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1. Introduction

Let G be a finite p-solvable group with a Sylow p-subgroup of order p? k
an algebraically closed field of characteristic p>0, kG the group algebra of G over
k, {(G) the nilpotency index of the radical J(kG) of kG and /(M) the Loewy length
of (right) kG-modules M.

S. Koshitani [4] and D.A.R. Wallace [14] proved thata(p — 1)+ 1 <#(G)<p”. Y.
Tsushima [12] proved that the second equality #G)=p® holds if and only if a
Sylow p-subgroup of G is cyclic. Here we shall study the structure of G with
(G)=ap—1)+1. If G has p-length 1, then by K. Motose and Y. Ninomiya [9]
(G)=ap—1)+1 if and only if a Sylow p-subgroup of G is elementary
abelian. Therefore we shall be interested in the structure of G of p-length 2 with
HG)=a(p—1)+1. As such examples, we know the followings.

Let F=GHp") be a finite field of p" elements for some integer n with p|n, 1 a
generater of the multiplicative group F* of F, v=17"""1 and V be the additive
group of F. Let T(p") be the set of semilinear transformations on V of the form
v o’, aeF* o a field automorphism of F (see [11, p.229]). Then we can
consider semidirect product V><IT(p") of ¥V by T(p"). Let To={v - aw’| ae{v),
oceGal(F/GF(p"?))} < T(p"). Then we define Apnp,=VXT, = VXTP") (see
[3]). A Sylow p-subgroup of 4,,, is of order p"*'. In [7] K. Motose proved
HA,,)=n+1)p—-1)+1.

Now, following K. Motose and Y. Ninomiya [8] we call G p-radical if
J(kG) < (kP)kG, where P is a Sylow p-subgroup of G. Then 4,,, is p-radical
(see [13]). So we consider the structure of p-radical group G with {G)=ap—1)+1.
In [3] we proved that such groups G satisfy G=0, , ,,(G). In this paper, we
shall prove the following result.

Theorem. For a p-radical group G the following conditions are equivalent.
1) «G)=ap-1+1.
(2) UPgk)=alp—1)+1, where Pyk) is the projective cover of the 1-dimentional
trivial kG-module k.
(3) The following conditions hold.
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(i) O"(G)=N>H for some elementary abelian p-group N and a (p-radical)
group H, where OF(G) is the minimal normal subgroup of G of index prime to p.
(i) H=M>IP,where M is a p'-group and P is an elementary abelian p-group.

(i) P < pCy(x) for all xeN.
(4) The following conditions hold.

(i) O0"(G/O0,(G)=GyxN,, where N, is an elementary abelian p-group and
G, is isomorphic to a normal subgroup of 11, A, ,. , with p-power index for some n;’s.

(i) O, (G1)=0,(G)x O0,(G,), where G, is an inverse image of G, in G.

2. Preliminaries

In this section we shall prepare some lemmas and propositions which will be
used to show the theorem.

Throughout this section, except in the last four lemmas we shall treat a group
G of the form G=N>IH, a semidirect product of a p-group N by a group
H. Under the conjugation action, kN can be viewed as a kH-module.

Clearly J(kN)' is a kH-submodule of kN for all integer />0. We put

grkN:= ® JKkN)'/J(kN)'*1,

20

where J(kN)° means kN.

Lemma 1.1. Assume N=N,xN,. Then the map J(kN,)®JkN,)r— J(kN)
(@a®b>ab) induces a k-isomorphism

® JKN)"/JEN) 1@ JKN)? | J,N,) 2+ = JKkNY | J,NY 1.

Li+la=1

This isomorphism is a kH-isomorphism if each N; is H-invariant.

Proof. For simplicity, put J:=J(kN), J,:=J(kN,) and J,:=J(kN,). Notice
that the canonical map J,®,J, = J (a®b+— ab) induces an epimorphism

® J{I/J{l"‘l@k.]éz/']iz“'l_)J'/Jl‘f'l.

li+12=1

Since T X dim(Ji'/JrM @, J2/J)=dimiN= X dim,J'/J'*!, the above
120 L1 +I=1 120
map must be an isomorphism. From the construction, the last statement is clear.

