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Abstract
We investigate the Cauchy problem for second order hyperbolic equations of

complete form, and we prove an extension of a classical result of Olĕınik [10]
concerning the well-posedness for equations in which are absent the terms with
mixed time-space derivatives. Then, in space dimensionn = 1, we compare our
results with those in [8] for equations with analytic coefficients, and those of [7]
and [11] for homogeneous equations with coefficients depending only either ont or
on x.

Moreover we exhibit, in space dimensionn � 2, an equation of the form

ut t � nX
i , j =1

(ai j (t , x)ux j )xi = 0, with
X

ai j �i � j � 0,

where the coefficients are analytic functions, for which theCauchy problem is
ill-posed.

Finally, we present a sufficient condition for the well-posedness of2�2 systems.

Introduction

We consider the Cauchy problem

(1)

�
L u = f (t , x),
u(0, x) = u0(x), ut (0, x) = u1(x)

where L is a differential, second order operator which we write in variational form:

(2) L u = ut t � nX
i , j =1

(ai j (t , x)ux j )xi +
nX

i =1

[(bi uxi )t + (bi ut )xi ] + cut +
nX

i =1

di uxi + eu.

With no loss of generality, we can assume thatai j = a j i . Note that the polynomial

(3) ps(t , x, � , � ) = c(t , x)� +
nX

i =1

di (t , x)�i

2000 Mathematics Subject Classification. 35L15.
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is the sub-principal symbolof L. We can also write L in the non variational form

(4) L u = ut t � nX
i , j =1

ai j uxi x j + 2
nX

i =1

bi ut xi + (c + c℄)ut +
nX

i =1

(di + d℄i )uxi + eu,

wherec℄ =
P

j �x j b j and d℄i = �tbi �P j �x j ai j .
Trough this paper, all the coefficients of L are assumed to be real-valuedC1 func-

tions, bounded together with all their derivatives in the strip

GT := [0, T ] � Rn,

i.e. which belong to the classB1(GT , R).
We say that (1) iswell-posed(in C1) when, for eachx 2 Rn, there is some nbd.V

of (0, x) in GT such that there is a unique solutionu 2 C1(V) for all u0, u1 2 C1(Rn)
and all f 2 C1(GT ). If, moreover, we can takeV = GT , then we say that (1) is
globally well-posed.

A necessary conditionfor the well-posedness is thehyperbolicity of the operator
L, which means that, for all� = (�1, : : : , �n) 2 Rn,

(5)

 
nX

i =1

bi (t , x)�i

!2

+
nX

i , j =1

ai j (t , x)�i � j � 0.

However, such a condition is far to besufficient. Thus, we look for some additional
conditions which can ensure the well-posedness of (1).

A very simple condition was found in 1970 by Oleı̆nik, limited to the operators L
which do not contain terms with mixed derivatives�t�xi , i.e. of the form

(6) L u = ut t � nX
i , j =1

(ai j (t , x)ux j )xi + c(t , x)ut +
nX

i =1

di (t , x)uxi + e(t , x)u.

In the following we shall refer to the operators of type (6) asto the incompleteoper-
ators.

Theorem (O.A. Olĕınik, [10]). The Cauchy problem for any hyperbolic operator
of type (6) is globally well-posed if there exist two positive constants C, A for which

(7) t

"
nX

i =1

di (t , x)�i

#2 � C

8<
:A

nX
i , j =1

ai j (t , x)�i � j +
nX

i , j =1

�tai j (t , x)�i � j

9=
;.

We notice that (7) is fulfilled whenever thedi ’s vanish identically and theai j ’s are not
depending ont .
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In order to extend this theorem to any operator of type (2), a special role is played
by the operators such that for each pairi , j 2 f1, : : : , ng, one at least of the following
alternatives holds:

(8) either bi � 0 or �xi b j � 0.

The condition (8) means that each one of the coefficientsb j (t , x) is depending, besides
the variablet , only on those spatial variablesxi for which bi � 0. In particular (8)
holds true whenever all theb j � b j (t) are depending only ont . If n = 1, (8) simply
means thatb � b(t). If n = 2, (8) holds true only in the following cases:
• when b1 � b1(t , x1) and b2 � 0,
• when b1 � 0 andb2 � b2(t , x1),
• when b1 � b1(t) and b2 � b2(t).
Finally, we put

1i j = bi b j + ai j (i , j = 1, : : : , n),

so that the condition of hyperbolicity (5) reads

(9)
nX

i , j =1

1i j (t , x)�i � j � 0.

Theorem 1. We distinguish two cases:
• For any hyperbolic operator of type(2) satisfying the condition(8), the Cauchy
problem is globally well-posed if, for some constants C, A > 0, one has

(10) t

"
nX

i =1

(di � cbi )�i

#2 � C8A(t , x, � ),

where

(11) 8A =
nX

i , j =1

(
A1i j + �t1i j +

nX
h=1

(bh�xh1i j � 21ih�xhb j )

)
�i � j .

• In absence of the condition(8), i.e. for a hyperbolic operator of the general type
(2), in order to get the well-posedness we must replace(10) with the stronger condition

(12) t

8<
:
"

nX
i =1

(di � cbi )�i

#2

+ �(t , x, � )

9=
; � C8A(t , x, � ),
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where

� =
nX

i =1

1i i (t , x)�2
i .

Moreover, the well-posedness is no longer global, in general.

In the special case of operators of type (6), the condition (8) is trivially fulfilled and
our condition (10) coincides with the Oleı̆nik’s condition (7), since we have

1i j = ai j (i , j = 1, : : : , n).

REMARK 1. If the sub-principal symbol ps in (3) vanishes identically then our
condition (10) (resp. (12)) reduces to:

0� 8A (resp.� � C8A).

In this case the operator (2) can be written in the simpler form:

(13) L u = e(t , x)u� nX
i , j =0

(ai j (t , x)ux j )xi ,

where we used the notationx0 = t and we put

a00 = �1, ai 0 = �bi = a0i (i = 1, : : : , n).

