A r^{2}=\mathrm{CH}_{3}
\end{aligned}
$$

1-2 Reactions with alkyl amine donor

Irradiation of diarylhomonaphthoquinones (1a,b) and 5 equiv. excess of triethylamine (TEA) or diethylamine (DEA) in various solvents under an atmosphere of nitrogen with a high pressure mercury lamp through a filter $(>330 \mathrm{~nm})$ for 2 h gave the dimeric isomers (\pm)-2a,b and meso-2a,b in moderate yields together with the hydrogen bromide salts of the respective amines(Table 1 and Scheme 1). In addition to the dimer 2b, a substantial amount of $1: 1$ amine adduct 4 was obtained when $1 \mathbf{b}$ was irradiated in the presence of N, N^{\prime}-dimethylaniline (DMA).

IIa,b
(\pm)-and meso-2a,b

DMA

Scheme 1

The structures of $2 \mathbf{a}, \mathrm{~b}$ and 4 were deduced on the basis of the IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and mass spectra. Stereochemistry of dimers, $2[(\pm)$ and meso $]$, was determined by using a NMR chiral shift reagent, tris[3-heptafluoropropylhydroxy-methylene-(+)camphorato]europium(III) derivative. The high field methine singlet (4.34 ppm for $\mathbf{2 a}$ and 4.30 for $\mathbf{2 b}$ in CDCl_{3}) of one isomer was split into two peaks with the same integral strength by adding 0.6 equiv. of the shift reagent, whereas the low field methine singlet (4.41 ppm for 2 a and 4.38 for 2 b) of another isomer was not split. The former high field isomer was assigned as (\pm)- form, and the latter one as meso-form.

The dimeric isomers (\pm)-and meso-2b were photostable on irradiation in the presence of amine. In harmony with this fact, the yield of the dimeric products at high conversion was essentially the same as that at low conversion(entry 2 and 3, Table 1). The values of $(\pm) /$ meso isomer ratio of 2 were in the range of 1.1-1.4 and were not markedly affected by varying the substituent (X) of 1 (entry 1 and 2), solvents (entry 2, and 4-9), as well as donor amines (entry 2, 10, and 11). These reactions did not occur in the absence of amine or in the dark (entry 12 and 13). Furthermore, the replacement of the labile bromo substituent of $\mathbf{1 b}$ by chloro or methyl group endowed it with photopersistency as noted in 1c,d (entry 14,15).

The fluorescences of 1 were quenched by triethylamine. SternVolmer plots of the fluorescence quenching in acetonitrile were linear with amine concentration, indicating the electron transfer to the singlet excited state of 1 . Value of k_{q} obtained from the slope of Stern-Volmer plots of $\mathbf{1 b}$ was $2.90 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Free energy changes (ΔG) calculated according to the Weller equation 9 for the
system of $\mathbf{1 b}$ and various amines are all negative. This means electron transfer from amines to excited $\mathbf{1 b}$ should be spontaneous. No new emission attributable to exciplex fluorescence was observed in the quenching experiments. No essential change in the absorption spectra was found in the mixture of $\mathbf{1 a - d}$ and amines with various concentrations (5 to 20 equiv. excess). From these facts, it is proposed that the present photoreaction proceeds through the mechanism outlined in Scheme 1.

The first step is photoexcitation of 1 followed by a single electron transfer (SET) from the amine to the excited 1. The radical anion Ia,b thus generated undergoes ring opening with loss of bromide to generate allyl radical IIa,b. In contrast, possible radical anion of Ic,d with poor or less labile substituents $\left(\mathrm{Y}=\mathrm{Cl}, \mathrm{CH}_{3}\right)$ will give back the electron to the amine radical cation. The alive radical IIa,b will collapse to dimer $\mathbf{2 a , b}$. The radical cation of amine will suffer proton abstraction by a second molecule of amine to give the corresponding amino radical and the ammounium ion. At present, it is not clear how the amino radical would take part in the following reaction; see Experimental Section. In the case of DMA donor, formation of the additional product 4 may be due to the concomitant nucleophilic attack of electron-poor radical IIb to the para-position of a second molecule of DMA, followed by hydrogen abstraction by initially formed amino radical to regenerate DMA.

Participation of the allyl radicals in the present dimerization process was strongly supported by the observation that the reductive debromination of precursor allyl bromides, 3a,b with zinc powder also gave (\pm)- and meso-2a,b in good yield, most probably via the allyl radical IIa,b (Table 2, Scheme 2). Rather higher $(\pm) / m e s o$ isomer ratios (2.5-2.6) compared to the
photoreaction may be ascribed to some surface interaction between the radicals and Zn^{10}.

3a,b
a; $\mathrm{Ar}=p$-Tolyl
b; $\mathrm{Ar}=\mathrm{Ph}$

Scheme 2
Table 2 Reductive dimerization of 5 with zinc powder in benzene

	$\begin{gathered} \text { reaction } \\ \text { time } / \mathrm{h} \\ \hline \end{gathered}$			Yield(\%)	
		Conv.(\%)	(\pm) -2	meso -2	(\pm) : meso
3 a	1	100	32.6	13.1	2.5
3 b	1	100	49.5	18.9	2.6

It was also found that the ring-opened $\mathbf{3 a , b}$ on irradiation in the presence of TEA undergoes the dimerization to give dimer 2a,b and amine salt of HBr (Scheme 3). This observation offers a possibility of intervention of ring-opened $\mathbf{3 a}, \mathbf{b}$ in the course of above photoreaction of $\mathbf{1 a , b}$. However, the occurrence of $\mathbf{3 a , b}$ in the photoreaction of $\mathbf{1 a , b}$ was explicitly ruled out because a trapping experiment under the influence of added $\mathrm{CH}_{3} \mathrm{OH}$ did not provide the expected methanolysis product of $\mathbf{3 b}$ (Table 1, entry 16,17, vide infra for the capture of 3 a by $\mathrm{CH}_{3} \mathrm{OH}$).

Scheme 3

Similar irradiation of methylphenylhomonaphthoquinone (exoand endo-1e) and 5 equiv. excess of TEA in acetonitrile for 2 h afforded the naphthofuran derivative $6(37.2,44.4 \%)$ along with the hydrogen bromide salts of the triethylamine. However, careful ${ }^{1} \mathrm{H}$ NMR analysis showed neither the formation of plausible dimeric isomers nor the interconversion of exo- and endo-1e under these photolytic conditions (Table 3). These homoquinones remained intact in the absence of amine or in the dark reaction. The compound 6 were photostable on 2 h irradiation in the presence of amine.

Table 3 Photoreaction of 1 e in the presence of triethylamine

			${\text { Yield }(\%)^{\mathrm{a}}}$		
1e	Solvent	Conv.	5	salt	
exo	$\mathrm{C}_{6} \mathrm{H}_{6}$	69.3	45.9	87.1	
exo	$\mathrm{CH}_{3} \mathrm{CN}$	78.1	39.2	91.1	
endo	$\mathrm{CH}_{3} \mathrm{CN}$	71.2	44.4	90.3	

a Calculated on the consumed $1 e$.

Free energy changes (ΔG) calculated for the system of $\mathbf{1 e}$ and triethylamine are all negative $\left(-169 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. Stern-Volmer plots of the fluorescence quenching of 1 e were linear for amine concentration as in the case of $\mathbf{1 b}$. No new emission spectrum attributable to exciplex fluorescence was observed in the quenching experiments. These facts implised that the photoreaction of $\mathbf{1 e}$ proceeds via first photoinduced electron transfer (PET) as in the case of diarylhomonaphthoquinones. Thus, the mechanism of photoreaction of $1 \mathbf{e}$ can be visualized in Scheme 4.

Scheme 4

The generated radical anion $\mathbf{I e}$ undergoes ring opening with loss of bromide to become allyl radical IIe. The radical IIe will lead to 2-α-phenylvinyl-1,4-naphthoquinone (III) via hydrogen donation to the 1 -(N, N-diethylamino)ethyl radical arising from proton release of cation radical of TEA. Subsequent photocyclization of III gives the naphthofuran derivative 6. Indeed, Iwamoto et al. reported the direct irradiation of analogous 2- α-phenylvinyl-1,4-benzoquinone resulted in the quantitative formation of the corresponding benzofuran derivative ${ }^{11}$.

1-3 Reactions with aromatic donor

Irradiation of cyclopropane $\mathbf{1 b}(6.2 \mathrm{mM})$ and an equimolar amount of naphthalene, dimethoxybenzene or triphenylamine in acetonitrile under an atmosphere of nitrogen for $2 h$ afforded 2 -bromo-3-diphenylmethylene-2,3-dihydronaphthoquinone 3 and 3,4-benzo-2-hydroxy-9-phenylxanthylium bromide 7. It is noted here that additive methanol considerably delayed the photoreaction of 1 b and captured 3 by $S_{N^{\prime}}$ reaction to give 2-(α methoxy)diphenylmethylnaphthoquinone 5 (entry 2 and 9). The results and the reaction conditions are shown in Table 4.

The absorption spectrum of 7 recorded in acetonitrile was characterized by several strong absorptions with $\lambda_{\max }=240.4 \mathrm{~nm}$ $(\log \varepsilon=4.47), 315.3(4.26), 395.0$ (3.94) and 532.2 (3.70). The IR spectra revealed no carbonyl absorption. Mass spectrum by electrospray method showed only one peak ($m / z 323, \mathrm{M}^{+}-\mathrm{Br}$). The reduction of the deep red crystal with zinc powder in acetic acid gave 3,4-benzo-2-hydroxy-9-phenylxanthene 5 (74.6% yield). Based on these evidence, we assigned this compound to be the xanthylium salt 7.

The fluorescence of 1b was quenched by naphthalene. SternVolmer plots of fluorescence quenching are linear for naphthalene concentration. No new emission ascribable to exciplex fluorescence was observed in the quenching experiments. The value of free energy change (ΔG) for the system of $1 \mathbf{b}$ and naphthalene was negative $(-102.4 \mathrm{~kJ} / \mathrm{mol})$. As in the case of amine donors, no new absorption was observed for naphthalene donor. The compound $1 \mathbf{b}$ was essentially unreactive in the absence of the donors, in dark, or in nonpolar solvent benzene (Table 4, entry 3). The replacement of
the bromo substituent of $\mathbf{1 b}$ by methyl group or chloro substituent resulted in the quantitative recovery of $\mathbf{1 c , d}$ as noted in the photoreaction of $\mathbf{1 c , d}$ (Table 4, entry 7,8). From these facts, possible mechanism of the photoisomerization of $\mathbf{1 b}$ into the xanthylium salt 7 can be seen in Scheme 5.

16

Table 4 Photoreaction of homonaphthoquinones(1b-d) with

Cyclo- Entry propane		Donor	Solvent Conv.(\%))		Yield ${ }^{\text {b }}$ (\%)			
		3			7	5		
1.	1 b		naphthalene	$\mathrm{CH}_{3} \mathrm{CN}$	13.7	9.5	60.6	
2	1 b	naphthalene	c	5.6	0	35.7	49.5	
3	1 b	naphthalene	$\mathrm{C}_{6} \mathrm{H}_{6}$	0	0	0	-	
4	1 b	naphthalene	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	0	0	-	
5	1 b	p-dimethoxybenzene	$\mathrm{CH}_{3} \mathrm{CN}$	$22.1{ }^{\text {d }}$	12.5	60.9	-	
6	1 b	m-dimethoxybenzene	$\mathrm{CH}_{3} \mathrm{CN}$	$12.1{ }^{\text {d }}$	10.3	46.1	-	
7	1 b	o-dimethoxybenzene	$\mathrm{CH}_{3} \mathrm{CN}$	13.8	10.8	63.1	-	
8	1 b	triphenylamine	$\mathrm{CH}_{3} \mathrm{CN}$	48.5	4.8	69.5	-	
9	1 b	triphenylamine		19.5	0	35.3	64.1	
10	1 c	naphthalene	$\mathrm{CH}_{3} \mathrm{CN}$	0	0	0	-	
11	1 d	naphthalene	$\mathrm{CH}_{3} \mathrm{CN}$	0	0	0	-	

a Irradiation time: $2 \mathrm{~h} . \mathrm{b}^{\mathrm{b}}$ Based on consumed 1. $\mathrm{c} \mathrm{MeOH} / \mathrm{MeCN}=$ $10 / 90$ by volume. d Isolated yield.

The radical anion Ib undergoes ring opening with loss of Br^{-}to generate allyl radical IIb. Next step is the back electron transfer from IIb to the radical cation of arene donor giving the allyl cation IV. In the case of amine donor, proton abstraction by a second molecule of amine exclusively occurred rather than the back electron transfer, and the radical IIb collapsed to the dimer 2b. Recombination of IV with Br^{-}will provide 3b. Formation of 7 may be rationalized by the photochemical 6π electrocyclization of $\mathbf{3 b}$ and the electron reorganization accompaied by proton migration and Br^{-}release, as judged from the appreciable decrease of 7 owing to the competitive methanolysis of $\mathbf{3 b}$ (entry 2 and 9). In fact, direct irradiation of $\mathbf{3 b}$ in acetonitrile gave $\mathbf{7}$ in good yield (82.2\%).

It is of much interest that similar photoreaction of $\mathbf{1 b}$ in the presence of xanthene donor gave both the dimer 2 , the ring-opened 3 and xanthylium salt 7 together with 9,9'-bixanthenyl. This fact indicates that xanthene occupies a borderline position in the present dual photolytic processes on account of its increased proton donating ability relative to naphthalene.

1-4 Conclusion

In the present chapter, photoreactions of monoaryl- and diarylhomonaphthoquinones (1a-e) with a substituent $X(M e, C l$, Br) have been described in the presence of amine donors and arene donors. The photoreactions of diarylhomonaphthoquinone (1a,b) in the presence of triethylamine (TEA) or diethylamine(DEA) gave the dimeric compound $(2 a, b)$, via the reductive ring opening followed by dimerization of the resulting allyl radicals. In the case of N,Ndimethylaniline (DMA) donor, an amine adduct 4 was also obtained along with the dimer 2b. However, methyl- and chloro-substituted 1c;d remained intact in these photoreactions. Similar photoreaction of methylphenylhomonaphthoquinone (1e) with TEA afforded the naphthofuran derivative (6) via the photocyclization of the intermediate $2-\alpha-$ phenylvinyl-1,4naphthoquinone. The photoreaction of $\mathbf{1 b}$ with the arene donors such as naphthalene gave xanthylium salt 7 via photo 6π electrocyclization of intermediary ring-opened $\mathbf{3 b}$. Thus, it is concluded that the proton donating ability of donor plays a decisive role in the product-determining step in such a way that the facile removal of proton leads to the dimerization of counter allyl radical by nutralizing bromide, while the degenerated donation of proton
results in back-electron transfer to afford allyl cation easily trapped by bromide.

1-5 Experimental

All melting points were taken on a Yanagimoto micro-melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a JEOL EX-270 MHz instrument with Me4Si ($\delta 0.00$) as an internal standard. IR, ultraviolet and fluorescense spectra were recorded on a Perkin-Elmer 983G, a Hitachi U-3400, and a Hitachi F-4010 spectrometer, respectively. Mass spectra were taken on a JEOL JMS DX303 mass spectrometer. The light source for all photo experiments was an Eikohsha EHB W1-300 300W high pressure Hg lamp, and the short cut filter used were an Eikohsha glass filter FT3 ($>330 \mathrm{~nm}$).

