<table>
<thead>
<tr>
<th>Title</th>
<th>Spectra and dynamics of bounded pseudo-differential operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wong, Man Wah</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 34(4) P.895-P.903</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5482</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5482</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
SPECTRA AND DYNAMICS OF BOUNDED PSEUDO-DIFFERENTIAL OPERATORS

MAN WAH WONG

(Received August 19, 1996)

1. Introduction

Let S^0 be the set of all C^∞ functions σ on \mathbb{R}^n such that, for each multi-index α, there exists a positive constant C_α for which

$$|(D^\alpha \sigma)(\xi)| \leq C_\alpha (1 + |\xi|)^{-|\alpha|}, \quad \xi \in \mathbb{R}^n.$$

We call any function σ in S^0 a symbol. Let $\sigma \in S^0$. Then we define the pseudo-differential operator T_σ on the Schwartz space S by

$$\text{(1.1)} \quad (T_\sigma \varphi)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \sigma(\xi) \hat{\varphi}(\xi) d\xi, \quad x \in \mathbb{R}^n,$$

where

$$\text{(1.2)} \quad \hat{\varphi}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix\cdot\xi} \varphi(x) dx, \quad \xi \in \mathbb{R}^n,$$

for all functions φ in S. It is obvious that T_σ maps S into S. That T_σ can be extended to a bounded linear operator $T_{\sigma p}$ from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$, $1 < p < \infty$, is well-known and, in fact, follows from more general L^p-boundedness results given in, e.g., Theorem 4.1 in Chapter 2 and the bibliographical notes on page 411 of the book [2] by Kumano-go or Theorem 9.7 in Chapter 9 of the book [7] by Wong. If we let K be the tempered distribution on \mathbb{R}^n given by $\hat{K} = \sigma$, where the Fourier transform \hat{K} of K is taken in the distribution sense, then, by Lemma 9.12 in Chapter 9 of the book [7] by Wong, K is a function on $\mathbb{R}^n - \{0\}$ such that, for each sufficiently large positive integer N, there is a positive constant C_N for which

$$|K(x)| \leq C_N |x|^{-N}, \quad x \neq 0.$$

Moreover, for each x in \mathbb{R}^n and each φ in S vanishing in a neighbourhood of x,

$$\text{(1.3)} \quad (T_\sigma \varphi)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} K(x - y) \varphi(y) dy.$$

\footnote{This research has been partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0008562.}
Thus, the pseudo-differential operator T_σ can be considered as a singular integral operator with convolution kernel K.

The aim of this paper is to compute the spectrum and essential spectrum of the bounded linear operator $T_{\sigma p} : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$.

We first recall in Section 2 the spectrum and essential spectrum of a bounded linear operator A from a complex Banach space X into X. In Section 3, the spectrum and essential spectrum of the bounded linear operator $T_{\sigma p} : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ are computed. Results related to the "spectral invariance", i.e., Theorem 3.2 in this paper, can be found in, e.g., the paper [3] by Leopold and Triebel or the paper [9] by Wong. An application to the asymptotic stability of the zero solution of a semilinear evolution equation modelled by a bounded pseudo-differential operator on $L^p(\mathbb{R}^n)$ is given in Section 4.

2. The Spectrum and Essential Spectrum

Let A be a bounded linear operator from a complex Banach space X into X. We denote the norm in X by $|| \cdot ||$. Let $\rho(A)$ be the resolvent set of A defined by

$$\rho(A) = \{ \lambda \in \mathbb{C} : A - \lambda I \text{ is one to one and onto} \},$$

where \mathbb{C} is the set of all complex numbers and I is the identity operator from X into X. The spectrum $\Sigma(A)$ of A is defined to be the set complement of $\rho(A)$ in \mathbb{C}. We denote the adjoint of A by A^t, the range of A by $R(A)$, and the null spaces of A and A^t by $N(A)$ and $N(A^t)$ respectively. We call A a Fredholm operator if $R(A)$ is a closed subspace of X, and the dimensions $\alpha(A)$ and $\beta(A)$ of $N(A)$ and $N(A^t)$ respectively are finite. For any Fredholm operator A, we define the index $i(A)$ of A by

$$i(A) = \alpha(A) - \beta(A).$$

Let $\Phi(A)$ be the set defined by

$$\Phi(A) = \{ \lambda \in \mathbb{C} : A - \lambda I \text{ is Fredholm with zero index} \}.$$

Then the essential spectrum $\Sigma_e(A)$ of A, defined by Schechter in [4], is the set complement of $\Phi(A)$ in \mathbb{C}. It can be shown that a complex number λ is in the essential spectrum $\Sigma_e(A)$ if there exists a sequence $\{u_k\}$ of elements in X such that $||u_k|| = 1, k = 1, 2, \cdots, (A - \lambda I)u_k \to 0$ in X as $k \to \infty$ and $\{u_k\}$ has no convergent subsequence in X.

