
Title The theory of construction of finite semigroups.
III. Finite unipotent semigroups

Author(s) Tamura, Takayuki

Citation Osaka Mathematical Journal. 1958, 10(2), p. 191-
204

Version Type VoR

URL https://doi.org/10.18910/5485

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Tamura, Takayuki
Osaka Math. J.
10 (1958), 191-204.

The Theory of Construction of Finite Semigroups III.

Finite Unipotent Semigroups.

By Takayuki TAMURA

As defined in the previous paper [4], we mean by a unipotent
semigroup a semigroup which has unique idempotent, and in particular
by a z-semigroup a unipotent semigroup whose unique idempotent is a
zero 0, i. e. Ox = xO = 0 for all x and a unipotent semigroup which con-
tains a non-trivial group as a proper subsemigroup is called a unipotent
semigroup with group.

As a special case of [2], we see that the study of finite unipotent
semigroups with group is reduced to that of finite 2-semigroups. But, as
far as finite ^-semigroups are concerned, the complete theory has not
yet been established, although it has been done partly in [1], [4]. In
§ 1 we shall investigate the structure of finite ^-semigroups by defining
a new ordering, so that some results in the previous paper [1] will be
explained more easily here. In § 2, we shall construct finite ^-semigroups
by the decompositions of certain finite free z-semigroups, and finally in
§3 we shall complete the construction theory of a unipotent semigroup
with group to complement the results in the previous paper.

§ 1. Fundamental Properties of ^-Semigroups.

S denotes a finite ^-semigroup. It is easily shown that a subsemi-
group of S is a finite z-semigroup and the homomorphic image of S is
also a finite ^-semigroup.

1. Partial Ordering. Let a and b be elements of S. The element
a is called a multiple of the element b if one of the following four
equalities holds:

(1.1) a = bx for some xeS.

(1.2) a=yb for some y^S.

(1.3) a = zbu for some zy

Lemma 1.1. Every non-zero element of a finite z-semigroup S is
never a multiple of itself.
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Proof. Suppose that a is a multiple of itself, and then consider
X={x;ax = a], Y={y;ya = a}}

Z = {z; zau = a for some u£S depending on z). X, Y, and Z are
the subsemigroups which contain 0. Hence we get a = 0, q. e. d.

We defined in [1] the left ordering # > b and the right ordering <z> b.
I r

Let us, here, introduce a new ordering a^>b meaning that either a = b
or a is a multiple of b.

Lemma 1.2. The ordering a^>b is a partial ordering.

Proof. The reflexive law is trivial. At first, we shall prove the
transitive law. Suppose a^b and b^c. The proof is obvious in the
following cases: (1) a = b or b = c (2) # > b and b>c (3) # > δ and δ>c.

I I r r

In the other cases, we get easily a = zcu for suitable z, u£S. Next, we
shall prove the symmetric law. If a^>b and b^ay we see easily that
a or b is a multiple of itself, leading to a~b = 0 by Lemma 1.1, q.e.d.

Clearly the zero 0 is the greatest element of S with respect to the
ordering I>. a^>b denotes that a^>b and aφb.

Rewriting Lemma 1.1,

Lemma 1.17. // #ΦO, then ab~^>a, ba^>a for any b> and bac^>a
for any b, c.

2. Primes and Height. According to [1], an element is minimal
with respect to the right ordering if and only if it is minimal with
respect to the left ordering, further if and only if it is minimal with
respect to the ordering :>. A minimal element x is called a prime,
which means that x cannot be divided into a product of elements. In a
finite ^-semigroup, there is a prime at least. S—S2 is the set of all the
primes of S.

Lemma 1.3. // a covers^ by then we have a = bp or a=pb for some
prime p. But the converse is not true.