REMARK 2. If the leading coefficientsai j ’s and bi ’s are not depending onx,
then (8) holds true and

8A = A
nX

i , j =1

1i j (t)�i � j +
nX

i , j =1

�t1i j (t)�i � j .

In the one dimensional case, i.e. for the operator

(14) L u = ut t � (aux)x + [(bux)t + (but )x] + cut + dux + eu,

with

1(t , x) � (b(t , x))2 + a(t , x) � 0,

our condition (12) takes a much simpler form:
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Corollary 1. Let n = 1. The Cauchy problem for a hyperbolic operator of the
general type(14) is well-posed if, for some constants C, A > 0:

(15) t(d � cb)2 � CfA1 +1t + b1xg.
Moreover, when b� b(t) the well-posedness is global.

In particular, the homogeneous operator:

(16) L = L2 := �2
t � a(t , x)�2

x + 2b(t , x)�t�x,

can be written in the form (14) with:

c = �c℄ = �bx,(17)

d = �d℄ = �bt + ax.(18)

In such a case our condition (15), i.e.

t(�bt + ax + bbx)2 � CfA1 +1t + b1xg,
reduces to:

(19) t(bt + bbx)2 � C0fA1 +1t + b1xg.
Indeed, we can apply the estimate

12
x � C001,

for some constantC00 > 0, thanks to the following well-known result:

Lemma 1 (Glaeser’s inequality [5]). If f 2 B2(R, R), f (x) � 0, then the follow-
ing holds true:

(20) ( f 0(x))2 � sup
y2R

k f 00(y)k f (x) � C f (x),

for any x2 R and for some constant C> 0 not depending on x.

In particular, the Olĕınik’s condition (7) for theincompletehomogeneous operator,
that is

(21) L = �2
t � a(t , x)�2

x ,

becomes

0� Aa + at .
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As a matter of fact, to prove Theorem 1 we use a local change of variables, leav-
ing the linest = const invariant, that transforms an operator L of the type (2) intoan
incompleteoperator of the type (6), to which we apply the Oleı̆nik’s theorem. The new
space variables

yi = gi (t , x) (i = 1, : : : , n)

are implicitly defined as the (unique) solution of the Cauchyproblem:

(22)

8>><
>>:

0
��t +

nX
j =1

b j (t , x)�x j

1
Agi (t , x) = 0,

gi (0, x) = xi ,

In particular, if L satisfies (8) this change of variables is global and explicit.

Plan of the work. For the reader’s convenience, in§1 we give a direct proof of
the Corollary 1 while§2 is devoted to the proof of Theorem 1.

In §3 we assume that the coefficients of L are analytic (at the origin). We recall
the result of Nishitani [8] in space dimensionn = 1, and we compare it with our Corol-
lary 1. In particular, the Nishitani’s Theorem states that,if the sub-principal symbol
is identically zero, then the Cauchy problem (1) for L is wellposed (at the origin). It
is well-known that in space dimensionn � 2 there exists some operators with analytic
coefficients andsub-principal symbolzero for which the Cauchy problem is ill-posed.
However, one could ask if the Cauchy problem for anincompleteoperator with ana-
lytic coefficients is always well-posed. We prove that the answer to this question is
negative by exhibiting a counter-example.

In §4 we consider thecomplete operatorin space dimensionn = 1 with the addi-
tional hypothesis:

(23) b2(t , x) � C1(t , x).

In particular, Spagnolo and Taglialatela [11] proved that (23) is a sufficient condi-
tion for the well-posedness of the Cauchy problem for the homogeneous operator with
coefficients not depending ont . We show that in this case our condition (12) is more
general than (23). Moreover, we present a corollary of Theorem 1 that extends the
result in [11] to space dimensionn � 2.

In §5 we present a sufficient condition for the well-posedness of2� 2 systems in
space dimensionn = 1. Again, the proof relies on a change of variables.
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1. Proof of Corollary 1

First of all, we notice that Corollary 1 can be easily derivedfrom Theorem 1.
Indeed, in space dimensionn = 1, condition (10) and (12) become:

t(d � cb)2�2 � C8A(t , x, � ),(24)

tf(d � cb)2 +1g�2 � C8A(t , x, � ),(25)

where

(26) 8A = fA1 +1t + b1x � 2bx1g�2.

Both conditions (24) and (25) are trivially equivalent to (15). Indeed, we have:

2jbxj1 � 2kbxk11 � C01.

Now we give a direct proof of Corollary 1.
For the sake of brevity and the ease of reading, we introduce the following:

NOTATION. We write f . g to mean that there is some constantC > 0 such that

(27) f (t , x) � Cg(t , x).

We write f � g to mean thatf . g and g . f .

The Cauchy problem (22) in space dimensionn = 1 becomes:

(28)

�
(�t + b(t , x)�x)g(t , x) = 0,
g(0, x) = x,

that is trivially well-posed. Letg 2 C1(U , R) be the (unique) solution of (28) in some
nbd. U of the initial line ft = 0g in GT .

We define the vector-valued function:

G := (�0, g) : (t , x) 2 U 7! (s, y) := (t , g(t , x)) 2 GT ,

where�0 is the projection on the time-axis. We remark thatgx(0, � ) � 1, hence we
can take a nbd.V � U of ft = 0g, such that

(29)
1

2
� gx(t , x) � 2.

Consequently

G : V ! W := G(V)
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is a smooth change of variables, since:

detrt ,xG = det

�
1 0
gt gx

�
= gx.

Let H = (�0, h) : W! V be the inverse ofG.
For the sake of simplicity, we introduce the following notation:

NOTATION. For any functionu � u(t , x) or v � v(s, y) we define:

ũ(s, y) := u ÆH(s, y),

v̂(t , x) := v Æ G(t , x).

