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A commutative integral domain D is said to be a Krull domain provided

there is a family {F, }, e/ of discrete rank one valuation overrings of D such that

( i ) £=n,6/F,.
( 2 ) each F, is essential for D.

( 3 ) Given x in Z), #ΦO, there is at most a finite number of / in / such

that x is a non unit in F, .

Using noetherian local Asano orders and noetherian simple rings instead of
discrete rank one valuation rings we will introduce non commutative Krull rings
and generalize some elementary results on commutative Krull domains to the
case of non commutative Krull rings.

In § 1, we will define non commutative Krull rings and study the relations
between a prime Goldie ring R and noetherian local Asano orders containing R.
We will introduce, in §2, the concept of divisor classes on bounded Krull rings
and show that the divisor class of a non commutative Krull ring becomes an
abelian group under some conditions. In §3, we will study orders over a
commutative Krull domain o. Maximal o-orders are bounded Krull rings.
Furthermore we will generalize the approximation theorem for commutative
Krull domains to the case of maximal o-orders (Theorem 3.5). In §4 we will
define the w and z -operations on one-sided Λ-ideals of prime Goldie rings in the

same fashion as for commutative domains. We will show that these operations
coincide on noetherian bounded Krull rings and maximal o-orders. Further we
will show that every class of right e -ideals of maximal o-orders contains a right
ideal generated by two regular elements. Several examples of non commutative
Krull rings will be given in the final section.

Throughout this paper R will denote a prime Goldie ring1' with identity
element which is not artinian, and Q will denote the simple artinian quotient
ring of R.

1) Conditions assumed on rings will always be assumed to hold on both sides for example,
a Goldie ring always means a right and left Goldie ring.
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1. Definitions and localizations

Let R be a prime Goldie ring with quotient ring Q. A right /2-submodule
/ of Q is called a right R-ideal (fractional) provided / contains a regular element
of Q and there is a regular element b of Q such that bISiR. If /C/?, then we
say that / is integral. We call a ring R an Asano order if its .R-ideals form a
group under multiplication. R is said to be local if its Jacobson radical J is the
unique maximal ideal and R/J is artinian. Let R be a noetherian local Asano
order. Then, by Proposition 1.3 of [5], R is hereditary, a principal right and left
ideal ring. Let F be a right additive topology. We denote by RF the ring of
quotients of R with respect to F (cf. [10]). A subring of Q containing R is
called an overring of R. An overring R/ of R is said to be right essential if there

is a perfect right additive topology F such that R'=RF (cf. p. 74 of [10] for the
definition of perfect topologies). By the results of §13 of [10], RF is a right
essential overring of R if and only if the inclusion map R->RF is an epimorphism
and RF is a flat left Λ-module. Further, if RF is a right essential overring of R,
then F consists of all right ideals / such that IRF=RF. In a similar way, we
define the concept of left essential overrings of R. An overring R/ of R is said
to be essential if it satisfies the following two conditions:

( 1 ) R' is a right and left essential overring of R, that is, R'=RF=RFj,
where F(F^ is a perfect right (left) additive topology.

(2) If /eF(/eF7), then RΊ=R'(JR'=R').
If A is an ideal of R, then we denote by C(A) those elements of R which are
regular in R/A. If R satisfies the Ore condition with respect to C(P), where P
is a prime ideal of 7?, then we denote by RP the local ring of R with respect to
P. Let A, B be subsets of Q. We use the notation: (A : B)r= {q^Q\Bq^A}y

(A : B);= {q<EΞQ \ qB^A}. We denote by Fr(R) the set of right tf-ideals of R,
and by F,(R) the set of left ^-ideals of R. We set F(R)=Fr(R) Π Fg(R).

A prime Goldie ring R is said to be a Krull ring if there are families {Rt} t-e/

and {Sj} j(=j of essential overrings of R such that

(Kl) R=niRinnJSJ (ίe/JeJ).
(K2) Each Λ, is a noetherian local Asano order, each Sj is a noetherian

simple ring and the cardinal number of J is finite.
(K3) For every regular element c in R we have cRi^R^RfC^pRi) for

finitely many i only.

If J=φ, then we say that R is bounded.

Proposition 1.1. Let R be an essential overring of a prime Goldie ring R
and let R' be a noetherian local Asano order with unique maximal ideal P'. Then

( 1) P'=PR'=R'P, where P=R Π P'.
(2) P is a prime ideal of R.
( 3 ) R'lP' is the quotient ring of R/P.
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( 4 ) R satisfies the Ore condition with respect to C(P) and R'=RP.