Proof. We shall use Lemma 1. Γ in the proof. If a = 0, then bφO
and bpy>b, pb^>by hence bp=pb = 0 for any prime p. Hereafter assume
βΦO. We have not a = xfbyf but a = bp or a=pb for some pΦO,
because, if not so, x'bφO, δφO, and ά^>x'b^>by which implies that a
would not cover b. If p is not a prime : p = zuy then a = bzu or a = zub
where k φ O , ώΦO. Henceforth we get b<^bz<^a or b<^ub<^a, con-
tradicting the assumption. The converse is not true as the following
example shows. In the semigroup {0, a, b, c} with multiplication

1) a^>b and a^>c^>b for no c.
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0

whose diagram is a (isomorphic to 94 in [3]),

c is a prime, but be does not cover b. q.e.d.
Let S be isomorphic to S/ under /, and let x' and / be the isomor-

phic images of x and y respectively. Then x'^>y' in S' if and only if
x^>y in S. Meanwhile, if / is a homomorphism, then it holds that
x^>y in S implies # ' ; > / in S'y and a homomorphic image of a prime is
not necessarily a prime, q.e.d.

Consider a chain having x as its greatest element:

(1.4) x1<Cχ2<C'"<C.Xk — x w h e r e x{ c o v e r s x£_1(i — 2, •••, k) a n d xx

is a prime.

Then we say that x has a chain of length k. We term the height H[x~\
of x as the maximum of lengths of chains which x has. The maximum
of heights of elements of S is called the height H\β~\ of S. Clearly
H\_x~\ = 1 if and only if x is a prime.

Lemma 1. 4 is proved easily and Lemma 1. 5 is obtained in the same
way as Lemma 9 and Corollary 6 in the previous paper [5],

Lemma 1.4. (1.5) x<^y implies H

(1. 6) H[a\ = H[S] if and only if a = 0.

Lemma 1.5. Let l = H\jί\. Then there is a chain

Xι<X2<~-<Xι = a>

where x1 is a prime, x( covers xi_ί(i = 2> 3, •••, /), and H[x^ — i (i = l,

Now we get a theorem.

Theorem 1.1. Any element of a finite z-semigroup is factorized into
a product of a finite number of primes. In detail, if x has a chain of
length ky then x is expressed as a product of k primes. But the expression
of factorization is not necessarily unique.

Proof. Lemma 1. 3 makes us see easily that an element x having
a chain (1. 4) is factorized into a product of k primes.

To verify the latter half, we give the examples as follow. Let us
consider the semigroups 275, and 235 given in [3],
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 a υ υ υ υ υ 2 3 5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 a
0 0 0 0 a
0 0 a a b

where c and d are primes and

a = dz = d2c b = c2 = cd =d2 in 275

a = dz =cd in 235, q.e.d.

Lemma 1.6. Let h = H[S~\. Any product of h primes is 0.

Proof. Let px" ph be a product of h primes. Without loss of gen-
erality, we may assume P1"'ph"¥θ\ and we get

z- βh by Lemma 1. Γ, so that

whence H\_pxp2 ••- ph~] = h and so pxp2 ••• ph = 0 by (1.6) of Lemma 1.4.

Theorem 1. 2. For a finite z-semigroup S, there is a positive number
h such that

Sh={0\y and S'φ{0} for l ^

This h is nothing but £Γ[S].

Proof. Let h = H[S^\ = H[02. Any element y of SΛ is expressed as
y = zxz2 -•• zh. Since each z{ is divided into a product of primes, y is
expressed as a product of /? primes at least:

= (Pi~ Phi (Ph+i ~-pι) = 0 by Lemma 1. 6.

Therefore S w ={0} for m^hy and by Lemma 1.5 there is a chain

= 0

where <ί/[jyf ] = *\ JΊ is a prime; and so j>f is divided into the product of
i primes by Theorem 1.1. Hence Sf'=t= {0} if 1 <Li<Ch. Thus this theorem
has been proved, q. e. d.

