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Introduction

This paper treats the Vinogradov's spectral sequence E of differential
equations ([VI]) in the framework of Gelfand's formal differential geometry
([Ge]), and gives new interpretations of E generalizing formally the secondary
characteristic classes and the Bott's vanishing theorems in the foliation theory.

We describe some part of E and the Lie algebra of the symmetries in a way
useful for actual calculations. This description yields a quantitative formula-
tion of the Noether theorem as a by-product.

The geometric language adopted here produces also a simple class of cor-
respondences between the solutions of differential equations, which includes
the usual Backlund transformations.

0.1. In Nice 1970, Gelfand introduced the idea of "formal differential geometry"
and suggested its usefulness in investigations of problems involving jets ([Ge]).
He and his collaborators realized this in their studies of the Hamiltonian struc-
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312 T. TSUJISHITA

tures associated to Korteweg-de Vries equation ([GD]), the secondary charac-
teristic classes of foliations ([FGG]) and combinatorial formulas for Pontrjagin
classes ([GGL]).

The double complexes introduced in [FGG], called the variation bicomplexes,
play important roles in their works explicitly or implicitly.

On the other hand, Vinogradov introduced in [VI] spectral sequences for
differential equations and announced various interesting results. He uses
however algebro-geometric and categorical language which seems to obscure the
simple aspects of these spectral sequences, although his definition has the great
advantage of being valid for very general classes of differential equations.

This paper constructs these naturally from the variation bicomplexes asso-
ciated to differential equations.

This construction gives new interpretations of these spectral sequences not
mentioned in [VI]. In fact, these permit one to generalize formally the basic
tools of the quantitative studies of foliation, such as secondary characteristic
classes and the Bott's vanishing theorems, etc.

However to make this generalization substantial, one must compute the
spectral sequences, for which there are no systematic methods at presents.
For example in the case of the integrability equation of G-structures, there
arises the problem of computing various cohomologies of Gelfand-Fuks type
not treated before.

The detailed contents are as follows.

0.2. For a differential equation R on a manifold M, the basic geometric object
in this paper is its infinite prolongation R^-^M (§2.2) and a natural flat con-
nection HR on it (§2.4). It is a subbundle of TR^ of rank ra=dim M.

This pair (R^yHj?) is a good substitute for the solution space £cd(R): It pro-
vides us "differential calculus'' on £<U(R) and also geometric intuition to the
general notions about differential equations.

By splitting the de Rham complex on R^ with respect to HR, one obtains the
variation bicomplex ft**'* of R, where D,PR

9=T( APVR*® A'HS*) (§2.5). The
filtration Fp=®p'zpCl%'* generates the spectral sequence E(R)= {Ep

r'
9(R)y dr}

(§2.7) mentioned above.

0.3. The Ex-, E2- and Z^-terms have various meanings (§4).
The complexe {Ef'q, d^ is related to the H9(M, /^-valued "de Rham complex

on £oJ(R)" (§4.2). In particular an element of E\'q gives us an H\My JR)-valued
function on J**/(i?), which may be called a characteristic class of solutions of R
(§4.5). This unifies the concept of the conserved currents of evolution equa-
tions and that of the secondary characteristic classes of foliations. Further
E\'q measures how a one-parameter family of solutions varies (§4.6).

There is a natural map Ep
2'

q-+Hp(£ol{R)y R)®H9(M, R) (§4.2). In par-



VARIATION BICOMPLEXES 313

ticular, co^E%-9 gives us a constant on each connected component of
(§4.7). This generalizes the rigid characteristic classes of foliations.

Finally, i^-terms produce potential topological obstructions to the defor-
mability of homotopy solutions to real ones (§4.4, 4.8). This is a formal gene-
ralization of the Bott's vanishing theorem [Bot] in the foliation theory.

0.4. The computation of E{R) is generally difficult. This paper treats only the
trivial equations R=N (§5) and the "determined systems" (§7).

Section 5 computes it when R is trivial. The results coincide with those al-
ready announced by Vinogradov [VI]. As by-products, various useful facts follow
about the Euler-Lagrange operators, which are however more or less well-known.

Section 7 rewrites E\>n~l (w=dim M) as the solution space of a linear dif-
ferential operator <I>J, when R is a Cauchy-Kowalevsky system in a weak sense.
This yields a new method of computing the conservation laws of wave equations,
the Korteweg-de Vries equation and the BBM equation (§7.6).

When R is overdetermined, there are at present no systematic methods of
computing Ep

r'\ nor of constructing nontrivial elements of Ep
r'

9 (cf. §3.6).

0.5. The connection HR allows us to define also the Lie algebra of "vector
fields on Sol{R)".

A vertical vector field X on R^-^M "preserves" the graphs of solutions if
[X, THj^CZTHji. The space of all such X's forms a Lie algebra -C(R), which is
called the Lie algebra of symmetries of R (§6.1). An element of -C(R) is some-
times called a Lie-Backlund transformation [AI].

Following [VI,2], section 6 expresses -C{R) as the solution space of a linear
differential operator <&R associated to R (§6.6). This expression is valid for
any R in contrast to the similar one for El'"'1 mentioned in §0.4.

Then we get an effective method of computing the Lie algebra of contact
transformations or bundle automorphisms leaving JR invariant (§6.7).

0.6. When R is both an Euler-Lagrange equation and a Cauchy-Kowalevsky
system in a weak sense, the expressions for E\-n~l and -C(R) mentioned above
coincide and give us a quantitative expression for the Noether Theorem:

(Theorem 8.1).
By paraphrasing the result of [Mar], §8.2 characterizes in a practical way

the image of E\-n~l dX(R), whose elements are called the Noether symmetries of
R. For #=1 , this is given in [GD]. For general n, this is essentially obtained
in [Mar].

0.7. Section 9 proposes a simple class of correspondences generalizing the
usual Backlund transformations.
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Further we remark that the Whalquist-Estabrook method of constructing
Backhand transformations ([WE]) can be concisely summarized by the language
developed in §1-2 (Remark 9.14).

0.8. Finally Section 10 gives remarks about motivation and terminologies of
this paper and raises some problems.

0.9. General terminological and notational conventions are as follows.
When a set X has an equivalence relation on it, [x] (x^X) denotes the

equivalence class represented by x.
The set of nonnegative integers and the field of real numbers are denoted

respectively by N and R. For a<b> Z(a,b) stands for the set of integers in
[a,b\.

For i^Z(l,n), (i) denotes the element of Nn which has 1 in the /-th com-
ponent and zero in the others.

Let IJtEN" (I=(ilf ...,in)J=(ju ...,/„)). I+J^Nn has ik+jk in the *-th
component (iGZ(l,«)). I^J means iktijk(k^Z(l,n)). When I^J,

where ( * )=iiljl(i—j)l. For I^Nn and a set of letters x=(x\ ••-,#"), x1 stands

for (*1)f"i-••(*")•*. For a,b<=Z(l,n) with a<^b, NOfb denotes the set of I<=Nn such
that 4 = 0 for k$Z(ay b). For a>by Na>b denotes {(0)}.

The dual space of a vector space V is denoted by F*. If (x1, ••-,#") is a basis
of V, APV is also denoted by Ap[x*]. All the tensor products ® are taken
over R unless otherwise stated.

The word smooth will mean C°°. Everything will be considered in the
smooth category. Manifolds are always assumed to be connected and with
countable basis. When M i s a manifold, the algebra of functions on M (i.e.
smooth maps: M-+R), the tangent bundle, the cotangent bundle, the Lie algebra
of vector fields and the de Rham complex are denoted respectively by £FM,
TM, T*My XM and {H*M, d}.

Rn
x stands for Rn with the standard linear coordinate denoted by x=(x1

f •••,
xn). EF(x) stands for 3Rn

x. The forms dxl/\-~f\dxn and ( - l ) ' - W A ••• Adx{

A ••• Adxn are abriviated as dx and dx{ respectively.
Finally the decimal system is adopted for the reference numbers of para-

graphs, theorems, etc.. The integral part denotes the section number and the
fractional parts are arranged in each section according to their magnitude.
For example Lemma 7.351 precedes Proposition 7.41 since 7.351<7.41.

1. Jet bundles

This section recalls some basic definitions and properties of the jet bundles,
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and fixes notations.

1.1. Finite jet bundles. Let p: N->M be a bundle, i.e., a surjective map
everywhere of rank=dim M. The space of sections is denoted by IW.

Let pk:Nk-+M be the A-th jet bundle (k^l) (cf. [Bou]). Put N0=N.
The k-th extension of s^TN will be denoted by sk(^TNk).

If M is a point, we put Nk=N for all k.

1.2. Infinite jet bundles. Denote the projective limits of {Nk}, {TNk} and
{sk} (s<=TN) by iV^, I W C and s^ respectively. The projections N»-*Nh,-+M
will be denoted by nk (k^O), n respectively.

It is easy to show the following

Proposition 1.21. 7tQ: NOQ->N is an affine bundle. In particular, 7tQ is a
homotopy equivalence.

The usual smooth objects can be naturally and easily generalized for this
infinite-dimensional manifold N^. For example, a function on iVoo is smooth
if and only if it is in 7tk*3!Nk for some k^N. Put £FJVeo= U nk*E£Nk and con-
sider 3Nka3N».

For more details, see [BR]. The sections 1.4 and 1.5 express smooth objects
using local coordinates on N^.

1.3. Standard local coordinates. Let M=Rn
x, N(n,m)=Mx R™'. Put t*j=ttf'

and define tiJeSWfoiii).. ( ieZ(l ,w), I^Nn- {0}) by

sjuj = (6/a*)Vo*)

for A G I W . Then {x\u\\ i(=Z(l,n)JtEZ(lym),I<=Nn) is called *A* standard
coordinates on Nfam)^.

Suppose p: N->M is a bundle. Each point y of N has a neighbourhood W
such that^>|r: W^>(W) is isomorphic to N(n,m)->Rn (n=dim M, m=dim N
—ri), whence there is a diffeomorphism / : 7z^1W-*N(nJni)00. Denote the pull-
backs by/of x\ s and uj's by the same letters and put U=n^lW. (x\u}] U) is
called a standard local chart of N^. This will be used frequently throughout
this paper.

Following [GM], we write £F[#,M]=£F(#',H/) and denote its element as

1.4. Vector fields. The tangent bundle TN^ of N^ is by definition the pro-
jective limit of {7tk*TNk}. The space XN^ of the sections of TN^ is by defini-
tion the projective limit of {Tk}, where Tk is the injective limit of {r((7clk)*TNk)]

Here n[\ Nt->Nk is the natural projection.
acts on EFN^ as derivations in the obvious way and hence carries a

natural Lie algebra structure.
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Let (x'yU}; U) be a standard local chart of N^. Then an element of -£77,
i.e., a vector field on U> is expressed uniquely as an infinite sum:
2/ ; V3/9«/, where fhfu<=S[x,u].

1.5. Differential forms. The bundle of p-iorms A^^N^ is the injective
limit of {^*A/T*A/'J. The space OW^ of its sections, i.e., the space of p-
forms, is the injective limit of {£1PN^.

Let (x*9ui; U) be a standard local chart of AL. Then S1PU has the expres-
sion:

duj, dx{].

Hence, a p-form is a finite sum of such expression as

f[x, u]duj\ A ••• Aduii Adx*i A •

Note that there is a natural pairing T*N0OxTN0O->N0OxR> where T*NOO=
A1T*NOO is the cotangent bundle.

1.6. The connection HN. Now we introduce a flat connection HN on N^-^M,
which will play a fundamental role throughout this paper.

For each y^N^ define a linear subspace Hy of TyN^ as follows: Choose
s^TN such that y—s^z) (z=7c(y)), which is possible obviously, and put

H, = Im d^ ,

where d^^: TMM-+TyNco is the differential.

Lemma, (i) Hy does not depend on the choice of s.
(ii) HN=UHy is a subbundle of TN^.

Proof, (i) Let (x\u{\ U) be a standard local chart. Choose s^TN such
that jJ^Seo^). Then

for iGZ(l,n). Thus X{ is independent of ̂  and so is Hy=^ii=l nR.Xi.
(ii) Put

(1.61) 9,- = 9/9^+S ; V u/ + ( l ) 9/9^ .

