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1. Introduction

In the present paper we investigate the asymptotic behavior of solutions
for parabolic systems closely related with a chemical interfacial reaction model
which is considered in Yamada and Yotsutani [7]. Let I and I denote the in-
tervals (0, 1) and [0, 1] respectively. Consider an initial boundary value problem
for w;=u,(x, 2) (=1, 2,3 and (x, 2)€Ix[0, =)):

a(x) %*; — a;x’;f , (%, 2)€Ix (0, %),
Ou; . o
@ | a0 = R@(0,2), 10,9, 1(0,5), €0, ),
O (1, 5)—0, 2€(0, %),
ox
u;(x, 0) = ¢,(x) =0, x€l,

where a,(x) (!=1, 2, 3) are given functions, ¢,(x) (:=1, 2, 3) are given nonnega-
tive initial data and

-Rl(un Uy, Uy) = ky Ro(uls Uy ua) ’

Ry(uy, g, 3) = Ry Ro(wy, Uy, 3) ,

Ry(w1, U, t45) = — ks Ro(uy, 1y, 45)

Ry(uy, vz, 143) = (1t ui2—u'33) By, Uy, 3)
with positive constants k;(:=1, 2, 3), positive integers n;(i=1, 2, 3) and a suitable
positive function S.

The initial boundary value problem (P) models chemical reactions on in-
terfaces. Such a model has been proposed by Kawano et al. [3]. They put

ax) =c(1—a%) (@=1,2,3),
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_thtUy—Us
14wy tu u, ’
B
1t uytu, u, ’

Ro(ul) Uy, u3) =
i.e., B(ul, uz, u3) =

where ¢,(7=1, 2, 3) are positive constants. As to the derivation of (P), see also
Appendix of [7].

Taking account of the chemical background, we impose the following con-
ditions on @; and R;(i=1, 2, 3):

(A) a;€C=(I),a;>00nI and @>0on[0,1).

(R.1) There exist an open subset U of R® and a positive constant Jg
such that

UD[_BR, 8}2]3 U [O’ °°)3 ’
By, ty, uz) EC=(U) and  B(ty, Uy, uz)>0 0on U .

(R.2) There exists a positive constant Cy such that
3 3
- ;1 R;(uy, t, u5) ui? 1 < Cop =21 ut?

for all (u,, u,, u3) €[0, 00)® and pE[1, o).

These conditions assure the existence and uniqueness of nonnegative global
solutions for (P) by the results of [7].

The purpose of the present paper is to obtain the uniform convergence of
solutions for (P), together with all their derivatives, as g—>oco. Recently, a
related problem has been discussed by [2], [4] and [6] in a simpler interfacial
reaction model with two components (R(u,, ;) =k, ufr usz, Ry(u,, u;) =k, uir u3z).
We have established a method of constructing infinitely many Lyapunov func-
tions systematically in [2]. We will develop such an energy method. A new
ingredient is to introduce a Lyapunov function of special form fitting in with
the nonlinearity peculiar to chemical reactions.

The organization of this paper is as follows. In §2 we state main results
(Theorems 1, 2 and 3). In §3 we prepare a fundamental lemma which will
be used throughout the paper. In §4 we show the existence and uniqueness
of solutions for (P) and the corresponding stationary problem (SP). Finally,
§5 contains the proof of the uniform convergence of solutions and all their
derivatives as g—>oo.

