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A commutative integral domain D is said to be a Krull domain provided
there is a family {V;};<s of discrete rank one valuation overrings of D such that

(1) D=nN;Vi.

(2) each V; is essential for D.

(3) Givenxin D, x40, there is at most a finite number of 7 in I such
that x is a non unit in V;.

Using noetherian local Asano orders and noetherian simple rings instead of
discrete rank one valuation rings we will introduce non commutative Krull rings
and generalize some elementary results on commutative Krull domains to the
case of non commutative Krull rings.

In §1, we will define non commutative Krull rings and study the relations
between a prime Goldie ring R and noetherian local Asano orders containing R.
We will introduce, in §2, the concept of divisor classes on bounded Krull rings
and show that the divisor class of a non commutative Krull ring becomes an
abelian group under some conditions. In §3, we will study orders over a
commutative Krull domain o. Maximal p-orders are bounded Krull rings.
Furthermore we will generalize the approximation theorem for commutative
Krull domains to the case of maximal o-orders (Theorem 3.5). In §4 we will
define the w and v-operations on one-sided R-ideals of prime Goldie rings in the
same fashion as for commutative domains. We will show that these operations
coincide on noetherian bounded Krull rings and maximal p-orders. Further we
will show that every class of right v-ideals of maximal o-orders contains a right
ideal generated by two regular elements. Several examples of non commutative
Krull rings will be given in the final section.

Throughout this paper R will denote a prime Goldie ring® with identity
element which is not artinian, and Q will denote the simple artinian quotient
ring of R.

1) Conditions assumed on rings will always be assumed to hold on both sides; for example,
a Goldie ring always means a right and left Goldie ring.
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1. Definitions and localizations

Let R be a prime Goldie ring with quotient ring Q. A right R-submodule
I of Q is called a right R-ideal (fractional) provided I contains a regular element
of O and there is a regular element b of Q such that J/<R. If ISR, then we
say that I is integral. We call a ring R an Asano order if its R-ideals form a
group under multiplication. R is said to be local if its Jacobson radical J is the
unique maximal ideal and R[J is artinian. Let R be a noetherian local Asano
order. Then, by Proposition 1.3 of [5], R is hereditary, a principal right and left
ideal ring. Let F be a right additive topology. We denote by Ry the ring of
quotients of R with respect to F (cf. [10]). A subring of Q containing R is
called an overring of R. An overring R’ of R is said to be right essential if there
is a perfect right additive topology F such that R'=Rp (cf. p. 74 of [10] for the
definition of perfect topologies). By the results of §13 of [10], Ry is a right
essential overring of R if and only if the inclusion map R—>Ry. is an epimorphism
and Ry is a flat left R-module. Further, if Ry is a right essential overring of R,
then F consists of all right ideals I such that JRr=Ry. In a similar way, we
define the concept of left essential overrings of R. An overring R’ of R is said
to be essential if it satisfies the following two conditions:

(1) R isaright and left essential overring of R, that is, R/ =Rr=Rp,
where F(F)) is a perfect right (left) additive topology.

(2) If IeF(JeF,), then RI=R(JR'=R).
If A is an ideal of R, then we denote by C(4) those elements of R which are
regular in R/A. If R satisfies the Ore condition with respect to C(P), where P
is a prime ideal of R, then we denote by R, the local ring of R with respect to
P. Let 4, B be subsets of Q. We use the notation: (4 : B),= {g=Q|Bq< 4},
(4:B),={gsQlgB<A}. We denote by F,(R) the set of right R-ideals of R,
and by F,(R) the set of left R-ideals of R. We set F(R)=F,(R) N F,R).

A prime Goldie ring R is said to be a Krull ring if there are families {R;};c,
and {8} ;e of essential overrings of R such that

(K1) R=nN;R;,NN;S; (eI,jed).

(K2) Each R; is a noetherian local Asano order, each S; is a noetherian
simple ring and the cardinal number of J is finite.

(K3) For every regular element ¢ in R we have ¢R;#+R;(R;c*+R;) for
finitely many ¢ only.

If J=¢, then we say that R is bounded.