We can write explicitly some relations betweeng and h. Indeedh Æ G(t , x) = x,
hence we have:

0� (h Æ G)t = ĥs(�0)t + ĥygt = ĥs + ĥygt ,(30)

1� (h Æ G)x = ĥs(�0)x + ĥygx = ĥygx.(31)

From (31) we get:

(32) hy =
1

gx
ÆH,

hence

1

2
� hy(s, y) � 2

in W thanks to (29). On the other hand, thanks to (30) and using (28) and (32) we
obtain

(33) hs = �g̃t hy = � gt

gx
ÆH = b ÆH.

Therefore the functionh solves the following Cauchy problem inW:

(34)

��sh(s, y)� b(s, h(s, y)) = 0,
h(0, y) = y.

REMARK 3. If (8) holds true, that is ifb� b(t), then we can write explicitly the
solution g(t , x) to (28):

(35) y = g(t , x) = x � Z t

0
b(� ) d� .
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We notice thatgx � 1, hence (29) is trivially satisfied inGT .
Therefore we can takeV = GT and W = G(GT ) = GT . For any (s, y) 2 GT we can

write explicitly:

(36) h(s, y) := x = y +
Z s

0
b(� ) d� .

Lemma 2. Let L be a complete operator of type(2). Therefore

(37) L u = [LH(u ÆH)] Æ G
in V , where

LH(s, y, �s, �y)v = vss� (1Hvy)y + cHvs + dHvy + eHv,

is an incomplete operator with:

1H(s, y) := [g2
x1] ÆH(s, y),

cH(s, y) := [c + bx] ÆH(s, y),

dH(s, y) := [(d � cb+ gxx(hy Æ G)1)gx] ÆH(s, y),

eH(s, y) := eÆH(s, y).

We remark that the coefficients of LH belong toC1(W, R).
Proof. We immediately obtain, for any functionv 2 C1(W, R), that:

�t v̂ = v̂s + gt v̂y = v̂s � bgx v̂y,

�x v̂ = gxv̂y,

hence

�2
t v̂ + �t (b�x v̂) = �t v̂s � �t (bgx v̂y) + �t (bgx v̂y)

= �t v̂s = v̂ss� bgx v̂sy,

whereas

�x(b�t v̂)� �x(a�x v̂) = �x(bv̂s)� �x(b2gx v̂y)� �x(agx v̂y)

= �x(bv̂s)� �x(1gx v̂y)

= bx v̂s + bgx v̂sy� �x(1gx v̂y).

We have that:

�x(1gx v̂y) = �x[(1̃g̃xvy) Æ G] = gx[(1̃g̃xvy)y Æ G]

= [(g̃x1̃g̃xvy)y] Æ G � [(�yg̃x)1̃g̃xvy] Æ G
= [(g̃2

x1̃vy)y] Æ G � [hyg̃xx1̃g̃xvy] Æ G,
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thus we get:

�2
t v̂ + �t (b�x v̂) + �x(b�t v̂)� �x(a�x v̂) = v̂ss + bx v̂s � �x(1gxv̂y).

Analogously we have

c�t v̂ + d�x v̂ = cv̂s + (d � cb)gx v̂y,

hence we get

L(v Æ G) = (LH v) Æ G,

that is (37) withu := v Æ G.

REMARK 4. If the condition (8) holds true then we can write explicitly:

1H(s, y) = 1(s, h(s, y)),

cH(s, y) = c(s, h(s, y)),

dH(s, y) = d(s, h(s, y))� c(s, h(s, y))b(s),

eH(s, y) = e(s, h(s, y)),

since gx � 1 and gxx � 0 (see Remark 3). We remark that LH has coefficients in
B1(GT , R).

Direct Proof of Corollary 1. In order to apply the Oleı̆nik’s theorem to the trans-
formed operator LH, we prove the Olĕınik’s condition (7), that is:

(38) s(dH)2 . A1H + �s1H,

in W = G(V). Thanks to (34) we can develop the last term in the right-hand side
of (38):

(39)

(�s1H) Æ G = �t (g
2
x1) + b�x(g2

x1)

= g2
x(1t + b1x) + 2gx1(gt x + bgxx)

= g2
x(1t + b1x) + 2gx1[�x(gt + bgx)� bxgx]

= g2
x(1t + b1x � 21bx).

Now we compose (38) on the right-hand withG and we replace the coefficients
of LH with their explicit expressions, thus (38) becomes:

(40) t [(d � cb+ gxx(hy Æ G)1)gx]2 . (A1 +1t + b1x � 21bx)g2
x.
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Thanks to (29), we can divide both the left-hand term and the right-hand term of (40)
by g2

x. We can estimate

(gxx(hy Æ G)1)2 . 1 and 2jbxj1 . 1,

hence (40) is equivalent to our condition (15).
Hence we have proved the Oleı̆nik’s condition (7) for the operator LH in W. Now

we distinguish two cases.
If the condition (8) holds true then we takeV = GT = W and (7) holds globally

for LH. We apply the Olĕınik’s theorem: there exists a unique global solutionv of
the Cauchy problem for LH. Thereforeu := v Æ G is the unique global solution of the
Cauchy problem (1) for the operator L and this concludes the proof.

Now we prove the local well-posedness in absence of the condition (8). We fix
arbitrarily x 2 R and we prove the well-posedness of (1) at (0,x) for L. We take
T1 2 (0, T ] and " > 0 in such a way that we have

W1 := [0, T1] � B"=2 � K := [0, T1] � B" � W,

where Br := fjx � xj < r g.
By compactness arguments, the transformed operator LH has coefficients in

B1(K ,R) hence we can extend the coefficients of LH from B1(K ,R) to B1(GT1,R).
We take� 2 B1(R, R+) in such a way that:

�jB"=2 � 0, �jGT1nB" � C + 1,

whereC is a suitable positive constant such that1H � �C in GT1 (we notice that the
extended operator LH may be no longer hyperbolic inGT1). Now the operator

M v := LH v � (�(y)vy)y

satisfies (7) inGT1, hence we can apply the Oleı̆nik’s theorem to M.
We have a (unique) solutionv 2 C1(GT1, R) of the Cauchy problem for M inGT1;

in particular,v is the (unique) solution of the Cauchy problem for LH in W1. Therefore
u := v Æ G is the unique solution of the Cauchy problem (1) for L inV1 := H(W1),
nbd. of (0,x). This concludes the proof.