Materials. Acetonitrile and propionitrile were refluxed and fractionated over diphosphorus pentaoxide and then over potassium carbonate before use. Benzene and tetrahydrofuran were refluxed over lithium aluminium hydride for 1 day and fractionated. Dichloromethane and ethyl acetate were distilled over calcium hydride prior to use. All amine and arene donors were commercial origin and were purified by distillation after drying over NaOH for liquid donors or by recrystallization for solid ones. Diarylhomonaphthoquinones (1a-d) were prepared from the reaction of diphenyl and bis(p-tolyl)diazomethanes with 2-methyl-, 2-chloro-, and 2-bromonaphthoquinones according to the previous procedures 12,13. 2-Bromo-3-diphenylmethylene-2,3-dihydro-
naphthoquinone (3) was obtained from the thermolysis of $\mathbf{1 b}$ according to the method of literature 12 .

Monoarylhomonaphthoquinones (endo- andexo-1e) were synthesized from the reaction of 1-phenyldiazoethane with 2bromonaphthoquinone in benzene for 5h. Exo and endo isomer were separated by column chromatography on silica gel by using hexane-benzene as an eluent. The high melting point isomer was ascertained as endo isomer on the basis of the n.O.e. between the methyl group at $\mathrm{C}-7$ and the methine proton at $\mathrm{C}-6$ position.

Exo-1-bromo-3,4-benzo-7-methyl-7-phenylbicyclo-2,5dione (exo-1e).

Yield 22.5%; m.p. $114-115{ }^{\circ} \mathrm{C}$; colorless prisms (from hexanebenzene) ; $\operatorname{IR}(\mathrm{KBr}) 1677,1590,1445,1353,1286,1251,747,695$ cm^{-1}.

NMR(CDCl3) $\delta 1.48(\mathrm{~s}, 3 \mathrm{H}) 3.40(\mathrm{~s}, 1 \mathrm{H}) 7.43-7.36(\mathrm{~m}, 5 \mathrm{H}) 7.80-7.84$ (m,2H) 8.17-8.25 (m,2H) MS m/e $340\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13 \mathrm{O}}^{2} \mathrm{Br}: \mathrm{C} ; 63.36 \mathrm{H} ; 3.84$. Found: $\mathrm{C} ; 63.19 \mathrm{H} ; 3.90$.

Endo-1-bromo-3,4-benzo-7-methyl-7-phenylbicyclo-2,5-dione(endo-1e).

Yield 4.0%; m.p. $148-149{ }^{\circ} \mathrm{C}$; colorless needles (from hexanebenzene); $\operatorname{IR}(\mathrm{KBr}) 1681,1284,772,709 \mathrm{~cm}^{-1}$. $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.92$ $(\mathrm{s}, 3 \mathrm{H}) \quad 3.14(\mathrm{~s}, 1 \mathrm{H}) \quad 6.93-6.98(\mathrm{~m}, 5 \mathrm{H})$ 7.42-7.46 (m,2H) 7.72-7.79 (m,2H) MS m/e $340\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Br}: \mathrm{C} ; 63.36 \mathrm{H}$; 3.84. Found: C; 63.34 H;3.95.

Photoreaction of Homonaphthoquinone(1a-d) in the Presence of Triethylamine(TEA) and Diethylamine(DEA). Irradiation of homonaphthoquinones (1a-d, $2.5 \mathrm{mmol} \mathrm{dm}{ }^{-3}$) and 5 equiv. excess of TEA and DEA in various solvents was carried out
under an atmosphere of nitrogen with a high pressure mercury lamp through a filter ($>330 \mathrm{~nm}$) for 2 h .

The general procedure is represented for the case of $\mathbf{1 b}$ (50.0 mg) and TEA (62.8 mg) in acetonitrile ($20 \mathrm{dm}^{3}$). After irradiation, the solvent and excess amine were evaporated and the reaction mixture was submitted for 1 H NMR analysis to determine the conversion of 1 b and the yield of the dimeric compound 2 by using an internal standard, 4-(chloromethyl)biphenyl. The reaction mixture was washed with benzene ($5 \mathrm{ml} \times 3$) to leave the amine salt of hydrogen bromide ($12 \mathrm{mg}, 68 \%$). The combined washing solution was evaporated and the residue was chromatographed on silica gel to give successively the unconsumed $\mathbf{1 b}(11 \mathrm{mg}, 22 \%)$ and (\pm)-2 b ($7 \mathrm{mg}, 22 \%$) with a mixture of hexane and benzene as an eluent, and meso-2b ($6 \mathrm{mg}, 19 \%$) and the second crop of amine salt (1 mg , 6%) with a mixture of benzene and ether, and finally a considerable amount of intractable resinous material (10 mg) with methanol. Formation of such resinous unidentified products was also the case for the photoreaction in the presence of DEA and DMA. In conformity with this preparative work, HPLC analysis of the reaction mixture showed the presence of at least seven by-products eluted prior to the unconsumed 1b and meso- and (\pm)-2b. Judging from the proposed mechanism in Scheme 1, some of these products may be owing to the side pathway via the allyl radical and the amino radical, and also the further photodegradation of these primary adducts. However, we could not isolate them by careful chromatography on silica gel.
Meso-2,2'-bi-3-diphenylmethylene-2,3-dihydro-1,4-
naphthoquinone (meso-2b).
M.p. $278-279^{\circ} \mathrm{C}$. Pale yellow prisms. (from benzene-hexane) $\operatorname{IR}(\mathrm{KBr}) ; 1686,1487,1285,1242,1227,982,704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \quad \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{Cl}\right) \delta \quad 4.38(\mathrm{~s}, 2 \mathrm{H}) \quad 6.73-6.77(\mathrm{~m}, 4 \mathrm{H})$ 7.04-7.08 (m,4H) $7.13-7.17(\mathrm{~m}, 6 \mathrm{H}) \quad 7.21-7.26(\mathrm{~m}, 6 \mathrm{H}) \quad 7.62-7.66(\mathrm{~m}, 4 \mathrm{H}) \quad 7.80-7.86$ ($\mathrm{m}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 59.5,127.1,127.2,127.6,128.0,128.2,128.4$, $128.5,130.3,133.7,133.9,134.8,136.5$,139.7, 140.2, 154.5, 185.6, 194.0. MS m/e 646(M+). Anal. Calcd for $\mathrm{C}_{4} 6 \mathrm{H} 30 \mathrm{O} 4$: $\mathrm{C} ; 85.43$ $\mathrm{H} ; 4.68$. Found: C; $85.43 \mathrm{H} ; 4.84$.
(土)-2,2'-bi-3-diphenylmethylene-2,3-dihydro-1,4naphthoquinone ($(\pm)-2 b)$.
M.p. $288-290^{\circ} \mathrm{C}$. Pale yellow prisms (from benzenehexane). $\operatorname{IR}(\mathrm{KBr}) ; 1694,1589,1488,1281,1245,1157,984,703$ cm^{-1}. $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.30(\mathrm{~s}, 2 \mathrm{H})$ 7.03-7.06 (m,4H) 7.14-7.24 $(\mathrm{m}, 10 \mathrm{H})$ 7.28-7.34 (m, 6H) 7.56-7.60 (m,4H) 7.74-7.81 (m,4H). MS $m / e 646\left(\mathrm{M}^{+}\right)$. Anal. Calcd for C 46 H 30 O 4 : $\mathrm{C} ; 85.43 \mathrm{H} ; 4.68$. Found : $\mathrm{C} ; 85.53 \mathrm{H} ; 4.84$.

Meso-2,2'-bi-3-bis(p-tolyl)di-methylene-2,3-dihydro-1,4naphthoquinone (meso-2a).
M.p. $290-292^{\circ} \mathrm{C}$. Yellow prisms (from benzene-hexane). $\operatorname{IR}(\mathrm{KBr})$; 1688, 1588, 1289, 1239, 1225, 981, $728 \mathrm{~cm}^{-1}$.

NMR (CDCl3) $\delta 2.25(\mathrm{~s}, 6 \mathrm{H}) 2.29(\mathrm{~s}, 6 \mathrm{H}) 4.41$ ($\mathrm{s}, 2 \mathrm{H}) 6.61$ (d, $\left.\mathrm{J}_{\mathrm{AA}}{ }^{\prime}=7.91,4 \mathrm{H}\right)$ 6.90-7.00 (m,8H) 7.02-7.08 (m,4H) 7.58-7.68 (m,4H) 7.75-7.82 (m,2H) 7.82-7.85 (m,2H). Calcd for $\mathrm{C}_{50} \mathrm{H}_{38 \mathrm{O}}^{\mathbf{4}}$: 702.28.

Found ; HR MS $\quad m / e \quad 702.28$.
(土)-2,2'-bi-3-di-p-tolylmethylene-2,3-dihydro-1,4naphthoquinone $\quad((\pm)-2 a)$.
M.p. $287-289^{\circ} \mathrm{C}$. Yellow prisms (from hexane-benzene). IR(KBr) : $1693,1589,1504,1247,985,816,728 \mathrm{~cm}^{-1}$.
$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.25(\mathrm{~s}, 6 \mathrm{H}) 2.33(\mathrm{~s}, 6 \mathrm{H}) 4.34$ ($\left.\mathrm{s}, 2 \mathrm{H}\right) 6.91$ (d, $\left.\mathrm{JAA}^{\prime}=8.25,4 \mathrm{H}\right) \quad 6.89-7.04 \quad(\mathrm{~m}, 4 \mathrm{H}) 7.07-7.10 \quad(\mathrm{~m}, 8 \mathrm{H}) \quad 7.56-7.88$ $(\mathrm{m}, 4 \mathrm{H})$ 7.76-7.79 (m,4H). MS m/e 702(M^{+}). Anal. Calcd for $\mathrm{C} 50 \mathrm{H} 38 \mathrm{O} 4: \mathrm{C} ; 85.44 \mathrm{H} ; 5.45$. Found: C; $85.07 \mathrm{H} ; 5.45$.

Photoreaction of Homonaphthoquinone (1b) in the Presence of N, N-dimethylaniline (DMA).
Similar photoreaction of $\mathbf{1 b}$ and 5 equiv. of DMA in acetonitrile gave the dimeric compound $2 \mathbf{2 b}, 1: 1$ amine adduct 4 and amine salt. After irradiation, the reaction mixture was submitted for 1 H NMR analysis to determine the conversion of $\mathbf{1 b}$ and the yield of products as described above. The reaction mixture was washed with benzene ($5 \mathrm{ml} x$) to leave the amine salt of hydrogen bromide. The combined washing solution was evaporated and the residue was chromatographed on silica gel to give successively unconsumed 1b ($12 \mathrm{mg}, 24 \%$), amine adduct 4 ($4 \mathrm{mg}, 10.7 \%$), (\pm)$\mathbf{2 b}$ ($5 \mathrm{mg}, 18.4 \%$) and with a mixture of hexane and benzene as an eluent ,and meso-2b ($4 \mathrm{mg}, 14.7 \%$) with a mixture of benzene and ether, and finally an intractable resinous material (7 mg) with methanol

2-(p-dimethylamino)phenyl-3-diphenylmethylene-2-hydro-1,4-naphthoquinone (4).
M.p. $1^{122-123^{\circ}}{ }^{\circ}$. Yellow prisms (from hexane-benzene). IR(KBr): $1688,1515,1284,1249,1232,1213,701,680 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{Cl}\right) \delta 2.90(\mathrm{~s}, 6 \mathrm{H}) 5.06(\mathrm{~s}, 1 \mathrm{H}) 6.63\left(\mathrm{~d}, \mathrm{JAA}^{\prime}=8.60,2 \mathrm{H}\right)$
7.02-7.13 (m, 4H) 7.15-7.42 (m, 8H) 7.63-7.70 (m,2H) 7.93-8.06 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 40.31,61.04,112.89,125.00,126.85,127.34$, 127.93, 128.16, 128.24, 128.31, $128.82,129.21,129.36,133.27$, $133.39,134.03,134.22,136.43,140.14,141.18,149.77,153.31$,
190.50, 195.13. HR MS Calcd for $\mathrm{C} 31 \mathrm{H} 25 \mathrm{NO}_{2}$: 443.1887. Found : m/e 443.1882.

Photoreaction of 2-Bromo-3-diphenylmethylene-2,3dihydronaphthoquinone (3) in the Presence of Triethylamine (TEA).

Similar photoreaction of $\mathbf{3}$ in the presence of TEA in benzene gave the dimeric compound (\pm) and meso-2b and amine salt of hydrogen bromide. The yields of $\mathbf{2 b}$ were determined by ${ }^{1} \mathrm{H}$ NMR as described above.

Reductive Dimerization of 2-Bromo-3-diphenylmethylene-2,3-Dihydronaphthoquinone (3) to $2 b$ with Zinc Powder. To a stirred solution of $3(100 \mathrm{mg})$ in benzene (5 ml) was added zinc powder(100 mg). After 1 h , the solvent was evaporated and the reaction mixture was submitted for ${ }^{1} \mathrm{H}$ NMR analysis to determine the yield of dimer 2b as described above. The solution was evaporated and the residue was chromatographed on silica gel to give (\pm)-2b ($31 \mathrm{mg}, 38.6 \%$) with benzene as an eluent, and meso2b ($10 \mathrm{mg}, 12.5 \%$) with a mixture of benzene and ether.
Photoreaction of Homonaphthoquinones (exo-and endo1e) in the Presence of Triethylamine (TEA) in Acetonitrile Photoreaction of exo-and endo-1e in the presence of TEA in acetonitrile or benzene gave the naphthofuran derivative 6 and amine salt of hydrogen bromide. The general procedure is represented for the case of exo-1e (50.0 mg) and TEA (61.2 mg) in acetonitrile (20 ml). After 2 h irradiation, the reaction mixture was submitted for $1^{1} \mathrm{H}$ NMR analysis to determine the conversion of exo1 e and the yield of the naphthofuran derivative 6 as described above. The reaction mixture was washed with benzene ($5 \mathrm{ml} \times 3$) to leave the amine salt of hydrogen bromide ($11 \mathrm{mg}, 62 \%$). The
combined washing solution was evaporated and the residue was chromatographed on silica gel to give successively unconsumed exo-1e ($11 \mathrm{mg}, 22 \%$), naphthofuran compound 3 ($11 \mathrm{mg}, 36.2 \%$) with a mixture of hexane and benzene as an eluent, and a considerable amount of intractable resinous material (10 mg) with methanol.

