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Introduction. This article is an extended and revised version of a part
of my thesis [17, §§ 6-8], and it should be seen as part two of [19]. It con-
tinues the study of potential theory with an emphasis on fine-topological ques-
tions from [18, 19], in the framework of (symmetric) Dirichlet spaces. In
[19], we treated some questions on capacitary integrals and related matters.
Here we present a rather general theory for superharmonic functions in Dirich-
let spaces. (Some results were proved in [18].) As background serves a
problem on bounded point evaluations for BLD-functions, harmonic on a
certain set, see [14], and Fuglede's work on finely superharmonic functions
[9], in particular their relations to certain functions in the space BLD, the arche-
type for all Dirichlet spaces, treated in [10]. (An application of the theory
developed here is given in [21].)

Dirichlet spaces were originally introduced in the late 'fifties by Beurling
and Deny. At about the same time, Hunt prepared the way for a general
probabilistic potential theory. In the translation invariant case, i.e. in the
case of Markov processes with stationary, independent increments, it is not
hard to establish a one-to-one correspondence between (sufficiently smooth)
symmetric Markov processes and (sufficiently smooth) Dirichlet spaces with
translation invariant norm. Fukushima realised that if one looked upon the
semi-groups involved as operators on L2 —and not, as had been customary,
on some class of continuous functions— a similar result was valid in general:
under some mild smoothness assumptions there is a right-continuous strong
Markov process (in fact, a Hunt process) to every Dirichlet space, and vice
versa. (Here the smoothness assumptions are put directly on the Dirichlet
space, while usually in potential theory one assumes that the semi-group (or
the Green operator) is smooth in that it produces smooth functions.) We
will use this correspondence whenever convenient and refer to Fukushima's
book [11] for details.

The Dirichlet space approach to harmonic functions is by orthogonal pro-
jections, Dirichlet's principle from a modern point of view. The difference
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with our setting as compared to the classical one is, that the operator replacing
the Laplacian is no longer local, generally. It may depend on the global be-
haviour of functions. In particular, we have to make direct arguments and
cannot use Fuglede's theory for finely harmonic functions or theory built on
harmonic spaces, since these are of a local nature. Among articles prior to
this one where harmonicity in non-local situations are treated, let us mention
Hansen [12] and M. Itό [13].

Generally speaking the operators involved cannot be (differential or
pseudo-) operators of order higher than two. As an example, consider the

Sobolev space Ws'2(Rd), where s>0 and the inner product is I (1 — A)suυdx.

This is a Dirichlet space if 0 < s < l , but not if s>l. (See e.g. [20].) Conse-
quently, only when 0 < s < l are our results applicable to the Sobolev space
Ws>2(Rd). Nevertheless, they seem to be new also in this case.

Now to the content of this article. In § 1 we sketch the underlying theory.
M. Fukushima observed that one of the basic assumptions from [19] (lower
semicontinuity of excessive functions) was not needed in connection with the
useful quasi Lindelϋf and Choquet properties. It turns out that this assump-
tion is superflous for the material treated below, and we show how to avoid it.
Moreover we prove that also in the transient case, the excessive members of W
form a hereditary subcone of the excessive functions. (Here W denotes our
Dirichlet space.) This result makes possible the extension of results in [11]
to the transient case as well. In § 2, we introduce the class of "test functions"
W0(E)= {u^W: z/—0 q.e. off E} on a set E in M, the underlying topological
space. Guided by the classical, that is, Newtonian, case, we define the class
of functions in W which are weakly harmonic on E9 H(E), as the orthogonal
complement of W0(E). We also introduce the weakly superharmonic functions
on E, S(E)> as the cone dual to W0(E)+. The dependence on E and certain
continuity properties for WQ( ) and the other spaces are examined.

Section 3 is devoted to harmonic measures and related concepts. There are
some preliminary results on harmonic measures as well as results on the rela-
tions between the balayage operation and projection onto H(E). We use the
quasi Lindelόf property to show that every element in the dual, W\ of W,
has a fine support and that its relation to weak harmonicity is what it should
be. We also consider an unsolved problem from Fukushima [11, §5.5], and
prove that the fine supports of a measure of finite energy and its associated
positive continuous additive functional coincide.

We also prove a variant of the so-called fine minimum principle, originat-
ing from [9], under the (necessary) additional assumption that W is local. In
section 4, we follow Fuglede [9] and introduce finely superharmonic functions
through harmonic measures. An identification of S{E) with the functions in W
which are finely superharmonic q.e. in the fine interior of E is established.
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Since our investigations are pursued in a more general situation than those of
Fuglede's (where the framework is that of harmonic spaces), we have to de-
mand more of the functions in question and adopt a more restrictive notion
of fine superharmonicity (the fine-topological version of Dynkin's definition
of superharmonicity). It remains an open question if one can work with the
more general definition that Fuglede employed in [9],

In the fifth and last section we return to bounded point evaluations and
deduce results similar to those proved by the author in [14]. We also touch
upon removable singularities for finely harmonic functions and their connec-
tion with bounded point evaluations.

It is a pleasure to acknowledge help and support from Lars Inge Hedberg
and Bent Fuglede. Many thanks also to Peter Sjogren for some penetrating
remarks. Finally, I want to thank M. Fukushima whose comments and ideas
have —as I see it— simplified and improved this work.

1. Preliminaries and basic assumptions

1.1. In [19] we established the setting of this paper. Here we will only give
a brief sketch of the prerequisites and refer to [19] and Fukushima [11] for
further details. The Dirichlet space involved, W, is real and constructed
from a transient semi-group (pt)t>o of the form

(1.1) ptf(x) = \ p(t, x, y)f(y)dm(y).