Proof. There is a perfect right (left) additive topology F(Fl) such that
R'=RF=RFj. For any 7<=F, we have IR'=R' so that IQ=Q. This implies
that / is an essential right ideal of R by Theorem 3.9 of [4]. Hence we easily
obtain that R'= (J (R : /)/ (/e=F). Similarly R= U (R : J)r (/eF,).

( 1 ) The containment PP'CP' is clear. Let q be any element of P'.
Then there is an element I<=F such that qIS=P' Γ\R=P. So we have q<=qR'
=qIR'^PR'. Hence P'=PR'. Similarly P'=R'P.

( 2) Assume that AB^P and B^P, where A, B, are ideals of R. Then
R'BR'ϊtP'. Since the ideals of R' are only the powers of P', we have R'BR'=R'.
Write 1=Σ*••*••**> where ί$ , ^e/Z' and b^B. Then there are
such that *,/S/ϊ and/*,£!?. So we have//££. Hence
and so ^4 £ P.

( 3 ) Let # be any element of R/ such that <?$P'. Then ql^R for some
/eί1. If ?/£P, then q<=qR'=qIR'£ίPR'=P', a contradiction. Hence j/SCP.
This implies that R'/P' is an essential extension of R/P as right P/P-modules.
Since P'̂ P' is a simple artinian ring and RjP is a prime ring, we obtain that
R'/P* is the right quotient ring of R/P. Similarly R'/P' is the left quotient ring
of RIP.

( 4) First we shall prove that each element of C(P) is a unit in R. Since
P' is the Jacobson radical of R' and R'jP' is a simple artinian ring, an element
q of R' is a unit in R if and only if it is an element in C(P'). Hence it suffices
to prove that C(P)C C(P'). To prove this, we assume that cq<^P', where c^ C(P)
and q<^R', then cql^P and ql^R for some /eF. Hence qlS^P so that q^P'.
Consequently re C(PX). Let FP be the set of right ideals / of R such that r~ll
= {x<=R\rx<=I} meets C(P) for all r<=R. Then we shall prove that F=FP.
Since any element of C(P) is a unit in P7, the containment FP^F is clear. To
prove the converse inclusion let / be any element of F and let r be any element
of R. Since r~lI^F, we have (r~lI)R'=R'. This implies that [(r^I+PyP]
(R!lPf)=RIP. Hence, by (3) and Theorem 3.9. of [4], (r~lI+P)/P is an essential
right ideal of R/P so that (r^I+P) Π C(P)Φ φ. Write c=d+p, where ^e C(P),
rfer-1/ and ^eP. Then Jer^/Π C(P) and thus 7ePP. Hence PP=P, as
desired. Consequently for any element q of Pr we have qc^R for some c^ C(P).
Now take any r<=R and έreC(P). Then c~lr<=R so that c~1rd=s<=R for some
rfeC(P), that is, rd=cs. Therefore P satisfies the Ore condition with respect to
C(P) and R'=RP.

2. The divisor classes

Throughout this section we assume that P is a bounded Krull ring, that is,
R= Π Rf (i^ I) and each Rf is a noetherian local Asano order with unique maximal
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ideal P/. We let P,.= P/Π/?. Then Pi is a prime ideal of R by Proposition
1.1. Further we assume, in this section, the following condition:

(K4) For any ί, j e /, i φ >, P, $ Py and P, $ P. .
This condition is equivalent to the following one.

(K4)' For any ijel, ίΦ;, Pίlϊy=/?y=lZyPί.

Lemma 2.1. L*ί R be a bounded Krull ring which satisfies (K4). Let I/ be
any element of Fr(Ri) such that I/=Rίfor almost all i(=I. Then 1= Π I/<=Fr(R)

and IRi=I/ for all i e /.

Proof. It is clear that I<=Fr(R). First assume that //QΛ, for all

We put 7f =// Π R. Then 7=7j Π Π 7*. Since Rg is bounded, there are natural
numbers n{ such that 7/2P/*ί and so /tΞ>P,n«. Since 7?,- is flat, we have 7R, =
IjRi—I/ for all z e7 by (K4)'. In general case there is a regular element c of R
such that cI/S-Rf for all ίe/. Hence cIRi=cI/ so that 7R,=7/ for all ίe/.

Lemma 2.2 (Robson [7]). L^ S be a prime Goldie ring with quotient ring

Q(S). Then any right S -ideal of S is generated by the units in Q(S) which it contains.

Proof. Let / be any element of Fr(S). Then there is a regular element c
of S such that cI^S. By Theorem 5.5 of [7], d==^biS9 where the set {6,} is
the regular elements of S contained in cl. Hence I=^(c~1bi)S.