Proposition 1.1. Let R’ be an essential overring of a prime Goldie ring R
and let R’ be a noetherian local Asano order with unique maximal ideal P’'. Then

(1) P'=PR'=R'P, where P=RNP'.

(2) Pisa prime ideal of R.

(3) R[P’ is the quotient ring of R|P.
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(4) R satisfies the Ore condition with respect to C(P) and R'=Rp.

Proof. There is a perfect right (left) additive topology F(F,) such that
R'=Rr=Rp,. Forany IEF, we have IR'=R’ so that IQ=(Q. This implies
that 7 is an essential right ideal of R by Theorem 3.9 of [4]. Hence we easily
obtain that R'=U(R :I), I€F). Similarly R=U(R:J), (JeF)).

(1) The containment PR'SP’ is clear. Let g be any element of P’
Then there is an element I F such that ¢S P'NR=P. So we have g=¢R’
=¢IR'SPR'. Hence P’=PR’. Similarly P’=R’P.

(2) Assume that ABS P and Bg P, where A4, B, are ideals of R. Then
R'BR'EP’. Since the ideals of R’ are only the powers of P/, we have R’ BR'=R’.
Write 1=31¢;b;s;, where t;, s; &R’ and b;B. Then there are I&F and JF,
such that s, /SR and Jt;SR. So we have JISB. Hence ASAR'=AJIR' &P’
and so ASP.

(3) Let g be any element of R’ such that g&P’. Then g/<R for some
IcF. 1If gISP, then gqeqR'=qIR’'S PR'=F’, a contradiction. Hence ¢/ £ P.
This implies that R’/P’ is an essential extension of R/P as right R/P-modules.
Since R/[P’ is a simple artinian ring and R/P is a prime ring, we obtain that
R’|P’ is the right quotient ring of R/P. Similarly R’/P’ is the left quotient ring
of R/P.

(4) First we shall prove that each element of C(P) is a unit in R’. Since
P’ is the Jacobson radical of R and R’/P’ is a simple artinian ring, an element
g of R’ is a unit in R’ if and only if it is an element in C(P’). Hence it suffices
to prove that C(P)< C(P’). 'To prove this, we assume that cge P’, where ce C(P)
and g R/, then ¢qI S P and ¢/ SR for some I F. Hence ¢/ S P so that g P’.
Consequently ce C(P’). Let Fp be the set of right ideals I of R such that »~'I
= {x&R|rxc I} meets C(P) for all r&R. Then we shall prove that F=Fp.
Since any element of C(P) is a unit in R’, the containment F,EF is clear. To
prove the converse inclusion let I be any element of F and let 7 be any element
of R. Since r"'I€F, we have (r"'I)R'=R’. This implies that [( 'I+P)/P]
(R'/P)=R’'[P’. Hence, by (3) and Theorem 3.9. of [4], (r"'I+4P)/P is an essential
right ideal of R/P so that (»"'I+P)N C(P)=¢. Write c=d-+p, where c= C(P),
der'I and peP. Then der'INC(P) and thus I F,. Hence Fp=F, as
desired. Consequently for any element ¢ of R’ we have gc R for some ce C(P).
Now take any reR and ¢ C(P). Then ¢ 'reR’ so that ¢ 'rd=s& R for some
de C(P), that is, rd=cs. Therefore R satisfies the Ore condition with respect to
C(P) and R'=Rp.

2. The divisor classes

Throughout this section we assume that R is a bounded Krull i‘ing, that is,
R=NR;(ieI)and each R; is a noetherian local Asano order with unique maximal
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ideal P;/. We let P,=P/NR. Then P; is a prime ideal of R by Proposition
1.1. Further we assume, in this section, the following condition:

(K4) Foranyi jel,i4j, P;2P;and P;EP;.
This condition is equivalent to the following one.

(K4) Forany i, jel,i+j, P,R,=R,=RP;.

Lemma 2.1. Let R be a bounded Krull ring which satisfies (K4). Let I, be
any element of F,(R;) such that I/ =R; for almost allic 1. Then I=NI/F,(R)
and IR;=1I; for allic1.