5-Hydroxy-3-phenyl-naphtho[1,2-b]furan (6).
M.p. $116-117^{\circ} \mathrm{C}$. Colorless needles(from hexane-benzene). IR(KBr) : 3407, 1595, 1449, 1247, 1067, 764, $697 \mathrm{~cm}^{-1}$.
$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta \quad 5.17(\mathrm{~s}, 1 \mathrm{H}) 7.22(\mathrm{~s}, 1 \mathrm{H})$ 7.36-7.41 (m,2H) 7.49-7.57
$(\mathrm{m}, 3 \mathrm{H}) \quad 7.62-7.68(\mathrm{~m}, 2 \mathrm{H}) \quad 7.88 \quad(\mathrm{~s}, 1 \mathrm{H}) \quad 8.25-8.31 \quad(\mathrm{~m}, 2 \mathrm{H}) . \quad 13 \mathrm{C}$ NMR(CDCl3) $\delta 100.4,120.1,121.3,122.0,122.7,122.9,123.3,124.9$, 127.1, 127.4, 127.5, 129.0, 132.3, 140.7, 146.7, 148.0. HR MS Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2}: 260.084$ Found: m/e 260.086.

Photoreaction of Homonaphthoquinone (1b) in the Presence of Naphthalene, $\sigma-, m$ and $p-D i m e t h o x y b e n z e n e s$ and Triphenylamine in Polar Solvent.

Irradiation of homonaphthoquinone $\mathbf{1 b}(6.2 \mathrm{mM})$ and an equiv. amount of naphthalene, dimethoxybenzenes, and triphenylamine in various solvents under an atmosphere of nitrogen for 2 h with high pressure mercury lamp ($>330 \mathrm{~nm}$) afforded 2-bromo-3-diphenylmethylene-2,3-dihydronaphthoquinone (3) and 3,4-benzo-2-hydroxy-9-phenylxanthylium bromide (7).

The general procedure is represented for the case of $1 \mathbf{b}$ (50.0 mg) and p-dimethoxybenzene $(17.1 \mathrm{mg})$ in acetonitrile (20 ml). After irradiation, the reaction solution was submitted for UV analysis to determine the yield of the xanthylium salt 7 (60.9\% based on consumed 1b) with the characteristic absorption at $\lambda_{\max }=532.2 \mathrm{~nm}[\log \varepsilon=3.70]$. The solvent was evaporated and the
reaction mixture was submitted for ${ }^{1} \mathrm{H}$ NMR analysis to determine the yield of $\mathbf{3}(12.5 \%)$ as described above. The reaction mixture was washed with benzene ($5 \mathrm{ml} \times 4$) to leave xanthlium salt $7(6 \mathrm{mg}$, 54.5% on 22% conversion). The combined washing solution was condensed and chromatographed on silica gel to give successively dimethoxybenzene (15 mg), unconsumed 1 b ($39 \mathrm{mg}, 78 \%$) and 2-[hydroxy(diphenylmethyl)]-1,4-naphthoquinone 9 ($1 \mathrm{mg}, 10.8 \%$) with increasing amount of benzene in hexane ($\sim 100 \%$ by volume). The compound 9 was derived from hydrolysis of 3 .

3,4-Benzo-2-hydroxy-9-phenylxanthylium bromide(7). M.p. $283^{\circ} \mathrm{C}$, dark red prisms; $\operatorname{IR}(\mathrm{KBr}) 1622,1601,1489,1414,1377$, 1270. $\mathrm{UV}(\mathrm{CH} 3 \mathrm{CN}) ; \lambda_{\max }=240.4 \mathrm{~nm}(\log \varepsilon=4.47), 315.3 \mathrm{~nm}(4.26)$, 395.0 nm (3.94), and $532.2 \mathrm{~nm}(3.70) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 7.718.45 ($\mathrm{m}, 12 \mathrm{H}$) 8.64-8.68 (d, J=9.91,1H) 9.13-9.16 (d, J=8.58, 1 H) $11.65(\mathrm{~s}, 1 \mathrm{H}) \quad \mathrm{MS}$ (Electrospray method) 323 (M-Br).
2-[Hydroxy(diphenyl)methyl]-1,4-naphthoquinone(9)
M.p. $154-155^{\circ} \mathrm{C}$ Yellow prisms. $\operatorname{IR}(\mathrm{KBr})$ 3443, 1663, 1590, 1339, $1301,1251,755,700 \mathrm{~cm}^{-1} . \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.10(\mathrm{~s}, 1 \mathrm{H}) 6.30(\mathrm{~s}, 1 \mathrm{H})$ 7.30-7.37 (m, 10H) 7.73-7.79 (m,2H) 8.02-8.09 (m,2H). MS m/e $340\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{16 \mathrm{O}}^{3}$: $\mathrm{C} ; 81.16 \mathrm{H} ; 4.74$. Found: C; $80.96 \mathrm{H} ; 4.99$.

Photoisomerization of 2-Bromo-3-diphenylmethylene-2,3dihydronaphthoquinone (3).

Irradiation of a solution of $3(100 \mathrm{mg}$) in acetonitrile (5 ml) for 24 h furnished red prisms of 7 ($69 \mathrm{mg}, 69 \%$) on the glass surface. The filtrate was submitted for UV analysis to determine the yield of the second crop of $7(13.2 \%)$ as described above.
Reduction of Xanthylium Salt 7 into Xanthene with Zinc Powder in Acetic Acid.

To a stirred solution of $7(100 \mathrm{mg})$ in acetic acid (5 ml) was added zinc powder $(100 \mathrm{mg})$. After 2 h , the solvent was evaporated and the reaction mixture was chromatographed on silica gel to give 8 (74.6% yield) with hexane-benzene as an eluent.

3,4-Benzo-2-hydroxy-9-phenylxanthene (8).
$\mathrm{mp} 161-162^{\circ} \mathrm{C}$ colorless needles $\operatorname{IR}(\mathrm{KBr}) 3520,1585,1486,1451$, 1388, 1299, 1260, 1187, $754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{CD} 3 \mathrm{Cl}) \delta \quad 5.00(\mathrm{~s}, 1 \mathrm{H})$ $5.27(\mathrm{~s}, 1 \mathrm{H}) 6.40(\mathrm{~s}, 1 \mathrm{H}) 6.94-7.08(\mathrm{~m}, 2 \mathrm{H}) 7.15-7.30(\mathrm{~m}, 7 \mathrm{H})$ 7.46-7.64 $(\mathrm{m}, 2 \mathrm{H}) 8.05-8.08(\mathrm{~d}, \mathrm{~J}=7.92,1 \mathrm{H}) 8.40-8.43(\mathrm{~d}, \mathrm{~J}=7.92,1 \mathrm{H})$.
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 44.7,108.7,116.6,117.4,121.6,121.7,123.2$, $123.7,124.3,125.1,125.8,126.6,126.8,127.8,128.6,128.7,129.8$, 139.9, 146.6, 150.8. MS $m / e=324\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{16 \mathrm{O}}^{2}$: C; 85.16 H; 4.97. Found: C; 85.19 H; 5.18.

Photoreaction of Homonaphthoquinone (1b) in the Presence of Xanthene in Acetonitrile.

Irradiation of homonaphthoquinone $\mathbf{1 b}(50 \mathrm{mg})$ and an equiv. amount of xanthene in acetonitrile (20 ml) for 2 h with high pressure mercury lamp ($>330 \mathrm{~nm}$) afforded the dimeric compound 2 , the ring-opened 3, and xanthylium salt 7 along with 9,9'bixanthenyl.

After irradiation, the reaction solution was submitted for UV analysis to determine the yield of 7 (38.7\%) as described above. The solvent was evaporated and the reaction mixture was submitted for ${ }^{1} \mathrm{H}$ NMR analysis to determine the yield of $2((\pm)$: 5.4\%; meso: 3.6% based on the consumed 1b), 3 (10.9\%) and 9,9'bixanthenyl (15.9\%) as described above. The reaction mixture was washed with benzene $(5 \mathrm{ml} \times 4)$ to leave xanthlium salt 7 . The combined washing solution was condensed and chromatographed on silica gel to give successively 9,9 '-bixanthenyl ($2 \mathrm{mg}, 13.8 \%$),
unconsumed 1b ($34 \mathrm{mg}, 68 \%$), $9(1 \mathrm{mg}, 7 \%)$, and the dimeric compound 2 ($1 \mathrm{mg}, 9 \%$) with increasing amount of benzene in hexane ($\sim 100 \%$ by volume).

1-6 References

1 K. Mizuno, J. Ogawa and Y. Otsuji, Chem. Lett., 1981, 741; J. P. Dinnocenzo, W. P. Todd, T. R. Simpson and I. R. Gould, J. Am. Chem. Soc., 1990, 112, 2462; V. R. Rao, S. S. Hixon, J. Am.

Chem. Soc., 1979, 101, 6458; H. Tomioka and O. Inoue, Bull. Chem. Soc. Jpn., 1988, 61, 1404.

2 P. C. Wong and D. R. Arnold, Tetrahedron Lett. 1979, 2101;
Organic Photochemistry, ed. A. Padwa, Marcel Dekker, New York, 1983, vol.6, chap 4; Y. Inoue, H. Shimoyama, N.

Yamasaki, A. Tai, Chem. Lett., 1983, 1054.
3 D. R. Arnold and R. W. R. Humphrey, J. Am. Chem. Soc., 1979, 101, 2743.

4 H. Tomioka, D. Kobayashi, A. Hashimoto and S. Murata, Tetrahedron Lett., 1989, 30, 4685.

5 N. Ichinose, K. Mizuno, Z. Hiromoto and Y. Otsuji, Tetrahedron Lett., 1986, 27, 5619.

6 H. Tomioka and O. Inoue, Bull. Chem. Soc. Jpn., 1988, 61, 3725.
7 H. Tomioka and M. Kanda, Chem. Lett., 1990, 2223.
8 H. Tomioka and H. Miyagawa, J. Chem. Soc., Chem. Commun., 1988, 1183.

9 D. Rehm and A. Weller, Isr. J. Chem., 1970, 259.
10 The Chemistry of Cyclopropyl Group, ed. Z, Rappoport, Wiley, New York, 1987, vol.1, p. 701.

11 H. Iwamoto and A. Takuwa, 65th National Meeting of the Chemical Society of Japan, Tokyo, April 1993.

12 Y. Nakano, H. Hamaguchi and T. Nagai, J. Org. Chem., 1989, 54, 1135; T. Oshima, K. Tamada and T. Nagai, J. Chem. Soc. Perkin. Trans. 1., 1994, 3325.

13 K. Maruyama and S. Tanioka, J. Org. Chem., 1989, 54, 1135.

Chapter 2.

Photoinduced Electron-transfer Reactions of Homobenzoquinone

2-1 Introduction

As described in chapter 1, the irradiation of bromonaphthoquinone-fused diphenylcyclopropane (1b), so-called homonaphthoquinone, in the presence of alkylamine donors provides the dimer product (2b) and the hydrogen bromide salts of amines via an initial electron transfer from amine to the excited homoquinone. This photochemical reaction was dramatically changed to give xanthylium salt when the amines were replaced by arene donors. The crucial point differentiating the photoinduced degradation was rationalized by the nature of donor molecules, their proton donating ability.

In contrast to the homonaphthoquinones, homobenzoquinones are intriguing because the incorporated π-conjugative enedione unit is expected to undergo a variety of potential photoreactions in analogy with the reaction of enones; ${ }^{1,2,3}$ photoinduced hydrogen abstraction, photocycloaddition to olefins, and rearrangement.

1f; $\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Br}$
1g; $\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{CH}_{3}$
1h; $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{X}=\mathrm{CH}_{3}$
1i; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{X}=\mathrm{CH}_{3}$

This paper deals with the photoinduced reaction of 2-bromo and 2-methyl-substituted diphenylhomobenzoquinones 1f-i in the presence of triethylamine (TEA) and N, N-dimethylaniline (DMA). The aim of this study is to explore the scope of the photoreactions of homoquinones and the factors that determine the mechanistic features in comparison with the previous reaction of homonaphthoquinones.

2-2 Reactions of 2-bromo-5-methyl-homobenzoquinone

Irradiation of diphenylhomobenzoquinones (1f) and 5 equiv. excess of triethylamine(TEA) in benzene under an atmosphere of nitrogen with a high pressure mercury lamp through a filter ($>330 \mathrm{~nm}$) for 2 h gave the ring-opened hydrogenated product 10 (49.2%) together with the hydrogen bromide salts of the triethylamine (52.7%) and diethylamine (20.5 \%) (Scheme 1).

Similarly, other alkyl amines, diethylamine, tri-n-propylamine, tri- n-butylamine, N, N-diethylaniline (DEAN) also provided quinone 10 (Table 1). The insufficient mass balance in these photoreactions would be owed to the further reaction of 10 under these photolytic conditions. Indeed, 2 h 's irradiation of $\mathbf{1 0}$ in the presence of 5 equiv. of TEA caused a considerable consumption of this quinone, although the reaction mixture was intractable.

However, when 1 f was irradiated in the presence of N, N dimethylaniline (DMA) (for 2 h , conversion; 56.9%), a substantial amount of $1: 1$ aminated adduct $11 \mathrm{f}(31.5 \%)$ at the $\mathrm{C}=\mathrm{C}$ double bond and 4,4'-methylenebis(N,N-dimetylaniline) 13 (16.0%) were obtained, together with 10 (9.5\%) (Scheme 2). The structures of $\mathbf{1 0}$, 11f, and 13 were deduced on the basis of the $I R,{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR,
and mass spectra. Stereochemistry of 111 f was determined by NMR analysis (vide infra).

10
Scheme 1

These reactions did not occur in the absence of amine or in the dark. Replacement of amine by a hydrogen donor 2-propanol also resulted in the quantitative recovery of $1 f$. The fluorescence of $\mathbf{1 f}$ ($\lambda_{\max }=420 \mathrm{~nm}$) were quenched by triethylamine in benzene. SternVolmer plots of the fluorescence quenching were linear with amine concentration, indicating the electron transfer to the singlet excited state of 1 f . Free energy changes (ΔG) calculated according to the Weller equation for the system of if and various amines used are all negative (Table 1). This means electron transfer from the amines to the excited 1f should be spontaneous. No new emission attributable to exciplex fluorescence was observed in the quenching experiments. No essential change in the absorption spectra was found in the mixtures of $1 f\left(1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and 5 to 20 equiv. of TEA.

Table 1 Photoreaction of homozenzoquinone (1f) with donors in benzene

Donor	$\Delta \mathrm{G}$	Irrad.		Yield(\%) ${ }^{\text {b }}$
	kJ mol-1	time/hour	Conv.(\%) ${ }^{\text {c }}$	10
Triethylamine	-158	2	75.7	49.2
Triethylamine		0	0	0
None		2	0	0
Triphenylamine	-137	2	30.1	65.7
N,N-diethylaniline	-156	2	0	0
Diethylamine		2	27.9	23.9
Tri-n-propylamine		2	58.5	49.2
Tri-n-buthylamine		2	54.1	59.8
Naphthalene	-76	2	0	0

a Caluculated according to Weller equation; E_{0-0} of $\mathbf{1 f}$ was measured to be 3.54 eV . Reduction potentioal of $\mathbf{1 f}$ vs. SCE is -1.15 V in MeCN . b Due to the NMR peak areas of methine peak area of 4-(Chloromethyl)biphenyl used as an internal standard. c Caluculated on the consumed 1f.