Lemma 1.2. Let H={s) be a cyclic group of order p and N={x,) x --- x {x,»
be an elementary aberian p-group of rank p. Assume that the action of H on N is
given by xji=x;,, (1<i<p—1) and x,=x,. Then,
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a projective k H-module if 1#£0(modp)

JNY | JkN) 1 ~ {
Ky® (a projective kH-module) if 1=0(mod p)

for 0<i<p(p—1).
In particular, grkN~pky® (a projective kH-module)

Proof. For simplicity, put J:=J(kN). By the assumption on N and Lemma

1.1, we have a k-isomorphism J'/J'*'~ @ k(x;,—1)'® - ®(x,—1)>. We
L+ +lp=1
shall examine the action of H on J'/J'*1,

Let o, .., be element in J'/J'*! which corresponds to (x;,—1)'® - ®
(x,—1)». Then {ag, ...,:li+ - +1,=1} forms a k-basis of J'/J'*'. (ag,...,)°
=0, 1,1, SO § permutes the above k-basis and we see that o, ..., , is stabilized
by s if and only if [, =l,=---=[(=1[/p). Thus the assertion follows.

Lemma 1.3. Let N be an elementary abelian p-group and H be an abelian
p'-group with Cy(N)=1. Then there exists an element xe N such that Cy(x)=1.

Proof. If H acts on N irreducibly, then H is cyclic and Cy(x)=1forall 1 #xe N.

Since H is a p’-group, we have a decomposition where N=N, x N,, where
N, is H-irreducible and N, is H-invariant. Assume N,#1 and we shall use
induction on |N|.

Since H/ Cy(N;) acts on N, irreducibly and faithfuly, there exists x, € N, such
that Cy(x,)=Cy(N,). Since the action of Cyx(N,) on N, is faithful, there exists
x, €N, such that Cyx(x,)n Cy(N;)=1 by induction. For x=x;x,€N, Cy(x)=1 as
desired.

Proposition 1.4. Let H=M ><I{s) be a Frobenius group with p'-group M and
|s|=p. Assume N is an elementary abelian p-group. If grkN is a semisimple
kH-module, then se€ yCy(x) for all xeN.

Proof. Let n be the number of M-conjugacy classes on N. We shall show
|Cn(s)|=n. First we shall prove that grkN~n(ky)® (a projective kH-module).
Since kM is semisimple, we have Inv,(grkN)~Inv,(kN) and dim,Invp(kN)=n. As
M<JH, Invy(grkN) is a kH-submodule of grkN and is semisimple. Thus,
Inv,(grkN)=Invy(grkN). H is Frobenius and p-nilpotent, so its simple modules
are trivial or projective ones. Hence we have grkN~Inv,(grkN)® (a projective
kH-module)~n(ky)® (a projective kH-module) as desired.

Secondly, we shall give another decomposition of grkN. Notice that
N=[N,M]x Cy(M) and put Ny:=CpnM). By Lemma 1.1, grkN, is a semisimple
kH-module and therefore has a trivial {s)-action. So, grkN,=|N,|(k.) as
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k{s>-modules. Furthermore, {(Ny{(s))=1N,)+t(<s))—1 by Theorem 2.7 of [6].
Hence Ny{s) is elementary abelian, and so <{s) centralizes N,,.

Assume that [N,M]=1. Then N=N,, and so grkN=|N|(k.,) as k-
modules. Hence n=|N|=|Cy(s)|.

Next assume that [N,M]#1. Since H acts on [N,M] by conjugation, we
can regard [N,M] as an H-module. Every H-constituent of [N, M ] doesn’t contain
M in its kernel, and so is projective by the assumption on H. Hence [N,M] is
a projective H-module. Hence we have an {s)-invariant decomposition [N, M]
=NWx...x N™, where each N has the same expression as that of “N in Lemma
1.2”. So, by Lemma 1.1 and Lemma 1.2, grk[N,M]~p™(k.,)® (a projective
k{s)-module) as k{s)-modules. Therefore, by Lemma 1.1, we have grkN
~p™|Nol(k(ss)® (a projective k{s)-module) as k{sy-modules.