Proof. It is clear that I&F,(R). First assume that I/ SR, for all il
We put I;=I/NR. Then I=I,N -+ NI, Since R;isbounded, there are natural
numbers #n; such that I,/ 2P;/* and so I;2P;"%. Since R; is flat, we have IR;=
LR;=1I; for all i€ I by (K4). In general case there is a regular element ¢ of R
such that cI;/ER; for all 1. Hence cIR;=cl; so that IR;,=1, for all i 1.

Lemma 2.2 (Robson [7]). Let S be a prime Goldie ring with quotient ring
O(S). Then any right S-ideal of S is generated by the units in Q(S) which it contains.

Proof. Let I be any element of F,(S). Then there is a regular element ¢
of S such that cJ<S. By Theorem 5.5 of [7], cI=31b; S, where the set {b;} is
the regular elements of S contained in ¢I. Hence I=3(c7'5;)S.

For any A€ F(R) we denote by A, the (R, R)-bimodule NR;AR;isI).
There are only finitely many R;(1<7<k) such that R;AR;+R;. Since A= F(R),
we have cAS R for some regular element ¢ of R. Thus R;AR;SR,c™'R;. Since
R; is a bounded Aasano order, R;c™'R; € F(R;) so that R;AR; F(R;). Therefore
R AR;=P/"(1=i=<k)and R, AR,=R; for jeI,je {1, ---, k}. Hence we get
A;=P," N NP/™N ;R; and A, F(R).

We obtain immediately

(i) A&A,.

(i) If ASB, then 4, B,.

(iil) Agg=A,.

If A=A,, then it is said to be d-ideal. If we define an equivalence relation
on F(R) by saying that A~B if and only if A;=B,. For any A€ F(R), we
denote by A the equivalence class determined by A. Each such equivalence
class 4 contains a unique d-ideal 4,. The set D(R) of all such equivalence
classes forms a semi-group under the multiplication “*” defined by A%*B=

(44B4).

Theorem 2.3. If a bounded Krull ring R satisfies (K4), then D(R) forms an
abelian group and it is a direct product of infinite cyclic subgroups {(P;)};cr-

Proof. If A is d-ideal, then A= N P,/", where n; are integers and n,=0
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for almost all 1. We let B=NP;/ ", Then we get the following;

(i) By,=B.

(i1) B=(R: A),=(R : 4),, and so we denote B by 47*.

(i) (A7) '=A4.
By Lemma 2.1, (i) immediately follows. (ii); we have BAS P;/~"P;/"=R, for
alliel. So BASR, and thus B&(R : A),. To prove the converse let ¢ be a
unit in Q contained in (R : A),, that is, cASR and so cAR;=cP/";SR; by
Lemma 2.1. Hence ceP;/™™ for all 7 and therefore c&B. Consequently
B2(R : A), by Lemma 2.2 and the equality holds. Similarly B=(R : A4),. (iii)
is clear from (ii). By Lemma 2.1 we get (44 )R;=AP;/ "=P;/"P/ "=R,;
for all ieZ. Hence R=N (44 )R,S(AA "), SR so that R=A+A~*. There-
fore D(R) forms a group. Let A=P,/*N --N P,/ N ;R; be any d-ideal of R.
Then we obtain immediately that A=(P,"---P"),=(P,;"1 N --- N P,™),. Hence

A=P " Pl= I'_[k_*P,-”i so that D(R) is an abelian group generated by {P;};c,.

If TI*P,%—1, then (II P/);=R. This implies that R;— P, and so n;—0 for
i=1 i=1

all /€1. Therefore D(R) is a direct product of infinite cyclic subgroups

{(P)}ier

3. Maximal orders over commutative Krull domains

In the remainder of this paper, o denotes a commutative Krull domains, K
denotes the quotient field of o, and X a fixed central simple K-algebra with finite
dimension over K. Let P be the set of all minimal prime ideals of 0. Then
o= N0i(3= P) and o; is a discrete rank one valuation overring of o.

Following [2], 4 subring A of 3 is said to be o-order if the following condi-
tions are satisfied:

(1) o&SA.

(ii) KA=3.

(iii) Each element of A is integral over o.