For any A<=F(R) we denote by Ad the (R, J?)-bimodule Π J2*

There are only finitely many R{( l^i^k) such that RfA jR, Φ Λ, . Since

we have cASiR for some regular element c of /?. Thus RiARiS=Rίc~IRί. Since
Λz. is a bounded Aasano order, Rίc~lRi^F(Ri) so that RiARi^F(Ri). Therefore

RiAR^P/^l^i^k) and RjAR—Rj for J£ΞlJ& {1, — , A}. Hence we get

^P.'-in •" nP/"*n ,./2y and Ad^F(R).
We obtain immediately
( i ) ΛCΛ,.

(ii) If A^By then^rf£βrf.

(iii) Λrf-Λ
If A=Ady then it is said to be d-ideal. If we define an equivalence relation

on F(R) by saying that ^4^J5 if and only if Ad=Bd. For any A^F(R), we

denote by A the equivalence class determined by A. Each such equivalence
class A contains a unique rf-ideal Ad. The set D(R) of all such equivalence
classes forms a semi-group under the multiplication "*" defined by A*B=

Theorem 2.3. 7/ a bounded Krull ring R satisfies (K4), then D(R) forms an

abelίan group and it is a direct product of infinite cyclic subgroups {(P/)} *e/

Proof. If A is rf-ideal, then A= ΓlP/"*', where n{ are integers and ^=0
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for almost all ι'e/. We let B= Π P/~n{. Then we get the following;

( i ) Bd=B.
(ii) B=(R : A)ι=(R : A)r, and so we denote B by A~\
(iii) (A~1)-1=A.

By Lemma 2.1, (i) immediately follows, (ii); we have BA^P/-n»Pi

/nf=Ri for
all i<Ξ/. So BA^R, and thus B^(R : A)t. To prove the converse let c be a

unit in Q contained in (R : A)h that is, cA^R and so cARi=cP/n

iζiRi by
Lemma 2.1. Hence ceP/~W| for all / and therefore c^B. Consequently

BS(R : A); by Lemma 2.2 and the equality holds. Similarly B=(R : A)r. (iii)

is clear from (ii). By Lemma 2.1 we get (A4-1)/?ί=^P/-"'=P/li<P/-'i'=./2ί

for all i<=I. Hence R= ΓΊ (AA'^R^AA-^^R so that R=A*A~l. There-

fore D(R) forms a group. Let A=Pl

/n^ Π ••• Π PA

/fl* Π y/?y be any J-ideal of Λ.

Then we obtain immediately that A=(P*ι—Pf*)d=(P*ι Π — Π P/*)rf Hence
* __

"«• so that £)(Λ) is an abelian group generated by {P, } ίe/.

If Π*PΛ— 1, then (U Pini)d=R. This implies that Rf=P/M' and so Λ,=0 for
i=l »=1

all ie/. Therefore -D(J?) is a direct product of infinite cyclic subgroups

3. Maximal orders over commutative Krull domains

In the remainder of this paper, o denotes a commutative Krull domains, K

denotes the quotient field of o, and Σ a fixed central simple ίΓ-algebra with finite
dimension over K. Let P be the set of all minimal prime ideals of o. Then
o= Π 0^(5 eP) and o§ is a discrete rank one valuation overring of o.

Following [2], A subring Λ of 2 is said to be Q-order if the following condi-
tions are satisfied :

( i ) o£Λ.
(ii) KA=τ.
(iii) Each element of Λ is integral over o.
If Λ is an o-order, then, by Proposition 1.1 of [2], there is a finitely gene-

rated o-free submodule F of Σ such that F 2Λ. Further if Λ is maximal o-order,
then Λ®OJ is also a maximal Oj-order by Proposition 1.3 of [2]. Therefore if Λ
is a maximal o-order, then Λ®θg is a noetherian local Asano order and Λ=

g(jeP). For any S^P, we denote by P' the unique maximal ideal of
g, and denote by P the contracted prime ideal P' Π Λ.

Proposition 3.1. Let Abe a maximal o-order. Then
( 1 ) A. is a bounded Krull ring and satisfies (K4).
(2) Z)(Λ)«Z)(o).