2. Proof of Theorem 1

Through this section we assume space dimensionn � 2. For the sake of brevity
and the ease of reading, we introduce the following notation.
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NOTATION. For any (t , x, � ) 2 GT � Rn, we put:

a(t , x, � ) :=
nX

i , j =1

ai j (t , x)�i � j ,(41)

1(t , x, � ) :=
nX

i , j =1

1i j (t , x)�i � j ,(42)

b(t , x, � ) :=
nX

i =1

bi (t , x)�i ,(43)

d(t , x, � ) :=
nX

i =1

di (t , x)�i .(44)

Moreover, we define:


 (t , x, � ) :=
nX

i , j =1


i j (t , x)�i � j , with 
i j := �2
nX

k=1

1ik�xk b j .

NOTATION. We write f . g to mean that there is some constantC > 0 such that
we have:

(45) f (t , x, � ) � Cg(t , x, � ).

We write f � g to mean thatf . g and g . f .

With this notation, our conditions (10) and (12) become:

t(d � cb)2 . 8A,(46)

t((d � cb)2 + �) . 8A.(47)

NOTATION. We write b(t , x) to mean the vector-valued function

(48) b = (bi )i =1,:::,n : GT ! Rn,

and similarly we defined(t , x).

With this notation we have:

b(t , x, � ) = b(t , x) � � , and d(t , x, � ) = d(t , x) � � ,

where � denotes the scalar product inRn. Moreover, (11) reads:

(49) 8A = A1 +1t + b � rx1 + 
 .
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As in §1, let

gi : (t , x) 2 V 7! y 2 R (i = 1, : : : , n),

be the the uniqueC1 solution of the Cauchy problem (22) inV , nbd. of ft = 0g.
We put

G = (�0, g), where g = (gi )i =1,:::,n.

We can takeV in a such way that:

(50) inf
V

detrxg(t , x) > 0,

sincerxg(0, � ) � I. Consequently

G : V ! W := G(V),

is a smooth change of variables. Let

H = (�0, h) : W! V , where h = (hi )i =1,:::,n,

be the inverse ofG.
Proceeding as in Lemma 2 we get (37) where now

LH(s, y, �s, ry)v = vss� nX
i , j =1

(1H
i j vy j )yi + cHvs +

nX
i =1

dH
i vyi + eHv,

is an incompleteoperator with

1H
i j (s, y) :=

2
4 nX

k,l=1

(�xk gi )1kl (�xl g j )

3
5 ÆH(s, y),

cH(s, y) :=

"
c +

nX
k=1

�xk bk

#
ÆH(s, y),

dH
i (s, y) :=

"
nX

k=1

((dk � cbk) + rk))(�xk gi )

#
ÆH(s, y),

eH(s, y) := eÆH(s, y),

and

rk(t , x) :=
nX

l , p,q=1

�
(�xl �xp gq)(�̂yq hp)

�1lk(t , x).
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Moreover the vector-valued functionh solves inW the Cauchy problem:

(51)

��sh(s, y) = b(s, h(s, y)),
h(0, y) = y.

Proposition 1. If L satisfies the condition(8) then we can write explicitly

g(t , x) = x � Z t

0
b(� , x) d� , (t , x) 2 GT ,(52)

h(s, y) = y +
Z s

0
b(� , y) d� , (s, y) 2 GT .(53)

In particular, (50) holds trivially true since we have:

(54) detrxg� 1.

Moreover we can write:

1H
i j (s, y) =

2
4bi b j +

nX
k,l=1

(�xk gi )akl (�xl g j )

3
5 ÆH(s, y),(55)

cH(s, y) = c ÆH(s, y),(56)

dH
i (s, y) =

"
nX

k=1

dk(�xk gi )� cbi

#
ÆH(s, y).(57)

We remark that the coefficients of LH are inB1(GT ,R), sincerxg2 B1(GT , Mn(R)).
Proof. Condition (8) implies immediately (56).
It is easy to check that each functiongi solves the Cauchy problem (22). Indeed,

by (8) we have:

�t gi (t , x) +
nX

j =1

b j (t , x)�x j gi (t , x) = � Z t

0

nX
j =1

b j (t , x)�x j bi (� , x) d� = 0.

We can assume with no loss of generality that

bi � 0 (i = 1, : : : , m),

�xi b � 0 (i = m + 1, : : : , n),

for somem 2 f0, : : : , ng. We put:

x � (x0, x00), x0 = (xi )i =1,:::,m, x00 = (xi )i =m+1,:::,n,

y � (y0, y00), y0 = (yi )i =1,:::,m, y00 = (yi )i =m+1,:::,n,
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b � (b0, b00), b0 = (bi )i =1,:::,m, b00 = (bi )i =m+1,:::,n,

g� (g0, g00), g0 = (gi )i =1,:::,m, g00 = (gi )i =m+1,:::,n,

h � (h0, h00), h0 = (hi )i =1,:::,m, h00 = (hi )i =m+1,:::,n.

We remark thatb0 � 0. We get immediately:

(58) rxg =

� rx0g0 rx00g0rx0g00 rx00g00
�

=

0
� Im 0

� Z t

0
rx0b00(� , x0) d� In�m

1
A,

that implies trivially (54).
For any (t , y) 2 GT there existsx 2 Rn such thatg(t , x) = y. Hence, using (52),

we get:

(59) h0(t , y) = x0 = y0.
Now we can use (52) and (59) to have:

(60) h00(t , y) = x00 = y00 +
Z t

0
b00(� , x0) d� = y00 +

Z t

0
b00(� , y0) d� .

