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1. Introduction

Let S° be the set of all C* functions ¢ on R™ such that, for each multi-index
«, there exists a positive constant C,, for which

|(D%0)(€)| < Cu(1 + €)1, £ e R™

We call any function ¢ in S° a symbol. Let o € S°. Then we define the pseudo-
differential operator T, on the Schwartz space S by

(L1) (Tyg)() = (2m) "2 [ e o(€)p()ds, TR,
where
(12) (€)= (2m) "2 / e Ep(n)de, ECR,

for all functions ¢ in S. It is obvious that T, maps S into S. That T, can be extended
to a bounded linear operator T,, from LP(R"™) into LP(R"), 1 < p < oo, is well-
known and, in fact, follows from more general LP-boundedness results given in, e.g.,
Theorem 4.1 in Chapter 2 and the bibliograhical notes on page 411 of the book [2]
by Kumano-go or Theorem 9.7 in Chapter 9 of the book [7] by Wong. If we let K
be the tempered distribution on R™ given by K = o, where the Fourier transform
K of K is taken in the distribution sense, then, by Lemma 9.12 in Chapter 9 of the
book [7] by Wong, K is a function on R"™ — {0} such that, for each sufficiently large
positive integer N, there is a positive constant C for which

K (2)] < Cnla™V, z#0.
Moreover, for each z in R™ and each ¢ in S vanishing in a neighbourhood of z,

Te)@) = 2m ™ [ Kle =)o)y,

IThis research has been partially supported by the Natural Sciences and Engineering Research
Council of Canada under Grant OGP0008562.
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Thus, the pseudo-differential operator 7T, can be considered as a singular integral
operator with convolution kernel K.

The aim of this paper is to compute the spectrum and essential spectrum of the
bounded linear operator Ty, : LP(R™) — LP(R™).

We first recall in Section 2 the spectrum and essential spectrum of a bounded
linear operator A from a complex Banach space X into X. In Section 3, the spectrum
and essential spectrum of the bounded linear operator T,, : LP(R"™) — LP(R™) are
computed. Results related to the “spectral invariance”, i.e., Theorem 3.2 in this
paper, can be found in, e.g., the paper [3] by Leopold and Triebel or the paper
[9] by Wong. An application to the asymptotic stability of the zero solution of a
semilinear evolution equation modelled by a bounded pseudo-differential operator
on LP(R™) is given in Section 4.

2. The Spectrum and Essential Spectrum

Let A be a bounded linear operator from a complex Banach space X into X.
We denote the norm in X by || ||. Let p(A) be the resolvent set of A defined by

p(A) = {) € C: A— ) is one to one and onto},

where C is the set of all complex numbers and I is the identity operator from X
into X. The spectrum X (A) of A is defined to be the set complement of p(A) in C.
We denote the adjoint of A by A?, the range of A by R(A), and the null spaces of
A and A by N(A) and N(A?) respectively. We call A a Fredholm operator if R(A)
is a closed subspace of X, and the dimensions a(A) and 3(A) of N(A) and N(A?)
respectively are finite. For any Fredholm operator A, we define the index (A4) of A
by

i(4) = «(4) - B(A).
Let ®(A) be the set defined by
®(A)={X e C: A— A is Fredholm with zero index}.

Then the essential spectrum ¥.(A) of A, defined by Schechter in [4], is the set
complement of ®(A) in C. It can be shown that a complex number A is in the
essential spectrum Y. (A) if there exists a sequence {uy} of elements in X such that
[lukl| =1, k=1,2,--+, (A=Al)ux, — 0in X as k — oo and {uj} has no convergent
subsequence in X.

The notions and results in this section can be found in Section 4 of Chapter 1
of the book [6] by Schechter.

3. The Spectrum of T,

We begin with the following result on the essential spectrum X, (7,,) of Tqp.
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Proposition 3.1. Let 0 € S° and let X be a complex number. If o(£) is not
bounded away from X for all § in R", then \ € £.(T,,).

Proof. Let {&x} be a sequence of elements in R™ such that o(§) — A as
k — oo. Let ko be the smallest positive integer greater than n/p and let N be any
fixed integer greater than ko —n/p. Let {ex} be a sequence of positive numbers such
that
(3.1) el () -0, 1<|ul <N,
as k — oo, where

oW(€) = (8*0)(¢), €e€R™

Let ¢ € C§°(R™) be such that ¢(z) = 0 for all z in a neighbourhood of the origin
and

(32) [l = 1.
For k=1, 2, - -+, let ¢ be the function on R™ defined by
(3.3) or(z) = el Pep(epz)e*®, T € R™.

