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Introduction

In [3, Theorem 2] Evans proved that an R-module M cancels from direct
sums if the stable range of the endomorphism ring Endg(M) is 1. By using
this result it follows that finitely generated projective modules over unit-regular
rings cancel from direct sums [4, Corollary 4.7 and Proposition 4.12]. Howev-
er, as the first author has shown [4, Example 5.13], there exists a unit-regular
ring R with a cyclic module M which is directly infinite, that is, M =M @A
for some nonzero R-module A4, and so in particular M cannot be cancelled.
Later, Menal [7, Theorem D] proved that if R is a regular ring whose primitive
factor rings are all artinian, then the stable range of End;(M) is 1 for every
finitely generated R-module M and so again Evans’ theorem implies cancellation
for M. However, the converse of Menal’s result is not true for arbitrary regular
rings. For instance, it suffices to take any regular locally finite-dimensional
algebra over a field whose primitive factor rings are not artinian. For more
information on this subject we refer the reader to [8].

In this note we will show that if R is a regular ring which is N*-complete,
or right or left 8,-continuous, or left 8,-injective, then every finitely generated
right R-module cancels from direct sums if and only if R has bounded index
of nilpotence (and so all primitive factor rings of R are artinian). As an appli-
cation we also obtain a characterization of those polynomial rings R[x] that
are semihereditary in the case that R is either N*-complete or right or left
N,-continuous.

Cancellation

All rings considered in this paper are associative with 1. A ring R is (von
Neumann) regular if for any x& R there exists a y& R such that x=xyx. If we
can always choose y to be a unit, then R is called unit-regular. If X is a subset
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of R, then we denote by /(X) and 7(X) its left and right annihilators. By a
subring we always mean a unital subring.

The example mentioned above, of a unit-regular ring which has a directly
infinite cyclic module, is just ITs.: M,(F,), where F,, F,, --- are fields. Our
method is to look for subrings of this form inside regular rings of index oo,
using N*-completeness, or 8,-continuity, or 8,-injectivity to build a complete
direct product.

Lemma 1. If R is a nonzero regular ring, then there is a nonzero central
idempotent e R such that eR is an algebra over a field.

Proof. If R is not a @Q-algebra, then there is a prime p such that pR=+R.
Since p is central, [(pR)=eR for some nonzero central idempotent e R. Now
eR is an algebra over Z [pZ.

Recall that the index of nilpotence of an ideal I in a ring R is the supremum
of the indices of all nilpotent elements in /. If this supremum is finite, we say
I has bounded index (of nilpotence), while if this supremum is infinite we say I
has index oo. The next lemma is a key result in this paper.

Lemma 2. Let R be a regular ring and let I be a two-sided ideal of R of
index oo. Then there exist nonzero orthogonal idempotents e,, e,, -+ I such that
e,Re, has a subring isomorphic to the nXn matrix algebra over a field.

Proof. We first observe that it suffices to prove (1): There exist indepen-
dent right ideals A4,, 4,, --- contained in I such that A4, contains a direct sum
of n nonzero pairwise isomorphic right ideals. For suppose (1) holds. Each
A, contains a right ideal B, which is a direct sum of » nonzero pairwise isomor-
phic principal right ideals, and then B, is principal. By [4, Proposition 2.13]
there exist orthogonal idempotents f;, f, -+ such that

f1R® @fﬂR = Bl@ @B”

for all n. Then f,&1I and f,R=B, for each n, so f,R is a direct sum of # non-
zero pairwise isomorphic right ideals, whence f,Rf, is isomorphic to an nXxn
‘matrix ring. By Lemma 1, there is a nonzero central idempotent e, in the ring
fRf, such that e,Re,=e,f,Rf, is an algebra over a field. Then e,&1 and e,Re,
has a subring isomorphic to the #X# matrix algebra over a field. Since the
f's are orthogonal, so are the e’s.

