

Title	On rings with self-injective dimension≤1
Author(s)	Iwanaga, Yasuo
Citation	Osaka Journal of Mathematics. 1978, 15(1), p. 33-46
Version Type	VoR
URL	https://doi.org/10.18910/5552
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ON RINGS WITH SELF-INJECTIVE DIMENSION ≤I

Yasuo IWANAGA

(Received August 9, 1976) (Revised July 16, 1977)

Let R be a ring with an identity and, for a left R-module $_RM$, pd(M) and id(M) denote the projective and injective dimension of $_RM$, respectively. A (left and right) noether ring R is called n-Gorenstein if $id(_RR) \le n$ and $id(R_R) \le n$ for $n \ge 0$, and Gorenstein means n-Gorenstein for some n. This is slightly different from the well known definition in the commutative case unless a ring is local (see Bass [5]) and, as a generalization to the non-commutative case, there is another one by Auslander [1]. However, when we want to consider many interesting properties about a quasi-Frobenius ring and an hereditary ring in more general situation, we cannot conclude yet which definition is best. So, in this paper, we follow the above definition of a Gorenstein ring and try to generalize some interesting properties for a quasi-Frobenius ring. On the other hand, for a 1-Gorenstein ring, a few papers have appeared, for instance, Jans [12], Bass [4] and recently Sumioka [18], Sato [17] and, for a Gorenstein ring with squarezero radical, Zaks [19].

As the typical examples of 1-Gorenstein rings which are neither hereditary nor quasi-Forbenius, we have

- 1) Gorenstein orders, especially the group ring Z[G] where Z the ring of rational integers, G a finite group. (See Drozd-Kiricenko-Roiter [7], Roggenkamp [16] and Eilenberg-Nakayama [8].)
- 2) Triangular matrix rings over non-semisimple quasi-Frobenius rings. (See Sumioka [18] and Zaks [19].)

In §1, we shall show that for a 1-Gorenstein ring R, $E(_RR) \oplus E(_RR)/R$ is an injective cogenerator (Theorem 1) and as this corollary, an artin 1-Gorenstein ring which is QF-1 must be quasi-Frobenius (Corollary 3). This should compare with that for a quasi-Frobenius ring R, $_RR$ itself is an injective cogenerator. Next, as a generalization of "projectivity—injectivity" for modules over a quasi-Frobenius ring, we obtain that over a certain n-Gorenstein ring, finiteness of the projective dimension, projective dimension $\leq n$, finiteness of the injective dimension and injective dimension $\leq n$ for modules are all equivalent (Theorem 5).

In $\S 2$, first we attend to Nakayama's theorem [15] that a ring R is uniserial if and only if any homomorphic image of R is quasi-Frobenius, and replace

34 Y. Iwanaga

"quasi-Frobenius" with "1-Gorenstein." Then we have three classes of rings, i.e. a uniserial ring, an hereditary ring with square-zero radical and a quasi-Frobenius ring with square-zero radical (Theorem 10). Moreover, as an application, we can classify a semiprimary ring whose proper homomorphic images are artin 1-Gorenstein (Theorem 12) and generalize [11, Theorem 1]. Also, in prime noether case, it will be shown that a restricted Gorenstein ring in the sense of Zaks [20] is equivalent to a restricted uniserial ring under certain hypothesis which always holds for commutative rings (Proposition 11).

Finally, Kaplansky's book [13] is suitable for looking at the recent development of commutative Gorenstein rings. In the present study about non-commutative Gorenstein rings, we should generalize the results described in [13] to the non-commutative case in appropriate form.

NOTATIONS. For a ring R and an R-module M, we denote

n(R)=the number of non-isomorphic simple left R-modules,

Rad R=the radical of R,

 $Soc(_R R)$ =the left socle of R,

E(M)=the injective hull of $_{R}M$,

|M| = the composition length of $_RM$.

A noether (artin) ring stands for left and right noetherian (artinian) and an ideal means twosided. Further, we say a non-zero ideal twosided simple if it contains no non-trivial ideal.

1. An injective cogenerator over a Gorenstein ring

In this section, first we consider which module is an injective cogenerator over a 1-Gorenstein ring, and next show the equivalence of the finiteness of projective dimension and injective dimension for modules over an n-Gorenstein ring which has a cogenerator with projective dimension $\leq n$. These are well known for quasi-Frobenius rings, i.e. n=0.

Theorem 1. Let R be a 1-Gorenstein ring, then $E(_RR) \oplus E(_RR)/R$ is an injective cogenerator.

Proof. It is enough to show that any simple left R-module is monomorphic to $E(_RR) \oplus E(_RR)/R$. Otherwise, and suppose a simple left module S is not monomorphic to it, then

$$\operatorname{Hom}_R(S,R)=0=\operatorname{Ext}^1_R(S,R).$$

Now represent S as

$$0 \rightarrow {}_{R}M \stackrel{i}{\rightarrow} {}_{R}R \rightarrow {}_{R}S \rightarrow 0$$

where M is a maximal left ideal and i is an inclusion map. If we denote $X^*=$

 $\operatorname{Hom}_R(X, R)$ for an R-module X, we obtain an exact sequence:

$$S_R^* \to R_R^* \xrightarrow{i^*} M_R^* \to \operatorname{Ext}_R^1(S, R)$$

and so, by the assumption,

$$i^*: R_R^* \to M_R^*$$
 with $i^*(r^*) = (m \to mr)$ for $r \in R$, $m \in M$

is an isomorphism. Hence

$$i^{**}: {}_{R}M^{**} \rightarrow {}_{R}R^{**} \simeq {}_{R}R \text{ with } i^{**}(f) = fi^{*}(1)$$
 for $f \in M^{**}$

is an isomorphism, too. On the other hand, by Jans [12],

$$\sigma: {}_{R}M \to {}_{R}M^{**} \text{ with } \sigma(m) = (f \to f(m)) \quad \text{for } m \in M, f \in M^{*}$$

is also an isomorphism and therefore so is

$$i^{**}\sigma: _{R}M \rightarrow _{R}R$$
.