The above two decompositions of grkN imply n=p™|N,. Notice that
P"INol=|Cx(s)| since |Cyw(s)|=p for all i. Consequently we have |Cp(s)|=n.

Now, two distinct elements of Cy(s) are not M-conjugate each other: otherwise
they are C,(s)-conjugate but this does not happen since Cp(s)=1. Therefore Cy(s)
is a set of representive of M-conjugacy classes of N as |Cy(s)| =n and we get the result.

Proposition 1.5. Let H, M and s be as in Proposition 1.4. If N is elementary
abelian and se Cy(x) for all xe N, then M| Cy\(N) is abelian.

Proof. We imitate the proof of Theorem 3.3 in [15] and shall use induction
on |H|. We may assume that Cp(N)=1. And we may also assume that p is odd
as H is a Frobenius group. Notice that M is nilpotent.

Step 1. N and N, are irreducible.

Proof. Let N, be an irreducible M-submodule of N and No=<x™). Then
by our assumption N, ={x") and is H-invariant. This implies that N is completely
reducible as an H-module and the result follows by induction.

Step 2. Ny is homogeneous for all K<{H.

Proof. Suppose not and choose K<]H maximal such that Ny is not
homogeneous. Let Ny=N, x --- x N;, where N;’s are the homogeneous components
of Ny. By Step 1 K & M as H is Frobenius. Let L<]H with 1#L/K < Z(M [ K).
By the maximality of K, N, is homogeneous and therefore L acts on N;
transitively. In particular, H=NgN,)L. Thus Ny (N,)<<H as K< Npy(N,)
<INg(N,) and L/K < Z(M/K). N is not a homogeneous N,(N,)-module since
Ny(N,) can not act on {N,} transitively and Ny (N;)=K by the maximality of
K. So L=M and Nyu(N)=K for all i We may assume that se Ny(N;). We
claim that Ng(N,)NNgy(N,)=K. Suppose Ny(N;)=Nyx(N,). Thense Ny(N,). On
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the other hand, N,=N' for some ¢t in M\K and therfore s,5' '€ Ny(N,). So
[5,{]eNyg(N)A M=K and this contradicts to the hypothesis that H is
Frobenius. Now take 1#xeN, and 1#yeN,. For he Cy(xy), h?e Cy(x)n Cy(y)
as h permutes {N;} and x'=x, y"=y or x"=y, y'=x. Thus h2eNyN,)
NNy(N,)=K €M. Because we are assuming that p is odd, he M and Cy(xy) = M.
This contradicts to our assumption and Step 2 follows.

Step 3. If A<H is abelian, then A = Z(M). Furthermore, Z(M) is cyclic.

Proof. By Step 2 A is cyclic. Thus Aut A is abelian and M = Cy(A4) as H
is a Frobenius group with kernel M.

Step 4. (Conclusion) M =Z(M).

Proof. Notice that the prime factors of |M| and |Z(M)| coincide as M is
nilpotent. Suppose M #Z(M) and let A/Z(M) be a chief factor of H in
Z(M/Z(M)). Then A/Z(M) is an elementary abelian g-group for some prime
q. pl(g—1) since {s) acts on Z(M) regularly and ¢q||Z(M)|. Hence GFq) is a
splitting field for {s). Thus an {s)-invariant minimal subgroup of 4/Z(M) is of
order ¢ and it is M-invariant as A/ Z(M) < Z(M / Z(M)). Thus |4/ Z(M)|=q and
A is abelian. By Step 3 this is a contradiction.

We close this section with the following four lemmas.

Lemma 1.6. Let P be an abelian group and P act on a group M with
(PL,IM))=1. If [M,x] is abelian for all x€ P, then [M,P] is abelian.

Proof. It suffices to show that M,:=[M,x][M,y] is abelian for all
x,ye P. Notice that My=[M,{(x>{y)>] as P is abelian. [M,y] is an {x)-invariant
normal subgroup of M,. Let M,=M/[M,y], then My=[M,x]=[M,y,x]. Since
M, is abelian, Ciz (x)=1. This implies Cy (x) = [M,y]. Similarly, we can show
Cy(x) = [M,xy]. Hence, Cy (x) = [M,y]n[M,xy]. Since M,=[M,y][M,xy]
and [M,y],[M,xy] are abelian, Cy (x) =Z(M,). Therefore, M,= Cy (x)[M,x]
is abelian.