If ax = xa = 0 for all Λ GS, then a is called an annihilator of S.
When H\S~\ — h, any product of h—1 primes is an annihilator. If h^>2,
then there is an annihilator beside 0, and it is covered by 0. S^1— {0} is
the set of all non-zero annihilators. If h = 2, then S is a semigroup
defined as xy = 0 for all x, y £ S.
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3. Depth. By the way we shall define a term "depth". By the
"depth D\_x~] of an element x" we mean the maximum of lengths d of
chains combining x with 0:

x = x1<Cx2< ••• <xd = 0 ,

xt convering xi_1(i = 2, •••, d). The maximum of depths of elements of
S is called the depth D[S] of S. Of course Z)[Vj = l if and only if
x = 09 and D[S] = H[S].

We get easily the following lemmas

Lemma 1.7. x<Cy implies D[.x']^>D[y].
Analogously to Lemma 1. 5,

Lemma 1.8. Let k = D[a], Then there is a chain

a = yk<yk-i< -" <yz<yi = o

where y^x covers y{ (i = 2, •••, k) and D{_yi'\ = i (f = 1, •••, k).

Lemma 1.9. Let p19 p2> •••, pm be all the primes of S, and let # Φ O .

D[x~\ = i if and only if

(1. 7) Max. {DlxPj], D [ > ^ ] } = ί - 1 .

§2. Decompositions of the Free ^-Semigroup.

1. The number of primes of S is called the basic breadth of S.
The height and the basic breadth of S will play an important role in
the construction of a finite ^-semigroup S. As the simplest case, we
found the structure of S of basic breadth 1 in the paper [1] : If and
only if a finite ^-semigroup S has a unique prime, S is a finite power
2-semigroup and this is characterized by the condition that S is a chain
with respect to the ordering ;>.

In order to research construction of a finite ^-semigroup S when
the height h and the basic breadth m of S are given, it is convenient to
obtain S as a homomorphic image of certain free 2-semigroup generated
by m elements. It is for this reason that the free ^-semigroup is finite
as we shall see. Hereafter suppose h^>2> m^>l.

Here are given m + 1 elements p19 ~ y pm, 0. Let F consist of 0 and
all the expressions

PhPi2~' Piv

where l<v<^h and each // is one of 1, •••, m(j=ly •••, v) and the mul-
tiplication in F is defined as follows.
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xθ = Ox = 0 for all x € F, and

for x=ϋ:, ••• ύ. , y = fiu ••• £,-„.,

xy =
1 0

we see easily that F is a ^-semigroup of height h with primes
A»> and the number of elements of F is

in which mi is the number of elements of height /. F is called the free
^-semigroup of height h and basic breadth m. Any ^-semigroup S of
height h and of basic breadth m is obtained as a homomorphic image of
F. Hence we have

Lemma 2.1. Let n be the order of S.

1 ^ ^ mh—l

2. In order to construct all S of height h^>l and of basic breadth
> we must find all the decompositions F = Σ CΛ (CβΛCβ = φ, Λ=t= )̂

of F satisfying the following conditions:

(2.1) For a and a prime p{, there are β and γ (depending on pt)
such that x.yeCc imply xpi9 yp{^C&y p{x, p

(2. 2) Each prime element of F composes a class of only itself :

CΛi={Pi) (ί = l, .- , m).

(2.3) There are h classes C0 1, Cβ?, •••, C$h such that {^Jr^Cρ^ and
Cβj contains a multiple of an element C&J_1(j = 2J •••, //).

3. Find a system {^, •••, av} of mutually incomparable25 non-prime
elements of F for which there is an element b at least such that H\_b~\
= h—l and a^b for all /. Every ideal 7X is determined by the system
{aly •••, ίzv} as / ^ Σ W where P(ai)={x\ x^a{) and so aly •••, βv are
minimal in Ix. Let us define 72, •••, 7A by induction. Assuming that I19

Λ> •••> Ij-i a r e already obtained, 7/ denotes the set of all the elements x
of F - Σ 7 * which fulfil

2) If neither x^>y, nor Λ:=^ nor #<O> we say that ΛΓ and y are incomparable.