NoTATION
We use the following notation throughout this paper. For any vectors
w==(1y, ty, 43) and v=(v,, v,, v3), We simply write
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u>v ifandonlyif w,>v,u,>v, and wu,>v,,

u>v ifand only if w,>v,u,>v, and wu;>v,,
and abbreviate R;(u,, %y, u3) as R;(#). For a vector-valued function u=u(x, 2)=
(w(x, 2), uy(x, 2), us(x, 2)), we denote its derivatives by

D; D} u = (D; Dju, D} D u,, D D u)
_ ( oiti u, oiti u, oiti U, )
02 0x' 02 0x' 02 0x'/

For any vector-valued functions #=u(x)=(u;(), u,(x), #5(x)) and p=p(x)=(ps(x),
p«(%), py(x)) with p >0,

lally = A twl2dspe, ol = {3 iy,

llw:d] = llllz llaal| = Il

[lu;||. = ess sup |u,(x)], [lu|le = ess sup |u(x)|
el 1

3
= ess sup{ >} |u(x)| 32,
*€I =1

3
lln, = 4§, 0 i dsh ™, lallys = £ S 1032

2. Main results

Our first theorem is concerned with the existence, uniqueness, regularity
and positivity of solutions for (P).

Theorem 1. [In addition to (A), (R.1) and (R.2), assume that ¢=(¢b,, b,, P3)
satisfies
pEL~(I)* and $>0o0nl.

Then the initial boundary value problem (P) has a unigue solution u=(u,, us, u;) €
C=(I x (0, o)) satisfying the initial condition in L?-sense, i.e.,

lim fu(, 2)—$(+)ll = 0.

Moreover u has the following properties:
(i) u is nonnegative and bounded on I X [0, o),
(ii) u satisfies the law of ‘‘mass conservation’, i.e.,

@.1) ki1|u,-(-,z)a,-ul+kiuus(-,z)aanl=E,-,ze[o,oo) i=12),
] 3
where

E = 1 llgallit S llgsall (i=1,2),
k; ks
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(iii) the positivity of wu,, u, and u, is assured by that of E, and E,, i.e.,

,>0,4,>0 and u;>0 on I x(0,0) if E,>0 and E,>0,
>0 and u,=u,=0 on I xX(0, ) if E>0 and E,=0,
u,>0 and u,=u,=0 on Ix(0,) if E,=0 and E,>0,
h=u=u,=0 on Ix(0,) if E,=0 and E,=0.
In the study of asymptotic properties of (P), we should note (2.1). There-

fore, the stationary problem associated with (P) will be written in the form of
algebraic equations for u~=(u7, u3, u7) ER*:

u>0,
(SP) Ro(uw) = O 5
| ”‘2‘”1 - ”2:;“1 up =E, (i=12).

Concerning (SP), we get the following theorem.

Theorem 2. Suppose that (A) and (R.1) hold. Then there exists a uni-
que solution w>=(u7, uy, u3) of (SP). More precisely,

ur>0,uy >0 and us>0 if E>0 and E,>0,

wp = ”ﬁ)l—aﬁ”lw and uy = u; =0 if Ey>0 and E,—0,
a4l

ug’z“_ﬂ’%w and up —u5 —0 if E,—0 and E;>0,
(AL
uy =uy =uy =0 if E,=0and E,=0.

Now we are ready to state results on the asymptotic behavior of solutions
for (P) as z—>o0.

Theorem 3. Suppose that (A), (R.1) and (R.2) hold. It follows that

(2.2) lim ||u(-, 2)—u~|l. =0,
and
(2.3) lim ||D: Di ul|l.. = 0

for all nonnegative integers i, j with (z, j) +(0, 0).

RemaARk 2.1. It is possible to derive the rates of the convergence stated
in Theorem 3. Indeed, in the case when E,>0 and E,>0,

[[u(+, 2)—u"|l = O (exp (—r;2)) as z—> oo,
[|D% D ulle = O (exp (—A42)) as g — oo,
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where A, is the least positive eigenvalue for the linearized operator around u~
associated with (P). We can also obtain analogous rates of convergence in
the remaining cases. We will prove this fact in the forthcoming paper.

3. Preliminary lemma

The following lemma is very useful to derive several uniform convergence
properties from various estimates of solutions.