Here M is the underlying topological space, assumed to be locally compact,
Hausdorff and second countable; m>0 is a Radon measure with support equal
to M} and the semi-group is symmetric: p(t, x, y)z=p(t, yy x). We denote

by G= I ptdt the Green operator, and by (. |.) the inner product of W. The
Jo

condition for transience employed here is the following:

(1.2) K compact => G\κ{x) = I ptlκ(x)dt< + oo , Vx^M.
Jo

The class of positive Radon measures of finite energy I(μ)=\Gμdμ is denoted

<?. For such measures μ, Gμ^Wand

(u\Gμ)=\udμ, U<=W,

The construction of W is such that {Gμ> μ^S—6} is dense in W. We assume
that W is regular, meaning that there are sufficiently many smooth (continuous
and vanishing at infinity) functions in W to guarantee that they are dense in
W as well as among the smooth functions. We denote by S the excessive func-
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tions. The infimum operation in the lattice S is denoted Λ, and the balayage
functional &. The fine topology is the topology generated by S.
In [19] one of the basic assumptions was that the excessive functions were l.s.c.
(lower semi-continuous), and we used this to deduce several fundamental re-
sults. Below we will show that this assumption —(A 10) in [19]— can be
dispensed with altogether, so in this article excessive functions are not assumed
to be l.s.c. (More about this later!) With the notation of [19], our assumptions
are (A1)-(A9).
We redefine the operation Λ as follows (cf. [19, §3.4]): for any function/,
let /(#)—fine lim inf/(j;) as y—>x, and Λ ,•#,•=(infiί*,-)̂ , where (wt )d<S.
We will write cap E for the capacity of a set E. "Quasi everywhere", meaning
"except for a set of capacity zero" will be abbreviated "q.e.", and a set of capa-
city zero is called "polar."
We will also need some probabilistic concepts. There is a Hunt process

Xt=X(t) with probability laws P\ X G M , such that ptf=EJ(Xt)=^f(Xt(ω))

P\dω). If AdM is sufficiently measurable, we will use the notation TA for
the corresponding hitting time

Throughout this paper we will use the convention that all functions (or all
sets, identifying sets with their indicators) on M are extended to the compacti-
fied space Md—M U {3} with value zero at the point of infinity, 3.

1.2. In connection with fine-topological questions, two results of fundamental
importance are the following:
The quasi Lindelϋf property (Doob). If (Vh z e / ) is any family of finely open
sets, one can extract a sequence ( f ^ ^ c / such that

U 7 f \ U 7 , is polar.
i n n

The Choquet property. Finely open sets are quasi-open. That ίs3 given V, finely

open, we can find a set ω, open in the habitual topology, such that V CLω and cap

(ω\V) is as small as we wish.

(Another, equivalent formulation was used in [19].)
In [19], these results were deduced using the above-mentioned assumption
that excessive functions are l.s.c. M. Fukushima observed that they follow
from (1.1). It is well known (see [2] or [4]) that the quasi Lindelof property
follows from Meyer's remarkably simple condition that there is a representing
measure, i.e. a measure, λ say, (positive and Radon) such that for any
(the universally measurable sets) we have

(1.3) GlE = 0



FINE POTENTIAL THEORY IN DIRICHLET SPACES 341

Now m is representing if (1.1) holds. To see this, assume m(E)=0. (The

other implication is obvious.) Then GlE(x)=0 for m-a.e. xy according to [11,

Lemma 4.2.1]. Therefore (1.1) gives, for any x^M and £>0,

0 = \ p(t, x, y) G\E{y)m{dy) = Γ ps \E{x)ds f GίE(x), t\ 0 ,

and (1.3) follows for \=m.

In order to get a better understanding of the relations between the above prop-

erties we state the following theorem, the rest of which is proved in Appendix

A.I.

Theorem, (i) Under condition (1.1), m is representing. Consequently the

quasi Lίndelϋf property holds.

(ii) The quasi Lindelof property and the Choquet property are equivalent.

1.3. In [19] we stated that S Π W is a hereditary subcone of S. In other words,

(1.4) [u, VEΞS, U<V, V<=W] =# [UZΞW, \\U\\<\\V\\] .

This is obvious if v GΞ L2, because then also u is in L2 and we can use the spectral

calculus. In the general case one needs another argument however. Now

this result was used repeatedly in [19] without proof. Moreover, it is important

for the "transient" theory: under (1.4) statements in [11] referring to the one-

order form Si carries over to the zero-order form S (we use Fukushima's no-

tation [11]). Let us therefore state this result explicitly.

Theorem. For a regular Dirichlet space W, (1.4) follows from the transience

condition (1.2).

Proof. It is known (see Chung [4, Th. 2, p. 126]) that (1.2) implies the

existence of a function g e JS* such that

(1.5) 0 < G ^ < + oo everywhere.

(Here we use that Xt is a Hunt process.) We know that v> being a member of

<5Π W, is of the form v=Gv, for some v^£. By a well-known approximation

procedure (see e.g. Blumenthal-Getoor [2, Prop. (5.11), p. 132]), it follows

from (1.5) that

i* = lim f G?Λ , fn^m.

Clearly Gfn^ Wy because Gfn<v and then

(1.6) J Gfn.fndm<\vfndm = j Gvfjm = J GfΛdv < J vdv=\\v\\\

From (1.6) we see that \\Gfn\\ has a limit, because it increases with n. But
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then (Gfn) is Cauchy, because \\Gfn-Gfk\\2<\\Gfn\\2-\\Gfk\\2 if n>k. But
then u^W> as stated, and therefore u=Gμ for some μ^β. The argument in
(1.6) gives

and the theorem follows.

2. Weakly superharmonic functions

2.1. If E CM is any set, we define

W0(E)= {uEΞW: u = 0q.e off E}y

and H(E)=W0{E)^, so that

W=W0(E)φH(E).

We also introduce

S(E) = {u(ΞW: (u\φ)>0, Vφ(ΞWo(E)+} .

Then S(E) is a closed convex (positive) cone.
Finally, we let P(E) denote the subcone

= S(E)f]W0(E)y

so that (with obvious meaning)

S(E) = P(E)φH(E).

2.2. It is obvious from the definitions, yet worth noting, that none of the
classes defined changes if the underlying set is changed by a polar set. For
instance is WQ(E1)=W0(E2) if the symmetric difference E^Ez is polar.

2.3. The following result displays the dependence on the set E. As in [10]
we will denote by E' the fine interior (that is, the interior with respect to the
fine topology) of E.

Proposition. For any set E, W0(E)=W0(E').

Corollary. H(E)=H(E')y S(E)=S(E'), and P(E)=P(E').

Proof. If u£ΞW0(E'), then u<=W0(E) since E'aE. If U(=ΞW0(E), choose
a polar set e such that u\M\e is finely continuous in M\e (in the relative
fine topology). Then {u>0}\e is finely open in M\e, hence contained in E'\e>
since E' is the largest finely open subset of Έ. Similarly { M < 0 } V C £ " V ,

so u=0 q.e. on M\E\ proving the proposition, from which the corollary easily
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follows.
Let us remark that functions in W are finely continuous q.e. simply because
functions of the form Gμ, \μ\^β, form a dense subset of W, and every poten-
tial is finely continuous, of course.

