

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

SPECTRA AND DYNAMICS OF BOUNDED PSEUDO-DIFFERENTIAL OPERATORS

MAN WAH WONG¹

(Received August 19, 1996)

1. Introduction

Let S^0 be the set of all C^{∞} functions σ on \mathbb{R}^n such that, for each multi-index α , there exists a positive constant C_{α} for which

$$
|(D^{\alpha}\sigma)(\xi)| \leq C_{\alpha}(1+|\xi|)^{-|\alpha|}, \quad \xi \in \mathbb{R}^{n}.
$$

We call any function σ in S^0 a symbol. Let $\sigma \in S^0$. Then we define the pseudodifferential operator T_{σ} on the Schwartz space S by

(1.1)
$$
(T_{\sigma}\varphi)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \sigma(\xi) \hat{\varphi}(\xi) d\xi, \quad x \in \mathbb{R}^n,
$$

where

(1.2)
$$
\hat{\varphi}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix\cdot\xi} \varphi(x) dx, \quad \xi \in \mathbb{R}^n,
$$

for all functions φ in S. It is obvious that T_{σ} maps S into S. That T_{σ} can be extended to a bounded linear operator $T_{\sigma p}$ from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$, $1 < p < \infty$, is well known and, in fact, follows from more general L^p -boundedness results given in, e.g., Theorem 4.1 in Chapter 2 and the bibliograhical notes on page 411 of the book [2] by Kumano-go or Theorem 9.7 in Chapter 9 of the book [7] by Wong. If we let *K* be the tempered distribution on \mathbb{R}^n given by $\hat{K} = \sigma$, where the Fourier transform \hat{K} of K is taken in the distribution sense, then, by Lemma 9.12 in Chapter 9 of the book [7] by Wong, K is a function on $\mathbb{R}^n - \{0\}$ such that, for each sufficiently large positive integer N , there is a positive constant C_N for which

$$
|K(x)| \leq C_N |x|^{-N}, \quad x \neq 0.
$$

Moreover, for each x in \mathbb{R}^n and each φ in S vanishing in a neighbourhood of x,

$$
\underbrace{(T_{\sigma}\varphi)(x)=(2\pi)^{-n/2}\int_{\mathbb{R}^n}K(x-y)\varphi(y)dy.}
$$

¹This research has been partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0008562.

Thus, the pseudo-differential operator T_{σ} can be considered as a singular integral operator with convolution kernel *K.*

The aim of this paper is to compute the spectrum and essential spectrum of the bounded linear operator $T_{\sigma p} : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$.

We first recall in Section 2 the spectrum and essential spectrum of a bounded linear operator *A* from a complex Banach space *X* into *X.* In Section 3, the spectrum and essential spectrum of the bounded linear operator $T_{\sigma p} : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ are computed. Results related to the "spectral invariance", i.e., Theorem 3.2 in this paper, can be found in, e.g., the paper [3] by Leopold and Triebel or the paper [9] by Wong. An application to the asymptotic stability of the zero solution of a semilinear evolution equation modelled by a bounded pseudo-differential operator on $L^p(\mathbb{R}^n)$ is given in Section 4.

2. The Spectrum and Essential Spectrum

Let *A* be a bounded linear operator from a complex Banach space *X* into *X.* We denote the norm in X by $|| \cdot ||$. Let $\rho(A)$ be the resolvent set of A defined by

 $\rho(A) = \{ \lambda \in \mathbb{C} : A - \lambda I \text{ is one to one and onto} \},\$

where $\mathbb C$ is the set of all complex numbers and *I* is the identity operator from X into X. The spectrum $\Sigma(A)$ of A is defined to be the set complement of $\rho(A)$ in C. We denote the adjoint of A by A^t , the range of A by $R(A)$, and the null spaces of *A* and A^t by $N(A)$ and $N(A^t)$ respectively. We call A a Fredholm operator if $R(A)$ is a closed subspace of X, and the dimensions $\alpha(A)$ and $\beta(A)$ of $N(A)$ and $N(A^t)$ respectively are finite. For any Fredholm operator *A,* we define the index *i(A) of A* by

$$
i(A) = \alpha(A) - \beta(A).
$$

Let $\Phi(A)$ be the set defined by

 $\Phi(A) = {\lambda \in \mathbb{C} : A - \lambda I \text{ is Fredholm with zero index}}.$