The Theory of Construction of Finite Semigroups III. [197

xpi £ Σ h and piX € Σ Λ f ° r all primes />,..

I2y •-, lh are non-empty as we shall show.

Lemma 2.2. H[χ~] = h—j implies Λ Γ G Σ Λ (^ = 0, 1, •••, A—1)
V = l

Proof. The lemma is true for j = 0, because H\_x~\ = h implies
x = §€l1. Assuming that it holds for j < λ — 1, we shall prove that

λ+l

= h—\ implies #£]Γ;/V. By Lemma 1.4,
v = i

= A—λ i e Hlxp ^h-iX-l) for all primes p{ from

which we get xp{ e Σ / v for all p{ by the assumption of induction.
X V = 1 λ + l

Similarly p{x e Σ ί v for all p{. Henceforth Λ: € Σ h by the definition of
V l l

Lemma 2.3. ΐ5 (j = 2, --, h) are not empty.

Proof. Any element b of height h—1 outside the ideal Ix is contain-
ed in /2. By Lemma 1.5, we have a chain

where bi+1 covers bif H[bi'] = i (i = l, •••, A—I) and 6j is a prime. We

shall prove bh_jelj+1 (j = 2> •••, A—1). Since we have known bh

(j=2, •••, A— 1) because of Lemma 2.2, we may show

(2.4) ft*-igΣ/v O' = 2, - , A- l )

Assuming truth of (2.4) for j <X — 1, we have V χ ^ Σ ^ because
v=i

bh-cχ-o = bh-λPi or A&Λ-λ for certain A, q.e.d.
Thus we have obtained a sequence

which will be called a principal sequence.

4. First, let C0 = Ily and decompose all the elements of I2 into
arbitrary number of classes:

Σ3

without condition except one (2.2); thus we have a partition of IX\JI2
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Let x^>y mean that the elements x and y of Iλ\Jl2 belong to a certain class
CΛ. Reminding us of Theorem 1.1 and the definition of 72, we may see
immediately that ~ is a congruence relation in / ^ / ^

By induction we shall define the relation x~y (2<Cj<h) in the

subsemigroup Σ Λ of F. Assuming that the relation #"~ y in Σ A» * s

v=i ._ Pj-i i v = 1

defined and that Σ ^ = Σ C Λ , a relation x~y in Σ / v , which gives a

decomposition Σ / V = ΣC«> is defined such that
v=i a=o

(2.5) If x, yζ'ΣIy* then #~.y is equivalent to x~y.

(2.6) If x, yeljy then xpi~ypi and PiX~Pιy for every prime £,..

(2.7) If x or y is a prime, then #~:y means x=y.
It is easily proved that each relation #~jy is a congruence relation

y

in Σ / v ( i = 2, •••, A).

At last the relation #~jy gives a decomposition of F :

(2.8) F = Σ C t f where C^nC^^φ (Λ=Φ=/3).

As easily seen, the decomposition (2. 8) fulfils the conditions (2.1),
(2.2), (2. 3). Denoting by S the factor semigroup of F due to (2. 8), S
is a ^-semigroup of height h and of basic breadth m, and clearly the
elements of Ij are associated with an element x of S such that D[x']=j.

5. Thus we establish the following theorem.

Theorem 2.1. Let F be the free z-semigroup of height h and of
basic breadth m with primes ply -- >pm. Take a system {alf -~, <zj of
mutually incomparable non-prime elements of F such that there is by a{ $ by

H[b~] = h—1 for all i. Ix is defined as Iλ = Σ P(^i)- For a principal
ι = l

sequence Tly •••, Ihy classify all the elements of I2 such that (2. 2) is satisfied:

I2 — ΣCαs, and then classify all the elements of T3y -yIh succcessively

such that (2. 5), (2. 6) and (2. 7) are fulfilled:

Is= Σ CΛ (j = 3, .-, A).