2.4. The preceding proposition makes clear that it suffices to study W0(E)
(and H(E) or S(E)) for finely open sets E. We will therefore do so in what
follows. As in Fuglede [10, Proposition 8] one can use Choquet's capacita-
bility theorem to deduce certain results on the continuity of WQ( ):

Proposition. If E is finely open, then W0(E)= Γ\ωW0(ω), where ω ranges

over all open supersets of E.

Proof. Suppose that u vanishes q.e. on Cω for every open set ω con-
taining E. Choose £, polar, as in § 2.3, and define

A = {x€Ξ(M\E)\e: u(x)Φ0} .

By the Choquet property A is quasi Borel, hence capacitable, so cap A~
sup {cap F: Fa A, F closed}. But the assumption yields cap F=0 for all such
F9 so cap A=0. This proves the inclusion Z), while the converse is obvious. •

Corollary. H(E)= (J ω#(ω), and S(E)= (J ωS(ω), with ω as above.

(For P(E) there is no "limit theorem'' of this kind because two different limits
are involved. One may prove however, that the projection of u^W onto
(the closed convex cone) P(ω), ω open, IDi?, E finely open, converges to the
projection of u onto P(E) as ω j E.)

2.5. The following result, known as "spectral synthesis" in the classical,
i.e. Newtonian, case is another limit theorem. It was proved in [18], but in-
cluded here too, for later use, and in order to get a more complete picture.

Proposition. For any finely open set Έ,

W0(E) = U iWQ(K): KczE, K compact} .

The proposition motivates that W0(E) should be looked upon as the test func-
tions on E.—In the classical case, W0(E) is the closure of C%(E) when E is
open.
By mere definition it is clear that H(E) (S(E)) should be looked upon as the
functions in W which are weakly harmonic (superharmonic) in E.—-We
recall that in the classical situation, when E is open, weak harmonicity and
harmonicity are identical concepts (WeyΓs lemma), and H(E) consists of all
functions in W which are harmonic in E. (See [14].)
Moreover, P(E) is, in this case, the class of potentials (of positive measures)
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of finite energy w.r.t. the Green function of E. In [18] we used the assumption
that excessive functions are l.s.c. to prove Proposition 2.5. From [18] we see
that one only needs the following result, which holds without the l.s.c.-assump-
tion:
If μ^β, there is an increasing sequence (Kn) of compact subsets of E such that

(2.1) πH(Kn)Gμ-*πH(E)Gμ q.e., w->oo.

(π stands for orthogonal projection.) The proof of (2.1) is given in Appendix
A.2.

2.6. In [18] we proved the following "localisation theorem." We will use
it in §§ 3-4 below. The assumption on l.s.c. was used only when referring to
Proposition 2.5, so we do not need that assumption here neither.

Theorem.(2) Let {Vh i^I) be any family of finely open sets in M. Then

H(\JV{)=nH(Vt) and S(U F,)=

For later use we note the following result, valid for finely open sets U and V.
It follows from Theorem 2.6 by duality.

(2.2) W0(U U V) = WQ(U)+W0{V).

(This identity holds for the whole family (F, ): PF0(U# F, ) = Σ ί

3. Harmonic measures, projections and fine supports

3.1. The balayage operation RΛ = A {v^S: v>u on A}, u^Sy was introduced
in [19]. It suffices to consider finely closed sets (and we will henceforth do so
without special mention), because KA = R£, where A denotes the fine closure
of A. (Cf the situation with Wo( ) in §2.3.)

Let /GcSn Wy denote by ux the projection of/ onto H(CA), and let u2 denote
the balayage of/onto A: ux~πH(CA}f anά u2=KA.

As in [19, § 5.2] one shows that u2 is the unique solution of an obstacle prob-
lem with obstacle/• lA. In other words, u2 has minimal norm amongst all func-
tions in W that majorises / on A (q.e. on A is enough). Clearly ||&2ll^llMill>
because ux=f q.e. on A. The latter holds also for u2, so u2—f^WQ(CA), and
||w2||> 11^/^^/11 = \\ux\\. By uniqueness, ux = u2. Since Rf^SΓiW, it must
be the potential of a measure of finite energy: JRf = GμA, μA^8. Now this

measure can have no mass on CA, because \ φdμA=(φ\GμA)=(<p\πH,ζA^f):=O

(2) w e take this opportunity to adjust the proof of Lemma A in [18]. First of all the set Ωg
should be defined as (ω1Uω2)

δ. Secondly, the function χ0 e Co is chosen such, that χo = 1
on K\ω2, and XQ—0 on C(ω1\Jcύ2). From this point on, there are no changes needed.
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for all functions φ vanishing on A. Thus μA^β(A) = {μ^S: μ(CA)=0}. Let

us record this as

(3.1) *H(CA)GV> = GμA = RA

Gμ , μϊΞβ .

Since {Gμ\ \μ\ ^6} is dense in W we get

Proposition. Let E be finely open. Then

(a) {Gμ: I μ I <Ξβ{CE)} is dense in H(E)

(b) {Gμx-Gμ2\ ^ G 5 , μ2^ε(CE)} is dense in S(E).

REMARKS. 1. By spectral synthesis (Proposition 2.5) we may require in

(a) that supp μdCE, and not only that μ is carried by CE, that is | μ \(E)=0.

2. If μ^6{CE), then μCE=μy s o functions of the form Gμ—GvCE with μ

and v \VLQ are dense in

3.2. Theorem, (a) If μ>0 is a Radon measure which carries no mass on

polar sets, then there is a smallest finely closed set that carries μy called the fine

support of μ, and denoted by supper μ. Moreover supp7 μ is everywhere regular,

i.e. a base, and therefore a Borel set.

(b) If μ^8, and F = M \ s u ρ p / μ, then V is the largest finely open set for which

Gμ£ΞH(V).

REMARK. This may be carried out also for signed measures if we define

supper ^=suppy( I μ I) in this case.

Proof, (a) We define the fine support of μ as follows. A point

is in the complement of supp/ μ if there is a fine neighbourhood Vx of x such

that μ(Vx) = 0.(3) Thus supρ r μ is the complement of the finely open set

V=\JXVX. By the quasi Lindelϋf property, we may write F = ( U ^ i F * w ) U £ ,

where e is polar. Consequently μ(V)<*Σn μ(VXn)+μ(e)= 0. By definition is

V the largest finely open set of /^-measure zero. In other words is supper μ the

smallest finely closed set that carries μ.