If A is an po-order, then, by Proposition 1.1 of [2], there is a finitely gene-
rated o-free submodule F of = such that F2A. Further if A is maximal o-order,
then A®p; is also a maximal p;-order by Proposition 1.3 of [2]. Therefore if A
is a maximal o-order, then A®p; is a noetherian local Asano order and A=
NAQRoi (3 P). For any 3P, we denote by P’ the unique maximal ideal of
A®0o;, and denote by P the contracted prime ideal P’ N A.

Proposition 3.1. Let A be a maximal o-order. Then
(1) A s abounded Krull ring and satisfies (K4).
(2) D(A)==D(o).

Proof. For any 3& P, we denote by F(F,) the set of all right (left) ideals
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I(J) of A such that I(]J) meets 0—3. Then it follows that F(F)) is a perfect
right (left) additive topology and that Ar=A@o0;=Ar,. Hence AQo; is an
essential overring of A. Let x be any regular element of A. Since x is algebric
over K, we get; ax*-+---+a,=0 for some a;&0. We assume that a,#+0. Put
y=—awx''—-+—a,. Then we have a,=xy=yx and yeA. So (xy)o;=o; for
almost all 3&P. Therefore x(A Q0;)=AQo; for almost all & P. It is evident
that P N o=3 for any §& P and that o satisfies (K4). Therefore A also satisfies
(K4). (2)is clear from (1) and Theorem 2.3.

Proposition 3.2. Let A be a maximal o-order and let & P. Then the set
of prime ideals of A lying over § is only {P}. In particular, P is a minimal prime
ideal of A.

Proof. Assume that P, is a non zero prime ideal of A such that P, o=3
and P,=P. We set A=A[P,, 0=0[3 and K=op,/30;. First we shall prove that
A is a prime Goldie ring with quotient ring AQK. It is evident that A is o-
torsion-free. Hence the natural map A—~A®XK is a monomorphism and AQK
is an essential extension of A as A-modules. Since A®o; is finitely generated
as o;-modules, AQK is a K-algebra with finite dimension over K, so that AQK
is a simple artinian ring. Therefore AQK is a quotient ring of A, and so A is
a prime Goldie ring.

(i) Incase P2P, Let P(A®0;)=P"" for some natural number n. We
shall prove that C(P,)SC(P’). By Lemma 2.3 of [5], C(P"")=C(P’), and so it
suffices to prove that C(P))SC(P'"). If cxeP’, where c€C(P,), x€ ARu;,
then there exists m&o—3 such that cxme P, and xmeA. Hence xme P, and
so x€P'". Therefore each element of C(P,) is a unit in A®Qo;. Since PEP,
and A is a prime Goldeie ring, we have PNC(P,)#¢. This implies that
P(A®03)=AQn0;, a contradiction.

(i1) Incase PRP,. The family F={I|x'I N C(P)=¢ for any xEA, I:
right ideal} is a topology (cf. Exer. 4 of [10, p. 18] ). The F-torsion submodule
t(A) of A is an ideal and #(A)SP,. We denote by A the factor ring A/#(A) and
by Ar the ring of quotients of A, that is, Ax=lim Hom (I, A) (I&F). Then A

is a subring of Ag(cf. Chap. 2 of [10]). We shall prove that P,A S Ay, where
P,=P,[t(A). Tt suffices to prove that P AxNA=P,. Assume that T=P,AxN
ARP,, where T is an ideal of A. Then T'2P, and so T'NC(P,)%¢. Let c be
any element of 7N C(P,). Write ¢=3p,q;, where p,P, and ¢;=Ar. There
exists I € F such that ¢,/ A. Hence cIS P, and thus IS P,. This contradicts
to C(P,)NI=#¢. Therefore PAxNA=P,. Itis evident that mAEPF for every
meo—3. Hence we may assume that AQo;SAy. Since P,EP, C(P)N Py .
This implies that P(A®0;)=A®p0;. Therefore P,Ar=Ar, a contradiction.
Finally we shall prove that P is a minimal prime ideal of A. If P2P,+0
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and P, is a prime ideal of A, then PN 030 is a prime ideal of o and 32P,No.
Hence 3=P,No. Therefore P,=P by (1).

Lemma 3.3. Let 3,(1<i=k) be any elements in P. Then \,= ﬁ AQoy; is
i=1
a boundeed Dedekind prime ring, and is a right and left principal ideal ring.