This is a vector field on U and {92, •••,9II} spans (HN\V) by (i). Hence i /^ is a
subbundle of TAL. Q.E.D.
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The connection HN lifts X^XM up to X^FHNCZXN^. Denote this
map by r: XM->XN<». Note that jS*is uniquely characterized by

(1.62) Xfosm = X(foSoo) for all

For a standard local chart (x\ u{\ U)> di=(djdxiy is given by (1.61). These
3/s will appear frequently later.

1.7. Flatness of HN. Now we prove H=HN is flat.
Let i2°-= \jH$c:T*Nao be the conormal bundle, where

Let (#*, «/; U) be a standard local chart. Put

(1.71) Sui = dui-Jli^uhvydx'

Lemma 1.72. H~L-\U is spanned by {Su}; j e Z ( l , w ) ,

Proof. Obviously {dx\8u}} is a frame of T*J7. Since Stt/(8f-)=0(/eZ
(l,n)) and dx^d^S^H^ is spanned by {(Sw}),}. Q.E.D.

Proposition 1.73. 7/ is flat, i.e.,

= 0 (mod.

Proof. It suffices to prove the assertion on a standard local chart (x\ u{\ U).
We have

(mod. R.

Hence by the previous lemma we have

u=0 (mod.

Q.E.D.

The flatness of H has another expression:

Proposition 1.74. r : XM->XN"«, w ̂  L^ algebra homomorphism.

Proof. Let X, Y G ^ sGElW, f^EFN^. Then by (1.62)
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= [X,Y]~fo9m.

Hence \X T\=[X, Y]~. Q.E.D.

Corollary 1.75. The d/s defined by (1.61) commute with each others.

1.8. Flat sections. A section s^YN^ is called flat if s(M) is tangent to HN>

i.e. Ts(M)dHN.

Proposition 1.81. For selWoo, the following conditions are mutually equi-
valent.

( i ) sis flat.

( i i i ) $ = ( T T Q O ^ .

Proof. (i)<=>(ii)#=(iii) is obvious from the definitions.
Proof of (ii)=^(iii). Let (x\ u{\ U) be a standard local chart. Then (ii)

implies

s*Suj = dsi-^sU^dx1 = 0 ,

where s}=u}os. Hence

and we obtain

si = /

where sJ'=sJ
0. Thus (^0^)^=^^ on zrC/, whence (iii) follows. Q.E.D.

REMARK 1.82. In contrast to the case of the flat connections on finite-
dimensional bundles, HN has infinitely many flat sections passing through each
point of iVeo.

2. Variation bicomplexes

This section introduces the variation bicomplex for each differential equa-
tion.

2.1. Differential equations. Let p: N-+M be a bundle and put n=dim M,
fl-f-;ra=dim N.

A differential equation of order ̂ k on N is a subbundle R of Nk->M. Here
"subbundle" just means that R is a closed submanifold of an open subset of Nk

andpk\R: R-^M is also a bundle.
An s^TN is a solution of R if and only if sk(M)(ZR. The set of all the solu-

tions of R will be denoted by <£&/(R).
For convenience's sake the case dim M=0 is not excluded.
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REMARK. This definition of R is general enough for actual applications.
The more general one admitting singularities of R arouses unnecessary technical
and terminological complication which seems to obscure the points.

2.2. Prolongation. We introduce here the infinite prolongation R^ of R which
is so to speak the jet space of the solutions of R.

LetRc:Nk be a differential equation. By definition, R is a closed submani-
fold of an open set UdNk. Let JkdEFU be the defining ideal of R. Define
ciL to be the ideal of 3i(n~£lU) generated by (J ̂ k^i where

Ji+1 = [Xf\ XSEXM, /eJ ,} (i^k).

The zero set of S*> is called the infinite prolongation of R and will be denoted by

Proposition 2.2. For s e FiV, s is a solution of R if and only if s^M) C
#00.

Proof. Since J^CciL, soo(M)dRoo implies s is a solution. Conversely
suppose s is a solution. Since by (1.62) stJ—0 implies s*Ji+1=0, we have
s*J{=0 (vi). Hence stJoo=0. Q.E.D.

REMARK 2.21. If 7v\Roo is not surjective, R is called incompatible. Then
Proposition 2.2 implies

REMARK 2.22. An s^TR^ will be called a homotopy solution of R. This is
a suitable name since R^-^R is in many cases an affine bundle, and hence a
homotopy equivalence (cf. Proposition 1.21).

REMARK 2.23. When R^ is finite-dimensional, R is called maximally over-
determined or holonomic. In this case the equation is essentially a system of
ordinary differential equations, and hence JW(i?) = a fiber of R^-^M.

2.3. A basic assumption of R. We assume throughout this paper that R
satisfies the following regularity:

Condition 2.3. R^-^M is a subbundle of N^-^M.

Here "subbundle" means that nfi^-^M is a subbundle of Nt->M (vl^
Then, as in §1.2, we can define naturally the usual smooth objects on

Put A{R)=3Rooy Al(R)=EF(7tlRoo) (l^k). By definition A(R)= U A,(R).

REMARK 2.31. Given a concrete R, it is usually easy to check this condition
using standard local chart of N^ (see §3, §7.1). It is really satisfied by many
differential equations in differential geometry and mathematical physics.

REMARK 2.32. The involutiveness of R implies the validity of Condition
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2.3. Thus, the prolongation theorems [Kur, Mat] give a definite procedure to
check Condition 2.3 for general R, although it seems rather complicated to carry
it out actually.

2.4. The flat connection HR. The bundle R^-^M inherits a flat connection
from iVoo->M.

Put HR=HN I Roo. Since TH^J^c J^ we have HR

Proposition 2.41. HR is flat.

Proof. Let i: R^-^N^ be the inclusion. Since FiJ]?=£*riir^, Proposition
1.73 implies

= o (mod. *'*
Q.E.D.

As for the flat sections of HRy Proposition 1.81 implies

Proposition 2.42. For s^TR^ the following conditions are mutually
equivalent:

( i ) sis flat,

(ii) s*rH£ = 0,

( i i i) s = (TTQOS),, .

Thus £*l(R) can be identified with the set of flat sections of R^-^M with
respect to HR.

REMARK 2.43. The pair ( i ? ^ , ^ ) is a good substitute for £<U(R). It can
express many important formal aspects of R concisely. For example, an in-
termediate integral is just a subbundle Rr of R^ such that HR\RsdTR'.

2.5. The variation bicomplex. Let VR be the subbundle of the vertical tan-
gent vectors of R^M. Then TR^—VRQHR and hence

where np
R'9: = T( A*F**<g> AqHR*). Since # * is flat, d has only (1,0) and (0,1)

components, which will be denoted by S and (—1)*8 on flp
R

9, respectively.
d2=0 implies then

S2 = 8 2 = 88-88 = 0 .

Thus we obtained a bicomplex {n$'*= ©n&?, S, 9}, which is the variation bicom-
plex of R.

The flatness of an ^GPi?,*, can be expressed using the variation bicomplex
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as follows:

Proposition 2.5. For S^LYR^ the following conditions are mutually equiva-
lent.

( i ) sis flat,

(ii) **nS'* = Of where ! « • * = ©,>onfc*,
(iii) **ftfc* = 0, for some jGZ(0, W— 1),
(iv) **nk° = 0 ,
(v) ds*f=s*df, forallf(=A(R).

Proof. Let i: R^-^-N^ be the inclusion. Then s^TRoo is flat if and only
if w e r i V ^ is flat. Moreover it is easy to see i'*flfr*=fl&*. Thus it suffices to
prove the assertion when R—N.

Put Slp'q=ilif9 for brevity. Since rHp—Sl1'0, Proposition 1.81 implies
(i)<=>(iv). Obviously (ii)=#>(iii), (iv)«=^(v). Thus it remains to show (iii)=^
(iv)=^(ii) and (v)=#>(iv).

Obviously we may assume N=MxRm>M=Rn. Let (x\ u}) be the stan-
dard coordinates on N^.

Suppose (iii) holds, i.e., $*illf«=0 for some jGZ(0, W - 1 ) . Put s*8u}=
Hk=i,nsikdxk. Then

implies s}tk=0. Hence s*Su}—0 and (iv) follows.
Suppose (iv) holds,i.e., j*fl1-°=O. Then J*8M/=0, whence s*(8u}A^)=0

( ^ G ^ i V J , i.e., (ii) is valid.
Finally, suppose (v) holds. Then

s*Su} = s*(dui—Qui)

= ds*u}-s*du} = 0 ,

whence J W - ^ O . Q.E.D.

2.6. Modifications of O**. According to the nature of problems concerned,
it is necessary to modify the definition of flf •*.

First suppose a group G acts on R^ preserving HR. Then the G-invariant
elements of £!$•* form a subbicomplex of Of1*, which is denoted by Cl*\%.

Furthermore, suppose there is a G-invariant subalgebra B of A(R). Sup-
pose that the vector bundles HR and VR have systems of local frames whose trans-
formation matrices have components in the sheaf of the germs of B. Then
£!$•* has a subspace flj;f consisting of those with coefficients in B with respect
to these local frames. Put <Qf;g>jB=.Q*;G n£$;$. When n*'*=n|;g, jB is a
subbicomplex, B is called admissible. fl*f* is then called the G-invariant



322 T. TSUJISHITA

variation bicomlex of R with coefficients in B.

EXAMPLE 2.6. Let M=R", N=MxR%. Let (x',ui) be the standard
local coordinates of AL.

(i) The vector group G=Rn acts on N by the translation: (x> {y,u))\-+
(x+y,u) (x,y^Rn, u^Rm), on IW by its action on graphs, and thus on JV«,.
Then ftf;g consists of J^fSuJA — AdxJ'A—'& such that/=/[>]. We denote
this bicomplex by fl#(* *),«/./..

(ii) Let G=(l) . Put B=R[u}]. Then n$$tB=Q$$ is a bicomplex. Its
elements are written as 2/Swf A*#t Adtf'A*", where/'s are differential polyno-
mials.

See also §3.2.

2.7. The spectral sequence. Let n*'*=a$$tB. The filtration F on {!*!?„,
defined by

F*n*R. = &,&,&'-*

is compatible with d and induces a spectral sequence E(R}G)B)={E^9
ydr}.

This is the one mentioned in the introduction and called the G-invariant spectral
sequence of the equation R with coefficients in B.

REMARK. The spectral sequence associated to the other natural filtration
reduces to the usual one for the fibering R^-^M when G=(l), B=A(R).

3. Examples

We consider various concrete differential equations and describe their
variation bicomplexes using local coordinates. We also recall a few known
results about their spectral sequences.

3.1. Trivial equations. First consider the trivial equation R=N, where N=
Mx Rm->M=R\ Put np-9=nbq.

Let (x\ uj) be the standard coordinates. Define 9I-G-Z3VOO and S«f Gflli0 by
(1.61) and (1.71) respectively. Put A=A(N)=ZF[x,u]. Then

np-< = A® Ap[8uf\® Aq[dx{] ,

and the differentials are characterized by

The spectral sequence will be calculated in §5 (Theorem 5.1).

3.2. Riemannian metrics. Let M be a manifold and N=S2T*M, the
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symmetric product. Let R(ZN be the subspace of the positive definite sym-
metric bilinear forms. Then <£&/(R)=TR is just the space of the riemannian
metrics on M.

The group G=Diff(M) acts on R in the obvoius way, which induces an
action on R^ preserving HR. Let B be the subalgebra of A(R) generated locally
by £FM, (d/dxygij, det(gij)-\ Let a*-*=n£$,B, E=E{R>G}B). The following
theorem is suggested by Gelfand ([Ge]) as a specimen of topics in his "formal
differential geometry'\

Theorem ([Gi]). E\'q—Vontq for q^n-1 ,

E°2'
q—Pont9 for q<,ns

where Pont* means the free graded commutative algebra generated by p{'s (z'2^1,

This is proved by Gilkey as a by-product of his characterization of the
Pontrjagin forms.

Note that if G=(l) and B=A(R), then E is "trivial" (cf. Theorem 5.1).