Then the essential spectrum $\Sigma_e(A)$ of A, defined by Schechter in [4], is the set complement of $\Phi(A)$ in C. It can be shown that a complex number λ is in the essential spectrum $\Sigma_e(A)$ if there exists a sequence $\{u_k\}$ of elements in X such that $\|u_k\| = 1, k = 1, 2, \cdots, (A - \lambda I)u_k \to 0$ in X as $k \to \infty$ and $\{u_k\}$ has no convergent subsequence in *X.*

The notions and results in this section can be found in Section 4 of Chapter 1 of the book [6] by Schechter.

3. The Spectrum of *Tσp*

We begin with the following result on the essential spectrum $\Sigma_e(T_{\sigma p})$ of $T_{\sigma p}$.

Proposition 3.1. *Let* $\sigma \in S^0$ *and let* λ *be a complex number. If* $\sigma(\xi)$ *is not bounded away from* λ *for all* ξ *in* \mathbb{R}^n *, then* $\lambda \in \Sigma_e(T_{\sigma p})$ *.*

Proof. Let $\{\xi_k\}$ be a sequence of elements in \mathbb{R}^n such that $\sigma(\xi_k) \to \lambda$ as $k \to \infty$. Let k_0 be the smallest positive integer greater than n/p and let N be any fixed integer greater than $k_0 - n/p$. Let $\{\varepsilon_k\}$ be a sequence of positive numbers such that

$$
(3.1) \qquad \qquad \varepsilon_k^{|\mu|} \sigma^{(\mu)}(\xi_k) \to 0, \quad 1 < |\mu| < N,
$$

as $k \to \infty$, where

$$
\sigma^{(\mu)}(\xi) = (\partial^{\mu}\sigma)(\xi), \quad \xi \in \mathbb{R}^{n}.
$$

Let $\psi \in C_0^{\infty}(\mathbb{R}^n)$ be such that $\psi(x) = 0$ for all x in a neighbourhood of the origin and

$$
(3.2) \t\t ||\psi||_p = 1.
$$

For $k = 1, 2, \dots$, let φ_k be the function on \mathbb{R}^n defined by

(3.3)
$$
\varphi_k(x) = \varepsilon_k^{n/p} \psi(\varepsilon_k x) e^{i\xi_k \cdot x}, \quad x \in \mathbb{R}^n.
$$

Then, for $k = 1, 2, \dots, \varphi_k \in C_0^{\infty}(\mathbb{R}^n)$ and an easy computation gives

$$
((T_{\sigma p} - \lambda I)\varphi_k)(x) = e^{ix \cdot \xi_k} \varepsilon_k^{n/p} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix \cdot \varepsilon_k \zeta} {\{\sigma(\varepsilon_k \zeta + \xi_k) - \lambda\} \hat{\psi}(\zeta) d\zeta
$$

for all x in \mathbb{R}^n . By Taylor's formula with integral remainder, we get, for $k = 1, 2$,

$$
(3.4) \quad = e^{ix \cdot \xi_k} \varepsilon_k^{n/p} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix \cdot \varepsilon_k \zeta} \left\{ \sum_{|\mu| < N} \frac{\sigma^{(\mu)}(\xi_k)}{\mu!} \varepsilon_k^{|\mu|} \zeta^{\mu} - \lambda \right\} \hat{\psi}(\zeta) d\zeta
$$

$$
+ e^{ix \cdot \xi_k} \varepsilon_k^{n/p} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix \cdot \varepsilon_k \zeta} R_k(\zeta) \hat{\psi}(\zeta) d\zeta, \quad x \in \mathbb{R}^n,
$$

where

$$
(3.5) \t R_k(\zeta) = N \sum_{|\mu|=N} \frac{\varepsilon_k^N \zeta^{\mu}}{\mu!} \int_0^1 (1-\theta)^{N-1} \sigma^{(\mu)}(\xi_k + \theta \varepsilon_k \zeta) d\theta, \quad \zeta \in \mathbb{R}^n.
$$