Lemma 3.1. For a positive integer m, let {pu(2)}o<i<ms {Pr(2)}1<i<m,
{g(2)} o<ism and {Gu(2)}o<k<m—1 be sequences of mnommegative functions of class
C'([1, o)), and let s|(2) be a nonnegative function of class C([1, o)). Suppose
that there exists a positive constani n such that

‘—1'?—°+90+30S0 )

dz

@4‘}513—1' o »

dz i

%&ﬂhsl (it ) »
2 7

d—ZZ‘msi (57,4 5i0) k=2,m),

Pt g<l (D54 Sa) B=2,m),
% n =1

k

i1 S‘,l,'(,gﬁ +,§q,-) (k=1,2, -, m),

dz

k k

s (3P4 He) R=12m).
Then it holds that
ST ( éﬁk"" g grts0) dz<oo
["(& 8

dz k=0
limpy(2) =0 (k= 1, 2, e, m),
limgz)=0 (k=0,1,,m—1).

dq,, )dz<<oo,

Proof. See Lemma 3.2 in Iida, Yamada and Yotsutani [2]. B

4. Existence and uniqueness of solutions for (P) and (SP)

In this section we give the proof of Theorems 1 and 2.
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Proof of Theorem 1. It is easy to see that the boundary functions
R; (wy, uy, u3) (3=1, 2, 3) satisfy the assumption in Theorem 2 of [7] (see also Ap-
pendix of [7]). Thus the existence of a unique solution and the facts (i), (ii) are
assured by [7] and [8]. Among them, we can show the fact uC=(Ix (0, o0))?
by proving u€ N 7.0 H* (3, v; H¥*(I)?) for any v>&>0 and all integers m
(see, e.g., [8]).

Now we will prove (iii). It follows from Friedman’s lemma (a parabolic
version of Hopf’s lemma) on the maximum principle, see [1], that

(4.1) u;(x, 2)>0 on Ix(0, ) or wu(x,2)=0 on Ix(0, o)

for each i=1,2,3. In fact, by (R.1) and the nonnegativity of solutions, %,(0, )
=0 implies D, u,(0, 2)=R;(u(0, 2))<O0.

Consider the case where E;>0 and E,>0. We will show u(x, 2)>0 for
all (x, 2) €Ix (0, o) by contradiction. Suppose that #,=0 on Ix(0, «0). Then
it follows that

D,u(0,2) =0 forall 2&(0, o),
which, together with the boundary condition at x=0, implies
u0,2) =0 forall 2z€(0, ).
Therefore, by (4.1), we get
us(x, ) =0 for all (x,z)EIx(0, ),
which contradicts E;>0; so that (4.1) assures
uy(x, 2)>0 on Ix(0, o).
Similarly we see that
ui(x,2)>0 and wuy(x, 2)>0 on Ix(0, ).

Consequently E;>0 and E,>0 imply #>0 on Ix(0, o). The rest of (iii) is
straightforward from (2.1) and (4.1). B

Proof of Theorem 2. Let us consider the case where E,>0 and E,>0.
We set N (u,, u,, ug)=ufr ujz—u3s. Note that N (uy, u,, u5) satisfies

N(u,,0,0) =0 for any u,>0,

N0, u;, 0) =0 for any u,>0,

ﬂ>O, ?E>O for any %,>0, u,>0, u;>0,

ou, ou,

%<0 for any %,>0,u4,>0, u;>0.
3
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We will show the existence and uniqueness of solutions of

f€)=0 on [0,kjlafli* min E],

10 =N (i (5150 s (2150 ) €)

We see from the above properties of N(uy, #,, us) that f(£) satisfies

f(0)>0,
f(kdlad|i* min E)<0,

where

ZJ; <0 for EE(0, ke min E,)

Hence there exists a unique real number &, such that
f(E&) =0 and &&E(0, kyllasl[T’ T,l’=1111§ E)).