Lemma 1.7. Let M be a p'-group, P a p-group and H=M><P a semidirect
product of M by P. If H is p-radical, then J(kH)=Z,c ,.J(kQ)[@]kH, where
[@ is the sum of all elements of [M,Q] in kH.

Moreover, if P is abelian, then J(kH)" =2 ,,J(kQ)"[@]kH for all neN.

Proof. If P is abelian, then for a subgroup Q of P. [meZ(kH) and
[M,Q1Q<IH. Thus for O,R < P, J(Q)'[M,Q1/(kRY[M,R] < JUeQR}***[M,0OR]
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for all L,ueN. So it suffices to show the first statement.

(2) Let Q be any subgroup of P. Since (1 —-x)[']lf,a]=[1\7,b](l —x) for all
xeQ and Q is a p-group, JkQ)M,0] < JK[M,0]0). Now JK[M,QIOkH
c JkH) as [M,Q]1Q<I1<{H. Thus J(kH) =2 ZQEPJ(kQ)[Af,D]kH.

(c) Let Zi_,e;=1 be a decomposition of 1 into the orthogonal sum of
primitive idempotents of kM, T; denote the inertial group of ekAM in H and Q;
be a Sylow p-subgroup of T; in P. So Q; is a defect group of the unique block
of kT, which covers ekM. Clifford’s theorem says that J(kH)=ZX!_,(e;kH)J(kH)
=X!_,eJ(kT)kH as H is p-nilpotent. Now T,=M>Q, is p-radical and p-nilpotent
as H is p-radical and p-nilpotent. Thus, [M,Q;] < Ker(e;,kM) by [13, Lemma 7]
and T;:=T;/[M,0,]~Q;x Cy(Q,) by [13, Theorem 2]. Then J(Iii)\=J(kQ_i)kTi.
Therefore, e J(kT)kH =e-[mJ(kTi)kH =¢,[M,Q.)JkQ)kH < [M,Q;]J(kQ,)kH,
so J(kH) = Xy pJ(kQ)[M,Q]kH.

Let &, be the family of all finite group G such that [Pgk))=alp—1)+1,
where p* is the order of a Sylow p-subgroup of G.

Lemma 1.8. Let G be a p-solvable group and N<G. If GeF,, then G/ N,
Ne%,.

Proof. Let p° p® be the orders of Sylow p-subgroups of G and N,
respectively. By [15, Corollary 3.6] and [6, Lemma 1.1], b(p—1)+1
+(@—=b)p—1)+1-1 < (Pyk)+UPgnk)—1 < UPgk)) = a(p—1)+1. Hence
(Pgnk)=(a—b)p—1)+1 and (Pyk))=b(p—1)+1, and so G/N, Ne F,,.

Lemma 1.9. Let G be a p-group with Ge ¥ ,. Then G is elementary abelian.
Proof. Since Pg(k)=kG, G is elementary abelian by [9, Theorem 1].

3. Proof of theorem

In this section we shall prove the theorem stated in the introduction. By
[15, Corollary 3.6], the condition (1) implies the condition (2) in the theorem. Now
we shall prove the condition (2) implies (3).

In the proof of [3, Theorem 3], if we reset &, instead of & and reset Lemma
1.8 (respectively, Lemma 1.8, 1.9) instead of Lemma 2.6, 2.7(respectively, Theorem
3.1 of [14]), then we have the following result.

If G is a p-radical group with G/ O,(G)e %, then G=0, , , ,(G). Therefore,
if IPgk)=ap—1)+1 and G is a p-radical group with OF(G)=G, then
G=0,,,(G). Let M be a Hall p'-subgroup of G and let H=NgM). By the
Frattini argument, G=0,(G)H. By [13, Theorem 2], [O,(G),M]nCp (M)=1.
Since Co,(M)=0,(G)nH, G=[0,G),M]>H. Let P be a Sylow p-subgroup
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of H and let N=[O/(G),M]. By Lemma 18, 19, G has the following
form.