Proof. The set M=p0—(3, U -+ U3,) is a multiplicative closed set and py=
05N -+ N0y is a Dedekind domain. Further it is a principal ideal ring. By

Corollary 1.9 of [2], AQoy= ﬂf_A@oa,- is a maximal op-order. Hence it is a

bounded Dedekind prime ring. Since the set of prime ideals of A®ony is
{P(AQoum)|1=i<k}, AQo,, is a right and left principal ideal ring.

Lemma 3.4. Let 3;(1<i<k) be any elements in P and let n be any positive
integer. Then there is a regular element x<= A such that x(AQ0z)=P,""=(AQ0oz)x
and x(A®0;)=AQ04(2=i<k).

Proof. We put M=0—(3, U--- U%) and P;’=(A®oy)NP;/. By Lemma
3.3, P =y(A®0p)=(AQ0p)y for some regular element y& AQ0,. Since y=
zm (e A and me M), we may assume that ye AN P,”=P,. We shall prove
that ye C(P;) (2<i<k). By Proposition 3.1, A satisfies (K4) and so P, N C(P;)
+¢(2=<i<k). Let c=yw(wE AQ0,) be any element of P,N C(P;). If zyP;,
where €A, then 2yw=zcP;/' N A=P; so that s&P;. Hence y is a unit in
A®o;(2=<71<k). We put x=y". Then x satisfies the assertion of the lemma.

Theorem 3.5. Let 3, -, 3. P and let n,, ---,n, be any integers. Then there
s a unit x€3, such that x(AQ0;)=P;/*(1<i<k) and x= AQo;, for all j,=P
with 3,7+ 3.

Proof. It is enough to show that for any 7, there exists a unit x; 3, such
that x;,(A®03)=P;"", x:,(AQ0;,)=AR0;,(i+ j, 1= j=k) and x;EARQ0, for all
3,EP with o= {1, ---, k}. We will exhibit a unit », in 3 such that x,(AQa3,)
=P,/", x,(AR0;)=AR0;(2<i<k) and x,E(AR®0;,) for o & {1, -+, k}.

(i) If n,>0, then the assertion follows from Lemma 3.4.

(ii) If n,<0, then, by Lemma 3.4, there is a regular element y in A such
that y(A®0;)=(AR0s)y=P,’™ and y(AR0;)=AR0;(2=<i<k). There are
only finitely many elements 3., -+, 3, € P such that y(A®Q0;,)SAQ0v;;. For
any j(k+1=<j<I), there is a positive integer &, such that y(AQ®po;)2P,™,
because A®uo;; is bounded, that is, y~'P’ j”f;A®03i. Again, by Lemma 3.4,
there is a regular element 2; in A such that 2;(AQ0;,)=(AQ®0;;)z;=P j""' and
2;(A®0;,)=AR®0y, forany j(k+1=<j=<I/) and any n#j, nE{l, -, &, -, I}.
Here we set 3=24,'*3; EA. Then we get: 3(AQ0;)=AQ 0, for any i(1 <i <k)
and z(A®oaj)=Pj"”' for any j(k+1=<j=<I). If x,—=y 'z, then we obtain that
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2,(ARQ0y)=P,™", x,(A®0;)=AQ0o;; for any {(2<i<k) and x,€ AQ0o;, for any
o {l, -, k}.

4. +x-operations

Let R be a prime Goldie ring with quotient ring Q. Following [3], 4
mapping *: I—I* of F,(R) into F,(R) is called a *-operation on R if the follow-
ing conditions hold for any unit ¢ in Q and any I, J €F,(R):

(i) (aR)*=aR, (al)*=al*.

(i) ISI* if IS ], then I*S J*,

(iii) ([*)*=I*.

If I=I*(I €F,(R)), then we say that [ is a right %-ideal. In this section we
shall define *-operations of two kinds and give sufficient conditions that these
two #-operations coincide. Let I be any element of F,(R). We define the o-
operation on R by I,=(R: (R: I),),. If Risa Krull ring, thatis, R=NR;NS,,
then we define the w-operation on R by I,=NIR;NIS;. If ois a commutative
Krull domain and if A is a maximal o-order, that is, A= N AR0;(3= P), then
A,=A, for any A= F(A). It is evident that the w-operation is a *-operation.