3.3. Gelfand-Fuks cohomology. Let M be a manifold and put

N = U.«{(©!, - , con)<=(T*M)tt; cou - , a>n spanns T*M}

(n=dim M), which is an open set of ©J.iT^TW. Define R<^NX by

r
I 1

and co=(coly ••*, o)«) is a local section^

of AT near a? such that rfco1=--*=rfa)w=0 J .

i?oo may be considered as the infinite jet space of the local charts of M.
The group G=Diff(M) acts on R and hence on R^ preserving HR. It is

easy to identify the total complex of £1*'* with the standard cochain complex
C*(Wn; R)> where Wn is the topological Lie algebra of formal vector fields on n
variables and R is the trivial W^-module. Its cohomology H*(Wn; R) was calcu-
lated by Gelfand and Fuks and called by their names. They also determined
E=E(R,G) in their calculations:

Theorem 3.3. ([GF]).

(i) £?•*= A'JT,
E{-' = (0) for q<n,p>0.

(ii) For r^2,

Ep
r>

q = (0) if q*n and (/>,?)4=0 ,

3.4. Wave equation. Let M=Rn (n^Z), N=MxR. Let R be the wave
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equation, i.e.,

R = K(l)-2;=2,« U2(j) = 0} CZN2 .

Then J . (cf. §2.2) is generated by {uI+2il)-^j=:2tnuI+2{j)\I^Nn}. Thus
is a submanifold of AL with

as a global coordinates, where Ujtj=uj(1)+j\Roo. In particular Condition 2.3 is
satisfied.

A global frame of H# is given by {8uJtJ; j=0yl, J^N2n}9 where SuitJ==
I Roo. Using the above coordinates on R^

SuOtJ = du09j—u1jdx1--J}jB2in

SuKj = dulfJ—(2/-2.H u0tj^2ij))dxl—2y=2,» ultj+(j)dxj.

Then

The lift 9,. of 9/9*'' is characterized by <dh dxj>=Sij and <9f., Sw,v>=0, i.e.,

diuJtj = uJtJ+(i) for i ^ 2 .

The differential S is characterized by tf'V>0, Ujj\->8ujtj and 9 by x{\-*dx\
Wy,/^Sf=i,» diUJtJdx\

The fif •* has a subbicomplex flf ;f with B=/8[i/,v] c.4(.R) (cf. Example 2.6).
Its E\'n~l and E1}'"-1 can be calculated using the result of §7 (cf. [Tl]).

The following (0,«— l)-form represents a non-zero class in E\'n~l:

(3.41) (tti,o+2/=2,« ultU))dxl—

See Remark 4.51(ii).

3.5. Korteweg-de Vries equation. Let N=MxR->M=R2 and (xk
iuiJ) the

standard coordinates on iV^, where Uij=Uuj). Let i? be the Korteweg-de
Vries equation, i.e.,

R = {K: = u3tQ+uult0+u0tl = 0} cJV 3 .

Let 9,- be the lift of djdx1 (£==1,2) on A^̂ . Then ciL is generated by

{ 9 ^ ; /GiV2}. Since {x\ uJt0; £=1,2, j^N} U {97i^; /eiV2} is a global chart
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on Noo (cf. Proposition 7.12), /?«, is a submanifold with (x\ Uj) as a global chart,
where Uj=Ujt0\Roo. Hence Condition 2.3 is satisfied.

Let d~di\Roo. This is tangent to R^ and characterized by dix
i=SiJy dxUj

=uj+ly and d2Uj= — 3{(ww]+w3).
Then Hi is spanned by {Suj]j^N}y where

and thus

Qfcf - A(R)® Ap[Su}]® A9[dx{].

The differential S is determined by #'V->0, U^SUJ and 9 by x{v-*dx\ U}\

j

The vector group G=R2 acts on iV,*, as in Example 2.6(i). Obviously
is G-invariant. The subbicomplex £1%\% is described as

Note that if dx2 is put to zero in £i%% then we obtain fl#{fii).d.f. (cf- Ex-
ample 2.6(i)). Moreover, 82 acts on fl^(ffi)id.f. as a derivation. Thus 12$;$
can be replaced without losing any information by the pair (fl*(* i),d.f.> ®2)> where
only 32 depends on R. This is used in [GD], where the bicomplex i2$;<£ is im-
plicitly used.

JS?'1^) is essentially calculated in [MGK,KMGZ]. See also §7.62 and
Example 6.71.

3.6. Integrability of connections. Connections on the line bundle M=Rn
x->L

=Rx~1 (x'=(x2
y ---,xn)) is given uniquely by a 1-form (o=dx1—2/=2,«wl'(^)i^t'.

Its integrability condition is dco = 0 (mod. co): i.e.,

(3.61) K{j: = u)-u{+u?u[-u}u{ = 0, i,;GZ(2, W) ,

where iij=9tt'/9^.
Let R be the submanifold of Nx defined by (3.61). Here N=MxRTl

(u=(u2,"',un)), (x\ uj) is the standard coordinate and Uj=ulj).
It is easy to see that R^ is a submanifold of N^ with {x\ujj\ id

jGZ(2,w), J^NJJ} as a global chart. Here uJj=ujj \ROO.
The variation bicomplex is described as

where

for i£

i-iSui) for
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(j^Z(2yri)). Note that the right hand side for the case j<t makes sense since

It is easy to see that

co = T

is 3-closed in £l0>3. When w^4, it can be proved that [co] is non-zero in E\'z.
This corresponds to the Godbillon-Vey class of foliations ([GV]). See Remark
4.51(iii).

Note that this equation is typical among the overdetermined systems that
arise in the problems of integrability in defferential geometry.

3.7. Foliations. Let M be a manifold of dimension n. Let N=GrpM be the
Grassmann bundle of ^-planes, where p^Z(l,n—l). Define iJcA^ to be the
equation of integrability of ^-plane fields on M. £<U(R) is just the space of
foliations of codimension q on M (q=n—p).

The space R^ can be expressed as follows. Let G(n) be the group of the
infinite jets of germs of diffeomorphisms of Rn preserving the origin, and G(n,p)
the subgroup consisting of those preserving the foliation x%=constant (jGzZ
(p+l,ri)). Let PM be the infinite frame bundle of M. This is a principal G(n)-
bundle and identical with the R^ of §3.3. Then Roo=PMIG(n)p).

The group G=DiS(M) acts on R in the obvious way. Put fl*'*=flf ;g,
E=E(R,G).

Since PM is G-homogeneous, we can describe the total complex £2*=
{£2*'*, S±3} algebraically. Let Ln p be the subalgebra of Wn (cf. §3.3) spanned
by { 2 w . ^ W 9 / ^ + 2 y - i i f f ^ ( y ) a / 9 y } , where ?=x>+i (iGZ(l,g)) and fhgj

are formal power series without the constant terms. Then £2*—C^WP ,̂ Lny>
R)y where the right hand side is the relative continuous cohomology (cf. [HS]), a
subcomplex of C*(W ,̂; R). The filtration of 12* corresponds to the restriction
of that on C*(Wn\ R) induced by the subalgebra

3.8. Complex structures. Let M be an oriented manifold of dimension 2n.
Let N be the bundle of complex structures on the tangent spaces compatible
with the orientation. TN is the space of almost complex structures on M.
The integrability condition is given by a subbundle RaN^ g&l(R) is the space
of complex structures on M.

The space i?oo can be described as follows. Let G+(2n) and Gc{n) be the
subgroups of G(2n) consisting of orientation preserving ones and bihomolomor-
phic ones on Cn=R2n respectively. The infinite jet space P+M of local charts
compatible with the orientation is a principal G+(2/z)-bundle. Then Roo=
P+MIGc(n).

The group G=Diff+(M) of the orientation preserving diffeomorphisms
acts on R in the obvious way. Put fl*'*=fl$$, E=E(R}G).
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As in §3.7, £l*={ft*'*, S±d} is isomorphic to the relative Gelfand-Fuks
cohomology C*(PF2M, L%\ R), where Z? is the subalgebra of holomorphic vector
fields on Cn=R2n vanishing at the origin.

REMARK 3.81. Neither H*(Wn, Lnp; R) nor R\W2n, Lc
n\ R) seems to have

been calculated completely. However it is not difficult to show Hi(W2y Lf; R)

See Remark 4.82 and (10.35).

4. Interpretations of the spectral sequences

Fix N->M and RdNk satisfying Condition 2.3. Put fl***=fl$'*, E=
E(R). This section gives some interpretations of the E^, E2- and £"«,- terms.
Roughly, they give us formal differential calculus on the space

4.1. Solution manifolds. A map a from a manifold X to TN is called smooth
if the map &: XxM^> N defined by d-(x,y)=o-(x) (y) ( X G I , J ; G M ) is smooth.

A map a: X-*£<U{R) is called smooth if its composition with the inclusion
£(U(R)-+TN is smooth. A smooth map cr: X->£cU(R) is called a solution
manifold.

A solution manifold cr: X->£<U(R) induces a smooth map c^: XxM-^R^
defined by d-^x^^aipc))^) ( J C G I J G M ) . Let cr*: n*i?M->O*(ZxM) be
the induced map. ft*(ZxM) has an obvious underlying bicomplex structure

Proposition 4.11. cr* is a bicomplex map.

Proof. Let (x,y)^XxM, z=a(x,y). Let r : TxX@TyM->TzR=Vz®
Hz (V=VR, H=HR) be the differential of o^ at (x,y).

We have rTyM=Hz by definition. On the other hand rTxXaVz since
Tc^oct^ is the projection XxM->M. Thus T*£lp'qcinp'g(XxM). Q.E.D.

We call a* the characteristic map of the solution manifold a: X-*£<d(R).

4.2. Characteristic maps. Let {'Ep
r'

q, fdr) be the spectral sequence induced by
the filtration 'Fp= ®^/lp/'*(Xx M). Recall that

3 R),

, R)®H\M, R),

and {'Et>q, 'd^\ is isomorphic to the Hq{M, 2?)-valued de Rham complex on X.
Since cr* preserves the filtrations, we obtain a spectral sequence homo-

morphism {o>} : {Ep
r
q}-> {'Ep

r
q}. In particular, a induces ax: E{'q->CLPX®

H\M, R), <r2: E
p
2
q->Hp(Xy R)®H\M, R), and a homomorphism from {Ef >q,
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dx} to the Hq(M, /£)-valued de Rham complex of X.
We call these also the characteristic maps of cr.

EXAMPLE 4.21. Let R be as in §3.7.

We can show that there is a natural spectral sequence map:

E(Wq,oq)->E(R)

(cf. [T3]). Here oq is the subalgebra of orthogonal vector fields and E(Wq) oq)
is the 09-basic spectral sequence for the Weil algebra of Wq: For example

E['\Wqyoq) = W{Wq,oq] S'W',),

where Wq is the dual W^-module of Wq and SlWq its *-th symmetric product.
Thus the Gelfand-Fuks cohomologies {Hj(Wq, oq\ S*Wt)} give us "charac-
teristic classes" for families of foliations on a fixed manifold. These cohomo-
logies are not yet calculated except for x=0 ([GF]) and i—1 ([GFF]).

4.3. Homotopy invariance. Let a: X->^(R) be a solution manifold and
/ : Y—>X a smooth map. Then <r°f: Y—> £&l(R) is a solution manifold. Ob-
viously we have

Proposition 4.31. (o-o/)* = ( /x idM)*oer* ,

Let cr', <r"\ X-+&<rf(R) be solution manifolds. <r' and </' are called homo-
topic if there is a solution manifold a: Xx (0,3)-* <£&l(R) such that a \ xx {i} = o"',
o" I A- x (2) = o-/7. The above proposition implies

Corollary 4.32. Suppose <r\ <r"\X-+g&l(R) are homotopic. Then <r'r=<r'/

Corollary 4.33. Suppose a solution manifold <r\ X->£<U(R) induces a
nonzero map cr2, then or is not homotopic to a constant map.

Thus Ep
2'

q detects nonzero elements of [X, £&/(R)], the space of homotopy
classes of solution manifolds. In this way E*'* provides a potential tool for
studying the homotopy structure of

4.4. Topological obstructions. The space £2'* also provides a useful tool for
the study of R.

Let criX-z-TRoo be smooth, i.e., the associated map &:XxM->Roo is
smooth. When can we deform & to the ?«, of a solution manifold T: X—> £ol{R) ?

Suppose & can be deformed to a T^. Since T*^+ 1fl*=0(p=dim JQ, we
have T*F*+1H*(R», R)=0y where
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R) =

Since T*=O-*: H^R^ R)-+H*(X, R)®H*(M, R)9 we obtain the following

Proposition 4.4. Suppose a smooth map a: X-^TRoo induces a nonzero
map a^iF^H^R^, R)-+H*{X, R)®H*(M, R) {p=d\mX). Then a can not
be deformed to a solution manifold.