The factor semigroup S of F due to the decomposition F = Σ C Λ is a z-

semigroup of height h and of basic breadth m. Any S is obtained by the
above process.
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6. Finally we shall find a necessary and sufficient condition for two
decompositions of F to give isomorphic factor semigroups. The height
and the basic breadth are preserved under an isomorphism, and a prime
is mapped to a prime. Let S and S' be the factor ^-semigroups of
h and of basic breadth m given by the decompositions (2. 8), (2. 9) of F
respectively,

(2.9) F = ΣC;,

the relations of which are denoted by ~ and ^ respectively. If S is
isomorphic onto S', then the isomorphism causes a permutation / between
primes P19-~,pm of F. The image x' of x=ph ••• piλ of S into S'
must be x'=f{piι)- f{piλ), and ph '"piλ—pj1 ••• pjv corresponds to f(ph)

'"/(Pi})^ίf(Pjι)'"f(Pj\)' Thus a class Ca is associated with a class Cβ'
such that

(2.10) ph-piχ of CΛ is mapped to f(ph) - f(Piλ) of C/. Cβ' is
denoted by f(CΛ).

Of course Ca-+f(Ca) is one to one. Hence we have F = Σ / ( C J .

Conversely if, for the decompositions (2.8) and (2.9) of F> there is
a permutation/of {p19 •••, pm) such that every Cβ' is expressed as f(CΛ)
for some a in the meaning of (2.10), then it is easily proved that S is
isomorphic to Sf under the correspondence Ca->f(Ca).

Theorem 2. 2. The two decompositions (2. 8) and (2. 9) of F make the
finite z-semigroups S and S7 be isomorphic if and only if there is a
permutation f between all the prime elements ply •••, pm such that the de-

composition Σ Cβ' coincides with the decomposition Σ/(C Λ ) where f(Ca)

has the meaning of (2.10).

§ 3. Finite Unipotent Semigroup with Group.

1. The theory of construction of a finite unipotent semigroup with
group is included in the paper [2] and in Theorem 7 of [5] as a special
case. Stating the result again

Theorem 3.1. Suppose that there are given a finite group G whose
multiplication is denoted by x-y, a finite z-semigroup Z whose multiplica-
tion is denoted by xxy> and a mapping ψ of the set Z of all non-zero
elements of Z into G such that

xeZ, yeZ and xxyeZ imply ψ(xxy) = ψ(x)-ψ(y).
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A multiplication xy in S = G\JZ is defined as

x y if xeG, y£G

x-ψ(y) if xeG, yeZ

(3.1) xy= { ψ(x)-y if xeZy yeG

xxy if x, yeZ and xxyeZ.

Then S is a unipotent semigroup having G as the kernal (i. e. its greatest
group and its least ideal), and the difference semigroup of S modulo G is
isomorphic to Z. S is denoted by S = (G, Z, ψ). Any unipotent semigroup
with group is constructed in the above mentioned way. Sx = (G1, Z1, ψj
is isomorphic onto S2 = (G2, Z2, ψ2) if and only if

(3. 2) G2 is isomorphic onto G2. (The mapping of Gλ onto G2 is denoted

(3. 3) Zj is isomorphic onto Z 2. (The mapping of Zλ onto Z2 is denoted
by η)

(3. 4) ψ* = f ~1/ψ> Ύi .3)

We say that ψ1 and ψ2 are equivalent if there are ξ and η satisfy-
ing (3. 4).