By using Lemma 2.2, the following proposition is proved by the same way
as in commutative domains (cf. Theorem 28.1 of [3]).

Proposition 4.1. Let R be a prime Goldie ring with quotient ring Q and let
I be any element in F,(R). Then I, is the intersection of the set of principal right
R-ideals of R containing I.

Corollary 4.2. (1) The v-operation on R is a x-operation.

(2) IfI€F,(R), then I*<1, for any %-operation on R. In particular, any
right v-ideal is a right x-ideal.

(3) IfJ=F,R), then (R : ]), is a right v-ideal.

Proof. (1) and (2) are evident from Proposition 4.1 and the definitions.
(3): An element x in Q is an element in (R : J), if and only if Jx&R. This
condition is equivalent to ¢cx&R for any unit ¢ in Q which is contained in J.
Hence (R : J),=Nc¢ 'R=N(c"'R),=(Nc¢'R),, where ¢ ranges over all units in
O which are contained in J. Therefore (R : J), is a right v-ideal.

Proposition 4.3. Let R be a noetherian Krull ring, that is, R=NR;NS;
(te1,j€J) and let each S; be hereditary. Then 1,=1, for any I €F,(R).

Proof. For a convenience, we denote R; or S; by T,. We let J=(R : I),.
First we shall prove that (T, : IT,),=T,]. Let x be any element in (T : IT}),.
Then xIST,. Since R is noetherian, xI is finitely generated so that JxISR
for some J,EFy,, where Fy, is the left additive topology on R such that T,=Rp,,.
Thus Jx< J. Consequently we have x& T\ x=T, JxS T, J and so (T : ITy),
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€T,J. The converse containment is evident. Similarly we get (T : T}J]),=
(R:J), T, By Corollary 4.2, ] is a left w-ideal so that J= N T J= N (T4 : ITs);.
Similarly (R : J),=N (T : T:J),. By Corollary 4.6 of [7], simple rings are also
maximal orders. So (T%: T4J),=(Tx: (Ty: IT});),=IT} for all k. Hence we
get =R : )]),=N(Ts: T]),=NIT,=1,, as desired.

Theorem 4.4. Let o0 be a commutative Krull domain and let A be a maximal
o-order. Then I,=1, for any I EF,(A).

Proof. (i) First we assume that I is integral. By Corollary 4.2 [,<1,. To
prove the converse inclusion it suffices to prove that any regualr element ¢ in
A—1I, is not contained in I, by Lemma 2.2. We set I,= NI/, where I/=1
(A®po;,) and 3, P. There are only finitely many ./, -+, 1, such that I,/ S AQ oy
(1=i<k). Put M=0—(3,U:-U3:). By Lemma 3.3 there is a regular element
x in A such that »(AQoy)=I"N NI/ N(ARoy) and so x(ARo;)=1I, for
i(1=i<k). There are only finitely many k+-1,--+,/ such that 2(A®0;,)S AR 0y,
(k+1=j=l). Since AQ®o;; is bounded, there are positive integers 7., -+, 7;
such that (A®o;,)2P /. By Theorem 3.5, there is a unit y in 3 such that
HAB0,)=AR0,(1<i SE), (AR0;)—(AQo;,)y—P,™(k+1=j<I) and yEA
®oy, for o {1, -+, I}. Here we put 2=xy~'. Then we get: 2(AQ0;)=
I/(1<i<k), 2(A®0;,) 2(AQ0;,) for o {1, ---,k}. Therefore zA= N 2(AQ03)
271, If cezA, then cel/N.--NI/NA=I,, a contradiction. So ce=zA.
This implies that c€£1, by Proposition 4.1. Consequently we have I,,=1,. (ii)
If I is fractional, then ¢/ is integral for some regular element ¢ in A, then cI,=
(cI),=(cI),=cl, so that I,=1,.

REMARK. Let R be a non commutative Krull domain in the sense of [1].
Then, by the similar way as in Theorem 4.4, we get I,=1, for any I €F,(R).

Theorem 4.5. Let o be a commutative Krull domain and let A be a maximal
o-order. If I F,(R), then there are units ¢, d in 3. such that I,—(cA+dA),.