From these facts, we propose a possible mechanism for the representative reaction of $1 f$ with TEA as shown in Scheme 1. The first step is photoexcitation of 1 f followed by a single electron transfer (SET) from TEA to the excited 1f. The radical anion $1 \mathbf{1 f}^{-}$. generated abstracts a proton from TEA+. to be transformed into homobenzosemiquinone V and 1-(diethylamino)ethyl radical VI for TEA donor. The radical \mathbf{V} undergoes β-fission to become VII. The radical VII leads to 10 by way of H abstraction from the amino radical VI, tautomerization and the loss of HBr . The resulting enamine IX easily hydrolyzed with residual water to degrade to diethylamine and acetaldehyde ${ }^{5}$.

In the case of DMA donor, formation of aminated 11 f may be ascribed to the radical coupling of V with the counter metylphenylaminomethyl radical \mathbf{X} as well as the tautomerization to keto-form(Scheme 2). This amino radical \mathbf{X} is also participate in the formation of diamine 6. Here, the radical \mathbf{X} attacks DMA+.. at the para-position to give dimeric diamine 12 with loss of proton. The amine 12 will act as a donor component in the this photoreaction of 1f. The diamine radical cation given by SET reaction dissociates into methylphenyl aminyl radical and p-dimethylaminobenzyl cation. The benzyl cation reacts further with the neutral DMA to afford 13. Stoichiometrically, two protons can be extruded in the formation of one molecule of 13 as noted in Scheme 2. Such protons seem to be employed preferably in the neutralization of radical anion $1 \mathbf{f f}^{--}$.

It is noteworthy that the DMA donor achieved radical coupling with \mathbf{V} to give 11f, but the alkyl amines such as TEA or $N, N-$ diethylaniline (DEAN) did not provide the corresponding amine adduct. This difference mode of the reaction can be attributed to the bulkiness and hydrogen donating ability of the respective
amino radicals. The amino radicals derived from TEA and DEAN are secondary and rather crowded around the radical center unfavorable for the coupling with V. Instead, these radicals are superior hydrogen donating species to facilitate the reducing process leading to $\mathbf{1 0}$. However, DMA radical reverses the situation on account of the less sterical congestion and the poor hydrogen donation.

Of special interest is the marked difference in the products between the photoreaction of the present homobenzoquinone $1 f$ and that of the earlier homonaphthoquinone $1 \mathbf{b}$. As described chapter 1 , reaction of $\mathbf{1 b}$ in the presence of TEA provided isomeric mixture of dimer 2 b due to the coupling of the intermediary allyl radical (II). In the case of DMA donor, 1:1 amine adduct 4 associated with the cyclopropane ring-cleavage was obtained along with the dimer product.

If it were also true that the present homobenzoquinone $\mathbf{1 f}$ follows the similar reaction course as did $\mathbf{1 b}$, its allyl radical would give rise to the dimer or the same type of amine adduct with DMA. However, possible signals assignable to the expected products were not observed on a careful ${ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture. As shown in Scheme 1, protonation of radical anion of $\mathbf{1 f}$ is necessary to produce 10 , surpressing the possible process into the allyl radical. Why does the radical anion $1 f^{-.}$derived from homobenzoquinone exhibit such a preferred proton acceptability? A comparison of molecular orbital calculations for both radical anions of 1 b and 1 f provided no satisfactory account for the preferential proton abstraction of $1 \mathrm{a}^{-}$. as judged from the almost comparable charge distribution on the quinone framework (Fig 1)*. Molecular orbital calculations by the PM3 method (ref 15) were performed
with the MOPAC94 program using an CAChe system.

Scheme 2

Fig. 1 Calculated charge distributions (upper) and spin density (lower) of radical anions of $\mathbf{1 g}$ and $\mathbf{1 b}$

It is also the same for the spin densities which will relate to the β-fission of cyclopropane ring to prepare allyl radical. Though inconsistent with the calculated distribution of the unpaired electron, we conceive that the fused-benzene nuclei of $\mathbf{1 b}{ }^{-}$. may allow the accumulation of spin density on the adjacent ketyl carbon atom just as in π-conjugative benzyl radical, by which the β-fission is favored to give rise to the corresponding allyl radical. As for $\mathbf{1 f}-$, one can easily imagine that the similar stabilization of the radical by allylic conjugation will cause the ring-opening of cyclopropane, but the spin densities of the terminal carbons of allyl radical is known to be lower than that of the benzyl radical ${ }^{6}$. The less liability of $\mathbf{1 f}$ - toward β-fission may be a cause for the preferable protonation. Unfortunately, however, a clear account for the marked difference in the reaction fashion between $\mathbf{1 b}^{-} \cdot$ and $\mathbf{1 f}^{-}$. requires further exploring experiments.

2-3 Reactions of 2,5-dimethyl-homobenzoquinone

Irradiation of di-, and trimethyl-substituted diphenylhomobenzoquinones $1 \mathrm{~g}-\mathrm{i}$ and 5 equiv. excess of triethylamine (TEA), diethylamine (DEA) in benzene under an atmosphere of nitrogen with a high pressure mercury lamp through a short cut filter ($>330 \mathrm{~nm}$) for 5 h gave the hydrogenated products $14 \mathrm{~g}-\mathrm{i}$ in almost quantitative yields. In contrast, similar photoreaction of dimethyl-substituted $\mathbf{1 g}, \mathbf{h}$ in the presence of N, N dimethylaniline(DMA) quantitatively provided the aminated products $11 \mathrm{~g}, \mathrm{~h}$, though trimethyl-substituted $\mathbf{1 i}$ substantially remained intact (Table 2 , Scheme 3). The structures of $\mathbf{1 1 g}$,h and 14 g -i were illustrated in Scheme 4.

119

Scheme 3

Table 2 Photoreactions of homoquinones $\mathbf{1 g}, \mathbf{h}, \mathbf{i}$ and $1 \mathbf{d}$ with amines in benzene ${ }^{\text {a }}$

Entry	Homoquinone	Donor (Additive)	Yield. ${ }^{\text {c }}$ (\%)		
			Conv.(\%) ${ }^{\text {b }}$	4	8
1	1 g	TEA	100	-	~ 100 (95)
2	1 g	DEA	10.2	-	~ 100
3	1 g	DMA	100	~100(83)	0
4	1 g	Xanthene	7.4	0	0
5	1 g	$2-\mathrm{PrOH}$	3.6	0	0
6	1 h	TEA	100	-	~ 100 (72)
7	1 h	DMA	100	~100(69)	0
8	1 i	TEA	100	-	$\sim 100(70)$
9	1 i	DMA	4.2	0	0
10	1 d	TEA	0	0	0
11	1 d	DMA	0	0	0

a Irradiations were carried out on 8.3 mM of homoquinones in benzene (20 ml) in the presence of 5 molar excess of donors for 5 h with a 300 W high-pressure Hg lamp. b Owing to the NMR peak areas of methine protons of 10 and of remaining 1,11 and 14 with respect to the methylene peak area of 4(chloromethyl)biphenyl used as an internal standard. c Based on consumed 1. ${ }^{\text {d }}$ Carreid out in $2-\mathrm{PrOH}$.

11g; $X^{1}=\mathrm{CH}_{3}, X^{2}=X^{3}=H, X^{4}=R$
11h; $X^{3}=\mathrm{CH}_{3}, X^{1}=X^{4}=H, X^{2}=R$
$14 \mathrm{~g} ; \mathrm{X}^{4}=\mathrm{CH}_{3}, X^{2}=X^{3}=X^{4}=H$
14h; $X^{3}=\mathrm{CH}_{3}, X^{1}=X^{2}=X^{4}=H$
14i; $X^{2}=X^{3}=\mathrm{CH}_{3}, X^{1}=X^{4}=H$

Scheme 4

The stereochemistry of $11 \mathrm{~g}, \mathrm{~h}$ and $14 \mathrm{~g}-\mathrm{i}$ were deduced by the NMR coupling constants between the protons at 3 and 4-positions, as represented in the case of 14 . The 14 g shows two doubletdoublet peaks at $\delta 1.12\left(\mathrm{~J}_{1}=17.16, \mathrm{~J}_{2}=13.86 \mathrm{~Hz}\right)$ and $2.34\left(\mathrm{~J}_{1}=17.16\right.$, $\mathrm{J}_{2}=6.60 \mathrm{~Hz}$) ppm due to the geminal and vicinal couplings of the methylene at 3-position. The high field signal would be assigned to the shielded syn-proton and the low-field signal the anti-one with respect to the fused diphenylcyclopropane ring. The large vicinal coupling constant $(\mathrm{J}=13.86 \mathrm{~Hz})$ of the syn-proton suggests the axialaxial arrangement with the adjacent methine proton at 4-position. Indeed, X-ray crystal structure showed the half-chair comformation with a torsion angle; $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5),-36^{\circ}$ (Fig 2). In contrast, the small coupling constant $(\mathrm{J}=6.60 \mathrm{~Hz})$ of the anti-proton can be explained by the axial-equatrial arrangement. Similarly, structure of 14 h was determined. In case of 14 i , the geminal coupling constant $\mathrm{J}=6.60 \mathrm{~Hz}$ is consistent with the axial-equatrial or equatrialequatrial arrangement, but abnormally high field methyl signals at $\delta 0.17$ and 0.56 must be ascribed to the shielding effects of phenyl ring and the adjacent carbonyl group, indicating its anti-periplanar arrangement. The compound $11 \mathrm{~g}, \mathrm{~h}$ revealed axial-axial couplings $(\mathrm{J}=12.53,12.21 \mathrm{~Hz})$, thereby both the methyl and amino group must occupy the equatorial-positions. The anti-location of bulky amino group is rationalized by the favored anti attack of amino radical to the homobenzosemiquinone (vide infra). A careful NMR analysis of the reaction mixture showed stereoselective formation of 11 and 14, with their possible stereoisomer being not detected.

The fluorescence of 1 g were quenched by TEA and DMA in benzene. Stern-Volmer plots of the fluorescence quenching in benzene were linear with amine concentration, indicating the
electron transfer to the singlet excited state of $\mathbf{1 g}$. No new emission attributable to exciplex fluorescence was observed in the quenching experiments. No essential change in the absorption spectra was found in the mixture of $\mathbf{1 g}, \mathrm{h}, \mathrm{i}(5 \mathrm{mM})$ and 5 to 20 eq. excess of TEA or DMA. The photoreactions of $\mathbf{1 g}, \mathbf{h}, \mathbf{i}$ did not occur in the absence of amine or in the dark. In place of amine, use of xanthene or 2 propanol as a hydrogen source resulted in almost the quantitative recovery of $1 \mathrm{~g}(92.6$ and $96.4 \%)$ without any detection of hydrogenated 14 g . Furthermore, benzo-fusion of homobenzoquinone framework endowed it with persistency for photo-hydrogenation and amination as tested for methylsubstituted homonaphthoquinone 1d.

Keeping these facts, we can outline the following mechanism for the photohydrogenation and amination of $\mathbf{1 g , h}, \mathbf{i}$ (Scheme 3).

The first step is photoexcitation of $\mathbf{1 g}, \mathrm{h}, \mathrm{i}$ followed by single electron transfer from the amine donor to the excited $1 \mathrm{~g}, \mathrm{~h}, \mathrm{i}$. The generated radical anion $1 \mathrm{~g}^{-\cdot}$ abstracts a proton from the radical cation of amine to give homobenzosemiquinone \mathbf{V} and amine radical VI or X. Here, the hydrogen donating ability of amine radical plays a decisive role in the subsequent degradation of V. Hydrogen abstraction is an exclusive process for VI arising from TEA and DEA to provide $14 \mathrm{~g}, \mathrm{~h}, \mathrm{i}$ by way of diketalization. Thus, the dealkylation of amine can be rationalized by hydrolysis of resulting vinyl amine. Absence of such labile hydrogen results in the radical coupling to afford amine adduct $11 \mathrm{~g}, \mathrm{~h}$, as in the case of DMA. A preliminary experiment showed that the compound 14 g undergo complete deuterium exchange at the 3 - and 4 -positions, while 11 g at only 4 position when treated with methanol-d4 under the influence of a few drops of TEA or DMA for 5 h in dark. This finding is consistent
with occurrence of keto-enolization of 11 and 14 , strongly supporting the proposed mechanism. Such tautomerization is also the reason for the stereoselective hydrogenation and amination, coupled with the exclusive anti-amination. The low conversion (10.2%) of 1 g may be ascribed to the lower oxidation potential and hydrogen donating ability of DEA (0.78 eV vs SCE) compared to TEA (0.76 eV). Photoamination of trimethyl-substituted $1 \mathbf{i}$ with DMA did not occur probably because of the steric hindrance around the relevant $\mathrm{C}=\mathrm{C}$ double bond. The radical V of 1 i would return the H atom to the amine radical.

Fig 2 X-Ray crystal analysis of $\mathbf{1 1 g}$

ANISOTROPIC THERMAL PARAMETERS

Atom	U11	U22	U33	U12	U13	U23
O(1)	0.066(1)	0.052(1)	0.080(1)	-0.017(1)	0.014(1)	-0.019(1)
O(2)	0.076(1)	0.049(1)	0.100(2)	-0.017(1)	0.016(1)	0.010(1)
C(1)	0.0315(7)	0.0402(9)	0.0450(10)	$0.0006(7)$	0.0000(7)	-.0021(8)
C(2)	0.0424(9)	0.0433(11)	0.0504(11)	-.0017(8)	0.0023(8)	-.0048(9)
C(3)	0.046(1)	0.053(1)	0.067(2)	0.003(1)	0.018(1)	-0.005(1)
C(4)	0.042(1)	0.062(2)	0.056(1)	0.000(1)	$0.011(1)$	0.005(1)
C(5)	0.0420(9)	0.0433(12)	0.0614(13)	-.0006(8)	0.0036(9)	0.0100(9)
C(6)	0.0391 (8)	0.0358(9)	$0.0514(11)$	0.0045(7)	$0.0011(7)$	0.0025(8)
C(7)	0.0322(7)	0.0307(8)	0.0488(10)	0.0009(6)	-.0006(7)	-.0011(7)
C(8)	0.0294(7)	0.0734(16)	0.0536(12)	-.0044(9)	0.0015(7)	$0.0006(11)$
C(9)	0.050(1)	0.088(3)	0.094(3)	0.001(1)	0.026(2)	$0.024(2)$
$\mathrm{C}(10)$	0.0389(8)	0.0413(11)	0.0443(10)	0.0065(7)	-.0021(7)	-.0046(8)
C(11)	0.101(3)	0.047(1)	0.063(2)	0.021(1)	0.004(2)	-0.006(1)
C(12)	0.144(5)	0.066(2)	0.060(2)	0.043(3)	0.011(2)	-0.009(2)
C(13)	0.087(2)	$0.106(3)$	0.046(1)	0.047(2)	0.004(1)	-0.011(2)
C(14)	0.051(1)	0.090(2)	0.044(1)	0.004(1)	0.000(1)	-0.004(1)
C(15)	0.0437(9)	0.0551(13)	0.0489(11)	-.0020(9)	0.0000(8)	-.0049(10)
C(16)	0.0314(7)	0.0353(9)	0.0524(11)	0.0034(7)	-.0016(7)	$0.0002(7)$
$\mathrm{C}(17)$	0.042(1)	0.035(1)	0.080(2)	0.001(1)	-0.003(1)	0.005(1)
C(18)	0.054(1)	0.047(1)	$0.111(3)$	0.014(1)	-0.007(2)	0.015(2)
$\mathrm{C}(19)$	0.042(1)	0.067(2)	0.104(3)	$0.013(1)$	-0.013(1)	0.007(2)
C(20)	0.038(1)	0.063(2)	0.080(2)	-0.004(1)	-0.011(1)	0.000(1)
C(21)	0.039(1)	0.044(1)	0.062(1)	-0.006(1)	-0.009(1)	-0.001(1)