This proves (53).
On the other hand, using (52) and (53), we get

nX
q=1

�xl �xp gq(t , x) �yq hp(t , y)

=
nX

q=1

�xl �xp gq(t , x) �yq yp

= �xl �xp gp(t , x) = �xl 1 = 0 (p = 1, : : : , m, l = 1, : : : , n),

and
nX

q=1

�xl �xp gq(t , x) �yq hp(t , y)

=
nX

q=1

�xl (�xp xq � 0) �yq hp(t , y)

= �xl 1 �yphp(t , y) = 0 (p = m + 1, : : : , n, l = 1, : : : , n).

This proves that:

rk � 0 (k = 1, : : : , n), hence dH
i =

"
nX

k=1

(dk � cbk)(�xk gi )

#
ÆH.
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We notice that:

nX
k=1

bk(�xk gi ) =
nX

k=1

�
bk�xk xi � bk

Z t

0
�xk bi

�
= bi ,

thanks to (8). Hence we have proved (57). By the same way we prove (55).

Proof of Theorem 1. By the same arguments used in§1, we get:

(�s1H
i j ) Æ G =

nX
k,l=1

(�xk gi )

 
�t1kl +

nX
m=1

bm�xm1kl + 
kl

!
(�xl g j ).

We put:

�k :=
nX

i =1

(�xk gi )�i (k = 1, : : : , n),

for any � 2 Rn. We remark that for any (t , x) 2 V the linear map

� 2 Rn 7! � := (rxg(t , x)) � � 2 Rn,

is bijective, thanks to (50). Therefore the Oleı̆nik’s condition (7) for LH is verified if:

(61) t(d � cb+ r )2 . A1 +1t + b � rx1 + 
 ,

wherer (t , x, � ) :=
Pn

i =1 r i (t , x)�i .
If the condition (8) holds true, thenr � 0 hence (61) reduces to our condition (10).

On the other hand, in absence of the condition (8) we can provethat r 2 . �.
By the positivity of1 it follows that:

0� 1(t , x, �el + ek) = �21ll (t , x) + 2�1lk(t , x) +1kk(t , x) (l , k = 1, : : : , n),

for any � 2 R, hence:

(62) (1lk(t , x))2 � 1ll (t , x)1kk(t , x) (l , k = 1, : : : , n).

Thanks to (62), we can estimate:

(63) r 2
k (t , x) . nX

l=1

12
lk(t , x) �

 
nX

l=1

1ll (t , x)

!
1kk(t , x) . 1kk(t , x) (k = 1, : : : , n).

Using (63) we have:

(r (t , x, � ))2 . nX
k=1

r 2
k (t , x)�2

k .
nX

k=1

1kk(t , x)�2
k = �(t , x, � ).
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Therefore (61) reduces to our condition (12).
The conclusion of the proof is the same as in Corollary 1.

Our condition (12) is far to be equivalent to (61), but the last one does contain
the termr (t , x, � ) that depends explicitly on the solution of (22). On the other hand,
under assumption (8), (10) and (61) are equivalent. We can obtain r � 0 for some
operator also in absence of the condition (8). In these cases, condition (61) reduces to
our condition (10).

EXAMPLE 1. Let L be some operator of type (2) withb = x. Therefore:

gi (t , x) = xi e
�t (i = 1, : : : , n),

solves the Cauchy problem (22). Moreover, we have that:

hi (s, y) = yi e
s (i = 1, : : : , n).

The condition (8) is not satisfied. Nevertheless, it is easy to notice thatr � 0 and
we can write explicitly the coefficients of LH:

1H
i j (s, y) = 1i j (s, yes)e�2s = yi y j + ai j (s, yes)e�2s,

cH(s, y) = c(s, yes) + n,

dH
i (s, y) = di (s, yes)e�s � yi c(s, yes),

eH(s, y) = e(s, yes).

3. The case of analytic coefficients

Through this section, we assume that the coefficients of L areanalytic (at the ori-
gin). In space dimensionn = 1 we recall the following well-known result.

Lemma (T. Nishitani [8]). Let L be a hyperbolic operator with coefficients in
C!(U , C) where U is a nbd. of the origin in R2.

Then we can find another nbd. V of the origin, in a such way that the character-
istic roots �1 and �2 of L can be taken continuous in V and analytic in Vn f(0, 0)g.

Theorem (T. Nishitani [8]). Let L, V and �1, �2 be as described in the previous
lemma. Assume that there are two constants A, B > 0 such that, for any (t , x) 2 W,
where W� V is a nbd. of the origin, and for any� 2 R, we have:

(64) jps(t , x, �1(t , x)� , � )j � Ajf� � �1� , � � �2�gj + Bj� (�1 � �2)j.
Here f f , gg is the Poisson bracket, i.e.

f f , gg := (�� f �t g + �� f �xg)� (�t f ��g + �x f ��g).
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Then the Cauchy problem(1) for L is well-posed inC1 (at the origin).

We remark that the assumption of analyticity int of the coefficients of L is essen-
tial. Indeed there exists an operator

(65) L = �2
t � a(t)�2

x , with a(t) 2 C1([0, T ]) a(t) � 0,

for which the Cauchy problem is ill-posed [3].
From the results in [6] it follows that, if1(t , x) can be written in the form

(66) 1(t , x) = (8(t , x))N9(t , x),

for some integerN 2 N and some smooth functions8 and9 satisfying

8(0, 0) = 0, (8t (0, 0),8x(0, 0)) 6= (0, 0), 9(0, 0) 6= 0,

then (64) is also a necessary condition for the well-posedness in C1. In particular, if
either1 � 1(t) or 1 � 1(x) then (66) holds true. On the other hand, in the general
case1�1(t , x), Nishitani extended (64) to a necessary and sufficient condition in [9].