Consequently the solution of (SP) is given by

o __ R, E_Haa”1 o _ k2 < _”‘13”1 .
“ “allh( ' ky Eo)’ U lla,l]s 2 k: Eo)» U3z &,

which implies #~>0.
If E,=0 or E,=0, then (SP) clearly has a unique solution

R, ” -
ur ="2_FE, u ——2_FE,, us =0,
Pl T Tl zn, B

Thus we complete the proof. WM

5. Proof of Theorem 3

The following Lyapunov functional plays a crucial role. For vector-
valued functions u=wu(x)=(u,(x), uy(x), uy(x)) and v=ov(x)=(v,(x), v(x), vs(x))
with >0 and v>0, set

WY(u, v): = 281 kilnm, SI yr(u;, v;) @; dx
where
W(E, E): = Sio (log t—1log &) dt — E(log E—log E)—(E—Ey) -

We give some estimates of solutions for (P) which are essential for the proof of
(2.2).

Proposition 5.1. Let u be the solution of (P). Suppose that E,>0 and
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E,>0. Then
(5.1) ‘;iz W(u, u™)+€ ||D, ulP+E{Ry(u(0, 2))}*<0,
(5.2) 2L \D, wlt D, wll s = 1D, ulf,

‘-1‘1: D, ull3, o+1ID, D, ul < M, ||D, ull3 .1,

|i D, ullP|<|ID, wl*+||D, D, ull?,
dz

1D, ullz; « < M(IID, ullz; 4+IID, D, ull®)
for 2€(0, o), where € and M, are positive constants independent of = and
8 = 8(%) = (&%), £:x), £5(%)) , 1 = (%) = (I(x), (%), Ito(x))
with
o) = [ a@®Ede ad hx) =a@e) (=1273).

Proposition 5.2. Let u be the solution of (P). Suppose that E,>0 and
E,>0. Then it holds for 2€(0, o) that

Ko llu(, ) —ull3, .S (-, 2), u) <K (e, 2)—uolf3
where K, and K, are positive constants independent of z.

Remark 5.1. This kind of Lyapunov functional ¥ was employed in Rothe
[5]- He investigated the asymptotic behavior of solutions for the following
reaction-diffusion system

ou, = D, A u,+uy;—u, u,,
ot
ou,
=2 =D,A U;— s
ot 2 A Uyt —u, u,
% == D3 A ua—l—ul uz_us

with the homogeneous Neumann boundary condition. This system models
the situation where chemical substances are reacting in a bounded domain.

Remark 5.2. Equality (5.2) is employed in Shinomiya [6]. The impor-
tant point in (5.2) is that it does not include a term related to the boundary con-
ditions R;(u(0, 2)) (=1, 2, 3).

The following proposition essentially shown in [2] plays a crucial role for
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the proof of (2.3).

Proposition 5.3.  Let u be the solution of (P). Then

1 d | pi- 1 -
YEJEHDﬁ 'D, ullt; Dz ullE = o IDE D, ulf,
2 ||D ul3, 11Dt D, ulf

k . k-1 .
<M {3 11D; ull; it 21Dz D, ulf}
di I|1D:7* D, u|* <||D™* D, w|*+|| D% D, ull?
>3
D% ull?; « < M(I1D% ull}; 4+11D% D, ull?)

for k=2, 3, -+ and 2E[1, o), where M, is a positive constant independent of =
and g, h are the functions used in Proposition 5.1.

Before proving the above propositions, we give the proof of Theorem 3
by using them.

Proof of (2.2). Consider the case where E;>>0 and E,>0. Observe that
the estimates in Proposition 5.1 correspond to the inequalities (with m=1)
in the assumption of Lemma 3.1. Therefore,

[ R, ) dx<eo

5.3

) lim (1D, u(-, 2)[ = 0
in particular, {u(-, 2)},>, is uniformly bounded and equi-continuous. By virtue
of (2.1) and (5.3), Ascoli-Arzeld’s theorem assures that there exist a sequence
{2} ;=1 and a consatnt Z=(%,, @, %;) such that

>0,
Ry@) =0,
'l%“_l ui+—”:3”l n=FE (i=12),

5 3
and

lim [ju(-, 2;)—#]l. = 0.
It follows from Theorem 2 that #=u~&(0, o0)?, which implies
(5.4 1}2‘1 (-, 2;)—u~|le =0.