However $i^{**}\sigma$ is an inclusion which contradicts $M \neq R$.

REMARK. In the theorem above, the assumption for R noetherian is necessary. For instance, let $R = \prod_{\alpha} K_{\alpha}$ be a direct product of infinitely many fields K_{α} , then R is self-injective but ${}_{R}R$ is not a cogenerator.

Next, we shall examine when only E(R) or E(R)/R is an injective cogenerator. A ring R is called a right S-ring if E(R) is a cogenerator and see Bass [3] or Morita [14] for details. In the latter case, we have the next result.

Corollary 2. Let R be a 1-Gorenstein ring, then $E(_RR)/R$ is a cogenerator if and only if $Soc(_RR)=0$.

Proof. "Only if": Suppose a simple left module S is monomorphic to $_{R}R$, then from the exact sequence

$$0 \rightarrow {}_{\scriptscriptstyle P}S \rightarrow {}_{\scriptscriptstyle P}R \rightarrow {}_{\scriptscriptstyle P}C \rightarrow 0$$

we have an exact sequence

$$\operatorname{Ext}^1_R(R, R) \to \operatorname{Ext}^1_R(S, R) \to \operatorname{Ext}^2_R(C, R)$$
.

Here, $\operatorname{Ext}_R^1(R, R) = 0$ and $\operatorname{Ext}_R^2(C, R) = 0$ since $id(_R R) \le 1$, so $\operatorname{Ext}_R^1(S, R) = 0$ which contradicts that $E(_R R)/R$ is a cogenerator.

"If": Since $E_R(R) \oplus E(_RR)/R$ is a cogenerator, for any simple left module $_RS$, S is either monomorphic to $E(_RR)$ or $E(_RR)/R$. However, from $Soc(_RR)=0$, $_RS$ must be monomorphic to $E(_RR)/R$.

As an example of a ring R such that E(R)/R is a cogenerator, we obtain

the following: Let R be an indecomposable semiprime 1-Gorenstein ring, then $E({}_RR)/R$ is a cogenerator unless R is artinian. More concretely, $R=\mathbb{Z}[G]$ is an example satisfying above assumption. Therefore Theorem 1 and Corollary 2 generalize Sato [17, Corollaries 3.3, 3.4 and Proposition 3.5].

As a second corollary of Theorem 1, we obtain a result about QF-1 rings. We recall a ring R is left QF-1 if every faithful R-module has the double centralizer property.

Corollary 3. Let R be an artin 1-Gorenstein ring. If R is its own maximal left quotient ring, R is quasi-Frobenius. Hence an artin 1-Gorenstein ring which is left QF-1 is quasi-Frobenius.

Proof. Since R is its own maximal left quotient ring, $E(_RR)/R$ is monomorphic to a direct product of copies of $E(_RR)$ and so $E(_RR)$ is a cogenerator and, for any simple left module $_RS$, we have an exact sequence:

$$0 \rightarrow {}_{R}S \rightarrow {}_{R}R \rightarrow {}_{R}C \rightarrow 0$$

which induces $\operatorname{Ext}_R^1(S, R) = 0$ similarly to the proof of Corollary 2. Therefore $_RR$ is injective, i.e. R is quasi-Frobenius.

If R is left QF-1, $E(_RR)$ has the double centralizer property and hence R is its own maximal left quotient by Lambek's result.

REMARK. Now, we have a further investigation about QF-1 rings, that is, we consider hereditary QF-1 rings. We have the following: "A left non-singular left QF-1 ring is semisimple (artinian)." In fact, if R is left non-singular, its maximal left quotient ring Q is semiprimitive. Furthermore, if R is left QF-1, $Q \simeq R$ by Lambek's result and hence R is semisimple by Camillo [6, Proposition 5].

As a consequence, for a ring R the following are equivalent:

- (1) R is left hereditary left QF-1,
- (2) R is right hereditary right QF-1,
- (3) R is semisimple (artinian).

To investigate the latter problem in the beginning of this section, we require the next lemma.

Lemma 4. For an exact sequence of modules over a ring R:

$$0 \rightarrow {}_{R}A \rightarrow {}_{R}B \rightarrow {}_{R}C \rightarrow 0$$
,

- (1) id(A), $id(B) \leq n$ implies $id(C) \leq n$;
- (2) pd(B), $pd(C) \leq n$ implies $pd(A) \leq n$.

Proof. (1) For any R-module $_RX$, we have

$$\operatorname{Ext}_R^{n+1}(X, B) \to \operatorname{Ext}_R^{n+1}(X, C) \to \operatorname{Ext}_R^{n+2}(X, A)$$
 (exact).

Now, $\operatorname{Ext}_R^{n+1}(X, B) = \operatorname{Ext}_R^{n+2}(X, A)$ by the assumption, so $\operatorname{Ext}_R^{n+1}(X, C) = 0$, i.e. $id(C) \le n$.

(2) is dual to (1)

Theorem 5. Let R be an artin n-Gorenstein ring and suppose there exists a cogenerator $_RW$ with $pd(W) \le n$. Then the following are equivalent for a left R-module $_RM$:

(1)
$$pd(M) < \infty$$
, (2) $pd(M) \le n$, (3) $id(M) < \infty$, (4) $id(M) \le n$.

