

Title	Spectra and dynamics of bounded pseudo- differential operators
Author(s)	Wong, Man Wah
Citation	Osaka Journal of Mathematics. 1997, 34(4), p. 895–903
Version Type	VoR
URL	https://doi.org/10.18910/5482
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

SPECTRA AND DYNAMICS OF BOUNDED PSEUDO-DIFFERENTIAL OPERATORS

MAN WAH WONG¹

(Received August 19, 1996)

1. Introduction

Let S^0 be the set of all C^{∞} functions σ on \mathbb{R}^n such that, for each multi-index α , there exists a positive constant C_{α} for which

$$|(D^{\alpha}\sigma)(\xi)| \le C_{\alpha}(1+|\xi|)^{-|\alpha|}, \quad \xi \in \mathbb{R}^n.$$

We call any function σ in S^0 a symbol. Let $\sigma \in S^0$. Then we define the pseudodifferential operator T_{σ} on the Schwartz space S by

(1.1)
$$(T_{\sigma}\varphi)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \sigma(\xi)\hat{\varphi}(\xi)d\xi, \quad x \in \mathbb{R}^n,$$

where

(1.2)
$$\hat{\varphi}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \varphi(x) dx, \quad \xi \in \mathbb{R}^n,$$

for all functions φ in S. It is obvious that T_{σ} maps S into S. That T_{σ} can be extended to a bounded linear operator $T_{\sigma p}$ from $L^{p}(\mathbb{R}^{n})$ into $L^{p}(\mathbb{R}^{n})$, 1 , is well $known and, in fact, follows from more general <math>L^{p}$ -boundedness results given in, e.g., Theorem 4.1 in Chapter 2 and the bibliograhical notes on page 411 of the book [2] by Kumano-go or Theorem 9.7 in Chapter 9 of the book [7] by Wong. If we let K be the tempered distribution on \mathbb{R}^{n} given by $\hat{K} = \sigma$, where the Fourier transform \hat{K} of K is taken in the distribution sense, then, by Lemma 9.12 in Chapter 9 of the book [7] by Wong, K is a function on $\mathbb{R}^{n} - \{0\}$ such that, for each sufficiently large positive integer N, there is a positive constant C_{N} for which

$$|K(x)| \le C_N |x|^{-N}, \quad x \ne 0.$$

Moreover, for each x in \mathbb{R}^n and each φ in S vanishing in a neighbourhood of x,

$$(T_{\sigma}\varphi)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} K(x-y)\varphi(y)dy.$$

¹This research has been partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0008562.

Thus, the pseudo-differential operator T_{σ} can be considered as a singular integral operator with convolution kernel K.

The aim of this paper is to compute the spectrum and essential spectrum of the bounded linear operator $T_{\sigma p}: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$.

We first recall in Section 2 the spectrum and essential spectrum of a bounded linear operator A from a complex Banach space X into X. In Section 3, the spectrum and essential spectrum of the bounded linear operator $T_{\sigma p}: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ are computed. Results related to the "spectral invariance", i.e., Theorem 3.2 in this paper, can be found in, e.g., the paper [3] by Leopold and Triebel or the paper [9] by Wong. An application to the asymptotic stability of the zero solution of a semilinear evolution equation modelled by a bounded pseudo-differential operator on $L^p(\mathbb{R}^n)$ is given in Section 4.

2. The Spectrum and Essential Spectrum

Let A be a bounded linear operator from a complex Banach space X into X. We denote the norm in X by || ||. Let $\rho(A)$ be the resolvent set of A defined by

 $\rho(A) = \{ \lambda \in \mathbb{C} : A - \lambda I \text{ is one to one and onto} \},\$

where \mathbb{C} is the set of all complex numbers and *I* is the identity operator from *X* into *X*. The spectrum $\Sigma(A)$ of *A* is defined to be the set complement of $\rho(A)$ in \mathbb{C} . We denote the adjoint of *A* by A^t , the range of *A* by R(A), and the null spaces of *A* and A^t by N(A) and $N(A^t)$ respectively. We call *A* a Fredholm operator if R(A) is a closed subspace of *X*, and the dimensions $\alpha(A)$ and $\beta(A)$ of N(A) and $N(A^t)$ respectively are finite. For any Fredholm operator *A*, we define the index i(A) of *A* by

$$i(A) = \alpha(A) - \beta(A).$$

Let $\Phi(A)$ be the set defined by

 $\Phi(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is Fredholm with zero index} \}.$