Proof. For any jeP, we denote by F(F,) the set of all right (left) ideals
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/(/) of Λ such that /(/) meets 0 — 5. Then it follows that P(P/) is a perfect
right (left) additive topology and that AF=A®o$=AFr Hence Λ®03 is an
essential overring of Λ. Let x be any regular element of Λ. Since x is algebric
over K, we get; atyf-\ ----- \-aQ=Q for some <2, eo. We assume that fl0Φθ. Put
y=—atx*~l ----- flj. Then we have aQ=xy=yx and y^A. So (xy)o%=θt for
almost all jeP. Therefore x(A®o^)=A®o^ for almost all jeP. It is evident
that Pn o— 5 for any jePand that o satisfies (K4). Therefore Λ also satisfies
(K4). (2) is clear from (1) and Theorem 2.3.

Proposition 3.2. Let Λ be a maximal o-order and let 3^P. Then the set
of prime ideals of A lying over j is only {P} . In particular, P is a minimal prime
ideal of A.

Proof. Assume that P0 is a non zero prime ideal of Λ such that P0 Π o=$
and P0ΦP. We set Λ=Λ/P0, o=o/§ and K=o^o^. First we shall prove that
Λ is a prime Goldie ring with quotient ring Λ®X\ It is evident that Λ is o-
torsion-free. Hence the natural map Λ— *Aξt)K is a monomorphism and A®K
is an essential extension of Λ as Λ-modules. Since Λ®0^ is finitely generated
as Oj-modules, Ά®K is a K'-algebra with finite dimension over R, so that A®K
is a simple artinian ring. Therefore A(g)K is a quotient ring of Λ, and so Λ is
a prime Goldie ring.

( i ) In case P5P0. Let P0(Λ®oδ)— P'n for some natural number n. We
shall prove that C(P0)CC(P') By Lemma 2.3 of [5], C(P/*)=C(P/), and so it
suffices to prove that C(P0)£C(P'n). If cx^Pfn, where ceC(P0), jceΛ®oδ,
then there exists m^o — $ such that cxm^P0 and xm^A. Hence xm^P0 and
so x^P'n. Therefore each element of C(P0) is a unit in Λ®oδ. Since PSP0

and Λ is a prime Goldeie ring, we have PΠC(P0)Φφ. This implies that
P(Λ®θδ)=Λ®c>5, a contradiction.

(ii) In case P$P0. The family F= {I\x~llΓ\ C(P0)=φ for any x<=Λ, I:
right ideal} is a topology (cf. Exer. 4 of [10, p. 18] ). The P-torsion submodule

£(Λ) of Λ is an ideal and /(Λ)CP0. We denote by A the factor ring Λ/ί(Λ) and

by AF the ring of quotients of Λ, that is, Λp=lim Horn (/, A) (I^F). Then A

is a subring of ΛF(cf. Chap. 2 of [10]). We shall prove that PQAF^ΛF, where

P0=P0/ί(Λ). It suffices to prove that P0ΛF Π A=P0. Assume that T=P0ΛF Π

A3P0, where T is an ideal of Λ. Then T3P0 and so T (Ί C(P0)Φφ. Let c be

any element of T Π C(P0). Write ?=ΣA?ί> where p£^P0 and #, eΛF. There
exists JeP such that #,•/£ A. Hence ^/CP0 and thus /CP0. This contradicts
to C(P0) Π /Φφ. Therefore P0ΛFΠ A=P0. It is evident that mA^F for every
Twee— J. Hence we may assume that A(g)oδCΛF. Since P0^P, C(P) Π P0Φφ.
This implies that P0(Λ®θg)=Λ®θg. Therefore P0AF=AF, a contradiction.

Finally we shall prove that P is a minimal prime ideal of Λ. If P2P0ΦO
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and P0 is a prime ideal of Λ, then P0Π OΦO is a prime ideal of o and δΞ>P0(Ί o.

Hence 5=P0 Π o. Therefore P0=P by (i).

Lemma 3.3. Let fa(ί^i^k) be any elements in P. Then Kλ= ίl Λ®!^,- is

a boundeed Dedekind prime ring, and is a right and left principal ideal ring.

Proof. The set M=o— (fa U ••• U g/?) is a multiplicative closed set and 0M==
Oj jΠ " 'Πo^ is a Dedekind domain. Further it is a principal ideal ring. By

*
Corollary 1.9 of [2], Λ®oM= (Ί Λ®θg t is a maximal oM-order. Hence it is a

bounded Dedekind prime ring. Since the set of prime ideals of Λ®0M is

{P/(A®oM)l l^ίi^k}, Λ®0M is a right and left principal ideal ring.

