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1. Introduction

The Kohn-Nirenberg correspondence assigns to a sympalw) in the space of
tempered distributionss’(R?!) the operatorr(X, D): S(RY) — S’(R?) defined by

o(x. D)/ = |

R

o(x, w)f(w)ezmx'“’ dw.

This is the classical version of pseudodifferential opmsatthat is used in the in-
vestigation of partial differential operators, cf. [21]n Ithe language of physics,
the Kohn-Nirenberg correspondence and its relatives ssctihe Weyl correspondence
are methods of quantization. In the language of engineetivey are time-varying fil-

ters.

The Kohn-Nirenberg correspondence is usually analyzeagusiethods from hard
analysis. The problems arising from the theory of partidfedéntial equations sug-
gest using the classical Hérmander symbol clasgpegRZd), which are defined in
terms of differentiability conditions [21], [31]. On the heir hand, if we introduce
the time-frequency shifts

1) M T, f(t) = &7 f(t — x),
then we can writes(X, D) as a formal superposition of time-frequency shifts:
o6, D)= [ [ 5ty =26 ) dny
= [ 300 fla iy du g
R4
@ = [ 50w (01,701) ) 0

From this perspective, it seems natural to use symbols intifum classes that are as-
sociated to the time-frequency shiflg, T,,. Specifically, this is done by investigating
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Fig. 1. Set of p,q ) for whicho(x, w) € MP4(R?') implies o(X, D) is bounded or
unbounded onL?(RY).

the class of function spaces known as thedulation spacesModulation space norms
are quantitative measures of the time-frequency condémiraf a function or distribu-
tion, and have proven useful in the study of many aspectsnué-frequency analysis.
In these terms, the investigation of pseudodifferentiagrafors amounts to the ques-
tion of how a pseudodifferential operator affects the tiimuency concentration of
a function.

The modulation spaces were invented and extensively igeatetl by Feichtinger
over the period 1980-1995, with some of the main referenceisgb[9], [10],
[11], [12], [13]. They are now recognized as the appropriaitaction spaces for
time-frequency analysis, and occur naturally in matheraitiproblems involving
time-frequency shiftsM,,T,. For a detailed development of the theory of modulation
spaces and their weighted counterparts, we refer to thenalidjterature mentioned
above and to [16, Chapter 11-13].

In this note we will employ the unweighted modulation spasgs?(R%*) as sym-
bol classes in the study of pseudodifferential operators. Will completely charac-
terize which of these spaces yield operatot(s(, D) that extend to bounded map-
pings of L2(RY) into itself. In particular, we construct counterexamptiEsnonstrating
the sharpness of our conditions. Because of the invariangeepies of the modula-
tion spaces, the same results also hold for the Weyl cornelgmze. Our results are
succinctly summarized in the diagram in Fig. 1.
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2. Time-frequency representations and modulation spaces

The modulation space norms provide a quantitative meastireme-frequency
concentration. We will use the short-time Fourier transfaas an appropriate defini-
tion of the time-frequency content of a functioh  at “time” dafrequencyw, but
we could just as well use any time-frequency representasoich as the ambiguity
function or the Wigner distribution [16, Chapter 4].

Derinimion 1. Fix a nonzero windowg € L2(RY). Then theshort-time Fourier
transform (STFT) of f with respect tg is

Ve f(x,w) = / f()glt —x)e 2™ dr, x,weR%
Rd

The STFT can be written in a number of equivalent ways, fomela:

ng(xv (U) = <f7 Mwag> = (f ' TxéT)A(w) = e_Zﬂix.wV{:’fA(wv —X).

Clearly, in this formulation, the STFT can be extended to yndnal pairs. In partic-
ular, if g € S(RY), thenV, f is defined for any tempered distributighe S’(R?). In
this way the STFT becomes an instrument to measure the tiegedncy concentration
of distributions.

Derinmion 2. Fix a nonzerovindow functiong in the Schwartz class(R¢), and
let 1 < p,q < oco. Then the modulation spack”? R{) is the subspace of the tem-
pered distributions consisting of aff ¢ S’(R¢) for which

a/p Yaq
||f||MM:||ng||Ln-4(Rw):( / ( / |vgf<x,w)|1’dx) dw> < .
Rd R‘[

We defineM? =MP?-P . In particular| f||y» = || Ve f]

Lr-

The definition of M7 is independent of the choice of the windgwe S(RY),
and different windowsg vyield equivalent norms aw?4 [16, Propos 11.3.2].
We will employ both the modulation spacé$”? R% and M?-¢ R%) in our analysis,
the domain being clear from context if not explicitly spesfi

The modulation spaces have an elegant structure theory esskgs atomic de-
compositions similar to the Besov spaces. The spdceserves as an important Ba-
nach space of test functions in time-frequency analysiss Space is invariant under
the Fourier transform and is an algebra under both conemuéind pointwise multi-
plication. Any compactly supported functign  such that 7' belongs automatically
to M?! [9].