Then the essential spectrum $\Sigma_e(A)$ of A, defined by Schechter in [4], is the set complement of $\Phi(A)$ in \mathbb{C} . It can be shown that a complex number λ is in the essential spectrum $\Sigma_e(A)$ if there exists a sequence $\{u_k\}$ of elements in X such that $||u_k|| = 1, k = 1, 2, \dots, (A - \lambda I)u_k \to 0$ in X as $k \to \infty$ and $\{u_k\}$ has no convergent subsequence in X.

The notions and results in this section can be found in Section 4 of Chapter 1 of the book [6] by Schechter.

3. The Spectrum of $T_{\sigma p}$

We begin with the following result on the essential spectrum $\Sigma_e(T_{\sigma p})$ of $T_{\sigma p}$.

896

Proposition 3.1. Let $\sigma \in S^0$ and let λ be a complex number. If $\sigma(\xi)$ is not bounded away from λ for all ξ in \mathbb{R}^n , then $\lambda \in \Sigma_e(T_{\sigma p})$.

Proof. Let $\{\xi_k\}$ be a sequence of elements in \mathbb{R}^n such that $\sigma(\xi_k) \to \lambda$ as $k \to \infty$. Let k_0 be the smallest positive integer greater than n/p and let N be any fixed integer greater than $k_0 - n/p$. Let $\{\varepsilon_k\}$ be a sequence of positive numbers such that

(3.1)
$$\varepsilon_k^{|\mu|} \sigma^{(\mu)}(\xi_k) \to 0, \quad 1 < |\mu| < N,$$

as $k \to \infty$, where

$$\sigma^{(\mu)}(\xi) = (\partial^{\mu}\sigma)(\xi), \quad \xi \in \mathbb{R}^n.$$

Let $\psi \in C_0^\infty(\mathbb{R}^n)$ be such that $\psi(x) = 0$ for all x in a neighbourhood of the origin and

(3.2)
$$||\psi||_p = 1.$$

For $k = 1, 2, \cdots$, let φ_k be the function on \mathbb{R}^n defined by

(3.3)
$$\varphi_k(x) = \varepsilon_k^{n/p} \psi(\varepsilon_k x) e^{i\xi_k \cdot x}, \quad x \in \mathbb{R}^n.$$

Then, for $k = 1, 2, \dots, \varphi_k \in C_0^\infty(\mathbb{R}^n)$ and an easy computation gives

$$((T_{\sigma p} - \lambda I)\varphi_k)(x) = e^{ix \cdot \xi_k} \varepsilon_k^{n/p} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix \cdot \varepsilon_k \zeta} \{\sigma(\varepsilon_k \zeta + \xi_k) - \lambda\} \hat{\psi}(\zeta) d\zeta$$

for all x in \mathbb{R}^n . By Taylor's formula with integral remainder, we get, for $k = 1, 2, \dots$,

$$((T_{\sigma p} - \lambda I)\varphi_{k})(x)$$

$$(3.4) = e^{ix\cdot\xi_{k}}\varepsilon_{k}^{n/p}(2\pi)^{-n/2}\int_{\mathbb{R}^{n}}e^{ix\cdot\varepsilon_{k}\zeta}\left\{\sum_{|\mu|< N}\frac{\sigma^{(\mu)}(\xi_{k})}{\mu!}\varepsilon_{k}^{|\mu|}\zeta^{\mu} - \lambda\right\}\hat{\psi}(\zeta)d\zeta$$

$$+ e^{ix\cdot\xi_{k}}\varepsilon_{k}^{n/p}(2\pi)^{-n/2}\int_{\mathbb{R}^{n}}e^{ix\cdot\varepsilon_{k}\zeta}R_{k}(\zeta)\hat{\psi}(\zeta)d\zeta, \quad x \in \mathbb{R}^{n},$$

where

(3.5)
$$R_k(\zeta) = N \sum_{|\mu|=N} \frac{\varepsilon_k^N \zeta^{\mu}}{\mu!} \int_0^1 (1-\theta)^{N-1} \sigma^{(\mu)}(\xi_k + \theta \varepsilon_k \zeta) d\theta, \quad \zeta \in \mathbb{R}^n.$$