For each n, let J, be the sum of all ideals contained in I of index at most #.
Then J,€ J,& -+, and by [4, Corollary 7.8] each J, has index at most n. Set
B,=],.NI(J,) for each n. Observe that (B,N J,)’<B,J,=0, and so B,N J,
=0. Hence, the B’s are independent. When B,=0, then since B,C J,,, and
B,N J,=0 we see that B, has index n{1. In this case, [4, Theorem 7.2] implies
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that B, contains a direct sum of #+41 nonzero pairwise isomorphic right ideals.
If infinitely many B’s are nonzero, say By, By, -+ where n(1)<n(2)<-:-, then
each B, contains a direct sum of k& nonzero pairwise isomorphic right ideals,
and (1) is proved. Thus we may assume that only finitely many B’s are not
zero, and so for some t €N we have B,=0 for all n>>¢. Then for n>¢ we have
Jena NI(J,)=0, and it follows that J,<, J,., as right ideals of R. From [4,
Corollary 7.5] the index of J,,, is now at most n, whence J,,,=],. Thus J,=],
for n>t.

Set A=1I(J;)N1I, and observe that AN J,=0. Since I has index oo, [4,
Corollary 7.5] shows that J, is not essential in I, and so A40. Now 4N J,=0
for all n. Thus A4 and all nonzero ideals contained in 4 have index co. If 4
contains an independent sequence of nonzero ideals A, 4,, -+, then by [4,
Theorem 7.2] each A4, contains a direct sum of # nonzero pairwise isomorphic
right ideals and (1) is proved. Thus we may assume that A does not contain
an infinite sequence of independent nonzero ideals.

Now 4 must contain a nonzero ideal B such that any two nonzero ideals con-
tained in B have nonzero intersection. It follows that any two nonzero right
ideals K, L £ B must contain nonzero isomorphic right ideals. For taking
nonzero elements x€K and yeL, we have RxRN RyR=0, whence xay=0
for some a=R, and xayR is isomorphic to a right ideal contained in yR. By

induction, it follows that whenever B,, -+, B, are nonzero right ideals contained
in B, there exist nonzero right ideals C;CSB; for i=1, -+, k such that C;=C;
for all z, j.

As B=0, it has infinite index, so it cannot be artinian. Thus B contains
an infinite direct sum of nonzero right ideals. Grouping finitely many of these
together at a time, we obtain nonzero independent right ideals 4,, 4,, ---SB
such that each 4, is a direct sum of # nonzero right ideals. Invoking the result
of the previous paragraph, we conclude that each A, contains a direct sum of
n nonzero pairwise isomorphic right ideals. Therefore (1) holds in this case too.

Recall that a pseudo-rank function on a regular ring R is a map P: R— [0, 1]
such that

(a) P()=1;

(b) P(xy)<P(x), P(y) for all x, yER,;

(c) P(e+f)=P(e)+P(f) for all orthogonal idempotents e, fER.
Denote by P{R) the set of all pseudo-rank functions on R, and let

N*(x) = sup{P(x): P=P(R)}

for all x&R. Then the rule §(x, y)=N*(x—y) defines a pseudo-metric on
R; we say R is N*-complete if § is a metric and R is complete with respect to it.

Lemma 3. Let R be an N*-complete regular ring of index oo. Then R
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has a subring isomorphic to T X [, M,(F,) for some regular ring T and some
fields Fy, F,, --..

Proof. From the idempotents given in Lemma 2 we can choose non-zero
orthogonal idempotents f;, f;, -+ €R such that each f,Rf, has a subring isomor-
phic to the #2" X #2" matrix algebra over a field F,. Then f, is a sum of ortho-
gonal idempotents g,; (for =1, -+, #2") such that g,;R=g,;R for all7,j and F,, is
isomorphic to a subring of g,,Rg,,. Since n2"(g,;R)=< f,RC Ry, we have N*(g,,)
<1/n2". Set h,=g, + -+, and observe that

N*(hﬂ)SN*(gnl)—i_"+N*(gnn)£n/n2” = 1/2'" .

Also h,Rh,= M,(g,,Rg,,), and so M,(F,) is isomorphic to a subring of
h,Rh,.