Thus ®p^>pEi':¥—Fp+lH^{RooiR) gives us potential obstructions to the de-
formability of a homotopy solution manifold of dimension p to a solution mani-
fold. (See §4.8).

4.5. Characteristic classes. From now, we specialize to the case p=0, and
relate the notions of §4.2-4 with the usual ones.

Consider s^£(U(R) as a solution manifold 5: {s}->£<U(R). By §4.2, 5 in-
duces Sx: Ei>q-+H9(M, R). This map is also given simply as follows. Since
£?•«=#*({n0-*, 9}), £?-«3fi> is represented by a 9-closed cof(=n0'9. Then slG>=
[s*(or\. Note that by Proposition 2.5 &*©W*9G>'==0. Thus «<=£?•* defines
a map «: £e/(R)->H9(M, R). We call m(s) the co-characteristic class of s^
Sol(R).

REMARK 4.51. The elements of £"?•* appeared mainly in three different
contexts:

(i) The Pontrjagin classes of Riemannian metrics (cf. §3.2).
(ii) When R is an ordinary differential equation, E°i'° is the space of con-

stants of motions. When R is an evolution equation, E\'n~l (w=dim M) is the
space of conserved currents of R.

Suppose for example M=Rn
y N=MxRm and RdNk satisfies Condition

2.3. Then an element of E\'n~l is represented by a 9-closed WEO 0 ' 8" 1 , which
we write as G)=2J*=I nJ4^i (Ji^A(R)). Then 9-closedness is equivalent to
9 J i + - + 8«/«=0. Thus, if u{x)={ui{x))^^(R)y then J{[u]: =u*J4^&M
satisfies, by (1.61),

9AM/9*1 = -(dj2[u]idx2+-+djn[u]idx*).

Thus if Ji[u]ys decay rapidly at infinity, the integral I J1[u]dx2~*dxn does not

depend on x1, i.e., it is a conserved quantity. For example, the class repre-
sented by (3.41) corresponds to the conservation of energy for the wave equa-
tion.

(iii) By Example 4.21, when R is as in §3.7, there is a map:i/*(W/
g,o9;i2)-^

£•?•*. These are the secondary characteristic classes of foliations on M. See
also §3.6 for the particular case q=l.

REMARK 4.52. Nontriviality of «'s is difficult to show in general. [Fl]
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announces a program of showing this, and [St] says that Petro proved it by a
different method.

4.6. Deformation of solutions. Let a: (—£, £)-><^*/(i?) (£>0) be a solution
manifold, which is also called a deformation of s=a(0)^<g<d(R).

Let r]<^E\'q. By §4.2, we have an element o-^efl1^—£, £)®H9(M, R).
Define 2>(o-)=(8/9f_Jo-i(i7))|/=oe^W *)> where £ is the standard coordinate
on (—£, £). We call rj{o) the -^-characteristic class of the deformation a of s.

Leto>e£?-*. Then

Proposition 4.6. 9/9*(e(o-(*))) I ^0=^iQ)(cr).

Proof. By Proposition 4.31, *>(o-(*))=<n(6>) (0, where <ri(o>)eft°(—£, £)®
Hq{M,R) is regarded as a Hq(M, jR)-valued function on (—£,£). Since Jx

corresponds to dt=d(_2 E), we have

) i #=o

Thus the differential dx: E\'q-^E\>q describes the "universal differentia-
tion' J of the characteristic classes of solutions.

EXAMPLE 4.61. By Example 4.21, iJ*(W^,o9; Wq') gives us characteristic
classes of variations of foliations (cf. [GFF, He]). See also 10.35 (ii).

4.7. Rigid classes. Let ^E°2'
q=Ktr(d1: E^-^El'9). By Proposition 4.6,

£f->f(cr(£)) is constant for any solution manifold cr: (—£, £)->JW(i?), and so f
may be called tf rigid characteristic class.

REMARK 4.71. Rigid characteristic classes have appeared in foliation
theory by the same name and in [AI] as "weak Lagrangeans" of a differential
equations. Note however that when JR is the Euler-Lagrange equation of a
Lagrangean L homogeneous in uj's, then the class [Ll^dtf] is necessarily zero
by virtue of the Galindo-Martinez formula (5.43).

REMARK 4.72. Even if %^E\>q is not rigid, it can be constant for defor-
mations of solutions. In fact the variability of non-rigid classes is difficult to
show in general. In foliation theory, [F2] proposes a program of showing
this.

REMARK 4.73. Each £<=H\R^R) defines f: £<U{R)-»H\M\ R) by gjs)
=**?. Let X: H9^, R)->El;q be the projection, and p: E°J^>E\'q. Then
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obviously and | is rigid. In foliation theory, elements in Im(//,\)
are often called the primary characteristic classes, whereas those not in Im(^X)
the secondary characteristic classes. Note that JJLX is neither injective nor sur-
jective generally. Ker fjbX=F1H9(R00) R) has an important meaning as is shown
by Proposition 4.4. See also the next paragraph.

4.8. Bott's vanishing theorem. Because of its importance, we rewrite Propo-
sition 4.4 for the case/>=0.

Proposition 4.8. Let to^Etq (p>0) be represented by to'^FpHp+q{R^ R).
Suppose a homotopy solution / ^ T R ^ satisfies f*oo'4=0. Then there is no solution
g such that g^ is homotopic tof.

EXAMPLE 4.81. Let R be as in §3.7., i.e., the integrability equation of
plane fields of codimension q. Let F->N be the tautological vector bundle:
Fx(x^N) is the _p-plane in TpxM corresponding to x. Put v=p*TM/F, the
universal normal bundle. Let v^—n^v and denote by p{ the i-th Pontrjagin
class of z>oo. Then it is easy to see

R) for 4i>2q.

, i.e., a plane field. Since Roo->R and R->N are both affine bun-
dles, there is a lifting f^TR^ such that nj=f. Obviously f*pt is the i-th Pon-
trjagin class of the normal bundle of/. Thus if ^,(/)=t=0 for some i>q/2, then
/ i s not homotopic to an integrable one, i.e., a foliation. This is just the Bott's
vanishing theorem.

REMARK 4.82. The Bott's vanishing theorem and its variants ([Bot]) are
the only cases where some nonzero elements of Et'*= ©/>>0£

li'* were constructed.
It seems interesting to calculate ££'* for the R of §3.8, i.e., the integrabil-

ity equation of almost complex structures. In contrast to the case of foliations,
we cannot get universal obstruction by taking G=DifT(M). In fact, with this
G, we have Ei*~H+{W2ny Lc

n\ R). But it is not difficult to see that/*££•*(/<=
ri?oo) can be expressed by Chern classes of / . Then they must be identically
zero, because of the independency of the Chern classes of complex manifolds.

However for G=(l), £"£'* may not be zero. Note that in this case Et'* of
an M can differ from that of another M.

5. Trivial equations

We calculate the spectral sequence of the trivial equation R=N. Most of
the results of this section have been obtained by Vinogradov in [VI] where he
relates {Er} with the Spencer cohomologies. We give here a self-contained
proof which uses only a simple fact about the Koszul complexes. The results
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produce some useful facts about the Euler-Lagrange operators, which are now
more or less well-known.

In this section R=N->M will be fixed and fl*'*=n$'*, E=E(R). Put
n=dim My m=dim N—n.

5.1. Statement of theorems.

Theorem 5.1. Suppose ri^\.
(i) For r ^ l ,

E°r>
q^Hq(N,R) if q^n-l,

Ep
r'

q~(0) if p>0, q*n.
(ii) For r ^ 2 ,

Ep
r'

n^Hn+\Ny R).

We specialize to the case N=N(n,m).
Let V=Rn and S*V the symmetric algebra. The abelian Lie algebra V

acts on S*Vy on Rm®S*V and then onWp:= Ap{Rm®S*V). This induces an
action of the algebra S*V on Wp. Put Bp=WpjV.Wp. Note that Bl—Rm.

Theorem 5.1 can be refined for N=N(n,m) as follows. See §3.1 for the
notations.

Theorem 5.11. Suppose M=Rtt, R=N=Mx Rm. Then
( i ) For r ^ l , E°r'°=Ry E>-'^(0) (q*n, (p,?)*(0,0)).
(ii) Forr^29E>-<=(0) if (p,j)4=(0,0).
(iii) £ ? . ^ ^ / 9 ^ + . . . + 9 ^ ,
(iv) E$'n^A®Bpy for p>0.
(v) The map a: Am^E\'n defined by a(Jl9 ••',/«)=E/.-SK1'A <&] wwfao* ^

isomorphism of (iv) (p=l).

Corollary 5.12. An element ^firSuiAdx of flltn is uniquely expressed as
J2fi8u{Adx modulo an1'*-1, wherefi=JlIeN»(—dyfitI.

Proof of Corollary 5.12. Uniqueness follows from (v) of the theorem. It
suffices to show then that

This follows from

Lemma 5.121. ForftEA,

where aly-,ak^Z(lyn), i<=Z(l,tn) and Su^..ak: = Suj (/=(a i)+...+(«,)).
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This can be easily verified, whence the Corollary 5.12. Q.E.D.

5.2. Proof of Theorem 5.1 assuming Theorem 5.11. Since E converges to
jŷ iVoo, R), which is equal to H*(Ny R) by Proposition 1.21, it suffices to show
E{*q=0 forp>0 and q^n— 1.

Fix p>0 and put Cq=£lptQ. Let C* be the sheaf of complexes on N^
corresponding to C*=@Cq.

Let (?* be the presheaf of complexes over N defined by U\-^T(7v^1U9 C*).
Obviously C* is a fine sheaf on N and hence we have a spectral sequence rE
converging to i/*r(iV, C*)=H*C* such that

([God]). Here 3lqt* denotes the cohomology sheaf of C*. But by Theorem
5.11, c#*(>=(0) if q^n-1. Hence fE$-'=0 if q^n-l. Thus HqC*=0 (q£
n-\). Q.E.D.

5.3. Proof of Theorem 5.11. Before proving Theorem 5.11, We cite a simple
result on the cohomologies of the abelian Lie algebras.

Let V=Rn be the abelian Lie algebra and W a F-module. Let {C*(F; W),
d} be the standard cochain complex: CP(V, W)= /\PV*®W and

7 / "XT' "XT \ V y / -I \ ('-f-1 XT" / ~KT "XT "XT \

for coGC (̂F;PF), Z , G F . This is isomorphic to the usual Koszul complex
associated to the F-module W. Note that Hn(V; W) = W/V.W by definition.

Let S*V be the F-module of §5.1. Then it is not difficult to see

for p =}= n
Proposition 5.31. HPC*(V\ S*V)^\

(R for p = n .
(cf. [Ko]).

Let W be a F-module. W is then also an S^J^-module. Proposition
5.31 implies

Corollary 5.32. Suppose a V-module W is free as an S^V-module. Then,

Hence in particular

Corollary 5.33. Suppose a V-module W is, as an S^V-moduley a direct sum-
mand of a free module, then

\W\V.W for p = n.

Proof of Theorem 5.11. The notations are as in §3.1.
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The assertion (iii) is obvious.
Since N^ is contractible, it suffices for the proof of (i), (ii) and (iv) to show,

for ^>>0, that E{'q=(0) (q^n-1) and E{-n^A®Bp.
Fix p>0 and denote by {C*, d} the complex {£{•*, 4,}. Let Fk be the

subspace of C* spanned over A by

{8ui{\]A

Then {F*} is a decreasing filtration on C* compatible with rf. Let {Es
r'\ dr} be

the associated spectral sequence.
Obviously, the complex {Z?o, d0} is isomorphic to A®C*y where C* is the

subcomplex of C* defined by

Lemma 5.34. # ' C * ^ 0 (/=!=»), ^ (i = «).

Proof. Obviously C*—C*(V; Wp), where Wp is the F-module introduced
in §5.1. Since Wp is a direct summand of the free S*F-module ®p(Rm®S*V),
Corollary 5.33 implies the assertions. Q.E.D.

Thus Ei=0 (i^ri), E1=A®Bp. Hence the spectral sequence degenerates:
EL—El and so E{'q~E\—(<)) (q^n-l), E{-n^En^A®Bp. Hence (i), (ii) and
(iv) are proved.