M.-W. WONG

The first term on the right hand side of (3.4) is equal to $T_k(x)$, where

(3.6)
$$T_{k}(x) = e^{ix \cdot \xi_{k}} \varepsilon_{k}^{n/p} \{ \sigma(\xi_{k}) - \lambda \} \psi(\varepsilon_{k} x)$$
$$+ e^{ix \cdot \xi_{k}} \sum_{1 < |\mu| < N} \frac{\varepsilon_{k}^{\frac{n}{p} + |\mu|}}{\mu!} \sigma^{(\mu)}(\xi_{k}) (D^{\mu} \psi)(\varepsilon_{k} x)$$

The second term on the right hand side of (3.4) is equal to $\sum_{|\mu|=N} T_k^{\mu}(x)$, where

(3.7)
$$T_k^{\mu}(x) = \frac{\varepsilon_k^{\frac{n}{p}+N} e^{ix\cdot\xi_k}}{\mu!(2\pi)^{n/2}} N \int_{\mathbb{R}^n} e^{ix\cdot\varepsilon_k\zeta} I_k^{\mu}(\zeta) \zeta^{\mu} \hat{\psi}(\zeta) d\zeta$$

and

(3.8)
$$I_k^{\mu}(\zeta) = \int_0^1 (1-\theta)^{N-1} \sigma^{(\mu)}(\xi_k + \theta \varepsilon_k \zeta) d\theta.$$

Since $\sigma \in S^0$, it follows from (3.7) and (3.8) that, for each multi-index μ with $|\mu| = N$, there exists a positive constant C_{μ} such that

$$|T_k^{\mu}(x)| \leq \frac{\varepsilon_k^{\frac{n}{p}+N}}{\mu!(2\pi)^{n/2}} NC_{\mu} \int_{\mathbb{R}^n} |\zeta^{\mu}\hat{\psi}(\zeta)| d\zeta, \quad x \in \mathbb{R}^n.$$

Hence, for each multi-index μ with $|\mu| = N$,

$$(3.9) T_k^{\mu} \to 0$$

uniformly on \mathbb{R}^n as $k \to \infty$. Let α be a multi-index with $|\alpha| = k_0$. Then, by (3.7), an integration by parts and Leibnitz' formula,

$$(3.10) |x^{\alpha}T_{k}^{\mu}(x)| \leq \frac{\varepsilon_{k}^{\frac{n}{p}+N-k_{0}}}{\mu!(2\pi)^{n/2}}N\int_{\mathbb{R}^{n}}|\partial_{\zeta}^{\alpha}\{I_{k}^{\mu}(\zeta)\zeta^{\mu}\hat{\psi}(\zeta)\}|d\zeta \\ = \frac{\varepsilon_{k}^{\frac{n}{p}+N-k_{0}}}{\mu!(2\pi)^{n/2}}N\int_{\mathbb{R}^{n}}\sum_{\gamma\leq\alpha}\binom{\alpha}{\gamma}|(\partial^{\gamma}I_{k}^{\mu})(\zeta)\partial_{\zeta}^{\alpha-\gamma}\{\zeta^{\mu}\hat{\psi}(\zeta)\}|d\zeta$$

for all x in \mathbb{R}^n . Using (3.8) and the fact that $\sigma \in S^0$, we can find, for each multiindex μ with $|\mu| = N$ and each multi-index γ with $\gamma \leq \mu$, a positive constant $C_{\mu\gamma}$ such that

$$(3.11) \qquad \qquad |(\partial^{\gamma} I_k^{\mu})(\zeta)| \le C_{\mu\gamma}, \quad k = 1, 2, \cdots,$$

for all ζ in \mathbb{R}^n . So, by (3.10) and (3.11), we get a positive constant $C_{\alpha\mu}$ such that