Proof. (1) \rightarrow (2): Say $pd(M) = m < \infty$, there is a left module $_RX$ such that $\operatorname{Ext}_R^m(M, X) \neq 0$. Represent X as

$$0 \rightarrow {}_{R}K \rightarrow {}_{R}F \rightarrow {}_{R}X \rightarrow 0$$
 (exact), ${}_{R}F$ free

then this induces

$$\operatorname{Ext}_R^m(M, F) \to \operatorname{Ext}_R^m(M, X) \to \operatorname{Ext}_R^{m+1}(M, K)$$
 (exact).

Hence, $\operatorname{Ext}_{R}^{m+1}(M, R) = 0$ implies $\operatorname{Ext}_{R}^{m}(M, F) \neq 0$, from which we have $id(F) \geq m$. Now, $id(F) = id(R) \leq n$ and hence $pd(M) = m \leq n$.

$$(2) \rightarrow (3)$$
: Let

$$0 \to P_n \xrightarrow{f_n} P_{n-1} \to \cdots \to P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$$

be a projective resolution of M and $K_i = \text{Ker}(f_i)$ $0 \le i \le n-1$, $K_{-1} = M$, then first in an exact sequence:

$$0 \to P_n \to P_{n-1} \to K_{n-2} \to 0 ,$$

 $id(P_n)$, $id(P_{n-1}) \le id({}_RR) \le n$ implies $id(K_{n-2}) \le n$ by Lemma 4 (1). For general i, in an exact sequence:

$$0 \to K_i \to P_i \to K_{i-1} \to 0 ,$$

if $id(K_i) \leq n$, then $id(K_{i-1}) \leq n$ again by Lemma 4 (1). Therefore by the induction, $id(M) = id(K_{-1}) \leq n$.

(3) \rightarrow (4): Say $id(M)=m<\infty$, then there is a left module $_RX$ such that $\operatorname{Ext}_R^m(X, M) \neq 0$. Let

$$0 \rightarrow {}_{R}X \rightarrow {}_{R}E \rightarrow {}_{R}C \rightarrow 0$$
 with ${}_{R}E$ injective

be an injective presentation of X, then we have $\operatorname{Ext}_R^m(E, M) \neq 0$ from an exact sequence;

$$\operatorname{Ext}_R^m(M, E) \to \operatorname{Ext}_R^m(X, M) \to \operatorname{Ext}_R^{m+1}(C, M)$$

and so $pd(E) \ge m$. On the one hand, as E is isomorphic to a direct summand of a direct product $\prod W$ of copies of $_RW$, $pd(E) \le pd(\prod W) = pd(W) \le n$ whence $id(M) = m \le n$.

 $(4) \to (1)$: Let

$$0 \to M \stackrel{f_0}{\to} E_0 \stackrel{f_1}{\to} E_1 \to \cdots \to E_{n-1} \stackrel{f_n}{\to} E_n \to 0$$

be an injective resolution of $_{R}M$ and $C_{i}=\operatorname{Cok}(f_{i})$ $0 \leq i \leq n-1$, $C_{-1}=M$, then an exact sequence:

$$0 \rightarrow C_{n-2} \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0$$

and $pd(E_{n-1})$, $pd(E_n) \le pd(W) \le n$ imply $pd(C_{n-2}) \le n$ by Lemma 4 (2). By the same discussion as the proof $(2) \to (3)$, we obtain $pd(M) \le n$.

As a corollary of Theorems 1 and 5 we have the following where we recall a ring R is left QF-3 if $E(_RR)$ is projective.

Corollary 6. Let R be a 1-Gorenstein ring which is left QF-3, then the following are equivalent for a left R-module M:

(1)
$$pd(M) < \infty$$
, (2) $pd(M) \le 1$, (3) $id(M) < \infty$, (4) $id(M) \le 1$.

Proof. By Theorem 1, $_RW = E(_RR) \oplus E(_RR)/R$ is a cogenerator with $pd(W) \le 1$ because

$$0 \to {}_{R}R \stackrel{j}{\to} E({}_{R}R) \oplus E({}_{R}R) \to {}_{R}W \to 0$$

with j(x)=(0, x) for $x \in R$ is a projective resolution of $_RW$. Further, it is well known a noetherian left QF-3 ring is artinian, so we may apply Theorem 5 in case n=1.

REMARK. (1) For any n > 0, there exists a non-quasi-Frobenius ring satisfying the hypothesis in Theorem 5. For instance, let R be a serial (=generalized uniserial) ring with admissible sequence: 1, 2, ..., 2 (2 are n times), then $id(_RR)=id(R_R)=gl.dim\ R=n$ and $_RW=\coprod_{i=0}^n E_i$ is an injective cogenerator with pd(W)=n where $0\to_RR\to E_0\to E_1\to\cdots\to E_n\to 0$ is the minimal injective resolution of $_RR$. (See [10] for details of serial rings.)

More generally, an *n*-Gorenstein ring R with $dom.dim R \ge n$ has an injective cogeneartor $_RW = \coprod_{i=0}^n E_i$ with $pd(W) \le n$ where $0 \to _RR \to \{E_i; 0 \le i \le n\}$ is the minimal injective resolution.

(2) We may construct an *n*-Gorenstein ring R_n with $gl \cdot dim R_n = \infty$ for any $n \ge 0$ in the following way. Let R_0 be a non-semisimple quasi-Frobenius ring, and for any n > 0, R_n the triangular matrix ring over R_{n-1} , i.e. $R_n = \begin{pmatrix} R_{n-1} & 0 \\ R_{n-1} & R_{n-1} \end{pmatrix}$.