FRACTIONAL ATOMIC COORDINATES \& U(iso)

Atom	x/a	y/b	z/c	U(iso)
O(1)	0.9667 (3)	0.4727(1)	0.6955 (4)	0.067
$\mathrm{O}(2)$	0.7183(4)	0.2646(1)	0.6329(5)	0.076
C(1)	0.9684 (2)	0.3864(1)	0.5495(3)	0.039
C(2)	0.9002 (3)	0.4295(1)	$0.6541(3)$	0.046
C(3)	0.7465(3)	0.4188(1)	$0.7101(4)$	0.056
C(4)	0.7078(3)	0.3573(1)	$0.7492(4)$	0.054
C(5)	0.7672 (3)	0.3130(1)	$0.6383(4)$	0.049
C(6)	0.8969(2)	0.3272(1)	0.5419(3)	0.042
C(7)	0.8736(2)	0.3656(1)	0.3894(3)	0.038
${ }^{C}(8)$	$1.1372(2)$	0.3913(1)	0.5487(3)	0.052
C(9)	0.5384(4)	0.3501(2)	0.7624(7)	0.078
C(10)	0.9555(2)	0.3486(1)	0.2430 (3)	0.042
C(11)	0.9602(6)	0.2917(2)	0.1942 (5)	0.071
C(12)	1.0342(8)	0.2767(2)	0.0574(5)	0.091
C(13)	1.0993(5)	0.3170(2)	-0.0342(4)	0.080
C(14)	1.0925 (3)	0.3736(2)	$0.0113(4)$	0.062
C(15)	$1.0206(3)$	0.3896(1)	0.1483(3)	0.050
C(16)	0.7222(2)	0.3914(1)	0.3317(3)	0.040
$\mathrm{C}(17)$	0.7089(3)	0.4491(1)	$0.2948(4)$	0.053
C(18)	0.5689(4)	0.4719(2)	0.2354(6)	0.071
C(19)	0.4422(3)	0.4374(2)	$0.2145(6)$	0.072
C(20)	0.4548(3)	0.3798 (2)	0.2488(5)	0.061
C (21)	0.5945(3)	0.3567(1)	0.3069(4)	. 049
H(3A)	0.67239	0.43188	0.62293	0.08(2)
H(3B)	0.73899	0.44098	0.80903	0.07(1)
H(4)	0.74810	0.34941	0.86236	0.09(2)
H(6)	0.95934	0.29388	0.54050	0.036(7)
$\mathrm{H}(8 \mathrm{~A})$	1.19622	0.40431	0.64853	0.07(1)
$\mathrm{H}(8 \mathrm{~B})$	1.15492	0.41721	0.46063	0.08(2)
$\mathrm{H}(8 \mathrm{C})$	1.17412	0.35431	0.52313	0.10(2)
$\mathrm{H}(9 \mathrm{~A})$	0.51411	0.31143	0.78719	0.10(2)
H (9B)	0.48301	0.36103	0.65819	0.11 (3)
$\mathrm{H}(9 \mathrm{C})$	0.50971	0.37443	0.84929	0.09(2)
$\mathrm{H}(11)$	0.91233	0.26289	0.25459	0.10(2)
H(12)	1.03990	0.23730	0.02662	$0.15(4)$
H(13)	1.14934	0.30613	-0.12892	0.08(2)
H(14)	1.13779	0.40213	-0.05253	0.07(1)
H(15)	1.01549	0.42910	0.17798	0.09(2)
H(17)	0.79595	0.47326	0.31047	0.05(1)
H(18)	0.56044	0.51166	0.20837	0.09(2)
H(19)	0.34552	0.45347	0.17689	0.10(2)
H(20)	0.36752	0.35567	0.23198	$0.06(1)$
$\mathrm{H}(21)$	0.60311	0.31671	0.33034	0.05(1)

INTRAMOLECULAR BOND ANGLES

Minimum bond length $=0.90 \mathrm{~A}$: Maximum bond length $=1.65 \mathrm{~A}$			
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	116.5(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	117.9(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	114.8(3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	59.4(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(8)$	118.8(2)	$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(8)$	118.4(2)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	120.6(3)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.6(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.7(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	116.9(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	107.6(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.8(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	107.5(3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.8(3)
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.1(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.5(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	111.4(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	108.0(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	112.3(3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	108.0(3)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{H}(4)$	100.4(3)	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	121.3(3)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	118.9(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.7(3)
C(1)-C(6)-C(5)	121.6(3)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	60.7(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	120.1(2)	C(5)-C(6)-C(7)	120.4(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	107.9(3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.1(3)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	59.9(2)	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(10)$	118.0(2)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(16)$	121.4(2)	C(6)-C(7)-C(10)	116.1(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(16)$	121.7(2)	$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(16)$	111.2(2)
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	118.4(3)	$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.3(3)
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	107.3(3)	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.3(3)
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	107.3(3)	$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.0(3)
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	111.4(4)	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.0(4)
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.2(4)	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.1(5)
H(9A)-C(9)-H(9C)	109.1(5)	$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.0(5)
C(7)-C(10)-C(11)	120.4(3)	$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(15)$	120.8(3)
C(11)-C(10)-C(15)	118.7(3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.8(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	120.2(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	120.0(4)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121.3(5)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.4(5)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	119.3(6)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.3(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.4(6)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.3(5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.6(4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.7(4)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.7(4)	C(10)-C(15)-C(14)	120.4(3)
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15)$	119.8(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.9(3)
C(7)-C(16)-C(17)	120.7(2)	C(7)-C(16)-C(21)	120.0(2)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	119.2(3)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.0(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	120.0(3)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	120.0(3)
C(17)-C(18)-C(19)	120.3(4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.8(4)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	119.9(4)	C(18)-C(19)-C(20)	120.0(4)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	120.1(4)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	119.9(4)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	119.9(3)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	120.1(3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	120.0(4)	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	120.5(3)
$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{H}(21)$	119.7(3)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.7(3)

INTRAMOLECULAR BOND LENGTHS

Minimum bond length $=0.90 \mathrm{~A}$	Maximum bond length $=1.65 \mathrm{~A}$		
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.202(4)$	$\mathrm{O}(2)-\mathrm{C}(5)$	$1.217(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.490(4)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.527(4)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.540(4)$	$\mathrm{C}(1)-\mathrm{C}(8)$	$1.512(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.512(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.525(5)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	$0.960(4)$	$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	$0.960(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.505(5)$	$\mathrm{C}(4)-\mathrm{C}(9)$	$1.537(5)$
$\mathrm{C}(4)-\mathrm{H}(4)$	$0.960(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.501(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.519(4)$	$\mathrm{C}(6)-\mathrm{H}(6)$	$0.961(3)$
$\mathrm{C}(7)-\mathrm{C}(10)$	$1.508(4)$	$\mathrm{C}(7)-\mathrm{C}(16)$	$1.506(3)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	$0.960(3)$	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	$0.960(3)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	$0.960(4)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	$0.960(6)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	$0.960(5)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	$0.959(6)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.395(5)$	$\mathrm{C}(10)-\mathrm{C}(15)$	$1.394(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.390(7)$	$\mathrm{C}(11)-\mathrm{H}(11)$	$0.960(4)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.369(8)$	$\mathrm{C}(12)-\mathrm{H}(12)$	$0.961(5)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.382(8)$	$\mathrm{C}(13)-\mathrm{H}(13)$	$0.960(5)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.388(5)$	$\mathrm{C}(14)-\mathrm{H}(14)$	$0.960(4)$
$\mathrm{C}(15)-\mathrm{H}(15)$	$0.960(3)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.389(4)$
$\mathrm{C}(16)-\mathrm{C}(21)$	$1.397(4)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.394(5)$
$\mathrm{C}(17)-\mathrm{H}(17)$	$0.960(3)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.386(5)$
$\mathrm{C}(18)-\mathrm{H}(18)$	$0.961(4)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.382(6)$
$\mathrm{C}(19)-\mathrm{H}(19)$	$0.960(4)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.392(4)$
$\mathrm{C}(20)-\mathrm{H}(20)$	$0.960(3)$	$\mathrm{C}(21)-\mathrm{H}(21)$	$0.959(3)$

Photoreactions of diphenylhomobenzoquinones $\mathbf{1 f - i}$ bearing 2bromo and 2-methyl substituents have been investigated in the presence of amine donors. The products of these reactions are much dependent on the substituents and the nature of added amines. Irradiation of 1 -bromosubstituted diphenylhomobenzoquinone $\mathbf{1 f}$ with triethylamine (TEA) resulted in the ring-opening of fusedcyclopropane moiety to give 2-diphenylmethyl-1,4-benzoquinone (10). However, photoreaction of $1 f$ with N, N-dimethylaniline (DMA) yielded the $1: 1$ aminated bicyclic dione 11f and $\operatorname{bis}(p-$ dimethylaminophenyl)methane (7) along with $\mathbf{1 0}$. By contrast, irradiation of 1 -methyl substituted diphenylhomobenzoquinones 1g-i with TEA brought about the hydrogenation of the $\mathrm{C}=\mathrm{C}$ double bond to give bicyclic diones $\mathbf{1 4 g}$-i. Similar photoreaction of $\mathbf{1 g}, \mathrm{h}$ with DMA provided only the $1: 1$ aminated bicyclic diones $11 \mathrm{~g}, \mathrm{~h}$, although trimethyl substituted $\mathbf{1 i}$ essentially remained intact.

2-5 Experimental

All melting points were taken on a Yanagimoto micro-melting point apparatus and were uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a JEOL EX- 270 MHz instrument with $\mathrm{Me} 4 \mathrm{Si}(\delta$ 0.00) as an internal standard. IR, ultraviolet and fluorescence spectra were recorded on a Perkin-Elmer 983G, a Hitachi U-3400, and a Hitachi F-4010 spectrometer, respectively. Mass spectra were taken on a JEOL JMS DX303 mass spectrometer. The light source for all photo experiments was an Eikohsha EHB W1-300 300W high pressure Hg lamp, and the short cut filter used were an Eikohsha
glass filter FT-3 ($>330 \mathrm{~nm}$).

Materials. Benzene were refluxed over lithium aluminium hydride for 1 day and fractionated. All amine and arene donors were commercial origin and were purified by distillation after drying over NaOH for liquid donors or by recrystallization for solid ones. Diarylhomobenzoquinones (1f-i) were prepared from the reaction of diphenyldiazomethanes with 2-bromo-5-methyl-, 2,5-dimethyl-, 2,6-dimethyl- and 2,5,6-trimethylbenzoquinone according to the previous procedures ${ }^{5}$.

Photoreaction of Bromo-substituted Homonaphthoquinone (lf) in the Presence of Triethylamine (TEA), Diethylamine (DEA), tri-nPropylamine, tri-n-Butylamine and N, N-Diethylaniline.

Irradiation of homonaphthoquinones (1f, $2.5 \mathrm{mmol} \mathrm{dm}{ }^{-3}$) and 5 equiv. excess of amines in benzene was carried out under an atmosphere of nitrogen with a high pressure mercury lamp through a filter ($>330 \mathrm{~nm}$) for 2 h .

The general procedure is represented for the case of $\mathbf{1 f}(50.0 \mathrm{mg})$ and TEA (76.3 mg) in benzene (20 ml). After irradiation, the solvent and excess amine were evaporated and the reaction mixture was submitted for 1 H NMR analysis to determine the conversion of $1 f$ and the yield of the hydrogenated compound 10 by using an internal standard, 4-(chloromethyl)biphenyl. The reaction mixture was washed with benzene $(5 \mathrm{ml} x 3)$ to leave the amine salt of hydrogen bromide (7 mg). The combined washing solution was evaporated and the residue was chromatographed on silica gel to give successively the unconsumed $1 f(10 \mathrm{mg}, 20 \%)$ and $10(14 \mathrm{mg}$, 45%) with a mixture of hexane and benzene as an eluent, and
finally a considerable amount of intractable resinous material (7 mg) with methanol. Formation of such unidentified resinous products was also the case for the other amines. In conformity with this preparative work, HPLC analysis of the reaction mixture showed the presence of at least three by-products eluted prior to the identifiable $1 f$ and $\mathbf{1 0}$. On the basis of the proposed mechanism in Scheme 1, some of these products may be owing to the side pathway via some radicals and the amino radical, and also the further photodegradation of these primary adducts. However, we could not isolate them by careful chromatography on silica gel.

5-Methyl-2-diphenylmethyl-1,4-benzoquinone (10).
$\mathrm{mp} 150-150.8^{\circ} \mathrm{C}$, yellow prisms (from benzene-hexane)
$v_{\max }(\mathrm{KBr}) 1646,1613,1261,1262,1166$ and 748.
$\delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.36-7.10(\mathrm{~m}, 10 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=1.65 \mathrm{~Hz}, 1 \mathrm{H})$
$6.26(\mathrm{~d}, \mathrm{~J}=1.65,1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}) .2 .04(\mathrm{~d}, \mathrm{~J}=1.65,3 \mathrm{H})$.
HR MS m/e calcd for: 288.11508; found: 288.1154.
Found: C; 83.37, H; 5.74; Calcd for $\mathrm{C}_{20} \mathrm{H}_{16 \mathrm{O}}^{2}$: $\mathrm{C} ; 83.31, \mathrm{H} ; 5.59$.

Photoreaction of Homobenzoquinone (1f) in the Presence of N, N Dimethylaniline (DMA).