The notions and results in this section can be found in Section 4 of Chapter 1 of the book [6] by Schechter.

3. The Spectrum of $T_{\sigma p}$

We begin with the following result on the essential spectrum $\Sigma_e(T_{\sigma p})$ of $T_{\sigma p}$.

Proposition 3.1. Let $\sigma \in S^0$ and let λ be a complex number. If $\sigma(\xi)$ is not bounded away from λ for all ξ in \mathbb{R}^n, then $\lambda \in \Sigma_\epsilon(T_{\sigma^p})$.

Proof. Let $\{\xi_k\}$ be a sequence of elements in \mathbb{R}^n such that $\sigma(\xi_k) \to \lambda$ as $k \to \infty$. Let k_0 be the smallest positive integer greater than n/p and let N be any fixed integer greater than $k_0 - n/p$. Let $\{\epsilon_k\}$ be a sequence of positive numbers such that

$$e^{\epsilon_k|x|} \to 0, \quad 1 < |\mu| < N,$$

as $k \to \infty$, where

$$\sigma^{(\mu)}(\xi) = (\partial^\mu \sigma)(\xi), \quad \xi \in \mathbb{R}^n.$$

Let $\psi \in C_c^\infty(\mathbb{R}^n)$ be such that $\psi(x) = 0$ for all x in a neighbourhood of the origin and

$$||\psi||_p = 1.$$

For $k = 1, 2, \cdots$, let φ_k be the function on \mathbb{R}^n defined by

$$\varphi_k(x) = \epsilon_k^{n/p} \psi(\epsilon_k x) e^{i \xi_k \cdot x}, \quad x \in \mathbb{R}^n.$$

Then, for $k = 1, 2, \cdots, \varphi_k \in C_c^\infty(\mathbb{R}^n)$ and an easy computation gives

$$(T_{\sigma^p} - \lambda I)\varphi_k(x) = e^{i x \cdot \xi_k} \epsilon_k^{n/p} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i x \cdot \zeta} \{\sigma(\epsilon_k \zeta + \xi_k) - \lambda\} \hat{\psi}(\zeta) d\zeta$$

for all x in \mathbb{R}^n. By Taylor's formula with integral remainder, we get, for $k = 1, 2, \cdots$,

$$(T_{\sigma^p} - \lambda I)\varphi_k(x)$$

$$= e^{i x \cdot \xi_k} \epsilon_k^{n/p} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i x \cdot \zeta} \left\{ \sum_{|\mu| < N} \frac{\sigma^{(\mu)}(\xi_k)}{\mu!} \epsilon_k^{|\mu|} \zeta^\mu - \lambda \right\} \hat{\psi}(\zeta) d\zeta$$

$$+ e^{i x \cdot \xi_k} \epsilon_k^{n/p} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i x \cdot \zeta} R_k(\zeta) \hat{\psi}(\zeta) d\zeta, \quad x \in \mathbb{R}^n,$$

where

$$R_k(\zeta) = N \sum_{|\mu| = N} \frac{\epsilon_k^{N} \zeta^\mu}{\mu!} \int_0^1 (1 - \theta)^{N - 1} \sigma^{(\mu)}(\xi_k + \theta \epsilon_k \zeta) d\theta, \quad \zeta \in \mathbb{R}^n.$$
The first term on the right hand side of (3.4) is equal to $T_k(x)$, where

$$T_k(x) = e^{i x \cdot \xi_k} e^{n/\mu} \sigma(\xi_k) - \lambda \} \psi(\xi_k x) + e^{i x \cdot \xi_k} \sum_{1 < |\mu| < N} \frac{\epsilon_k^{n + |\mu|} \sigma(\mu)(\xi_k)(D^\mu \psi)(\xi_k x)}{\mu!}.$$

The second term on the right hand side of (3.4) is equal to $\sum_{|\mu| = N} T_k^\mu(x)$, where

$$T_k^\mu(x) = \frac{\epsilon_k^{n + N}}{\mu!(2\pi)^{n/2} N} \int_{\mathbb{R}^n} e^{i x \cdot \xi_k} I_k^\mu(\zeta) \zeta^\mu \hat{\psi}(\zeta) d\zeta$$

and

$$I_k^\mu(\zeta) = \int_0^1 (1 - \theta)^{N - 1} \sigma(\mu)(\xi_k + \theta \xi_k \zeta) d\theta.$$

