

Title	低温STMによるDNA塩基配列決定と加工を目指して
Author(s)	菅野, 誉士; 浜井, 知歩; 田中, 裕行 他
Citation	大阪大学低温センターだより. 1999, 105, p. 20-28
Version Type	VoR
URL	https://hdl.handle.net/11094/5521
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

低温STMによるDNA塩基配列決定と 加工をめざして

産業科学研究所 *田中裕行(内線8447)

菅野誉士(内線8447) 浜井知歩(内線8447) 川合知二(内線8445)

*E-mail: hiro-t32@sanken.osaka-u.ac.jp

1.はじめに

走査トンネル顕微鏡(Scanning Tunneling Microscope: STM)は[1]、試料表面の原子ひとつ一つを 実空間で直接観察あるいは加工(反応)できる能力をもつ表面分析手法であり、1983年に発表されて以来、 凄まじい勢いであらゆる研究分野で導入されている[2-4]。このSTMを用いた研究の目的の中で、最 も興味深く重要なものは、「DNA塩基配列決定と加工*」であろう。実際に'80年代後半から'90年代初 頭の間、STMを用いたDNA塩基配列決定と加工を目指す研究が熱狂的に行われた[2-4]。しかし、再 現性のある信頼できる結果が得られないまま研究の熱はさめ、現在では一部のグループが研究を担うだ けになってしまった[5,6]。我々はこの"一度あきらめられたテーマ"をもう一度冷静に見つめ直し、 我々独自のアプローチ及び手法を開発することにより目的を着実に達成しつつある[3]。その中で鍵と なる技術の一つに"低温"があり、この場を借りて紹介したい。

2. STMの基本原理

まず、STMの基本原理を簡単におさらいしておきたい。図1(a)に示すように極めて鋭い先端を持つ 金属探針を試料表面に1nm程度に近づける。表面と探針間にバイアス電圧をかけると、トンネル電流* が流れる。このトンネル電流の大きさは表面・探針間の距離に指数関数的に依存する。そこで、探針を 圧電素子によって表面に沿う方向に走査しながら、フィードバック系でトンネル電流が一定になるよう に表面に垂直方向の位置を制御すると、試料表面の原子尺度の凹凸の情報が得られる。

(注)DNA塩基配列決定と加工

DNAの塩基配列決定は既存の技術では、多量に複製された同一のDNA試料が必要とされるなど 改良すべき点が多いため、より画期的な手法の開発が望まれている。もし、STMによる塩基配列 決定が実用化されれば、塩基配列決定に要するDNA試料は1ヶから可能となる他、ラニングコス トの低下、スピードの向上等のメリットがある。また、決定的なSTMのメリットとして、塩基配 列決定だけでなく、塩基配列の変更などの加工もその場で引き続き行うことができる点を挙げるこ とができる。

🖾 1 a 実空間でのSTMの模式図 bエネル ギー図での模式図。 φ、: 基板の仕 事関数、 φ: : 探針の仕事関数、eV: バイアス電圧、Er:フェルミレベル、 E:トンネルする波動関数(電子) のエネルギーレベル。図1b中の $1/2(\phi_{*} + \phi_{*} - eV) - E$ (中央で上 向きの矢印)は基準点のEpから任意 のレベルEにある電子が通過するべ きポテンシャル障壁の平均高さを表 す。E_F(E=0)にあるレベルの電 子が通り抜けるべきポテンシャル障 壁は最も低く、そのトンネル確率 (T(E,eV))は最も大きくなる。 E_F より深くなるにつれて、トンネル確 率は低下する。

図1b 中央の右向きの一群の矢印はそのこ とを示している。

 $I = \int_{0}^{eV} \rho_{s}(r, E) \rho_{t}(r, -eV + E) T(E, eV, r) dE$

 $T(E, eV) = \exp\left[-\left\{2Z(2m)^{1/2}/h\right\}\left\{(\phi_s + \phi_1)/2 + eV/2 - E\right\}^{1/2}\right]$