Given any sequence x=(x,)E [I7.1 #,Rh,, we have N*(x,)<N*(,)<1/2"
for all n, so the partial sums of 3] x, are Cauchy with respect to N*. Hence
> x, converges to some ¢p(x¥)ER. In particular 33 %, converges to an idempo-
tent A& R. Then ¢ gives a ring isomorphism of IJ;.; #,Rh, onto a subring of
hRh, and so 1., M,(F,) is isomorphic to a subring of ARh.

Taking T'=(1—#/)R(1—#), the proof is complete.

We say that a regular ring R is right 8,-continuous if the lattice of principal
right ideals L(Ry) is upper R,-continuous, that is, every countable subset of
L(Rg) has a supremum in L(Rg) and AA(VB,)=V(4AAB,) for all 4 and all
countable linearly ordered subsets {B,} in L(Rg). For example, any right self-
injective regular ring is right 8y -continuous [4, Corollary 13.5].

Recall that a ring R is called right (left) Ry-injective provided every homo-
morphism from a countably generated right (left) ideal into R is given by left
(right) multiplication by an element of R.

Lemma 4. Let R be a regular ring of index oo which is either right or left
Ro-continuous. Then R has a subring isomorphic to T X Ily-1 M,(F,) for some
regular ving T and some fields F,, F,, -+-.

Proof. By symmetry, we may assume that R is right R,-continuous.
By Lemma 2, there exist nonzero orthogonal idempotents e,, e, - ER such that
each e,Re, has a subring isomorphic to the n X7 matrix algebra over a field F,.
By [4, Corollary 14.4] there is an idempotent e R such that P;., ¢,R<, eR,
and it suffices to show that I];.. M,(F,) is isomorphic to a subring of eRe
(since it is clear how to find a subring of (1—e)R(1—e) isomorphic to T'X F,).

Let S be the maximal right 8,-quotient ring of R (see [4, Chapter 14]),
and note that ;..e,S<,eS. Any sequence x=(x,)EIl7-: e, Se, induces a
homomorphism
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Dr-2 6,5 > Dz e, SCSeS

which extends uniquely to a homomorphism eS—eS because S is right R,-
injective [4, Theorem 14.12], and this homomorphism is left multiplication by
some unique element ¢(x)EeSe. We observe that ¢ is a unital ring map
from JJ;.. e, Se, into eSe, and that ¢ is injective.

Now eSe has a subring S’'=][;.. M,(F,). Since S’ is regular and right
self-injective with no nonzero abelian central idempotents, S’ is generated as a
ring by its idempotents [4, Theorem 13.16]. But all idempotents of S lie in R
[4, Theorem 14.12]. Therefore S’ is a subring of eRe.

For Rg-injective regular rings, we have a weaker version of Lemmas 3 and
4, which is not left-right symmetric.

Lemma 5. Let R be a left Ro-injective regular ring of index oo. Then
R has a subring S with a two-sided ideal H such that (S/H)s is flat and S|H ==
w1 M(F,) for some fields F,, F,, ---.

Proof. By Lemma 2, there exist nonzero orthogonal idempotents e, ¢,, -++
€ R such that e,Re, has a subring isomorphic to M,(F,) for some field F,. Let
J=©®5-1 Re, and let I(J) be the idealizer of J in R and observe that the right
annihilator #(J) is a two-sided ideal of I(J).

Any sequence x=(x,)€ [I;-1 e,Re, induces a homomorphism J— J<, R
which must be right multiplication by some ¢(x)=I(J), because R is left Ry~
injective. Although ¢(x) is not uniquely determined by , it is unique modulo
7(J). Thus the rule x+— ¢(x)+7(J) defines a unital ring map from [];., ¢,Re,
into I(J)/r(J), and this map is injective. Therefore J(J) has a subring S
such that S 27(J) and S/r(J)=11y-1 M,(F,).

Since 7(J) is a right ideal of R, it is a directed union of right ideals eR
where e is an idempotent. For any such e, observe that S=eR@(1—e)S, so that
eR is a direct summand of Ss. Therefore S/r(J) is a flat right S-module.