Lemma 3.4. Let fa(l^i^k) be any elements in P and let n be any positive

integer. Then there is a regular element #^Λ such that

and

Proof. We put M= o— (fa U — U 5*) and P/'=(Λ(g)oM) Π P/. By Lemma
3.3, Pι/=y(A®oM)=(A.®oM)y for some regular element y^A®oM. Since j—

zm~l(z^A and m^M), we may assume that ^eΛnP//=P1. We shall prove
that y eC(P,) (2<>i^k). By Proposition 3.1, Λ satisfies (K4) and so Pj Π C(P, )

Φφ(2^z^^). Let ^=-j;^(^eΛ(g)θM) be any element of Pl Π C(P, ). If zy&Pt,
where <3:eΛ, then #y«;=#ceP/'nΛ=Pί so that z^Pit Hence j> is a unit in

fg/5^&). We put Λ?=jyw. Then x satisfies the assertion of the lemma.

Theorem 3.5. Let fa , , jfe e P αwrf feί nλy >nk be any integers. Then there

is a unit #eΣ M£/i ίAβί x(Λ®oa>)=P/Λ«(l^/^*) and x^A®o^σ for all %σ^P

with 8σ=t=8ί

Proof. It is enough to show that for any z, there exists a unit xf e Σ such

that Λrf(Λ®o8l.)=P/rt« , Λ?/(Λ(g)o8y)=Λ(g)o8y(iΦ<;, l^j^k) and ̂ eΛ®o2σ for all
5σeP with σφ {1, •••, ^}. We will exhibit a unit ̂  in Σ such that ^(Λ®^)

=PΛ, ^(A(g)oai)=A(g)o3i(2^i^A) and ̂ e(A®oa<r) for σφ {1, -, ft}.
( i ) If #!>(), then the assertion follows from Lemma 3.4.
(ii) If //!<0, then, by Lemma 3.4, there is a regular element y in Λ such

that MΛ®oδl)=(Λ®oaι)j— P/-Mι and y(A®oa§.)=A(g)o8l.(2^i^ft). There are
only finitely many elements JΛ+1, •••, 8/^P such that j(Λ®θgy)^Λ®θ5y. For

any j(k-{-l<^j^l), there is a positive integer hj such that jv(Λ®θgy)2P/*y,
because Λ®oδy is bounded, that is, ^~1P/

y

ΛyCΛ®oδy. Again, by Lemma 3.4,
there is a regular element #y in Λ such that #/Λ®θ3y)==(Λ®oδy)#7— P/Ay and

^y(Λ®o8ll)=Λ®oajl for any j(k+l^j<^l) and any wΦj, ne {1, - , A, •-,/}.

Here weset^=^+1 ^/eΛ. Then we get: ^(Λ®θ5f.)=Λ®θjf. for any ί(l^i^A)
and ar(Λ®θay)=P/Λ/ for any j(k+l<^j<^l). If xί=y~ίx9 then we obtain that
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31)=P1

/Λl, Λ?1(Λ(g)θ3ί)=Λ®θal for any i(2^i^k) and xl^A®o?ίσ for any

4. ^-operations

Let Λ be a prime Goldie ring with quotient ring Q. Following [3], A
mapping *: /->/* of Fr(R) into Fr(R) is called a ^-operation on /? if the follow-
ing conditions hold for any unit a'mQ and any /, J^Fr(R):

( i ) (aR)*=aR, (al)*=al*.
(ii) /£/*, if /£/, then /*£/*.
(iii) (/*)*=/*.
If I=I*(I^Fr(R)), then we say that / is a πgTzZ *-ideal. In this section we

shall define *-operations of two kinds and give sufficient conditions that these
two * -operations coincide. Let / be any element of Fr(R). We define the v-
operatίon on R by IV=(R: (R: /)/)r. If R is a Krull ring, that is, R= Π R, ΓΊ 5y,
then we define the w-operatίon on Λ by Iw= Π //?,- (Ί /*Sy. If o is a commutative
Krull domain and if Λ is a maximal o-order, that is, Λ— ίΊΛ®θa(jeP), then
Aw= Ad for any ̂ ^^(Λ). It is evident that the ^-operation is a *-operation.

By using Lemma 2.2, the following proposition is proved by the same way
as in commutative domains (cf. Theorem 28.1 of [3]).

Proposition 4.1. Let R be a prime Goldie ring with quotient ring Q and let

I be any element in Fr(R). Then Iv is the intersection of the set of principal right
R-ίdeals of R containing I.

Corollary 4.2. ( 1 ) The v-operation on R is a ^-operation.
( 2 ) If I^Fr(R), then /*£/ί;/or any ^-operation on R. In particular, any

right v-ίdeal is a right * -ideal.
( 3 ) IfJ^F^R), then (R : J)r is a right v-ίdeal.