The assertion (v) is now easily verified. Q.E.D.

5.4. Kernels of Euler-Lagrange operators. We give now some applications of
Theorem 5.11.

Let M=Rn,N=MxRm. The notations are as in §3.1.
Define Sy: A->A ( J ' G Z ( 1 , HI)) by

Often Bj is also denoted by S/Swy.
By Lemma 5.121, we have

Lemma 5.41. Forf^A,

h(fdx) = 2y . l f . SjfSu*Adx+da, .

Here

(5.411) a, = 2 ; > M ((-dydfldui)SuUM)..,u)Adxi(k),

where j^Z(l,m), IeN", l=\I\,keZ(l, 0.7=2«=i,*-i (i(a)) and an expression
of las /=(i(l))H h(*(0) M jff*erf.

By Corollary 5.12, 83= dS implies

« A / = 0, for «
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Thus together with (iii) and (v) of Theorem 5.11, we obtain the following
commutative diagram:

A —^ E\-»

I 8 ~a 1 *
AM ——->El'n

where A=A/d1A+.~ + dnA, /8([/]) = [/<fe] and 8(r/])=(8i/, - , 8./).
Since, for n ^ l , Ker(^: E\'n-^E\-n)=El'n=(Q) by (i) of Theorem 5.11, so

8 is injective, i.e.,

Proposition 5.42. For f(=AJdx e l m 3 if and only if Sjf=O ( ; ' G Z ( 1 , HI)).

This also follows from the following useful variant of the Taylor formula
proved in [GM]:

(5.43) /[*, u] =f[x, 0]+S / eJv.2,3>'f (SjJ) [x, tu]dt)
Jo

where
(5.44) 8y , , /= S / 6 0 ( / + / ) (

Note that Sifi=8j. Usually 8i>r is denoted as S/Swf.

5.5. Ranges of Euler-Lagrange operators. Define for f^A, linear operators
D(uj)f: A->A by

{D{u')f)g = 2 /^»(9 / /3« / )3^ ; e Z ( l , m).

Let D(u')+fbe its adjoint:

{D{u')+f)g = 2 / e J v ( - a

Then E\>n=0 can be rewritten as follows:

Proposition 5.5. For f^A (j^Z(l,m)), there exists an f^A such that
fj=Sjf{j(EZ(l9tn)) if and only if

(5.51) D(u% = D(u')+fj for f , j eZ( l , tn).

REMARK 5.52. The "only if" part was given in [Man].

Before the proof, we extend the operators Sj9 D(u')f and D(ul)+f to fl*'*.
Since they are compositions of multiplication by elements of A, 9, and 9/3w/, it
suffices to extend 9, and d/duj from A to fl*f*. They are extended to be the
derivations characterized by d{dxj=0, diSui=Sui+iih (dl&ufidx^O and (9/9z/f)SwJ
=0 . Note that d'Su^Sui. We define then Sj=Jl(-dy d/duU D(ui)f==J]dfl
du)dJ, etc..



336 T. TSUJISHITA

Lemma 5.53.
( i ) [Sy,S] = O,

(ii) Sidco=0 for G ) G ^ H .

Proof, (i). It suffices to show [8/9itf, S]=0 and [8,-, S]=0. The former
is obvious. The latter follows immediately from

(5,4, MW.ftl-.f-> f f *
10 (otherwise).

(ii) It suffices to show Sj(di7jAdx)=Q for j e Z ( l , m ) , fGZ(l,») and

— 0

where we used again (5.54). Q.E.D.

Proof of Proposition 5.5. Suppose fj=Sjf(j^Z(l9m)) for some
Note that if ^j=J]fJtId

I(j^Z(l,m)JjJ^A) satisfies 2i=1>WI^(
then </>;=0 (j^Z(l,m)). Thus it suffices to show

(5.55) 2W | .(D(tty)+ / i) (8n'Adx) =

The left hand side is

) (for some
SjSfdx (by Lemma 5.53 (ii))

SSX/fo) (by Lemma 5.53 (i))
S(Sjf)dx

which is the right hand side of (5.55). (This proof is a direct generalization of
the one given in [GMS] for n=l.)

Conversely suppose (5.51) holds. Then
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(mod. aft2'"
AD^ffiu!Adx (by (5.51))

Hence 8(2ijfJ8uJAdx)^da2'H''1. Since £^w=0, there are f(=A and
such that

= 8fAdx+dw.

Then Corollary 5.12 and Lemma 5.41 show/ y =8 y / (j(=Z(l,m)). Q.E.D.

REMARK 5.56. There are various conditions for / /$ to be written as
(f^A). The following follows immediately from (5.43).

Proposition 5.561 ([GM]). For f^A (jeZ(l,m)), put

o

Then / y =S y / ( jeZ( l ,m)) /or *>m* / e ^ 4 z/ awrf oufy if fj=8jZ(j(=Z(l9m)).

EXAMPLE 5.57. Let n=2>m=l. Suppose f=uQfl-\-uulf0-\-u3Q(uij—U(ij)).
Then

Thus/$ImS/SM. However by introducing a potential w=\udxl, we have

/[«] = ^ H = wK1+wlt0w2t0+w4tQ.
Then

and in fact

5.6. Parameters. In actual situations, some of the independent variables
often behave as parameters. Correspondingly then we must modify the varia-
tion bicomplex.

Specifically, let p:N-+M be a bundle and P a manifold, which is the para-
meter space. Put p: N=Nx P-+M=Mx P and let q: Mx P-+M be the natural
projection. Let RdN1 be the image of a:q*N1->N1 defined by (x{yys1(x))=(<q*s)i
(x,y) (JCGM, y^P, s^FN), where j * $ e I W is defined by (q*s) (x,y)=s(x).
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Let ft*'* be the variation bicomplex of R. This includes S- and 9-
closed ideal S generated by 7r'*(0t>on''P), where n' is the composition of R^
-+M->P. We put ft$'*<P>=ft*'*/J and call it the variation bicomplex of N
with the parameter space P.

EXAMPLE 5.61. Suppose M=Rn
x,N=MxR% and P=Rf. Then ft*'*=

is described as follows:

where A=3?[x,y,u], and

for ieZ(l ,«)) . Thus

^ , ^ u).

Let £" be the spectral sequence of ft$'*<P>. We can show just as in the
case of Theorem 5.1 the following

Theorem 5.62.

(i) For r ^ l ,

E°r'
q—H\N) R)®3P if q^n-1,

Ep/q=(0) if p>0,q*n.
(ii) For r ^ 2 ,

Eprn—Hp+n(N,R)®%P.

Corresponding to Theorem 5.11, we have, using the notations of Example
5.61, the following

Theorem 5.63. Suppose M=Rn
x, N=MxR% and P=Rf. Then

( i ) For r ^ l ,

T HO), for (p,?)=f=(O,O), q±n.

(ii) For r^2, Ep/^(0) if {p, g)=t=(O, 0).

(iii) EVn—Ald1A+:-+duA.

(iv) The correspondence (fl9 ••-,/„,) *->[/tSi/' A die] defines an isomorphism Am

This enables us to generalize Proposition 5.5 immediately. Define D(uJ),
D(uj)+ and Sj as in §5.5. Then

Proposition 5.64. For fjGi(;GZ(l,m)), ffcr* mrfj f^A such that fj ==
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SJ (j GZ(1, m)) if and only if

6. Symmetries

Let N-+M be a bundle and RaNka differential equation satisfying Condi-
tion 2.3.

This section defines symmetries of R, which might be considered as * Vector
fields'' on io/(i?), and expresses the space X(R) of symmetries as the kernel of a
certain linear differential operator.

The notations are as in §2. Put H=HRy fl*'*=Of •*.

6.1. Definition of symmetries. Let XROO=TTROO be the Lie algebra of the
smooth vector fields on R^. Define its subalgebras by

X(H) = {XSEXR*,; [X, TH]CTH} ,

Since TH is an ideal of X(H), we obtain a Lie algebra

X(R) = X{H)jYH.

The elements of X(R) are called the symmetries of R.
Obviously we have

(6.11) X(H)^XV(H)®TH,

whence, as Lie algebras,

(6.12) X{R)—XV{H).

REMARK 6.13. To see that the above definition is appropriate, consider the
situation of foliations. Let (M,£F) be a foliated manifold and TEFczT the leaf
tangent bundle. Then the Lie algebra of the vector fields preserving leaves are
X(S):={X^XM; [X, TTS]dTTS). Its ideal TTEF consists of those
vector fields fixing the leaves. Thus the quotient Lie algebra J?(2r)/rT£F is
the Lie algebra of infinitesimal transformations on the space of the leaves of £F.
Since H corresponds to T£F, we see that the definition of X(R) above is natural.

REMARK 6.14. The equality (6.12) is quite useful. This enable us to
discard the horizontal part of symmetries, making the situation very simple, for
example in the Noether theorem. This was first remarked explicitly in [R],

REMARK 6.15. X(R) is generally very small. The soliton equations
have the remarkable property that X(R)'s have infinite dimension.

REMARK 6.16. Whereas X(R) is useful to obtain solutions from one known
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solution, YH sometimes helps us to construct solutions. In fact the Cauchy
characteristics of R can be considered as a subbundle C{H) of H such that [PC
(H), TC(H)]c:rC(H) and that through each point p^R^ passes unique sub-
manifold of dimension=rank C(H). Thus, once we have constructed an
integrable submanifold X of H whose tangent space spanns H\x modulo C(H)>
there is a unique maximal integrable submanifold X, i.e., a solution of R, con-
taining X. We note that the second geometric condition for C(H) can be
rewritten infinitesimally.

6.2. Computation of X(N). We determine X(R) for R=N=MxRm-+M=
Rn. The notations are as in §3.1.

Let Z e r F . Then obviously X^XV(H) is equivalent to [X, d{]
(fGZ(l,«)). Put X=2}Xjjdldui (XJJSEA). Then

[X, 9J = 2 (Xj^-diXjj

Thus, [X,dt]^THif and only if

Xjj+M^diXjj for j

Hence X^XV{H) if and only if

where Xj=Xj0. By (6.12), we have proved

Proposition 6.21. For N=MxRm->M=Rn
9 the map

i] defines an isomorphism Am~X(N).

The above argument shows also the following

Proposition 6.22. For general N-+M, X<=TV is in XV(H) if and only if

Proof. Since the problem is local, we may assume N=MxRm->M=Rtt.
Then as is shown in the derivation of Proposition 6.21, we have X^XV(H) if
and only if [X, 8,]=0 (*eZ(l,n)). But [X, 2 M - ] = 2 / , [ J C , 9 J f o r f ^ M -
Thus [J5T,9J=O (vi) if and only if [X, T]=0 (VY^XM). Q.E.D.

6.3. Cartan formulas. We recall some of the Cartan fromulas on R^ and prove
two basic facts about the subalgebra XV(HR) of XR^.

First, note that as in the finite-dimensional case, co^np=flpRoo can be
regarded as an alternating map from XR^X -••xXR^ (/>-times) to A, multilinear
over A. The exterior differentiation can be expressed as

,xh -,xp+1)
*,],*!, -,%, -,xit -,xp+1)



VARIATION BICOMPLEXES 341

for
For wfEfy and X(=J!R^ define i ( ^ e f l J " ' by

i(X)co(Xu •••,Xp.1) = co(X,Xu •••,

Define Lx=i(X)d+di(X) ( Ie i ! f i M ) . Lx is a derivation of £1* commut-
ing with d and coincides with X on A=£l".

Lemma 6.31. / / X<EXV(H), then Lx=i(X)S+Si(X), and i(X)d=di(X).

Proof. Since, for s G f l ^ , Lxco=(i(X)8+8i(X)+(-iy{i(X)d-di{X)})o>,
Lxa> has the (p,q) component (i(X)8-\-8i(X))co and the (p— l,q-\-l) component
(— l)p{i(X)d—di(X)}(o. It suffices to show that Lxa> does not have the (p— 1,
5+1) component. Since Lx is a derivation and £!*•* is generated locally by fl1<0

and fl0'1, it suffices to show (i) Lxn
0>1CXi0>1 and (ii) ̂ ' • " c f i 1 ' 0 . (i) is trivial.

Now let wefi1-0 and Y<=TH.
Then

{Lxm) (Y) =

) - Yco(X)-o)([X, Y])+ Ya>(X) = 0 ,

since [X,Y](=TH. Thus Lxwefl1-0. Q.E.D.