In order to compare the Nishitani’s theorem with our Corollary 1, we re-state (64)
in the following form.

Proposition 2. We define

Æ(t , x) :=
1

2
(�1(t , x)� �2(t , x)),

that is continuous in V and analytic in Vn f(0, 0)g, thanks to the Nishitani’s lemma[8].
Now the Nishitani’s condition(64) is equivalent to:

(67) jd � cbj . jÆt + bÆxj + jÆj.
We remark thatÆ2(t , x) = 1(t , x).
Proof. We notice that:

b(t , x) = �1

2
(�1(t , x) + �2(t , x)),

hence we can compute:

f� � �1, � � �2g = f� � (Æ � b)� , � + (Æ + b)�g
= ((Æ + b)t� � (Æ � b)(Æ + b)x� )

� (�(Æ � b)t� � (Æ + b)(Æ � b)x� )

= 2� (Æt + bÆx � bxÆ),
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By estimatingjbxÆj . jÆj, we obtain:

Ajf� � �1� , � � �2�gj + Bj� (�1� �2)j � j� j(A0jÆj + jÆt + bÆxj).
In order to conclude our proof, it is sufficient to notice that:

jps(t , x, �1� , � )j = j� j jd + c(Æ � b)j � j� j(jd � cbj + jcÆj) . j� j(jd � cbj + jÆj).
Proposition 3. If 1�1(t) is depending only on t and belongs toC!((�T , T),R)

for some T> 0, then our condition(15) is locally equivalent to(67).

In particular, Proposition 3 proves that (15) is a necessaryand sufficient condition
for the well-posedness, provided that the coefficients are depending only on the time
variable and are analytic at the origin.

Proof. If L is strictly hyperbolic, that is1(0)> 0, then both (15) and (67) hold
locally true, hence we can assume1(0) = 0 in the following.

Thanks to the positive analyticity of1(t) we can write for some integer� � 1:

1(t) = �2� t2� + O(t2�+1), with �2� > 0,

near to the origin. Hence (15) is locally equivalent to

(68) t(d � cb)2 . t2��1,

whereas (67) is locally equivalent to

(69) jd � cbj . jt��1j.
We notice that (68) and (69) are both equivalent to

(d � cb)2 . t2(��1).

This concludes the proof.

Proposition 4. If the leading coefficients a� a(x) and b� b(x) are depending
only on x and belong toC!((�", "), R) for some" > 0, then our condition(15) is
locally equivalent to(67), provided that a(0) = b(0) = 0.

In particular, Proposition 4 proves that (15) is a necessaryand sufficient condition
for the well-posedness of L, provided that the coefficients are depending only on the
space variable and are analytic at the origin, and thata(0) = b(0) = 0.
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Proof of Proposition 4. Thanks to the analyticity of the coefficients, we have
b(x) = O(x) and

1(x) = �2�x2� + O(x2�+1), with �2� > 0,

for some integer� 2 N�. Therefore:

A1 + b1x � x2k,

in (15) whereas

jbÆxj + jÆj � x� ,
in (67). Consequently both the conditions (15) and (67) are locally equivalent to:

(d � cb)2 . x2k.

We remark that the Nishitani’s condition (64) holds trivially true whenever the sub-
principal symbol vanishes identically. On the other hand, condition (67) for an homo-
geneous operator (16) become:

(70) jbt + bbxj . jÆt + bÆxj + jÆj,
since we can estimate

j2bbx + axj = j1xj = 2jÆÆxj . jÆj.
We notice that (70) does not necessarily hold true: the homogeneouscompleteop-

erator

(71) L = �2
t + 2t�t�x + t2�2

x

does not satisfy (70). Indeedbt � 1 whereas the right-hand term vanishes identically,
since1 � 0. In facts it is well known that the Cauchy problem (1) for theopera-
tor (71) is ill-posed. Indeed, via the change of variables

8<
:

s = t ,

y = x � 1

2
t2,

the operator (71) is transformed into:

LH = �2
s � �y,

for which the Cauchy problem is ill-posed.



WELL-POSEDNESS FORSECOND ORDER EQUATIONS 759

On the other hand, (70) trivially holds true for anincompletehomogeneous oper-
ator (21) since the left-hand term vanishes.

In space dimensionn � 2, the Cauchy problem for operators with identically van-
ishing sub-principal symbol is not necessarily well-posed. In particular, the Cauchy
problem (1) for thecompleteoperator

(72) L = �2
t + 2x2�t�x1 + x3

2�2
x1
� �2

x2
,

is ill-posed at the origin [1]. We notice that such an operator has analytic (in facts
polynomial) coefficients and that its sub-principal symbolis identically zero. Moreover,
(72) is homogeneous.

However, one could ask if the Cauchy problem for anincompleteoperator with
analytic coefficients is always well-posed. We prove that the answer to this question is
negative by exhibiting a counter-example obtained by applying the change of variables
in §2 to (72):

Theorem 2. The Cauchy problem(1) for the incomplete operator

(73) LH = �2
s � (y2

2(1� y2) + s2)�2
y1

+ 2s�y1�y2 � �2
y2

,

is ill-posed at the origin. We notice that such an operator has analytic(in facts poly-
nomial) coefficients and that its sub-principal symbol is identically zero. Moreover, (73)
is homogeneous.

Proof. By applying the change of variables

8<
:

s = t ,
y1 = x1� t x2,
y2 = x2,

to (72), we get the transformed operator (73). Indeed:

1H
11(s, y) = [(�x1g1)2111 + (�x2g1)2122] ÆH(s, y)

= [x2
2(1� x2) + t2] ÆH(s, y)

= y2
2(1� y2) + s2,

1H
12(s, y) = [(�x2g1)(�x2g2)122] ÆH(s, y) = �s,

1H
22(s, y) = [(�x2g2)2122] ÆH(s, y) = 1.