Since $\sigma \in S^0$, it follows from (3.7) and (3.8) that, for each multi-index μ with $|\mu| = N$, there exists a positive constant C_μ such that

$$|T_k^\mu(x)| \leq \frac{\epsilon_k^{n + N}}{\mu!(2\pi)^{n/2} N} C_\mu \int_{\mathbb{R}^n} |\zeta^\mu \hat{\psi}(\zeta)| d\zeta, \quad x \in \mathbb{R}^n.$$

Hence, for each multi-index μ with $|\mu| = N$,

$$T_k^\mu \to 0$$

uniformly on \mathbb{R}^n as $k \to \infty$. Let α be a multi-index with $|\alpha| = k_0$. Then, by (3.7), an integration by parts and Leibnitz' formula,

$$|x^\alpha T_k^\mu(x)| \leq \frac{\epsilon_k^{n + N - k_0}}{\mu!(2\pi)^{n/2} N} \int_{\mathbb{R}^n} |\partial_\zeta^{\alpha} \{I_k^\mu(\zeta) \zeta^\mu \hat{\psi}(\zeta)\}| d\zeta$$

$$= \frac{\epsilon_k^{n + N - k_0}}{\mu!(2\pi)^{n/2} N} \int_{\mathbb{R}^n} \sum_{\gamma \leq \alpha} \binom{\alpha}{\gamma} |(\partial_\zeta^{\alpha - \gamma} I_k^\mu)(\zeta) \partial_\zeta^{\gamma} \{\zeta^\mu \hat{\psi}(\zeta)\}| d\zeta$$

for all $x \in \mathbb{R}^n$. Using (3.8) and the fact that $\sigma \in S^0$, we can find, for each multi-index μ with $|\mu| = N$ and each multi-index γ with $\gamma \leq \mu$, a positive constant $C_{\mu, \gamma}$ such that

$$|(\partial_\zeta^{\gamma} I_k^\mu)(\zeta)| \leq C_{\mu, \gamma}, \quad k = 1, 2, \cdots,$$

for all $\zeta \in \mathbb{R}^n$. So, by (3.10) and (3.11), we get a positive constant $C_{\alpha, \mu}$ such that

$$|x^\alpha T_k^\mu(x)| \leq C_{\alpha, \mu} \epsilon_k^{n + N - k_0}, \quad k = 1, 2, \cdots,$$
for all \(x \) in \(\mathbb{R}^n \). Thus, using the elementary inequality on page 53 of the book [7] by Wong and (3.12), we get, for each multi-index \(\mu \) with \(|\mu| = N \), a positive constant \(C_{\mu k_0} \) such that

\[
|x|^{k_0}|T_k^\mu(x)| \leq C_{\mu k_0} \varepsilon_k^{n+N-k_0}, \quad k = 1, 2, \ldots,
\]

for all \(x \) in \(\mathbb{R}^n \). So, by (3.9), (3.13), the fact that \(k_0 p > n \) and the Lebesgue dominated convergence theorem,

\[
||T_k^\mu||_p \to 0
\]

as \(k \to \infty \) for each multi-index \(\mu \) with \(|\mu| = N \). Thus, by (3.4), (3.6), (3.7) and (3.14),

\[
||(T_{\sigma p} - \lambda I)\varphi_k||_p \to 0
\]

as \(k \to \infty \). Obviously, by (3.2) and (3.3), \(||\varphi_k||_p = 1, k = 1, 2, \ldots, \) and hence it remains to prove that \(\{\varphi_k\} \) has no convergent subsequence in \(L^p(\mathbb{R}^n) \). But this follows from the argument on page 64 of the book [6] by Schechter. \(\square \)

The precise description of the spectrum of \(T_{\sigma p} \) is provided by the following theorem.

Theorem 3.2. Let \(\sigma \in S^0 \). Then

\[
\Sigma(T_{\sigma p}) = \Sigma_\sigma(T_{\sigma p}) = \{\sigma(\xi) : \xi \in \mathbb{R}^n\}^c,
\]

where \(\cdots^c \) denotes the closure in \(\mathbb{C} \) of the set \(\cdots \).

Theorem 3.2 is an immediate consequence of Proposition 3.1 and the following proposition.

Proposition 3.3. Let \(\lambda \) be a complex number such that \(\sigma(\xi) \) is bounded away from \(\lambda \) for all \(\xi \) in \(\mathbb{R}^n \). Then \(\lambda \in \rho(T_{\sigma p}) \).