Write Σ=supp / /^=C ) F. The base of Σ the finely closed set b(Σ)={x<=M:

Σ is non-thin at x} aj]. Now μ(Cb(Σ))=0 as well, because Σ \ * ( Σ ) is the

set { X E Σ : Σ is thin at x} which is polar according to the Kellogg property

([19, § 3.8]). The base of a set is always Borel (Blumenthal-Getoor [2, proof

of V.I.14]), so (a) follows.

Strictly speaking we should write β*(Vx) = 0 (outer measure). However, by the Choquet
property [19] there is a Gg superset E of Vx such that E\VX is polar. We may then define
β(Vx) = μ(E)t since μ does not carry any mass on polar sets.—Alternatively, we could
enlarge the Borel σ-algebra £B{M) so as to include the null sets common to all measure of
finite energy.
It is known, see [2, V. 1.18], that any set in the fine Borel σ-algebra is the union of a
Borel set and a semi-polar (=polar under the present hypotheses, see [19]) set.
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For (b) it suffices to note that if u=Gμ, μ^S, then

(u\φ) = 0, VφeΞW0{V)^\φdμ = 0, Vφ^W0{V)<^ μ(V) = 0 .

3.3. By Theorem 3.2 (b) it is clear that supρ//^ is also what we could call the

harmonic support of Gμ. Formally we could write this

(3.2) SUPP/ A6 — sqiPPa ^A6

For an arbitrary element, θ, in W (dual space) there is no obvious way to define

its fine support. Consider instead its dual element uEzW, uniquely determined

by θ(v)=(u\v), for any v in W. We want to define the harmonic support of

u—to be denoted by suρphu—by requiring that F^CsuppAw be the largest

finely open set for which u^H(V). The argument in Theorem 3.2 may be

used to show that if suppAw exists, it has to be a base.

Consider all points x in M for which there are finely open neighbourhoods Vx

of x such that u^H(Vx), and let V denote the union of these sets. Then V is

finely open and u^H(V)y according to Theorem 2.6. The complement of V

is called the harmonic support of u: suρphu=CV. We may then imitate (3.2)

and define

supρ /0 =

Theorem. Each element u^W has a unique harmonic support, denoted by

suppAw. The harmonic support is a base, uEϊH(M\s\ipphύ), and suppΛ u is the

smallest finely closed set with this property.

REMARK. The harmonic support is the fine-topological counterpart of

the "spectrum" used by Fukushima in [11, pp. 79-81].

Corollary. If A is a finely closed set, then

H{CA)r = iθeΞW: s u P P / θaA} .

3.4. The balayage operation u->κ£ or, equivalently (see § 3.2), μ->μΛ gives

rise to a family of measures δ^, by the formula

(3.3) GμΛ(x) = ί GμΛd8x = \ Gμdhj, X(=My μEΞβ .

One can use the identity (3.1) together with a limiting argument to produce

a measure Sf satisfying (3.3). We will not carry this argument out here. In-

stead, we will use the connection to probability theory. (See § 1 for definitions.)

Let u be excessive and define uA(x)=Ex[u(X(TA))].

Then uA is excessive, uΛ<u, and uΛ=u q.e. on A, because TA=Ti=0 a.s Px

for q.e. x G i . (By the Kellogg property, see [19].) Using this, it is easily
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seen that uA=RA, see e.g. Fukushima [11, Lemma 4.4.1]. (This gives a proof

of the celebrated theorem of Hunt [2, Chapter III.6] in the much simpler sym-

metric case considered here.) Hence

(3.4) «H(CA)« = & = δ » = E'{u(X(TA))}, u<=Sf\W,

so we get

i <=J}, JczM.

When 2^=0 a.s. P\ Ex[f(X(TA))]=f(x), and we define δA=δx in this case.

Note that Px[X(TA)e. {x}]=0 when {x} is polar.

REMARK. With the assumption—stronger fhan the regularity assump-

tion used here: CΌo(M) Π W is dense in W and CΌo(M) (the continuous func-

tions M-+R that vanish at infinity)—that potentials of signed measures of

finite energy are uniformly dense in CΌo(M), an alternative proof of the existence

of δj goes as follows. Take two measures, μ and v> from 8, such that 0 <

Gμ — Gv<\, i.e. Gv<Gμ<Gv-{-\. From the definition of A , we immedia-

tely get GpA(x)<GμΛ(x)<GvΛ(x)+Rf(x)<GvΛ(x)+l; that is

Q<GμΛ(x)-GvA(x)<\ .

Hence the map, densely defined on CΌo(M),

Gμ-Gv -+ GμΛ(x)-GvΛ(x)

is positive and bounded by one in the supremum norm. Accordingly, it has

an extension to CΌo(M) with the same properties, and the Riesz representation

theorem provides us with a measure satisfying (3.3).

3.5. We will now return to fine supports, introduced in §3.2. Let u=Gμy

where μ^δ. Theorem 1.3 implies that Fukushima's results on additive func-

tionals are valid also for the zero-order form, that is in the transient situation

considered here. Hence by [11, Th. 5.1.1] there is a positive continuous addi-

tive functional A=(At> t>0) such that

(First we get equality q.e., and therefore also m-a.e. ([11]), then everywhere,

since m is representing and u and Em[Aoo] are both excessive.) Define the fine

support of A as the set

where
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Then Σ is a base and R= Γ 2 by [2, Ch. V.3.5-6]. By the strong Markov prop-

erty (as in Dynkin's formula: cf [2, II. 1.2]), we get, for any stopping time T

u(x) = Ex[u(Xτ)]+Ex[Aτ] .

Since Ex[AR] = Oy we get

u{x) = Ex[u{XR)} = Ex[u(

By (3.4) u&H(CΣ), SO CΣc C suppfμ by Theorem 3.2. Consequently, with

T denoting the hitting time of supp^ μ, we have

a.s.

By definition of R, it is clear that R is maximal in the following sense: If T

is a stopping time such that u=E'u(Xτ), then T<R a.s. Hence

a.s.,

and therefore

τ - Γ s a.s,

so

suppfμ = b(suppfμ) = {x: r = 0,

- {Λ;: Γ 2 - 0, P*-a.s.} =

We have proved

Theorem. For any measure μ^6, the fine support of μ coincide with that

of its associated positive continuous additive functional.

REMARK. This gives an answer to the problem treated by Fukushima in

[11, §5.5]. The point is that we use the fine topology, whereas Fukushima

considered the usual support of the measure in question. It illustrates the

importance of the quasi Lindelόf property.