即ち、Iは、バイアス電圧(eV)のエネルギー範囲内の試料と探針の局所状態密度($\rho_{*} \ge \rho_{*}$)及び、ト ンネル確率(T)(試料-探針距離(Z)、仕事関数(ϕ_{*}, ϕ_{*})、トンネルする波動関数(電子)のエネルギー (E)の関数)のコンボリューションである。またこのことは、STM像が原子の位置を単純に画像化した ものであるとは限らないことを示している[2-4]。しかしながら多くの場合(詳細は参考文献を参照さ れたい)、分子-基板の吸着系のE_F近傍の局所状態密度(荒っぽく言えば分子軌道)を主に反映した像が 得られることが知られている[7-9]。

(注)トンネル電流

図1bのように、電子の持つエネルギーがポテンシャル障壁の高さより低い場合でも、(量子力 学によると)電子は障壁を通過できる、この電流がトンネル電流である。

-21--

3. DNAの固定法:真空噴霧法の開発

STM観察のために重要となる要素には、基板や観察試料分子の固定法、観察雰囲等の選択がある。 試料分子を観察するために必要となる基板は、導電性を有すること及び、原子レベルで平坦で良く規定 されている必要がある。例えば、基板に電流が流れなければ、そもそもトンネル電流を検出できないし、 基板表面の凹凸が、観察対象となる試料分子よりも遙か大きければ基板と試料分子の見分けもつかない であろう。STMではトンネル電流をプローブとしているため、STM自体の動作環境は、真空や大気、 溶液中のいずれでも可能である。ここで注意すべき点は試料分子の基板表面への固定法である。大気雰 囲気下での溶液展開法が古くから用いられているが、この方法では溶媒が乾燥する間に試料分子が凝集 してしまいSTM観察には適さないと思われる[10-11]。一方真空条件下で用いられる加熱蒸着法では、 DNAのような大きな分子は蒸発する前に熱分解してしまうために適応出来ない。このような問題点を 解決するため我々は真空噴霧法という蒸着法を開発した(図2a)[11]。この方法では、DNA試料を本 溶液のまま超高真空チェンバー内の基板表面めがけて噴射する。真空中では水は直ちに蒸発し、真空ポ ンプ系で排気されるが、肝心のDNAは蒸発しないから基板表面上に残るという寸法である。

なお、我々は基板としてCu(111)清浄表面を用いている。それはこの金属が木の曝露に対して原子的 平坦性を失わないこと及び、吸着したDNAを分解させる程には化学的に活性ではないからである。ち なみに銅の清浄表面を大気にさらすと、10円玉や1セント硬貨のように酸化されてしまい、STM用の基 板としては適さなくなる。このように熱分解してしまう分子を蒸着できるだけでなく、基板を大気に曝 露することを避けられる点も真空噴霧法の利点である。説明が最後になったが、観察環境(雰囲気)に は、STMの分解能が最も高くなると言われる超高真空を選択した。超高真空を選択することによって、 実験を表面科学的によく規定できることはもちろん、低温化に付随する結露や吸着等による試料表面の 汚染を根本的に回避することができる。

4. <u>室温</u>STM観察: pA5

図2bにCu(111) 清浄表面のSTMを示す。斜めに走る単原子ステップによって隔てられた原子レベル で平坦なテラスが見える。なお、テラス上に見られる小さな黒点は、炭素などの異種原子サイト(点欠 陥)を反映している。このような清浄表面に、アデニンを5ヶ含んだ単鎖のDNAオリゴマー(以後 pA5と略する)を真空噴霧法によって蒸着した。そのSTM像を図2cに示す。この図には直径2-3 nm程 度のドーナッツ状をした明るい像が見られる。これらが、DNAオリゴマーの一つ一つである。また、 原子的に平坦なテラスやさらには黒い点欠陥の構造までが、噴霧前後で変わりないのがわかる。つまり、 基板表面を酸化や汚染することなくDNAをCu(111) 清浄表面に吸着させることに成功したのである。

さらにpA5を詳細に観察した結果、内部構造のアデニンに対応すると思われる5つの明点を画像化す ることができた(図3a-c)。観察されたpA5の表面吸着構造モデルを図2dに示す。このモデルにおい て、親水性の燐酸と糖の部分は内側を向く一方、疎水性のアデニンの部分はその外側に向いた構造をし ている[10,11]。なお、詳細な議論は割愛するが、得られたSTM像での明点は、アデニンが基板にその 分子面を平行にして吸着している部分を反映していると考えている。