(3.12)
$$|x^{\alpha}T_{k}^{\mu}(x)| \leq C_{\alpha\mu}\varepsilon_{k}^{\frac{n}{p}+N-k_{0}}, \quad k=1,2,\cdots,$$

for all x in \mathbb{R}^n . Thus, using the elementary inequality on page 53 of the book [7] by Wong and (3.12), we get, for each multi-index μ with $|\mu| = N$, a positive constant $C_{\mu k_0}$ such that

(3.13)
$$|x|^{k_0}|T_k^{\mu}(x)| \le C_{\mu k_0} \varepsilon_k^{\frac{n}{p}+N-k_0}, \quad k=1,2,\cdots,$$

for all x in \mathbb{R}^n . So, by (3.9), (3.13), the fact that $k_0 p > n$ and the Lebesgue dominated convergence theorem,

$$(3.14) \qquad \qquad ||T_k^{\mu}||_p \to 0$$

as $k \to \infty$ for each multi-index μ with $|\mu| = N$. Thus, by (3.4), (3.6), (3.7) and (3.14),

$$||(T_{\sigma p} - \lambda I)\varphi_k||_p \to 0$$

as $k \to \infty$. Obviously, by (3.2) and (3.3), $||\varphi_k||_p = 1$, $k = 1, 2, \dots$, and hence it remains to prove that $\{\varphi_k\}$ has no convergent subsequence in $L^p(\mathbb{R}^n)$. But this follows from the argument on page 64 of the book [6] by Schechter.

The precise description of the spectrum of $T_{\sigma p}$ is provided by the following theorem.

Theorem 3.2. Let $\sigma \in S^0$. Then

$$\Sigma(T_{\sigma p}) = \Sigma_e(T_{\sigma p}) = \{\sigma(\xi) : \xi \in \mathbb{R}^n\}^c,$$

where $\{\cdots\}^c$ denotes the closure in \mathbb{C} of the set $\{\cdots\}$.

Theorem 3.2 is an immediate consequence of Proposition 3.1 and the following proposition.

Proposition 3.3. Let λ be a complex number such that $\sigma(\xi)$ is bounded away from λ for all ξ in \mathbb{R}^n . Then $\lambda \in \rho(T_{\sigma p})$.

Proof. Let τ be the function on \mathbb{R}^n defined by

(3.15)
$$\tau(\xi) = \frac{1}{m(\xi)}, \quad \xi \in \mathbb{R}^n,$$

where

(3.16)
$$m(\xi) = \sigma(\xi) - \lambda, \quad \xi \in \mathbb{R}^n.$$

Then, for all multi-indices α ,

(3.17)
$$(\partial^{\alpha}\tau)(\xi) = \sum C_{\alpha^{(1)},\dots,\alpha^{(k)}} \frac{(\partial^{\alpha^{(1)}}m)(\xi)\cdots(\partial^{\alpha^{(k)}}m)(\xi)}{m(\xi)^{k+1}}, \quad \xi \in \mathbb{R}^n,$$

where the summation is taken over all partitions $\alpha^{(1)}, \dots, \alpha^{(k)}$ of α and $C_{\alpha^{(1)},\dots,\alpha^{(k)}}$ is a constant depending on the partition $\alpha^{(1)},\dots,\alpha^{(k)}$ of α . Since $\sigma \in S^0$, it follows from (3.15), (3.16) and (3.17) that there exist positive constants $C_{\alpha^{(1)}},\dots,C_{\alpha^{(k)}}$ and C such that

(3.18)
$$|(\partial^{\alpha}\tau)(\xi)| \leq \sum |C_{\alpha^{(1)},\dots,\alpha^{(k)}}| \frac{C_{\alpha^{(1)}}\cdots C_{\alpha^{(k)}}(1+|\xi|)^{-|\alpha|}}{C^{k+1}}, \quad \xi \in \mathbb{R}^n$$