3.6. Let us now return to the measures δ^ from § 3.4. When A—CV, and

V is finely open, Sζ is the harmonic measure for the set V at the point

x.—From (3.4) it seems clear that in some sense δ. represents projection

onto H(V). In general 8%v is not of finite energy (see § 5), so one has to pro-

ceed with some care.

To study the relations between the harmonic measures and the spaces //(•)>

we need the following result.

3.6 Lemma. If un->u strongly in W, there is a polar set e and a subsequence

(unr) such that



FINE POTENTIAL THEORY IN DIRICHLET SPACES 349

f \u-uH,\dSζv-+0
JM

for any finely open set VdM\e, and any point x in V.

Proof. By Doob's theorem [2, Chapter V.I],

\uM—u\^ft\Uu-u\ q.e.

because we always have Kf=Rf q.e. If V is any finely open set, xGF, and
B is polar, then δ?V(B)=PX[X(TCV) <=B]<PX[TB< oo] = 0. Consequently

(3.5) ( \un-u\dhc

x

v<\ Kn-u\dhCJ =

Now R\Uft-u\—>0 in W if un—>u in W, because in general Rf is of minimal norm
among all (if any) functions in Wmajorising/ q.e. In particular is | | ^ / | | < | | / | |
i f / e W; see [19, Lemma 5.2].—A subsequence of {un)n^x will converge point-
wise to zero outside some polar set e:

R\u/-u\(χ) -* 0> n' ~* °°>

This together with (3.5) proves the lemma.

3.7. We will use the following lemma in § 4.

Lemma. Suppose that u^Wsatisfies

(3.6) u(x)=\ud8ζv,

for some finely open set V. Then u^H(V). In fact

(3.7) μCV=

!

nτr

8S (E)dμ(x). If φ

is a function of the form φ=GX1—GX2, where λ, e £ , then

V{φ) = j S^V(φ)dμ(x) = J{ j (GX,-G\2)dS^V}dμ(x)

= ((G\ζV~G\ξv)(x)dμ(x) = \ (GX1-G\2)(x)dμCV(x)

= \ φ(x)dμCV(x) = μCV{φ) .

(Here we used properties of projections in Hubert spaces together with the

fact that πH(y)<p=h. (φ) for φ as above; see (3.4.))
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Now let / ^ W be a given compactly supported and continuous function. By
the regularity assumption, mentioned in § 1, it suffices to prove that v(f)=μ (/)
for such /'s. This is however immediate since we can write / = ( / — φ ) J r φ with
φ as above, and with the norm of /— φ as small as we please. Then | v(f—φ) \
<\\Gv\\ \\f—φ\\, and similarly for μCV. Since v{φ) = μCV(φ)y this must hold
for /too, and (3.7) follows.

Now we know that for q.e. x^CV> 8^V=SX (cf. the discussion in §3.4 after
(3.4)). Hence the assumption (3.6) implies

u(x)= [ udhC

x

V, q.e.

and therefore, by (3.7)

1 U(x)dμ(x)=\ u(x)dμCV(x) , μ<Ξ<?,
JM JM

by a limiting argument using the regularity assumption again.—To justify
the use of Fubini's theorem we can dominate u by the potential R\U\^SΓ\ W.
Finally, the density results in § 3.1 show that u^H(V). •

3.8. We will now prove a variant of Fuglede's fine minimum principle [9,
Th. 9.1]. (In this connexion, see also Theorem 4.6 below.) Let us say that
W is local if for any u, v G W it holds that

uv = 0 q.e. ==> (u \ v) = 0 .

By spectral synthesis (Prop. 2.5), this is equivalent to requiring that functions
with disjoint supports be orthogonal as in [11].
For a finely open set U we denote by dfU its fine boundary, i.e. the set U\U
(where ~ denotes fine closure).

Theorem. Suppose that W is local, and that u^S(U) fulfils

(3.8) finelinynf u(y)>0, q.e. x<=ΞdfU.

Then u>0 q.e. on U. In particular, ifu^H(U) and

(3.9) fine lim u(y) = 0, q.e. x£ΞdfU,

then M=0 q.e. on U.

Proof. We start with the second statement, and therefore assume that
(3.9) holds for u^H(U). There is a polar set e such that u is finely continuous
on M\e, and we may include in e the subset of dfU where (3.9) fails. From
the fine continuity of u it follows that u~0 on dfU\e. Hence
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because e is polar. Now CdfU=U[jCU (where Cθ=C(O))9 so by (2.2) u

belongs to the closure of W0(U)+W0(CU). Thus we can find un(ΞW0(U)

and un^W0(CU)f such that u=limn(un+ur). By the assumption that W is

local, W0(U) and W0(CU) are orthogonal. It follows that

U = πW0(U)u+πW0(CU)u — πW0(CU)u >

because u<=H(U)J_W0(U). Hence ^ = 0 q.e. on C(CU\ in particular this

holds on U. Suppose now that u^S(U) and that (3.8) holds. By Proposition

3.1, or rather the comments following it, there are measures μn and vn in 8

such that

u = \im{Gμn—GvC

n

 U), in W and q.e.

Consequently

(3.10) πWo(u)u = Km πWo(u) {Gμn-GvC

n

u} = lim(Gμn-Gμ^U)>0 q.e.

By (3.8) u~ satisfies (3.9), so by the first part of the proof,

(3.11) KH(U)(V~) = 0 q.e. on U.

Since u=πWQ(u)U-\-πH(u)(u+)—τr#(ί/)(w~), the assertion follows from (3.10) and

(3.11). •
The first result in this direction (fine-topological) seems to be Brelot [3, Lem-

ma 1]. Let us also mention Feyel and de La Pradelle [8, Th. 15], and the

author's article [15].

4. Finely superharmonic functions

In this section we will consider functions in W which are (super-)

"harmonic" in the sense that they have the (super-)mean value property w.r.t.

a suitable class of harmonic measures. Our aim is to establish an identification

between such functions and the spaces (5( )) H( ) , as in Fuglede's article [10].

Since the process Xt in general is only right-continuous, the harmonic measures

are in general carried by the fine exteriors of the sets in question, and not by

their fine boundaries, as in [9]. (For more information on this, see [11, p. 113

ff.].) Therefore, when studying "fine (suρer-)harmonicity" in our setting,

we are forced to consider globally defined functions. This is the main differ-

ence between our situation and Fuglede's.

We start with the following definition, to be compared with [9, pp. 67-68].

4.1. DEFINITION. Let C/cMbe a finely open set. A function u: M->[— oo,

+ °°] is called finely harmonic in U, if u is finely continuous and finite on

t/, and if, for all finely open sets F G Φ , where ^ is a base for the fine

topology in U> we have
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(4.1) u{x) = SζV(u), XZΞV.