2. We shall add the way how ψ is found when a finite group G
and a finite ^-semigroup Z are given. A ^-semigroup Z of height h and
of basic breadth m is assigned as a decomposition of the free z-semi-
group Fy

F= Σ Ca
= = ^n

letting Z = { 0 , 1, 2, •••, μ19 μ± + l9 ••-, μ29 /*2 + l, •••, μH-x, μn-x + l, ~ ,μn}
and letting p19 --,pm be all the primes of Z. In order to determine ψ
of Z into G, it is necessary and sufficient to give ψ(p1), •••, ψ(pm) such
that the following condition is satisfied.

(3.5) implies

Then ψ is completely determined in Z as

for ph"'P

Now all the equalities of the kind of (3. 5) are simplified, if possible,
by cancellation law. The set of all the equalities thus obtained, if exist,
is called the system of the primary equations for Z. In order to find
ψ for the given Z and G, we must have all the systems of the solutions

3) for x e



The Theory of Construction of Finite Semigroups III. 201

(3.6)
Ψs(Pl)>

of the system of the primary equations for Z, where ψ{ and ψj (i=¥j)
are not equivalent, (cf. (3. 4)) We shall call (3. 6) a complete system of
solutions. Of course the system of the primary equations has always
one system of solutions at least, e.g.

ψipj = ψ(p2) = ... = ψ{pm) = e . (the unit of G)

If and only if Z satisfies the condition that any non-zero element
is uniquely factorized into the product of primes, then there is no primary
equation for Z, that is to say, we can arbitrarily choose ^{pλ)y •••, ψ(pm).
Even then a complete system of solutions is considered. Such a z-
semigroup Z is called a uniquely factorizable ^-semigroup.

§ 4. Examples.

1. We shall construct all ^-semigroups of height 3 and of basic
breadth 2. The free ^-semigroup of {0, p, q, p\ pq, qp, q2} has a diagram

where the ordering is defined in § 1. We can find all the principal
sequences except equivalent ones as the following table shows.

No. of Principal
Sequence

1

2

3

4

5

6

7

8

9

Table 1.

h

(0)

(0, P2)

(0, Pq)

(0, P\ Pq)

(0, P\ qp)

(0, P\ q2)

(0, pq, qp)

(0, P2, pq,

(0, P2, Pq,

Principal

qp)

q2)

(P2,

(pq>

(P2>

(qp,

(pq,

(Pq,

(P2,

(q2)

(qp)

Sequences

pq, qp, ί 2)

qp, <72)

qp, q2)

<?2)

<?2)

qp)

q2)

I:

(P,

(P,

(.P,

(P,

(A

(A

(P,

(A

(A

?)

q)

q)

q)

q)

q)

q)

q)

q)

We obtain all the decompositions (2. 8) of F.
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No. of
Principal
Sequence

1

2

3

4

O

c
b

7

8

9

Decomp-
osition

1

2

3

4

5

6

7

8

g

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

/ i

(0)

(0)

(0)

(0)

(0)

(0)

(0)

(0)

(0)

(0)

(0)

(0, P2)

(0, P2)

(0, P2)

(0, P2)

(0, P2)

(0, Pq)

(o, jβO

(0, ^ )

(0, pq)

(0, j>?)

(0, P2, Pq)

(0, />2, />?)

(0, P2, qP)

(0, />2, qP)

(0, />2, ? 2 )

(0, P2, q2)

(0, ^ , ^ )

(0, pq, qp)

(0, />2, Pq, qP)

(0, ^2, ^ , q2)

h

(P2), (Pq), (qp), (q2)

(P2, Pq), (qp), (q2)

(P2, qP), (Pq), (q2)

{P2, q2), (Pq), (qp)

{pq, qP), {P2), {q2)

{P2, Pq), (qP, q2)

(P2, qP), {pq, q2)

{p2, q2), {pq, qp)

(P2, Pq, qp), (q2)

(P2, Pq, q2), {qP)

(P2, Pq, qP, q2)

{pq), {qp), {q2)

{pq, qP), {q2)

(Pq, q2), (qp)

{qp, q2), {Pq)

{pq, qP, q2)

{p2), (qp), (q2)