Thus, by (3.18), $\tau \in S^0$. So, by Theorem 9.7 in Chapter 9 of the book [7] by Wong, T_{τ} , initially defined on S, can be extended to a unique bounded linear operator $T_{\tau p}$ from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$. Now, let $f \in L^p(\mathbb{R}^n)$. Then there exists a sequence $\{\varphi_k\}$ of functions in S such that

$$(3.19) \qquad \qquad \varphi_k \to f$$

in $L^p(\mathbb{R}^n)$ as $k \to \infty$. Thus,

$$T_{\tau}\varphi_k \to T_{\tau p}f$$

in $L^p(\mathbb{R}^n)$ as $k \to \infty$. So,

(3.20)
$$T_{\sigma-\lambda}T_{\tau}\varphi_k \to (T_{\sigma p} - \lambda I)T_{\tau p}f$$

in $L^p(\mathbb{R}^n)$ as $k \to \infty$. But, by (3.15) and (3.16),

(3.21)
$$\varphi_k = T_{\sigma-\lambda} T_{\tau} \varphi_k, \quad k = 1, 2, \cdots.$$

Thus, by (3.19), (3.20), (3.21) and letting $k \to \infty$, we get

$$f = (T_{\sigma p} - \lambda I)T_{\tau p}f$$

 \square

and hence

$$(3.22) (T_{\sigma p} - \lambda I)T_{\tau p} = I.$$

Similarly,

$$(3.23) T_{\tau p}(T_{\sigma p} - \lambda I) = I.$$

So, by (3.22) and (3.23), $\lambda \in \rho(T_{\sigma p})$ and the proof is complete.

900

REMARK. It is important to note that if $\sigma \in S^0$, then the spectrum of $T_{\sigma p}$ is, in general, equal to $\{\sigma(\xi) : \xi \in \mathbb{R}^n\}^c$, but not $\{\sigma(\xi) : \xi \in \mathbb{R}^n\}$. To wit, let σ be the function on \mathbb{R}^2 defined by

$$\sigma(\xi_1,\xi_2) = \frac{\xi_1 + i(\xi_1\xi_2 + 1)}{1 + \xi_1^2 + \xi_2^2}, \quad \xi_1,\xi_2 \in \mathbb{R}.$$

Then it is easy to prove that $\sigma \in S^0$. At any rate, it follows from Example 4.3, Example 4.4 and Exercise 4.1 in Chapter 4 of the book [7] by Wong. It is obvious that zero is not in the set $\{\sigma(\xi_1, \xi_2) : \xi_1, \xi_2 \in \mathbb{R}\}$ and $\sigma(1/k, -k) \to 0$ as $k \to \infty$. Thus, $0 \in \{\sigma(\xi_1, \xi_2) : \xi_1, \xi_2 \in \mathbb{R}\}^c$.

4. A Semilinear Evolution Equation

In this section, we consider the dynamical system modelled by the semilinear evolution pseudo-differential equation

(4.1)
$$u'(t) + (T_{\sigma p} - \lambda I) \{u(t)\} = f\{u(t)\}, \quad t \ge 0,$$

where $\sigma \in S^0$, u is a function from $[0,\infty)$ into $L^p(\mathbb{R}^n)$, λ is a real constant and f is a continuous mapping from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ such that

(4.2)
$$||f(u)||_p = o(||u||_p)$$

as $u \to 0$ in $L^p(\mathbb{R}^n)$. In (4.1), the derivative u'(t), at any time t, is understood to be the strong limit in $L^p(\mathbb{R}^n)$, if it exists, of the difference quotient

$$\frac{u(t+h)-u(t)}{h}$$

as $h \to 0$. It is clear that, in view of (4.2), $u(t) \equiv 0$ is an equilibrium solution of (4.1). The equilibrium solution $u(t) \equiv 0$ of (4.1) is said to be asymptotically stable if, for any positive number ε , there exists a positive constant δ such that any solution u(t), $t \geq 0$, of (4.1) with $||u(0)||_p < \delta$ satisfies

$$||u(t)||_p < \varepsilon, \quad t \ge 0,$$

and

$$\lim_{t\to\infty}||u(t)||_p=0.$$

Theorem 4.1. Let $\sigma \in S^0$ and f be a continuous mapping from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ satisfying (4.2). Then, for any real number λ with $\lambda < \mu$, where

$$\mu = \inf_{\xi \in \mathbb{R}^n} \{ \operatorname{Re} \, \sigma(\xi) \},$$

the equilibrium solution $u(t) \equiv 0$ of (4.1) is asymptotically stable.