898 M.-W. WONG

The first term on the right hand side of (3.4) is equal to $T_k(x)$, where

(3.6)
$$
T_k(x) = e^{ix \cdot \xi_k} \varepsilon_k^{n/p} \{ \sigma(\xi_k) - \lambda \} \psi(\varepsilon_k x) + e^{ix \cdot \xi_k} \sum_{1 \le |\mu| \le N} \frac{\varepsilon_k^{\frac{n}{p} + |\mu|}}{\mu!} \sigma^{(\mu)}(\xi_k) (D^{\mu} \psi)(\varepsilon_k x)
$$

The second term on the right hand side of (3.4) is equal to $\sum_{|\mu|=N} T_k^{\mu}(x)$, where

(3.7)
$$
T_k^{\mu}(x) = \frac{\varepsilon_k^{\frac{n}{p} + N} e^{ix \cdot \xi_k}}{\mu! (2\pi)^{n/2}} N \int_{\mathbb{R}^n} e^{ix \cdot \varepsilon_k \zeta} I_k^{\mu}(\zeta) \zeta^{\mu} \hat{\psi}(\zeta) d\zeta
$$

and

(3.8)
$$
I_k^{\mu}(\zeta) = \int_0^1 (1-\theta)^{N-1} \sigma^{(\mu)}(\xi_k + \theta \varepsilon_k \zeta) d\theta.
$$

Since $\sigma \in S^0$, it follows from (3.7) and (3.8) that, for each multi-index μ with $|\mu| = N$, there exists a positive constant C_{μ} such that

$$
|T_k^{\mu}(x)| \leq \frac{\varepsilon_k^{\frac{n}{p}+N}}{\mu!(2\pi)^{n/2}} NC_{\mu} \int_{\mathbb{R}^n} |\zeta^{\mu}\hat{\psi}(\zeta)| d\zeta, \quad x \in \mathbb{R}^n.
$$

Hence, for each multi-index μ with $|\mu| = N$,

$$
(3.9) \t\t T_k^{\mu} \to 0
$$

uniformly on \mathbb{R}^n as $k \to \infty$. Let α be a multi-index with $|\alpha| = k_0$. Then, by (3.7), an integration by parts and Leibnitz' formula,

$$
(3.10) \qquad |x^{\alpha}T_{k}^{\mu}(x)| \leq \frac{\varepsilon_{k}^{\frac{n}{p}+N-k_{0}}}{\mu!(2\pi)^{n/2}} N \int_{\mathbb{R}^{n}} |\partial_{\zeta}^{\alpha} \{I_{k}^{\mu}(\zeta)\zeta^{\mu}\hat{\psi}(\zeta)\}|d\zeta
$$

$$
= \frac{\varepsilon_{k}^{\frac{n}{p}+N-k_{0}}}{\mu!(2\pi)^{n/2}} N \int_{\mathbb{R}^{n}} \sum_{\gamma \leq \alpha} {\alpha \choose \gamma} |(\partial^{\gamma}I_{k}^{\mu})(\zeta)\partial_{\zeta}^{\alpha-\gamma}\{\zeta^{\mu}\hat{\psi}(\zeta)\}|d\zeta
$$

for all x in \mathbb{R}^n . Using (3.8) and the fact that $\sigma \in S^0$, we can find, for each multi index μ with $|\mu| = N$ and each multi-index γ with $\gamma \leq \mu$, a positive constant $C_{\mu\gamma}$ such that

$$
(3.11) \qquad \qquad |(\partial^{\gamma} I^{\mu}_k)(\zeta)| \leq C_{\mu\gamma}, \quad k = 1, 2, \cdots,
$$

for all ζ in \mathbb{R}^n . So, by (3.10) and (3.11), we get a positive constant $C_{\alpha\mu}$ such that

$$
(3.12) \t\t |x^{\alpha}T_k^{\mu}(x)| \leq C_{\alpha\mu}\varepsilon_k^{\frac{n}{p}+N-k_0}, \quad k=1,2,\cdots,
$$

for all x in \mathbb{R}^n . Thus, using the elementary inequality on page 53 of the book [7] by Wong and (3.12), we get, for each multi-index μ with $|\mu| = N$, a positive constant $C_{\mu k_0}$ such that