Proof. ( 1 ) and ( 2 ) are evident from Proposition 4.1 and the definitions.
( 3 ): An element x in Q is an element in (R : J)r if and only ΊίJxSiR. This
condition is equivalent to cx^R for any unit c in Q which is contained in /.
Hence (R : J)r= Π c~1R= Π (c~1R)v=( Π c~1R)vy where c ranges over all units in
Q which are contained in /. Therefore (R : J)r is a right z -ideal.

Proposition 4.3. Let R be a noetherian Krull ring, that is, R= Π Rf IΊ Sj
eJ) and let each Sj be hereditary. Then Iw=Iυfor any

Proof. For a convenience, we denote R{ or 5y by Tk. We let/— (R : /),.
First we shall prove that (Tk : /jΓΛ)/=Γ^/. Let x be any element in (Tk : IT^.
Then #/£7V Since R is noetherian, xl is finitely generated so that J0xI^R
for some J0^Fkι, where Fkj is the left additive topology on R such that Tk=RFkj.
Thus J0xQJ. Consequently we have x<= 7>= 7\/0#£ TkJ and so (Tk : 7ΓΛ)/
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SiTkJ. The converse containment is evident. Similarly we get (Tk : TkJ)r==
(R : J)rTk. By Corollary 4.2, J is a left w-ideal so that /= Π TkJ= Γ\ (Tk: /Γ*),.
Similarly (R : J)r= Π (Tk : TkJ)r. By Corollary 4.6 of [7], simple rings are also

maximal orders. So (Tk : TkJ)r=(Tk: (Tk: /Γ*),)^/?1* for all k. Hence we
get Iυ=(R : J),= Π (Tk: TJ)r= Π ITU=IW as desired.

Theorem 4.4. Let o be a commutative Krull domain and let Λ be a maximal
v-order. Then Iv=Iwfor any I^Fr(A).

Proof, (i) First we assume that / is integral. By Corollary 4.2 /«,£/„. To
prove the converse inclusion it suffices to prove that any regualr element c in
Λ—Iw is not contained in Iv by Lemma 2.2. We set Iw= Π //, where //=/
(Λ®o3ί) and j,eP. There are only finitely many //, ••-,// such that //£A®Og,
(1 <^i^k). Put M=o—($! U ••• U &k) By Lemma 3.3 there is a regular element
Λ: in Λ such that x(A®oM)=I1

/Γ\ ••• Π / j / Γ Ί (Λ®0M) and so #(Λ(g)θg,.)=// for
/(I ̂ i^k). There are only finitely many £+1, ••-,/ such that Λ?(Λ®oδy)£Λ®θgy

(&+lfSy^/). Since Λ®θjy is bounded, there are positive integers nk+ly •••, nl

such that #(A®Oay)=2P/*y. By Theorem 3.5, there is a unit 3; in Σ such that
3<Λ®oa ί.HΛ®oδ <.(l£i£k),y(^®o^=(A®o^)y=P/n s(k+l^j^l) and
®Q%σ for σφ{l, •••, /}. Here we put %=χy~l. Then we get:
//(I ̂ i^*), <Λ®oίσ) 2(Λ®oδσ) for σφ {1, - , *}. Therefore #Λ= Π ^
37 ,̂. If c^zA., then ce//Π ••• n/A

/nΛ=/w, a contradiction. So
This implies that ^φ/^ by Proposition 4.1. Consequently we have IW=IV. (ii)
If / is fractional, then cl is integral for some regular element c in Λ, then clv=

(cl)v=(cl)w=clw so that Iυ=Iw.

REMARK. Let R be a non commutative Krull domain in the sense of [1].
Then, by the similar way as in Theorem 4.4, we get IV=IW for any I^Fr(R).

Theorem 4.5. Let o be a commutative Krull domain and let A be a maximal
o-order. If I^Fr(R), then there are units c, d in Σ such that Iv=(cΛ-\-dA)υ.

Proof. It suffices to prove the theorem for any integral right J?-ideal /.

We write /,=// Π — Π // Π Λ, where //=/(Λ®oa,). Set M^o—fo U — U fa)
By Lemma 3.3, Iv(^®oMl)=c(A®oMl) for some regular element c in Λ. By
Lemma 2.1 we have Iv(A.®o^)=I/=c(A.®o^ (l^i^k). There are only finite
numbers k+l, •••, / such that φV®ogy)S(Λ®oδj.) (k+l^j^l). Set M2=o—

(δ*+ιll ••• U8/) and N=M1ΠM2. Now for any // we get I/^P/n' for some
positive number nf and so /,=// Π Λ2PΛ- We put A=P** Π — Π P/*. Then
IV^A and A(Λ®oN)=d(Λ®oN) for some regular element d in Λ. Since Λ
satisfies (K4) and Λ®θgy is Λ-flat, we have d(λ®o%j)=Λ®θgy forj(k+l^j^l).