2. Rings whose homomorphic images are Gorenstein

In [19, §2], Zaks showed that, for a semiprimary ring R with square-zero radical, $id(_RR) \le 1$ if and only if R is a direct product of a quasi-Frobenius ring and an hereditary ring, and hence $id(_RR) \le 1$ is equivalent to $id(R_R) \le 1$. Such a decomposition theorem no longer holds unless the square of its radical is zero. For example, let Q be a local quasi-Frobenius ring with $(Rad Q)^2 = 0$ and R the triangular matrix ring over Q, then R is artin 1-Gorenstein and indecomposable but is neither quasi-Frobenius nor hereditary.

Now, for a serial ring, we have a decomposition theorem as above.

Proposition 7. Let R be a serial ring, then the following are equivalent:

- (1) $id(R_R) \leq 1$,
- (2) $id(_RR) \leq 1$,
- (3) R is a direct product of a quasi-Frobenius ring and a hereditary ring.

Proof. Without loss of generality, we may assume that R is self-basic (twosided) indecomposable, and decompose ${}_{R}R$ as $R = Re_{1} \oplus \cdots \oplus Re_{n}$ such that $\{e_{1}, \cdots, e_{n}\}$ is the Kupisch series. If R is not quasi-Frobenius, Re_{i} is non-injective for some i $(1 \le i \le n)$ and then, from $|Re_{j+1}| \le |Re_{j}| + 1$ for $1 \le j < n$, we obtain that if i < n, $|Re_{i+1}| = |Re_{i}| + 1$, Re_{i} is monomorphic to Re_{i+1} and $E(Re_{i}) \simeq Re_{j}$ for some j $(i < j \le n)$ by [10, 1.1]. Now, let the number i be the smallest one with Re_{i} non-injective and Re_{i+1} injective. Here, we may suppose i < n because, in case of $Ne_{1} = 0$, Re_{1} is monomorphic to Re_{2} and if $Ne_{1} \neq 0$, by permuting $\{1, \cdots, n\}$, it is possible for Re_{1} to be non-injective and Re_{2} injective. Therefore we have

$$E(Re_i) \simeq Re_{i+1}$$
 and $|Re_i| + 1 = |Re_{i+1}|$.

So, saying N=Rad R,

$$E(Re_i)/Re_i \simeq Re_{i+1}/Ne_{i+1}$$

is simple injective and from that Re_{i+1} is epimorphic to Ne_{i+2} if i+1 < n,

$$Re_{i+1}/Ne_{i+1} \simeq Ne_{i+2}/N^2e_{i+2} \subseteq Re_{i+2}/N^2e_{i+2}$$

induces $Ne_{i+2}=0$ since Re_{i+2}/N^2e_{i+2} is indecomposable. This contradicts $|Re_j| \ge 2$ for $j=2, \dots, n$ and so i+1=n and $|Re_{i+1}| = |Re_i| + 1$ for $1 \le i \le n$. Hence $Re_2 \simeq Ne_{i+1}$ for $1 \le i \le n-1$, i.e. Ne_i $(i=2, \dots, n)$ are projective and R is hereditary.

Applying this proposition we classify the rings all of which homomorphic images are artin 1-Gorenstein. Before proceeding, we need two lemmas.

Lemma 8 (Bass [3]). For a right perfect, right S-ring R, id ($_RR$) is finite if and only if $_RR$ is injective.

Proof. Say, $id(R)=n<\infty$, then there exists a simple left module $_RS$ with $\operatorname{Ext}_R^n(S, R) \neq 0$. Now, since R is a right S-ring, we have an exact sequence:

$$0 \rightarrow {}_{\scriptscriptstyle R}S \rightarrow {}_{\scriptscriptstyle R}R \rightarrow {}_{\scriptscriptstyle R}C \rightarrow 0$$

which induces

$$\operatorname{Ext}_R^n(R, R) \to \operatorname{Ext}_R^n(S, R) \to \operatorname{Ext}_R^{n+1}(C, R)$$
 (exact).

Here, $\operatorname{Ext}_R^{n+1}(C, R) = 0$ from $id(_RR) = n$, so $\operatorname{Ext}_R^n(R, R) \neq 0$ and n = 0, i.e. $_RR$ is injective.

Lemma 9. Let I be a (twosided) ideal in any ring R and R/I^n a left hereditary ring for some n>1. Then $I^n=I^{n+1}$. Hence, if we assume $_RN=Rad\ R$ is finitely generated (or nilpotent) and R/N^n is left hereditary for n>1, then $N^n=0$ and so R itself left hereditary.

Proof. Since I^{n-1}/I^n is an ideal in R/I^n , it is R/I^n -projective and the exact sequence of R/I^n -modules:

$$0 \to I^n/I^{n+1} \to I^{n-1}/I^{n+1} \to I^{n-1}/I^n \to 0$$

splits, i.e.

$$I^{n-1}/I^{n+1} \simeq I^{n-1}/I^n \oplus I^n/I^{n+1}$$

as R/I^n -modules. However, $I \cdot (I^{n-1}/I^n \oplus I^n/I^{n+1}) = 0$, so $I \cdot (I^{n-1}/I^{n+1}) = 0$, i.e. $I^n = I^{n+1}$.

