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1. Introduction

The purpose of this paper is to prove the following

Theorem A. Let M be a closed smooth 4-manifold which has a handlebody

decomposition of this type:

where b<\. Then M admits a torus fibration over the 2-sphere f:M —• S'. The

projection f is smooth except at a point e M, and f has only one singular fiber.

In this theorem, a and b are the numbers of 2 and 3 handles, respectively. The

type of the singular fiber in the above fibration is not necessarily 'good' in the

sense of [7].

Theorem A was first announced in 1982 in [6]. (See also [7], [8].) The main

reason for the long delay in publishing the proof is, of course, the author's

laziness. But a reason was partly because the author was not fully convinced of

the usefulness of the result; the variety of the singular fibers appearing in the

construction seemed quite uncontrolable. As a matter of fact, such wide variety

was a key to the proof of the existence theorem. Recently, the author received

an enquiry from Daniel Ruberman about the proof. In trying to answer him, the

author found a new example of a smooth torus fibration of S4 over S 2 applying

the general construction in this paper to S4. Also, he found that, if H2(M;Z) φ {0},

we can arrange so that the general fiber is not homologous to zero in M (Theorem

B in Section 3). He hopes that these improvements might justify this late

publication of the proof. The author thanks D. Ruberman, whose enquiry gave

him an opportunity to publish this paper.

2. Multiple fibered links

We begin by recalling 'multiple fibered links' from [6], [8]. Let L 3 be an

oriented closed 3-manifold.
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DEFINITION. A smooth map g:L3 -*> C is called a multiple fibered link in L3

if it satisfies the following:

(i) g-\Q)Φφ\
(ii) the map φ(x)=g(x)/\g(x)\:L3~g~1(0) -> S 1 is a submersion with connected
fibers;
(iii) around each point x0 (eg~l(0)), there exist local coordinates ul9 u2, u3 of L3

satisfying

for all x near JC0, m being a positive integer called the multiplicity at JC0.

The first coordinate ux is along the component of the link g~γi$S). The
multiplicity is constant along a component of g~1(0)9 which is the multiplicity of the
component. Sometimes g~ι(0) itself is called a multiple fibered link for simplicity. A
fiber of φ:L3 — g~ί(0)^S1 is a punctured surface, whose genus is the genus of
the multiple fibered link.

Lemma 1. Let β be a closed braid in a 3-sphere Σ3. Suppose Dehn surgery along
the components K*9K*, ,K* of β with integer coefficients nθ9nί9- ,na gives a
3-manifold L3 = χΣ3 (K*,--,K*'9nθ9- 9na). Then the meridians Kθ9Kί9~ ,Ka of
K*,K*9'",K* and the circle Co (in Fig. 1) become a multiple fibered link of genus
0 in L3. A typical fiber is the punctured disk shaded in the diagram. Also circles
belonging to {Cl5 ,Cr} (in Fig. 1) are isotopic in L3 to a component Kt of the
mutiple fibered link if and only if they link the component K* of β in Σ3.

We chose the notation K£,Kf,~ ,K* for the components of β, and Σ 3 for
the 3-sphere, so that they are concordant with the notation in Section 3.

Proof of Lemma 1. Σ3-int7V(CouXo*u - u -K?) is fibered over the circle
S1 with fiber the shaded punctured disk in Figure 1. For a component Kf of
/?, let φi:dD2xSί -+dN(Kt*) be the diffeomorphism used for the Dehn
surgery. We may assume

{φi(dD2x{pt}) = niμί + λi

\φi({pt}xSί)=-μi.

Here λ{ is a preferred longitude of Kt*9 and μt is a meridian. Then on ΘD2xSi

the preimages φ^γ(λ^9 φ^ι(μύ look as shown in Figure 2.
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Fig. 1.

where λ' = [{pt} x S1], and μ' = [3D2 x {pt}].

Fig. 2.

Thus if C^C^-' CUl are the boundary circles of the punctured disk (different
from Co) which link the component Kt*9 then φΓι{C[%'-'9φi~ι(C}^ look as shown
in Figure 3:
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Ψi

Fig. 3.