- 図2a 本研究で用いた超高真空低温STM装置と真空噴霧法の説明図。DNA水溶液は市販のパルスバ ルブ(米国General Valve Co., Series 9)より導入される。第一筆者がこのパルスバルブを知っ たのは、理化学研究所(埼玉県和光市)の表面化学研究室において川合真紀先生(理研・主任研 究員)と吉信淳先生(現東大物性研・助教授)の指導下で研究を行っていた博士課程1年次の時 にさかのぼる。また、DNAを水溶液のまま超高真空系に噴射する手法は、燈明成寿氏(当時理 学研究科・化学専攻・修士1年)と議論している時に考えついたものである。
 - b 真空噴霧前のCu(111)清浄表面。右上から左下に走る単原子ステップの高さは約0.2 nmである。
 - c 真空噴霧法によってCu(111)清浄表面に蒸着された、アデニンを5つ含んだ単鎖のDNAオリゴマー(pA5)のSTM像。直径約2-3 nm程度のドーナッツ状の明るい吸着物がpA5の一つ一つである。 白い矢印はSTM像を記録中に動いたオリゴマーの軌跡である。

- 図3a-c 真空噴霧法によってCu(111)清浄表面に蒸着されたpA5のSTM像を3次元表示したもの。内 部構造のアデニンに対応すると思われる明点が良く判る。各明点は、アデニンが下地のCu(111) 基板にその分子面を平行にして吸着している部分に対応していると思われる。
 - d 観察されたpA5の吸着構造モデル。親木性の燐酸と糖の部分は内側を向く一方、疎木性のアデ ニンの部分はその外側に向いた構造をしている。この構造モデルは中川孝臣氏(当時・理学研 究科・化学専攻・修士1年)が作成した。

さて、このようにDNAをSTM観察することができたとなると、次は異種塩基分子間の識別というこ とになる。しかし現在までのSTM観察の結果、"室温"においてはDNAオリゴマーはCu(111)基板上 で動きやすいということが分かった[10,11]。また、DNAオリゴマーの形状はまさに紐のような柔軟な 構造をしているため、様々な形(コンフォーメーション)を取りうる。そして室温では、熱エネルギーの ために自然に吸着構造が変化してしまい、いわば"ピンぼけ"STM像しか撮ることができない[13,16, 17]。図2bに見られる白い筋等(白い矢印)は、分子が移動した痕跡である。この限界を克服するのは 意外と容易である。すなわち、STM観察を液体窒素温度程度の低温で行うだけで、DNAオリゴマー分 子を凍結できるのである。蛇足ではあるが、"単体の核酸塩基分子"を一分子ずつくっきりと観察する ことに我々は成功している[14-17]。

5. 低温STM:オリゴマー

ここではDNAオリゴマーとしてアデニンとチミンを7ヶずつ含んだ単鎖DNAオリゴマー(pA7T7) をもちいた。その狙いは、内部構造の塩基分子の種類の違いを識別すること及び、本来のDNAの構造 である2重らせん構造を低温(約80K)STMで観察することである。残念ながら測定条件が充分に詰 められていないため、塩基分子の違いが判るほどの像はとれていない(図4a,b)。しかし、2重らせ ん構造はSTM観察することができた(図4c中央)。つまり、2本のpA7T7が相補的な対となって2重 らせんを構成しているように見える。このらせんの周期は約3.5 nmで、自然界に存在するいわゆる "Watson-Crick DNAのそれの3.4 nmとほぼ一致する[18,19]。一方、観察された2重らせん構造の高 さは0.4 nm以下とWatson-Crick DNAのそれの2 nmより遙かに小さい。この謎をより直接的に調べ るために、2重らせん構造を保っていることが確かな環状プラスミドをリファレンスとして比較してみ ることにした。

図4a 真空噴霧法によってCu(111)清 浄表面に蒸着されたアデニンとチ ミンを7つずつ含んだDNAオリ ゴマー(pA7T7)のSTM像。内 部構造の塩基分子に対応すると思 われる明点が良く判る。

- b aの吸着構造モデル。
- c 2重らせんを組んでいるpA7T7 オリゴマー。観察された2重らせんの周期がWatson-Crick DNA のそれ(3.4 nm前後)と良く一 致する。