Proof. It suffices to prove the theorem for any integral right R-ideal I.
We write I,=I,' N --- NI,/ N A, where I,;=I(A®p0;). Set M,=0—(3,U-** U3s)-
By Lemma 3.3, I(A®o0p,)=c(A®0y,) for some regular element ¢ in A. By
Lemma 2.1 we have I,(AQo;)=1/=c(A®0;) (1=i<k). There are only finite
numbers k+-1, -, I such that ((AQ0;)S(AR0;) (k+1=j=<I). Set M,=0—
(34+:U -+ U%,) and N=M,NM,. Now for any I/ we get I/ 2P/™ for some
positive number #; and so I;=I/NA2P;"%. We put A=P,"1\--NP,™. Then
I,2A4 and A(AQoy)=d(AQ®oy) for some regular element d in A. Since A
satisfies (K4) and A®o;; is A-flat, we have d(A®D;,)=AQuy, for j(k+1=;=<]).
Therefore we get: (cA+dA) (AQoy)=I/+P/"=I/(1<i<k) and (cA+dA)
(A®0;,)=AQp;, for any o {1, -+, k}. Thus we obtain (cA+dA),=1,, as
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desired.

5. Examples

In this section we shall give some examples of Krull rings.

(i) A commutative Krull domain o and a maximal o-order are both
bounded Krull rings (cf. §3).

(i) Noetherian Asano orders are Krull rings (cf. [S]). In particular,
bounded noetherian Asano orders are bounded Krull rings.

(iii) If R is Krull ring, then the complete matrix ring (R), is also Krull.
In particular, if R is bounded, then (R), is also bounded.

(iv) If R is a Krull ring, then the polynomial ring R[x] over R is also
Krull.

In the remainder of this section, we shall give the proof of (iv).

Lemma 5.1. Let R be a noetherian local Asano order with unique maximal
ideal P, and let Q be the quotient ring of R. Then

(1) R[x] satisfies the Ore condition with respect to C(P[x]) and R[x]p(,, is
also a noetherian local Asano order.

(2) Qlx]N R[x] pry=RI[x].

Proof. It is well known that R[x] is a noetherian prime ring. Since P[x]
is invertible, the proof of (1) is similar to one in §2 of [5].

(2) Itis evident that Q[x] N R[x]pr,y2R[*]. Let f(x)=a,x"+---+a, be
any element of Q[x] N R[x] pr,;, Where a;Q and let f(x)=g(x)h(x)™*, where g(x),
h(x)E R[x] and h(x) = C(P[x]). Since h(x)=[h(x)+P[x]] is a regular element in
R[x]/P[x]= R[x], where R=R|/P, there is an element 7(x) in R[x] such that A(x)
7(%)=Cpx™+ -+, by Lemma 2 of [9], where ,, is a unit in R. Hence c,, is
aunitin R. So m@@:@ﬂaeﬁ[ﬂ and f(x)€Q/P[x]. From this we
have a,c,,€R. Thus a,=R, that is, a,R. By induction, we get a;R for
all 7 and thus f(x) = R[x].

Lemma 5.2. Let R be a prime Goldie ring with quotient ring Q and let
S ST be overrings of R. If S is an essential overring of R and if T is an essential
overring of S, then T is an essential overring of R.

Proof. It is evident that T is a flat R-module. Because

T=TQsT=TQ(SQsT)=TQs[(SRrS)QsT]=
TRs[SRr(SVsN=TRs(SRrT)=TQRrT,

the inclusion map: R—T is an eqimorphism. Therefore there is a perfect right
(left) additive topology F(F,) such that Ry=T=Rp, by Theorem 13.10 of [10].
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From the assumption, there are topologies F;, F; (i=1,2) such that Rr,=S=Rp,,
and Sp,=T=Sp,. Let I be any element of F. Then T=IT=IST so that
ISeF,. Hence TIS=T. Write 1=3ta;s;, where t,€T, a;I and s;ES.
There is an element A4 of F, such that s;ASR. Therefore we get A=(Zt;a;s5;)A4
S3(ta;) (s;A)STI. Since SA=S, we have T2TI2TA=TSA=TS=T so
that T=TI. Similarly, we have JT=T for any J=F,. Hence T is an essential
overring of R.