An important property of the modulation spaces is that they iavariant un-



684 K. GROCHENIG AND C. HEIL

der the operator which transforms a Kohn-Nirenberg symimlat Weyl symbol.
In particular, given a symbob(x,w), the symbolr(x,w) whose Weyl transform
equals the Kohn-Nirenberg transform efx, w) is given by 7, u) = e ™ $5(&, u).

By [17, Lemma 2.1],

o€ MPIRY) «—= 7€ MPIRH),

Consequently, all of our results are unchanged if the Koime+itberg correspondence
is replaced by the Weyl correspondence, or equivalently,dperatoro (X, D) can be
interpreted as being either the Kohn-Nirenberg or Weyl gfam of o(x, w).

3. Pseudodifferential operators onL?(RY)

In the literature on pseudodifferential operators, the atatibn spaces figure im-
plicitly in [3], [19], [28], [30], [32], and enter explicifl in [17], where M>>1(R%?)
in particular is used as a symbol class to establish the hmmebss ofo(X, D)
on M?[R%), 1 < p < oo, including M? = L? as a special case. Further developments
using modulation spaces have been obtained in [1], [23], [38].

In this section we present sufficient conditions for the ledness of pseudo-
differential operators o?2(R¢) when the symbol is taken in a modulation spa¢é ¢
These results follow from known endpoint results. In theloieing section we will
show that these conditions are sharp.

For 1 < p < oo we letZ, denote thep -Schatten class, which is the Banach
space of all compact operators @ad(R%) whose singular values lie it [2], [7], [29].
Although not a standard notation, for convenience we wihate the Banach space of
all bounded operators oh?(R?) by Z.., with norm ||Al|z.. = ||Allop-

Theorem 3. (a) If o € L?(R*¥) = M?*(R*), then o(X,D) € I, and
lo(X, D)||z, = [|o]| 2
(b) If o € MY(R*), theno(X, D) € T;.

Theorem 3 (a) is due to Pool [27]. Statement (b) was state@piemdently
by Feichtinger and Sjostrand, with the first proof publihe [15]; see also [17,
Proposition 4.1] or [18, Proposition 6.1]. As discussed 17][ Theorem 3 improves
the trace-class results of Daubechies [6] and Hormandgl. Ro far the best result
using a weighted modulation space as a symbol class seemg foubnd in [19]
(see [18] for the formulation in modulation space termskhva related result in [26].

The following is [16, Theorem 14.5.2], and extends the tssof [17] to all
the unweighted modulation spaces.
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Theorem 4. If 0 € M>Y(R*), theno(X, D) is a bounded mapping d¥”¢(R%)
into itself for eachl < p, ¢ < co, with a uniform estimate

o(X, D)llop < l|o || proca.
In particular, o(X, D) is bounded onL?(R%).

It can be shown thatC/*}(RY) c M°>1(R?Y) [16, Theorem 14.5.3], and
thus Theorem 4 implies the following corollary in the spif the celebrated
Calderon-Vaillancourt theorenit o € C%*Y(R%?), then o(X, D) is bounded onM -4
for everyl < p,q < oo, cf. [4] and [14, Theorem 2.73]. In fact, the more involved
arguments of [19] or [25] show that the Holder-Zygmund sla@s*<(R¢) is contained
in M>>Y(R?) for all ¢ > 0. However,M>>! is not defined by a smoothness criterion,
and includes non-differentiable functions.

A special case of Theorem 4 was proved by Sjostrand [30], whe apparently
unaware of the extended theory of modulation spaces thatamaitable. Among hard
analysts, the spac#°>! is sometimes known as Sjostrand’s class. Further invaestig
tions were done by Boulkhemair [3], who rediscovered a deuumition of M>! of
Feichtinger [10], and more recently by Toft [32], [33].

To extend the above endpoint results, we use the basic ionlasd interpolation
properties of modulation spaces. In particular, recall fllowing facts.

(&) Inclusion Theorem [16, Theorem 12.2.2]:

(3) MPC MPP2 <= p1 < pa, q1< g2

(b) Complex interpolation [8], [11]:[M** M27, = M»? for 1 < p < 2, and
[M22 M>1], = MPP for 2< p < oc.

The p-Schatten classes interpolate lik¢  -spaces, namélyZl]y = Z, for
1< p < oo, cf. [22, Theorem 2.c.6]. The following statements thereftollow im-
mediately.

Theorem 5. (a) If 1< p,q <2 ando € M7 (R*), theno (X, D) € Imaxp.q}-
(b) f2<p<ocandl<gq<p, and if o € MP4(R*), theno(X, D) € Z,,.
(c) In particular, if 1< g <2and1< p <gq’, theno(X, D) is a bounded operator
on L?(R%).