A module M is called directly finite provided M is not isomorphic to any
proper direct summand of itself, that is, M2xM @A for all nonzero modules 4.
If M is not directly finite then M is called directly infinite.

Parts of the following theorem are due to Evans [3] and Menal [7].

Theorem 6. Let R be a regular ring which is N *-complete, or right or left
Ro-continuous, or left Ry-injective. Then the following conditions are equivalent :

(a) R has bounded index of nilpotence.

(b) All primitive factor rings of R are artinian.

(c) The endomorphism ring of every finitely generated right R-module has

stable range 1.
(d) All finitely generated right R-modules cancel from direct sums.
(e) All finitely generated right R-modules are directly finite.
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Proof. (a)=>(b) is [4, Corollary 7.10]. (b)=>(c) is by [7, Theorem D].
(c)=(d) is [3, Theorem 2]. (d)=>(e) is clear.

Now we prove (e)=>(a). Suppose that R has index c. By Lemma 3,
4, or 5, R has a subring S with a two-sided ideal H such that (S/H); is flat and
S/H =117, M,(F,) for some fields F,, F,, ---. By [4, Example 5.13], S/H has
a cyclic right module M which is directly infinite.

Then M =M A for some nonzero right (S/H)-module 4, and consequently

MQs R=(MQs R)PB(ARs R) .

Since S/H is regular, A4 is flat as an (S/H)-module, and then since (S/H)s is
flat, A is flat as an S-module. Hence, the natural map AQs S— AQs R is
injective, and so A®Qs R+0. But then M®s R is a directly infinite cyclic
right R-module, contradicting (¢). Therefore R has bounded index.

In case the ring R in Theorem 6 is either N*-complete or right or left 8,-
continuous, the given conditions are also equivalent to the corresponding left
module versions of conditions (c), (d), (e) (because conditions (a), (b) are left-
right symmetric). We do not know whether Theorem 6 holds for right R,-
injective regular rings.

Semihereditary Polynomial Rings

By applying Lemmas 3 and 4 we will obtain a result on semihereditary
polynomial rings. First we need a relatively well-known lemma.

Lemma 7. Let S be a regular subring of a ring R. If R[x] is right semi-
hereditary, then so is S[x].

Proof. Since S is regular, R is faithfully flat, and then [1, Lemma 3] shows
that g,3R[«x] is faithfully flat. Then S[x] is right coherent by [6, Corollary 2.1].
As S is regular, S[x] has weak global dimension 1, and therefore S[x] must be
right semihereditary.

Recall that a ring R is strongly m-regular if for each element aE R there is
a positive integer n such that a"R=a""'R. That this condition is left-right
symmetric was proved by Dischinger [2, Théoréme 1].

Theorem 8. Let R be a regular ring which is either N *-complete or right or
left R,-continuous. Then the following conditions are equivalent :

(a) R[x] s right semihereditary.

(b) R[x] is left semihereditary.

(¢) R has bounded index of nilpotence

(d) R is strongly m-regular.
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Proof. (c)=>(a) and (b) by [4, Corollary 7.10] and [5, Corollaire].

(a) or (b)=(c): If R hasindex oo, then by Lemma 3 or 4 R has a subring
S=TxTIIy.1 M,(F,) for some regular ring T and some fields F,, F,, --. Then
[5, Proposition 11] implies that S[x] is neither right nor left semihereditary.
But in view of Lemma 7 this contradicts (a) and (b). Therefore R must have
bounded index.

(c)=(d) by [4, Theorem 7.15].

(d)=>(c): If R has index oo, then by Lemma 3 or 4, R has a subring
S=TxIIs.1 M,(F,) as before. Choose matrices a,& M,(F,) such that a, is
nilpotent of index #. 'Then (0, a,, a,, -*+) corresponds to an element a& S such
that Is(a") %= Ig(a**") for all n=1, 2, ---. But then I(a")=Ig(a"*") and so a"R=*
a""'R for all n, contradicting (d). Therefore R has bounded index.
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