(We use the functional notation μ(u)=μu=\ udμ.)

Let us recall that for any set A (with fine closure A), we have δ* = δ * . This

shows that the finely open sets are the relevant class of sets to consider in any

definition of "harmonicity" in the spirit of 4.1; in other words, the finely open

sets give us all conceivable generality. (Cf. §2.3.)

4.2. DEFINITION A function u> numerically valued and defined q.e. on M,

is finely harmonic q.e. in a finely open set U, if there is a polar set e such

that u is finely harmonic in U\e. The class of such functions will be

denoted by Hq(U).

We note that Hq(U), just as H(U), depends on U only modulo polar sets. Note

also that every polar set is finely closed, so U\e above is finely open. Below

we will prove that H(U)=Hq(U)Γ\ W, as in [10]. In order to obtain a similar

result for S(U), we introduce the following concept.

4.3. DEFINITION A function u: M->[— oo, +oo] is finely superharmonic in the

strong sense in the finely open set U> if u is finely l.s.c, finite q.e. and > —oo

in U, and if for every finely open subset V of U we have

(4.2) u(x)^hc

x

v(u), xEίV.

4.4. REMARKS. 1. In the above definitions integrability is understood.

If one wants a less restrictive definition, the integral to the right in (4.2) should

be replaced by an upper integral, as in [9].

2. The probabilistic analogue of Definition 4.3 goes back to Dynkin. See

[6, Ch. 12]. However, only the case when U is open in the usual topology is

considered; sometimes it is also assumed in [6] that the process is continuous.

Dynkin requires—apart from fine l.s.c. etc.—that u satisfy

(4.2)' u(x)^v(u)y x<=U,

for a certain class of sets V C £/. Let us show that (4.2) may be replaced by

(4.2)': Vod U are finely open sets. If x^ Vo, then (4.2)' is trivially true. De-

fine Vx={y: CV0 is thin at y}=M\b(CV0) (see §3.2 if.). Then V{ΏV*
s~>τr

and their difference is polar. Hence, if x^V\VQy then by (4.2), u(x)>δχ \u)

= hC

x

Vo(u)y and if x<=U\Vly then S^Vl=Sχy in which case (4.4)' certainly holds.

Summing up, it does not matter if we employ Fuglede's definition (4.2) or

Dynkin's (4.2)'. They are equivalent.

Dynkin proved ([6, Ch, 12]) that (in his case) functions which are superhar-

monic in a set U are excessive w.r.t. the relevant subprocess living in U. Below

we will use Hunt's theory for multiplicative functionals, as developed in [2],
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to deduce the corresponding result, from which the superharmonic analogue

of the afore-mentioned result H(U)=Hq(U)Γ\W will follow easily. At this

point, let us also mention the related Theorem 4.4.2 in Fukushima [11].

We will need the following concept:

4.5. DEFINITION If u is finely superharmonic in the strong sense in U, non-

negative there, and if for any v, finely harmonic in Ut with v <u, we

must have υ < 0, then we say that u is a fine potential in the strong sense

in V.

In this definition, finely harmonic minorants may be replaced by finely sub-

harmonic ones. Cf. [9].

The definition of the class Sq(U)—the functions which are finely superhar-

monic in some finely open subset Uo of Uy with U\U0 polar—and similarly

the class Pq(U) are taken for granted in what follows.

We are now ready to prove the following result, inspired by Fuglede's [10,

Th. 11].

4.6. Theorem. Let U be a finely open set. Then

(a) H(U)=Hq(U)ΠW,

(b) S(U)=Sq(U)ΠW, and

(c) P(U)=pq(U)nw.

Proof, (a) Let u^H(U), and write u=limnun> where un—Gμn for some

measures μn with \μn\ ^.6{CU). We may assume that G\μn\ is bounded and

that we have pointwise convergence outside some polar set ev We may also

assume that u is finely continuous on M\ev

For any finely open set V in U, and for any point x in V we have

Consequently

In{x)~hc

x

 v(u) I < Iu(x)-un(x) I + |un{x)-hc

x

 v(un) \ + | δ£V{un)-hc

x

 v(u) \

<\u(x)-un(x)\+S^v(\u-un\).

The first term to the right-hand side tends to zero as n approaches infinity

if x^ev By Lemma 3.6, there is a subsequence (un')a(un) such that the second

term to the right tends to zero for x^V dCe2, with e2 polar. Denoting by e

the union of eλ and e2y we get a polar set such that u satisfies (4.1) for x in any

finely open subset of U\e. By the choice of ex it is clear that u is finely con-

tinuous in U\e, so u^Hq(U).
Now, suppose that (4.1) holds for ^ G F G Φ , with V finely open in t/V, where
e is polar and °ίS is a base for the fine topology in U\e. By Lemma 3.7
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for all F G Φ . Since ^V is a base, the union over all sets V in ^ is equal to
U\e. Thus the localisation Theorem 2.6 together with the comment in 2.2
gives u^H(U), because

H(U) = ίf(£/V) = H(\J {V: VΪΞCV}) = n

This proves (a).
(b) Suppose that u^S(U), and choose un=Gμn—Gvn, where μn^δ and
vn^<S(CU), such that un-^u in W and q.e. We also assume, as we may, that
u is finely continuous on the set where pointwise convergence hold, and that
the potentials of μn and vn are bounded. It follows that

8c

x

v{un) = Gμζv(x)-Gvζv(x) = Gμζv(x)-Gvu(x)

for V finely open in [/, and
We can argue exactly as in (a) above to find a set e, polar, such that u satisfies
(4.2) for X G F , where V is any finely open subset of U\e. This proves that
S(U)dSq(U).
We now turn to the converse, and assume that u^Sq(U)Γ\W. Replacing,
as we may, U by the finely open set U\e (e polar), and recalling that then S(U)
=S(U\e)> we assume that u is finite and satisfies Definition 4.3 on the whole
of U. Moreover, we may assume that CU is a base (i.e. each point is regular).
To see this, we note that each point x in U has a fine neighbourhood Vx of this
kind. If u^S(Vx) for all x^U, then the Localisation Theorem 2.6 shows

We may write u=(u-8?uu)+δ?uu=Ό+h. Then h^H(U)dS(U)y and v is,
as one easily checks, finely superharmonic in the strong sense in U. Now
8χ =8X for x φ U, because CU is a base. We may therefore also assume that
u = 0 off U; the extended function is then finely continuous throughout M>
and it is a member of W0(U)+ (assuming that u is replaced by the obviously
non-negative function v above).
Due to the transience condition we may also assume that T=TCU is finite a.s.,
simply by replacing U with a relatively compact subset with the same properties
that the original U had.—This follows from the proof of [2, Prop. II.4.4].