Therefore the Cauchy problem for thecompleteoperator (73) and the Cauchy prob-
lem for the incompleteoperator (72) are equivalent: both of them are ill-posed (atthe
origin). This concludes the proof.
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4. On the Mizohata’s condition

Let space dimension ben = 1. We compare our condition (15) with the Mizohata’s
condition (23):

b2(t , x) . 1(t , x).

We introduce the following:

DEFINITION 1. We say that f (t), smooth, has finite degeneracy (at the origin)
when there is some integer� 2 N such that we have

��t f (0) 6= 0.

Theorem (S. Mizohata [7]). We assume that the homogeneous operator(16) has
coefficients depending only on t, i.e.

L = �2
t � a(t)�2

x + 2b(t)�t�x.

We also assume that a(0) = b(0) = 0 and that a(t) or b(t) has finite degeneracy. There-
fore the Cauchy problem(1) is well-posed if and only ifL satisfies(23).

The Mizohata’s condition (23) trivially holds true wheneverL is incomplete.

REMARK 5. If we assume the Mizohata’s condition (23), then our condition (15)
for completeoperators (14) in space dimensionn = 1 reduces to the Oleı̆nik’s con-
dition (7). Indeed, in (15) the left-hand term (cb)2 can be easily estimated byA1,
whereas by Glaeser’s inequality (20) it follows that:

jb1xj . b2 + (1x)2 . 1.

In particular, if the homogeneouscompleteoperator (16) verifies (23), then our
condition (19) reduces to:

(74) t(bt (t , x))2 . A1(t , x) +1t (t , x).

Consequently, the Cauchy problem for an homogeneouscompleteoperator with co-
efficients depending only onx, is well-posed, provided Mizohata’s condition (23) be
fulfilled.

REMARK 6. If L is homogeneous and has analytic coefficients depending only
on t , then our condition (19) and the Nishitani’s condition (70)are locally equivalent
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to the Mizohata’s condition (23), provided thata(0) = b(0) = 0. Indeed we have:

b(t) = �l t
l + O(t l+1), with �l 6= 0,

1(t) = �2� t2� + O(t2�+1), with �2� > 0,

for some integer�, l 2 N�. Hence (19), (23) and (70) are locally equivalent to ask
that l � �.

Colombini and Orrú [2] proved, under a finite degeneracy assumption, that:

(75) �2 + �2 . (�� �)2, for any pair ofcharacteristic roots �, �,

is a necessary and sufficient condition for the well-posedness of the Cauchy problem
for higher order homogeneous operators withC1([0, T ], R) coefficients depending only
on t . If the operator has orderm = 2, then the Colombini-Orrú’s condition (75) is
equivalent to the Mizohata’s condition (23).

On the other hand, Spagnolo and Taglialatela [11] proved that (75) is a sufficient
condition for the well-posedness of the Cauchy problem for homogeneous operators of
any order, with coefficients depending only onx.

Corollary 1 is more general than Theorem 1.1 in [11] for second-order homo-
geneous operators. Indeed, in this case the Mizohata’s condition (23) implies our con-
dition (19), since (74) holds trivially true. However (19) does not imply (23), as the
following counter-example shows.

EXAMPLE 2. We consider the homogeneous operator

(76) L = �2
t + 2x2�t�x + x4(1� x2)�2

x .

We have (b(x))2 = x4 whereas1(x) = x6: in [�", "] the Mizohata’s condition (23) does
not hold true. Nevertheless we have the following estimates:

jb(x)1x(x)j = 6x7 � 6"x6 = 6"1(x),

(b(x)bx(x))2 = 4x6 = 41(x),

hence our condition (19) holds true.

In space dimensionn � 2, we could consider the following generalization of the
Mizohata’s condition (23):

(77) (b(t , x, � ))2 . 1(t , x, � ),

but such a condition does not ensure the well-posedness. Indeed, the operator (72) ful-
fills (77) but the corresponding Cauchy problem is ill-posed[1]. The following corol-
lary of Theorem 1 extends Theorem 1.1 in [11] for second orderoperators in space
dimensionn � 2.
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Corollary 2. Assume thatL has coefficients depending only on x and assume that

(78) 1(x, � ) = '(x)1(0)(x, � ), with 1(0)(x, � ) � j� j2.

If L satisfies(77) together with the Olĕınik’s condition (7) (that reduces to d2 .1), then the Cauchy problem(1) for L is well-posed. Moreover, if L satisfies the con-
dition (8) then (1) is globally well-posed.

REMARK 7. In space dimensionn = 1, the condition (78) is trivially satisfied.
The operator (72) does not satisfy (78) since111(x) = x3

2 whereas122 � 1.

Proof. First we prove that

(79) j1i j (x)j . '(x) (i , j = 1, : : : , n).

Indeed we have:

0� 1i i (x) = 1(x, ei ) = '(x)1(0)(x, ei ) � '(x) (i = 1, : : : , n),

thanks to (78). On the other hand (see (62)):

j1i j j � p1i i1 j j . ' (i , j = 1, : : : , n).

Now we can prove thatj
 j . 1. Indeed, thanks to (79) we have that:

nX
k=1

j1ik(x)j j�xkb j (x)j j�i � j j . '(x)j� j2 � 1(x, � ) (i , j = 1, : : : , n).

Analogouslyjb � rx1j . 1. Indeed, thanks to (77) and (78) we get:

jbk(x)1xk (x, � )j � j� j2b2
k(x) + j� j�2(1xk (x, � ))2

. j� j2(b(x, ek))2 +1(x, � )

. j� j21(x, ek) +1(x, � )

� 1(x, � ) (k = 1, : : : , n).

