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0. Introduction

The actors of this paper are the same as the ones in [3], but the problems
and methods are completely different (empty intersection). The actors are smooth
curves, C, with 2 fixed pencils, say a g} and a g}, which do not exist on curves
with general moduli and that induce a birational morphism from C to a curve Y
on a quadric surface Q:=P!x P!, Y of bidegree (k,b). Indeed, while in [3] we
studied a fixed such C, here we will study suitable families of such curves C.

In this paper we will work always in characteristic 0. In the first section we
will prove (using very strongly [10]) the following result.

Theorem 0.1. For all integers k, b, n with 0<n<bk—b—k+1 and either k>4
and b>10 or k=5 and b>8, the smooth scheme W((k,b),n) parametrizing the set
of all nodal irreducible curves in Q of bidegree (k,b) and with geometric genus
g:=bk—b—k+1—n is irreducible.

This theorem shows the power of the method introduced in [10] and refined
very much in [11].

In the second section we will give a first step toward the Brill-Noether theory
of special divisors on the general such curve C with as image Y < Q a nodal
curve, i.e. a curve Ye W((k,b),n). Remenber that such a Brill-Noether theory is
still in its infancy for curves not with general moduli. For interesting results for
the case of general k-gonal curves, see [6] and [2]. In section 2 we will prove
the following Brill-Noether type result.

Theorem 0.2. Fix integers g, k, b, r, d with r>2, 4<k<b, 2k—2<g<
bk—b—k+1, r+1)d<rRk+r—1). Let S(g;k,b) be the constructible subset of the
moduli space M, of smooth curves of genus g parametrizing the curves, C, with a
fixed pair of pencils, the first of degree k and the second of degree b, inducing a
birational morphism from C onto a curve Y < Q:=P'xP'. Then S(g;k,b) is
irreducible and a general Ce S(g;k,b) has no g, only finitely many g! and no g,
with m<k. Furthermore, C has Clifford index k —2.
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The proof of Theorem 0.2 was inspired by [7], §4.

This paper dues its existence to the stimulating atmosphere of Max-Planck-
Institut fiir Mathematik (Bonn), where the two authors met and worked. The
first named author was partially supported by MURST and GNSAGA of CNR
(Italy). The second named author was partially supported by GARC-KOSEF and
Ministry of Education (South Korea).

1. Irreducibility of family of nodal curves on Q.

Recall that we always work in characteristic 0. We will introduce now some
notations. We will be interested in smooth genus g currves with two base point
free pencils, a g; and a g}, inducing a birational morphism onto a smooth quadric
Q < P3. Hence we fix integers g, k, b with 2<k<b and 0<g<kb—k—b+1; set
n:=bk—b—k+1. Let W((k,b),n) be the subscheme of the Hilbert scheme Hilb(Q)
of Q parametrizing the integral curves of bidegree (k,b) and with n nodes as only
singularities. Let V((k,b),n) be the subscheme of the Hilbert scheme Hilb(Q) of QO
parametrizing the union for all x>0 of the nodal curves with x irreducible
components and at least n+x—1 nodes. It is classical (see e.g. [12], lemma 2.2,
or [1], §3 and §4, for modern complete proofs) that W{((k,b),n) is smooth and
equidimensional of dimension bk +b+k—n and that V((k,b),n) is its closere in the
part of Hilb(Q) parametrizing reduced nodal curves.

Proof of Theorem 0.1. The main step in the proof follows with only very
minor modifications from the proof of the correspoding result for P? given in [10]
using (and introducing) a very poweful method of degeneration of the surface
Q. Hence in the first step of the proof of Theorem 0.1 we will only give the very
minor modifications assuming that the reader simultaneously reads [10]. The
second step of the proof of Theorem 0.1 contains only classical material and we
chosed [8] as reference. In the third (and last) step we conclude with a monodromy
argument.

Step 1. We fix Pe Q. For each integer m>1 Q has a degeneration to the
following reducible, reduced and connected surface S(m). S(m) is the union (with
only double normal crossing as singularities) of the blowing up, S(1), of Q at P
and m—1 surfaces isomorphic to F,;. To build S(#) the glueing curve on the
surfaces isomorphic to F,; are exactly the same as in [10]. The glueing curve
on the surfaces isomorphic to F are exactly the same as in [10]. The glueing
curve on S(1) is the strict transform of the line of type (1,0) (i.e. in the system of
lines of Q inducing the degree » pencil) through P. Set d:=k+b and use the
same notations (V, V3** and so on) to denote the corresponding varieties introduced
in [10] (with “(k,b)” instead of “d” as superscript). The references now will be
to the intermediate lemmas and propositions in [9]. In our situation Proposition
1.1 is OK with dim(V)=d—e+g—1 instead of 2d—e+g—1, since K, has bidegree
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(—2,—2). The same small modification must be made in Remarks 1.1.1 and 1.1.2,
in the computation of obstruction spaces in Proposition 1.4 (which gives Corollary
1.5) and in the dimensional estimates of [10], §2. These dimensional estimates
carry over because we never find a negative integer as lower bound for the
dimension of a fiber of the suitable morphisms involved. The theory behind [10],
§2, works with only very trivial notational changes and we conclude that every
component, W, of W((k,b),n) has in its closure in Hilb(Q) a curve T union of k
lines of type (1,0) and b lines of type (0,1) (hence in V{((k, b), n)).