(3.13)
$$
|x|^{k_0} |T_k^{\mu}(x)| \leq C_{\mu k_0} \varepsilon_k^{\frac{n}{p} + N - k_0}, \quad k = 1, 2, \cdots,
$$

for all x in \mathbb{R}^n . So, by (3.9), (3.13), the fact that $k_0 p > n$ and the Lebesgue dominated convergence theorem,

$$
||T_k^{\mu}||_p \to 0
$$

as $k \to \infty$ for each multi-index μ with $|\mu| = N$. Thus, by (3.4), (3.6), (3.7) and (3.14) ,

$$
||(T_{\sigma p}-\lambda I)\varphi_k||_p\to 0
$$

as $k \to \infty$. Obviously, by (3.2) and (3.3), $\|\varphi_k\|_p = 1$, $k = 1, 2, \dots$, and hence it remains to prove that $\{\varphi_k\}$ has no convergent subsequence in $L^p(\mathbb{R}^n)$. But this follows from the argument on page 64 of the book $\lceil 6 \rceil$ by Schechter.

The precise description of the spectrum of $T_{\sigma p}$ is provided by the following theorem.

Theorem 3.2. Let $\sigma \in S^0$. Then

$$
\Sigma(T_{\sigma p}) = \Sigma_e(T_{\sigma p}) = \{\sigma(\xi) : \xi \in \mathbb{R}^n\}^c,
$$

where $\{\cdots\}^c$ *denotes the closure in* $\mathbb C$ *of the set* $\{\cdots\}$ *.*

Theorem 3.2 is an immediate consequence of Proposition 3.1 and the following proposition.

Proposition 3.3. Let λ be a complex number such that $\sigma(\xi)$ is bounded away *from* λ *for all* ξ *in* \mathbb{R}^n *. Then* $\lambda \in \rho(T_{\sigma p})$ *.*

Proof. Let τ be the function on \mathbb{R}^n defined by

(3.15)
$$
\tau(\xi) = \frac{1}{m(\xi)}, \quad \xi \in \mathbb{R}^n,
$$

where

$$
(3.16) \t\t\t m(\xi) = \sigma(\xi) - \lambda, \quad \xi \in \mathbb{R}^n.
$$

Then, for all multi-indices α ,

$$
(3.17) \qquad (\partial^{\alpha}\tau)(\xi) = \sum C_{\alpha^{(1)},\cdots,\alpha^{(k)}} \frac{(\partial^{\alpha^{(1)}}m)(\xi)\cdots(\partial^{\alpha^{(k)}}m)(\xi)}{m(\xi)^{k+1}}, \quad \xi \in \mathbb{R}^n,
$$

where the summation is taken over all partitions $\alpha^{(1)}, \dots, \alpha^{(k)}$ of α and $C_{\alpha^{(1)}, \dots, \alpha^{(k)}}$ is a constant depending on the partition $\alpha^{(1)}, \dots, \alpha^{(k)}$ of α . Since $\sigma \in S^0$, it follows from (3.15), (3.16) and (3.17) that there exist positive constants $C_{\alpha^{(1)}}, \dots, C_{\alpha^{(k)}}$ and *C* such that

$$
(3.18) \qquad |(\partial^{\alpha}\tau)(\xi)| \leq \sum |C_{\alpha^{(1)},\dots,\alpha^{(k)}}| \frac{C_{\alpha^{(1)}}\cdots C_{\alpha^{(k)}}(1+|\xi|)^{-|\alpha|}}{C^{k+1}}, \quad \xi \in \mathbb{R}^{n}
$$