低温STM観察:環状プラスミドDNA

約3000塩基対をもった環状プラスミドDNAは、オリゴマーと同様に真空噴霧され、Cu(111)表面に 蒸着された。図5に得られたプラスミドDNAの低温(約95K)STM像のいくつかを示しておく。なお、 段々畑のような背景の構造は、Cu(111)表面等に固有のステップやディスロケーション(断層みたいな もの)である。いずれのSTM像においても観察されたプラスミドDNAは全く法則性のない吸着構造を とっているように見える。この結果は、噴霧前の溶液中での構造がいくらか反映されていることを示唆 していると思われ、非常に興味深い。なお、環状構造が切れたり、あるいは断片化したようなプラスミ ドは一ヶも見つからなかった。ここでまず強調すべき事実は、我々が開発した蒸着法、真空噴霧法によっ て、プラスミドDNAのような巨大分子を分解させることなしに蒸着できたということであろう。

問題となっている2重らせん構造も観察できた。図6aのSTM像から判るように、DNA鎖に沿ってス トライプ状の内部構造が見られる。このSTM像とWatson-Crick DNAの模式図とを等スケールで示し た図6b, cからも判るように、観察されたSTM像での周期は2.6-3.6 nmであり、Watson-Crick DNA での3.4 nmとほぼ一致する。即ち、プラスミドDNAの2重らせん構造が我々のSTM観察によってあら わに画像化されたことがわかる。なお、前の4章でも少し述べたが、低温(約80 K)時よりも熱エネ ルギーが何倍も大きい室温では、モルフォロジーやコンフォメーションが変化しやすく、これ程くっき りと2重らせん構造を観察することは難しい。

200nm

図5a-d 真空噴霧法によってCu(111)清浄表面 に蒸着された約3000塩基対の大きさの環状 プラスミドDNAの一連のSTM像。段々畑 のような背景は、Cu(111)表面等に固有の ステップやディスロケーション(断層みた いなもの)である。真空噴霧法によって、 プラスミドDNAのような巨大分子を分解 させることなしに蒸着できていることがわ かる。

- 図6a 真空噴霧法によってCu(111)清浄表面に 蒸着された約3000塩基対の大きさの環状プ ラスミドDNAのSTM像。 DNA鎖に沿っ てストライプ状の内部構造が見られる。
 - b aのSTM像で白い点線で囲われた長方形 の領域のズーム像。
 - c Watson-Crick DNAの模式図。 bとc は互いに等スケールに合わせてある。観察 されたSTM像での周期は2.6-3.6 nmで あり、Watson-Crick DNAでの3.4 nmと ほぼ一致する。

ー連のプラスミドDNAのSTM像(図5,6)中での高さは0.2-0.4 nm程度であり、pA7T7(図4c) で得られた値とほぼ一致しているので、pA7T7も2重らせんであることが裏付けられた。詳細な議論 は割愛するが、以上の結果から2重らせんの高さがこのように低く観察される理由のうち、STMの結 像原理に由来するものは次のように考えられるであろう。2章で述べたとおり、STM像はトンネル電 流のコントラストを画像化するものであり、そのトンネル電流のコントラストは局所状態密度とトンネ ル確率に依存する。Cu(111)基板に吸着したDNAの分子軌道は、下地基板の金属的状態と混成し、そ の局所状態密度がトンネル電流に寄与する。このとき下地基板と混成できるDNAの部分は一部であり、 およそ下地基板表面と直に吸着相互作用を及ぼしている部分、つまり、吸着部位付近に限られると推測 される。このように考えれば、吸着したDNAの真の高さ(原子座標)ではなく、吸着部位付近のおよ そ0.2-0.4 nmが高さとして主に画像化されることが説明できる。なお、原子座標に近い真の高さを直 接測るために、探針ー試料間に流れる"トンネル電流"を検出するSTMだけではなく、探針ー試料間 に働く"力"(原子間力)も検出す出来る走査型プローブ顕微鏡による測定も現在併せて行っており、 この結果を紹介できる機会が再びあればと願っている。

7. 将来展望

我々が切り開いた世界を礎とし、学内 外や国内外間わず様々な研究者による個 性あふれる発展が今後期待できるであろ う。我々が現在取り組んでいることは、 DNAの塩基配列決定と加工だけではな い。例えば、図7のSTM像では、DNA が絡まり合ったり、別れたりしているの がわかる。つまり、DNAやRNA、酵素 等の生体高分子間の反応や生命の営みを 原子・分子レベルの分解能で直接観察し たり反応させたり出来るとこを示してい るのである。さらには自然の摂理と人の 知恵に根ざした分子デバイス等への応用 にも取り組んでいることを付け足してお きたい。