Proof. Let \(\tau \) be the function on \(\mathbb{R}^n \) defined by

\[
\tau(\xi) = \frac{1}{m(\xi)}, \quad \xi \in \mathbb{R}^n,
\]

where

\[
m(\xi) = \sigma(\xi) - \lambda, \quad \xi \in \mathbb{R}^n.
\]
Then, for all multi-indices \(\alpha \),

\[
(\partial^\alpha \tau)(\xi) = \sum C_{\alpha(1), \ldots, \alpha(k)} \frac{\partial^{\alpha(1)} m(\xi) \cdots \partial^{\alpha(k)} m(\xi)}{m(\xi)^{k+1}}, \quad \xi \in \mathbb{R}^n,
\]

where the summation is taken over all partitions \(\alpha^{(1)}, \ldots, \alpha^{(k)} \) of \(\alpha \) and \(C_{\alpha^{(1)}, \ldots, \alpha^{(k)}} \) is a constant depending on the partition \(\alpha^{(1)}, \ldots, \alpha^{(k)} \) of \(\alpha \). Since \(\sigma \in S^0 \), it follows from (3.15), (3.16) and (3.17) that there exist positive constants \(C_{\alpha^{(1)}}, \ldots, C_{\alpha^{(k)}} \) and \(C \) such that

\[
|[(\partial^\alpha \tau)(\xi)]| \leq \sum |C_{\alpha^{(1)}, \ldots, \alpha^{(k)}}| \frac{C_{\alpha^{(1)}} \cdots C_{\alpha^{(k)}} (1 + |\xi|)^{-|\alpha|}}{C^{k+1}}, \quad \xi \in \mathbb{R}^n.
\]

Thus, by (3.18), \(\tau \in S^0 \). So, by Theorem 9.7 in Chapter 9 of the book [7] by Wong, \(T_\tau \), initially defined on \(S \), can be extended to a unique bounded linear operator \(T_{\tau p} \) from \(L^p(\mathbb{R}^n) \) into \(L^p(\mathbb{R}^n) \). Now, let \(f \in L^p(\mathbb{R}^n) \). Then there exists a sequence \(\{\varphi_k\} \) of functions in \(S \) such that

\[
\varphi_k \rightarrow f \quad \text{in } L^p(\mathbb{R}^n) \text{ as } k \rightarrow \infty.
\]

Thus,

\[
T_\tau \varphi_k \rightarrow T_{\tau p} f
\]

in \(L^p(\mathbb{R}^n) \) as \(k \rightarrow \infty \). So,

\[
T_{\sigma - \lambda} T_\tau \varphi_k \rightarrow (T_{\sigma p} - \lambda I)T_{\tau p} f
\]

in \(L^p(\mathbb{R}^n) \) as \(k \rightarrow \infty \). But, by (3.15) and (3.16),

\[
\varphi_k = T_{\sigma - \lambda} T_\tau \varphi_k, \quad k = 1, 2, \ldots.
\]

Thus, by (3.19), (3.20), (3.21) and letting \(k \rightarrow \infty \), we get

\[
f = (T_{\sigma p} - \lambda I)T_{\tau p} f
\]

and hence

\[
(T_{\sigma p} - \lambda I)T_{\tau p} = I.
\]

Similarly,

\[
T_{\tau p}(T_{\sigma p} - \lambda I) = I.
\]

So, by (3.22) and (3.23), \(\lambda \in \rho(T_{\sigma p}) \) and the proof is complete. \(\square \)
Remark. It is important to note that if $\sigma \in S^0$, then the spectrum of $T_{\sigma p}$ is, in general, equal to $\{\sigma(\xi) : \xi \in \mathbb{R}^n\}_c$, but not $\{\sigma(\xi) : \xi \in \mathbb{R}^n\}$. To wit, let σ be the function on \mathbb{R}^2 defined by

$$\sigma(\xi_1, \xi_2) = \frac{\xi_1 + i(\xi_1\xi_2 + 1)}{1 + \xi_1^2 + \xi_2^2}, \quad \xi_1, \xi_2 \in \mathbb{R}.$$

Then it is easy to prove that $\sigma \in S^0$. At any rate, it follows from Example 4.3, Example 4.4 and Exercise 4.1 in Chapter 4 of the book [7] by Wong. It is obvious that zero is not in the set $\{\sigma(\xi_1, \xi_2) : \xi_1, \xi_2 \in \mathbb{R}\}$ and $\sigma(1/k, -k) \to 0$ as $k \to \infty$. Thus, $0 \in \{\sigma(\xi_1, \xi_2) : \xi_1, \xi_2 \in \mathbb{R}\}_c$.