Lemma 5.3. Let S be a (right) essential overring of R. Then S[x] is a
(right) essential overring of R[x].

Proof. There is a perfect right additive topology F such that S=R;. We
denote by F* the set of right ideals of R[x] which contain an element in F. We
shall prove that F'* is a perfect right additive topology on R[x] and that S[x]=
R[x]m. Let I* be any element of F* and let f(x)=a,x"+ -+ +a, be any element
of R[x]. (i) We shall prove that f(x)"'I*<F* by induction on degree f(x)=n.
From the assumption there is an element / in F such that I&I*. If n=0, then
ay'ISas'I* and ag'I €F so that f(x)"'[*<F*. By the induction hypothesis,
filx)"'[*21,, where f(x)=a, " '+-++a, and [,EF. Since a,x"(az*])=
x"a (ax ) Sx"[=1Ix", we get az'<(a,x")"'I*. Hence we obtain that f(x) 'I*
2(ax")I*N fi(x)"[*2L,Naz;*]. This implies that flx)'I*F*. (ii) We
shall prove that if J* is a right ideal of R[x] and if there is I*& F* such that
a*”' J*&F* for every a*&I*, then J*<F*, There exists I&F such that
I*21. For any a1, there exists J,EF with a™ ' J*2],. Set J=3a],(asl).
Since a~'J 2 ], for any ac1I, we have JEF. Itis evident that J*2 J so that
J¥& F*, as desired. Hence F* is a right additive topology. (iii) We shall
prove that F* is perfect and S[x]=R[x]m~. Let I* be any element of F*. Then
it is clear that I*S[x]=S[x]. Conversely, let I* be a right ideal of R[x] with
I*S[x]=S[x]. Write 1=3a,q;, where a,I*, q;=S[x]. There exists I €F such
that ¢;/SR[x]. Hence I=(Za;q;,)ISI* so that [*F*. Thus, by Theorem
13.10 of [10], F* is perfect and S[x]=R[x]m~. Consequently S[x] is a right
essential overring of R[x]. If S is an essential overring of R, then it is evident
from the definition of F'* that S[x] is an essential overring of R[x].

Theorem 5.4. If R is a Krull ring, then R[x] is a Krull ring.

Proof. Let R=NR;NS;, where i€1, jEJ, the cardinal number of J is
finite, each R; is a noetherian local Asano order with uniqe maximal ideal P,
and each S; is a noetherian simple ring. By Lemma 5.1 R;[x] p,(, is 2 noetherian
local Asano order, and R;[%]p 1, N Q[x]=R;[x]. By Example 6.1 of [8], S;[] is
a noetherian Asano order. Hence S,[x]=S%NSH(jREJ;), where S% is a
noetherian simple ring and S%, are noetherian local Asano orders (cf. [5]). O[x]
is a Dedekind prime ring by Example 6.3 of [8]. Hence Q[x]=T,N T, (I€L),
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where T, is a simple hereditary ring and T, are noetherian local Asano orders
(cf.[6]). By Lemmas 5.2 and 5.3, all R,[]p/(ay, ST, STy T, and T are essential
overrings of R[x]. Further we get:

R[x] = NR,x]N S;[x] = N:A{Q[¥] N Ri[x]pyers} N ;{ST N ST}
=[N iRi[x]P,-’lx] N, T,N ;N ij;kk] nEn ijfko nT,J,

and the simple overrings are only T,, SH(j&J) so that the number of these is
finite.

Finally we shall prove that R[x] satisfiies the axiom (K3). Let I* be any
essential right ideal of R[x]. Then there exists f(x)=a,x"+----+a, in I* such
that a, is a regular element in R by Lemma 2 of [9]. Hence a,R;=R; for
almost all 71, that is, a,&C(P;) and so f(x)C(P;[x]). This implies that
I*R;[x] p,ty=Ri[X] p1xy for almost all i1, Since I*Q[x] is an essential right
ideal of Q[«], we have T,=I*Q[x]T;=I*T, for almost all /L. Similarly S%
=187, for almost all jkcJ;. Therefore R[x] is a Krull ring.
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