Thus, by (3.18), $\tau \in S^0$. So, by Theorem 9.7 in Chapter 9 of the book [7] by Wong, T_{τ} , initially defined on S, can be extended to a unique bounded linear operator $T_{\tau p}$ from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$. Now, let $f \in L^p(\mathbb{R}^n)$. Then there exists a sequence $\{\varphi_k\}$ of functions in S such that

$$
\varphi_k \to f
$$

in $L^p(\mathbb{R}^n)$ as $k \to \infty$. Thus,

$$
T_{\tau}\varphi_k \to T_{\tau p}f
$$

in $L^p(\mathbb{R}^n)$ as $k \to \infty$. So,

$$
(3.20) \t\t T_{\sigma-\lambda}T_{\tau}\varphi_k \to (T_{\sigma p} - \lambda I)T_{\tau p}f
$$

in $L^p(\mathbb{R}^n)$ as $k \to \infty$. But, by (3.15) and (3.16),

$$
\varphi_k = T_{\sigma - \lambda} T_{\tau} \varphi_k, \quad k = 1, 2, \cdots.
$$

Thus, by (3.19), (3.20), (3.21) and letting $k \to \infty$, we get

$$
f = (T_{\sigma p} - \lambda I) T_{\tau p} f
$$

and hence

$$
(3.22) \t\t (T_{\sigma p} - \lambda I)T_{\tau p} = I.
$$

Similarly,

$$
(3.23) \t\t T_{\tau p}(T_{\sigma p} - \lambda I) = I.
$$

So, by (3.22) and (3.23), $\lambda \in \rho(T_{\sigma p})$ and the proof is complete.

REMARK. It is important to note that if $\sigma \in S^0$, then the spectrum of $T_{\sigma p}$ is, in general, equal to $\{\sigma(\xi): \xi \in \mathbb{R}^n\}^c$, but not $\{\sigma(\xi): \xi \in \mathbb{R}^n\}$. To wit, let σ be the function on \mathbb{R}^2 defined by

$$
\sigma(\xi_1,\xi_2)=\frac{\xi_1+i(\xi_1\xi_2+1)}{1+\xi_1^2+\xi_2^2}, \quad \xi_1,\xi_2\in\mathbb{R}.
$$

Then it is easy to prove that $\sigma \in S^0$. At any rate, it follows from Example 4.3, Example 4.4 and Exercise 4.1 in Chapter 4 of the book [7] by Wong. It is obvious that zero is not in the set $\{\sigma(\xi_1,\xi_2): \xi_1,\xi_2 \in \mathbb{R}\}$ and $\sigma(1/k,-k) \to 0$ as $k \to \infty$. Thus, $0 \in \{ \sigma(\xi_1, \xi_2) : \xi_1, \xi_2 \in \mathbb{R} \}^c$.

4. A Semilinear Evolution Equation

In this section, we consider the dynamical system modelled by the semilinear evolution pseudo-differential equation

(4.1)
$$
u'(t) + (T_{\sigma p} - \lambda I)\{u(t)\} = f\{u(t)\}, \quad t \ge 0,
$$

where $\sigma \in S^0$, *u* is a function from $[0, \infty)$ into $L^p(\mathbb{R}^n)$, λ is a real constant and f is a continuous mapping from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ such that

(4.2)
$$
||f(u)||_p = o(||u||_p)
$$

as $u \to 0$ in $L^p(\mathbb{R}^n)$. In (4.1), the derivative $u'(t)$, at any time t, is understood to be the strong limit in $L^p(\mathbb{R}^n)$, if it exists, of the difference quotient

$$
\frac{u(t+h)-u(t)}{h}
$$

as $h \to 0$. It is clear that, in view of (4.2), $u(t) \equiv 0$ is an equilibrium solution of (4.1). The equilibrium solution $u(t) \equiv 0$ of (4.1) is said to be asymptotically stable if, for any positive number ε , there exists a positive constant δ such that any solution $u(t)$, $t \geq 0$, of (4.1) with $||u(0)||_p < \delta$ satisfies

$$
||u(t)||_p < \varepsilon, \quad t \ge 0,
$$

and

$$
\lim_{t\to\infty}||u(t)||_p=0.
$$

Theorem 4.1. Let $\sigma \in S^0$ and f be a continuous mapping from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ satisfying (4.2). Then, for any real number λ with $\lambda < \mu$, where

$$
\mu = \inf_{\xi \in \mathbb{R}^n} \{ \text{Re } \sigma(\xi) \},
$$

the equilibrium solution $u(t) \equiv 0$ of (4.1) *is asymptotically stable.*

Proof. By Theorem 3.2, the spectrum of $T_{\sigma p}$ is equal to

 $\{\sigma(\xi): \xi \in \mathbb{R}^n\}^c$.