Theorem 10. For an indecomposable semiprimary ring R, the following are equivalent:

- (1) For any homomorphic image T of R, $id(_TT) \leq 1$,
- (2) For any homomorphic image T of R, $id(T_T) \leq 1$,
- (3) R is one of the following;
- (i) R is uniserial,
- (ii) R is hereditary with $(Rad R)^2 = 0$,
- (iii) R is quasi-Frobenius with $(Rad R)^2=0$ and n(R)=2.

Proof. (3) is left-right symmetry, so we prove only the equivalence of (1) and (3).

(1) \rightarrow (3): Say, N=Rad R, since R/N^2 is also indecomposable, R/N^2 is either hereditary or quasi-Frobenius by Zaks [19]. In case of hereditary, $N^2=0$ by Lemma 9 and hence R is of type (ii). In another case, R/N^2 is a serial ring, so R is artinian and serial, too whence R is either hereditary or quasi-Frobenius by Proposition 7. If R is hereditary, $gl.dim\ R/N^2<\infty$ by Eilenberg-Nagao-Nakayama [9, Theorem 8] and hence by Bass [4, Proposition 4.3], $gl.dim\ R/N^2=id(_{R/N}^2R/N^2)\leq 1$, i.e. R/N^2 is hereditary, so $N^2=0$ and R is hereditary again by Lemma 9.

Thus, let R be serial quasi-Frobenius and $n(R)=n(R/N^2)=n$. Further, $\bar{R}=R/N^2$ also satisfies (1) and since (1) is Morita-invariant, we may assume \bar{R} is self-basic and decompose \bar{R} as $\bar{R}=\bar{R}e_1\oplus\cdots\oplus\bar{R}e_n$ with $\{e_1,\cdots,e_n\}$ Kupisch series. If n>2, $Je_1=e_nJe_1$ ($J=\text{Rad }\bar{R}$) is an ideal of \bar{R} and the ring:

$$T = \bar{R}/Je_1 = T\bar{e}_1 \oplus \cdots \oplus T\bar{e}_n$$
 where $\bar{e}_i = e_i + Je_1 \in T$

satisfies $id(_TT) \leq 1$. Hence, from $Je_2 \simeq Re_1/Je_1$,

$$E(T\bar{e}_1)/T\bar{e}_1 \simeq T\bar{e}_2/\bar{J}\bar{e}_2 \qquad (\bar{J} = \text{Rad } T)$$

is T-injective. However, $\bar{e}_2 \bar{J} \bar{e}_3 \pm 0$, i.e. $T\bar{e}_2 / \bar{J} \bar{e}_2 \simeq \bar{J} \bar{e}_3 \subseteq T\bar{e}_3$ which contradicts the indecomposability of $T\bar{e}_3$, so $n \leq 2$. Then, since R is uniserial if n=1, let n=2, i.e. we may represent $R=Re_1 \oplus Re_2$ with $\{e_1, e_2\}$ Kupisch series because R is self-basic, too. Furthermore, if $N^2 \pm 0$, then N^2e_1 and $N^2e_2 \pm 0$ as R is quasi-Frobenius and the homomorphic image $T=R/(N^3e_1 \oplus N^2e_2) = T\bar{e}_1 \oplus T\bar{e}_2$ where $\bar{e}_i=e_i+(N^3e_1 \oplus N^2e_2) \in T$ satisfies $id(_TT) \leq 1$. Now, from $E(T\bar{e}_2) \simeq T\bar{e}_1$,

$$E(T\bar{e}_2)/T\bar{e}_2 \simeq T\bar{e}_1/J\bar{e}_1$$
 ($J = \text{Rad } T$)

is T-injective. However,

$$J^2ar{e}_1\simeq N^2e_1/N^3e_1\simeq Re_1/Ne_1\simeq Tar{e}_1/Jar{e}_1$$

is T-injective which contradicts that $_TT\bar{e}_1$ is indecomposable. Hence $N^2=0$. (3) \rightarrow (1): In any case of (i)—(iii), R may be assumed self-basic. It is well known that a uniserial ring is characterized as a ring all of which homomorphic images are quasi-Frobenius.

Let R be of type (ii). For any ideal I contained in N, since $_RI$ is a direct summand of $_RN$, R/I is also hereditary by Eilenberg-Nagao-Nakayama [9, Proposition 9]. If I is not contained in N, I contains a primitive idempotent e_1 with $I=Re_1\oplus (I\cap R(1-e_1))$ and further, if $I\cap R(1-e_1) \nsubseteq N$, choose a primitive idempotent e_2 orthogonal to e_1 in $I\cap R(1-e_1)$. By repeating this method, we have

$$I = Re_1 \oplus \cdots \oplus Re_n \oplus I'$$

where $e_i^2 = e_i$ is primitive and $I' = I \cap R(1 - \sum_{i=1}^n e_i) \subseteq N$. Then, let $e = 1 - (e_1 + \cdots + e_n)$, from I', $eR(1-e) \subseteq N$,

$$I'R = I'eRe + I'eR(1-e) \subseteq I \cap Re = I'$$
,

i.e. I' is an ideal. Hence T'=R/I' is an hereditary ring with

$$_{\tau'}$$
Rad $T' = N/I' \simeq _{\tau'} Ne \oplus _{\tau'} N(1-e)/I'$

and so N(1-e)/I' is T'-projective. On the other hand,

$$T = R/I \simeq R(1-e)/I'$$

implies Rad T=N(1-e)/I' and, as T' is epimorphic to T, N(1-e)/I' is T-projective, i.e. T is hereditary.