A tubular neighborhood of a component of the fibered link is obtained by

identifying the 2-disks at the right and left ends of the cylinder in Figure 4 in an

untwisted manner. (In this figure, the multiplicity of the component is 3.) This

tubular neighborhood is identified with the solid torus of Figure 3.

fringes of a fiber

a component of the multiple fibered link
Fig. 4

Now it would be clear that in L 3 the circles Cj'V sCm are isotopic to the

central circle of the above tubular neighborhood, which is a component Kt of the

asserted multiple fibered link in ZA

The argument is similar for the component C o .

Finally it is an easy task to construct a projection g: L3 —• C of the multiple

fibered link. •
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REMARK. The multiplicity mi of the component Kt is equal to the number
of the circles CfV jCmJ, which is equal to the linking number |linkΣ3(£I *,C0)|,
( ί l )

3. Proof of Theorem A

By the assumption M has a handlebody decomposition M = H°uaH2ubH3

u / / 4 with b < 1. If 6 = 0, we introduce an extra pair of 2, 3-handles, and we may
assume A = l. Then d(H°uaH2) = S1 xS2. Suppose an unknot K£ of Figure 5
with framing 0 is a surgery description of S1 xS2:

where Σ 3 is a 3-sphere in which K£ is drawn.

Fig. 5.

Fig. 6.
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Let H?,H*,'Ma* be the 2-handles dual to the 2-handles H\9H\9•• ,i/β

2 in

the decomposition of M. Let Kjf9K2*9-~9Kf be the attaching circles (in

S1 x S2 = χΣ3(Kf,0)) of H?9H}9 -9H* with certain framings nun29 ,na. Then the

framed link in Σ 3

gives a surgery description of S3 = dH°. By Alexander's theorem [1], [2, Thm.2.1]

we can put JS? into the form of a closed braid β. Applying Lemma 1, we use β

and draw a surgery description of a multiple fibered link L (in S3 = dH°) of genus

zero as shown in Figure 6, where the curve ΛΓ0* is arranged to link C o geometrically

once.

Let Kl9K29 ~9Ka be the attaching circles (in dH° = S3 = χΣ3(Sf)) of the 2-handles

Hγ9H29"-9Ha . Since //f

2 is dual to H?9 we may assume that K{ is a meridian

of K(* for each / and that the attaching framings of these handles H\9-,Hl are

all zero (we are speaking of the framing in the diagram of Figure 6, in other

words, on the 'canvas' Σ3).

We denote a meridian of Kξ by Ko.

By Lemma 1, the multiple fibered link L is the union

Now the torus fibration f:M-> S2 will be constructed in 3 steps:

(1) construction of a map G:H°-+D2,

(2) extension of G to a map F:H°vaH2 -+ D2, and

(3) extension of F to the desired torus fibration f\M-+ S2.

Step 1. Let L be the multiple fibered link constructed above, g:S3 -• C the

projeciton of L. Let us recall the definition of the 'cone extension' of g. (See [6],

[8].) In this definition, we identify S3 with the unit sphere of R4.

DEFINITION. A function g: /?4 -• Cis called the d-th cone extension of g: S3 -> C

if g satisfies the following:

The integer d(>\) is usually equal to 1, in which case g is simply called the cone

extension of g. (See Figure 7.)

Topological properties of g are independent of d. g is smooth except at the

origin 0e/? 4. (Fig. 7.)
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REMARK. The cone extension construction of a multiple fibered link is intended
to mimic topologically the local fibering structure of a holomorphic function. See
Milnor [9].

Fig. 7.

Let D4 be the unit 4-disk of/?4. Put Sε

ι = {zeC\ \z\ = ε} and D\ = {ze C\ \z\ <ε}.

Lemma 2. For a sufficiently small ε>0, the fiber bundle g\(D4'ng~ί(Sε

ί)):
D^ng'^S^-tSc is smoothly isomorphic to the bundle φ=g/\g\ : (S 3 -int T) -• S1

in the complement of a tubular neighborhood T of L.

Proof. The proof is similar to Theorem 5.11 or Lemma 11.3 in [9], but
here easier, because there exists a standard vector field

4 Q

v(x)= Σxk^~ >
fc=i dxk

that is transverse to both g (S*) and S . D

Let Δ4 denote D*ng 1{D?). Δ4 is a smooth manifold with corners. By
'straightening corners', we can find a homeomorphism h: H° -» Δ4 of the 0-handle
H° of M to Δε

4 such that

(i) h is the identity on the tubular neighborhood T of L in S3, and
(ii) h is a diffeomorphism except at dT. (See Figure 8)

We construct the map G:H°-+D* by setting
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-> Δ ;

Fig. 8.