Similar photoreaction of $1 f$ and 5 equiv. of DMA in benzene gave 10 and $1: 1$ amine adduct 11f, bis(p-dimethylaminophenyl)methane 13 and amine salt. After irradiation, the reaction mixture was washed with benzene ($5 \mathrm{ml} \times 3$) to leave the amine salt of hydrogen bromide. The combined washing solution was evaporated and the residue was chromatographed on silica gel to give successively unconsumed $1 f(24 \mathrm{mg}, 43.1 \%$), 10 ($3 \mathrm{mg}, 9.5 \%$), 11 f ($10 \mathrm{mg}, 31.5 \%$) and with a mixture of hexane and benzene as an eluent, and bis(p-dimethylaminophenyl)methane 13 ($3 \mathrm{mg}, 16 \%$)
with a mixture of benzene and ether, and finally an intractable resinous material (15 mg) with methanol. The structure of $\mathbf{1 3}$ was confirmed by a comparison of its IR, NMR spectra with those of the authentic specimen 7 .
r-1, c-3,t-4-1-Bromo-3-(methyl)phenylaminomethyl-4-methyl-7,7-diphenylbicyclo[4.1.0]hepta-2,5-dione(11f). m.p. 112-114 ${ }^{\circ} \mathrm{C}$ Colorless prisms(from benzene-hexane).
$v_{\max }(\mathrm{KBr}) 1669,1447,749$ and $710 . \delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 6.9-7.4(\mathrm{~m}, 12 \mathrm{H})$, $6.70(\mathrm{t}(\mathrm{J}=7.26 \mathrm{~Hz}), 1 \mathrm{H}), 6.43(\mathrm{~d}(\mathrm{~J}=7.92), 2 \mathrm{H})$, $3.60\left(\mathrm{dd}\left(\mathrm{J}_{1}=14.52, \mathrm{~J}_{2}=7.26 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 3.47(\mathrm{~s}, 1 \mathrm{H}), 3.40\left(\mathrm{dd}\left(\mathrm{J}_{1}=14.52\right.\right.$, $\left.\left.\mathrm{J}_{2}=3.30 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.33\left(\mathrm{qd}\left(\mathrm{J}_{1}=6.60, \mathrm{~J}_{2}=12.87 \mathrm{~Hz}\right), 1 \mathrm{H}\right)$
$1.66\left(\mathrm{ddd}\left(\mathrm{J}_{1}=7.26, \mathrm{~J}_{2}=3.30, \mathrm{~J}_{3}=12.87 \mathrm{~Hz}\right), 1 \mathrm{H}\right), \quad 1.55(\mathrm{~s}, 3 \mathrm{H})$
$1.02(\mathrm{~d}(\mathrm{~J}=6.60 \mathrm{~Hz}), 3 \mathrm{H})$.
HR MS m/e calcd for: 487.112; found: 487.115. Found: C; 69.05, $\mathrm{H} ; 5.49, \mathrm{~N} ; 2.95$; Calcd for $\mathrm{C}_{28} \mathrm{H}_{2} 2 \mathrm{NO}_{2} \mathrm{Br}: \mathrm{C} ; 68.86, \mathrm{H} ; 5.36, \mathrm{~N}$; 2.87.

Photoreaction of Methyl-substituted Homobenzoquinone (1g,h,i) in the Presence of Triethylamine (TEA).

The general procedure is represented for the case of dimethylsubstituted homobenzoquinone $1 \mathrm{~g}(50.0 \mathrm{mg})$ and $\mathrm{TEA}(83.1 \mathrm{mg})$ in benzene(20 ml). After irradiation, the solvent and volatile matters were distilled in vacuo and collected in a chilled trap $\left(-78^{\circ} \mathrm{C}\right)$. The residue was submitted for ${ }^{1} \mathrm{H}$ NMR analysis to determine the yield of 14 g as well as the conversion of 1 f by using an internal standard. The compound $14 \mathrm{~g}(48 \mathrm{mg}, 95 \%)$ was isolated by column chromatography on silica gel with benzene as an eluent. The distillate was treated with a few drops of hydrobromic acid and dried in vacuo to give hydrogen bromide salt of diethylamine (77\%) together with the salt of recovered TEA. Formation of diethylamine
apparently indicates that the TEA is dehydrogenated to diethylvinylamine easily capable of being hydrolyzed to diethylamine and acetaldehyde ${ }^{9}$. In case of high-boiling DMA, similar column chromatographic treatment of the reaction mixture containing amine yielded the recovered DMA (25 mg) with hexane and the aminated $11 \mathrm{~g}(58 \mathrm{mg}, 83 \%)$ with benzene.
trans-1,4-Dimethyl-7,7-diphenylbicyclo[4.1.0]hepta-2,5dione (14 g).
m.p. $\quad 178-179^{\circ} \mathrm{C}$ Colorless prisms (from benzene-hexane).
$v_{\max }(\mathrm{KBr}) 1687,1447,1312,1208,752$ and 712.
$\delta \mathrm{H}_{\left(\mathrm{CDCl}_{3}\right)} 7.2-7.5(\mathrm{~m}, 10 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.58\left(\mathrm{ddq}^{(} \mathrm{J}_{1}=13.86, \mathrm{~J}_{2}=6.60\right.$, $\left.\left.\mathrm{J}_{3}=6.60 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 2.34\left(\mathrm{dd}\left(\mathrm{J}_{1}=17.16, \mathrm{~J}_{2}=6.60 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 1.21(\mathrm{~s}, 3 \mathrm{H})$
$1.12\left(\mathrm{dd}\left(\mathrm{J}_{1}=17.16, \mathrm{~J}_{2}=13.86 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 0.81(\mathrm{~d}(\mathrm{~J}=6.60 \mathrm{~Hz}), 3 \mathrm{H}) . \mathrm{MS}[\mathrm{EI}]$ $\mathrm{m} / \mathrm{e}=304\left(\mathrm{M}^{+}\right)$

Found: C; 82.68, H; 6.73; Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}$: $\mathrm{C} ; 82.86, \mathrm{H} ; 6.62$.
trans-1,3-Dimethyl-7,7-diphenylbicyclo[4.1.0]hepta-2,5dione(14h).
m.p. $103-104^{\circ} \mathrm{C}$ Colorless prisms (from benzene-hexane). $v_{\max }(\mathrm{KBr}) 1688,1446,1304,1268,1042,709$ and 681.
$\delta \mathrm{H}_{\left(\mathrm{CDCl}_{3}\right)} 7.1-7.4(\mathrm{~m}, 10 \mathrm{H}), 2.81(\mathrm{~d}(\mathrm{~J}=1.98 \mathrm{~Hz}), 1 \mathrm{H}), 2.59$
$\left(\operatorname{ddq}\left(\mathrm{J}_{1}=13.53, \mathrm{~J}_{2}=6.60, \mathrm{~J}_{3}=6.60 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 2.28\left(\operatorname{ddd}\left(\mathrm{~J}_{1}=16.50\right.\right.$,
$\left.\left.\mathrm{J}_{2}=6.60, \mathrm{~J}_{3}=1.98 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.04\left(\mathrm{dd}\left(\mathrm{J}_{1}=16.50\right.\right.$,
$\left.\left.\mathrm{J}_{2}=13.50 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 0.85(\mathrm{~d}(\mathrm{~J}=6.60 \mathrm{~Hz}), 3 \mathrm{H})$.
$\delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 209.6,204.8,140.6,139.8,129.6,129.2,128.8,128.5$, 127.7, 127.2, 49.1, 44.2, 43.8, 43.7, 43.6, 19.8, 14.7. MS[EI] m/e $=304\left(\mathrm{M}^{+}\right)$.

Found: C; 82.83, $\mathrm{H} ; 6.67$; Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}$: $\mathrm{C} ; 82.86, \mathrm{H} ; 6.62$.
r-1,t-3, c-4-1,3,4-Trimethyl-7,7-
diphenylbicyclo[4.1.0]hepta-2,5-dione(14i).
m.p. $161-162^{\circ} \mathrm{C}$ Colorless prisms (from benzene-hexane).
$v_{\max }(\mathrm{KBr}) 1701,1446,1233,751,711$ and 700.
$\delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.1-7.5(\mathrm{~m}, 10 \mathrm{H}), 3.00(\mathrm{q}, \mathrm{d}(\mathrm{J} 1=7.59, \mathrm{~J} 2=6.60 \mathrm{~Hz}), 1 \mathrm{H})$ $2.82(\mathrm{q}, \mathrm{d}(\mathrm{J} 1=7.58, \mathrm{~J} 2=6.60 \mathrm{~Hz}), 1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) 0.56$ $\mathrm{d}(\mathrm{J}=7.59 \mathrm{~Hz}), 3 \mathrm{H}), 0.17(\mathrm{~d}(\mathrm{~J}=7.60 \mathrm{~Hz}), 3 \mathrm{H}) . \mathrm{MS}[\mathrm{EI}] \mathrm{m} / \mathrm{e}=318(\mathrm{M}+)$.

Found: C; 82.83, H; 6.67; Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}$: $\mathrm{C} ; 82.99, \mathrm{H} ; 6.96$.
r-1,c-3,t-1-1,4-Dimethyl-3-methylphenylaminomethyl-7,7-diphenylbicyclo[4.1.0]hepta-2,5-dione (11g).
m.p. 128-129 ${ }^{\circ} \mathrm{C}$. Yellow prisms (from benzene-hexane).
$v_{\max }(\mathrm{KBr}) 1685,1502,1446,1190$ and 748 .
$\delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 6.9-7.4(\mathrm{~m}, 12 \mathrm{H}), 6.67(\mathrm{t}(\mathrm{J}=7.26 \mathrm{~Hz}), 1 \mathrm{H}), 6.45(\mathrm{~d}(\mathrm{~J}=8.58 \mathrm{~Hz})$, $2 \mathrm{H}), 3.65\left(\mathrm{dd}\left(\mathrm{J}_{1}=14.85, \mathrm{~J}_{2}=7.26 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 3.19\left(\mathrm{dd}\left(\mathrm{J}_{1}=14.85, \mathrm{~J}_{2}=3.30\right.\right.$
$\mathrm{Hz}), 1 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.30\left(\mathrm{qd}\left(\mathrm{J}_{1}=12.53, \mathrm{~J}_{2}=6.27 \mathrm{~Hz}\right), 1 \mathrm{H}\right)$,
$1.62\left(\operatorname{ddd}\left(\mathrm{~J}_{1}=12.53, \mathrm{~J}_{2}=7.26, \mathrm{~J}_{3}=3.30 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.01$
$(\mathrm{d}(\mathrm{J}=6.27 \mathrm{~Hz}), 3 \mathrm{H}) . \mathrm{MS}[\mathrm{EI}] \mathrm{m} / \mathrm{e}=423\left(\mathrm{M}^{+}\right)$
Found: C; 82.03, H; 6.93, N; 3.29; Calcd for $\mathrm{C}_{2} 9 \mathrm{H}_{29 \mathrm{O}}^{2} \mathrm{~N}$: $\mathrm{C} ; 82.24, \mathrm{H}$; 6.90, N; 3.31.
r-1,t-3, c-4-1,3-Dimethyl-4-methylphenylaminomethyl-7,7-diphenylbicyclo[4.1.0]hepta-2,5-dione (11h).
m.p. 140-141 ${ }^{\circ} \mathrm{C}$. Colorless prisms (from benzene-hexane).
$v_{\max }(\mathrm{KBr}) 1685,1599,1501,1208,748,709$ and 694.
$\delta \mathrm{H}_{\left(\mathrm{CDCl}_{3}\right)} 6.9-7.4(\mathrm{~m}, 12 \mathrm{H}), 6.67(\mathrm{t}(\mathrm{J}=7.26 \mathrm{~Hz}), 1 \mathrm{H}), 6.46(\mathrm{~d}(\mathrm{~J}=7.91)$,
$2 \mathrm{H}), 3.60\left(\mathrm{dd}\left(\mathrm{J}_{1}=14.52, \mathrm{~J}_{2}=7.26 \mathrm{~Hz}\right), 1 \mathrm{H}\right), 3.26\left(\mathrm{dd}\left(\mathrm{J}_{1}=14.52, \mathrm{~J}_{2}=3.30\right.\right.$
$\mathrm{Hz}), 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.33\left(\mathrm{qd}\left(\mathrm{J}_{1}=6.60, \mathrm{~J}_{2}=12.21 \mathrm{~Hz}\right), 1 \mathrm{H}\right)$
$1.66\left(\operatorname{ddd}\left(\mathrm{~J}_{1}=7.26, \mathrm{~J}_{2}=3.30, \mathrm{~J}_{3}=12.21 \mathrm{~Hz}\right), 1 \mathrm{H}\right), \quad 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.96$ $(\mathrm{d}(\mathrm{J}=6.60 \mathrm{~Hz}), 3 \mathrm{H}) . \mathrm{MS}[\mathrm{EI}] \mathrm{m} / \mathrm{e}=423\left(\mathrm{M}^{+}\right)$.
Found: $\mathrm{C} ; 81.28, \mathrm{H} ; 6.84, \mathrm{~N} ; 3.28$; Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}$: $\mathrm{C} ; 81.24, \mathrm{H}$; $6.90, \mathrm{~N} ; 3.31$.

2-6 References

1
D. I. Schuster and A. M. Insogna, J. Org. Chem., 1991, 56, 1879.

4
S. Pas, C.S. Rajesh, T. L. Thanlingam, D. Ramaiah and M. V. George, J. Chem. Soc. Perkin. Trans. 2, 1994, 1545.

5 Free radicals, ed. J. K. Kochi, Wiley, New York, 1973, vol II.

6 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.
7 J. I. G. Cadogen, D. H. Hey and W.A. Sanderson, J. Chem. Soc., 1960, 3203.

Chapter 3.

Intramolecular photoinduced electrn-transfer reactions of homonaphthoquinone

3-1 Introduction

Intramolecular photoinduced electron-transfer (PET) systems ${ }^{1}$ are useful and important means in relevance to artificial photosynthesis ${ }^{2}$ and molecular-level optoelectronics ${ }^{3}$. Intensive studies have been made of a variety of covalently-linked donor -acceptor (D-A) molecules to understand the structural and photophysical factors governing electron-transfer i.e., the D-A distance and orientation, the free energy of reaction, and the electronic coupling ${ }^{4}$. However, there are only a few examples of dynamic electron-transfer reactions involving bond-cleavage and bond-forming processes, such as photofragmentation of 1,2-diamine linked acceptors ${ }^{5}$ and photocyclization of styrylamines ${ }^{6}$ and photoelimination of aminoacetophenone ${ }^{7}$.

As described in chapter 1 and 2, the intermolecular PET reactions of homonaphthoquinones, with various donors ${ }^{8,9}$ proceed through a bond-cleavage of the strained cyclopropane ring releasing bromide ion gave dimeric products and xanthylium ion depending on the donor used. The present chapter deals with a new photoreaction of homonaphthoquinones via the intramolecular PET. For this purpose, anisyl-linked homonaphthoquinones, $\mathbf{1 j} \mathbf{j}$ were employed.

3-2 Photoinduced Electron-transfer Reactions of Donorsubstituted homonaphthoquinone

Irradiation of $\operatorname{bis}(p$-anisyl)homonaphthoquinone $\mathbf{1 j}$ under the influence of 5 molar equiv. of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ in acetonitrile through the pyrex filter ($>330 \mathrm{~nm}$) with a high pressure mercury lamp for 1 day provided indenonaphthoquinone $\mathbf{1 5 a}$ in almost quantitative yield (Table 1).