Lemma 6.32. / / Y^XM, then /(Y)S+S/(Y)=0 and Ly=(-iy{i(Y)d
-di(T)} on Of*.

Proof. First note that [T,TV](ZTV. In fact, for / e£FM and
[Y,X]f=YXf-X?f=—X(Yf)=O. Thus [ Y , X ] e r F . Then the same argu-
ment as in the proof of the previous lemma shows LyD,p'qczClp't, which
implies the assertion immediately. Q.E.D.

We can show the following weaker version of Proposition 6.22.

Proposition 6.33. For X^J7(H) and Y<=XM, [X, Y]=0.

Proof. For

XTf=i(X)Si(T)df
= -i(X)i(T)Sdf (by Lemma 6.32)

= »•( Y)di(X)8f (by Lemma 6.31)

= tXf. Q.E.D.

Proposition 6.34. For XSEJ7{H), [LX, 9] = [Lx, S] = 0, i.e., Lx: fl*-*-*
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£2*'* is a bicomplex homomorphism.

Proof. Obvious from Lemma 6.31. Q.E.D.

REMARK 6.35. This proposition implies that the Lie algebra X(R) acts
on the spectral sequence E(R). This action is explicitly calculated in [Kh] for
some examples.

6.4. Bundle automorphisms. Call an element of X{R) integrable if it is re-
presented by an integrable vector field Z on iJM. Here a vector field is called
integrable if it generates a local one-parameter group of local dirTeomorphisms of
#00.

In general, elements of X(N) is not integrable. But there are integrable
ones in -C{N) which are represented by the liftings of vector fields on XN
and (if m=l) of the contact vector fields on Nx.

First we consider XN in this paragraph.

Lemma 6.41. For X(=XN, there is a unique X<=X{H) such that X=X
on A0=3'N.

Proof. First we prove the uniqueness. Let Y^X(H) satisfy Y.A0=0.
Let (x*,ui; U) be a standard local chart (cf §1.3). Then by (6.11) we can
write Y\u=JlYidi+Y'9 where Y<eff[*,i<], Yf^Xv{H\u). But Y.AQ=0
implies Yf-=0 and YV'=0. Then Proposition 6.21 implies Y' |^=0. Hence
Y=0.

By virtue of the uniqueness, we may assume M=Rn
9N=MxRm in con-

structing X. Write X=i}Xidldxi+J}Yfildu* (Xh Yy effJV). Define then

Then obviously X<=X{H) and

Xu* =

Hence X=X on Ao. Q.E.D.

REMARK 6.42. X can be constructed more geometrically as follows: let
<j)t be the local one parameter diffeomorphism group generated by X. Then
roughly cj>t acts on TN and hence on N^. The induced vector fields is X.

Define a: XN->X(N) by a(X)=[X}.

Lemma 6.43. a: XN->X(N) is a Lie algebra homomorphism.

Proof. Let Z , F E X N . Since [X, Y] = [X,Y]~ on Ao and [X, Y]eX(HN),
the uniqueness implies [X,T\=[X,Y]~. Q.E.D.
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Suppose N=MxRm^M=R". Then by Proposition 6.21 there is an
isomorphism 7: X(N)-+Am. (6.411) implies then

(6.44)

6.5. Contact transformations. Suppose now m=\. Nt has a canonical
contact structure defined by the line subbundle L C T*N1 which is locally gene-
rated by du—^i=lnUidx' (M,=M(I)). X^XNi is called contact if LxTLdTL.
A diffeomorphism <f> of Nx is called a contact transformation if $*L=L. The
space of all the contact vector fields obviously form a Lie subalgebra of XNU

which is denoted by XctNi.

Lemma 6.51. For XGX''NU there is a unique X^X(HN) such that
X=X on A^

Proof. Uniqueness can be proved in the same way as in the proof of
Lemma 6.41. So we may assume M=R", N=MxR in constructing X.

Express XGXN, as X=J},.ltUXfilBxl+Ydl9u+5},-ltUZfil9ul (XltY,Z,&
Ax). Then a calculation shows

modulo du-JliUidx', where W=Y— Jlj-itHuiXj. Thus JfG-C'Wj if and
only if

hold.
Define for

Then

Xx' = Xt = Xx<,

Xu = 21,1/,-+ W = Y = Xu ,

Xu< = J^XjUp

= Z; (by (6.511))

= Xui.

Thus X=X on Ai. Q.E.D.
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Corollary 6.52. In the case N=MxR, M=Rn, the map fju: XctNl-^Al

defined by fi{X)=W(X=y£Xidldxi+Ydldu+J}Zidlduh W=Y-^uiXi) is an
isomorphism.

Proof. By (6.511) and Y=W+^j==KnUjXjy we can reconstruct X from
W, i.e., fi is surjective. The injectivity is obvious. Q.E.D.

Define (3: XctNx-^X(N) by /3(X)=[Jt\. Then the following can be proved
just as Lemma 6.43.

Lemma 6.53. /3 is a Lie algebra homomorphism.

In the case M=Rn
yN=MxR, the relation between X: X(N)-*A of

Proposition 6.21, a of Lemma 6.43, and /3, JJ, of this section is as follows.

Proposition 6.54. The following diagram commutes

XN

where v^Xidldxi+Ydldu)=Y-^i^nuiXi (XhY^A0)y

fM-W^^i-dW/du^dldx'+iW-^

+J}i(dWldxi+uidW/du)dldui

6.6. Description of X(R). Let M=Rn, N=Mx Rm. The notations are as
in §3.1. Suppose R={F1=~-=Fk=0} (F^A) satisfies Condition 2.3.

Define ®:Am->Ak by (&f)i=^J(D(u')Fi)fj(ieZ(l,k)). Since * ( J2)c
Ji(Joo: the defining ideal of RJ, O induces ®R: A(R)m-*A(R)k.

Theorem 6.6. The correspondence Am-^T(TNOO\ROO) defined by a(fly-~,
I**, (fi^A) induces an isomorphism Ker <PR~X(R).

REMARK. This is announced in [V2]. See also [IS 1,2].

Before the proof, we need two lemmas.
Fix XSEXV{H). Let v}=u}\Roo. Put fi=Xvi^A{R). Choose

such that fi IRoo=fi, which is always possible. By Proposition6.21, Jti—

Lemma 6.61. X is tangent to R^ and its restriction on R^ coincides with X.
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Proof. It suffices to show that, for all y^Roo, J£y=Xr This will follow
from Xyui=Xyu}(vi,I). Since Xy is tangent to R00,Xyu\=Xyv

i
I=(Xvi

I)(y).
Thus we have only to show p(Jtui

I)=Xv{, where p: A->A(R) is the projection.
Denote di\Roo also by 9,-. Then 3, commutes with p. Thus p(Xu\)=

p{Xd!u% which is by Proposition 6.22 equal to 8/(pJ?i*l")=9/(p/-)=9/(/.-)=9/-y«;l'>
which is by Proposition 6.33 equal to XdIvi=Xvj. Hence p{Xv}:)=Xv\.

Q.E.D.

Lemma 6.62. Let g=(gi)^Am. Then Xg:=^drgidldu} is tangent to R^
if and only if ®(g) <E Jl.

Proof. Since S^ is generated by {d'F^j(=Z(\,k)J(=Nn), Xg is tangent
to R«, if and only if I / ^ - G ^ for all IJ. But X^F — d'XgFj by Pro-
position 6.33. Since S^ is 3rclosed, we see Xg is tangent to R^ if and only if

So*. The assertion follows finally from

Q.E.D.

Proof of Theorem 6.6. Define a: KerO-^X(R) by a(g)=Xg\R00. This
is well-defined by Lemma 6.62. By Lemma 6.61, a is surjective. Suppose
a(g)=0, i.e., Xg\Roo=0. This implies gj=Xgu

j(j^Z(l,m)) is zero on R^, i.e.,
gj^S^. Hence Ker acSZ. Since obviously J ^ c K e r a , we have Kera==
J 2 . The assertion then follows from Ker<£*=Ker<l>/J2. Q.E.D.

6.7. Contact transformations of R. Theorem 6.6 gives a method of computing
the Lie algebras of vector fields on iV and if m= 1 of contact vector fields on Nx

which leave R invariant.
Specifically let R be as in §6.6 and put

X0(R) = {[J£\; X(EXNf Xis tangent to

XC\R) = {[%]; X<=XctNly Xis tangent to

and for m=l

Put further

Then

Theorem 6.7.
(i) J?0(i?)^J
(ii) if m = 1, Xct{R)—A1

Proof, (i) Let X^XQ(R). By definition X=[Y] for some Yf=XN.
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Write y=2X,8/8*M-EYy9/8ii> a n d Put
 / ^ V S H / ^ O

Since Xf=T— 2 ^ 9 , - is also tangent to R^ Lemma 6.62 implies
Thus (fj)\Roo^AonK.er<§R. This correspondence X\-*(fj)\Reo is obviously
bijective.

(ii) can be proved similarly. Q.E.D.

EXAMPLE 6.71. Let R be as in §3.5, i.e., the Korteweg-de Vries equation.
The notations are as in §3.5.

Here we have

*/=

and

, = <3{x\x2,u,uliuz)cLA.

A little calculation shows that Ker<3>n^i is spanned by {—uu — (w3

1— tfu» —xlu^Zx\u^uu^)—2u\. These correspond to X1=djdx\ X2=dldx\
X3=x2dldxl+dldu and X,=xldldxl+Zx2dldx2-2udldu^XN respectively. Their
finite forms are

4>ltt(x\ x2, u) = (xl+t, x2, u),

4>2,t(x\ x2
y u) = (x\ x2+t, u),

<t>Ztt{x\ x2, u) = (x'+tx2, x2
y u+t),

(t<=R). Their commutators are [XuX2]=[Xl9X3]=0y [XlyX4]=[X2yX3]=Xu

[X2,X,]=3X2 and [XZyX,]=-2X3. In short

Proposition 6.711. The correspondence

a i

0

0

0

a3

3a,

0

0

0

0

-la,

0

« i

a2

a3

0

is a Lie algebra injection of Xct(R)=XQ{R) into QlAR.

We note that this result is already in [Kum].

REMARK 6.72. Elements of X0(R) and XC\R) are integrable by definition.
When R=N, these are the only integrable ones, which is a classical result by
Backlund ([Ba]). This is valid for equations provided they satisfy certain
conditions easy to check. However for general R, there can exist integrable
ones not in -C0(R) nor in Xct(R).
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7. Cauchy-Kowalevsky systems

This section gives a useful description of Ei'""1 and El'"'1 of R which is
Cauchy-Kowalevsky system in a weak sense (pseudo CK system in short).

In this section M=Rn, N=MxRm and the notations of §3.1 are used.
Put A=A(N), Ak=Ak(N) (cf. §2.3).

7.1. Pseudo CK systems. RaNk is called a pseudo CK system if

where K~uJ
kjil)—Fj^Ak with kj>0 and

(7.11) dFj/duj = 0, for all i

where ^ ( ^
Obviously we have

Proposition 7.12. If R={K1= — =Km=0} is a pseudo CK system., then
iV^ admits the following system of global coordinates: {dTKj; j' e= Z{ 1, w), / €= iVw} U

l,m), /=(!!, -,in)<ENn with t^kj-1}.

This implies

Corollary 7.13. 4̂ pseudo CK system satisfies Condition 2.3.

REMARK 7.14. If k{=k and K^3Nk (fGZ(l,m)), 12 is a Cauchy-Kowa-
levsky system in the usual sense.

REMARK 7.15. In [Mar], a pseudo CK system is called a normal system.

7.2. Statement of theorems. Define linear differential operator <3>+: Am->Am

by

)-%-)/,- for «

Here Z ) (M ' ) + ^ is the operator defined in §5.5. Since 3>+(J™)cJ™, <D+ in-
induces <DJ: A(R)m^A(R)m.

Theorem 7.21. Suppose R={K1=---=Km=0} is a pseudo CK system.
Then

( i ) El'-'iR
(ii) if n ^ 2 , E

Corollary 7.22. Suppose Ris a pseudo CK system.
( i ) / / « ^ 2 , iAew £'§'"-1(JR)=0) i.e., dt: E°i-—1(R)-+E\--1(R) is injective.
(ii) Ifn=\,thenEl-\R)=R,i.e,

0 -> i? -* £!-°(/2) -> ^i'0^)
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is exact.
(iii) E1--\R)=(O).