Here we applied Glaeser’s inequality (20) to

xk 7! 1(t , x, � ),

which is a positive function inB1(R, R) depending on the space variablexk and on
the (2n� 1)-dimensional parameter (x0, � ) where x0 := (x j ) j 6= k. In facts:

(1xk (x, � ))2 � 1(x, � ) sup
xk2R

j�2
xk
1(x, � )j . j� j21(x, � ).
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Analogously, j�j . 1 thanks to (79).
Thus our conditions (10) and (12) reduce to

(d � cb)2 . 1,

which holds true thanks to the Oleı̆nik’s condition (7) and to the generalized Mizohata’s
condition (77). To conclude the proof, we apply Theorem 1.

5. The 2� 2 first-order systems

Through this section we study the Cauchy problem for the 2�2 first-order systems:

(80)

�
L(t , x, �t , �x)U (t , x) = F(t , x),
U (0, x) = U0(x),

in space dimensionn = 1 with

(81) L = I�t + A(t , x)�x + B(t , x).

We assume thatA, B 2 B1(GT , M2(R)).

NOTATION. We define:

A :=

�
A11 A12

A21 A22

�
and A+ :=

�
A22 �A12�A21 A11

�
,

and we notice that

A + A+ = (tr A)I, and AA+ = (detA)I.

Moreover, we put:

A :=
1

2
(A� A+) =

0
B�

A11� A22

2
A12

A21
A22� A11

2

1
CA.

We assume that L is hyperbolic, that is:

1 :=

�
tr A

2

�2� det A � �detA � 0.

Theorem 3. Assume that there is some constant A> 0 for which:

(82) tf(tr(A+B)� (tr B)b)2 + kAt + bAxk2g . 8A,
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where b:= (1=2) tr A, kMk := maxi , j =1,2jMi j j and

(83) 8A := A1 +1t + b1x.

Hence the Cauchy problem(80) is well-posed inC1.
Moreover, if tr A� tr A(t) is not depending on x, then (80) is globally well-posed.

REMARK 8. If we assume that

(84) (tr A)2 . 1,

then our condition (82) reduces to:

(85) tf(tr(A+B))2 + kAtk2g . A1 +1t .

Moreover, if A = A(x) then (85) reduces to:

(86) (tr(A+B))2 . 1.

We remark that (84) and (86) involve only matrices invariants.

In order to prove Theorem 3 we recall a result of Ebert [4] thatextends the Olĕınik’s
theorem [10] to 2� 2 second-order systems with a scalar principal part.

Theorem (M. Ebert [4]). The Cauchy problem

(87)

8<
:
LU (t , x) = F(t , x),
U (0, x) = U0(x),
Ut (0, x) = U1(x),

for the second-order system

LU = Ut t � (1(t , x)Ux)x + C(t , x)Ut + D(t , x)Ux + E(t , x)U ,

with coefficients inB1(GT , M2(R)), is globally well-posed inC1 if there is some con-
stant A> 0 such that

(88) tkDk2 . A1 +1t .

Proof of Theorem 3. We put:

a := detA, b :=
1

2
tr A, c := tr B, d := tr(A+B),
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and we define

L(t , x, �t , �x)U := Ut t + (bUx)t + (bUt )x + (aUx)x + cUt + dUx.

We compose L on the left-hand with the operator

N(l )(t , x, �t , �x) := L+(t , x, �t , �x) + A+
x(t , x),

where

L+ = I�t + A+�x + B+,

hence we have

N(l ) L U = Ut t + 2bUt x + aUxx + cUt + dUx

+ (At + A+ Ax)Ux + A+
xUt + A+

x AUx + E(l )U

= LU + (A+
x � bx)Ut + (At + A+ Ax + A+

x A� bt � ax)Ux + E(l )U .

By the identitiesAx A+ + AA+
x = axI and A� bI = A = �(A+ � bI), we get:

N(l ) L U = LU �AxUt + AtUx + E(l )U .

As in §1 we takeV , nbd. of the initial line, andG = (�0, g), smooth change of
variables onV , such thatN(l ) L is equivalent to:

(89) (N(l ) L)HV = Vss� (1H(s, y)Vy)y + CH(s, y)Vs + DH(s, y)Vy + EH(s, y)V ,

where:

1H = [g2
x1] ÆH,

CH = [(c� bx)I �Ax] ÆH,

DH = [(ĥygxx1 + d � cb)I + At + bAx] ÆH,

EH = E(l ) ÆH.

The system

(N(l ) L a)HV = [N(r ) L(V Æ G)] ÆH,

verifies (88) inW := G(V), since

(90) tk(d � cb)I + (�t + b�x)Ak2 . A1 +1t + b1x,

holds true thanks to condition (82).
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We compose L on the right-hand with the operator

N(r )(t , x, �t , �x) := L+(t , x, �t , �x)� A+
x(t , x),

thus (here we use againA = �(A+ � bI)):

L N(r )U = Ut t + 2bUt x + aUxx + cUt + dUx � A+
xUt + A+

t Ux + E(r )U

= LU + (Ax � 2bx)Ut � (At + ax)Ux + E(l )U .

The system (LN(r ))HV verifies (88) inW. Indeed by applying the Glaeser’s inequality
(20) to

(2bbx � ax)2 = 12
x . 1,

it follows that

tk(d � ax � cb+ 2bbx)I � (�t + b�x)Ak2 . A1 +1t + b1x,

holds true thanks to condition (82).
Following the proof of Corollary 1 we can prove that the Cauchy problem (87) is

well-posed for both the operatorsN(l ) L and L N(r ). Consequently, the Cauchy prob-
lem (80) for L is well-posed. Moreover, if trA� tr A(t) then we can takeV = GT = W
and (87) is globally well-posed.
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[10] O.A. Olĕınik: On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl.

Math. 23 (1970), 569–586.
[11] S. Spagnolo and G. Taglialatela:Homogeneous hyperbolic equations with coefficients depending

on one space variable, J. Hyperbolic Differ. Equ.4 (2007), 533–553.

Dipartimento di Matematica
Università di Bari
via E. Orabona 4
70125 Bari
Italy