(*) G=N>JH and H=M><P, where N and P are elementary abelian p-groups,
M is a p’-group and H is p-radical with [M,P]=M.

Theorem A. In the above notations if KPgk))=alp—1)+1, then P < ,Cy(x)
for all xeN.

Proof. grkN is semisimple as a kH-module by [6, Lemma 1.4]. For 1#seP,
[M,s]{s) is a normal subgroup of H and Frobenius by [13, Theorerm 2]. As
[M,s](s><|H, grkN is also semisimple as a k([M,s]<{s))-module. Thus s€ ) Cg(x)
for all x e N by Proposition 1.4. Hence se Cy(x)M and P = Cy(x)M,s0 P = 3, Cy(x).

Next we consider the condition (3) and (4) in the theorem.

Theorem B. The following conditions are equivalent.

(1) G satisfies () and P < ;Cy(x) for all xe N.
(2) The following conditions hold.

(i) G is p-radical with O (G)=G.

(i) G/O,(G) is a direct product of an elementary abelian p-group and G,
which is isomorphic to a normal subgroup of G containing OYG), where
G’:Al,mm X XAy, oforsomen,,--,n,and O, (G,)=0,(G)x O,G,), where G, is
the inverse image of G, in G.

Proof. First we prove that the condition (1) implies (2). Assume that the
condition (1) is sastisfied. Then G is p-radical and OP(G)=G. CuM) is a direct
factor of G and therefore we may assume Cp(M)=1. Then O,(G)=Cy(N),
0,(G)=N. We shall prove that the condition (2)(ii) is satisfied for G in the
following steps.

Step 1. We may assume Cy(N)=1.

Proof. If 0,(G)=Cy(N)+#1, then by using induction on |G| for G:=G/0,(G),
G=G, x Ny, where G, is isomorphic to a normal subgroup of I1;4,,, , containing
O"(I1;4,,, ,) for some n’s and N, is an elementary abelian p-group. Let G, be
the inverse image of G, in G. So, O, (G,)=0,(G)P, for some p-group P,. In
the definition of 4, ,, [V,v]=V. Hence [P,,M]=P,,s0 P, = O,(G)[P;,M]. On
the other hand, [P,,M] = MN, so P, < MN and P, = N. Therefore, O, (G,)
=0,(G)x 0,(G,), so we may assume Cp(N)=1.

Step 2. For any Q < P, N<I|([M,Q]>1 Q) is normal in G and satisfies the
condition (1).
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Proof. As H is p-radical and p-nilpotent, [M,Q]><Q is so and [[M,Q],0]
=[M,Q]. For all xeN, P S Cy(x). So Q S y.,0,Cu(x) as M=Cy(Q)[M,Q].

Step 3. M is abelian.

Proof. Let 1#seP and consider the subgroup ND<([M,s]><{s)). This
satisfies the condition (1) by Step 2 and [M,s]><(s) is Frobenius by [13, Theorem
2]. Thus [M,s] is abelian by Proposition 1.5 and the result follows from Lemma 1.6.

Step 4. The following conditions hold.
(1) An M-invariant subgroup of N is H-invariant.
(2) Suppose N=N| x N,, where N; are M-invariant. Then M= Cy(N,)x Cy(N,).

Proof. Let Ny € N be M-invariant. To show that N, is H-invariant we
may assume that N, is M-irreducible as M is a p’-group. Then N,={xM) for
some xeN, By our assumption P < ,Cy(x) and therefore N,=<{xH) is
H-invariant. Thus (1) follows. Suppose N=N, x N, for M-invariant subgroups
N;. By Lemma 1.3 Cp(N;)=Cp(x;) for some x;e N;, Because N, are M-invariant
we may take x; with P < Cy(x;). Let aeM and apply our assumption on
xix,. There exists an element be M such that P® = Cy(x}x,)= Cylx,)" N Cylx,),
here we used the fact that N, are H-invariant. Thus P’=P° for some element
ce Cplx,)=Cp(N,). Therefore bc™!e Ny(P)=Cy(P). By [13, Theorem 2] C,(P)
=1 and it follows that b=ce Cy(N,). We also have that P®=P* for some
¢ € Colx,)*= Cp(N,)*=Cp(N;) and ba™'e Cy(N,) by the similar argument in the
above. Thus a=(ab~')be Cy(N,)Cy(N,) and the result follows.