Hence, by Theorem 3.8 in Chapter 3 of the book [5] by Schechter, i.e., the spectral mapping theorem, the spectrum of the bounded linear operator $e^{-T_{\sigma p}t}$: $L^p(\mathbb{R}^n) \to$ n , $t \geq 0$, is equal to

$$
\{e^{-\sigma(\xi)t}:\ \xi\in\mathbb{R}^n\}^c.
$$

Thus, the spectral radius of $e^{-T_{\sigma p}t}$: $L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$, $t \ge 0$, is equal to $e^{-\mu t}$. Therefore, by a standard result in the theory of semigroups, i.e., Theorem 1.22 on page 15 of the book $\lceil 1 \rceil$ by Davies,

$$
\lim_{t \to \infty} \frac{1}{t} \ln ||e^{-T_{\sigma p}t}||_* = -\mu,
$$

where $|| \cdot ||_*$ is the norm in the Banach algebra of all bounded linear operators from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$. Hence, for any number ε in $(0, \mu - \lambda)$, we can find a positive number t_{ε} such that

$$
\frac{1}{t}\ln||e^{-T_{\sigma p}t}||_* < -\mu + \varepsilon, \quad t > t_{\varepsilon}.
$$

Thus,

$$
||e^{-T_{\sigma p}t}||_*t_\varepsilon,
$$

and consequently,

$$
|e^{-(T_{\sigma p}-\lambda I)t}||_{*} < e^{-(\mu-\lambda-\varepsilon)t}, \quad t > t_{\varepsilon}.
$$

Therefore there exists a positive constant *M* such that

$$
||e^{-(T_{\sigma p}-\lambda I)t}||_* < Me^{-(\mu-\lambda-\varepsilon)t}, \quad t \ge 0.
$$

So, by Theorem 2.1 in the paper [8] by Wong, the equilibrium solution $u(t) \equiv 0$ of (4.1) is asymptotically stable.

REMARK. The technique used in the proof of Theorem 4.1 is similar to that used in the proof of Theorem 1.1 in the paper $\lceil 10 \rceil$ by Wong.

ACKNOWLEDGEMENT. The results in this paper have been put in better perspec tive in accordance with the comments provided by the referee.

SPECTRA AND DYNAMICS 903

References

- [1] E.B. Davies: *One-Parameter Semigroups,* Academic Press, (1980).
- [2] H. Kumano-go: *Pseudo-Differential Operators,* MIT Press, (1981).
- [3] H.G. Leopold and H. Triebel: *Spectral invariance for pseudo-differential operators on weighted function spaces,* Manuscripta Math. 83 (1994), 315-325.
- [4] M. Schechter: *On the essential spectrum of an arbitrary operator I,* J. Math. Anal. Appl. 13 (1966), 205-215.
- [5] M. Schechter: *Principles of Functional Analysis,* Academic Press, (1971).
- [6] M. Schechter: *Spectra of Partial Differential Operators,* Second Edition, North Holland, (1986).
- [7] M.W. Wong: *An Introduction to Pseudo-Differential Operators,* World Scientific, (1991).
- [8] M.W. Wong: *Asymptotic stability of equilibrium solutions of semilinear evolution pseudodifferential equations,* Panamer. Math. J. 3 (1993), 91-102.
- [9] M.W. Wong: *Spectral theory of pseudo-differential operators,* Adv. Appl. Math. 15 (1994), 437-451.
- [10] M.W. Wong: *Asymptotic stability of equilibrium solutions of semilinear evolution Toeplitzdifferential equations,* Comm. Appl. Nonlinear Anal. 2 (1995), 57-64.

Department of Mathematics and Statistics York University 4700 Keele Street Toronto, Ontario M3J 1P3 CANADA e-mail: mwwong@mathstat.yorku.ca