Therefore we get: (cΛ+έ/Λ)(Λ®o8f)=//+ί>Λ=//(l^/^*) and (cA.+dA.)
for any <r${l, -' ,/ί}. Thus we obtain (cΛ-\-dΛ.)v=Iv, as
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desired.

5. Examples

In this section we shall give some examples of Krull rings.
( i ) A commutative Krull domain o and a maximal o-order are both

bounded Krull rings (cf. §3).

(ii) Noetherian Asano orders are Krull rings (cf. [5]). In particular,

bounded noetherian Asano orders are bounded Krull rings.
(iii) If R is Krull ring, then the complete matrix ring (R)n is also Krull.

In particular, if R is bounded, then (R)n is also bounded.

(iv) If R is a Krull ring, then the polynomial ring R[x] over R is also

Krull.
In the remainder of this section, we shall give the proof of (iv).

Lemma 5.1. Let R be α noetherian local Asano order with unique maximal

ideal Py and let Q be the quotient ring of R. Then

( 1 ) R[x] satisfies the Ore condition with respect to C(P[x]) and R[x]PM is

also a noetherian local Asano order.

(2) Q[x]Γ\R[X]PM=R(x].

Proof. It is well known that R[x] is a noetherian prime ring. Since P[x]

is invertible, the proof of (1) is similar to one in §2 of [5].

(2) It is evident that Q[x]Γ\R[x]PM^R[x]. Let f(x)=ajc?-\ ----- \-aQ be

any element of Q[x] Γ\R[x]PM, where a^Q and let/(#)— g(x)h(x)~1

9 where g(x),

h(x)^R[x] and h(x)^C(P[x]). Since h(x)=[h(x)+P[x]~] is a regular element in

R[x]/P[x]^R[x], where R=R/P, there is an element r(x) in R[x] such that h(x)

r(x)—(ϊmxm-\ ----- \-c0 by Lemma 2 of [9], where cm is a unit in R. Hence cm is

a unit in R. _So f^^r(x)=^)r(x)^R[x] zndf(x}&Q/P[x]. From this we

have ancm^R. Thus an^R, that is, an^R. By induction, we get a^R for

all i and thusf(x)^R[x].

Lemma 5.2. Let R be a prime Goldίe ring with quotient ring Q and let

5£ T be overrings of R. If S is an essential overring of R and if T is an essential

overring of S, then T is an essential overring of R.

Proof. It is evident that T is a flat 7?-module. Because

)]^T®s(S®RT)^ T®RT ,

the inclusion map: R->T is an eqimorphism. Therefore there is a perfect right

(left) additive topology F(Fl) such that RF=T=RFι by Theorem 13.10 of [10].
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From the assumption, there are topologies Fίy Fil(i=ίy2) such that RFl=S=RFi/

and SF2=T=SF2ι. Let / be any element of F. Then T=IT=IST so that

IS<=F2. Hence TIS=T. Write l=2f f ΛΛ, where Z, eT, a{<=I and
There is an element A of F1 such that ^SSΛ. Therefore we get A=(

£Σ(*A ) M)£T7. Since 5^=5, we have T^TISTA=TSA=TS=T so
that Γ= 77. Similarly, we have /Γ= Γ for any J^Ff. Hence Γ is an essential
overring of R.

Lemma 5.3. Let S be a (right) essential overring of R. Then S[x] is a
(right) essential overring of R[x].

Proof. There is a perfect right additive topology F such that S=RF. We
denote by F* the set of right ideals of R[x] which contain an element in F. We
shall prove that F* is a perfect right additive topology on R[x] and that *?[#]=
R[x]F*. Let 7* be any element of F* and letf(x)=ajc*-\ \-aQ be any element
of R[x]. (i) We shall prove that f(x)~lI*^F* by induction on degree f(x)=n.
From the assumption there is an element I in F such that 7 £7*. If n=Q, then

and aόlI^Fso that f(x)~lI*<=F*. By the induction hypothesis,

, where f1(x)=aH^1x
n-1-\ Mo and I^F. Since ajcn(a^I)=-

x"an(a-lI)SiXnI=Ixn

y we get tfl^ajf)-1!*. Hence we obtain that /(a?)"1/*
^(anx

n)-ll^^f,(x)-ll^^l^a-ll. This implies that f(x)-lI*ζΞF*. (ii) We

shall prove that if /* is a right ideal of R[x] and if there is 7*ejF* such that
α*'1/*^* for every α*e7*, then J*^F*. There exists I<=F such that