Proof. Put Epr-9=E'r-'(R)r By Theorem 7.21(ii), we have El'^—E^"-1—
Hn~1(RooyR), which yields (i) and (ii), since R^ is contractible by Proposition 7.12.
Furthur El'n-1^Eln~1c:®i+j=nEi;i—Hn(RooyR)==(0)y whence (iii). Q.E.D.

REMARK 7.23. Thus we can compute the space of conserved currents by
solving the linear differential equation <I>+/=0 (f^Am). Some criterions for

>J to correspond to an element of E\%n~l will be given in §7.5-6.

REMARK 7.24. Theorem 7.21 is stated in [VI]. For m=n=l, it is already
in [GD].

7.3. Proof of Theorem 7.21. There are two proofs—the intrinsic and the
extrinsic ones. The latter uses coordinates on N^ and makes clear the meaning
of OJ, but is a little long. So we give the intrinsic proof using coordinates of
R~.

7.31. Proposition 7.12 gives the following coordinate on R^: {x1, •••,#*} U
{©j i /;feZ(l,ifi)></eZ(0,* r-l),/eiV2 i l l}, where v)tj=u)^^j\RoQ. Putvj=vj i0.
Then

The derivations 9,- of A(R) is characterized by

.j, k ^ kj-2

Put t=x\ x'=(x?,-,xH), Q*-*=at-*, Ep
r-"=Ep

r-\R).

7.32. Fix p^O and let 'F be the filtration of D,"-* defined by 'F°=D,P-*,
'F1=a,p-*Adt,'F2=(0). Obviously 'F is compatible with 9. Let {pE'r',d}
be the induced spectral sequence which converges to E{'*.

It is easy to see the following

Lemma 7.321.
( i ) pEV^A{R)®Ap[hv),j]®A'[dx'l 4,=2,_2,.(9,
(ii) {"El*, d0} — {"El-*, d0} as complexes,
(iii) pEt'*=(0), fors^l.

(See §6.3 for the definition of the 9,'s action on

Obviously then we have (cf. Example 5.61)
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Lemma 7.322. {PE°O'*, d0} is isomorphic to the complex {/?$•*, d0} of the

variation bicomplex of N=MxRm->M=Rn~1xRt (m=2;=i,»^y) with Rt as the
parameter space.

7.33. Proof of Theorem 7.21 (ii) for p=0. Lemma 7.322 and Theorem
5.63 yield the following commutative diagram:

1
OPl.O

where a'\f)=[fl /3~\f)=Udt] (f^S(t)czA). Thus we have °E°2'°^R,
»E\>°—(0). This finishes the proof when n=2.

Suppose n^3. Lemmas 7.321, 7.322 and Theorem 5.63 yield

Opt) w /'(W / 1

Ei = (O) (1:

Hence

1(0) for v+tt>eZ(l,»—2).

This proves (ii) for /)=0. Q.E.D.

7.34. Proof of Theorem 7.21 (ii) for p>0. By Lemmas 7.321, 7.322 and
Theorem 5.63, we have for all v

*El-w = (0) for w^n-2,

whence
pEl:w = (0) for v+w^n-2 .

This proves (ii) for p>0.

7.35. Proof of Theorem 7.21 (i).
Denote the elements of A{Kf {fn=^j=lmkj) as f=(fjtk) with j

Define a linear endomorphism ^ of A(R)m by

where, for i

and, forjeZ(l,* f—1),
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Here ^)tjG:A(R)-^A(R)(i^Z(l,m),j^Z(O,ki-l),G^A(R)) is defined by
putting for f

(<Dt.jG)f

Define a: AiR)'-*1^--1 and /3: A(R)S-+lE\-—1 respectively by

Then by Theorem 5.63 (iv) and Lemma 7.322, a and /? are isomorphisms.

Lemma 7.351. The following commutes:

0.II-1

Proof. By definition, dia{fitJ) is represented by

Since the third term represents [(&},sFj)fjtkj-i$vrsAdx] it follows diccfjij) is
represented by /3^(fitj). Q.fe.D.

Lemma 7.352. 77** m^ 7 :^(^f-^W defined by Vifi^ifi^i^m)
induces an isomorphism

Proof. By induction, we can easily show that x^(fij)=0 if and only if

(7.353) fu = ^(DtJ+iKm)4>M for y e Z ( 0 , * , - 2 ) ,

). Here

Sf> being the Kronecker's delta. Note that G£a(Dt.oKa)<l>a)==®i(<l>a)-
Thus 7 induces 7: Ker^-^KerOj . (7.353) shows 7 is bijective. Q.E.D.

Hence lEl'n~l~Ker3>J. Since ^ ' = 0 (̂
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(7.354) El--1 = ©^-..^i'

This completes the proof of Theorem 7.21. Q.E.D.

7.4. First description of ZJi '^cKerOJ. Because of its importance in ap-
plications, this and the next paragraphs give two explicit descriptions of the
composition X of 5?>M"1->£I}'w"1->Ker<l>J, ImX and X"1.

The first one uses the facts in §7.35.
Define 8J: A(R)-+A(R) ( J E ^ I ^ ^ ' G Z ^ ^ - I ) ) by

Define for f,g^A(R),

Then

Proposition 7.41.
(i) Suppose ^i=i>njidxi (Ji^A(R)) represents co^Ei'n~\ Then \co=(01 ,

— y<t>M), where 4>i=8i
k.-1J1.

(ii) For £=(&,."^JeKerOj, define fifj^A(R) (i^Z^m^j^Z^k,
-2)) by (7.353) andfiM^=^{. Then <£eElm\ if and only if

Eijfi'j' = Et'j'fij

for alii, i',j,j'.

Proof, (i) Obviously under the isomorphism E\'n~lc^El'n'1 of (7.354),
corresponds to

which immediately implies the assertion.
(ii) Let °E and lE be the spectral sequences introduced in §7.32. Let

{8p/q} : «E->lE be the homomorphism induced by S: {ft0'*, 9}->{fl1-*, 8}. Con-
sider the following commutative diagram:

r\ 0270,w—1 0 27*0,n—1 027*1,n—1

I I

go,«-i S?'""1 S} '"" 1

v v a, v
. 1270,«—l ^1270,n— 1 x

 v I27l ,»—1

l\\a i l ia"1

0 • K e r ^
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where the horizontal maps are exact, a and /3 are as in Lemma 7.351. Note
that SI'""1 (/=0,1) are described by the commutative diagram:

where E is the spectral sequence of Lemma 7.322. In particular Si**"1 is in-
jective by Theorem 5.63 (ii) for n^2.

By Proposition 5.64, there is a / j E ^ i J ) such that S?'*"1 maps co=[Jidx']^
«E\>n-1 to v=Elfi,MAdx'](=1Eo

l'
n-1. This completes the proof for n=l.

Suppose now n^2. By Lemma 7.352 and the assumption that <£€EKer <!>£, we
have

dlV = pVa-'v = 0 .
Hence

Thus t/1G)=0 and we have

This implies the assertion since there is the following commutative diagram:

?0,n—l

U I as--1

* c + , a b
Ker ^ - ^ Ker <DJ

with \=bacd1 and b{fij)=4>. Q.E.D.

7.5. Second description of Z??'""1 cKer <3>J. This is essentially due to Martinez
[Mar].

Consider A(R) as a subalgebra of 4̂ by the substitutions: Vjtj—Uj{i)+

(l,m),/<EZ(0,&,— l ) , / e iV 2 n ) . Then Proposition 7.12 implies ^ = ^
Denote the projection ^-^4(i2) by/i—>/.

To avoid confusion denote by 8, the derivation 3, of A(R). Note that

Theorem 7.5. Le* ^>=(0i, •••,<^w)ev4(i2);M. TA n̂ (^ElmX z/ ^nrf ow/jy z/
(7.51) S/2 I=i,w</>^)=0 (j£Z(l,m)), w/r̂ r̂  Sy w <fe/w^m §5.4.

REMARK. This a rephrase of the content of [R].

This implies then by Proposition 5.42 and (5.43) the following
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Corollary 7.52. Let (£=($!,•••,<£w)elm\. Then X~l<$> is represented by
the restriction on R^ of such co^n°Nn~1 as dco—fcdx (#=]lL=i m$iKi). In particular

K[X, G\dxl> and Ji—Ji (i^2).
o

Here

Ji = 2 / 2 / « i ,8/(tty(18y,/+«)«[*, su]ds).
' Jo

Consider ft*'*Cli$'* by the maps A(R)czA, 8©y(/H»Siiy(i)+/. Denote the
differentials of H*'* by 5 and d.

Proof of Theorem 7.5. Let (j><=A(R)m. Suppose cf> = \co
Represent co by m=J}Jidxi (Ji<=A(R)c:A). Then dm=0, i.e.,

(7.53) / : = 9i/i+

Since dJi=diJi^A(R) (z^2) , / is the J^-component of dxjly i.e.,

By an obvious ananolgue of Lemma 5.121,

(7.54) / - 2 , ( S | l . - 1 / 1 ) ^

By Proposition 7.41, fa^Ut-iJi. Hence by (7.53) and (7.54)

which is equivalent to (7.51) by Proposition 5.42.
Suppose now conversely cj>^A(R)m satisfies (7.51). By Proposition 5.42,

there is an co=2t=i ,« /^» e ^ ' n ~ 1 such that dco=^2j^jKj. Put ©=2i-ii«7i^«-
Then w is 5-closed. By (7.54)

where ^ = ( ^ i , •-,^I
W)=X([©]). Since/ ,—J^S^ we have

(7.55) S;=i , M (^-

Lemma 7.56 ([Mar]). / / ^=(a,)

Proof. By assumption, there are fijj^A such that

(7.57)

By Proposition 7.12 we can consider {x> v)tJy 9'JK^} as a system of global cor-
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dinates on JV». Defferentiate (7.57) with respect to d'Ks and put d'Kj=Q
Cj,l). Then

af = bifi, for i
bK, = 0, for i£Z(l ,m), I<=Nn- {0} ,

where

Here /*>,i/=0 if some component of / is negative.
Then

a{ = bi 0

Thus (7.55) implies ^y=^y. In particular ^=(^>|.)=x[®], which completes
the proof of Theorem 7.5.

7.6. Applications

7.61. Wave equation. Let R be as in §3.4 and use the notations intro-
duced there. R is defined by

K: = %i)-2i=2,»M2(i) = 0 .

Then ®i: A(R)->A(R) is

By Theorem 7.21, E\'tt-1(R)=Ker^i. It is shown in [Tl] that if *^3 a n d /
is a differential polynamial, then <E>J/=O if and only if /=«+2»=o,i2/eiV2f«
ai,Jui,j where a, aitj^R. Proposition 7.41 then determines those conserved
currents expressible by differential polynomials. See [AG,O] for other methods
of computing E\'n~l{R). [AG] covers the case n=2. Both treat general linear
differential equations.

7.62. Korteweg-de Vries equation. Let R be as in §3.5. Since <I>J =
D(u)+K=-d2-ud1-d

3
ly

9Uj); (d2+ud1+dl)f= 0} .

Put Wm=Ker®in3!(xi
9Uj;j^m). It is easy to show di

This implies immediately that even in the space of C°° conservation laws, those
found in [MGK] is independent and spanns Eifl(R).
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7.63. Benjamin-Bona-Mahony equation ([BBM]). Let M=R2, N=Mx
Ru and R= {K—u2>1—u01-\-uu10=0} ciV3, where uij=U(<ij). Note that by a
linear change of coordinates of R2, R can be transformed to a pseudo CK system
and we can apply the results of this section to R. We have

D(u)+K=d1
2d2-d2+ud1.

In [T2] it is proved that Ker<E>*^R3 with 1, u, u2+2ulfl as a basis. Moreover
it is easily verified that E\'l~E\tl. Thus the equation R has only three inde-
pendent conservation laws.

8. Noether theorem

The results of §5-7 imply a quantitative version of the classical Noether
theorem.

Let M=R\ N=MxRm. The notations are as in §3.1 and §5.4.

8.1. Quantitative version.

Theorem 8.1. Let R be the Euler-Lagrange equation with the Lagrangean
F^SN^ i.e., R={81F=---=8mF=Q}. Suppose R is a pseudo CK system.
Then

(i) E\--\R)^X{R),

(ii) dx: E
O

1''"
1(R)-*E\-1I-1(R) is injectivefor n^2, and

Q-^R-+ EV\R) -* E\'°(R)

is exact for # = 1 .