{p2, qP), (q2)

(P\ q2), (qP)

(qp, q2), (P2)

(P2, qP, q2)

{qp), (q2)

(qp, q2)

(pq), (q2)

{pq, q2)

{pq), (qp)

{pq, qP)

{P2), {q2)

{P2, q2)

(q2)

{qp)

Is

(P), (q)

(P), (q)

(P), (q)

(P), (q)

(P), (q)

(P), {q)

{P), {q)

{P), {q)

{P), {q)

{P), {q)

{p), {q)

(P), (q)

(P), (.q)

(P), (q)

{p), (q)

(P), {q)

(P), (q)

(P), (q)

{P)> {q)

(PX (q)

{P), (q)

(P), (q)

(P), (q)

(P\ (q)

(P), (q)

{p), {q)

{P), {q)

{P), {q)

{P), {q)

{P), {q)

{p), {q)

Remark

O *

o *
x O

o
o

x O

X

x O

X

X

o *
x O

x O

x O

X
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These are not isomorphic each other. In the above table, the mark
x means " commutative", * does " self -dual", and the semigroup marked
O has an automorphism except an identical mapping. Among the
above, the semigroups of order at most 5 are seen in [3].

2. The ^-semigroups 1, 12, 17, 22, 24, 26, 28, 30 and 31 are uniquely
factorizable. We shall show the primary equations for others in the
following table.

Table 3.

z

2, 3, 6, 7, 9, 10, 11, 14,
15, 16, 18, 20, 21, 23, 25

4, 19, 29

5, 13, 27

8

the system of the
primary equations

<KA) = <K<7)

Ψ« 2 = Kί)2

ψωHϊ)=ψ(ί)ψω

Example 1. Let G be a group of order 3:

G : a a b c
b c a
cab

For the uniquely factorizable Z of No. 31, reminding us of the auto-
morphisms of G, we have a complete system of solutions:

+-(*!). + =(fί)
Example 2. Let G be a symmetric group of degree 3

a b c d e f

d

e
f

a
b
c
d
e
f

b
c
a
f
d
e

c
a
b
e
/
d

d
e
f
a
b
c

e
f
d
c
a
b

f
d
e
b
c
a

and let Z be of No. 8. From
a complete system of solutions:

9 we get

Example 3. Let us find all the unipotent semigroups S = (G, Z,
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when G is a group of order 3 as given in Example 1, and Z is given as

0 d e f
. 0 0 0 0

Z : d 0 0 0 0 (No. 31 in Table 2)
0
d
e
f

0
0
0
0

0
0
0
0

0
0
0
d

0
0
0
0

where e and / are the primes. According to Example 1, we have

_ ( d e f \ , _ ( d e f \ , _ ί d e f

By (3.1), we get S, for ψ, (i=l, 2, 3, 4).

a
b
c
d
e
f

a
a
b
c
a
a
a

b
b
c
a
b
b
b

c
c
a
b
c
c
c

d
a
b
c
a
a
a

e
a
b
c
a
a
d

f
a
b
c
a
a
a

a b c d e f

a a
b
c
b
a
b

b
c
a
c
b
c

c
a
b
a
c
a

b
c
a
c
b
c

a
b
c
b
a
d

b
c
a
c
b
c

a
b
c
d
e
f

a
a
b
c
c
b
b

b
b
c
a
a
c
c

c
c
a
b
b
a
a

d
c
a
b
b
a
a

e
b
c
a
a
c
d

f
b
c
a
a
c
c

a
b
c
d
e
r

a
a
b
c
a
b
c

b
b
c
a
b
c
a

c
c
a
b
c
a
b

d
a
b
c
a
b
c

e
b
c
a
b
c
d

f
c
a
b
c
a
b

Although have ψ'2= Mf * J , S7

2 which
\b b a I

is obtained from ψ2 is anti-isomorphic
to S2.

(Received August 23, 1958)
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