図7a 真空噴霧法によってCu(111)清浄表面に蒸着された 約3000塩基対の大きさの環状プラスミドDNAのSTM 像。DNAが絡まり合ったり、別れたりしているのが わかる。

謝辞

当研究は文部省「中核的研究拠点形成プログラム」-センター・オブ・エクセレンス(COE) -"高次機能調和材料創成の原子・分子プロセッシング"の援助を受けて行われた。中村智彦(理学部・ 化学専攻・修士2年)、田畑仁(川合研・助教授)、岡敏彦(産業科学研究所・二井研・助手)、二井 將光(二井研教授)の諸氏に感謝したい。筆頭著者の田中裕行(日本学術振興会・特別研究員)は日本 学術振興会の経済的援助に感謝する。

参考文献

- [1] G.Binnig, H.Rhorer, C.Gerger, E.Weibel.Phys.Rev.Lett., 49 (1983) 57.
- [2] C.J.Chen; "Introduction to Scanning Tunneling Microscopy", Oxford University Press(1993).
- [3] R. Wiesendanger; "Scanning Probe Microscopy and Spectroscopy", Cambridge University P ress (1994).
- [4] Scanning Tunneling Microscopy II, ed. Wiesendanger and H. J.Guntherodt, Springer Series in Surface Sciences 28, (Berlin, Heidelberg, New York: Springer).
- [5] Dunlop, D. IEEE Eng. Med. Biol. Mag. 15 46-50 (1996).

[6] 原子間力顕微鏡(AFM)が普及し、STMの代わりにAFMを用いることが多くなったことも一因で ある。

[7] Sautet, P. & Joachim, C. Chem. Phys. Lett. 185 23-30 (1991).

[8] Eigler, D. M., Weiss, P. S., Schweiser, E. K. & Lang, N. J. Phys. Rev. Lett. 66 1189-119 2 (1992).

- [9]Fisher, A. J. & Blochl, P. E. Phys. Rev. Lett. 70 (1993) 3263-3260.
- [10]川合知二、日本物理学会誌、Vol.52, No.9 (1997)667.
- [11]H. Tanaka and T. Kawai, J. V. Sci. Technol, B15 (1997) 602.
- [12] 勝又春次, 表面, Vol. 34 No12 (1996) 268.
- [13]STM像を一枚記録するのには、数秒から数十分が必要。
- [14]T.Nakagawa, H.Tanaka and T.Kawai, Sur. Sci. 364 (1996) L575.

[15]M.Furukawa, H.Tanaka and T.Kawai, Surf. Sci. Lett. 392 (1997) L33-L39.

[16] 川合知二, 田中裕行, 中川孝臣, 古川雅士. 表面科学. 19(4) (1998) 249-256.

[17]古川雅士,田中裕行,川合知二.大阪大学低温センターだより104 (1998) 14.

[18] Watson, J.D. and Crick, F.H.C. Nature 171, 737-738.

[19]Saenger, W, Principles of Nucleic Acid Structure, (Springer-Verlag, Berlin, 1984)

	保安組織	
	• • • • • •	
低温センターでは	、ヘリウム液化が高圧ガス保安法の5	定める高圧ガス製造に該当するため、
同法の定めにより保	安のための組織を設けることが義務	付けられています。
	吹 田 分 室	豊中分室
保安総括者	城 野 政 弘(工学研究科長)	宫西正宜(理学研究科長)
〃 代理	濱 口 智 尋(副センター長)	都 福仁(センター長)
保安管理技術者	百瀬英毅	徂 徠 道 夫
〃 代理	片 岡 俊 彦	松尾隆祐
保安係員	牧山博美	鷹岡貞夫
〃 代理		石塚守
		(平成11年1月1日現在)
v sr.v.	そなったほそうなななもうのでしょ	است المد مراهد المراجد المراجد المراجع المراجع
※ 局比カス保安 はキャンパスが	伝等の定めでは保安統括者は総長と 7 2箇所に分れている等の理由により、	定められていますか、本字において 、工学研究科長、理学研究科長へ権
限が委譲されて	います。	