1; $\mathrm{X}=\mathrm{Y}=\mathrm{OCH}_{3}$
endo-1k; $\mathrm{X}=\mathrm{OCH}_{3}, \mathrm{Y}=\mathrm{H}$
exo-1k; $X=H, Y=\mathrm{OCH}_{3}$
11; $X=Y=\mathrm{CH}_{3}$

15a; $X=Y=\mathrm{OCH}_{3}$
15b; $X=\mathrm{OCH}_{3}, Y=\mathrm{H}$
15c; $X=\mathrm{H}, Y=\mathrm{OCH}_{3}$

Table 1 Photoreaction of homonaphthoquinone $\mathbf{1 j} \mathbf{j} \mathbf{k}$. in the presence of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right) 2$ in acetonitrile

Entry	Homonaphtho quionone	Irrad. time(day)	Yield(\%) ${ }^{\text {a }}$		
			Conv.(\%) ${ }^{\text {a }}$	15 a	15 b
1	$1 \mathbf{j}$	1	100	~ 100	-
2	1 j	3	100	~ 100	-
3	1 j	1	0	0	-
4	endo-1k	3	$45.1{ }^{\text {b }}$	-	93.5
5	exo-1k	3	$37.2^{\text {c }}$	\square	83.1
6	endo-1k	3	$0^{\text {d }}$	-	0
7	11	3	0	-	-
8	1 d	3	0	-	-

a Measured from NMR areas of methyl protons of remaining of 1 k and 15 b to the methylene peak of 4chloromethylbiphenyl used as an internal standard. b Unconsumed 1 k consist of 78/22 (endo/exo) mixture. c Unconsumed $1 k$ consist of 25/75 (endolexo) mixture. d Unconsumed 1 k consist of $81 / 19$ (endo/exo) mixture.

Similar reaction of p-anisylphenylhomonaphthoquinones (endoand exo-1k) gave indenonaphthoquinone $\mathbf{1 5 b}$ as sole product accompanied by the endo-exo photoisomerization of 1 k (entry 4,5). The possible constitutional isomer 15 c could not be detected by careful ${ }^{1} \mathrm{H}$ NMR analysis. The structures of $15 \mathrm{a}, \mathrm{b}$ were deduced by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and mass spectra as well as X-ray crystal analysis for $\mathbf{1 5 b}$.

The general work-up procedure is represented for the case of $\mathbf{1 j}(50 \mathrm{mg})$ with 5 equiv. of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}(140 \mathrm{mg}$) in acetonitrile (20 $\mathrm{ml})$. After irradiation, the solvent was evaporated and the reaction mixture was submitted for ${ }^{1} \mathrm{H}$ NMR analysis to determine the yield of 15 a . The product 15 a was extracted with benzene ($10 \mathrm{ml} \times 2$) from the aqueous solution of the reaction mixture, and the organic layer was dried over MgSO_{4} and evaporated. The residue was chromatographed on silica gel to give 15 a ($41 \mathrm{mg}, 82 \%$) with a mixture of hexane and benzene as an eluent.

Photoreaction of $\mathbf{1 j}$ even in the presence of 0.1 molar equiv. of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ also gave 15 a in quantitative yield (entry 2). These reactions did not occur in the absence of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ or in the dark at ordinary temprature (entry 3,6). Furthermore, it was noted that the replacement of anisyl group of $\mathbf{1 j}$ by tolyl or phenyl endowed it with photopersistency as experienced for $\operatorname{bis}(p$-tolyl)-(1I) and diphenyl-homonaphthoquinones (1d) (entry 7,8).

The absorption spectrum of the methoxy-substituted $\mathbf{1 j}$ was very similar to that of the unsubstituted $1 \mathbf{d}$, and appreciable intramolecular CT absorption was not observed. Fluorescence of $\mathbf{1 j}$ and 1d were observed in acetonitrile with irradiation light of 300 nm at which $\mathbf{1 j}$ and 1 d have almost the same logarithmic molar absorptivity, 3.26 and 3.24. Homonaphthoquinone $\mathbf{1 j}$ showed a
strong fluorescence $\left(\lambda_{\max }=502.6 \mathrm{~nm}\right)$, but the fluorescence of $\mathbf{1 d}$ was negligible. The emission maximum of $\mathbf{1 j}$ shifted to shorter wavelength with the decreasing solvent polarity i.e., 453.8 (THF) and 413.4 nm (benzene). The fluorescence of $\mathbf{1 j}$ would be due to the formation of intramolecular exciplex of $\mathbf{1 j}{ }^{6}$. Therefore, the present reaction can be envisaged as involving an intramolecular PET from the anisyl group to the naphthoquinone moiety under the influence of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right) 2$.

Keeping these observations, it is proposed that the present photoreaction proceeds through a mechanism outlined for $\mathbf{1} \mathbf{j}$ (Scheme 1). The first step is photoexcitation of $\mathbf{1} \mathbf{j}$ followed by an intramolecular electron transfer. The generated radical ion XI undergoes ring-opening to lead to a zwitter ion XII. Here, the role of added $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ is probably suppression of the intramolecular back-electron transfer as well as stabilization of XI. Such additive effects of metal ions to enhance the PET reaction is well-known ${ }^{8,9}$. Next step is an intramolecular cyclization of XII as rationalized by the nucleophilic attack of the enolate ion moiety to the orthoposition of the benzyl cation to afford tetracyclic quinol XIII. Furthermore, the resulting XIII may be oxidised into aromatized indenonaphthoquinone 15 a . Absence of possible 15 c in the photoreaction of $\mathbf{1 k}$ would be due to the unfavorable electron accumulation on the anisyl ring. Thus, the chemoselective formation of 15 b both for endo- and exo-1k are not surprising since the stereochemistry of $\mathbf{1 k}$ would be completely lost in the zwitterion intermediate like XII. It is noteworthy that the conversion of endo$1 k$ was higher than that of exo-1k (entry 4,5). This would owe to the more enhanced intramolecular Coulomb interaction for the endo-radical ion XI than the exo-one ${ }^{10}$.

1

Scheme 1

Fig 1 X-Ray crystal analysis of $\mathbf{1 5 b}$

ANISOTROPIC THERMAL PARAMETERS

Atom	U11	U22	U33	U12	U13	U23
$\mathrm{O}(1)$	0.088(2)	0.054(1)	0.066(2)	-0.001(1)	0.030(1)	$0.012(1)$
O(2)	0.074(2)	0.052(1)	0.071(2)	-0.004(1)	$0.011(1)$	0.008(1)
O(3)	0.058(2)	0.087(2)	0.107(2)	0.004(2)	-0.005(2)	0.044(2)
C(4)	0.048(2)	0.045(2)	0.041(2)	0.002(1)	0.008(1)	-0.002(1)
C(5)	0.050(2)	0.038(1)	0.038(1)	0.001(1)	$0.006(1)$	-0.001(1)
C(6)	0.047(2)	0.048(2)	0.055(2)	0.001(1)	$0.011(1)$	0.002(2)
C(7)	0.056(2)	0.043(2)	0.044(2)	0.003(1)	0.007(1)	0.000(1)
C(8)	0.044(2)	0.040(1)	0.039(1)	0.001(1)	0.003(1)	$0.000(1)$
C(9)	0.049(2)	0.046(2)	0.047(2)	$0.001(1)$	0.008(1)	0.005(1)
C(10)	0.043(2)	0.048(2)	0.039(2)	-0.004(1)	0.003(1)	0.002(1)
C(11)	0.047(2)	0.052(2)	0.043(2)	-0.002(1)	$0.005(1)$	-0.004(1)
C(12)	0.050(2)	0.047(2)	0.045(2)	-0.009(1)	$0.005(1)$	0.002(1)
C(13)	0.058(2)	0.051(2)	0.043(2)	0.001(2)	0.013(1)	-0.002(1)
C(14)	0.054(2)	0.041(2)	0.060(2)	0.004(1)	0.009(2)	0.006(2)
C(15)	0.047(2)	0.046(2)	0.046(2)	0.001(1)	0.013(1)	0.002(1)
C(16)	0.046(2)	0.065(2)	0.053(2)	0.006(2)	0.003(1)	-0.005(2)
C(17)	0.049(2)	0.067(2)	0.046(2)	-0.005(2)	0.016(1)	-0.006(2)
C(18)	0.054(2)	0.056(2)	0.045(2)	-0.003(2)	0.019(1)	0.000(2)
C(19)	0.069(2)	0.062(2)	0.049(2)	0.016(2)	-0.001(2)	0.006(2)
C(20)	0.043(2)	0.070(2)	0.048(2)	0.002(2)	0.010(1)	-0.006(2)
C(21)	0.049(2)	0.080(3)	0.064(2)	0.005(2)	0.013(2)	-0.004(2)
C(22)	0.063(2)	0.053(2)	0.046(2)	0.009(2)	0.011(2)	$0.006(2)$
C(23)	0.049(2)	0.061(2)	0.058(2)	0.004(2)	0.009(2)	0.010(2)
C(24)	0.062(2)	0.065(2)	0.055(2)	0.005(2)	0.018(2)	-0.007(2)
C(25)	0.044(2)	0.112(4)	0.072(3)	-0.001(2)	0.009(2)	-0.014(3)
C(26)	0.063(2)	0.081(3)	0.064(2)	-0.016(2)	0.020(2)	-0.004(2)
C(27)	0.103(4)	0.064(3)	0.071(3)	-0.008(3)	0.045(3)	0.007(2)
C(28)	0.057(2)	0.108(4)	0.077(3)	-0.028(3)	0.018(2)	-0.010(3)

$\mathrm{T}=\exp \left[-2 \pi^{2}\left(\mathrm{U}_{11^{\mathrm{h}}} \mathrm{ha}^{* 2}+\mathrm{U}_{22} \mathrm{k}^{2} \mathrm{~b}^{* 2}+\mathrm{U}_{33^{2}} \mathrm{I}^{*} \mathrm{c}^{2}+\mathrm{U}_{12} \mathrm{hka}^{*} \mathrm{~b}^{*}+\mathrm{U}_{23^{2 d b}} \mathrm{c}^{*}+\mathrm{U}_{13} \mathrm{hla}^{*} \mathrm{c}^{*}\right)\right]$

FRACTIONAL ATOMIC COORDINATES \& U(iso)

Atom	x/a	yb	z/c	U(iso)
O(1)	0.36662(17)	0.67319(17)	-0.16082(36)	0.071
O(2)	0.17819(17)	$0.22556(17)$	0.57399(37)	0.067
O(3)	-0.11033(16)	0.53323(21)	0.21546(45)	0.086
C(4)	0.29959(19)	0.36246(21)	0.62774(41)	0.046
C(5)	0.33932(18)	0.40943(19)	0.51176(39)	0.043
C(6)	0.27667(19)	0.60198(23)	0.20958(46)	0.051
C(7)	0.3486 (2)	0.4784(2)	0.1221(4)	0.049
C(8)	0.27864(17)	0.45879(20)	0.37941 (39)	0.042
C(9)	0.20461(19)	0.44251(21)	0.41374(43)	0.049
C(10)	$0.30095(18)$	0.51364(21)	0.23450(40)	0.045
C(11)	0.4234(2)	0.4073(2)	$0.5368(4)$	0.049
C(12)	0.34698(19)	0.61577(22)	-0.03512(42)	0.049
C(13)	0.3717(2)	0.5286(2)	-0.0130(4)	0.052
C(14)	0.3000(2)	0.6530(2)	0.0768(5)	0.053
C(15)	$0.21021(19)$	$0.38081(21)$	0.57526(43)	0.048
C(16)	0.4671(2)	0.3576 (3)	0.6792(5)	0.056
C(17)	0.0763(2)	0.3180(3)	0.4011(4)	0.055
C(18)	0.1577(2)	0.2989(2)	0.5188(4)	0.053
C(19)	0.4270(2)	$0.3108(3)$	0.7924(5)	0.062
C(20)	$0.05932(19)$	0.39869(26)	0.31063(45)	0.055
C(21)	-0.0188(2)	0.4152(3)	0.2110(6)	0.066
C(22)	0.3433(2)	$0.3127(2)$	0.7686(5)	0.056
C(23)	0.1243(2)	0.4659(3)	0.3064(5)	0.057
C(24)	0.1781(3)	.0.4261(3)	0.7320(5)	0.062
C(25)	-0.0783(2)	0.3522(4)	0.2029(6)	0.078
C(26)	0.0158(3)	0.2539(3)	0.3880(6)	0.071
C(27)	0.4122(3)	0.6380(3)	-0.2837(7)	0.082
C(28)	-0.0611(3)	$0.2717(4)$	0.2892(6)	0.082
H(6)	0.238(2)	0.631(2)	0.285(5)	0.06(1)
H(7)	$0.3652(19)$	0.4139 (22)	$0.1356(44)$	0.052(9)
H(11)	0.453(2)	0.446 (2)	$0.464(5)$	0.06(1)
H(13)	0.4092(19)	0.5015(24)	-0.0792(44)	0.06(1)
H(14)	0.278(2)	0.715(2)	0.062(5)	0.06(1)
H(16)	$0.5259(19)$	0.3523(21)	0.6928(41)	0.046(9)
H(19)	0.459(2)	0.275(2)	0.888(5)	0.07(1)
H(21)	-0.026(2)	0.468(2)	0.157(4)	0.05(1)
H(22)	$0.315(2)$	0.278(3)	0.845(5)	0.07(1)
H(24A)	$0.119(2)$	0.441(3)	0.693(5)	0.07(1)
H(24B)	$0.186(2)$	0.389(3)	0.841(5)	0.08(1)
$\mathrm{H}(24 \mathrm{C})$ $\mathrm{H}(25)$	$0.208(2)$ $-0.132(2)$	0.484(3)	$0.763(5)$	0.08(1)
H(25) $\mathrm{H}(26)$	$-0.132(2)$ $0.030(2)$	0.365(3)	$0.138(5)$	0.08(1)
$\mathrm{H}(26)$ $\mathrm{H}(27 \mathrm{~A})$	$0.030(2)$ $0.473(3)$	$0.198(3)$ $0.613(3)$	0.438(5)	0.07(1)
H(27A) (27B)	$0.473(3)$ $0.387(2)$	$0.613(3)$ $0.586(3)$	$-0.218(6)$ $-0.345(6)$	$0.10(2)$ $0.08(1)$
H(27C)	0.423(2)	0.689(3)	-0.354(5)	0.08(1)
H(28)	-0.104(3)	0.226(3)	0.281(6)	0.08(1)