G has the following properties: G becomes a fiber bundle over D^\{0}, and has

a singular fiber over 0. By Lemma 2, the general fiber G~i(z0), z0eDε

2\{0}, is

diffeomorphic to the shaded punctured disk in Figure 1. Also the monodromy

of the restricted bundle G|G~1(S'e

1):G~1(S r

e

1)-> S* is isomorphic to the bundle

associated with the multiple fibered link L.

The singular fiber G ~ *(0) is a cone 0 * L over L from the origin 0. (Cf. Fig. 8)

Another property of G is that G\ T=g\ T[=g\T)9 which follows from Property

(i) of h.

Step 2. Note that the tubular neighborhood T of L in dH°( = S3) is a union

T=τχC0)u7χK0)u vT[Ka) of tubular neighborhoods of the components

Cθ9Kθ9 ~9Ka. From the 'fringe structure' shown in Figure 4 and the definition of

a multiple fibered link (in particular, condition (iii)), it follows that each tubular

neihborhood has a natural product structure in the following sense : In the case

of T(Ki) (ι = 0,l,••-,«), it is diffeomorphic to SixDji:

D\ is written as

(3.1)

and under this identification, G \ T(K():

(3.2) G(zuz2) = z? (zi9z2)eS1xD

where δi = (ε)1/mi>0, mi being the multiplicity of K{. In the case of Γ(C0), the

situation is similar and simpler; 7\C0) = Sί xD* and Gizuz2) = z2 for each

Recall that the 2-handles H^Hi,-,H? of M are attached along KuKl9—,Ka

3J/° = S3 = χΣ3(JS?)). We may assume

We saw at the begining of Section 3 that the attaching framing of Hf to ΘH° =
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is zero framing on Σ 3. From the proof of Lemma 1, the natural product structure

(3.1) of 7\Ki) is zero framingt on Σ3, too. Thus the attaching framing of Hf

coincides with the natural framing of T(K^. In the other words, the product

structure Hf ^D2 xD2 as a handle coincides on Γ(/Q with the natural product

structure (3.1) up to the scaling of the second facter D2^Dj.. Consequently we can

extend G:H°->D2 to a map F:H°uaH2-+D2 by defining it on Hf^D2xD2

δi

(/= 1,2, ••-,*) as

(3.3) F[zl9z2) = zζ\ (zuz2)eD2xD2

δi

where mt is the multiplicity of K{ (Cf. (3.2).)

This completes the construction of the map F.

Before proceeding to Step 3, we study the fibering structure of F:H°uaH2

-> D2, We will henceforth identify H° with Δ* through the homeomorphism

λ://°->Δ ε. Then we may consider H°κjaH2 to be a smooth manifold with

corners along d7\C0)udT(K0).

As we saw in Step 1, the general fiber G~ι(z0) of G:H° -• D2 is diffeomorphic

to the shaded punctured disk in Figure 1. This punctured disk has 2 + Σa

i=1mι

boundary components: one isotopic to C o, one isotopic to Ko, and m{ isotopic

to Ki9 ι = l , ,fl.

The m{ boundary components of G~ί{z0) which are isotopic to Kt are situated

in TXK^S1 xD\. as parallel copies of Ki9 more precisely, as

S1 x {mΓth roots of z0} (<z Sι x Dj).

When the handle Hf is attached to H° along Γ(^), these mi circles are capped

off by mi disks parallel to the core of Hf:

D2 x {mrth roots of z0} (czD2x Dj),

and these mi disks coincide with F~ι(z0)nHι

2. Thus the general fiber F~1(z0),

z o / 0 , is obtained from the shaded punctured disk in Figure 1 by capping off all

the boundary components except Co and Ko. Hence F~1(z0) is an annulus with

boundary components parallel to CouA:o. (Cf. Fig. 9.)