J T
e~ptf(Xt)dt]. In the terminol-

o

ogy of [2, Ch. Ill], this is the resolvent associated with the multiplicative func-
tional Nt=lιOtT)(i)y which is exact by [2, Example after III. 4.8], because being
a base, CU is (nearly) Borel.—For p=0 we obtain the Green kernel for U, to
be denoted by Gu. We note that { \ Guμdμ}1/2 is the norm in W0(U).

The next step is to show that—under the above assumptions—u is excessive
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w.r.t. the resolvent (Gp, p > 0). (This is Dynkin's theorem in the fine-
topological case.) Since the argument in Meyer [22, Th. 11, pp. 11-12] carries
over with minor modifications, we omit it. The conclusion is that u is super-
mean valued w.r.t. Gυ

p\ for each p>0 we have pGpU<u. Since u is also
finely continuous, it follows that u is excessive.
We will now use the assumption " Γ < + oo a.s." Since u is excessive it follows
(because the hypothesis (D) in [2] is fulfilled; see the remark after (5.13) on
p. 133 and Prop. IΠ.5.11) that

i< = lim f G"/, , /.ejSH,

where, for each w, Gufn and fn are bounded. Replacing, as we may, fn by fn \κ

for an increasing sequence of compacts Kny we assume that

Vn: j Gufn-fndm< + oo .

It follows that Gufn^W0(U) for all n. (Write the integral as \Ggn-gndm)

where gn—fn—fn ) A convexity argument of standard type shows that there
are functions, hn say, such that hn^ίB* and Guhn->u in W and pointwise. Con-
sequently

(u I φ) = lim (Guhn \ φ) = lim \ <phn dm ,
« n J

and the latter is non-negative if <p^W0(U)+, so u^S(U) and (b) follows,
(c) Suppose that u^P{U). As in (b) we may assume that CU is a base, and
that u=0 on U. Then u>0, because δ. u—0. If v<u and v is finely har-
monic on Ϊ7, it follows that v=δ. v<δ. u for all finely open sets V
in U. Choosing V=U, we see that u is a fine potential in the strong sense
in U.

Suppose now that u^Pq(U) Π W. Then u>0, so δf uu>0 as well. Moreover,

u>δ^Uu, so δf^w=0, since by assumption also S^Uu<0 holds. It follows
that u^sq{U)n wQ{U)=s(U)n wo(U)=P{U).

4.7. REMARKS 1. Let us mention that an alternative approach to finely
harmonic functions in this semi-group setting of ours, would be to lean on
Bliedtner and Hansen [1, Theorem 5.2], where necessary and sufficient con-
ditions are given for the class of excessive functions to form the positive hyper-
harmonic functions in a J3-harmonic space.—In particular this is a local case.
From the Choquet property we know that all excessive functions are quasi
continuous, which implies that the harmonic space in question satisfies the
domination axiom (D) (Constantinescu and Cornea [5, p. 228]), and this is the
situation in which Fuglede works; see [9].
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2. We want to point out an important difference between the "defining rela-

tions' ' for H( ) , *S( ) and Hq( ) on the one hand, and Sq( ) on the other. For

instance, u^S(U) implies W G 5 ( F ) for any finely open set VdU> whereas

if u>hC

m

Uu, then it need not hold that w>δf ^ for VdU.

3. It remains an open problem if the qualifier "in the strong sense" can be

removed in Theorem 4.6 (b) and (c). If it is known that u is a potential of

a signed measure μ of finite energy, then one may argue as follows. (Inci-

dentally, this leads one to ask if there is some simple and direct analytic proof

ofTh. 4.6 (b).)

Let (A, B) be the Hahn-Jordan decomposition of μ into positive and negative

sets, i.e. μ+B=μ~A=0, AUB=0, A\JB=M, where A and B are Borel sets.

Choose V in the given family (V (a base for the fine topology in U) with V C

(Bf]Uy (the fine interior of BΓ\U), and let p=Gμ—hC.UGμ=πWo{v)Gμi so

that^>>0 q.e. Then §<\\p\\2= — [pdμ'<0, so Gμ^H{V). Theorem 2.6

now gives G / ^ E i ί ( U { F E φ : Fc(J?Π U)'})=H((BPi UY)=H(Bf] U\ where

the last equality is by Corollary 2.3. From this follows that μ~ vanishes on

BΠ U, hence that Gμ

5. Bounded point evaluations

We have now arrived at the problem which —in a sense— has been the

reason for these investigations. In the Newtonian case the results to follow

were proved in [14] and partly in [10].

5.1. If UdM is finely open, it is clear that the map H(U)^f-*f(x), x^M,

can be densely defined by

(5.1) Gμ(x)=\ GμdhC

x

U, μ^3{U),

where

3(U) = {μ = μx-μ2\ \μ\ <Bβ(CU), Gμέ bounded} .

Let us say that xGilί is a bounded point evaluation^ (BPE) for H(U) if the

map f~*f(x)> f^H(U)y densely defined according to (5.1), is bounded (in the

norm of W).

The following results parallel those of [14].

5.2. Theorem. For a finely open set U, the following are equivalent:

(a) x is a BPE for H(U);

(b) G8^U

We are fully aware of the solecism. It is however in everyday language, at least in this
part of Mathematics.
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(c) Sζuee;

(d) Γ cap {Gδf u>t}df<oo;

Jo

(e) Γ cap[{G(*, >)>t}\U]d?<oo .
Jo

Proof. Suppose (a) holds. Then, for some

SζU(5.2) (g\Gμ) = j GμdSζU, μ

Choose \€zS with arbitrary support, but with GX bounded. Then GX EΞ
Γ*TΊ

3{U). Since in this case, δ. represent a projection (see (3.3)), and projec-
tions are idempotent, we get

(5.3) j GXdfx

U = j GXCUdδC

x

U .