Let R be of type (iii) and $R=Re_1\oplus Re_2$ where $\{e_1, e_2\}$ Kupisch series. For any ideal I contained in N, I is a direct summand and, as $N=Ne_1\oplus Ne_2$ with Ne_i simple, $_RI$ is isomorphic to Ne_1 or Ne_2 provided $I \neq 0$, N. If $I \simeq Ne_1$,

$$_RI \simeq _RNe_1 = e_2Ne_1 \simeq e_2I$$

implies $I=e_2I$ and so, saying $N=I\oplus K$,

$$e_2I \oplus e_2K = e_2(I \oplus K) = e_2N = e_2Ne_1$$
.

Hence

42

$$I = e_2 I = e_2 N e_1 = e_2 N = N e_1$$

and

$$_{T}T = R/I \simeq _{T}Re_{1}/Ne_{1} \oplus _{T}Re_{2}$$

which induces $_{T}Re_{1}/Ne_{1}$ projective. Now, let J=Rad T,

$$_{\scriptscriptstyle T}Re_{\scriptscriptstyle 1}/Ne_{\scriptscriptstyle 1}\simeq {_{\scriptscriptstyle T}Ne_{\scriptscriptstyle 2}}\simeq {_{\scriptscriptstyle T}J}(e_{\scriptscriptstyle 2}{+}I)=J$$
 ,

so $_TJ$ is projective and T is hereditary. In case of $I \simeq Ne_2$, we have the same discussion. Next, let $e_1 \in I$, then

$$2 = |Re_1| \le |P_1| \le |P_2| = 4$$
.

However, |R| = 2 implies $I = Re_1$ and $Ne_2 \subseteq Re_1 R \subseteq Re_1$ which is a contradiction. Therefore, we may take |R| = 3 and then |R| = 1, i.e. R/I is a division ring. This completes the proof.

Finally, we investigate a ring whose proper homomorphic images are artin 1-Gorenstein, and here consider in two cases of a prime noether ring and a semiprimary ring.

For a prime noether case, we have a generalization of Zaks [20, Theorem 3]. Here an ideal I is said to have the *Artin-Rees property* if for every left ideal L, there is an n with $I^n \cap L \subseteq IL$.

Proposition 11. Let R be a prime noether ring and assume every maximal ideal in R has the Artin-Rees property. Then any proper homomorphic image of R is artin Gorenstein if and only if R is restricted uniserial.

Proof. "Only if": For any maximal ideal M in R, M=0 implies R a simple ring, so we may suppose $M \neq 0$. Then R/M^2 is primary Gorenstein and hence quasi-Frobenius (in this case, uniserial) by Lemma 8. Thus let

n>2, $T=R/M^n$ and J=Rad T, then $T/J^2\simeq R/M^2$ is uniserial which implies $T=R/M^n$ (n>2) uniserial.

Next, for any nonzero ideal I in R, there exist maximal ideals M_1, \dots, M_n in R with $M_1, \dots, M_n \subseteq I$. Since M_1, \dots, M_n have the Artin-Rees property, there are integers k_1, \dots, k_n such that

$$M_1^{k_1} \cap \cdots \cap M_n^{k_n} \subseteq M_1 \cdots M_n \subseteq I$$
.

Hence, we may suppose all M_1, \dots, M_n are distinct and, by the Chinese Remainder Theorem,

$$R/(M_1^{k_1}\cap\cdots\cap M_n^{k_n})\simeq R/M_1^{k_1}\oplus\cdots\oplus R/M_n^{k_n}$$

is uniserial. On the other hand, $R/(M_1^{k_1} \cap \cdots \cap M_n^{k_n})$ is epimorphic to R/I, so R/I is uniserial too.

Now, we state the last theorem which is of a semiprimary case.

Theorem 12. Let R be an indecomposable semiprimary ring and R_0 the basic subring of R with $N=Rad\ R_0$. Then any proper homomorphic image of R is 1-Gorenstein if and only if R is one of the following:

- (1) R is uniserial;
- (2) R is serial with admissible sequence 3, 2;
- (3) R is hereditary with square-zero radical;
- (4) $n(R) \le 2$, $(Rad R)^2 = 0$ and for any primitive idempotent e in R_0 , (a) eNe=0 provided $e \ne 1$, (b) If Ne contains a nonzero ideal properly, it is a maximal left and right subideal in Ne and N(1-e) is a simple left and right ideal of R_0 ;
- (5) n(R)=2, $(Rad\ R)^2=0$ and R_0 has a primitive idempotent e such that (a) eNe is simple left and right ideal of R_0 , (b) Either (1-e)Ne=0 or N(1-e)=0, (c) Each of (1-e)Ne and N(1-e) is twosided simple unless it is zero and N(1-e)=eN(1-e);
- (6) R is triangular with n(R)=3, $(Rad\ R)^2=0$ and Ne is twosided simple for a primitive idempotent e in R_0 provided $Ne \neq 0$.

Proof. Throughout the proof, we may assume R self-basic and then N=Rad R.

"Only if." If $N^3 \pm 0$, R/N^3 is uniserial by Theorem 10 and so is R by [15]. Let $N^3 = 0$ but $N^2 \pm 0$, then R/N^2 is quasi-Frobenius with $n(R/N^2) = 2$ again by Theorem 10 and Lemma 9 and hence R is serial with n(R) = 2. Thus, let $\{e_1, e_2\}$ be a Kupisch series, then $Ne_1 \pm 0$. For, $Ne_1 = 0$ implies $N^2 = 0$ (contradiction) because Re_1 is epimorphic to Ne_2 . So $Ne_1 \pm 0$ and Re_2 is epimorphic to Ne_1 . If both N^2e_1 and N^2e_2 are nonzero, R/N^2e_1 is neither hereditary since Ne_1/N^2e_1 is not projective nor quasi-Frobenius since R/N^2e_1 has non-constant admissible sequence 2, 3. Therefore

$$N^2e_1 \pm 0$$
, $N^2e_2 = 0$ or $N^2e_1 = 0$, $N^2e_2 \pm 0$.