The restriction F\F~ί(S^):F~ί(S^)-^ S^ is an annulus bundle over a

circle. The monodromy of this bundle relative to dT\C0)udT(K0) is trivial, because

attaching the 2-handles H2,Hi^' " ^ l along KUK2, ,Ka (with O-framings on Σ3) has

the effect, on the boundary, of neglecting K?,K2*,-,K*9 which leaves the surgery

description (in the sense of Lemma 1) of a fibered link CouKo in S1 xS2 whose

fibering structure (in the complement of an open tubular neighborhood of CouKo)

is trivial and isomorphic to F\F~1(S^):F~1(S^) -> SE

ι. (See Figure 10.)
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H° U aH2 =

Fig. 9.

K* ( with framing 0 )

Fig. 10.

So far we have been considering general fibers. Now we describe the singular

fiber of F:H°vaH2^DΪ.
The singular fiber F~ι(0) is obtained by attaching the cores of the 2-handles

772, , # 2 to G'\0) along Ku ,Ka. Thus F~\0) is a bouquet of 2-spheres
S},—,Si (with 'equators' Ku—,Ka) and 2-disks 0 * C O U 0 * Λ : O . (See Figure 9.)

As zo-»0, the general fiber F'\z0) covers the sphere S? m{ times (ί=l, ••-,«)

and covers 0 * Co and 0 * A:O once.

Step 3. Let Φ:S3 -• 5 2 be the Hopf fibering. Regarding S 2 as Cu{oo}, we
take an ε-disk D^ = {zeC\\z\<ε} in S2. Let p0 be a point Φ'HO). We take a
closed neighborhood N of p0 in S 3 which is identified with />?x[- l , l ] via an
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appropriate diffeomorphism such that

(i) p0 is identified with (0,0) in Djxf-1,1], and
(ii) Φ\N\N-*Dl is identified with the projection D2 x [-1,1] -* D2

ε\{z,t)γ-±z.
Consider the projection

Φ'\{S3-'mtN)xSι -*S2

defined by Φf =(Φ\(S3-intN))oP9 where P:(S3-int N)xSι -+(S3-intN) is the
projection to the first factor.

It is easy to see that the restriction of Φ' to the boundary d(S3 - int TV) x S \

Φ' I d(S 3 - int N) x Sι: d(S 3 - int N) x S1 -+ D2,

has the same trivial fibering structure as the restriction of F (constructed in Step
2) to the boundary d(H°uaH2\

F\ d(H°uaH2):d(H°uaH2) -> D2.

Thus by gluing H°κjaH2 and (S3 — intΛOxS1 along their boundaries, we
obtain a smooth closed 4-manifold M' = (H°κjaH2)u(S3 — intN)xS1 and a map
f:M'-+S2.

By straightening corners, we may assume that H°uaH2 and (S3 — intN)xSί

are smooth 4-manifolds. The latter manifold is diffeomorphic to D3xSι. By
[5] and [10], the diffeomorphism type of the resulting closed 4-manifold
(H°^JaH2)u(S3 — intN) x S1 is indepenednt of the gluing diffeomorphism. Thus
M' is diffeomorphic to our original M( = H°vaH2κjH3vH4), and we obtain a
map f\M-+S2.

From the fibering structure of F:H°vaH2-+ D2

E and Φ': (S3 - int N) x S * -> S2,
it is easy to see that the m a p / M - ^ S 2 is a torus fibration of M. / i s smooth
except at the center 0 of H°.

The fiber/-1(0) over 0 (eCaS2) is a single singular fiber of/ It is a
bouquet of 2-sρheres Sf,'",S2 and a 'croissant' X. Note that Φ~1(0)n(S3-N)
is an interval, and X is obtained by attaching the annulus (Φ~ι(0)n(S3 — N))x S1

to the bouquet of disks 0*Cou0*ΛTo. Hence X is an immersed 2-sphere with
a single transverse self-intersection point at 0.

This completes Step 3 and thus the proof of Theorem A. •

PROBLEM. Find a condition on a closed 4-manifold M under which M admits
a torus fibration f\M-+ S2 which is smooth everywhere.

Let M be the same 4-manifold as in Theorem A. The following theorem
answers Ruberman's question.
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Theorem B. Suppose H2(M\Z)Φ{U). Then there exists a torus fibration
f:M-+S2 such that a general fiber is not homologous to 0 in M.