4. A Semilinear Evolution Equation

In this section, we consider the dynamical system modelled by the semilinear evolution pseudo-differential equation

$$u'(t) + (T_{\sigma p} - \lambda I)\{u(t)\} = f\{u(t)\}, \quad t \geq 0,$$

where $\sigma \in S^0$, u is a function from $[0, \infty)$ into $L^p(\mathbb{R}^n)$, λ is a real constant and f is a continuous mapping from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ such that

$$||f(u)||_p = o(||u||_p)$$

as $u \to 0$ in $L^p(\mathbb{R}^n)$. In (4.1), the derivative $u'(t)$, at any time t, is understood to be the strong limit in $L^p(\mathbb{R}^n)$, if it exists, of the difference quotient

$$\frac{u(t + h) - u(t)}{h}$$

as $h \to 0$. It is clear that, in view of (4.2), $u(t) \equiv 0$ is an equilibrium solution of (4.1). The equilibrium solution $u(t) \equiv 0$ of (4.1) is said to be asymptotically stable if, for any positive number ε, there exists a positive constant δ such that any solution $u(t), t \geq 0$, of (4.1) with $||u(0)||_p < \delta$ satisfies

$$||u(t)||_p < \varepsilon, \quad t \geq 0,$$

and

$$\lim_{t \to \infty} ||u(t)||_p = 0.$$

Theorem 4.1. Let $\sigma \in S^0$ and f be a continuous mapping from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ satisfying (4.2). Then, for any real number λ with $\lambda < \mu$, where

$$\mu = \inf_{\xi \in \mathbb{R}^n} \{\text{Re} \sigma(\xi)\},$$
the equilibrium solution \(u(t) \equiv 0 \) of (4.1) is asymptotically stable.

Proof. By Theorem 3.2, the spectrum of \(T_{\sigma_p} \) is equal to

\[\{ \sigma(\xi) : \xi \in \mathbb{R}^n \}^c. \]

Hence, by Theorem 3.8 in Chapter 3 of the book [5] by Schechter, i.e., the spectral mapping theorem, the spectrum of the bounded linear operator \(e^{-T_{\sigma_p}t} : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n), t \geq 0 \), is equal to

\[\{ e^{-\sigma(\xi)t} : \xi \in \mathbb{R}^n \}^c. \]

Thus, the spectral radius of \(e^{-T_{\sigma_p}t} : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n), t \geq 0 \), is equal to \(e^{-\mu t} \). Therefore, by a standard result in the theory of semigroups, i.e., Theorem 1.22 on page 15 of the book [1] by Davies,

\[\lim_{t \to \infty} \frac{1}{t} \ln ||e^{-T_{\sigma_p}t}||_* = -\mu, \]

where || ||_* is the norm in the Banach algebra of all bounded linear operators from \(L^p(\mathbb{R}^n) \) into \(L^p(\mathbb{R}^n) \). Hence, for any number \(\varepsilon \) in \((0, \mu - \lambda) \), we can find a positive number \(t_\varepsilon \) such that

\[\frac{1}{t} \ln ||e^{-T_{\sigma_p}t}||_* < -\mu + \varepsilon, \quad t > t_\varepsilon. \]

Thus,

\[||e^{-T_{\sigma_p}t}||_* < e^{-(\mu - \varepsilon)t}, \quad t > t_\varepsilon, \]

and consequently,

\[||e^{-(T_{\sigma_p} - \lambda I)t}||_* < e^{-(\mu - \lambda - \varepsilon)t}, \quad t > t_\varepsilon. \]

Therefore there exists a positive constant \(M \) such that

\[||e^{-(T_{\sigma_p} - \lambda I)t}||_* < Me^{-(\mu - \lambda - \varepsilon)t}, \quad t \geq 0. \]

So, by Theorem 2.1 in the paper [8] by Wong, the equilibrium solution \(u(t) \equiv 0 \) of (4.1) is asymptotically stable.

Remark. The technique used in the proof of Theorem 4.1 is similar to that used in the proof of Theorem 1.1 in the paper [10] by Wong.

Acknowledgement. The results in this paper have been put in better perspective in accordance with the comments provided by the referee.
References

Department of Mathematics
and Statistics
York University
4700 Keele Street
Toronto, Ontario M3J 1P3
CANADA

e-mail: mwwong@mathstat.yorku.ca