INTRAMOLECULAR BOND LENGTHS

Minimum bond length $=0.85 \mathrm{~A}$	Maximum bond length $=1.65 \mathrm{~A}$		
$\mathrm{O}(1)-\mathrm{C}(12)$	$1.371(5)$	$\mathrm{O}(1)-\mathrm{C}(27)$	$1.419(6)$
$\mathrm{O}(2)-\mathrm{C}(18)$	$1.209(5)$	$\mathrm{O}(3)-\mathrm{C}(23)$	$1.221(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.396(5)$	$\mathrm{C}(4)-\mathrm{C}(15)$	$1.504(5)$
$\mathrm{C}(4)-\mathrm{C}(22)$	$1.380(5)$	$\mathrm{C}(5)-\mathrm{C}(8)$	$1.474(5)$
$\mathrm{C}(5)-\mathrm{C}(11)$	$1.393(5)$	$\mathrm{C}(6)-\mathrm{C}(10)$	$1.397(5)$
$\mathrm{C}(6)-\mathrm{C}(14)$	$1.379(5)$	$\mathrm{C}(6)-\mathrm{H}(6)$	$1.04(4)$
$\mathrm{C}(7)-\mathrm{C}(10)$	$1.386(5)$	$\mathrm{C}(7)-\mathrm{C}(13)$	$1.384(5)$
$\mathrm{C}(7)-\mathrm{H}(7)$	$1.01(4)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.349(5)$
$\mathrm{C}(8)-\mathrm{C}(10)$	$1.476(5)$	$\mathrm{C}(9)-\mathrm{C}(15)$	$1.516(5)$
$\mathrm{C}(9)-\mathrm{C}(23)$	$1.470(5)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.388(5)$
$\mathrm{C}(11)-\mathrm{H}(11)$	$1.01(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.381(5)$
$\mathrm{C}(12)-\mathrm{C}(14)$	$1.387(5)$	$\mathrm{C}(13)-\mathrm{H}(13)$	$0.97(4)$
$\mathrm{C}(14)-\mathrm{H}(14)$	$1.00(4)$	$\mathrm{C}(15)-\mathrm{C}(18)$	$1.530(5)$
$\mathrm{C}(15)-\mathrm{C}(24)$	$1.551(6)$	$\mathrm{C}(16)-\mathrm{C}(19)$	$1.384(6)$
$\mathrm{C}(16)-\mathrm{H}(16)$	$0.98(4)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.501(5)$
$\mathrm{C}(17)-\mathrm{C}(20)$	$1.396(6)$	$\mathrm{C}(17)-\mathrm{C}(26)$	$1.396(6)$
$\mathrm{C}(19)-\mathrm{C}(22)$	$1.388(6)$	$\mathrm{C}(19)-\mathrm{H}(19)$	$0.97(4)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.398(5)$	$\mathrm{C}(20)-\mathrm{C}(23)$	$1.500(5)$
$\mathrm{C}(21)-\mathrm{C}(25)$	$1.376(7)$	$\mathrm{C}(21)-\mathrm{H}(21)$	$0.89(4)$
$\mathrm{C}(22)-\mathrm{H}(22)$	$0.97(4)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	$1.01(4)$
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	$0.98(5)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	$1.02(5)$
$\mathrm{C}(25)-\mathrm{C}(28)$	$1.380(8)$	$\mathrm{C}(25)-\mathrm{H}(25)$	$0.96(4)$
$\mathrm{C}(26)-\mathrm{C}(28)$	$1.383(7)$	$\mathrm{C}(26)-\mathrm{H}(26)$	$0.94(4)$
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	$1.11(5)$	$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	$0.96(5)$
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	$0.97(5)$	$\mathrm{C}(28)-\mathrm{H}(28)$	$0.99(5)$

Molucular formula $\quad \mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{3}$

Molecular weight 366
Crystal system
Space group
a
Monoclinic
P 21/c
b
16.874(9)A
b
$15.108(7) \mathrm{A}$
c
7.500(6)A
$\beta \quad 101.83(6)$ degrees
V
Z
D m
$1.25 \mathrm{~g} / \mathrm{cm}^{3}$
Dx
$\mu(\mathrm{CuK} \alpha)$
Number of reflections
$1.26 \mathrm{~g} / \mathrm{cm}^{3}$
$\lambda=0.71073$
5146
R
0.0471

Crystal size
$0.35 * 0.30 * 0.25 \mathrm{~mm}^{3}$

INTRAMOLECULAR BOND ANGLES

Minimum bond length $=0.85 \mathrm{~A}$: Maximum bond length $=1.65 \mathrm{~A}$			
$\mathrm{C}(12)-\mathrm{O}(1)-\mathrm{C}(27)$	$116.7(3)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(15)$	$109.1(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(22)$	120.3(3)	C (15)-C(4)-C(22)	130.6(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	108.7(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(11)$	$120.7(3)$
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{C}(11)$	$130.5(3)$	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(14)$	120.8(3)
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{H}(6)$	$122.1(20)$	C(14)-C(6)-H(6)	$117.1(20)$
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(13)$	121.3(4)	$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{H}(7)$	119.5 (19)
$\mathrm{C}(13)-\mathrm{C}(7)-\mathrm{H}(7)$	119.1(19)	$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(9)$	108.8(3)
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(10)$	122.2 (3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	129.0 (3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(15)$	110.9(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23)$	129.6(3)
C(15)-C(9)-C(23)	119.0 (3)	$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(7)$	118.5 (3)
$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(8)$	121.5(3)	$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(8)$	120.0(3)
$\mathrm{C}(5)-\mathrm{C}(11)-\mathrm{C}(16)$	118.8(4)	$\mathrm{C}(5)-\mathrm{C}(11)-\mathrm{H}(11)$	121.6(20)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{H}(11)$	119.2(20)	$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	125.2(3)
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(14)$	114.1(3)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$	120.7(4)
$\mathrm{C}(7)-\mathrm{C}(13)-\mathrm{C}(12)$	119.2(4)	$\mathrm{C}(7)-\mathrm{C}(13)-\mathrm{H}(13)$	117.0(21)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	123.5(21)	C(6)-C(14)-C(12)	119.6 (4)
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{H}(14)$	116.9(20)	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14)$	123.4(20)
$\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{C}(9)$	102.5(3)	$\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{C}(18)$	114.6(3)
$\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{C}(24)$	111.7(3)	C(9)-C(15)-C(18)	109.8(3)
$\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{C}(24)$	111.1(3)	$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{C}(24)$	107.1(3)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(19)$	120.0(4)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{H}(16)$	119.5(19)
$\mathrm{C}(19)-\mathrm{C}(16)-\mathrm{H}(16)$	120.4(19)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(20)$	121.7(4)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(26)$	118.4(4)	$\mathrm{C}(20)-\mathrm{C}(17)-\mathrm{C}(26)$	119.9(4)
$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(15)$	122.6(4)	$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(17)$	122.7(4)
$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{C}(17)$	114.6 (3)	$\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{C}(22)$	121.6(4)
$\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{H}(19)$	118.0(22)	$\mathrm{C}(22)-\mathrm{C}(19)-\mathrm{H}(19)$	120.4(22)
$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(21)$	119.5(4)	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(23)$	121.6 (3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(23)$	118.8(4)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(25)$	120.0(5)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	115.2(22)	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{H}(21)$	124.8(22)
$C(4)-C(22)-C(19)$	118.7(4)	$\mathrm{C}(4)-\mathrm{C}(22)-\mathrm{H}(22)$	120.1(22)
$\mathrm{C}(19)-\mathrm{C}(22)-\mathrm{H}(22)$	121.1(22)	O(3)-C(23)-C(9)	123.9(4)
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(20)$	121.1(4)	$C(9)-C(23)-C(20)$	114.9(4)
$\mathrm{C}(15)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	111.0(22)	$\mathrm{C}(15)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	$111.5(24)$
$\mathrm{C}(15)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	108.4(22)	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5(32)
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	107.0(32)	$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.4(33)
$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{C}(28)$	120.5(4)	$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{H}(25)$	$119.7(25)$
$\mathrm{C}(28)-\mathrm{C}(25)-\mathrm{H}(25)$	119.8(25)	$\mathrm{C}(17)-\mathrm{C}(26)-\mathrm{C}(28)$	119.7(5)
$\mathrm{C}(17)-\mathrm{C}(26)-\mathrm{H}(26)$	118.5(24)	$\mathrm{C}(28)-\mathrm{C}(26)-\mathrm{H}(26)$	121.6(24)
$\mathrm{O}(1)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	114.4(24)	$\mathrm{O}(1)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	$111.5(26)$
$\mathrm{O}(1)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	104.1(25)	$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	102.7(36)
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	104.4(35)	$\mathrm{H}(27 \mathrm{~B})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	119.9(35)
$\mathrm{C}(25)-\mathrm{C}(28)-\mathrm{C}(26)$	120.4(5)	$\mathrm{C}(25)-\mathrm{C}(28)-\mathrm{H}(28)$	120.3(25)
$\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{H}(28)$	119.2(25)		$120.3(25)$

An attempt to cause photoreaction of diphenyl substituted $1 \mathbf{d}$ with donor anisole or 1, 3, 5-trimethoxybenzene was failed even in the presence of excess $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$, although the intermolecular PET is expected to be feasible from the value of ΔG for anisole $(-112 \mathrm{~kJ}$ mol $^{-1}$ according to the Rehm-Weller equation ${ }^{11}$) as well as the fluorescence quenching experiment with anisole. Fluorescence of $1 \mathbf{d}$ was quenched by anisole. Stern-Volmer plots of the fluorescence quenching were linear for anisole concentration, indicating the ET to singlet excited state of $\mathbf{1 d}$.

3-3 Conclusion

The present results sugget that the intramolecular PET coupled with the assistance of metal ion is essential for photoconversion of the intrinsically less labile methyl-substituted homoquinones. Namely, the two radical centers must be developed across the cyclopropane moiety so as to achieve its ring-cleavage through the cooperative β-fission.

3-4 Experimental

All melting points were taken on a Yanagimoto micro-melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a JEOL EX-270 MHz instrument with $\operatorname{Me} 4 \mathrm{Si}(\delta 0.00)$ as an internal standard. IR, ultraviolet and fluorescense spectra were recorded on a Perkin-Elmer 983G, a Hitachi U-3400, and a Hitachi F-4010 spectrometer, respectively. Mass spectra were taken on a JEOL JMS DX303 mass spectrometer. The light source for all photo
experiments was an Eikohsha EHB W1-300 300W high pressure Hg lamp, and the short cut filter used were an Eikohsha glass filter FT3 ($>330 \mathrm{~nm}$). All crystallographic measurements were made using a MAC science MXC3 diffractometer. Empirical absorption corrections (ψ-scan) were applied. The structure was solved by direct methods (SIR) and refined by full-matrix least squares analysis using 4273 unique reflections to final R factor $=0.0471, \mathrm{Rw}=0.0434$. Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

Anisyl-linked homonaphthoquinones, $\mathbf{1 j}$, endo-1k and exo-1k were synthesized from the reaction of dianisyldiazomethane or anisylphenyldiazomethane with 2-methylnaphthoquinone in benzene for 24 h . Exo and endo isomer were separated by column chromatography on silica gel by using hexane-benzene as an eluent. The high melting point isomer was ascertained as endo isomer on the basis of the 1 nmr analysis.

2-Methyl-3-dianisilmethylene-2,3-dihydro-1,4-
naphthoquinone (lj).
m.p. $90-91^{\circ} \mathrm{C}$. Colorless prisms(from benzene); $\operatorname{IR}(\mathrm{KBr}) 1670,1510$, $1331,1294,1029 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.81-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.77-$ $7.74(\mathrm{~m}, 2 \mathrm{H}) 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.56,2 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.58$, $2 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=8.19,2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 1.38$ $(\mathrm{s}, 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{2} 6 \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{C} ; 78.37, \mathrm{H} ; 5.56$. Found: $\mathrm{C} ; 80.65, \mathrm{H}$; 6.06 .

Photoreaction of Homonaphthoquinone ($1 \mathrm{k}, \mathrm{l}$) in the Presence of $\mathbf{M g}\left(\mathrm{ClO}_{4}\right) 2$.

Irradiation of $\mathbf{1 j}(50 \mathrm{mg})$ with 5 equiv. of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}(140 \mathrm{mg})$ in acetonitrile (20 ml) was carried out under an atmosphere of nitrogen with a high pressure mercury lamp through a filter ($>330 \mathrm{~nm}$) for 2 h. . After irradiation, the solvent was evaporated and the reaction mixture was submitted for ${ }^{1} \mathrm{H}$ NMR analysis to determine the yield of 15 a . The product 15 a was extracted with benzene ($10 \mathrm{ml} \times 2$) from the aqueous solution of the reaction mixture, and the organic layer was dried over MgSO_{4} and evaporated. The residue was chromatographed on silica gel to give 15a ($41 \mathrm{mg}, 82 \%$) with a mixture of hexane and benzene as an eluent.

5,5-di(p-Methoxyphenyl)-11a-methyl-11aH-
benzo[b]fluorene-6,11-dione (15a).
M.p. $187-189^{\circ} \mathrm{C}$. Yellow prisms. $\operatorname{IR}(\mathrm{KBr}) 1696,1507,1344,1248$, $1034 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{CDCl} 3) \delta 8.11-8.24(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=7.59,1 \mathrm{H})$ 7.68-7.75 (m, 4H) $7.56(\mathrm{~d}, \mathrm{~J}=8.25,1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.25,1 \mathrm{H}), 7.42(\mathrm{~d}$, $\mathrm{J}=7.26,1 \mathrm{H}$), 7.03 ($\mathrm{d}, \mathrm{J}=8.25,2 \mathrm{H}$) , $3.89(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}$; Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{3}: 366.1256$. Found (HRMS): 366.1248.

5-(p-Methoxyphenyl)-11a-methyl-11aH-benzo[b]fluorene-6,11-dione (15b).
M.p. $112-113^{\circ} \mathrm{C}$. Yellow prisms. $\operatorname{IR}(\mathrm{KBr}) 1670,1510,1331,1294$, $1029 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.09-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 4 \mathrm{H})$ $7.48(\mathrm{~d}, \mathrm{~J}=2.64,1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.58,1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.58,2 \mathrm{H}), 6.95$ (dd, $\left.\mathrm{J}_{1}=2.64, \mathrm{~J}_{2}=8.58,1 \mathrm{H}\right), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$. $\mathrm{MS}(\mathrm{EI})=396(\mathrm{M}+)$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{4}$: $\mathrm{C} ; 78.76, \mathrm{H} ; 5.23$. Found: C; 78.75, H; 5.09.

3-5 References

1. Photo-induced Electron Transfer, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988.
2. M. R. Wasielewski, Chem. Rev., 1992, 92, 435.
3. P. de. Silva, H. Nimal Gunaratne and C. McCoy, Nature, 1993, 364, 42.
4. K. Ohta, G. L. Closs, K. Morokuwa and N. J. Green, J. Am. Chem. Soc., 1986, 108, 1319.
5. J. Leon and D. Whitten, J. Am. Chem. Soc., 1993, 115, 8038.
6. F. D. Lewis, G. D. Reddy, S. Schneider and M. Gahr, J. Am. Chem. Soc., 1991, 113, 3498.
7. A. Padwa, W. Eisenhardt, R. Gruber and D. Pashayan, J. Am. Chem. Soc., 1971, 93, 6998.
8. S. Fukuzumi and T. Okamoto, J. Am. Chem. Soc., 1994, 116, 5503.
9. K. Mizuno, N. Ichinose, T. Tamai and Y. Otsuji, Tetrahedron. Lett., 1985, 26, 5823.
10. A. M. Brouwer, R. D. Mont, P. H. Brink, H. J. Ramesdonk and J. M. Verhoeven, Chem. Phys. Lett., 1991, 481.
11. D. Rehm and A. Weller, Isr. J. Chem., 1985, 26, 5823.

Acknowledgment

The work of this thesis was carried out at Osaka University under the guidance of Professor Takumi Oshima and Professor Emeritus Toshikazu Nagai.

I would like to express my grateful acknowledgment to Professor Takumi Oshima and Professor Emeritus Toshikazu Nagai for their invaluable guidance and continuous encouragement throughout this investigation.

I am also grateful to Professor Shunichi Fukuzumi for his valuable comments and suggestions.

I further wish to thank all the members of the Oshima Laboratory, the Nagai laboratory and all my friends for their friendship.

Finally, I would like to thank my father Kaname Moriwaki and my mother Kuniko Moriwaki for their continuous and hearty encouragement.

Toyonaka, Osaka
1996
Hiroshi Moriwaki