Then, for k=1, 2, ---, o, € C§°(R™) and an easy computation gives
(Typ — A)r) () = €% k7P (2) /2 / e g (exC + Ex) — A}D(C)dC

for all z in R™. By Taylor’s formula with integral remainder, we get, for k = 1, 2,

(Top = AD)r)(2)

34) = eiz‘fksz/p(%)_"/? /n ei”kc{ Z G(L:(gk) lul(“ }J’(C)dc

[u|<N

+ e e/ (2m) /2 / "R (QP(Qd, @ ERT,
Rn
where

(35 R =N > Ek / O)N =15 (&, + 0e,C)dl, ¢ € R™.

|u|=N
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The first term on the right hand side of (3.4) is equal to Ti(z), where

(3.6) Ti(z) = e ep/P{o(€x) — AJo(ere)
2+lul
+ et% 8k Z ek oW (&) (DH) (ex).

1<|p|<N

The second term on the right hand side of (3.4) is equal to ZI ul=N T} (z), where

5 +N 21) £k
“w k zz exCTH
(37 T () = E S [ e oo
and
1
(3.8) () = / (1= YN =100 (&, + ferC)do
0

Since o € S9, it follows from (3.7) and (3.8) that, for each multi-index p with
|u| = N, there exists a positive constant C), such that
er

T (z)| < —W

/ IC*HOldC, @€ R

Hence, for each multi-index p with |u| =
3.9 T —0

uniformly on R™ as k — oco. Let a be a multi-index with |a| = ko. Then, by (3.7),
an integration by parts and Leibnitz’ formula,

F+N—ko

(10) oI < E'czﬂ)n/gN [ etz
+N ko
doamV [ () emicer o

y<La

for all « in R™. Using (3.8) and the fact that o € S°, we can find, for each multi-
index p with || = N and each multi-index v with v < u, a positive constant C,,
such that

(311) |(8’YI;:)(C)I SC}L‘)‘, k=1,27"’7

for all ¢ in R™. So, by (3.10) and (3.11), we get a positive constant C,,, such that

(3.12) 29T (z)| < Capel T 0, k=1,2,--,
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for all z in R™. Thus, using the elementary inequality on page 53 of the book [7] by
Wong and (3.12), we get, for each multi-index p with |u| = N, a positive constant
Cuk, such that

(3.13) |z]*o| T ()] < Curger ™™, k=1,2,---,

for all zin R™. So, by (3.9), (3.13), the fact that kop > n and the Lebesgue dominated
convergence theorem,

(3.14) IT¢ N, — 0

as k — oo for each multi-index p with |u| = N. Thus, by (3.4), (3.6), (3.7) and
(3.14),

[[(Top — AD)@k|lp — 0
as k — oo. Obviously, by (3.2) and (3.3), ||kl = 1, Kk = 1, 2, ---, and hence

it remains to prove that {¢x} has no convergent subsequence in LP(R™). But this
follows from the argument on page 64 of the book [6] by Schechter. O

The precise description of the spectrum of T,, is provided by the following
theorem.

Theorem 3.2. Leto € S°. Then
S(Top) = Ze(Top) = {0(€) : £ R},
where {- - -}¢ denotes the closure in C of the set {---}.

Theorem 3.2 is an immediate consequence of Proposition 3.1 and the following
proposition.

Proposition 3.3. Let )\ be a complex number such that o(§) is bounded away
Sfrom X for all ¢ in R™. Then X € p(T,p).

Proof. Let 7 be the function on R™ defined by

(3.15) () = % ¢eR™,

where

(3.16) m(E) =o(€) — A, R
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Then, for all multi-indices a,

e (aa®
G17) @O = Cawar m)(,ff(g)k(ﬁ mE) ¢ ewe,

where the summation is taken over all partitions a®, ... a® of o and Co), oo a®
is a constant depending on the partition oV, - - -, a(®) of a. Since o € S°, it follows
from (3.15), (3.16) and (3.17) that there exist positive constants C 1), - - -, C,x) and
C such that