7*27. For any 0e7, there exists /ΛeF with aΓ1/*2/«. Set J=ΣaJa(a^I).
Since a~^J~S,]a for any α^7, we have /eί\ It is evident that J*^J so that
J*^F*y as desired. Hence .F* is a right additive topology, (iii) We shall

prove that F* is perfect and S[x]=R[x]p*. Let 7* be any element of F*. Then
it is clear that I*S[x]=S[x], Conversely, let 7* be a right ideal of R[x] with

I*S[x]=S[x]. Write 1=20^, where 0,-<Ξ7*, ^eS[Λ?]. There exists I<=F such
that ^7SI2[Λ?]. Hence 7=(Σα t̂ )7S7* so that 7*eF*. Thus, by Theorem
13.10 of [10], F* is perfect and S[x]=R[x]p+. Consequently S[x] is a right
essential overring of R[x], If S is an essential overring of R, then it is evident

from the definition of F* that S[x] is an essential overring of R[x].

Theorem 5.4. If R is a Krull ring, then R[x] is a Krull ring.

Proof. Let R= Π-R/ΠSy, where ι€Ξl,j^J, the cardinal number of J is
finite, each R{ is a noetherian local Asano order with uniqe maximal ideal P/

and each Sj is a noetherian simple ring. By Lemma 5.1 Rg[x]P/ίxι is a noetherian

local Asano order, and Ri[x]P.'[xl Π Q[x]=Rf[x]. By Example 6.1 of [8], *Sy[#] is
a noetherian Asano order. Hence Sj[x] = S%Γ\Sfk(jk^Jj)y where S% is a
noetherian simple ring and Sfk are noetherian local Asano orders (cf. [5]). Q[x]
is a Dedekind prime ring by Example 6.3 of [8]. Hence Q[x]=T0Γ\



714 H. MARUBAYASHI

where T0 is a simple hereditary ring and Tl are noetherian local Asano orders

(cf. [6]). By Lemmas 5.2 and 5.3, all Ri[x]P/M9 S%, Sfk, T0, and Γ/ are essential

overrings of R[x]. Further we get:

R[x] = n Rf[χ] n Sj[χ] = n , [Q[χ] n /Z,MP/DP]} n y {s$> n s*k }
= C n ΛMP/M n ,r, n , n yfes* ] n [ n ys*0 n TO] ,

and the simple overrings are only T0, SfQ(j^J) so that the number of these is

finite.

Finally we shall prove that R[x] satisfiies the axiom (K3). Let /* be any

essential right ideal of R[x]. Then there exists f(x)=anx
n-\ ----- \-a0 in /* such

that an is a regular element in R by Lemma 2 of [9]. Hence anRi = Rf for

almost all ίe/, that is, αΛeC(P, ) and so /(#)eC(P,[#]). This implies that

/*Λ/[#]Py[Λ] =/?,{#] p. /[ΛΓ] for almost all ίe/. Since I*Q[x] is an essential right

ideal of Q[χ], we have Γ/-/*ρ[Λ?]71

/-/*Γ/ for almost all 1<=ΞL. Similarly Sfr

=ISfk for almost alljk&Jj. Therefore R[x] is a Krull ring.

OSAKA UNIVERSITY

References

[1] H.H. Brungs: Non commutative Krull domains, J. Reine Angew. Math. 264 (1973),
161-171.

[2] R.M. Possum: Maximal orders over Krull domains, J. Algebra 10 (1968), 321-332.
[3] R.W. Gilmer: Multiplicative Ideal Theory, Part II, Queen's papers on Pure and

Applied Math. No. 12, Kingston, Ontario, 1968.

[4] A.W. Goldie: Semi-prime rings with maximum condition, Proc. London Math. Soc.
10 (1960), 201-220.

[5] C.R. Hajarnavis and T.H. Lenagan: Localization in Asano orders, J. Algebra

21 (1972), 441-449.
[6] J. Kuzmanovich: Localizations of Dedekind prime rings, J. Algebra 21 (1972),

378-393.
[7] J.C. Robson: Artinian quotient rings, Proc. London Math. Soc. 17 (1967), 600-

616.
[8] J.C. Robson: Pri-rings and ipri-rings, Quart. J. Math. Oxford 18 (1967), 125-

145.
[9] L.W. Small: Orders in Artinian rings, II, J. Algebra 9 (1968), 266-273.

[10] B. Stenstrom: Rings and Modules of Quotients, Springer, Berlin, 1971.