In either case, R has the admissible sequence 2, 3; i.e. R is of type (2).

In the following, we may assume $N^2=0$, $N \neq 0$ and R not hereditary because otherwise R is of type (3). Here, we remark that for a semiprimary ring R with square-zero radical N, R is hereditary if and only if any primitive idempotent e in R satisfies either eN=0 or Ne=0. Now, if n(R)=1, i.e. R is local and N contains a nonzero ideal $I \neq N$, R/I must be quasi-Frobenius. Hence $R^{N/I}$, $R^{N/I}$ are simple and R is of type (4).

Therefore, now suppose n(R)=2, then there exists a primitive idempotent e with $eN \pm 0$, $Ne \pm 0$ and 1-e is primitive too. In case of $eNe \pm 0$, $I=(1-e)Ne \oplus$ $N(1-e) \neq 0$ since R is indecomposable and $R/I \simeq eRe \oplus (1-e)R(1-e)$ as rings implies that eRe is quasi-Frobenius, so ReNe, eNeR are simple. Next, if both (1-e)Ne and N(1-e) were nonzero, R/N(1-e) is indecomposable but neither hereditary nor quasi-Frobenius. Hence either (1-e)Ne=0 or N(1-e)=0 and each of them is two sided simple unless it is zero. Further, N(1-e)=eN(1-e)These show that R is of type (5) in case of because R is indecomposable. So we assume eNe=0, in which case $eN(1-e) \neq 0$ as e was chosen with Then R/eN(1-e) must be hereditary and (1-e)N(1-e)=0. Here, if Ne contains properly a nonzero ideal I, R/I has to be quasi-Frobenius whence both $_RN(1-e)=eN(1-e)$ and $_RNe/I$ are simple. These also hold for a right side. On the one hand, if N(1-e) contains properly a nonzero ideal I, by exchanging the idempotent e with 1-e, the same argument as above holds. Hence R becomes of type (4).

Finally, suppose $n(R) \ge 3$. As _RN is not projective, there are primitive idempotents e, f with $fNe \neq 0$ and $Nf \neq 0$. Now, assume (1-e)Ne = 0, then eNe is a nonzero ideal, $n(R/eNe) = n(R) \ge 3$ and R/eNe is indecomposable, so R/eNe must be hereditary by Theorem 10. Therefore there exists a primitive idempotent $e' \neq e$ with $eNe' \neq 0$ by an indecomposability of R and then I=(1-e)Ne'+N(1-e-e') is a nonzero ideal since R is indecomposable and $n(R) \ge 3$. If we put R=R/I, $\bar{e}=e+I$ and $\bar{e}'=e'+I$, $R\bar{e}\oplus R\bar{e}'$ is a block of R and not any of the ring stated in Theorem 10 (contradiction). Thus $(1-e)Ne \neq 0$, i.e. $f \neq e$ and, by setting $e_1=e$, $e_2=f$, R is expressible as $R=Re_1\oplus Re_2\oplus \cdots \oplus Re_n$ where $n=n(R)\geq 3$, e_i $(1\leq i\leq n)$ are primitive idempotents and either $e_2Ne_3\neq 0$ or $e_3Ne_2 \neq 0$. If an ideal $I = (1-e_2)Ne_1 + (1-e_1-e_3)Ne_2 + (1-e_2)Ne_3 + \sum_{i>3} Re_i$ is nonzero, then R/I must be hereditary by Theorem 10 as R/I is indecomposable and n(R/I)=3, and so we obtain that $Ne_1=e_2Ne_1+Ie_1$, $e_1Ne_2=0=e_3Ne_2$ and $Ne_3 = e_2 Ne_3 + Ie_3 = 0$. In this case $R/\sum_{i \ge 3} Ne_i$ has to be quasi-Frobenius, which contradicts $e_1Ne_2=0$. Hence I=0 implies n=3, $Ne_1=e_2Ne_1\pm0$, $Ne_2=e_1Ne_2+$ $e_3Ne_2 \pm 0$ and $Ne_3 = e_2Ne_3$. Moreover, if $Ne_3 \pm 0$, $e_1Ne_2 = 0 = e_3Ne_2$ for R/Ne_1 or R/Ne_3 is indecomposable but neither hereditary nor quasi-Frobenius according to $e_1Ne_2 \neq 0$ or $e_3Ne_2 \neq 0$, but it contradicts $Ne_2 \neq 0$. Therefore $Ne_3 = 0$ and $e_3Ne_2 \neq 0$ induces $e_1Ne_2 = 0$ since gl. dim $R/e_1Ne_2 = 2$, i.e. R is of type (6).

"If." Case (1): By Nakayama [15], R is uniserial if and only if any homomorphic image of R is quasi-Frobenius.

Case (2): Let $R=Re_1\oplus Re_2$ where e_1 , e_2 are primitive idempotents and $|Re_1|=3$, $|Re_2|=2$. Then, for any nonzero proper ideal I in R,

$$0 \neq I \cap \operatorname{Soc}({}_{R}R) = I \cap (N^{2}e_{1} \oplus Ne_{2}) = (I \cap N^{2}e_{1}) \oplus (I \cap Ne_{2})$$

implies either $I \cap N^2 e_1 = 0$ or $I \cap N e_2 = 0$. In either case, we obtain $N^2 e_1 \subseteq I$. Now, suppose $N^2 e_1 = I$, then R/I is quasi-Frobenius with the admissible sequence 2,2. Next, if $N^2 e_1 \neq I$, R/I is a proper homomorphic image of $R/N^2 e_1$ and hence has the admissible sequence $\{1, 2\}$, $\{1, 1\}$ or $\{1\}$. In all cases, R/I is hereditary.