By Fubini's theorem the left-hand side of (5.3) equals I Gδ^dX, so (5.2) gives

J Ghc

x

udX = (g\GXcu) = (g\GXcu-GX)+(g\GX) = (g\GX),

because GXCU-GX(ΞW0(U) and g£ΞH(U). Since (g\GX)=\gdX, it follows

that g=GSχ q.e. by variation of λ. Thus (b) follows from (a).
That (b) implies (c) is clear. The implication (c)=φ(d) follows from Theorem
2.1 in [19], whereas (d) implies that GhC

x

U^W, according to the first part of
Theorem 4.1 in [19]. In this case hC

x

 U^β which clearly implies (a). Further-
more, cap[{G(#, -)>t}\U]<c2ipiGS^u>t}y since G8x

:u=&ξfx

τ.) s o t h L a t

GδfU agrees with the Green function G(xy •) q.e. off U. Hence (d) implies (e).
If (e) holds, then the second part of Theorem 4.1 in [19] implies that the bala-
yage of G(x, •) onto U, that is G8X , belongs to Wy so (c) holds, and the proof
is complete. •

5.3. REMARKS 1. The conditions in the theorem are also equivalent to the
following: There is a function g in W such that g=G(x, •) q.e. on M\U.
2. In the classical situation one has to require that CU be thin at x in order
that x be a BPE, see [14]. As the following example shows, this connection
between thinness and BPEs does not hold in general. Let M be the interval

(0, l)czRy and define (u\v)=[ uVdx, with u and v in Co(M), say. The

resulting Dirichlet space is continuously embedded in the continuous func-
tions (by Sobolev's theorem). Hence every point of M is a BPE for H{U),
for any UczM, in this case.
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3. There are non-trivial cases when the set of BPEs for H(U) is empty. One

can use a construction from Fernstrϋm and Polking [6, Theorem 2], to produce

a compact set E with £"=t=0, and no BPEs, provided the dimension d>4 .

(We are referring to the classical case in Rd.) In dimension less than four,

this is not possible. See the comments in [10].

5.4. Assume that M is a Euclidean space and that G(x, y)=g{\x—y\) (This

could probably also be carried out on a locally compact abelian group.) We

also assume that g(0)=ooy £(oo)=0, and that g is strictly increasing and sub-

ject to the condition g(t)<const. g(2t), for t>0. Then it is easily seen, using

capacitary integrals or sums (cf [14, 19]), that x is a BPE for H(U) if and only

if

(5.4) Σ£(2-«)2 cap(An(x)\U)<oo,

where An(x) denotes the annulus {y: \x— y\ e[2~Λ, 2 " B + 1 ) } , « G Z . Consider

the case of M. Riesz potentials, i.e. G(x,y)= \x— y\*~d, 0<a<d, a<2, or

Bessel potentials, i.e. G = ( l —Δ)"Λ/2, 0 ^ α ^ 2 , in Rd. Then the capacity of

the annulus is comparable to \jg(2~n)\ hence

Theorem. // W=Ws'\Rd), with 0<s<ly or if W is the corresponding

space of M. Riesz potentials, then x is a BPE for H( U) if and only if

See also [19, Chapter 4]. (The relation between the two parameters is s=a/2.

For the definition of Sobolev spaces, see the introduction.)

5.5. In [10], Fuglede proved that the every BPE was simultaneously a re-

movable singularity(5) for all finely harmonic functions on the set U, which

are also in the Dirichlet space of BLD-functions, and conversely. In our

situation we have not been able to prove the corresponding full result. Let

us prove a partial result.

We suppose that x is not a BPE (for H(U)). Then we can find functions

un=Gμn, \μn\ (Ξβ(CU)y with 0<utt<l, uM(x)=l9 and \\un\\<2-\ for n = l , 2, •••

Define vn = ήUn. Then υn <Ξ W by [19, Lemma 5.2], and | k J | < l k l | . To

show that vn(x)>l we note that vn>un q.e. (by Doob' theorem), and use fine

continuity, since we may always arrange that each un be finely continuous.

Since un^H(U), we also have h^Uvn{x)>\. It follows that the function

w=*Σ δf (vn)
 1S i n H(U) (because it is the increasing limit of a sequence in

Sf]H(U), each of norm no greater than 1) and w(x)= + °°. Therefore x cannot

In [16], we used capacitary integrals to solve a problem on removable singularities for
functions in Sobolev spaces Wλ>p satisfying the Euler equation div(gradw|gradu\p~2)=0.
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be a removable singularity for H(U). (We have not given any definition;
see however [9, §§9.14-15].) It is beyond the author's knowledge whether a
converse to this result is true in the general situation considered here.

Appendix

Proof of Theorem 1.2 (ii). Let Wx be the Dirichlet space built up from
the semi-group (e"tpt)t>oy and let Si denote the corresponding excessive func-
tions. To prove that the Choquet property follows from the quasi Lindelϋf
property, it suffices to show that the fine topology has a base of quasi-open
sets. Cf. [19, Th. 3.10].
By [2, Prop. II.4.4], the fine topology has a base of finely open sets of the form
p r={?;<l}> where v^Sχ and VdK for some compact set K. Moreover v = ί
on K. Let U be an open and relatively compact set such that KdU> and let
u denote the 1-caρacitary potential of U: u~ Aizϋ^Sx'. w>\ on U}. Then
u€zWly and u=l on U.
Define w=mm(u, v)^Sι. Then, by Theorem 1.3 for instance, w^Wv By
the definition it is clear that

v= {w<i}nu.

{w<l} is quasi-open since w€Ξ Wx, and the open set U is of course quasi-open.
Clearly the intersection of two quasi-open sets is quasi-open, so the assertion
follows.
To prove the converse we appeal to Fuglede [10a]. Since cap is a Choquet
capacity, it is sequentially order continuous from below ([11, Th. 3.1.1. (ii)]).
Moreover, by the Choquet property, condition (Tx) on p. 143 in [10a] is ful-
filled. Since cap £*=cap b(E), also (T2) holds. Altogether, this means that
the fine topology is "compatible" with the "quasi topology" determined by
cap, in the sense of [10a, Def. 4.3], Therefore the hypotheses of Corollary 3,
p. 149, in [10a] are satisfied, and the quasi Lindelϋf property follows.

Proof of (2.1). Let μ^6, and define B=CE> where E is finely open.
We may assume that B=b(B), and that μ is finite. Then the approximation
theorem [2, 1.1.13] shows that there is a decreasing sequence of open sets ωnZ)B,
such that

TωJTB a.s. P\Vx.

We may assume that E is relatively compact, hence that this holds for each
Kn—Cωn too. Now

= E [A(T.m)],

where A( ) denotes the positive continuous additive functional associated with
Gμ. By monotone convergence
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E'[A(Tωn)] f E'[A(TB)] = πWo(E)Gμ .

This proves (2.1).
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