Step 2. Let M be the set of reduced curves of types (k,b) on Q which are
union of k+b lines. Note that M is irredudible and contained in V((k,b),n+g).
Hence M is in the closure of the set W{((k,b),n+g) of integral nodal curves of
bidegree (k, b) and with geometric genus 0. Note that W((k,b),n+g) is irreducible,
since it is an open subset of the pairs of a degree k and a degree b pencil on
P'. It was explained in [8], first part of §4 before Proposition 4.1, that this
imppllies that W contains W((k,b),n+g). To check that W= W((k,b),n), ie. to
prove Theorem 0.1, it is sufficient to show that W((k,b),n+g) is contained in a
unique component of V((k,b),n). As explained in [8], §1, as in the case of plane
nodal curves, it is sufficient to show that the monodromy action induced moving
the rational nodal curve in W((k,b),n+g) on the set of n+g nodes contains the
alternating group A,,, Since k>4 and 5>10 or k>5 and b>8, we have
n+g>24. Hence by the classification of 4-transitive finite permutation groups
(see [4], §5) it is sufficient to check that the monodromy group G is least
4-transitive.

Step 3. We assume to have checked the 3-transivity of G and we will prove
that it is 4-transitive. Ther proofs that G is 1-transitive, and then that it is
2-transitive and then that it is 3-transitive, are exactly the same, but work with
weaker restrictions on k and b. We fix 5 points P(1),---,P(S) on Q and we consider
the set A(1) of all rational curves Ae W((k—2,b—2), kb—k—b+3) with P(j)e A
for j=1,23. Let B(1) be the corresponding set for the rational curves
Be W((2,2),1). Let (4B(1)) be the sets of pairs (4, B) with 4 € A(1), Be B(1) and 4
intersecting transversally B. By the assumptions on k and b we have card(A N B)>6
for every such pair and we consider one of the points of 4AnB different from
P(1),---,P(5) as a non assigned node (in the sense of [12]) of the curve
AuBeV((k,b),n+g). Note that given any 2 points Q(1), O(2)e Q we may find a
family {A{t}} (resp. {B{t}}) of curves of A(1) (resp. A(2)) with {Q(1), O(2)}
< A{t} WB{t} for all values of the parameter 7. Since Q x Q is integral, we may
find an integral such family with for a value ¢ (resp. t”) of the parameter P(4)
(resp. P(5)) as non assigned node of A{t'}uA{r'}e V((k,b),n+g) (resp. A{t"}UA{t"}
€ V(k,b),n+g). Hence we conclude the proof of Theorem O0.1.

2. Brill-Noether theory
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In this section we will prove Theorem 0.2 and then give a related remark.

Proof of Theorem 0.2: The irreducibility statement follows from Theorem 0.1
Without using it, the proof below would show the existence of a component W
of S(g;k,b) whose general member C satisfies the thesis of Theorem 0.2. The
assertion on CIliff(C) follows from the other assertions because if CLiff(C) is not
computed by a pencil, then C has infinitely many pencils of degree Cliff(C)+3
([5], th. 2.3).

Let M be an integral curve and LePic(M); recall that the degree deg(L) of
L is the leading coefficient of the Hilbert polynomial p, with p,(x):=y(L®>); if
t:U— M is the normalization map, we have deg(L)=deg(t*(L)). A g; on M is
just given (as in the smooth case) by a degree d line bundle, L, and a vector space
V< H°M, L) with dim(V)=r+1. Since Oy/t*0,,) has finite support, it is easy
to check that a g on M induces a g on U with associated line bundle t*(L).

The proof of Theorem 0.2 is by induction on g, starting from the case g+ 2 =2k,
ie. when we may take as C a curve with general moduli. Indeed it is easy to
check that for general (C,gi,g;) this will define an element of S(g;k,b) and that
the two linear systems will map C onto a nodal curve of Q. Note that p(2k—2,r,d)
=(r+1)d—r(r+2k—1). Assume g<bk—b—k and the result true for (g,k,b).
Assume that the theorem fails for g+ 1 and a certainr,d. Take (Y,g},g}) general for
(g,k,b); let Y’ be the corresponding image of Y in Q (hence with exactly » nodes
as singularities). Consider a general one dimensional flat family {Y;},.r, of
curves in W((k,b),n+1) with limit Y’ in Hilb(Q) at {o}. Let {Y},r be the
corresponding flat family of normalizations. We may find {Y;},.r such that
{Y.}ter\0) has as flat limit at {o} the partial normalization of Y” at all nodes except
one; call P this node. Let S be the total space of this deformation. We may
assume the existence of a line bundle 4° on S\Y” inducing on each Y, with
t#{o} a gj (ie. restricting T around {o} having r+1 sections on S\Y”). Since
S\{P} is smooth, A extends to a line bundle on S\{P}. The key point is the
following claim.

CLAIM. S is smooth at P.

The claim (i.e. with the terminology of [11] that P is a strongly smoothable
point of Y' and Y”) is true because the assumptions of [11], Proposition 1.1, are
satisfied by [12], lemma 2.2, or [1], §3 and §4. The claim implies that the line
bundle A’ extends to a line bundle 4 on all S. Hence by semicontinuity 4| Y"
induces a gj on Y”. Hence, by the first part of the proof we obtain a g on Y,
contradiciton.

REMARK 2.1. In the induction used in the proof of Theorem 0.2 we started
from the Brill-Noether range, i.e. from a genus g’ curve with p(g’,/,k)>0. If b is
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much bigger than k, for many g, r, d we obtain better results using the known
facts (see in particular [6] and [2]) on general k-gonal curves. In the same way
we may obtain bounds for the dimensions of the schemes of all g’s for a general
curve Ce S(g;k,b).
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