Recall that El'"'1 is the space of conserved currents of R (cf. Remark 4.5

(ii)).

Proof, (ii) is Corollary 7.22.
By Proposition 5.5, we have <&=<l>+, whence <&s=&g. Then by Theorem

6.6 and Theorem 7.21

E\'-\R) =*

~ X(R) . Q.E.D.

8.2. Explicit version. Let R= {8jF=0} be as in Theorem 8.1, i.e.,

with Fj^A satisfying (7.11). Put £>-»=£>-«(R)
Let fi: £?-"-1->_£'(.R) be the composition of dx: Ei-—1-^El-"'1 and the iso-
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morphism of Theorem 8.1 (i). The elements of Im /J, are called the Noether
symmetries of R.

Indentify X{R) with Kei®s<zA(R)m by Theorem 6.6, regard A(R)cA as in
§7.5 and use notations of §7.31. Then Theorem 7.5 and Corollary 7.52 implies
the following direct and inverse Noetheor theorems.

Theorem 8.2.
( i ) fi maps [IZiJidx^El'"-1 to 4>=(4>19 -,4>m)€EA(R)m, with 0 , = 2 / w a . .

(ii) 0=(^>1, '"icj)m)^:A(R) is a Noether symmetry if and only if

(iii) If <j> is a Noether symmetry, fi~1<f>&Eiwn'~1 is represented by 2 , = i ( J A '

(Ji=Ji+\**[x,OW,Ji=Ji (f^2)), where

Ji = ZS/M1.l2y-i

with Sjtl defined by (5.44) and K=

REMARK 8.21. (i) and (ii) are given essentially in [Mar].

8.3. Classical version. Finally we write the condition of $^X(N) to be
tangent to R^ and induce a Noether symmetry.

Let R be as in §8.2. Indentify X(N)=Am by Proposition 6.21.

Theorem 8.3. Let 4>=(4>i,'",(j)m)^X(N). Then cf> is tangent to R^ and
[(j) I Roo] G.£(i?) is a Noether symmetry if and only if

Proof. By definition

L+(Fdx) = i(4>)8(Fdx)

By Lemma 5.41, there is an ^Gdi"" 1 such that

S(Fdx) =

By Lemma 6.31, we have

d) = i

Since ^=29 /^>9/9«/>
 w e obtain

(mod.
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Thus Lt(Fdx) e l m 9 if and only if

which is equivalent <^elm^ by Theorem 8.2. Q.E.D.

This proof shows also the following

Corollary 8.31. Suppose <£=(fa, • • •, <$>m) e X(N) satisfies L+(Fdx)=day (3a> <E
nft*""1). 77te» ^ I J ? ^ w a Noether symmetry and corresponds to

Jv^"1 w defined by (5.411).

9. Backlund correspondences

The flat connection H defines a class of correspondence between solutions
of differential equations. This includes the usual Backlund transformation.

9.1. Focus our attention on the following aspect of the usual Backlund
transformations: Let JR and R' be two differential equations. A Backlund
transformation T transforms solutions of R and Rf to holonomic equations
whose solutions are those of R' and R respectively (cf. Remark 2.23 for the
meaning of "holonomic''). In other words solutions of R and Rr allows us to
obtain families of solutions of R' and R respectively by integrating ordinary
differential equations. Thus T defines a point to finite-dimensional submani-
fold correspondence between £<U(R) and £&l(Rr).

This aspect, which seems to be essential, is not lost by the following gene-
ralization.

Let p*: Nl-^M (i=\,2) be bundles and suppose 12'ciVj', (i=l,2) satisfy
Condition 2.3. We call a submanifold RdNk(N=N1XMN2) a Ba'cklund map
from R1 to R2 if

is a subbundle of NOO=NIOXMNL and q1]^ has finite-dimensional fibers, q1 be-
ing the natural projection: N^-^Nl. Here N=N1XMN2={(y1

yy
2)^N1xN2;

p1y1=p2y2} is the fiber product. If R is also a Backlund map from R2 to i?1, i.e.,
(f I £: R->Rt has finite-dimensional fibers, then R is called a Backlund correspon-
dence between R1 and R2.

Let R be a Backlund map from R1 to R2. For sl^£cU(R})y let R(sl)(ZR2
oo

be the pull-back of the bundle R-+RI by si:

where n2\ NL->M is the projection. By definition, R(s1)-^M is a finite-dimen-
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sional bundle.

Proposition 9.11. If R is a Backlund map from R1 to R\ then R(s1) is an
intermediate integral of R2 (cf. Remark 2A3), i.e.,

Proof. Let y2^R(s1). By definition y=(y1,y2)^R9 where y1=sl(x), x—

Ay2)-
Let X^TXM. Let X(E(HN)y and J P e ( # » / ( * = 1 > 2 ) b e i t s horizontal

lifts. Obviously 3F=qi*JE(i=l92). Since H's are tangent to Rw and RL ( I = 1 , 2 ) ,

we have l^TyR^ and J P e T / R i (*'=1,2). Hence

Moreover we have X<=Ty{{qlylsl{M)\ since Xl=sl*X. Hence

Since {HR2)y2 is spanned by (-S^'s, the assertion follows. Q.E.D.

Thus, when we have a Backlund map R from R1 to R2 and a solution s1 of
i?1, we can obtain solutions of R2 by solving the holonomic system R(s1), which
can be reduced to ordinary differential equations.

Note that even if the fibers of R-^R1 are not of finite dimension, Proposi-
tion 9.11 still holds. But we cannot obtain solutions of R(s*) by solving only
ordinary differential equations. This shows that the finite-dimensionality of
the fibers of R-+RL is the essential property of Backlund maps.

REMARK 9.12. Pommaret considers in [P] a similar situation as ours,
which differs, however, from ours essentially in the following two points. First
he starts from RdNk(A

T=N1X MN2) and then takes up and solves the problem of
finding the equations whose infinite prolongations are q^RJj's (z*=l,2). Thus
he finds equations R*'s for which a given R is a Backlund transformation. Sec-
ondly he does not pay attention to the condition of finite-dimensionality of
?fli?oo (z—1>2), which is from our point of view the essential aspect of Backlund
transformations.

EXAMPLE 9.13. Let M=R2
y N'=Mx R (z'=l,2). Denote by u* the linear

coordinate on the fibers of Nl-^M («= 1,2). Let R*CNi (i= 1,2) be the modi-
fied KdV equations:

(9.131) wOtl-6w

(w=ul, u2). Define R<Z.NX by

(9.132) ul^+ulo+tf-u'+u2 = 0

where k is a constant. Then it is easy to see that
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where [^]={^,o>/— 0,1,2, •••}. In particular, the projections i?-»i?L(*=l,2)
have one dimensional fibers. Note that on R we have automatically the equa-
tion

(9.133) < i + < i = 4 ( - & X o + < o + < o X + < o X )

(X=ul—u2). Usually (9.133) is considered as the one half of the defining
equations for the Backlund transformations but in fact (9.133) follows from
(9.132) and (9.131) (w=u\ u2).

REMARK 9.14. Given an equation i?1, it is important but difficult to con-
struct Backlund correspondences between Rl and other equations.

There are two methods known, Hirota's [Hi] and Whalquist-Estabrook's
[WE]. The main part of the latter is to construct a Lie algebra Q of finite
dimension and a Q-valued 1-form oo^Qt&Cl0^ such that

dco—[co, GO] = 0 ,

where [2X,<gW, 2 ^ 0 ^ = 2 [ - * / , Yj]®coiAv
i for Xh

9.2. We compare our definition with that of Pirani and Robinson (cf. [PR,
PRS]).

Their definition is in our terminologies as follows: Let N{->M (/= 1,2)
be bundles and -v/r a cross-section of the bundle n\ N\x MNl->Nl X MN2. Define
R*=p-1(Imty), where p: Nk=NlxMNk->NlxMNl is the natural projection.
Let RiaNlxMNl be the infinite prolongation of R+. Obviously the projec-
tion TT^NIXMNI-^NIXMN2 is a diffeomorphism on Rt. Put JS*=*«,(#£).
Then ty is called a Backlund map if R^ is in the infinite prolongation (in the
obvious sense) of some RaNl+iXMN2. When the image of R^ under the
natural projection NLXM^-^NL is in the infinite prolongation of some R1d
Nl+i, yjr is called an ordinary Backlund map for R1. Finally, when the image
of Rt under the natural projection AT̂ —>iVi is in the infinite prolongation of
some i?2ciV?+i(^), ty is called a Backlund transformation between R1 and R2.

Note that an ordinary Backlund map in their sense is also a Backlund map
from R1 to iV2 in our sense. In fact, by the definition of Rt, it is obvious that
the dimension of the fibers of Rt-^Nl coincides with that of the fibers of N2->
M.

However, a Backlund transformation ty between R1 and R2 may not be a
Backlund correspondence between R1 and R2 in our sense, since the finite-dimen-
sionality of the fibers of Rt-^Rt does not follow necessarily from their defini-
tion.
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10. Concluding remarks

10.1. Motivations. The motivation of this paper is in Proposition 4.8, which
came naturally from an effort to unite the two important aspects of differential
forms: they define cohomology classes and differential systems.

This proposition aroused the problem of computing Ep'q(R), which turned
out to be connected with various problems such as characteristic classes of
foliations (Remark 4.51 (iii)), symmetries (§6), Gelfand-Fuks cohomologies
(§3.3) etc.. Thus the description of E\'n~l{R) for determined systems i? (The-
orem 7.21), which is useless viewed from the original motivation, is not insig-
nificant and actually gives us a method of computing the conserved currents of
various differential equations (§7.6).

However at present the knowledge about Ep
r'

q(R) is quite unsatisfactory,
especially for overdetermined systems.

10.2. Languages. Manin says in [Man] there are three equivalent languages for
the formal study of differential equations—classical, differential-algebraic, and
geometric. This paper uses the geometric one in developing the basic notions
and the classical one, which uses the standard coordinate on iV^ l . 3 ) , in the
proofs and examples.

Note that the languages used in [Man] is "extrinsic", i.e., consider the
pair (iVoo, c?oo) (§2.2) the basic object, whereas [VI] and this paper use intrinsic
languages, i.e., the manifold R^ is regarded as the basic object (cf. Remark
2.43).

Further note that [VI] uses differential-algebraic, algebraic-geometric, and
categorical terminologies to define various concepts including Ep

r'
q(R), whereas

this paper uses only differential-geometric ones. In fact only one basic notion,
the flat connection HR (§2.4), is enough for theoretical development, with a
little loss of generality of R however.

10.3. Problems. In spite of the simplicity of their definitions, the invariants
HRi fl$f* and E?'*(R) of R have many nontrivial problems related to them.

Here are some, which seem to deserve further investigations.

10.31. Describe the theory of characteristics of R by HR and flj f* (cf.
Remark 6.16 for the Cauchy characteristics).

10.32. When dim M=2, dim JV=3, RdN2y state the applicability to R
of the Darboux's method of integration ([Gou]) in terms of £lp*. This seems to
clarify the geometric background of this method and to enable us to generalize
it.

10.33. Develop the theory of Backhand correspondences along the lines
in §9. Unite it with the Whalquist-Estabrook method ([WE]), cf. Remark
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9.14). This might give us a method of constructing elements of Ep
r
l9(R) (cf.

[WSK]).

10.34. Calculate £?'3(i?) for the Yang-Mills equation on R\ [GS] con-
structs 15 independent elements. Since R has soliton solutions, it can be
infinite-dimensional.

10.35. ( i ) Compute 0;>oZ?L'6~''(i2) for the equation R of integrability
of almost complex structures (§3.8) on M=S6.

(ii) Is it possible to use E{'q(R) of §3.8 for the deformation theory of
complex structures (cf. §4.6)?

(iii) Compute H*(W2n, L%\ R) (cf. Remarks 3.81, 4.82). FP+1H* might
measures Im (TTP g<U{R)-^7tp{TR)=7tp{TN)). (cf. Proposition 4.4). Note that
7tp(TN)®zR is "calculable" algebraically by the Sullivan theory ([Su]).

10.36. Compute H*(WV oq; S*Wg') (cf. §4.2).
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