On the other hand, (5.1) in Proposition 5.1 yields
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4 Y, u")<0,

dz
which leads to

lim ¥(u(-, 2),u”) = Y™, u~) =0
by (5.4). Hence it follows from Proposition 5.2 that
(5.5) lim [[u(+, 2)—u"l;4 = 0.
Since {u(-, 2)},> is uniformly bounded and equi-continuous, we can derive
lim [ju(+, 2)—u"|le = 0

by (5.5).
We consider the case where E,=0 or E,=0. Without loss of generality we
may assume E;=0. We see from (iii) of Theorem 1 that

uy(%, 2)=0, uyx,2)=0 on IX[0, o)

and u, satisfies

ayx) D, u, = D} u, (x, ) EIX(0, o),
D, u(0,2) = D,u(1,2) =0, zE(0, ),
uy(x, 0) = (), xel.
Thus we can show
lim |2, (-, z)_|l¢za2“1 -0
e llaly |«

in the standard manner for parabolic equations. In fact, we have only to ob-
serve that

S”Dx uz“ ’

iy

la,ll;

_“¢2a2”1
[laally

1D, w17 ; o +IID, D, wyl[* = 0

C D=0,

2ia

for z€(0, o). W
Proof of (2.3). As in the proof of (2.2), Propositions 5.1 and 5.3 combined
with Lemma 3.1 yield

lim ||D¥'D,u|| =0 (k=1,2,-),
lim [|D¥ull,;e =0 (k=1,2,).
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In the case E;=0 or E,=0, we can easily get the same results by slight modifica-
tions (e.g., use |lu—u~||3;, instead of ¥(x, »~) in (5.1)). Thus we can derive the
uniform convergence of any derivative D} D} u by using imbedding theorems.
Refer to the proof of Theorem 4 in [2] for the detail. W

Now we will prove Propositions 5.1 and 5.2.

Proof of Proposition 5.1. We will show (5.1). The other estimates are
obtained in the same way as the proof of Proposition 5.1 in [2]. Let u=
(t4y, 1z, u3) be the solution of (P). Then we have

z_id; W (u, u™)

kit 4 S Yr(u;, u7) a; dx

] dz Jr

S (log u;—log u7) a; D, u; dx

-

Il

>

3
3

l

kitm; Sz (log w;—log u?) D% u; dx

-

2
2} 'n; [(log w;—log u?) D, u,]o— k—l Sl | D, u;| dx
! Y

i

= {log (ur)" (uz)"—log (u5)"} Ro(u(o» z))
— {log u,(0, 2)™ u,(0, 2)"2—log uy(0, 2)*} Ry(x(0, z))

— éki—ln,‘g |D, |* dx,
i=1 1

U;
which, together with (u7°)™ (43)"2=(u3)", implies
4 g, w)+ Sk, S 1D wl* 4,
dz i=1 7

+ {log u;(0, 2)* u,(0, 2)"2—log u3(0, 2)"} Ry(u(0, 2)) = 0.

We note that the following elementary inequality holds:
(E—n)®
(log E—log 77) (5_7]) 2_2— fOl' E) 7]5(0, E] .

Consequently we obtain (5.1) from (i) of Theorem 1. M

Proof of Proposition 5.2. Noting (i) of Theorem 1, we can reduce this
propopsition to the following fundamental lemma. WM

Lemma 5.1. Let &, and & be constants with 0<E,<<E. Then

| E—&|* <Y (&, Eo) S| E—E|* for all E€(0,E),

where
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o VEE) 1

E-&I2 7 &

Proof. Consider a function

"l’(g) EO) f =+
AR
1
2,

Since £(£) & CY((0, o)) and (d8)/(d£)<0 on (0, o), we get

£(§): =
for £=E§&,.

&= lm>5@>t@ = Y85 or rc0,p.

For the proof of Proposition 5.3, see §6 of [2].
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