Case (3): Any homomorphic image of R is hereditary by [9, Proposition 9].

Case (4): For any nonzero ideal I of R, if $I \subseteq N$, $I = Ie \oplus I(1-e)$ with Ie, I(1-e) ideals for a primitive idempotent e and $R/I = Re/Ie \oplus R(1-e)/I(1-e)$ is either hereditary or quasi-Frobenius by the property (b). If $I \subseteq N$, I contains a primitive idempotent e and so R/I is isomorphic to (1-e)R(1-e) or 0.

Case (5): For any nonzero ideal I of R, if $I \subseteq N$, $I = eIe \oplus (1-e)Ie \oplus I(1-e)$ and these summands are all ideals. By the property (b), in case of (1-e)Ne=0, $R/I \simeq Re/eIe \oplus R(1-e)/I(1-e)$ implies that R/I is hereditary or quasi-Frobenius according to $eIe \neq 0$ or $I(1-e) \neq 0$. In case of N(1-e)=0, $R/I \simeq Re/I \oplus R(1-e)$ shows that R/I is quasi-Frobenius (resp. hereditary) provided $(1-e)Ie \neq 0$ (resp. $eIe \neq 0$). Next, if I is not contained in N, e or 1-e belongs to I and so $I=Re \oplus (I \cap R(1-e))$ or $I=(I \cap Re) \oplus R(1-e)$ respectively. In the former case, we may assume $I \cap R(1-e) \subseteq N$ and hence $R/I \simeq (1-e)R(1-e)/(1-e)N(1-e)$ is a division ring. Also, in the latter case, we have the same conclusion.

Case (6): R has a complete set e_1 , e_2 , e_3 of mutually orthogonal primitive idempotents satisfying $e_i N e_j = 0$ if $i \le j$. Hence, for any nonzero ideal I of R, if $I \subseteq N$, $I = Ie_1 \oplus Ie_2$ with Ie_1 , Ie_2 ideals and $R/I = Re_1/Ie_1 \oplus Re_2/Ie_2 \oplus Re_3$ is hereditary since $Ie_i = Ne_i$ or 0 (i = 1, 2). If $I \subseteq N$, some e_i for i = 1, 2, 3 is contained in I and we may show similarly that R/I is hereditary.

REMARK. In [20], Zaks showed that, for a commutative noether ring R, any (proper) homomorphic image of R is Gorenstein if and only if any (proper) homomorphic image of R is quasi-Frobenius. For a non-commutative case, however, we see it no longer holds by Theorems 10 and 12. In prime noether case (see Proposition 11), we don't know whether the hypothesis of the Artin-Ress property is superfluous or not.

Acknowledgement. The author wishes to thank the referee for his advices and improvements of the proof of Theorem 12.

THE UNIVERSITY OF TSUKUBA

References

- [1] M. Auslander and M. Bridger: Stable module theory, Mem. Amer. Math. Soc. 94 (1969).
- [2] M. Auslander and I. Reiten: On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74.
- [3] H. Bass: Finitistic homological dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- [4] H. Bass: Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.
- [5] H. Bass: On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
- [6] V.P. Camillo: Balanced rings and a problem of Thrall, Trans. Amer. Math. Soc. 149 (1970), 143-153.
- [7] Ju.A. Drozd, V.V. Kiricenko and A.V. Roiter: On hereditary and Bass orders, Izv. Akad. Nauk SSSR 31 (1967).
- [8] S. Eilenberg and T. Nakayama: On the dimension of modules and algebras. II, Nagoya Math. J. 9 (1955), 1-16.
- [9] S. Eilenberg, H. Nagao and T. Nakayama: On the dimension of modules and algebras. IV, Nagoya Math. J. 10 (1956), 87-95.
- [10] K.R. Fuller: Generalized uniserial rings and their Kupisch series, Math. Z. 106 (1968), 248-260.
- [11] Y. Iwanaga: Rings whose proper homomorphic images are QF-3 rings, Sci. Rep. Tokyo Kyoiku Daigaku 12 (1974), 111-118.
- [12] J.P. Jans: Duality in Noetherian rings, Proc. Amer. Math. Soc. 12 (1961), 829–835
- [13] I. Kaplansky: Commutative rings, Allyn and Bacon, Boston, 1970.
- [14] K. Morita: On S-rings in the sense of F. Kasch, Nagoya Math. J. 27 (1966), 687-695.
- [15] T. Nakayama: Note on uniserial and generalized uniserial rings, Proc. Imp. Acad. Tokyo 16 (1940), 285-289.
- [16] K.W. Roggenkamp: Injective modules for group rings and Gorenstein orders, J. Algebra 24 (1973), 465-472.
- [17] H. Sato: Duality of torsion modules over a QF-3 one-dimensional Gorenstein rings, Sci. Rep. Tokyo Kyoiku Daigaku 13 (1975), 28-36.
- [18] T. Sumioka: A characterization of the triangular matrix rings over QF rings, Osaka J. Math. 12 (1975), 449-456.
- [19] A. Zaks: Injective dimension of semiprimary rings, J. Algebra 13 (1969), 73-86.
- [20] A. Zaks: Restricted Gorenstein rings, Illinois J. Math. 13 (1969), 796-803.