Proof. Let f\M-+S2 be the torus fibration constructed in the proof of
Theorem A. H2(M) is generated by the homology classes [Si2],[<Sf], ••,[£<?] °f
the 'irreducible components' Sf,Si,--,S? of the singular fiber f~ι(0). This is
because these 2-spheres belong to the relative homology classes [//?],[i/f]» '^al
of the 2-handles in H2(H°uaH2,H°), and the natural homomorphism

H2{H°uaH2

9H°) -> H2{M,H°) = H2(M)

is onto.
By the observation at the end of Step 2 (of the proof of Theorem A), a general

fiber /~1(z0) covers S2 m{ times (/=1, ,α) and covers X once. Thus in H2(M\
we have

(3.4)

if iS '̂s and X are appropriately oriented.
By Remark at the end of Section 2, the multiplicity mi is equal to the linking

number |linkΣ3(^r*,Q)l On the other hand, we can arbitrarily increase this linking
number by introducing extra linking between Kf and Co when applying the
Alexander theorem as we did at the begining of Section 3. (See Figure 11.)

A7

Fig. 11

Therefore, there exists a large positive number n0 such that, given any integers
î>W2> >9ma greater than n0 (i= 1, ,<a), we can construct a torus fibration/: M -• S 2

in which (3.4) holds with the given coefficients mί9m2, -,ma. Choosing m1,m2, ,mα

appropriately, we can accomplish J[f~ί(zoJ]^0 in H2(M).
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This completes the proof of Theorem B. •

4. An example

I n [6], [7], [8], we showed that the 4-sphere S4 has torus fibrations over S2

with one singular fiber of type Twin or with two singular fibers of types If,
/f. A singular fiber of type Twin consists of two 2-spheres cutting each other
in two points. A singular fiber of type If (or /f) is an immersed 2-sphere with
one transverse self-intersection point of positive (or negative) sign.

Applying our construction in this paper to S4, we obtain a new example of a
torus fibration of S4.

Let us start with the following handlebody decomposition of S4:

where H2 and H\ are a cancelling pair. The boundary d(H°uH2) is diffeomorphic
to Sι x S2 and has the surgery description χΣ3(AΓo*,0). Let H? be the dual 2-handle
to H2. The attaching circle K? of H? may be assumed to have attaching framing
0, and (K?,0) together with CKo*,0) gives the surgery description of S3 = dH°
= χΣ3(*0W;0,0). See Figure 12

{, 0

Fig. 12.

By Lemma 1, Figure 13 gives a surgery description of a multiple fibered link
L = CouKouKγ in ^ 3 = χΣ3(^0*^i*;0,0).

Let us see what L looks like actually in S3. We apply Kirby's calculus [4] for
framed links; Blow up a point on AΓ0*, then we have Figure 14(a). Figure 14(b)
is essentially the same as (a). We proceed as indicated in Fig. 14.

We obtain a fibered link of Figure 14(f), which is nothing but the fibered link
denoted by B\ in Kanenobu's list [3, p.32].

As we observed at the end of Step 3 (of the proof of Theorem A), the singular
fiber of the resulting/: S4 -> S2 is obtained by attaching an annulus along KouCo,
and a disk along Kί9 to the bouquet of disks 0*Cov0*Kov0*Kl9 0 being the
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Fig. 13.

03-

Fig. 14 (a)

center of H°. Thus it is homeomorphic to a one-point union of an embedded
2-sphere and an immersed 2-sphere. The latter has a transverse self-intersection
point at 0 with negative sign. (Cf. Fig. 15(a))

If we choose the opposite orientation of S4 in every stage, then we will obtain
a torus fibration with a singular fiber of the same type but in which the immersed
sphere has a positive self-intersection point (Fig. 15(b)).

For the singular fiber of Fig. 15 (a), the projection f:S4 -> S2 can be locally
written around the intersection point 0 as

with
f:SA

f{z1,z2) = zί

certain complex coordinates (zί,z2) satisfying 0 = (0,0). Consequently
+S2 may be taken to be smooth at the intersection point, thus smooth
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- 1
(b)

blow down

(c)

blow down

Fig. 14(b)(c)

everywhere. The same thing can be said for the singular fiber of Fig. 15(b).
We remark that once the results have been obtained, the singular fibers of

Fugures 15 (a) and (b) are seen to be the results of blowing up and down starting
from a Twin singular fiber. (See Figure 16, where attached integers are self-intersection
numbers.)
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blow down

- 1

(f)

XX

*—'

Fig. 14(dXeX0
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(a)

Fig. 15.

blow up

Fig. 16.
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