Proof. By Theorem 3.2, the spectrum of $T_{\sigma p}$ is equal to

 $\{\sigma(\xi): \xi \in \mathbb{R}^n\}^c.$

Hence, by Theorem 3.8 in Chapter 3 of the book [5] by Schechter, i.e., the spectral mapping theorem, the spectrum of the bounded linear operator $e^{-T_{\sigma_p}t}: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n), t \ge 0$, is equal to

$$\{e^{-\sigma(\xi)t}: \xi \in \mathbb{R}^n\}^c.$$

Thus, the spectral radius of $e^{-T_{\sigma p}t}$: $L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$, $t \ge 0$, is equal to $e^{-\mu t}$. Therefore, by a standard result in the theory of semigroups, i.e., Theorem 1.22 on page 15 of the book [1] by Davies,

$$\lim_{t \to \infty} \frac{1}{t} \ln ||e^{-T_{\sigma_p} t}||_* = -\mu,$$

where $|| ||_*$ is the norm in the Banach algebra of all bounded linear operators from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$. Hence, for any number ε in $(0, \mu - \lambda)$, we can find a positive number t_{ε} such that

$$\frac{1}{t}\ln||e^{-T_{\sigma_p}t}||_* < -\mu + \varepsilon, \quad t > t_{\varepsilon}.$$

Thus,

$$||e^{-T_{\sigma p}t}||_* < e^{-(\mu-\varepsilon)t}, \quad t > t_{\varepsilon},$$

and consequently,

$$||e^{-(T_{\sigma p}-\lambda I)t}||_* < e^{-(\mu-\lambda-\varepsilon)t}, \quad t > t_{\varepsilon}.$$

Therefore there exists a positive constant M such that

$$||e^{-(T_{\sigma p}-\lambda I)t}||_* < M e^{-(\mu-\lambda-\varepsilon)t}, \quad t \ge 0.$$

So, by Theorem 2.1 in the paper [8] by Wong, the equilibrium solution $u(t) \equiv 0$ of (4.1) is asymptotically stable.

REMARK. The technique used in the proof of Theorem 4.1 is similar to that used in the proof of Theorem 1.1 in the paper [10] by Wong.

ACKNOWLEDGEMENT. The results in this paper have been put in better perspective in accordance with the comments provided by the referee. SPECTRA AND DYNAMICS

References

- [1] E.B. Davies: One-Parameter Semigroups, Academic Press, (1980).
- [2] H. Kumano-go: Pseudo-Differential Operators, MIT Press, (1981).
- [3] H.G. Leopold and H. Triebel: Spectral invariance for pseudo-differential operators on weighted function spaces, Manuscripta Math. 83 (1994), 315-325.
- [4] M. Schechter: On the essential spectrum of an arbitrary operator I, J. Math. Anal. Appl. 13 (1966), 205–215.
- [5] M. Schechter: Principles of Functional Analysis, Academic Press, (1971).
- [6] M. Schechter: Spectra of Partial Differential Operators, Second Edition, North Holland, (1986).
- [7] M.W. Wong: An Introduction to Pseudo-Differential Operators, World Scientific, (1991).
- [8] M.W. Wong: Asymptotic stability of equilibrium solutions of semilinear evolution pseudodifferential equations, Panamer. Math. J. 3 (1993), 91–102.
- [9] M.W. Wong: Spectral theory of pseudo-differential operators, Adv. Appl. Math. 15 (1994), 437-451.
- [10] M.W. Wong: Asymptotic stability of equilibrium solutions of semilinear evolution Toeplitzdifferential equations, Comm. Appl. Nonlinear Anal. 2 (1995), 57-64.

Department of Mathematics and Statistics York University 4700 Keele Street Toronto, Ontario M3J 1P3 CANADA e-mail: mwwong@mathstat.yorku.ca