N Ca - Com(1+ =le n
(318) (T < Y [Cotrr, .. a0 |22 Cﬁ’;’fl L

Thus, by (3.18), 7 € S°. So, by Theorem 9.7 in Chapter 9 of the book [7] by Wong,
T, initially defined on S, can be extended to a unique bounded linear operator 1,
from LP(R™) into LP(R™). Now, let f € LP(R™). Then there exists a sequence {¢x}
of functions in S such that

(3.19) ox — f
in LP(R™) as k — oo. Thus,
Tror — Trpf
in LP(R") as k — oo. So,
(3.20) Ty Tror = (Top = A\DTrpf
in LP(R™) as k — oo. But, by (3.15) and (3.16),
(3.21) ok =To2Trpr, k=1,2,---.
Thus, by (3.19), (3.20), (3.21) and letting k — oo, we get

f= (Top - ’\I)Tfpf

and hence
(3.22) (Top —A)Trp =1.
Similarly,
(3.23) Trp(Top — AI) = 1.

So, by (3.22) and (3.23), A € p(T,,) and the proof is complete. O
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REMARK. It is important to note that if o € S°, then the spectrum of Top is,
in general, equal to {o(&) : £ € R"}¢, but not {o(¢) : £ € R™}. To wit, let o be the
function on R? defined by

b +i(6ig+1)

o(&1,62) = T e e &,6 €R.

Then it is easy to prove that o € S°. At any rate, it follows from Example 4.3,
Example 4.4 and Exercise 4.1 in Chapter 4 of the book [7] by Wong. It is obvious
that zero is not in the set {o({1,&2) : &,&2 € R} and o(1/k,—k) — 0 as k — oo.
Thus, 0 € {0(&1,62) © &,& € R}C.

4. A Semilinear Evolution Equation

In this section, we consider the dynamical system modelled by the semilinear
evolution pseudo-differential equation

(4.1) W' (t) + (Top — AD{u(t)} = flu®)}, t>0,

where o € S°, u is a function from [0,00) into LP(R™), A is a real constant and f
is a continuous mapping from LP(R"™) into LP(R"™) such that

(4.2) If @)llp = o(llullp)

as u — 0 in LP(R"). In (4.1), the derivative «/(t), at any time t, is understood to be
the strong limit in LP(R"™), if it exists, of the difference quotient

u(t+ h) — u(t)
h

as h — 0. It is clear that, in view of (4.2), u(t) = 0 is an equilibrium solution of
(4.1). The equilibrium solution u(t) = 0 of (4.1) is said to be asymptotically stable
if, for any positive number €, there exists a positive constant § such that any solution
u(t), t > 0, of (4.1) with ||u(0)||, < & satisfies

lu(®)llp <&, t>0,
and

Jim [fu(®)ll, =0.

Theorem 4.1. Let o € S° and f be a continuous mapping from LP(R") into
LP(R"™) satisfying (4.2). Then, for any real number \ with A\ < u, where

w=inf {Re 0()},
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the equilibrium solution u(t) = 0 of (4.1) is asymptotically stable.

Proof. By Theorem 3.2, the spectrum of T, is equal to
{o(§): £eR"}"

Hence, by Theorem 3.8 in Chapter 3 of the book [5] by Schechter, i.e., the spectral
mapping theorem, the spectrum of the bounded linear operator e~Zort : LP(R") —
LP(R™), t > 0, is equal to

{e77®t . ¢ c R"}e

Thus, the spectral radius of e~7=#t : LP(R™) — LP(R"), t > 0, is equal to e #t.
Therefore, by a standard result in the theory of semigroups, i.e., Theorem 1.22 on
page 15 of the book [1] by Davies,

1
lim 1 leTo5t], = —,
t—oo t

where || ||« is the norm in the Banach algebra of all bounded linear operators from
LP(R"™) into LP(R™). Hence, for any number ¢ in (0, — A), we can find a positive
number t. such that

%mne—Tovtn* <—p+e, t>t..
Thus,
[le=Tort||, < e o)t ¢ > ¢,
and consequently,
e~ Tor=ADt|| < e==A=e)t ¢ 5 ¢
Therefore there exists a positive constant M such that
e~ Ter=ADt|| < Me~ (WA=t >0,

So, by Theorem 2.1 in the paper [8] by Wong, the equilibrium solution u(¢) = 0 of
(4.1) is asymptotically stable. ]

ReEMARK. The technique used in the proof of Theorem 4.1 is similar to that
used in the proof of Theorem 1.1 in the paper [10] by Wong.
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