Proof. (a) Let 1< p,q < 2, and sety = max{p,q}. If o0 € [M*Y, M??, =
MP P, theno(X, D) € [11,22] = Z,. By (3), we haveM?? C M** and therefore
o(X,D)eZ,.

(b) If 2 < p < 0 ando € [M%2 M1, = MP?', theno(X, D) € [Tz, Toc]o =
7,. Sinceq < p/, we haveM? c M»?', and consequently(X, D) € Z,,. O
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4. Counterexamples

Our main goal is to show that Theorem 5 is sharp. We will prdwe following
statement.

Theorem 6. (a) If ¢ > 2, then for anyl < p < oo there existss € MP-4(R%%)
such thato(X, D) is unbounded orL.2(R%).
(b) If p > 2 and p > ¢’, then there existsr € M?4(R%) such thato(X, D) is
unbounded orL2(RY).

4.1. Proof of Theorem 6 (a). For this portion of the proof of Theorem 6, it
will be more convenient to work in the setting of the Weyl espondence. Hence in
this part we leto(X, D) denote the Weyl transform of(x, w). The Wigner distribution

W(f, g)(x,w) = / f (x + %) g (x - %)6727”'“’" dr
will play an important role because of the fact that(X, D) f, g} = (o, W(g, f)). In
particular, if o is chosen to have the form = W(y, v), theno(X, D) is the rank-one
operatoro(X, D) f = (f,v)¢. This motivates the following lemma. A different proof
of this lemma has been independently obtained by Toft in,[88} a variety of related
results can be found in [5].

Lemma 7. Let1< p <¢q < oo be givenIf i € MP(R?) and ¢ € M4(R9), then
W(p, 1) € MP9(R?).

Proof. Fix any nonzero window functione S(RY). ThenG =W g, g )€ S(R%),
and forz = €1, z2) and ¢ = (¢1, (2) € R* we have by [16, Lemma 14.5.1] that

Vet (21+C—22,Zz—<—21) Vg@(Z1—C—22,Z2+C—21>’-

Writing Zd(z) = ®(—z) and ¢ = (¢, —(1), we therefore have fog < oo that

|VW(g.g)W((pv @b)(z, C)' =

W (. V)llarra

a/p Ya
:</ </ Ve Wle: 0. ov’dz) d<>
R2d R4
4
(L g e 209

P q/p /4
2 2 2 2 dZ) dg)
N » a/p
= (/ (/ Ve (2)]” ’ZVg@ (¢— z)‘ dz) dC)
Rz \JR2

1/q
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2d

. 1/q
= ([, (vewr = rveep 0" ac)

1
= ||| Vewh | # | ZV,epl? |22,
1 1
< [Vew P2 1T Vel |10,
= [|Ve ol Vel 1o

= 19l ol pe

Young’s convolution inequality is applicable above singép > 1. The case; =o is
similar. O

Now we can prove Theorem 6 (a) for the cage- 2 and 1< p < g. The case
p > g will be covered by the proof of part (b).

We construct a counterexample in the form of a rank-one oper&inceqg > 2,
we have thatL?(R?) is a proper subspace @ff? R{). Choose any) € M7\ L?, and
any nonzerop € S(RY). Theno = W(p, 1)) € MP4(R*) by Lemma 7, yetr(X, D) is
the rank-one operatar(X, D) f = (f, 1)y, which is unbounded om.2(R9).

4.2. Preparation for the proof of Theorem 6 (b). For the remainder of
the proof of Theorem 6 it will most convenient to work in thettsgy of
the Kohn-Nirenberg correspondence. We will seek a couxaenple of the form
o(x,w) = mx)pu(w) = (m ® w)(x). For such a separable symbol, the Kohn-Nirenberg
transformo(X, D) coincides with the product-convolution operator

U(X’D)f:m(ﬁ*f)v

where ;= F~1y is the inverse Fourier transform ¢@f. For further simplification, we
will try to find functionsm , ui, f of the formm =3, .. cuTig, fi = > cpa B Tig,
and f =3, ;. nTrg. However, before constructing this counterexample we irequ
some preparation.

Lemma 8. Assume that = m @ u € S'(R¥). Theno € MP7(R¥) if and only
if both m, u € MP9(RY).