Step 5. We may assume Cy(M)=1.

Proof. For all xe Cy(M), P < Cy(x). Thus Cy(M) < Z(G) and G=Cy(M)
x ([N,M J><H).

Let N=N, x --- x N,,, where N;’s are M-irreducible and put M;:= Cp(I1;.;N)).

Step 6. M=M,x---xM, and ND<M=(ND<M)x---x(N,><M,) and
M/s are P-invariant.

Proof. Since M = Cy(N,)x M, by Step4, Cy(N,)=M, x C(N, x N,). Hence
M=M;xM,x Cy(N,xN,). Similarly we have Cup(N;xN,)=M;x Cy(N;xN,
X N;), and hence M=M | x M, x M3 x Cp(Ny x N, x N3). By the similar argument,
M=M,x---xM, since Cp(N)=1.

Step 7. N,D<M;P/Cp(N)~A

pmi,p JOT SOME 7;.
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Proof. N; is Mirreducible and therefore M, is cyclic as M, is abelian. Also
[M,P]=M; and P < ,,Cyp(x) for all xe N;, Thus [11, Proposition 19.8] implies
ND<MP|Cp(N)~A,,,, for some n, (see [2, Theorem])

Step 8. (Conclusion.)

Proof. NP<H/Cy(N)~N,><M,P|Cp(N;), N><P is isomorphic to a subgroup
of IILN,><H/Cyx(N;) containing TI,N;><M;Cy(N)/ Cy(N)=IL,N,><M; by Step
7. Now the result follows from Step 7.

The group A4, ,, satisfies (*) and the condition (1) in Theorem B. Thus it
follows easily that the condition (2) implies (1) and Theorem B is proved.

By Theorem B the conditions (3) and (4) in our main theorem are
equivalent. Theorem C in the following says that the condition (3)(and (4)) implies
(1). Let & be the family of all finite group G such that {G)=a(p—1)+1, where
p° is the order of a Sylow p-subgorup of G.

Theorem C. If G satisfies the condition (3) in the theorem, then Ge F.

Proof. Put|N]:=p’ |p|:=p°anda=b+c. It suffices to show #(G) <a(p—1)+1
by [4] and [14]. Notice that N,He &.

Step 1. We may assume Cy(N)=1.

Proof. Let M, denote Cp(N), B be a block of kG and b a block of kM,
covered by B. Then b has the unique irreducible character, say ¢ and let Q be a
Sylow p-subgroup of Iy(¢p). Notice that Q is a defect group of the block of I(¢),

which covers b. It suffices to prove that #(B)<a(p—1)+1 as #G)= max «B).
BeBI,(G)

Now, [M,Q]nMy=[My,Q1([M, Q2] Cy (@) =[M,, Q] < Ker ¢ by [13, Lemma 7
and Theorem 2]. In particular, [M,,Q]<1H, and so [M,,Q]<1G. Therefore, we
may assume [M,Q]=1 since ¢ is regarded as an irreducible character of
k(My/[M,,Q]) and B can be considered as a block of k(G /[M,,Q]). In this case
[[M, Q] Mo]=1, so In(@)D>([M,QIM,><Q) as Iy(p) 2 [M,Q]Q. Therefore, N
><([M,Q1My1><Q) is normal in I (@p)=ND<Iy(¢) and of p’-index. Now let b
denote the Fong correspondent of B w.r.t. (G, I4(¢)), ie., b is the unique block of
k(I4(¢)) such that 5¢=B. Then it suffices to show I5(p)e F as t(B)=(b) (see [5]).
Now I5(p)e F < N><[M,QIM Qe F <> N><{M,Q]Q)e F, since N><[M,Q1M,Q
=(ND<[M,Q]10)x M,. ND<[M,Q]Q satisfies the assumption in Theorem C (see
Step 2 in the proof of Theorem B) and Cyyg(N)=1. So we may assume
My=Cy(N)=1.
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Step 2. We may assume Cy(M)=1.