Proof. Choose a window € S(R%) of the formg =g1 ® g» with g1, g2 €
S(RY). Then the STFT factors ag,o = V,,m ® V,,pu, and the result immediately fol-
lows from Definition 2. ]

Next we estimate the modulation space norms of several Gabos. The follow-
ing is a special case of [16, Theorem 12.2.4].
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Lemma 9. Assume thag € M! and 1 < p,q < oco. Then there exist€ > 0
such that for everyy € 17(Z¢) and 8 € 19(Z¢) we have

> anThg > BuM,g

n€ezZd nezd

< C|lall» and < ClBll-

Mpra Mpra

If p,g < oo, then both sums converge unconditionally 4. If p = oo or ¢ =
oo with (p, q) # (1, o), (o0, 1), then both sums converge wéak MP?-4, otherwise
weak in M.

Lemma 10. Assume thal < p < oo and p’ < ¢ < 2. Let g € M?! be given
with compact supportLet a € [7(Z4), 8 € 19(Z%), and € I2(Z?) be given Define

4) m= Z axTrg € MP1, = Z GiM_xg € M9, f = Z wTig € L.

Thenm - (i f) € M*' for some2 < s < oo and all 1 < ¢ < co. Furthermore
m - ({1 f) is given explicitly as

(®) me(fix )= Y > (B )iTi(g * 8) - Tiseg,

k| <K lezd

for someK > 0 depending only on the size of the supportgofwith convergence of
the series inM*’' (weak if t = c0).

Proof. Define fu =1/¢g—1/2=1/¢q+1/2—1. Then 2< u < oo, and by Young’s
inequality we have3 x vy € 19 x[2 C [*. Sinceg x g € M*, we have by Lemma 9 that
the seriesy (3 * y)iTi(g * g) converges inM*" (wedkif = oco). Further,

e f=) 0 mBTug * Tig)

neZd kezd

= Z <Z W/zﬁl—n) Tl(g * g)

€74 \neZd

=Y (B )iTi(g * 8).

1€z

Let j € Z? be fixed, and definerfa), = a«. Then by Holder's inequalityr;a -
Bxy)el?r-1* cl®* where Ys = 1/p+1/u = 1/p +1/qg — 1/2 (note that 2<
s < o0o). Since g = g) - Tjg € M*, we have by Lemma 9 that the seri®s, as; -
(BT ((g*g) - T;g) converges inM*" (weakif 1= cc).

Now, sinceg has compact support centered at O, there eKists 0 such that
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Ti(g * g) - Trg = 0 wheneverl — k| > K. Consequently,

m-(fix £)= Y Y (B )iTi(g * &) Trg

kezd 174
= Z Z (B )iTi(g * 8) - Ti+;8.
j|<K lezd
with convergence of the series M*'  (wéalk 1 = o). U

4.3. Proof of Theorem 6 (b): Construction of a counterexamm. The case
p = 2 is covered by part (a), so it suffices to assume fhat 2 andg > p’. Further,
by the inclusion properties of the modulation spaces, ifiedg to consider the case
2<p<ooandp <gq < oo.

We choose a windovwg that will allow us to compute a lower estim#én par-
ticular, we takeg € M compactly supported and witp > 0. To be specific, let
g = X[-1/2,1/2) * X[—1/2,1/2¢- Then for some constants G > 0 we have

(6) (g*8) &> Cxi—aq-

Suppose thaty, 3, v > 0 satisfy the hypotheses of Lemma 10, anddetu, and
f be defined by (4). Then by Lemma 8, we have= m @ . € MP4(R%). Further,
m-(p* f) is an element off* 1% for some 2 s < oo, which is a strict superset
of L2

Since all terms in the series (5) representing(j: * f) are non-negative, we have
m - (= f) > 0. Therefore, using thg = 0 term in (5) and applying (6), we can
estimate theZ?-norm of the product-convolution from below as

lo(X, DY fllez = llm - (fix £l

>

> B )iTi((g*8)- g)

ez
> C'lec- BNz

L2

for some appropriate constant’. Consequently, to show that(X, D) is unbounded
on L?, it suffices to construct nonnegative sequenaes [”, 3 € 14, and~y € [? such

that o - (8 * ) ¢ I°.
Since ¥p +1/q +1/2 < 3/2, we may choosé > 0 so that

1 1 1 3d
—+ I+ + —.
<p q 2)(d 0 < 2
Define
d+6 d+d d+9
p= , 0= , T= .
P q 2
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Setag =6y =7 =1, and forn # 0 define

oy =[n|", By =1[n]"7 .

’ 'Vn :|n

Thena €17, 3 €19, v € [?, and each sequence is positive. Further, given Z¢ we
have

GxM=Y Boms> Y, |Kn—k"7 = Clnl*|n| .

kezd |n|/4<|k|<3|n|/4
Hence
an - (Bxy)n > C|n|d_p_g_7 > C|”|_d/2’

becausep + o + 7 < 3d/2. Consequentlyy - (3 * v) ¢ 12. Thuso € MP4(R*) and

f € L3(RY), yeto(X, D) f € M* \ L2.

(1]
(2]

(3]
(4]
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