Proof. Since N=[N,M] x Cy(M) the assumption in Theorem C implies that
G=([N,M]><H)x Cy(M) (see Step 5 in the proof of Theorem B). Then
HG)=H[N,MI><H)+ H{Cy(M))—1. Therefore, we may assume Cy(M)=1.

Step 3. J(kH)'JKkN)JKkH) < = JNY JkH)***J(kNy*=.

uytpz2=p

Proof. We may use the same notations as in Step 6 in the proof of Theorem
M; ifQ ¢ CpN)

B. So, by Theorem B for all Q < P and all i, [M,Q]= ) .
g esF and all & IM.0] {1 ifQ < ()

Therefore, [M,Q]=IT"-,[M,Q]= T M,
Q¢Cp(N)
For subgroups Q, R of P, set my={i| Q¢ Cp(N))} and ng={i| R ¢ Cp(N)}. Let

N=NgyxNyx Ng be a decomposition of N, where No= II N;, No= II N, and

i¢ng iemgNTR

Ng= I1 N.

ieng —(TRNTQ)

Then [M,Q]1Q (resp. [M,R]R) acts on N, (resp. Ng) trivially. Now put
My =[M,Q]N[M,R], then P < , Cy(x) for all xeN, For all xeJkQ)* and
BeJ(kRY,

o[ M, Q1J(kNY*BL M, R]

= LM, 00, + 12 1 s /N P JUN Y J (N )BT, R
= %+ iz s =u 2LV, QU (e No)2 (kN VB M, R]

=211+ ua-+ s =l (kN o M, O1J(k No)**BL M, RIJ(KN ).

Let yeJ(kNy)*>. Since My= T1 M; M=M,xL, where L= II M,

iengNmR i¢nQNTR
Then L centralizes M, and N,, and so (Xy*)=Xy" for all yeL. Let y=XZc,x,
aeMo aeMo xeNo

where c,ek. Then £y*= ¥ Xcx"=Zc, Zx% Since P < Cy(x) for all xeN,,

acMo aeMqo xeNg xeNo aeMo Mo

(ZxY=Xx% and so (Zy*Y=Xy" for all yeP. Thus Zy*eZ(kG). Therefore

aeMo aeMo aeMo aeMo aeMo
MoyMy=M,X v € M(J(kNo)*> 0 Z(kG)) for all yeJ(kNy) 2.
acMo
Then,

o[ M, Q1J(kNo)**B[M,R]
= o[ M, Q1M oJ(kN,)*>M B[ M,R]
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< o[ M, Q1AM RIM oJ (kN>
= a7, Q15LM, RJkNo)*> = « ST, Q1TM, RIJKNo )
SJK(QR) [, OR1I(kNo)
cJ(kH)***J(kNy)** by Lemma 1.7.
Thus,
o[M, Q)J(kN) B[, R]
=%+ 2wy kN QY 9 M, OLJ(eNoP= BLM, RIJ(eN )
CX, tugtps= ‘,J(kNQ)‘“J(kH YN, o 2J(kNg)*?
cX JkN) J(kH )’I YHJ(N )2t e,

=“pr+(u2tp3)=p
Therefore, by Lemma 1.7,

JkHY JkNYJKH) < X JNY J(kH)*t J(kN Y.

nytp2=p
Step 4. (Conclusion) HG)<a(p—1)+1.

Proof. Now J(kG)=J(kH)+J(kN)kH. So, we can easily show that J(kG)"
=%, utv=n kN J(kH)'J(kN)', using Step 3 and induction on n. Let A+u+v
—ap—1)+1. If u>cp—1)+1, then JEN)YJKHYJAN)=0 as HeF. If p
<c(p—1), then A4+ > ap—1)+1—cp—1)=bp—1)+1. So, J,N)JkH) JkN)"
c JkN)***kG=0 as NG and Ne Z.
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